xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "ppctti"
27 
28 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
29 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
30 
31 // This is currently only used for the data prefetch pass
32 static cl::opt<unsigned>
33 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
34               cl::desc("The loop prefetch cache line size"));
35 
36 static cl::opt<bool>
37 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
38                 cl::desc("Enable using coldcc calling conv for cold "
39                          "internal functions"));
40 
41 static cl::opt<bool>
42 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
43                cl::desc("Do not add instruction count to lsr cost model"));
44 
45 // The latency of mtctr is only justified if there are more than 4
46 // comparisons that will be removed as a result.
47 static cl::opt<unsigned>
48 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
49                       cl::desc("Loops with a constant trip count smaller than "
50                                "this value will not use the count register."));
51 
52 //===----------------------------------------------------------------------===//
53 //
54 // PPC cost model.
55 //
56 //===----------------------------------------------------------------------===//
57 
58 TargetTransformInfo::PopcntSupportKind
59 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
60   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
61   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
62     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
63              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
64   return TTI::PSK_Software;
65 }
66 
67 Optional<Instruction *>
68 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
69   Intrinsic::ID IID = II.getIntrinsicID();
70   switch (IID) {
71   default:
72     break;
73   case Intrinsic::ppc_altivec_lvx:
74   case Intrinsic::ppc_altivec_lvxl:
75     // Turn PPC lvx -> load if the pointer is known aligned.
76     if (getOrEnforceKnownAlignment(
77             II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
78             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
79       Value *Ptr = IC.Builder.CreateBitCast(
80           II.getArgOperand(0), PointerType::getUnqual(II.getType()));
81       return new LoadInst(II.getType(), Ptr, "", false, Align(16));
82     }
83     break;
84   case Intrinsic::ppc_vsx_lxvw4x:
85   case Intrinsic::ppc_vsx_lxvd2x: {
86     // Turn PPC VSX loads into normal loads.
87     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
88                                           PointerType::getUnqual(II.getType()));
89     return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
90   }
91   case Intrinsic::ppc_altivec_stvx:
92   case Intrinsic::ppc_altivec_stvxl:
93     // Turn stvx -> store if the pointer is known aligned.
94     if (getOrEnforceKnownAlignment(
95             II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
96             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
97       Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
98       Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
99       return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
100     }
101     break;
102   case Intrinsic::ppc_vsx_stxvw4x:
103   case Intrinsic::ppc_vsx_stxvd2x: {
104     // Turn PPC VSX stores into normal stores.
105     Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
106     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
107     return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
108   }
109   case Intrinsic::ppc_altivec_vperm:
110     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
111     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
112     // a vectorshuffle for little endian, we must undo the transformation
113     // performed on vec_perm in altivec.h.  That is, we must complement
114     // the permutation mask with respect to 31 and reverse the order of
115     // V1 and V2.
116     if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
117       assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
118              "Bad type for intrinsic!");
119 
120       // Check that all of the elements are integer constants or undefs.
121       bool AllEltsOk = true;
122       for (unsigned i = 0; i != 16; ++i) {
123         Constant *Elt = Mask->getAggregateElement(i);
124         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
125           AllEltsOk = false;
126           break;
127         }
128       }
129 
130       if (AllEltsOk) {
131         // Cast the input vectors to byte vectors.
132         Value *Op0 =
133             IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
134         Value *Op1 =
135             IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
136         Value *Result = UndefValue::get(Op0->getType());
137 
138         // Only extract each element once.
139         Value *ExtractedElts[32];
140         memset(ExtractedElts, 0, sizeof(ExtractedElts));
141 
142         for (unsigned i = 0; i != 16; ++i) {
143           if (isa<UndefValue>(Mask->getAggregateElement(i)))
144             continue;
145           unsigned Idx =
146               cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
147           Idx &= 31; // Match the hardware behavior.
148           if (DL.isLittleEndian())
149             Idx = 31 - Idx;
150 
151           if (!ExtractedElts[Idx]) {
152             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
153             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
154             ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
155                 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
156           }
157 
158           // Insert this value into the result vector.
159           Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
160                                                   IC.Builder.getInt32(i));
161         }
162         return CastInst::Create(Instruction::BitCast, Result, II.getType());
163       }
164     }
165     break;
166   }
167   return None;
168 }
169 
170 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
171                               TTI::TargetCostKind CostKind) {
172   if (DisablePPCConstHoist)
173     return BaseT::getIntImmCost(Imm, Ty, CostKind);
174 
175   assert(Ty->isIntegerTy());
176 
177   unsigned BitSize = Ty->getPrimitiveSizeInBits();
178   if (BitSize == 0)
179     return ~0U;
180 
181   if (Imm == 0)
182     return TTI::TCC_Free;
183 
184   if (Imm.getBitWidth() <= 64) {
185     if (isInt<16>(Imm.getSExtValue()))
186       return TTI::TCC_Basic;
187 
188     if (isInt<32>(Imm.getSExtValue())) {
189       // A constant that can be materialized using lis.
