xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 82397d791966b09d344251bc709cd9db2b3a1902)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "ppctti"
21 
22 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
23 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
24 
25 // This is currently only used for the data prefetch pass which is only enabled
26 // for BG/Q by default.
27 static cl::opt<unsigned>
28 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
29               cl::desc("The loop prefetch cache line size"));
30 
31 static cl::opt<bool>
32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
33                 cl::desc("Enable using coldcc calling conv for cold "
34                          "internal functions"));
35 
36 static cl::opt<bool>
37 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
38                cl::desc("Do not add instruction count to lsr cost model"));
39 
40 // The latency of mtctr is only justified if there are more than 4
41 // comparisons that will be removed as a result.
42 static cl::opt<unsigned>
43 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
44                       cl::desc("Loops with a constant trip count smaller than "
45                                "this value will not use the count register."));
46 
47 //===----------------------------------------------------------------------===//
48 //
49 // PPC cost model.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 TargetTransformInfo::PopcntSupportKind
54 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
55   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
56   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
57     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
58              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
59   return TTI::PSK_Software;
60 }
61 
62 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
63                               TTI::TargetCostKind CostKind) {
64   if (DisablePPCConstHoist)
65     return BaseT::getIntImmCost(Imm, Ty, CostKind);
66 
67   assert(Ty->isIntegerTy());
68 
69   unsigned BitSize = Ty->getPrimitiveSizeInBits();
70   if (BitSize == 0)
71     return ~0U;
72 
73   if (Imm == 0)
74     return TTI::TCC_Free;
75 
76   if (Imm.getBitWidth() <= 64) {
77     if (isInt<16>(Imm.getSExtValue()))
78       return TTI::TCC_Basic;
79 
80     if (isInt<32>(Imm.getSExtValue())) {
81       // A constant that can be materialized using lis.
82       if ((Imm.getZExtValue() & 0xFFFF) == 0)
83         return TTI::TCC_Basic;
84 
85       return 2 * TTI::TCC_Basic;
86     }
87   }
88 
89   return 4 * TTI::TCC_Basic;
90 }
91 
92 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
93                                     const APInt &Imm, Type *Ty,
94                                     TTI::TargetCostKind CostKind) {
95   if (DisablePPCConstHoist)
96     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
97 
98   assert(Ty->isIntegerTy());
99 
100   unsigned BitSize = Ty->getPrimitiveSizeInBits();
101   if (BitSize == 0)
102     return ~0U;
103 
104   switch (IID) {
105   default:
106     return TTI::TCC_Free;
107   case Intrinsic::sadd_with_overflow:
108   case Intrinsic::uadd_with_overflow:
109   case Intrinsic::ssub_with_overflow:
110   case Intrinsic::usub_with_overflow:
111     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
112       return TTI::TCC_Free;
113     break;
114   case Intrinsic::experimental_stackmap:
115     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
116       return TTI::TCC_Free;
117     break;
118   case Intrinsic::experimental_patchpoint_void:
119   case Intrinsic::experimental_patchpoint_i64:
120     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
121       return TTI::TCC_Free;
122     break;
123   }
124   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
125 }
126 
127 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
128                                   const APInt &Imm, Type *Ty,
129                                   TTI::TargetCostKind CostKind) {
130   if (DisablePPCConstHoist)
131     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind);
132 
133   assert(Ty->isIntegerTy());
134 
135   unsigned BitSize = Ty->getPrimitiveSizeInBits();
136   if (BitSize == 0)
137     return ~0U;
138 
139   unsigned ImmIdx = ~0U;
140   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
141        ZeroFree = false;
142   switch (Opcode) {
143   default:
144     return TTI::TCC_Free;
145   case Instruction::GetElementPtr:
146     // Always hoist the base address of a GetElementPtr. This prevents the
147     // creation of new constants for every base constant that gets constant
148     // folded with the offset.
