xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/IR/ProfDataUtils.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/KnownBits.h"
22 #include "llvm/Transforms/InstCombine/InstCombiner.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include <optional>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "ppctti"
29 
30 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
31 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
32 
33 static cl::opt<bool>
34 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
35                 cl::desc("Enable using coldcc calling conv for cold "
36                          "internal functions"));
37 
38 static cl::opt<bool>
39 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
40                cl::desc("Do not add instruction count to lsr cost model"));
41 
42 // The latency of mtctr is only justified if there are more than 4
43 // comparisons that will be removed as a result.
44 static cl::opt<unsigned>
45 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
46                       cl::desc("Loops with a constant trip count smaller than "
47                                "this value will not use the count register."));
48 
49 //===----------------------------------------------------------------------===//
50 //
51 // PPC cost model.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 TargetTransformInfo::PopcntSupportKind
56 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
57   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
58   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
59     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
60              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
61   return TTI::PSK_Software;
62 }
63 
64 std::optional<Instruction *>
65 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
66   Intrinsic::ID IID = II.getIntrinsicID();
67   switch (IID) {
68   default:
69     break;
70   case Intrinsic::ppc_altivec_lvx:
71   case Intrinsic::ppc_altivec_lvxl:
72     // Turn PPC lvx -> load if the pointer is known aligned.
73     if (getOrEnforceKnownAlignment(
74             II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
75             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
76       Value *Ptr = IC.Builder.CreateBitCast(
77           II.getArgOperand(0), PointerType::getUnqual(II.getType()));
78       return new LoadInst(II.getType(), Ptr, "", false, Align(16));
79     }
80     break;
81   case Intrinsic::ppc_vsx_lxvw4x:
82   case Intrinsic::ppc_vsx_lxvd2x: {
83     // Turn PPC VSX loads into normal loads.
84     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
85                                           PointerType::getUnqual(II.getType()));
86     return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
87   }
88   case Intrinsic::ppc_altivec_stvx:
89   case Intrinsic::ppc_altivec_stvxl:
90     // Turn stvx -> store if the pointer is known aligned.
91     if (getOrEnforceKnownAlignment(
92             II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
93             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
94       Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
95       Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
96       return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
97     }
98     break;
99   case Intrinsic::ppc_vsx_stxvw4x:
100   case Intrinsic::ppc_vsx_stxvd2x: {
101     // Turn PPC VSX stores into normal stores.
102     Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
103     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
104     return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
105   }
106   case Intrinsic::ppc_altivec_vperm:
107     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
108     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
109     // a vectorshuffle for little endian, we must undo the transformation
110     // performed on vec_perm in altivec.h.  That is, we must complement
111     // the permutation mask with respect to 31 and reverse the order of
112     // V1 and V2.
113     if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
114       assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
115              "Bad type for intrinsic!");
116 
117       // Check that all of the elements are integer constants or undefs.
118       bool AllEltsOk = true;
119       for (unsigned i = 0; i != 16; ++i) {
120         Constant *Elt = Mask->getAggregateElement(i);
121         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
122           AllEltsOk = false;
123           break;
124         }
125       }
126 
127       if (AllEltsOk) {
128         // Cast the input vectors to byte vectors.
129         Value *Op0 =
130             IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
131         Value *Op1 =
132             IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
133         Value *Result = UndefValue::get(Op0->getType());
134 
135         // Only extract each element once.
136         Value *ExtractedElts[32];
137         memset(ExtractedElts, 0, sizeof(ExtractedElts));
138 
139         for (unsigned i = 0; i != 16; ++i) {
140           if (isa<UndefValue>(Mask->getAggregateElement(i)))
141             continue;
142           unsigned Idx =
143               cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
144           Idx &= 31; // Match the hardware behavior.
145           if (DL.isLittleEndian())
146             Idx = 31 - Idx;
147 
148           if (!ExtractedElts[Idx]) {
149             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
150             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
151             ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
152                 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
153           }
154 
155           // Insert this value into the result vector.