190       if ((Imm.getZExtValue() & 0xFFFF) == 0)
191         return TTI::TCC_Basic;
192 
193       return 2 * TTI::TCC_Basic;
194     }
195   }
196 
197   return 4 * TTI::TCC_Basic;
198 }
199 
200 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
201                                     const APInt &Imm, Type *Ty,
202                                     TTI::TargetCostKind CostKind) {
203   if (DisablePPCConstHoist)
204     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
205 
206   assert(Ty->isIntegerTy());
207 
208   unsigned BitSize = Ty->getPrimitiveSizeInBits();
209   if (BitSize == 0)
210     return ~0U;
211 
212   switch (IID) {
213   default:
214     return TTI::TCC_Free;
215   case Intrinsic::sadd_with_overflow:
216   case Intrinsic::uadd_with_overflow:
217   case Intrinsic::ssub_with_overflow:
218   case Intrinsic::usub_with_overflow:
219     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
220       return TTI::TCC_Free;
221     break;
222   case Intrinsic::experimental_stackmap:
223     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
224       return TTI::TCC_Free;
225     break;
226   case Intrinsic::experimental_patchpoint_void:
227   case Intrinsic::experimental_patchpoint_i64:
228     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
229       return TTI::TCC_Free;
230     break;
231   }
232   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
233 }
234 
235 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
236                                   const APInt &Imm, Type *Ty,
237                                   TTI::TargetCostKind CostKind,
238                                   Instruction *Inst) {
239   if (DisablePPCConstHoist)
240     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
241 
242   assert(Ty->isIntegerTy());
243 
244   unsigned BitSize = Ty->getPrimitiveSizeInBits();
245   if (BitSize == 0)
246     return ~0U;
247 
248   unsigned ImmIdx = ~0U;
249   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
250        ZeroFree = false;
251   switch (Opcode) {
252   default:
253     return TTI::TCC_Free;
254   case Instruction::GetElementPtr:
255     // Always hoist the base address of a GetElementPtr. This prevents the
256     // creation of new constants for every base constant that gets constant
257     // folded with the offset.
258     if (Idx == 0)
259       return 2 * TTI::TCC_Basic;
260     return TTI::TCC_Free;
261   case Instruction::And:
262     RunFree = true; // (for the rotate-and-mask instructions)
263     LLVM_FALLTHROUGH;
264   case Instruction::Add:
265   case Instruction::Or:
266   case Instruction::Xor:
267     ShiftedFree = true;
268     LLVM_FALLTHROUGH;
269   case Instruction::Sub:
270   case Instruction::Mul:
271   case Instruction::Shl:
272   case Instruction::LShr:
273   case Instruction::AShr:
274     ImmIdx = 1;
275     break;
276   case Instruction::ICmp:
277     UnsignedFree = true;
278     ImmIdx = 1;
279     // Zero comparisons can use record-form instructions.
280     LLVM_FALLTHROUGH;
281   case Instruction::Select:
282     ZeroFree = true;
283     break;
284   case Instruction::PHI:
285   case Instruction::Call:
286   case Instruction::Ret:
287   case Instruction::Load:
288   case Instruction::Store:
289     break;
290   }
291 
292   if (ZeroFree && Imm == 0)
293     return TTI::TCC_Free;
294 
295   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
296     if (isInt<16>(Imm.getSExtValue()))
297       return TTI::TCC_Free;
298 
299     if (RunFree) {
300       if (Imm.getBitWidth() <= 32 &&
301           (isShiftedMask_32(Imm.getZExtValue()) ||
302            isShiftedMask_32(~Imm.getZExtValue())))
303         return TTI::TCC_Free;
304 
305       if (ST->isPPC64() &&
306           (isShiftedMask_64(Imm.getZExtValue()) ||
307            isShiftedMask_64(~Imm.getZExtValue())))
308         return TTI::TCC_Free;
309     }
310 
311     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
312       return TTI::TCC_Free;
313 
314     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
315       return TTI::TCC_Free;
316   }
317 
318   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
319 }
320 
321 unsigned
322 PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
323                         TTI::TargetCostKind CostKind) {
324   // We already implement getCastInstrCost and getMemoryOpCost where we perform
325   // the vector adjustment there.
326   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
327     return BaseT::getUserCost(U, Operands, CostKind);
328 
329   if (U->getType()->isVectorTy()) {
330     // Instructions that need to be split should cost more.
331     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
332     return LT.first * BaseT::getUserCost(U, Operands, CostKind);
333   }
334 
335   return BaseT::getUserCost(U, Operands, CostKind);
336 }
337 
338 // Determining the address of a TLS variable results in a function call in
339 // certain TLS models.
340 static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
341                            SmallPtrSetImpl<const Value *> &Visited) {
342   // No need to traverse again if we already checked this operand.
343   if (!Visited.insert(MemAddr).second)
344     return false;
345   const auto *GV = dyn_cast<GlobalValue>(MemAddr);
346   if (!GV) {
347     // Recurse to check for constants that refer to TLS global variables.
348     if (const auto *CV = dyn_cast<Constant>(MemAddr))
349       for (const auto &CO : CV->operands())
350         if (memAddrUsesCTR(CO, TM, Visited))
351           return true;
352     return false;
353   }
354 
355   if (!GV->isThreadLocal())
356     return false;
357   TLSModel::Model Model = TM.getTLSModel(GV);
358   return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
359 }
360 
361 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
362                              SmallPtrSetImpl<const Value *> &Visited) {
363   const PPCTargetMachine &TM = ST->getTargetMachine();
364 
365   // Loop through the inline asm constraints and look for something that
366   // clobbers ctr.
