1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PPCTargetTransformInfo.h" 10 #include "llvm/Analysis/CodeMetrics.h" 11 #include "llvm/Analysis/TargetLibraryInfo.h" 12 #include "llvm/Analysis/TargetTransformInfo.h" 13 #include "llvm/CodeGen/BasicTTIImpl.h" 14 #include "llvm/CodeGen/CostTable.h" 15 #include "llvm/CodeGen/TargetLowering.h" 16 #include "llvm/CodeGen/TargetSchedule.h" 17 #include "llvm/IR/IntrinsicsPowerPC.h" 18 #include "llvm/IR/ProfDataUtils.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/KnownBits.h" 22 #include "llvm/Transforms/InstCombine/InstCombiner.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include <optional> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "ppctti" 29 30 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 31 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 32 33 static cl::opt<bool> 34 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 35 cl::desc("Enable using coldcc calling conv for cold " 36 "internal functions")); 37 38 static cl::opt<bool> 39 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), 40 cl::desc("Do not add instruction count to lsr cost model")); 41 42 // The latency of mtctr is only justified if there are more than 4 43 // comparisons that will be removed as a result. 44 static cl::opt<unsigned> 45 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 46 cl::desc("Loops with a constant trip count smaller than " 47 "this value will not use the count register.")); 48 49 //===----------------------------------------------------------------------===// 50 // 51 // PPC cost model. 52 // 53 //===----------------------------------------------------------------------===// 54 55 TargetTransformInfo::PopcntSupportKind 56 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 57 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 58 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 59 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 60 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 61 return TTI::PSK_Software; 62 } 63 64 std::optional<Instruction *> 65 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 66 Intrinsic::ID IID = II.getIntrinsicID(); 67 switch (IID) { 68 default: 69 break; 70 case Intrinsic::ppc_altivec_lvx: 71 case Intrinsic::ppc_altivec_lvxl: 72 // Turn PPC lvx -> load if the pointer is known aligned. 73 if (getOrEnforceKnownAlignment( 74 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II, 75 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 76 Value *Ptr = IC.Builder.CreateBitCast( 77 II.getArgOperand(0), PointerType::getUnqual(II.getType())); 78 return new LoadInst(II.getType(), Ptr, "", false, Align(16)); 79 } 80 break; 81 case Intrinsic::ppc_vsx_lxvw4x: 82 case Intrinsic::ppc_vsx_lxvd2x: { 83 // Turn PPC VSX loads into normal loads. 84 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0), 85 PointerType::getUnqual(II.getType())); 86 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1)); 87 } 88 case Intrinsic::ppc_altivec_stvx: 89 case Intrinsic::ppc_altivec_stvxl: 90 // Turn stvx -> store if the pointer is known aligned. 91 if (getOrEnforceKnownAlignment( 92 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II, 93 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 94 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 95 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 96 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16)); 97 } 98 break; 99 case Intrinsic::ppc_vsx_stxvw4x: 100 case Intrinsic::ppc_vsx_stxvd2x: { 101 // Turn PPC VSX stores into normal stores. 102 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 103 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 104 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1)); 105 } 106 case Intrinsic::ppc_altivec_vperm: 107 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. 108 // Note that ppc_altivec_vperm has a big-endian bias, so when creating 109 // a vectorshuffle for little endian, we must undo the transformation 110 // performed on vec_perm in altivec.h. That is, we must complement 111 // the permutation mask with respect to 31 and reverse the order of 112 // V1 and V2. 113 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) { 114 assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 && 115 "Bad type for intrinsic!"); 116 117 // Check that all of the elements are integer constants or undefs. 118 bool AllEltsOk = true; 119 for (unsigned i = 0; i != 16; ++i) { 120 Constant *Elt = Mask->getAggregateElement(i); 121 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { 122 AllEltsOk = false; 123 break; 124 } 125 } 126 127 if (AllEltsOk) { 128 // Cast the input vectors to byte vectors. 