156           Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
157                                                   IC.Builder.getInt32(i));
158         }
159         return CastInst::Create(Instruction::BitCast, Result, II.getType());
160       }
161     }
162     break;
163   }
164   return std::nullopt;
165 }
166 
167 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
168                                           TTI::TargetCostKind CostKind) {
169   if (DisablePPCConstHoist)
170     return BaseT::getIntImmCost(Imm, Ty, CostKind);
171 
172   assert(Ty->isIntegerTy());
173 
174   unsigned BitSize = Ty->getPrimitiveSizeInBits();
175   if (BitSize == 0)
176     return ~0U;
177 
178   if (Imm == 0)
179     return TTI::TCC_Free;
180 
181   if (Imm.getBitWidth() <= 64) {
182     if (isInt<16>(Imm.getSExtValue()))
183       return TTI::TCC_Basic;
184 
185     if (isInt<32>(Imm.getSExtValue())) {
186       // A constant that can be materialized using lis.
187       if ((Imm.getZExtValue() & 0xFFFF) == 0)
188         return TTI::TCC_Basic;
189 
190       return 2 * TTI::TCC_Basic;
191     }
192   }
193 
194   return 4 * TTI::TCC_Basic;
195 }
196 
197 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
198                                                 const APInt &Imm, Type *Ty,
199                                                 TTI::TargetCostKind CostKind) {
200   if (DisablePPCConstHoist)
201     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
202 
203   assert(Ty->isIntegerTy());
204 
205   unsigned BitSize = Ty->getPrimitiveSizeInBits();
206   if (BitSize == 0)
207     return ~0U;
208 
209   switch (IID) {
210   default:
211     return TTI::TCC_Free;
212   case Intrinsic::sadd_with_overflow:
213   case Intrinsic::uadd_with_overflow:
214   case Intrinsic::ssub_with_overflow:
215   case Intrinsic::usub_with_overflow:
216     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
217       return TTI::TCC_Free;
218     break;
219   case Intrinsic::experimental_stackmap:
220     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
221       return TTI::TCC_Free;
222     break;
223   case Intrinsic::experimental_patchpoint_void:
224   case Intrinsic::experimental_patchpoint_i64:
225     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
226       return TTI::TCC_Free;
227     break;
228   }
229   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
230 }
231 
232 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
233                                               const APInt &Imm, Type *Ty,
234                                               TTI::TargetCostKind CostKind,
235                                               Instruction *Inst) {
236   if (DisablePPCConstHoist)
237     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
238 
239   assert(Ty->isIntegerTy());
240 
241   unsigned BitSize = Ty->getPrimitiveSizeInBits();
242   if (BitSize == 0)
243     return ~0U;
244 
245   unsigned ImmIdx = ~0U;
246   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
247        ZeroFree = false;
248   switch (Opcode) {
249   default:
250     return TTI::TCC_Free;
251   case Instruction::GetElementPtr:
252     // Always hoist the base address of a GetElementPtr. This prevents the
253     // creation of new constants for every base constant that gets constant
254     // folded with the offset.
255     if (Idx == 0)
256       return 2 * TTI::TCC_Basic;
257     return TTI::TCC_Free;
258   case Instruction::And:
259     RunFree = true; // (for the rotate-and-mask instructions)
260     [[fallthrough]];
261   case Instruction::Add:
262   case Instruction::Or:
263   case Instruction::Xor:
264     ShiftedFree = true;
265     [[fallthrough]];
266   case Instruction::Sub:
267   case Instruction::Mul:
268   case Instruction::Shl:
269   case Instruction::LShr:
270   case Instruction::AShr:
271     ImmIdx = 1;
272     break;
273   case Instruction::ICmp:
274     UnsignedFree = true;
275     ImmIdx = 1;
276     // Zero comparisons can use record-form instructions.
277     [[fallthrough]];
278   case Instruction::Select:
279     ZeroFree = true;
280     break;
281   case Instruction::PHI:
282   case Instruction::Call:
283   case Instruction::Ret:
284   case Instruction::Load:
285   case Instruction::Store:
286     break;
287   }
288 
289   if (ZeroFree && Imm == 0)
290     return TTI::TCC_Free;
291 
292   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
293     if (isInt<16>(Imm.getSExtValue()))
294       return TTI::TCC_Free;
295 
296     if (RunFree) {
297       if (Imm.getBitWidth() <= 32 &&
298           (isShiftedMask_32(Imm.getZExtValue()) ||
299            isShiftedMask_32(~Imm.getZExtValue())))
300         return TTI::TCC_Free;
301 
302       if (ST->isPPC64() &&
303           (isShiftedMask_64(Imm.getZExtValue()) ||
304            isShiftedMask_64(~Imm.getZExtValue())))
305         return TTI::TCC_Free;
306     }
307 
308     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
309       return TTI::TCC_Free;
310 
311     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
312       return TTI::TCC_Free;
313   }
314 
315   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
316 }
317 
318 // Check if the current Type is an MMA vector type. Valid MMA types are
319 // v256i1 and v512i1 respectively.