367   auto asmClobbersCTR = [](InlineAsm *IA) {
368     InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
369     for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
370       InlineAsm::ConstraintInfo &C = CIV[i];
371       if (C.Type != InlineAsm::isInput)
372         for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
373           if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
374             return true;
375     }
376     return false;
377   };
378 
379   auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
380     if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
381       return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
382 
383     return false;
384   };
385 
386   auto supportedHalfPrecisionOp = [](Instruction *Inst) {
387     switch (Inst->getOpcode()) {
388     default:
389       return false;
390     case Instruction::FPTrunc:
391     case Instruction::FPExt:
392     case Instruction::Load:
393     case Instruction::Store:
394     case Instruction::FPToUI:
395     case Instruction::UIToFP:
396     case Instruction::FPToSI:
397     case Instruction::SIToFP:
398       return true;
399     }
400   };
401 
402   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
403        J != JE; ++J) {
404     // There are no direct operations on half precision so assume that
405     // anything with that type requires a call except for a few select
406     // operations with Power9.
407     if (Instruction *CurrInst = dyn_cast<Instruction>(J)) {
408       for (const auto &Op : CurrInst->operands()) {
409         if (Op->getType()->getScalarType()->isHalfTy() ||
410             CurrInst->getType()->getScalarType()->isHalfTy())
411           return !(ST->isISA3_0() && supportedHalfPrecisionOp(CurrInst));
412       }
413     }
414     if (CallInst *CI = dyn_cast<CallInst>(J)) {
415       // Inline ASM is okay, unless it clobbers the ctr register.
416       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
417         if (asmClobbersCTR(IA))
418           return true;
419         continue;
420       }
421 
422       if (Function *F = CI->getCalledFunction()) {
423         // Most intrinsics don't become function calls, but some might.
424         // sin, cos, exp and log are always calls.
425         unsigned Opcode = 0;
426         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
427           switch (F->getIntrinsicID()) {
428           default: continue;
429           // If we have a call to loop_decrement or set_loop_iterations,
430           // we're definitely using CTR.
431           case Intrinsic::set_loop_iterations:
432           case Intrinsic::loop_decrement:
433             return true;
434 
435           // Binary operations on 128-bit value will use CTR.
436           case Intrinsic::experimental_constrained_fadd:
437           case Intrinsic::experimental_constrained_fsub:
438           case Intrinsic::experimental_constrained_fmul:
439           case Intrinsic::experimental_constrained_fdiv:
440           case Intrinsic::experimental_constrained_frem:
441             if (F->getType()->getScalarType()->isFP128Ty() ||
442                 F->getType()->getScalarType()->isPPC_FP128Ty())
443               return true;
444             break;
445 
446           case Intrinsic::experimental_constrained_fptosi:
447           case Intrinsic::experimental_constrained_fptoui:
448           case Intrinsic::experimental_constrained_sitofp:
449           case Intrinsic::experimental_constrained_uitofp: {
450             Type *SrcType = CI->getArgOperand(0)->getType()->getScalarType();
451             Type *DstType = CI->getType()->getScalarType();
452             if (SrcType->isPPC_FP128Ty() || DstType->isPPC_FP128Ty() ||
453                 isLargeIntegerTy(!TM.isPPC64(), SrcType) ||
454                 isLargeIntegerTy(!TM.isPPC64(), DstType))
455               return true;
456             break;
457           }
458 
459           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
460           // because, although it does clobber the counter register, the
461           // control can't then return to inside the loop unless there is also
462           // an eh_sjlj_setjmp.
463           case Intrinsic::eh_sjlj_setjmp:
464 
465           case Intrinsic::memcpy:
466           case Intrinsic::memmove:
467           case Intrinsic::memset:
468           case Intrinsic::powi:
469           case Intrinsic::log:
470           case Intrinsic::log2:
471           case Intrinsic::log10:
472           case Intrinsic::exp:
473           case Intrinsic::exp2:
474           case Intrinsic::pow:
475           case Intrinsic::sin:
476           case Intrinsic::cos:
477           case Intrinsic::experimental_constrained_powi:
478           case Intrinsic::experimental_constrained_log:
479           case Intrinsic::experimental_constrained_log2:
480           case Intrinsic::experimental_constrained_log10:
481           case Intrinsic::experimental_constrained_exp:
482           case Intrinsic::experimental_constrained_exp2:
483           case Intrinsic::experimental_constrained_pow:
484           case Intrinsic::experimental_constrained_sin:
485           case Intrinsic::experimental_constrained_cos:
486             return true;
487           case Intrinsic::copysign:
488             if (CI->getArgOperand(0)->getType()->getScalarType()->
489                 isPPC_FP128Ty())
490               return true;
491             else
492               continue; // ISD::FCOPYSIGN is never a library call.