129 Value *Op0 = 130 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType()); 131 Value *Op1 = 132 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType()); 133 Value *Result = UndefValue::get(Op0->getType()); 134 135 // Only extract each element once. 136 Value *ExtractedElts[32]; 137 memset(ExtractedElts, 0, sizeof(ExtractedElts)); 138 139 for (unsigned i = 0; i != 16; ++i) { 140 if (isa<UndefValue>(Mask->getAggregateElement(i))) 141 continue; 142 unsigned Idx = 143 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); 144 Idx &= 31; // Match the hardware behavior. 145 if (DL.isLittleEndian()) 146 Idx = 31 - Idx; 147 148 if (!ExtractedElts[Idx]) { 149 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; 150 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; 151 ExtractedElts[Idx] = IC.Builder.CreateExtractElement( 152 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15)); 153 } 154 155 // Insert this value into the result vector. 156 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx], 157 IC.Builder.getInt32(i)); 158 } 159 return CastInst::Create(Instruction::BitCast, Result, II.getType()); 160 } 161 } 162 break; 163 } 164 return std::nullopt; 165 } 166 167 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 168 TTI::TargetCostKind CostKind) { 169 if (DisablePPCConstHoist) 170 return BaseT::getIntImmCost(Imm, Ty, CostKind); 171 172 assert(Ty->isIntegerTy()); 173 174 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 175 if (BitSize == 0) 176 return ~0U; 177 178 if (Imm == 0) 179 return TTI::TCC_Free; 180 181 if (Imm.getBitWidth() <= 64) { 182 if (isInt<16>(Imm.getSExtValue())) 183 return TTI::TCC_Basic; 184 185 if (isInt<32>(Imm.getSExtValue())) { 186 // A constant that can be materialized using lis. 187 if ((Imm.getZExtValue() & 0xFFFF) == 0) 188 return TTI::TCC_Basic; 189 190 return 2 * TTI::TCC_Basic; 191 } 192 } 193 194 return 4 * TTI::TCC_Basic; 195 } 196 197 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 198 const APInt &Imm, Type *Ty, 199 TTI::TargetCostKind CostKind) { 200 if (DisablePPCConstHoist) 201 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 202 203 assert(Ty->isIntegerTy()); 204 205 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 206 if (BitSize == 0) 207 return ~0U; 208 209 switch (IID) { 210 default: 211 return TTI::TCC_Free; 212 case Intrinsic::sadd_with_overflow: 213 case Intrinsic::uadd_with_overflow: 214 case Intrinsic::ssub_with_overflow: 215 case Intrinsic::usub_with_overflow: 216 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 230 } 231 232 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 233 const APInt &Imm, Type *Ty, 234 TTI::TargetCostKind CostKind, 235 Instruction *Inst) { 236 if (DisablePPCConstHoist) 237 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 238 239 assert(Ty->isIntegerTy()); 240 241 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 242 if (BitSize == 0) 243 return ~0U; 244 245 unsigned ImmIdx = ~0U; 246 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 247 ZeroFree = false; 248 switch (Opcode) { 249 default: 250 return TTI::TCC_Free; 251 case Instruction::GetElementPtr: 252 // Always hoist the base address of a GetElementPtr. This prevents the 253 // creation of new constants for every base constant that gets constant 254 // folded with the offset. 255 if (Idx == 0) 256 return 2 * TTI::TCC_Basic; 257 return TTI::TCC_Free; 258 case Instruction::And: 259 RunFree = true; // (for the rotate-and-mask instructions) 260 [[fallthrough]]; 261 case Instruction::Add: 262 case Instruction::Or: 263 case Instruction::Xor: 264 ShiftedFree = true; 265 [[fallthrough]]; 266 case Instruction::Sub: 267 case Instruction::Mul: 268 case Instruction::Shl: 269 case Instruction::LShr: 270 case Instruction::AShr: 271 ImmIdx = 1; 272 break; 273 case Instruction::ICmp: 274 UnsignedFree = true; 275 ImmIdx = 1; 276 // Zero comparisons can use record-form instructions. 277 [[fallthrough]]; 278 case Instruction::Select: 279 ZeroFree = true; 280 break; 281 case Instruction::PHI: 282 case Instruction::Call: 283 case Instruction::Ret: 284 case Instruction::Load: 285 case Instruction::Store: 286 break; 287 } 288 289 if (ZeroFree && Imm == 0) 290 return TTI::TCC_Free; 291 292 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 293 if (isInt<16>(Imm.getSExtValue())) 294 return TTI::TCC_Free; 295 296 if (RunFree) { 297 if (Imm.getBitWidth() <= 32 && 298 (isShiftedMask_32(Imm.getZExtValue()) || 299 isShiftedMask_32(~Imm.getZExtValue()))) 300 return TTI::TCC_Free; 301 302 if (ST->isPPC64() && 303 (isShiftedMask_64(Imm.getZExtValue()) || 304 isShiftedMask_64(~Imm.getZExtValue()))) 305 return TTI::TCC_Free; 306 } 307 308 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 309 return TTI::TCC_Free; 310 311 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 312 return TTI::TCC_Free; 313 } 314 315 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 316 } 317 318 // Check if the current Type is an MMA vector type. Valid MMA types are 319 // v256i1 and v512i1 respectively. 