320 static bool isMMAType(Type *Ty) {
321   return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
322          (Ty->getPrimitiveSizeInBits() > 128);
323 }
324 
325 InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
326                                                ArrayRef<const Value *> Operands,
327                                                TTI::TargetCostKind CostKind) {
328   // We already implement getCastInstrCost and getMemoryOpCost where we perform
329   // the vector adjustment there.
330   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
331     return BaseT::getInstructionCost(U, Operands, CostKind);
332 
333   if (U->getType()->isVectorTy()) {
334     // Instructions that need to be split should cost more.
335     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
336     return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
337   }
338 
339   return BaseT::getInstructionCost(U, Operands, CostKind);
340 }
341 
342 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
343                                           AssumptionCache &AC,
344                                           TargetLibraryInfo *LibInfo,
345                                           HardwareLoopInfo &HWLoopInfo) {
346   const PPCTargetMachine &TM = ST->getTargetMachine();
347   TargetSchedModel SchedModel;
348   SchedModel.init(ST);
349 
350   // Do not convert small short loops to CTR loop.
351   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
352   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
353     SmallPtrSet<const Value *, 32> EphValues;
354     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
355     CodeMetrics Metrics;
356     for (BasicBlock *BB : L->blocks())
357       Metrics.analyzeBasicBlock(BB, *this, EphValues);
358     // 6 is an approximate latency for the mtctr instruction.
359     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
360       return false;
361   }
362 
363   // Check that there is no hardware loop related intrinsics in the loop.
364   for (auto *BB : L->getBlocks())
365     for (auto &I : *BB)
366       if (auto *Call = dyn_cast<IntrinsicInst>(&I))
367         if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations ||
368             Call->getIntrinsicID() == Intrinsic::loop_decrement)
369           return false;
370 
371   SmallVector<BasicBlock*, 4> ExitingBlocks;
372   L->getExitingBlocks(ExitingBlocks);
373 
374   // If there is an exit edge known to be frequently taken,
375   // we should not transform this loop.
376   for (auto &BB : ExitingBlocks) {
377     Instruction *TI = BB->getTerminator();
378     if (!TI) continue;
379 
380     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
381       uint64_t TrueWeight = 0, FalseWeight = 0;
382       if (!BI->isConditional() ||
383           !extractBranchWeights(*BI, TrueWeight, FalseWeight))
384         continue;
385 
386       // If the exit path is more frequent than the loop path,
387       // we return here without further analysis for this loop.
388       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
389       if (( TrueIsExit && FalseWeight < TrueWeight) ||
390           (!TrueIsExit && FalseWeight > TrueWeight))
391         return false;
392     }
393   }
394 
395   LLVMContext &C = L->getHeader()->getContext();
396   HWLoopInfo.CountType = TM.isPPC64() ?
397     Type::getInt64Ty(C) : Type::getInt32Ty(C);
398   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
399   return true;
400 }
401 
402 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
403                                          TTI::UnrollingPreferences &UP,
404                                          OptimizationRemarkEmitter *ORE) {
405   if (ST->getCPUDirective() == PPC::DIR_A2) {
406     // The A2 is in-order with a deep pipeline, and concatenation unrolling
407     // helps expose latency-hiding opportunities to the instruction scheduler.
408     UP.Partial = UP.Runtime = true;
409 
410     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
411     // often outweigh the cost of a division to compute the trip count.
412     UP.AllowExpensiveTripCount = true;
413   }
414 
415   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
416 }
417 
418 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
419                                        TTI::PeelingPreferences &PP) {
420   BaseT::getPeelingPreferences(L, SE, PP);
421 }
422 // This function returns true to allow using coldcc calling convention.