149     if (Idx == 0)
150       return 2 * TTI::TCC_Basic;
151     return TTI::TCC_Free;
152   case Instruction::And:
153     RunFree = true; // (for the rotate-and-mask instructions)
154     LLVM_FALLTHROUGH;
155   case Instruction::Add:
156   case Instruction::Or:
157   case Instruction::Xor:
158     ShiftedFree = true;
159     LLVM_FALLTHROUGH;
160   case Instruction::Sub:
161   case Instruction::Mul:
162   case Instruction::Shl:
163   case Instruction::LShr:
164   case Instruction::AShr:
165     ImmIdx = 1;
166     break;
167   case Instruction::ICmp:
168     UnsignedFree = true;
169     ImmIdx = 1;
170     // Zero comparisons can use record-form instructions.
171     LLVM_FALLTHROUGH;
172   case Instruction::Select:
173     ZeroFree = true;
174     break;
175   case Instruction::PHI:
176   case Instruction::Call:
177   case Instruction::Ret:
178   case Instruction::Load:
179   case Instruction::Store:
180     break;
181   }
182 
183   if (ZeroFree && Imm == 0)
184     return TTI::TCC_Free;
185 
186   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
187     if (isInt<16>(Imm.getSExtValue()))
188       return TTI::TCC_Free;
189 
190     if (RunFree) {
191       if (Imm.getBitWidth() <= 32 &&
192           (isShiftedMask_32(Imm.getZExtValue()) ||
193            isShiftedMask_32(~Imm.getZExtValue())))
194         return TTI::TCC_Free;
195 
196       if (ST->isPPC64() &&
197           (isShiftedMask_64(Imm.getZExtValue()) ||
198            isShiftedMask_64(~Imm.getZExtValue())))
199         return TTI::TCC_Free;
200     }
201 
202     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
203       return TTI::TCC_Free;
204 
205     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
206       return TTI::TCC_Free;
207   }
208 
209   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
210 }
211 
212 unsigned
213 PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
214                         TTI::TargetCostKind CostKind) {
215   // We already implement getCastInstrCost and getMemoryOpCost where we perform
216   // the vector adjustment there.
217   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
218     return BaseT::getUserCost(U, Operands, CostKind);
219 
220   if (U->getType()->isVectorTy()) {
221     // Instructions that need to be split should cost more.
222     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
223     return LT.first * BaseT::getUserCost(U, Operands, CostKind);
224   }
225 
226   return BaseT::getUserCost(U, Operands, CostKind);
227 }
228 
229 // Determining the address of a TLS variable results in a function call in
230 // certain TLS models.
231 static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
232                            SmallPtrSetImpl<const Value *> &Visited) {
233   // No need to traverse again if we already checked this operand.
234   if (!Visited.insert(MemAddr).second)
235     return false;
236   const auto *GV = dyn_cast<GlobalValue>(MemAddr);
237   if (!GV) {
238     // Recurse to check for constants that refer to TLS global variables.
239     if (const auto *CV = dyn_cast<Constant>(MemAddr))
240       for (const auto &CO : CV->operands())
241         if (memAddrUsesCTR(CO, TM, Visited))
242           return true;
243     return false;
244   }
245 
246   if (!GV->isThreadLocal())
247     return false;
248   TLSModel::Model Model = TM.getTLSModel(GV);
249   return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
250 }
251 
252 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
253                              SmallPtrSetImpl<const Value *> &Visited) {
254   const PPCTargetMachine &TM = ST->getTargetMachine();
255 
256   // Loop through the inline asm constraints and look for something that
257   // clobbers ctr.
258   auto asmClobbersCTR = [](InlineAsm *IA) {
259     InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
260     for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
261       InlineAsm::ConstraintInfo &C = CIV[i];
262       if (C.Type != InlineAsm::isInput)
263         for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
264           if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
265             return true;
266     }
267     return false;
268   };
269 
270   auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
271     if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
272       return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
273 
274     return false;
275   };
276 
277   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
278        J != JE; ++J) {
279     if (CallInst *CI = dyn_cast<CallInst>(J)) {
280       // Inline ASM is okay, unless it clobbers the ctr register.