493           case Intrinsic::fma:                Opcode = ISD::FMA;        break;
494           case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
495           case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
496           case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
497           case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
498           case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
499           case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
500           case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
501           case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
502           case Intrinsic::round:              Opcode = ISD::FROUND;     break;
503           case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
504           case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
505           case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
506           case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
507           case Intrinsic::experimental_constrained_fcmp:
508             Opcode = ISD::STRICT_FSETCC;
509             break;
510           case Intrinsic::experimental_constrained_fcmps:
511             Opcode = ISD::STRICT_FSETCCS;
512             break;
513           case Intrinsic::experimental_constrained_fma:
514             Opcode = ISD::STRICT_FMA;
515             break;
516           case Intrinsic::experimental_constrained_sqrt:
517             Opcode = ISD::STRICT_FSQRT;
518             break;
519           case Intrinsic::experimental_constrained_floor:
520             Opcode = ISD::STRICT_FFLOOR;
521             break;
522           case Intrinsic::experimental_constrained_ceil:
523             Opcode = ISD::STRICT_FCEIL;
524             break;
525           case Intrinsic::experimental_constrained_trunc:
526             Opcode = ISD::STRICT_FTRUNC;
527             break;
528           case Intrinsic::experimental_constrained_rint:
529             Opcode = ISD::STRICT_FRINT;
530             break;
531           case Intrinsic::experimental_constrained_lrint:
532             Opcode = ISD::STRICT_LRINT;
533             break;
534           case Intrinsic::experimental_constrained_llrint:
535             Opcode = ISD::STRICT_LLRINT;
536             break;
537           case Intrinsic::experimental_constrained_nearbyint:
538             Opcode = ISD::STRICT_FNEARBYINT;
539             break;
540           case Intrinsic::experimental_constrained_round:
541             Opcode = ISD::STRICT_FROUND;
542             break;
543           case Intrinsic::experimental_constrained_lround:
544             Opcode = ISD::STRICT_LROUND;
545             break;
546           case Intrinsic::experimental_constrained_llround:
547             Opcode = ISD::STRICT_LLROUND;
548             break;
549           case Intrinsic::experimental_constrained_minnum:
550             Opcode = ISD::STRICT_FMINNUM;
551             break;
552           case Intrinsic::experimental_constrained_maxnum:
553             Opcode = ISD::STRICT_FMAXNUM;
554             break;
555           case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
556           case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
557           }
558         }
559 
560         // PowerPC does not use [US]DIVREM or other library calls for
561         // operations on regular types which are not otherwise library calls
562         // (i.e. soft float or atomics). If adapting for targets that do,
563         // additional care is required here.
564 
565         LibFunc Func;
566         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
567             LibInfo->getLibFunc(F->getName(), Func) &&
568             LibInfo->hasOptimizedCodeGen(Func)) {
569           // Non-read-only functions are never treated as intrinsics.
570           if (!CI->onlyReadsMemory())
571             return true;
572 
573           // Conversion happens only for FP calls.
574           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
575             return true;
576 
577           switch (Func) {
578           default: return true;
579           case LibFunc_copysign:
580           case LibFunc_copysignf:
581             continue; // ISD::FCOPYSIGN is never a library call.
582           case LibFunc_copysignl:
583             return true;
584           case LibFunc_fabs:
585           case LibFunc_fabsf:
586           case LibFunc_fabsl:
587             continue; // ISD::FABS is never a library call.
588           case LibFunc_sqrt:
589           case LibFunc_sqrtf:
590           case LibFunc_sqrtl:
591             Opcode = ISD::FSQRT; break;
592           case LibFunc_floor:
593           case LibFunc_floorf:
594           case LibFunc_floorl:
595             Opcode = ISD::FFLOOR; break;
596           case LibFunc_nearbyint:
597           case LibFunc_nearbyintf:
598           case LibFunc_nearbyintl:
599             Opcode = ISD::FNEARBYINT; break;
600           case LibFunc_ceil:
601           case LibFunc_ceilf:
602           case LibFunc_ceill:
603             Opcode = ISD::FCEIL; break;
604           case LibFunc_rint:
605           case LibFunc_rintf:
606           case LibFunc_rintl:
607             Opcode = ISD::FRINT; break;
608           case LibFunc_round:
609           case LibFunc_roundf:
610           case LibFunc_roundl:
611             Opcode = ISD::FROUND; break;
612           case LibFunc_trunc:
613           case LibFunc_truncf:
614           case LibFunc_truncl:
615             Opcode = ISD::FTRUNC; break;
616           case LibFunc_fmin:
617           case LibFunc_fminf:
618           case LibFunc_fminl:
619             Opcode = ISD::FMINNUM; break;
620           case LibFunc_fmax:
621           case LibFunc_fmaxf:
622           case LibFunc_fmaxl:
623             Opcode = ISD::FMAXNUM; break;
624           }
625         }
626 
627         if (Opcode) {
628           EVT EVTy =
629               TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
630 
631           if (EVTy == MVT::Other)
632             return true;
633 
634           if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
635             continue;
636           else if (EVTy.isVector() &&
637                    TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
638             continue;
639 
640           return true;
641         }
642       }
643 
644       return true;
645     } else if (isa<BinaryOperator>(J) &&
646                (J->getType()->getScalarType()->isFP128Ty() ||
647                 J->getType()->getScalarType()->isPPC_FP128Ty())) {
648       // Most operations on f128 or ppc_f128 values become calls.
649       return true;
650     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
651                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
652       CastInst *CI = cast<CastInst>(J);
653       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
654           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
655           isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
656           isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
657         return true;
658     } else if (isLargeIntegerTy(!TM.isPPC64(),
659                                 J->getType()->getScalarType()) &&
660                (J->getOpcode() == Instruction::UDiv ||
661                 J->getOpcode() == Instruction::SDiv ||
662                 J->getOpcode() == Instruction::URem ||
663                 J->getOpcode() == Instruction::SRem)) {
664       return true;
665     } else if (!TM.isPPC64() &&
666                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
667                (J->getOpcode() == Instruction::Shl ||
668                 J->getOpcode() == Instruction::AShr ||
669                 J->getOpcode() == Instruction::LShr)) {
670       // Only on PPC32, for 128-bit integers (specifically not 64-bit
671       // integers), these might be runtime calls.