320 static bool isMMAType(Type *Ty) { 321 return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) && 322 (Ty->getPrimitiveSizeInBits() > 128); 323 } 324 325 InstructionCost PPCTTIImpl::getInstructionCost(const User *U, 326 ArrayRef<const Value *> Operands, 327 TTI::TargetCostKind CostKind) { 328 // We already implement getCastInstrCost and getMemoryOpCost where we perform 329 // the vector adjustment there. 330 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U)) 331 return BaseT::getInstructionCost(U, Operands, CostKind); 332 333 if (U->getType()->isVectorTy()) { 334 // Instructions that need to be split should cost more. 335 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType()); 336 return LT.first * BaseT::getInstructionCost(U, Operands, CostKind); 337 } 338 339 return BaseT::getInstructionCost(U, Operands, CostKind); 340 } 341 342 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 343 AssumptionCache &AC, 344 TargetLibraryInfo *LibInfo, 345 HardwareLoopInfo &HWLoopInfo) { 346 const PPCTargetMachine &TM = ST->getTargetMachine(); 347 TargetSchedModel SchedModel; 348 SchedModel.init(ST); 349 350 // Do not convert small short loops to CTR loop. 351 unsigned ConstTripCount = SE.getSmallConstantTripCount(L); 352 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 353 SmallPtrSet<const Value *, 32> EphValues; 354 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 355 CodeMetrics Metrics; 356 for (BasicBlock *BB : L->blocks()) 357 Metrics.analyzeBasicBlock(BB, *this, EphValues); 358 // 6 is an approximate latency for the mtctr instruction. 359 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 360 return false; 361 } 362 363 // Check that there is no hardware loop related intrinsics in the loop. 364 for (auto *BB : L->getBlocks()) 365 for (auto &I : *BB) 366 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) 367 if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations || 368 Call->getIntrinsicID() == Intrinsic::loop_decrement) 369 return false; 370 371 SmallVector<BasicBlock*, 4> ExitingBlocks; 372 L->getExitingBlocks(ExitingBlocks); 373 374 // If there is an exit edge known to be frequently taken, 375 // we should not transform this loop. 376 for (auto &BB : ExitingBlocks) { 377 Instruction *TI = BB->getTerminator(); 378 if (!TI) continue; 379 380 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 381 uint64_t TrueWeight = 0, FalseWeight = 0; 382 if (!BI->isConditional() || 383 !extractBranchWeights(*BI, TrueWeight, FalseWeight)) 384 continue; 385 386 // If the exit path is more frequent than the loop path, 387 // we return here without further analysis for this loop. 388 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 389 if (( TrueIsExit && FalseWeight < TrueWeight) || 390 (!TrueIsExit && FalseWeight > TrueWeight)) 391 return false; 392 } 393 } 394 395 LLVMContext &C = L->getHeader()->getContext(); 396 HWLoopInfo.CountType = TM.isPPC64() ? 397 Type::getInt64Ty(C) : Type::getInt32Ty(C); 398 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 399 return true; 400 } 401 402 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 403 TTI::UnrollingPreferences &UP, 404 OptimizationRemarkEmitter *ORE) { 405 if (ST->getCPUDirective() == PPC::DIR_A2) { 406 // The A2 is in-order with a deep pipeline, and concatenation unrolling 407 // helps expose latency-hiding opportunities to the instruction scheduler. 408 UP.Partial = UP.Runtime = true; 409 410 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 411 // often outweigh the cost of a division to compute the trip count. 412 UP.AllowExpensiveTripCount = true; 413 } 414 415 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 416 } 417 418 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 419 TTI::PeelingPreferences &PP) { 420 BaseT::getPeelingPreferences(L, SE, PP); 421 } 422 // This function returns true to allow using coldcc calling convention. 423 // Returning true results in coldcc being used for functions which are cold at 424 // all call sites when the callers of the functions are not calling any other 425 // non coldcc functions. 426 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 427 return EnablePPCColdCC; 428 } 429 430 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 431 // On the A2, always unroll aggressively. 