281       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
282         if (asmClobbersCTR(IA))
283           return true;
284         continue;
285       }
286 
287       if (Function *F = CI->getCalledFunction()) {
288         // Most intrinsics don't become function calls, but some might.
289         // sin, cos, exp and log are always calls.
290         unsigned Opcode = 0;
291         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
292           switch (F->getIntrinsicID()) {
293           default: continue;
294           // If we have a call to loop_decrement or set_loop_iterations,
295           // we're definitely using CTR.
296           case Intrinsic::set_loop_iterations:
297           case Intrinsic::loop_decrement:
298             return true;
299 
300           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
301           // because, although it does clobber the counter register, the
302           // control can't then return to inside the loop unless there is also
303           // an eh_sjlj_setjmp.
304           case Intrinsic::eh_sjlj_setjmp:
305 
306           case Intrinsic::memcpy:
307           case Intrinsic::memmove:
308           case Intrinsic::memset:
309           case Intrinsic::powi:
310           case Intrinsic::log:
311           case Intrinsic::log2:
312           case Intrinsic::log10:
313           case Intrinsic::exp:
314           case Intrinsic::exp2:
315           case Intrinsic::pow:
316           case Intrinsic::sin:
317           case Intrinsic::cos:
318             return true;
319           case Intrinsic::copysign:
320             if (CI->getArgOperand(0)->getType()->getScalarType()->
321                 isPPC_FP128Ty())
322               return true;
323             else
324               continue; // ISD::FCOPYSIGN is never a library call.
325           case Intrinsic::fma:                Opcode = ISD::FMA;        break;
326           case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
327           case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
328           case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
329           case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
330           case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
331           case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
332           case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
333           case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
334           case Intrinsic::round:              Opcode = ISD::FROUND;     break;
335           case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
336           case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
337           case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
338           case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
339           case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
340           case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
341           }
342         }
343 
344         // PowerPC does not use [US]DIVREM or other library calls for
345         // operations on regular types which are not otherwise library calls
346         // (i.e. soft float or atomics). If adapting for targets that do,
347         // additional care is required here.
348 
349         LibFunc Func;
350         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
351             LibInfo->getLibFunc(F->getName(), Func) &&
352             LibInfo->hasOptimizedCodeGen(Func)) {
353           // Non-read-only functions are never treated as intrinsics.
354           if (!CI->onlyReadsMemory())
355             return true;
356 
357           // Conversion happens only for FP calls.
358           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
359             return true;
360 
361           switch (Func) {
362           default: return true;
363           case LibFunc_copysign:
364           case LibFunc_copysignf:
365             continue; // ISD::FCOPYSIGN is never a library call.
366           case LibFunc_copysignl:
367             return true;
368           case LibFunc_fabs:
369           case LibFunc_fabsf:
370           case LibFunc_fabsl:
371             continue; // ISD::FABS is never a library call.