672       return true;
673     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
674       // On PowerPC, indirect jumps use the counter register.
675       return true;
676     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
677       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
678         return true;
679     }
680 
681     // FREM is always a call.
682     if (J->getOpcode() == Instruction::FRem)
683       return true;
684 
685     if (ST->useSoftFloat()) {
686       switch(J->getOpcode()) {
687       case Instruction::FAdd:
688       case Instruction::FSub:
689       case Instruction::FMul:
690       case Instruction::FDiv:
691       case Instruction::FPTrunc:
692       case Instruction::FPExt:
693       case Instruction::FPToUI:
694       case Instruction::FPToSI:
695       case Instruction::UIToFP:
696       case Instruction::SIToFP:
697       case Instruction::FCmp:
698         return true;
699       }
700     }
701 
702     for (Value *Operand : J->operands())
703       if (memAddrUsesCTR(Operand, TM, Visited))
704         return true;
705   }
706 
707   return false;
708 }
709 
710 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
711                                           AssumptionCache &AC,
712                                           TargetLibraryInfo *LibInfo,
713                                           HardwareLoopInfo &HWLoopInfo) {
714   const PPCTargetMachine &TM = ST->getTargetMachine();
715   TargetSchedModel SchedModel;
716   SchedModel.init(ST);
717 
718   // Do not convert small short loops to CTR loop.
719   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
720   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
721     SmallPtrSet<const Value *, 32> EphValues;
722     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
723     CodeMetrics Metrics;
724     for (BasicBlock *BB : L->blocks())
725       Metrics.analyzeBasicBlock(BB, *this, EphValues);
726     // 6 is an approximate latency for the mtctr instruction.
727     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
728       return false;
729   }
730 
731   // We don't want to spill/restore the counter register, and so we don't
732   // want to use the counter register if the loop contains calls.
733   SmallPtrSet<const Value *, 4> Visited;
734   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
735        I != IE; ++I)
736     if (mightUseCTR(*I, LibInfo, Visited))
737       return false;
738 
739   SmallVector<BasicBlock*, 4> ExitingBlocks;
740   L->getExitingBlocks(ExitingBlocks);
741 
742   // If there is an exit edge known to be frequently taken,
743   // we should not transform this loop.
744   for (auto &BB : ExitingBlocks) {
745     Instruction *TI = BB->getTerminator();
746     if (!TI) continue;
747 
748     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
749       uint64_t TrueWeight = 0, FalseWeight = 0;
750       if (!BI->isConditional() ||
751           !BI->extractProfMetadata(TrueWeight, FalseWeight))
752         continue;
753 
754       // If the exit path is more frequent than the loop path,
755       // we return here without further analysis for this loop.
756       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
757       if (( TrueIsExit && FalseWeight < TrueWeight) ||
758           (!TrueIsExit && FalseWeight > TrueWeight))
759         return false;
760     }
761   }
762 
763   // If an exit block has a PHI that accesses a TLS variable as one of the
764   // incoming values from the loop, we cannot produce a CTR loop because the
765   // address for that value will be computed in the loop.
766   SmallVector<BasicBlock *, 4> ExitBlocks;
767   L->getExitBlocks(ExitBlocks);
768   for (auto &BB : ExitBlocks) {
769     for (auto &PHI : BB->phis()) {
770       for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
771            Idx++) {
772         const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
773         const Value *IncomingValue = PHI.getIncomingValue(Idx);
774         if (L->contains(IncomingBB) &&
775             memAddrUsesCTR(IncomingValue, TM, Visited))
776           return false;
777       }
778     }
779   }
780 
781   LLVMContext &C = L->getHeader()->getContext();
782   HWLoopInfo.CountType = TM.isPPC64() ?
783     Type::getInt64Ty(C) : Type::getInt32Ty(C);
784   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
785   return true;
786 }
787 
788 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
789                                          TTI::UnrollingPreferences &UP) {
790   if (ST->getCPUDirective() == PPC::DIR_A2) {
791     // The A2 is in-order with a deep pipeline, and concatenation unrolling
792     // helps expose latency-hiding opportunities to the instruction scheduler.
793     UP.Partial = UP.Runtime = true;
794 
795     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
796     // often outweigh the cost of a division to compute the trip count.
797     UP.AllowExpensiveTripCount = true;
798   }
799 
800   BaseT::getUnrollingPreferences(L, SE, UP);
801 }
802 
803 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
804                                        TTI::PeelingPreferences &PP) {
805   BaseT::getPeelingPreferences(L, SE, PP);
806 }
807 // This function returns true to allow using coldcc calling convention.
808 // Returning true results in coldcc being used for functions which are cold at
809 // all call sites when the callers of the functions are not calling any other
810 // non coldcc functions.
811 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
812   return EnablePPCColdCC;
813 }
814 
815 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
816   // On the A2, always unroll aggressively.