423 // Returning true results in coldcc being used for functions which are cold at
424 // all call sites when the callers of the functions are not calling any other
425 // non coldcc functions.
426 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
427   return EnablePPCColdCC;
428 }
429 
430 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
431   // On the A2, always unroll aggressively.
432   if (ST->getCPUDirective() == PPC::DIR_A2)
433     return true;
434 
435   return LoopHasReductions;
436 }
437 
438 PPCTTIImpl::TTI::MemCmpExpansionOptions
439 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
440   TTI::MemCmpExpansionOptions Options;
441   Options.LoadSizes = {8, 4, 2, 1};
442   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
443   return Options;
444 }
445 
446 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
447   return true;
448 }
449 
450 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
451   assert(ClassID == GPRRC || ClassID == FPRRC ||
452          ClassID == VRRC || ClassID == VSXRC);
453   if (ST->hasVSX()) {
454     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
455     return ClassID == VSXRC ? 64 : 32;
456   }
457   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
458   return 32;
459 }
460 
461 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
462   if (Vector)
463     return ST->hasVSX() ? VSXRC : VRRC;
464   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
465                   Ty->getScalarType()->isDoubleTy()))
466     return ST->hasVSX() ? VSXRC : FPRRC;
467   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
468                   Ty->getScalarType()->isPPC_FP128Ty()))
469     return VRRC;
470   else if (Ty && Ty->getScalarType()->isHalfTy())
471     return VSXRC;
472   else
473     return GPRRC;
474 }
475 
476 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
477 
478   switch (ClassID) {
479     default:
480       llvm_unreachable("unknown register class");
481       return "PPC::unknown register class";
482     case GPRRC:       return "PPC::GPRRC";
483     case FPRRC:       return "PPC::FPRRC";
484     case VRRC:        return "PPC::VRRC";
485     case VSXRC:       return "PPC::VSXRC";
486   }
487 }
488 
489 TypeSize
490 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
491   switch (K) {
492   case TargetTransformInfo::RGK_Scalar:
493     return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
494   case TargetTransformInfo::RGK_FixedWidthVector:
495     return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
496   case TargetTransformInfo::RGK_ScalableVector:
497     return TypeSize::getScalable(0);
498   }
499 
500   llvm_unreachable("Unsupported register kind");
501 }
502 
503 unsigned PPCTTIImpl::getCacheLineSize() const {
504   // Starting with P7 we have a cache line size of 128.
505   unsigned Directive = ST->getCPUDirective();
506   // Assume that Future CPU has the same cache line size as the others.
507   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
508       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
509       Directive == PPC::DIR_PWR_FUTURE)
510     return 128;
511 
512   // On other processors return a default of 64 bytes.
513   return 64;
514 }
515 
516 unsigned PPCTTIImpl::getPrefetchDistance() const {
517   return 300;
518 }
519 
520 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
521   unsigned Directive = ST->getCPUDirective();
522   // The 440 has no SIMD support, but floating-point instructions
523   // have a 5-cycle latency, so unroll by 5x for latency hiding.
524   if (Directive == PPC::DIR_440)
525     return 5;
526 
527   // The A2 has no SIMD support, but floating-point instructions
528   // have a 6-cycle latency, so unroll by 6x for latency hiding.
529   if (Directive == PPC::DIR_A2)
530     return 6;
531 
532   // FIXME: For lack of any better information, do no harm...
533   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
534     return 1;
535 
536   // For P7 and P8, floating-point instructions have a 6-cycle latency and
537   // there are two execution units, so unroll by 12x for latency hiding.
538   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
539   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
540   // Assume that future is the same as the others.
541   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
542       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
543       Directive == PPC::DIR_PWR_FUTURE)
544     return 12;
545 
546   // For most things, modern systems have two execution units (and
547   // out-of-order execution).
548   return 2;
549 }
550 
551 // Returns a cost adjustment factor to adjust the cost of vector instructions
552 // on targets which there is overlap between the vector and scalar units,
553 // thereby reducing the overall throughput of vector code wrt. scalar code.
554 // An invalid instruction cost is returned if the type is an MMA vector type.
555 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
556                                                        Type *Ty1, Type *Ty2) {
557   // If the vector type is of an MMA type (v256i1, v512i1), an invalid
558   // instruction cost is returned. This is to signify to other cost computing
559   // functions to return the maximum instruction cost in order to prevent any
560   // opportunities for the optimizer to produce MMA types within the IR.