372           case LibFunc_sqrt:
373           case LibFunc_sqrtf:
374           case LibFunc_sqrtl:
375             Opcode = ISD::FSQRT; break;
376           case LibFunc_floor:
377           case LibFunc_floorf:
378           case LibFunc_floorl:
379             Opcode = ISD::FFLOOR; break;
380           case LibFunc_nearbyint:
381           case LibFunc_nearbyintf:
382           case LibFunc_nearbyintl:
383             Opcode = ISD::FNEARBYINT; break;
384           case LibFunc_ceil:
385           case LibFunc_ceilf:
386           case LibFunc_ceill:
387             Opcode = ISD::FCEIL; break;
388           case LibFunc_rint:
389           case LibFunc_rintf:
390           case LibFunc_rintl:
391             Opcode = ISD::FRINT; break;
392           case LibFunc_round:
393           case LibFunc_roundf:
394           case LibFunc_roundl:
395             Opcode = ISD::FROUND; break;
396           case LibFunc_trunc:
397           case LibFunc_truncf:
398           case LibFunc_truncl:
399             Opcode = ISD::FTRUNC; break;
400           case LibFunc_fmin:
401           case LibFunc_fminf:
402           case LibFunc_fminl:
403             Opcode = ISD::FMINNUM; break;
404           case LibFunc_fmax:
405           case LibFunc_fmaxf:
406           case LibFunc_fmaxl:
407             Opcode = ISD::FMAXNUM; break;
408           }
409         }
410 
411         if (Opcode) {
412           EVT EVTy =
413               TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
414 
415           if (EVTy == MVT::Other)
416             return true;
417 
418           if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
419             continue;
420           else if (EVTy.isVector() &&
421                    TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
422             continue;
423 
424           return true;
425         }
426       }
427 
428       return true;
429     } else if (isa<BinaryOperator>(J) &&
430                (J->getType()->getScalarType()->isFP128Ty() ||
431                 J->getType()->getScalarType()->isPPC_FP128Ty())) {
432       // Most operations on f128 or ppc_f128 values become calls.
433       return true;
434     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
435                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
436       CastInst *CI = cast<CastInst>(J);
437       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
438           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
439           isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
440           isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
441         return true;
442     } else if (isLargeIntegerTy(!TM.isPPC64(),
443                                 J->getType()->getScalarType()) &&
444                (J->getOpcode() == Instruction::UDiv ||
445                 J->getOpcode() == Instruction::SDiv ||
446                 J->getOpcode() == Instruction::URem ||
447                 J->getOpcode() == Instruction::SRem)) {
448       return true;
449     } else if (!TM.isPPC64() &&
450                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
451                (J->getOpcode() == Instruction::Shl ||
452                 J->getOpcode() == Instruction::AShr ||
453                 J->getOpcode() == Instruction::LShr)) {
454       // Only on PPC32, for 128-bit integers (specifically not 64-bit
455       // integers), these might be runtime calls.
456       return true;
457     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
458       // On PowerPC, indirect jumps use the counter register.
459       return true;
460     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
461       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
462         return true;
463     }
464 
465     // FREM is always a call.
466     if (J->getOpcode() == Instruction::FRem)
467       return true;
468 
469     if (ST->useSoftFloat()) {
470       switch(J->getOpcode()) {
471       case Instruction::FAdd:
472       case Instruction::FSub:
473       case Instruction::FMul:
474       case Instruction::FDiv:
475       case Instruction::FPTrunc:
476       case Instruction::FPExt:
477       case Instruction::FPToUI:
478       case Instruction::FPToSI:
479       case Instruction::UIToFP:
480       case Instruction::SIToFP:
481       case Instruction::FCmp:
482         return true;
483       }
484     }
485 
486     for (Value *Operand : J->operands())
487       if (memAddrUsesCTR(Operand, TM, Visited))
488         return true;
489   }
490 
491   return false;
492 }
493 
494 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
495                                           AssumptionCache &AC,
496                                           TargetLibraryInfo *LibInfo,
497                                           HardwareLoopInfo &HWLoopInfo) {
498   const PPCTargetMachine &TM = ST->getTargetMachine();
499   TargetSchedModel SchedModel;
500   SchedModel.init(ST);
501 
502   // Do not convert small short loops to CTR loop.
503   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
504   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
505     SmallPtrSet<const Value *, 32> EphValues;
506     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
507     CodeMetrics Metrics;
508     for (BasicBlock *BB : L->blocks())
509       Metrics.analyzeBasicBlock(BB, *this, EphValues);
510     // 6 is an approximate latency for the mtctr instruction.
511     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
512       return false;
513   }
514 
515   // We don't want to spill/restore the counter register, and so we don't
516   // want to use the counter register if the loop contains calls.