817   if (ST->getCPUDirective() == PPC::DIR_A2)
818     return true;
819 
820   return LoopHasReductions;
821 }
822 
823 PPCTTIImpl::TTI::MemCmpExpansionOptions
824 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
825   TTI::MemCmpExpansionOptions Options;
826   Options.LoadSizes = {8, 4, 2, 1};
827   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
828   return Options;
829 }
830 
831 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
832   return true;
833 }
834 
835 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
836   assert(ClassID == GPRRC || ClassID == FPRRC ||
837          ClassID == VRRC || ClassID == VSXRC);
838   if (ST->hasVSX()) {
839     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
840     return ClassID == VSXRC ? 64 : 32;
841   }
842   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
843   return 32;
844 }
845 
846 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
847   if (Vector)
848     return ST->hasVSX() ? VSXRC : VRRC;
849   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
850                   Ty->getScalarType()->isDoubleTy()))
851     return ST->hasVSX() ? VSXRC : FPRRC;
852   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
853                   Ty->getScalarType()->isPPC_FP128Ty()))
854     return VRRC;
855   else if (Ty && Ty->getScalarType()->isHalfTy())
856     return VSXRC;
857   else
858     return GPRRC;
859 }
860 
861 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
862 
863   switch (ClassID) {
864     default:
865       llvm_unreachable("unknown register class");
866       return "PPC::unknown register class";
867     case GPRRC:       return "PPC::GPRRC";
868     case FPRRC:       return "PPC::FPRRC";
869     case VRRC:        return "PPC::VRRC";
870     case VSXRC:       return "PPC::VSXRC";
871   }
872 }
873 
874 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
875   if (Vector) {
876     if (ST->hasAltivec()) return 128;
877     return 0;
878   }
879 
880   if (ST->isPPC64())
881     return 64;
882   return 32;
883 
884 }
885 
886 unsigned PPCTTIImpl::getCacheLineSize() const {
887   // Check first if the user specified a custom line size.
888   if (CacheLineSize.getNumOccurrences() > 0)
889     return CacheLineSize;
890 
891   // Starting with P7 we have a cache line size of 128.
892   unsigned Directive = ST->getCPUDirective();
893   // Assume that Future CPU has the same cache line size as the others.
894   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
895       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
896       Directive == PPC::DIR_PWR_FUTURE)
897     return 128;
898 
899   // On other processors return a default of 64 bytes.
900   return 64;
901 }
902 
903 unsigned PPCTTIImpl::getPrefetchDistance() const {
904   return 300;
905 }
906 
907 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
908   unsigned Directive = ST->getCPUDirective();
909   // The 440 has no SIMD support, but floating-point instructions
910   // have a 5-cycle latency, so unroll by 5x for latency hiding.
911   if (Directive == PPC::DIR_440)
912     return 5;
913 
914   // The A2 has no SIMD support, but floating-point instructions
915   // have a 6-cycle latency, so unroll by 6x for latency hiding.
916   if (Directive == PPC::DIR_A2)
917     return 6;
918 
919   // FIXME: For lack of any better information, do no harm...
920   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
921     return 1;
922 
923   // For P7 and P8, floating-point instructions have a 6-cycle latency and
924   // there are two execution units, so unroll by 12x for latency hiding.
925   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
926   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
927   // Assume that future is the same as the others.
928   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
929       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
930       Directive == PPC::DIR_PWR_FUTURE)
931     return 12;
932 
933   // For most things, modern systems have two execution units (and
934   // out-of-order execution).
935   return 2;
936 }
937 
938 // Adjust the cost of vector instructions on targets which there is overlap
939 // between the vector and scalar units, thereby reducing the overall throughput
940 // of vector code wrt. scalar code.
941 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
942                                      Type *Ty2) {
943   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
944     return Cost;
945 
946   std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
947   // If type legalization involves splitting the vector, we don't want to
948   // double the cost at every step - only the last step.
949   if (LT1.first != 1 || !LT1.second.isVector())
950     return Cost;
951 
952   int ISD = TLI->InstructionOpcodeToISD(Opcode);
953   if (TLI->isOperationExpand(ISD, LT1.second))
954     return Cost;
955 
956   if (Ty2) {
957     std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
958     if (LT2.first != 1 || !LT2.second.isVector())
959       return Cost;
960   }
961 
962   return Cost * 2;
963 }
964 
965 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
966                                        TTI::TargetCostKind CostKind,
967                                        TTI::OperandValueKind Op1Info,
968                                        TTI::OperandValueKind Op2Info,
969                                        TTI::OperandValueProperties Opd1PropInfo,
970                                        TTI::OperandValueProperties Opd2PropInfo,
971                                        ArrayRef<const Value *> Args,
972                                        const Instruction *CxtI) {
973   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
974   // TODO: Handle more cost kinds.
975   if (CostKind != TTI::TCK_RecipThroughput)
976     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
977                                          Op2Info, Opd1PropInfo,
978                                          Opd2PropInfo, Args, CxtI);
979 
980   // Fallback to the default implementation.
981   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
982                                            Op2Info,
983                                            Opd1PropInfo, Opd2PropInfo);
984   return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
985 }
986 
987 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
988                                Type *SubTp) {
989   // Legalize the type.
990   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
991 
992   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
993   // (at least in the sense that there need only be one non-loop-invariant
994   // instruction). We need one such shuffle instruction for each actual
995   // register (this is not true for arbitrary shuffles, but is true for the
996   // structured types of shuffles covered by TTI::ShuffleKind).
997   return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
998                               nullptr);
999 }
1000 
1001 int PPCTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
1002   if (CostKind != TTI::TCK_RecipThroughput)
1003     return Opcode == Instruction::PHI ? 0 : 1;
1004   // Branches are assumed to be predicted.
1005   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
1006 }
1007 
1008 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1009                                  TTI::CastContextHint CCH,
1010                                  TTI::TargetCostKind CostKind,
1011                                  const Instruction *I) {
1012   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
1013 
1014   int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1015   Cost = vectorCostAdjustment(Cost, Opcode, Dst, Src);
1016   // TODO: Allow non-throughput costs that aren't binary.