432 if (ST->getCPUDirective() == PPC::DIR_A2) 433 return true; 434 435 return LoopHasReductions; 436 } 437 438 PPCTTIImpl::TTI::MemCmpExpansionOptions 439 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 440 TTI::MemCmpExpansionOptions Options; 441 Options.LoadSizes = {8, 4, 2, 1}; 442 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 443 return Options; 444 } 445 446 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 447 return true; 448 } 449 450 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 451 assert(ClassID == GPRRC || ClassID == FPRRC || 452 ClassID == VRRC || ClassID == VSXRC); 453 if (ST->hasVSX()) { 454 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); 455 return ClassID == VSXRC ? 64 : 32; 456 } 457 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); 458 return 32; 459 } 460 461 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { 462 if (Vector) 463 return ST->hasVSX() ? VSXRC : VRRC; 464 else if (Ty && (Ty->getScalarType()->isFloatTy() || 465 Ty->getScalarType()->isDoubleTy())) 466 return ST->hasVSX() ? VSXRC : FPRRC; 467 else if (Ty && (Ty->getScalarType()->isFP128Ty() || 468 Ty->getScalarType()->isPPC_FP128Ty())) 469 return VRRC; 470 else if (Ty && Ty->getScalarType()->isHalfTy()) 471 return VSXRC; 472 else 473 return GPRRC; 474 } 475 476 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { 477 478 switch (ClassID) { 479 default: 480 llvm_unreachable("unknown register class"); 481 return "PPC::unknown register class"; 482 case GPRRC: return "PPC::GPRRC"; 483 case FPRRC: return "PPC::FPRRC"; 484 case VRRC: return "PPC::VRRC"; 485 case VSXRC: return "PPC::VSXRC"; 486 } 487 } 488 489 TypeSize 490 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 491 switch (K) { 492 case TargetTransformInfo::RGK_Scalar: 493 return TypeSize::getFixed(ST->isPPC64() ? 64 : 32); 494 case TargetTransformInfo::RGK_FixedWidthVector: 495 return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0); 496 case TargetTransformInfo::RGK_ScalableVector: 497 return TypeSize::getScalable(0); 498 } 499 500 llvm_unreachable("Unsupported register kind"); 501 } 502 503 unsigned PPCTTIImpl::getCacheLineSize() const { 504 // Starting with P7 we have a cache line size of 128. 505 unsigned Directive = ST->getCPUDirective(); 506 // Assume that Future CPU has the same cache line size as the others. 507 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 508 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 509 Directive == PPC::DIR_PWR_FUTURE) 510 return 128; 511 512 // On other processors return a default of 64 bytes. 513 return 64; 514 } 515 516 unsigned PPCTTIImpl::getPrefetchDistance() const { 517 return 300; 518 } 519 520 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 521 unsigned Directive = ST->getCPUDirective(); 522 // The 440 has no SIMD support, but floating-point instructions 523 // have a 5-cycle latency, so unroll by 5x for latency hiding. 524 if (Directive == PPC::DIR_440) 525 return 5; 526 527 // The A2 has no SIMD support, but floating-point instructions 528 // have a 6-cycle latency, so unroll by 6x for latency hiding. 529 if (Directive == PPC::DIR_A2) 530 return 6; 531 532 // FIXME: For lack of any better information, do no harm... 533 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 534 return 1; 535 536 // For P7 and P8, floating-point instructions have a 6-cycle latency and 537 // there are two execution units, so unroll by 12x for latency hiding. 538 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 539 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready 540 // Assume that future is the same as the others. 541 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 542 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 543 Directive == PPC::DIR_PWR_FUTURE) 544 return 12; 545 546 // For most things, modern systems have two execution units (and 547 // out-of-order execution). 548 return 2; 549 } 550 551 // Returns a cost adjustment factor to adjust the cost of vector instructions 552 // on targets which there is overlap between the vector and scalar units, 553 // thereby reducing the overall throughput of vector code wrt. scalar code. 554 // An invalid instruction cost is returned if the type is an MMA vector type. 555 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode, 556 Type *Ty1, Type *Ty2) { 557 // If the vector type is of an MMA type (v256i1, v512i1), an invalid 558 // instruction cost is returned. This is to signify to other cost computing 559 // functions to return the maximum instruction cost in order to prevent any 560 // opportunities for the optimizer to produce MMA types within the IR. 561 if (isMMAType(Ty1)) 562 return InstructionCost::getInvalid(); 563 564 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) 565 return InstructionCost(1); 566 567 std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1); 568 // If type legalization involves splitting the vector, we don't