517   SmallPtrSet<const Value *, 4> Visited;
518   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
519        I != IE; ++I)
520     if (mightUseCTR(*I, LibInfo, Visited))
521       return false;
522 
523   SmallVector<BasicBlock*, 4> ExitingBlocks;
524   L->getExitingBlocks(ExitingBlocks);
525 
526   // If there is an exit edge known to be frequently taken,
527   // we should not transform this loop.
528   for (auto &BB : ExitingBlocks) {
529     Instruction *TI = BB->getTerminator();
530     if (!TI) continue;
531 
532     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
533       uint64_t TrueWeight = 0, FalseWeight = 0;
534       if (!BI->isConditional() ||
535           !BI->extractProfMetadata(TrueWeight, FalseWeight))
536         continue;
537 
538       // If the exit path is more frequent than the loop path,
539       // we return here without further analysis for this loop.
540       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
541       if (( TrueIsExit && FalseWeight < TrueWeight) ||
542           (!TrueIsExit && FalseWeight > TrueWeight))
543         return false;
544     }
545   }
546 
547   // If an exit block has a PHI that accesses a TLS variable as one of the
548   // incoming values from the loop, we cannot produce a CTR loop because the
549   // address for that value will be computed in the loop.
550   SmallVector<BasicBlock *, 4> ExitBlocks;
551   L->getExitBlocks(ExitBlocks);
552   for (auto &BB : ExitBlocks) {
553     for (auto &PHI : BB->phis()) {
554       for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
555            Idx++) {
556         const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
557         const Value *IncomingValue = PHI.getIncomingValue(Idx);
558         if (L->contains(IncomingBB) &&
559             memAddrUsesCTR(IncomingValue, TM, Visited))
560           return false;
561       }
562     }
563   }
564 
565   LLVMContext &C = L->getHeader()->getContext();
566   HWLoopInfo.CountType = TM.isPPC64() ?
567     Type::getInt64Ty(C) : Type::getInt32Ty(C);
568   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
569   return true;
570 }
571 
572 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
573                                          TTI::UnrollingPreferences &UP) {
574   if (ST->getCPUDirective() == PPC::DIR_A2) {
575     // The A2 is in-order with a deep pipeline, and concatenation unrolling
576     // helps expose latency-hiding opportunities to the instruction scheduler.
577     UP.Partial = UP.Runtime = true;
578 
579     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
580     // often outweigh the cost of a division to compute the trip count.
581     UP.AllowExpensiveTripCount = true;
582   }
583 
584   BaseT::getUnrollingPreferences(L, SE, UP);
585 }
586 
587 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
588                                        TTI::PeelingPreferences &PP) {
589   BaseT::getPeelingPreferences(L, SE, PP);
590 }
591 // This function returns true to allow using coldcc calling convention.
592 // Returning true results in coldcc being used for functions which are cold at
593 // all call sites when the callers of the functions are not calling any other
594 // non coldcc functions.
595 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
596   return EnablePPCColdCC;
597 }
598 
599 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
600   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
601   // on combining the loads generated for consecutive accesses, and failure to
602   // do so is particularly expensive. This makes it much more likely (compared
603   // to only using concatenation unrolling).