561   if (isMMAType(Ty1))
562     return InstructionCost::getInvalid();
563 
564   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
565     return InstructionCost(1);
566 
567   std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
568   // If type legalization involves splitting the vector, we don't want to
569   // double the cost at every step - only the last step.
570   if (LT1.first != 1 || !LT1.second.isVector())
571     return InstructionCost(1);
572 
573   int ISD = TLI->InstructionOpcodeToISD(Opcode);
574   if (TLI->isOperationExpand(ISD, LT1.second))
575     return InstructionCost(1);
576 
577   if (Ty2) {
578     std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
579     if (LT2.first != 1 || !LT2.second.isVector())
580       return InstructionCost(1);
581   }
582 
583   return InstructionCost(2);
584 }
585 
586 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
587     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
588     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
589     ArrayRef<const Value *> Args,
590     const Instruction *CxtI) {
591   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
592 
593   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
594   if (!CostFactor.isValid())
595     return InstructionCost::getMax();
596 
597   // TODO: Handle more cost kinds.
598   if (CostKind != TTI::TCK_RecipThroughput)
599     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
600                                          Op2Info, Args, CxtI);
601 
602   // Fallback to the default implementation.
603   InstructionCost Cost = BaseT::getArithmeticInstrCost(
604       Opcode, Ty, CostKind, Op1Info, Op2Info);
605   return Cost * CostFactor;
606 }
607 
608 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
609                                            ArrayRef<int> Mask,
610                                            TTI::TargetCostKind CostKind,
611                                            int Index, Type *SubTp,
612                                            ArrayRef<const Value *> Args) {
613 
614   InstructionCost CostFactor =
615       vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
616   if (!CostFactor.isValid())
617     return InstructionCost::getMax();
618 
619   // Legalize the type.
620   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
621 
622   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
623   // (at least in the sense that there need only be one non-loop-invariant
624   // instruction). We need one such shuffle instruction for each actual
625   // register (this is not true for arbitrary shuffles, but is true for the
626   // structured types of shuffles covered by TTI::ShuffleKind).
627   return LT.first * CostFactor;
628 }
629 
630 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
631                                            TTI::TargetCostKind CostKind,
632                                            const Instruction *I) {
633   if (CostKind != TTI::TCK_RecipThroughput)
634     return Opcode == Instruction::PHI ? 0 : 1;
635   // Branches are assumed to be predicted.
636   return 0;
637 }
638 
639 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
640                                              Type *Src,
641                                              TTI::CastContextHint CCH,
642                                              TTI::TargetCostKind CostKind,
643                                              const Instruction *I) {
644   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
645 
646   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
647   if (!CostFactor.isValid())
648     return InstructionCost::getMax();
649 
650   InstructionCost Cost =
651       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
652   Cost *= CostFactor;
653   // TODO: Allow non-throughput costs that aren't binary.
654   if (CostKind != TTI::TCK_RecipThroughput)
655     return Cost == 0 ? 0 : 1;
656   return Cost;
657 }
658 
659 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
660                                                Type *CondTy,
661                                                CmpInst::Predicate VecPred,
662                                                TTI::TargetCostKind CostKind,
663                                                const Instruction *I) {
664   InstructionCost CostFactor =
665       vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
666   if (!CostFactor.isValid())
667     return InstructionCost::getMax();
668 
669   InstructionCost Cost =
670       BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
671   // TODO: Handle other cost kinds.
672   if (CostKind != TTI::TCK_RecipThroughput)
673     return Cost;
674   return Cost * CostFactor;
675 }
676 
677 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
678                                                TTI::TargetCostKind CostKind,
679                                                unsigned Index, Value *Op0,
680                                                Value *Op1) {
681   assert(Val->isVectorTy() && "This must be a vector type");
682 
683   int ISD = TLI->InstructionOpcodeToISD(Opcode);
684   assert(ISD && "Invalid opcode");
685 
686   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
687   if (!CostFactor.isValid())
688     return InstructionCost::getMax();
689 
690   InstructionCost Cost =
691       BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
692   Cost *= CostFactor;
693 
694   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
695     // Double-precision scalars are already located in index #0 (or #1 if LE).