want to 569 // double the cost at every step - only the last step. 570 if (LT1.first != 1 || !LT1.second.isVector()) 571 return InstructionCost(1); 572 573 int ISD = TLI->InstructionOpcodeToISD(Opcode); 574 if (TLI->isOperationExpand(ISD, LT1.second)) 575 return InstructionCost(1); 576 577 if (Ty2) { 578 std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2); 579 if (LT2.first != 1 || !LT2.second.isVector()) 580 return InstructionCost(1); 581 } 582 583 return InstructionCost(2); 584 } 585 586 InstructionCost PPCTTIImpl::getArithmeticInstrCost( 587 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 588 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 589 ArrayRef<const Value *> Args, 590 const Instruction *CxtI) { 591 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 592 593 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr); 594 if (!CostFactor.isValid()) 595 return InstructionCost::getMax(); 596 597 // TODO: Handle more cost kinds. 598 if (CostKind != TTI::TCK_RecipThroughput) 599 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 600 Op2Info, Args, CxtI); 601 602 // Fallback to the default implementation. 603 InstructionCost Cost = BaseT::getArithmeticInstrCost( 604 Opcode, Ty, CostKind, Op1Info, Op2Info); 605 return Cost * CostFactor; 606 } 607 608 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, 609 ArrayRef<int> Mask, 610 TTI::TargetCostKind CostKind, 611 int Index, Type *SubTp, 612 ArrayRef<const Value *> Args) { 613 614 InstructionCost CostFactor = 615 vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr); 616 if (!CostFactor.isValid()) 617 return InstructionCost::getMax(); 618 619 // Legalize the type. 620 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 621 622 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 623 // (at least in the sense that there need only be one non-loop-invariant 624 // instruction). We need one such shuffle instruction for each actual 625 // register (this is not true for arbitrary shuffles, but is true for the 626 // structured types of shuffles covered by TTI::ShuffleKind). 627 return LT.first * CostFactor; 628 } 629 630 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode, 631 TTI::TargetCostKind CostKind, 632 const Instruction *I) { 633 if (CostKind != TTI::TCK_RecipThroughput) 634 return Opcode == Instruction::PHI ? 0 : 1; 635 // Branches are assumed to be predicted. 636 return 0; 637 } 638 639 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 640 Type *Src, 641 TTI::CastContextHint CCH, 642 TTI::TargetCostKind CostKind, 643 const Instruction *I) { 644 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 645 646 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src); 647 if (!CostFactor.isValid()) 648 return InstructionCost::getMax(); 649 650 InstructionCost Cost = 651 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 652 Cost *= CostFactor; 653 // TODO: Allow non-throughput costs that aren't binary. 654 if (CostKind != TTI::TCK_RecipThroughput) 655 return Cost == 0 ? 0 : 1; 656 return Cost; 657 } 658 659 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 660 Type *CondTy, 661 CmpInst::Predicate VecPred, 662 TTI::TargetCostKind CostKind, 663 const Instruction *I) { 664 InstructionCost CostFactor = 665 vectorCostAdjustmentFactor(Opcode, ValTy, nullptr); 666 if (!CostFactor.isValid()) 667 return InstructionCost::getMax(); 668 669 InstructionCost Cost = 670 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 671 // TODO: Handle other cost kinds. 672 if (CostKind != TTI::TCK_RecipThroughput) 673 return Cost; 674 return Cost * CostFactor; 675 } 676 677 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 678 TTI::TargetCostKind CostKind, 679 unsigned Index, Value *Op0, 680 Value *Op1) { 681 assert(Val->isVectorTy() && "This must be a vector type"); 682 683 int ISD = TLI->InstructionOpcodeToISD(Opcode); 684 assert(ISD && "Invalid opcode"); 685 686 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr); 687 if (!CostFactor.isValid()) 688 return InstructionCost::getMax(); 689 690 InstructionCost Cost = 691 BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); 692 Cost *= CostFactor; 693 694 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 695 // Double-precision scalars are already located in index #0 (or #1 if LE). 696 if (ISD == ISD::EXTRACT_VECTOR_ELT && 697 Index == (ST->isLittleEndian() ? 1 : 0)) 698 return 0; 699 700 return Cost; 701 702 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) { 703 if (ST->hasP9Altivec()) { 704 if (ISD == ISD::INSERT_VECTOR_ELT) 705 // A move-to VSR and a permute/insert. Assume vector operation cost 706 // for both (cost will be 2x on P9). 