1017   if (CostKind != TTI::TCK_RecipThroughput)
1018     return Cost == 0 ? 0 : 1;
1019   return Cost;
1020 }
1021 
1022 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1023                                    CmpInst::Predicate VecPred,
1024                                    TTI::TargetCostKind CostKind,
1025                                    const Instruction *I) {
1026   int Cost =
1027       BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1028   // TODO: Handle other cost kinds.
1029   if (CostKind != TTI::TCK_RecipThroughput)
1030     return Cost;
1031   return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
1032 }
1033 
1034 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
1035   assert(Val->isVectorTy() && "This must be a vector type");
1036 
1037   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1038   assert(ISD && "Invalid opcode");
1039 
1040   int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
1041   Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
1042 
1043   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
1044     // Double-precision scalars are already located in index #0 (or #1 if LE).
1045     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
1046         Index == (ST->isLittleEndian() ? 1 : 0))
1047       return 0;
1048 
1049     return Cost;
1050 
1051   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
1052     if (ST->hasP9Altivec()) {
1053       if (ISD == ISD::INSERT_VECTOR_ELT)
1054         // A move-to VSR and a permute/insert.  Assume vector operation cost
1055         // for both (cost will be 2x on P9).
1056         return vectorCostAdjustment(2, Opcode, Val, nullptr);
1057 
1058       // It's an extract.  Maybe we can do a cheap move-from VSR.
1059       unsigned EltSize = Val->getScalarSizeInBits();
1060       if (EltSize == 64) {
1061         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
1062         if (Index == MfvsrdIndex)
1063           return 1;
1064       } else if (EltSize == 32) {
1065         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
1066         if (Index == MfvsrwzIndex)
1067           return 1;
1068       }
1069 
1070       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
1071       // The cost of the load constant for a vector extract is disregarded
1072       // (invariant, easily schedulable).
1073       return vectorCostAdjustment(1, Opcode, Val, nullptr);
1074 
1075     } else if (ST->hasDirectMove())
1076       // Assume permute has standard cost.
1077       // Assume move-to/move-from VSR have 2x standard cost.
1078       return 3;
1079   }
1080 
1081   // Estimated cost of a load-hit-store delay.  This was obtained
1082   // experimentally as a minimum needed to prevent unprofitable
1083   // vectorization for the paq8p benchmark.  It may need to be
1084   // raised further if other unprofitable cases remain.
1085   unsigned LHSPenalty = 2;
1086   if (ISD == ISD::INSERT_VECTOR_ELT)
1087     LHSPenalty += 7;
1088 
1089   // Vector element insert/extract with Altivec is very expensive,
1090   // because they require store and reload with the attendant
1091   // processor stall for load-hit-store.  Until VSX is available,
1092   // these need to be estimated as very costly.
1093   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
1094       ISD == ISD::INSERT_VECTOR_ELT)
1095     return LHSPenalty + Cost;
1096 
1097   return Cost;
1098 }
1099 
1100 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1101                                 MaybeAlign Alignment, unsigned AddressSpace,
1102                                 TTI::TargetCostKind CostKind,
1103                                 const Instruction *I) {
1104   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
1105     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1106                                   CostKind);
1107   // Legalize the type.
1108   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1109   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1110          "Invalid Opcode");
1111 
1112   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1113                                     CostKind);
1114   // TODO: Handle other cost kinds.
1115   if (CostKind != TTI::TCK_RecipThroughput)
1116     return Cost;
1117 
1118   Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
1119 
1120   bool IsAltivecType = ST->hasAltivec() &&
1121                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
1122                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
1123   bool IsVSXType = ST->hasVSX() &&
1124                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
1125 
1126   // VSX has 32b/64b load instructions. Legalization can handle loading of
1127   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
1128   // PPCTargetLowering can't compute the cost appropriately. So here we
1129   // explicitly check this case.
1130   unsigned MemBytes = Src->getPrimitiveSizeInBits();
1131   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
1132       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
1133     return 1;
1134 
1135   // Aligned loads and stores are easy.
1136   unsigned SrcBytes = LT.second.getStoreSize();
1137   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
1138     return Cost;
1139 
1140   // If we can use the permutation-based load sequence, then this is also
1141   // relatively cheap (not counting loop-invariant instructions): one load plus
1142   // one permute (the last load in a series has extra cost, but we're
1143   // neglecting that here). Note that on the P7, we could do unaligned loads
1144   // for Altivec types using the VSX instructions, but that's more expensive
1145   // than using the permutation-based load sequence. On the P8, that's no
1146   // longer true.
1147   if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
1148       *Alignment >= LT.second.getScalarType().getStoreSize())
1149     return Cost + LT.first; // Add the cost of the permutations.
1150 
1151   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
1152   // P7, unaligned vector loads are more expensive than the permutation-based
1153   // load sequence, so that might be used instead, but regardless, the net cost
1154   // is about the same (not counting loop-invariant instructions).
1155   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
1156     return Cost;
1157 
1158   // Newer PPC supports unaligned memory access.
1159   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
1160     return Cost;
1161 
1162   // PPC in general does not support unaligned loads and stores. They'll need
1163   // to be decomposed based on the alignment factor.
1164 
1165   // Add the cost of each scalar load or store.