696     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
697         Index == (ST->isLittleEndian() ? 1 : 0))
698       return 0;
699 
700     return Cost;
701 
702   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
703     if (ST->hasP9Altivec()) {
704       if (ISD == ISD::INSERT_VECTOR_ELT)
705         // A move-to VSR and a permute/insert.  Assume vector operation cost
706         // for both (cost will be 2x on P9).
707         return 2 * CostFactor;
708 
709       // It's an extract.  Maybe we can do a cheap move-from VSR.
710       unsigned EltSize = Val->getScalarSizeInBits();
711       if (EltSize == 64) {
712         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
713         if (Index == MfvsrdIndex)
714           return 1;
715       } else if (EltSize == 32) {
716         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
717         if (Index == MfvsrwzIndex)
718           return 1;
719       }
720 
721       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
722       // The cost of the load constant for a vector extract is disregarded
723       // (invariant, easily schedulable).
724       return CostFactor;
725 
726     } else if (ST->hasDirectMove())
727       // Assume permute has standard cost.
728       // Assume move-to/move-from VSR have 2x standard cost.
729       return 3;
730   }
731 
732   // Estimated cost of a load-hit-store delay.  This was obtained
733   // experimentally as a minimum needed to prevent unprofitable
734   // vectorization for the paq8p benchmark.  It may need to be
735   // raised further if other unprofitable cases remain.
736   unsigned LHSPenalty = 2;
737   if (ISD == ISD::INSERT_VECTOR_ELT)
738     LHSPenalty += 7;
739 
740   // Vector element insert/extract with Altivec is very expensive,
741   // because they require store and reload with the attendant
742   // processor stall for load-hit-store.  Until VSX is available,
743   // these need to be estimated as very costly.
744   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
745       ISD == ISD::INSERT_VECTOR_ELT)
746     return LHSPenalty + Cost;
747 
748   return Cost;
749 }
750 
751 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
752                                             MaybeAlign Alignment,
753                                             unsigned AddressSpace,
754                                             TTI::TargetCostKind CostKind,
755                                             TTI::OperandValueInfo OpInfo,
756                                             const Instruction *I) {
757 
758   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
759   if (!CostFactor.isValid())
760     return InstructionCost::getMax();
761 
762   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
763     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
764                                   CostKind);
765   // Legalize the type.
766   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
767   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
768          "Invalid Opcode");
769 
770   InstructionCost Cost =
771       BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
772   // TODO: Handle other cost kinds.
773   if (CostKind != TTI::TCK_RecipThroughput)
774     return Cost;
775 
776   Cost *= CostFactor;
777 
778   bool IsAltivecType = ST->hasAltivec() &&
779                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
780                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
781   bool IsVSXType = ST->hasVSX() &&
782                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
783 
784   // VSX has 32b/64b load instructions. Legalization can handle loading of
785   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
786   // PPCTargetLowering can't compute the cost appropriately. So here we
787   // explicitly check this case.
788   unsigned MemBytes = Src->getPrimitiveSizeInBits();
789   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
790       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
791     return 1;
792 
793   // Aligned loads and stores are easy.
794   unsigned SrcBytes = LT.second.getStoreSize();
795   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
796     return Cost;
797 
798   // If we can use the permutation-based load sequence, then this is also
799   // relatively cheap (not counting loop-invariant instructions): one load plus
800   // one permute (the last load in a series has extra cost, but we're
801   // neglecting that here). Note that on the P7, we could do unaligned loads
802   // for Altivec types using the VSX instructions, but that's more expensive
803   // than using the permutation-based load sequence. On the P8, that's no
804   // longer true.
805   if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
806       *Alignment >= LT.second.getScalarType().getStoreSize())
807     return Cost + LT.first; // Add the cost of the permutations.
808 
809   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
810   // P7, unaligned vector loads are more expensive than the permutation-based
811   // load sequence, so that might be used instead, but regardless, the net cost
812   // is about the same (not counting loop-invariant instructions).
813   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
814     return Cost;
815 
816   // Newer PPC supports unaligned memory access.
817   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
818     return Cost;
819 
820   // PPC in general does not support unaligned loads and stores. They'll need
821   // to be decomposed based on the alignment factor.
822 
823   // Add the cost of each scalar load or store.