707 return 2 * CostFactor; 708 709 // It's an extract. Maybe we can do a cheap move-from VSR. 710 unsigned EltSize = Val->getScalarSizeInBits(); 711 if (EltSize == 64) { 712 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0; 713 if (Index == MfvsrdIndex) 714 return 1; 715 } else if (EltSize == 32) { 716 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; 717 if (Index == MfvsrwzIndex) 718 return 1; 719 } 720 721 // We need a vector extract (or mfvsrld). Assume vector operation cost. 722 // The cost of the load constant for a vector extract is disregarded 723 // (invariant, easily schedulable). 724 return CostFactor; 725 726 } else if (ST->hasDirectMove()) 727 // Assume permute has standard cost. 728 // Assume move-to/move-from VSR have 2x standard cost. 729 return 3; 730 } 731 732 // Estimated cost of a load-hit-store delay. This was obtained 733 // experimentally as a minimum needed to prevent unprofitable 734 // vectorization for the paq8p benchmark. It may need to be 735 // raised further if other unprofitable cases remain. 736 unsigned LHSPenalty = 2; 737 if (ISD == ISD::INSERT_VECTOR_ELT) 738 LHSPenalty += 7; 739 740 // Vector element insert/extract with Altivec is very expensive, 741 // because they require store and reload with the attendant 742 // processor stall for load-hit-store. Until VSX is available, 743 // these need to be estimated as very costly. 744 if (ISD == ISD::EXTRACT_VECTOR_ELT || 745 ISD == ISD::INSERT_VECTOR_ELT) 746 return LHSPenalty + Cost; 747 748 return Cost; 749 } 750 751 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 752 MaybeAlign Alignment, 753 unsigned AddressSpace, 754 TTI::TargetCostKind CostKind, 755 TTI::OperandValueInfo OpInfo, 756 const Instruction *I) { 757 758 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr); 759 if (!CostFactor.isValid()) 760 return InstructionCost::getMax(); 761 762 if (TLI->getValueType(DL, Src, true) == MVT::Other) 763 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 764 CostKind); 765 // Legalize the type. 766 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 767 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 768 "Invalid Opcode"); 769 770 InstructionCost Cost = 771 BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); 772 // TODO: Handle other cost kinds. 773 if (CostKind != TTI::TCK_RecipThroughput) 774 return Cost; 775 776 Cost *= CostFactor; 777 778 bool IsAltivecType = ST->hasAltivec() && 779 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 780 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 781 bool IsVSXType = ST->hasVSX() && 782 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 783 784 // VSX has 32b/64b load instructions. Legalization can handle loading of 785 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 786 // PPCTargetLowering can't compute the cost appropriately. So here we 787 // explicitly check this case. 788 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 789 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 790 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 791 return 1; 792 793 // Aligned loads and stores are easy. 794 unsigned SrcBytes = LT.second.getStoreSize(); 795 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes) 796 return Cost; 797 798 // If we can use the permutation-based load sequence, then this is also 799 // relatively cheap (not counting loop-invariant instructions): one load plus 800 // one permute (the last load in a series has extra cost, but we're 801 // neglecting that here). Note that on the P7, we could do unaligned loads 802 // for Altivec types using the VSX instructions, but that's more expensive 803 // than using the permutation-based load sequence. On the P8, that's no 804 // longer true. 805 if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) && 806 *Alignment >= LT.second.getScalarType().getStoreSize()) 807 return Cost + LT.first; // Add the cost of the permutations. 808 809 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 810 // P7, unaligned vector loads are more expensive than the permutation-based 811 // load sequence, so that might be used instead, but regardless, the net cost 812 // is about the same (not counting loop-invariant instructions). 813 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 814 return Cost; 815 816 // Newer PPC supports unaligned memory access. 817 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 818 return Cost; 819 820 // PPC in general does not support unaligned loads and stores. They'll need 821 // to be decomposed based on the alignment factor. 822 823 // Add the cost of each scalar load or store. 824 assert(Alignment); 825 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); 826 827 // For a vector type, there is also scalarization overhead (only for 828 // stores, loads are expanded using the vector-load + permutation sequence, 829 // which is much less expensive). 