1166   assert(Alignment);
1167   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
1168 
1169   // For a vector type, there is also scalarization overhead (only for
1170   // stores, loads are expanded using the vector-load + permutation sequence,
1171   // which is much less expensive).
1172   if (Src->isVectorTy() && Opcode == Instruction::Store)
1173     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
1174          ++i)
1175       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
1176 
1177   return Cost;
1178 }
1179 
1180 int PPCTTIImpl::getInterleavedMemoryOpCost(
1181     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1182     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1183     bool UseMaskForCond, bool UseMaskForGaps) {
1184   if (UseMaskForCond || UseMaskForGaps)
1185     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1186                                              Alignment, AddressSpace, CostKind,
1187                                              UseMaskForCond, UseMaskForGaps);
1188 
1189   assert(isa<VectorType>(VecTy) &&
1190          "Expect a vector type for interleaved memory op");
1191 
1192   // Legalize the type.
1193   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
1194 
1195   // Firstly, the cost of load/store operation.
1196   int Cost =
1197       getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
1198                       CostKind);
1199 
1200   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
1201   // (at least in the sense that there need only be one non-loop-invariant
1202   // instruction). For each result vector, we need one shuffle per incoming
1203   // vector (except that the first shuffle can take two incoming vectors
1204   // because it does not need to take itself).
1205   Cost += Factor*(LT.first-1);
1206 
1207   return Cost;
1208 }
1209 
1210 unsigned PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1211                                            TTI::TargetCostKind CostKind) {
1212   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1213 }
1214 
1215 bool PPCTTIImpl::areFunctionArgsABICompatible(
1216     const Function *Caller, const Function *Callee,
1217     SmallPtrSetImpl<Argument *> &Args) const {
1218 
1219   // We need to ensure that argument promotion does not
1220   // attempt to promote pointers to MMA types (__vector_pair
1221   // and __vector_quad) since these types explicitly cannot be
1222   // passed as arguments. Both of these types are larger than
1223   // the 128-bit Altivec vectors and have a scalar size of 1 bit.
1224   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
1225     return false;
1226 
1227   return llvm::none_of(Args, [](Argument *A) {
1228     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
1229     if (EltTy->isSized())
1230       return (EltTy->isIntOrIntVectorTy(1) &&
1231               EltTy->getPrimitiveSizeInBits() > 128);
1232     return false;
1233   });
1234 }
1235 
1236 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1237                             LoopInfo *LI, DominatorTree *DT,
1238                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
1239   // Process nested loops first.
1240   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
1241     if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
1242       return false; // Stop search.
1243 
1244   HardwareLoopInfo HWLoopInfo(L);
1245 
1246   if (!HWLoopInfo.canAnalyze(*LI))
1247     return false;
1248 
1249   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
1250     return false;
1251 
1252   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
1253     return false;
1254 
1255   *BI = HWLoopInfo.ExitBranch;
1256   return true;
1257 }
1258 
1259 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1260                                TargetTransformInfo::LSRCost &C2) {
1261   // PowerPC default behaviour here is "instruction number 1st priority".
1262   // If LsrNoInsnsCost is set, call default implementation.
1263   if (!LsrNoInsnsCost)
1264     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
1265                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
1266            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
1267                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
1268   else
1269     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
1270 }
1271 
1272 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
1273   return false;
1274 }
1275 
1276 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
1277                                     MemIntrinsicInfo &Info) {
1278   switch (Inst->getIntrinsicID()) {
1279   case Intrinsic::ppc_altivec_lvx:
1280   case Intrinsic::ppc_altivec_lvxl:
1281   case Intrinsic::ppc_altivec_lvebx:
1282   case Intrinsic::ppc_altivec_lvehx:
1283   case Intrinsic::ppc_altivec_lvewx:
1284   case Intrinsic::ppc_vsx_lxvd2x:
1285   case Intrinsic::ppc_vsx_lxvw4x:
1286   case Intrinsic::ppc_vsx_lxvd2x_be:
1287   case Intrinsic::ppc_vsx_lxvw4x_be:
1288   case Intrinsic::ppc_vsx_lxvl:
1289   case Intrinsic::ppc_vsx_lxvll:
1290   case Intrinsic::ppc_vsx_lxvp: {
1291     Info.PtrVal = Inst->getArgOperand(0);
1292     Info.ReadMem = true;
1293     Info.WriteMem = false;
1294     return true;
1295   }
1296   case Intrinsic::ppc_altivec_stvx:
1297   case Intrinsic::ppc_altivec_stvxl:
1298   case Intrinsic::ppc_altivec_stvebx:
1299   case Intrinsic::ppc_altivec_stvehx:
1300   case Intrinsic::ppc_altivec_stvewx:
1301   case Intrinsic::ppc_vsx_stxvd2x:
1302   case Intrinsic::ppc_vsx_stxvw4x:
1303   case Intrinsic::ppc_vsx_stxvd2x_be:
1304   case Intrinsic::ppc_vsx_stxvw4x_be:
1305   case Intrinsic::ppc_vsx_stxvl:
1306   case Intrinsic::ppc_vsx_stxvll:
1307   case Intrinsic::ppc_vsx_stxvp: {
1308     Info.PtrVal = Inst->getArgOperand(1);
1309     Info.ReadMem = false;
1310     Info.WriteMem = true;
1311     return true;
1312   }
1313   default:
1314     break;
1315   }
1316 
1317   return false;
1318 }
1319