824   assert(Alignment);
825   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
826 
827   // For a vector type, there is also scalarization overhead (only for
828   // stores, loads are expanded using the vector-load + permutation sequence,
829   // which is much less expensive).
830   if (Src->isVectorTy() && Opcode == Instruction::Store)
831     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
832          ++i)
833       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i,
834                                  nullptr, nullptr);
835 
836   return Cost;
837 }
838 
839 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
840     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
841     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
842     bool UseMaskForCond, bool UseMaskForGaps) {
843   InstructionCost CostFactor =
844       vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
845   if (!CostFactor.isValid())
846     return InstructionCost::getMax();
847 
848   if (UseMaskForCond || UseMaskForGaps)
849     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
850                                              Alignment, AddressSpace, CostKind,
851                                              UseMaskForCond, UseMaskForGaps);
852 
853   assert(isa<VectorType>(VecTy) &&
854          "Expect a vector type for interleaved memory op");
855 
856   // Legalize the type.
857   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);
858 
859   // Firstly, the cost of load/store operation.
860   InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
861                                          AddressSpace, CostKind);
862 
863   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
864   // (at least in the sense that there need only be one non-loop-invariant
865   // instruction). For each result vector, we need one shuffle per incoming
866   // vector (except that the first shuffle can take two incoming vectors
867   // because it does not need to take itself).
868   Cost += Factor*(LT.first-1);
869 
870   return Cost;
871 }
872 
873 InstructionCost
874 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
875                                   TTI::TargetCostKind CostKind) {
876   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
877 }
878 
879 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
880                                        const Function *Callee,
881                                        const ArrayRef<Type *> &Types) const {
882 
883   // We need to ensure that argument promotion does not
884   // attempt to promote pointers to MMA types (__vector_pair
885   // and __vector_quad) since these types explicitly cannot be
886   // passed as arguments. Both of these types are larger than
887   // the 128-bit Altivec vectors and have a scalar size of 1 bit.
888   if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
889     return false;
890 
891   return llvm::none_of(Types, [](Type *Ty) {
892     if (Ty->isSized())
893       return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
894     return false;
895   });
896 }
897 
898 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
899                             LoopInfo *LI, DominatorTree *DT,
900                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
901   // Process nested loops first.
902   for (Loop *I : *L)
903     if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
904       return false; // Stop search.
905 
906   HardwareLoopInfo HWLoopInfo(L);
907 
908   if (!HWLoopInfo.canAnalyze(*LI))
909     return false;
910 
911   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
912     return false;
913 
914   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
915     return false;
916 
917   *BI = HWLoopInfo.ExitBranch;
918   return true;
919 }
920 
921 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
922                                const TargetTransformInfo::LSRCost &C2) {
923   // PowerPC default behaviour here is "instruction number 1st priority".
924   // If LsrNoInsnsCost is set, call default implementation.
925   if (!LsrNoInsnsCost)
926     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
927                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
928            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
929                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
930   else
931     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
932 }
933 
934 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
935   return false;
936 }
937 
938 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
939   const PPCTargetMachine &TM = ST->getTargetMachine();
940   // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
941   if (!TM.isELFv2ABI())
942     return false;
943   return BaseT::shouldBuildRelLookupTables();
944 }
945 
946 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
947                                     MemIntrinsicInfo &Info) {
948   switch (Inst->getIntrinsicID()) {
949   case Intrinsic::ppc_altivec_lvx:
950   case Intrinsic::ppc_altivec_lvxl:
951   case Intrinsic::ppc_altivec_lvebx:
952   case Intrinsic::ppc_altivec_lvehx:
953   case Intrinsic::ppc_altivec_lvewx:
954   case Intrinsic::ppc_vsx_lxvd2x:
955   case Intrinsic::ppc_vsx_lxvw4x:
956   case Intrinsic::ppc_vsx_lxvd2x_be:
957   case Intrinsic::ppc_vsx_lxvw4x_be:
958   case Intrinsic::ppc_vsx_lxvl:
959   case Intrinsic::ppc_vsx_lxvll:
960   case Intrinsic::ppc_vsx_lxvp: {
961     Info.PtrVal = Inst->getArgOperand(0);
962     Info.ReadMem = true;
963     Info.WriteMem = false;
964     return true;
965   }
966   case Intrinsic::ppc_altivec_stvx:
967   case Intrinsic::ppc_altivec_stvxl:
968   case Intrinsic::ppc_altivec_stvebx:
969   case Intrinsic::ppc_altivec_stvehx:
970   case Intrinsic::ppc_altivec_stvewx:
971   case Intrinsic::ppc_vsx_stxvd2x:
972   case Intrinsic::ppc_vsx_stxvw4x:
973   case Intrinsic::ppc_vsx_stxvd2x_be:
974   case Intrinsic::ppc_vsx_stxvw4x_be:
975   case Intrinsic::ppc_vsx_stxvl:
976   case Intrinsic::ppc_vsx_stxvll:
977   case Intrinsic::ppc_vsx_stxvp: {
978     Info.PtrVal = Inst->getArgOperand(1);
979     Info.ReadMem = false;
980     Info.WriteMem = true;
981     return true;
982   }
983   case Intrinsic::ppc_stbcx:
984   case Intrinsic::ppc_sthcx:
985   case Intrinsic::ppc_stdcx:
986   case Intrinsic::ppc_stwcx: {
987     Info.PtrVal = Inst->getArgOperand(0);
988     Info.ReadMem = false;
989     Info.WriteMem = true;
990     return true;
991   }
992   default:
993     break;
994   }
995 
996   return false;
997 }
998 
999 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1000                                        Align Alignment) const {
1001   // Only load and stores instructions can have variable vector length on Power.
1002   if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1003     return false;
1004   // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1005   // therefore cannot be used in 32-bit mode.
1006   if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1007     return false;
1008   if (isa<FixedVectorType>(DataType)) {
1009     unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1010     return VecWidth == 128;
1011   }
1012   Type *ScalarTy = DataType->getScalarType();
1013 
1014   if (ScalarTy->isPointerTy())
1015     return true;
1016 
1017   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1018     return true;
1019 
1020   if (!ScalarTy->isIntegerTy())
1021     return false;
1022 
1023   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1024   return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1025 }
1026 
1027 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1028                                               Align Alignment,
1029                                               unsigned AddressSpace,
1030                                               TTI::TargetCostKind CostKind,
1031                                               const Instruction *I) {
1032   InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1033                                                   AddressSpace, CostKind, I);
1034   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1035     return Cost;
1036   // TODO: Handle other cost kinds.
1037   if (CostKind != TTI::TCK_RecipThroughput)
1038     return Cost;
1039 
1040   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1041          "Invalid Opcode");
1042 
1043   auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1044   assert(SrcVTy && "Expected a vector type for VP memory operations");
1045 
1046   if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1047     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
1048 
1049     InstructionCost CostFactor =
1050         vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1051     if (!CostFactor.isValid())
1052       return InstructionCost::getMax();
1053 
1054     InstructionCost Cost = LT.first * CostFactor;
1055     assert(Cost.isValid() && "Expected valid cost");
1056 
1057     // On P9 but not on P10, if the op is misaligned then it will cause a
1058     // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1059     // ones.
1060     const Align DesiredAlignment(16);
1061     if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1062       return Cost;
1063 
1064     // Since alignment may be under estimated, we try to compute the probability
1065     // that the actual address is aligned to the desired boundary. For example
1066     // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1067     // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1068     // aligned.
1069     float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1070     float MisalignmentProb = 1.0 - AlignmentProb;
1071     return (MisalignmentProb * P9PipelineFlushEstimate) +
1072            (AlignmentProb * *Cost.getValue());
1073   }
1074 
1075   // Usually we should not get to this point, but the following is an attempt to
1076   // model the cost of legalization. Currently we can only lower intrinsics with
1077   // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1078   return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1079 }
1080 
1081 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
1082   // Subtargets using PC-Relative addressing supported.
1083   if (ST->isUsingPCRelativeCalls())
1084     return true;
1085 
1086   const Function *Callee = CB->getCalledFunction();
1087   // Indirect calls and variadic argument functions not supported.
1088   if (!Callee || Callee->isVarArg())
1089     return false;
1090 
1091   const Function *Caller = CB->getCaller();
1092   // Support if we can share TOC base.
1093   return ST->getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(),
1094                                                      Callee);
1095 }
1096