830 if (Src->isVectorTy() && Opcode == Instruction::Store) 831 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e; 832 ++i) 833 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i, 834 nullptr, nullptr); 835 836 return Cost; 837 } 838 839 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost( 840 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 841 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 842 bool UseMaskForCond, bool UseMaskForGaps) { 843 InstructionCost CostFactor = 844 vectorCostAdjustmentFactor(Opcode, VecTy, nullptr); 845 if (!CostFactor.isValid()) 846 return InstructionCost::getMax(); 847 848 if (UseMaskForCond || UseMaskForGaps) 849 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 850 Alignment, AddressSpace, CostKind, 851 UseMaskForCond, UseMaskForGaps); 852 853 assert(isa<VectorType>(VecTy) && 854 "Expect a vector type for interleaved memory op"); 855 856 // Legalize the type. 857 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy); 858 859 // Firstly, the cost of load/store operation. 860 InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), 861 AddressSpace, CostKind); 862 863 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 864 // (at least in the sense that there need only be one non-loop-invariant 865 // instruction). For each result vector, we need one shuffle per incoming 866 // vector (except that the first shuffle can take two incoming vectors 867 // because it does not need to take itself). 868 Cost += Factor*(LT.first-1); 869 870 return Cost; 871 } 872 873 InstructionCost 874 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 875 TTI::TargetCostKind CostKind) { 876 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 877 } 878 879 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller, 880 const Function *Callee, 881 const ArrayRef<Type *> &Types) const { 882 883 // We need to ensure that argument promotion does not 884 // attempt to promote pointers to MMA types (__vector_pair 885 // and __vector_quad) since these types explicitly cannot be 886 // passed as arguments. Both of these types are larger than 887 // the 128-bit Altivec vectors and have a scalar size of 1 bit. 888 if (!BaseT::areTypesABICompatible(Caller, Callee, Types)) 889 return false; 890 891 return llvm::none_of(Types, [](Type *Ty) { 892 if (Ty->isSized()) 893 return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128; 894 return false; 895 }); 896 } 897 898 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 899 LoopInfo *LI, DominatorTree *DT, 900 AssumptionCache *AC, TargetLibraryInfo *LibInfo) { 901 // Process nested loops first. 902 for (Loop *I : *L) 903 if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo)) 904 return false; // Stop search. 905 906 HardwareLoopInfo HWLoopInfo(L); 907 908 if (!HWLoopInfo.canAnalyze(*LI)) 909 return false; 910 911 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) 912 return false; 913 914 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) 915 return false; 916 917 *BI = HWLoopInfo.ExitBranch; 918 return true; 919 } 920 921 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 922 const TargetTransformInfo::LSRCost &C2) { 923 // PowerPC default behaviour here is "instruction number 1st priority". 924 // If LsrNoInsnsCost is set, call default implementation. 925 if (!LsrNoInsnsCost) 926 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, 927 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 928 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, 929 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); 930 else 931 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); 932 } 933 934 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() { 935 return false; 936 } 937 938 bool PPCTTIImpl::shouldBuildRelLookupTables() const { 939 const PPCTargetMachine &TM = ST->getTargetMachine(); 940 // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now. 941 if (!TM.isELFv2ABI()) 942 return false; 943 return BaseT::shouldBuildRelLookupTables(); 944 } 945 946 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 947 MemIntrinsicInfo &Info) { 948 switch (Inst->getIntrinsicID()) { 949 case Intrinsic::ppc_altivec_lvx: 950 case Intrinsic::ppc_altivec_lvxl: 951 case Intrinsic::ppc_altivec_lvebx: 952 case Intrinsic::ppc_altivec_lvehx: 953 case Intrinsic::ppc_altivec_lvewx: 954 case Intrinsic::ppc_vsx_lxvd2x: 955 case Intrinsic::ppc_vsx_lxvw4x: 956 case Intrinsic::ppc_vsx_lxvd2x_be: 957 case Intrinsic::ppc_vsx_lxvw4x_be: 958 case Intrinsic::ppc_vsx_lxvl: 959 case Intrinsic::ppc_vsx_lxvll: 960 case Intrinsic::ppc_vsx_lxvp: { 961 Info.PtrVal = Inst->getArgOperand(0); 962 Info.ReadMem = true; 963 Info.WriteMem = false; 964 return true; 965 } 966 case Intrinsic::ppc_altivec_stvx: 967 case Intrinsic::ppc_altivec_stvxl: 968 case Intrinsic::ppc_altivec_stvebx: 969 case Intrinsic::ppc_altivec_stvehx: 970 case Intrinsic::ppc_altivec_stvewx: 971 case Intrinsic::ppc_vsx_stxvd2x: 972 case Intrinsic::ppc_vsx_stxvw4x: 973 case Intrinsic::ppc_vsx_stxvd2x_be: 974 case Intrinsic::ppc_vsx_stxvw4x_be: 975 case Intrinsic::ppc_vsx_stxvl: 976 case Intrinsic::ppc_vsx_stxvll: 977 case Intrinsic::ppc_vsx_stxvp: { 978 Info.PtrVal = Inst->getArgOperand(1); 979 Info.ReadMem = false; 980 Info.WriteMem = true; 981 return true; 982 } 983 case Intrinsic::ppc_stbcx: 984 case Intrinsic::ppc_sthcx: 985 case Intrinsic::ppc_stdcx: 986 case Intrinsic::ppc_stwcx: { 987 Info.PtrVal = Inst->getArgOperand(0); 988 Info.ReadMem = false; 989 Info.WriteMem = true; 990 return true; 991 } 992 default: 993 break; 994 } 995 996 return false; 997 } 998 999 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType, 1000 Align Alignment) const { 1001 // Only load and stores instructions can have variable vector length on Power. 1002 if (Opcode != Instruction::Load && Opcode != Instruction::Store) 1003 return false; 1004 // Loads/stores with length instructions use bits 0-7 of the GPR operand and 1005 // therefore cannot be used in 32-bit mode. 1006 if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64()) 1007 return false; 1008 if (isa<FixedVectorType>(DataType)) { 1009 unsigned VecWidth = DataType->getPrimitiveSizeInBits(); 1010 return VecWidth == 128; 1011 } 1012 Type *ScalarTy = DataType->getScalarType(); 1013 1014 if (ScalarTy->isPointerTy()) 1015 return true; 1016 1017 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 1018 return true; 1019 1020 if (!ScalarTy->isIntegerTy()) 1021 return false; 1022 1023 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 1024 return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64; 1025 } 1026 1027 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src, 1028 Align Alignment, 1029 unsigned AddressSpace, 1030 TTI::TargetCostKind CostKind, 1031 const Instruction *I) { 1032 InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment, 1033 AddressSpace, CostKind, I); 1034 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1035 return Cost; 1036 // TODO: Handle other cost kinds. 1037 if (CostKind != TTI::TCK_RecipThroughput) 1038 return Cost; 1039 1040 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 1041 "Invalid Opcode"); 1042 1043 auto *SrcVTy = dyn_cast<FixedVectorType>(Src); 1044 assert(SrcVTy && "Expected a vector type for VP memory operations"); 1045 1046 if (hasActiveVectorLength(Opcode, Src, Alignment)) { 1047 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy); 1048 1049 InstructionCost CostFactor = 1050 vectorCostAdjustmentFactor(Opcode, Src, nullptr); 1051 if (!CostFactor.isValid()) 1052 return InstructionCost::getMax(); 1053 1054 InstructionCost Cost = LT.first * CostFactor; 1055 assert(Cost.isValid() && "Expected valid cost"); 1056 1057 // On P9 but not on P10, if the op is misaligned then it will cause a 1058 // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked 1059 // ones. 1060 const Align DesiredAlignment(16); 1061 if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9) 1062 return Cost; 1063 1064 // Since alignment may be under estimated, we try to compute the probability 1065 // that the actual address is aligned to the desired boundary. For example 1066 // an 8-byte aligned load is assumed to be actually 16-byte aligned half the 1067 // time, while a 4-byte aligned load has a 25% chance of being 16-byte 1068 // aligned. 1069 float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value(); 1070 float MisalignmentProb = 1.0 - AlignmentProb; 1071 return (MisalignmentProb * P9PipelineFlushEstimate) + 1072 (AlignmentProb * *Cost.getValue()); 1073 } 1074 1075 // Usually we should not get to this point, but the following is an attempt to 1076 // model the cost of legalization. Currently we can only lower intrinsics with 1077 // evl but no mask, on Power 9/10. Otherwise, we must scalarize. 1078 return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); 1079 } 1080 1081 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const { 1082 // Subtargets using PC-Relative addressing supported. 1083 if (ST->isUsingPCRelativeCalls()) 1084 return true; 1085 1086 const Function *Callee = CB->getCalledFunction(); 1087 // Indirect calls and variadic argument functions not supported. 1088 if (!Callee || Callee->isVarArg()) 1089 return false; 1090 1091 const Function *Caller = CB->getCaller(); 1092 // Support if we can share TOC base. 1093 return ST->getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), 1094 Callee); 1095 } 1096