604   if (ST->getCPUDirective() == PPC::DIR_A2)
605     return true;
606 
607   return LoopHasReductions;
608 }
609 
610 PPCTTIImpl::TTI::MemCmpExpansionOptions
611 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
612   TTI::MemCmpExpansionOptions Options;
613   Options.LoadSizes = {8, 4, 2, 1};
614   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
615   return Options;
616 }
617 
618 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
619   return true;
620 }
621 
622 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
623   assert(ClassID == GPRRC || ClassID == FPRRC ||
624          ClassID == VRRC || ClassID == VSXRC);
625   if (ST->hasVSX()) {
626     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
627     return ClassID == VSXRC ? 64 : 32;
628   }
629   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
630   return 32;
631 }
632 
633 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
634   if (Vector)
635     return ST->hasVSX() ? VSXRC : VRRC;
636   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
637                   Ty->getScalarType()->isDoubleTy()))
638     return ST->hasVSX() ? VSXRC : FPRRC;
639   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
640                   Ty->getScalarType()->isPPC_FP128Ty()))
641     return VRRC;
642   else if (Ty && Ty->getScalarType()->isHalfTy())
643     return VSXRC;
644   else
645     return GPRRC;
646 }
647 
648 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
649 
650   switch (ClassID) {
651     default:
652       llvm_unreachable("unknown register class");
653       return "PPC::unknown register class";
654     case GPRRC:       return "PPC::GPRRC";
655     case FPRRC:       return "PPC::FPRRC";
656     case VRRC:        return "PPC::VRRC";
657     case VSXRC:       return "PPC::VSXRC";
658   }
659 }
660 
661 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
662   if (Vector) {
663     if (ST->hasQPX()) return 256;
664     if (ST->hasAltivec()) return 128;
665     return 0;
666   }
667 
668   if (ST->isPPC64())
669     return 64;
670   return 32;
671 
672 }
673 
674 unsigned PPCTTIImpl::getCacheLineSize() const {
675   // Check first if the user specified a custom line size.
676   if (CacheLineSize.getNumOccurrences() > 0)
677     return CacheLineSize;
678 
679   // Starting with P7 we have a cache line size of 128.
680   unsigned Directive = ST->getCPUDirective();
681   // Assume that Future CPU has the same cache line size as the others.
682   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
683       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
684       Directive == PPC::DIR_PWR_FUTURE)
685     return 128;
686 
687   // On other processors return a default of 64 bytes.
688   return 64;
689 }
690 
691 unsigned PPCTTIImpl::getPrefetchDistance() const {
692   // This seems like a reasonable default for the BG/Q (this pass is enabled, by
693   // default, only on the BG/Q).
694   return 300;
695 }
696 
697 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
698   unsigned Directive = ST->getCPUDirective();
699   // The 440 has no SIMD support, but floating-point instructions
700   // have a 5-cycle latency, so unroll by 5x for latency hiding.
701   if (Directive == PPC::DIR_440)
702     return 5;
703 
704   // The A2 has no SIMD support, but floating-point instructions
705   // have a 6-cycle latency, so unroll by 6x for latency hiding.
706   if (Directive == PPC::DIR_A2)
707     return 6;
708 
709   // FIXME: For lack of any better information, do no harm...
710   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
711     return 1;
712 
713   // For P7 and P8, floating-point instructions have a 6-cycle latency and
714   // there are two execution units, so unroll by 12x for latency hiding.
715   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
716   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
717   // Assume that future is the same as the others.
718   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
719       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
720       Directive == PPC::DIR_PWR_FUTURE)
721     return 12;
722 
723   // For most things, modern systems have two execution units (and
724   // out-of-order execution).
725   return 2;
726 }
727 
728 // Adjust the cost of vector instructions on targets which there is overlap
729 // between the vector and scalar units, thereby reducing the overall throughput
730 // of vector code wrt. scalar code.
731 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
732                                      Type *Ty2) {
733   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
734     return Cost;
735 
736   std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
737   // If type legalization involves splitting the vector, we don't want to
738   // double the cost at every step - only the last step.
739   if (LT1.first != 1 || !LT1.second.isVector())
740     return Cost;
741 
742   int ISD = TLI->InstructionOpcodeToISD(Opcode);
743   if (TLI->isOperationExpand(ISD, LT1.second))
744     return Cost;
745 
746   if (Ty2) {
747     std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
748     if (LT2.first != 1 || !LT2.second.isVector())
749       return Cost;
750   }
751 
752   return Cost * 2;
753 }
754 
755 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
756                                        TTI::TargetCostKind CostKind,
757                                        TTI::OperandValueKind Op1Info,
758                                        TTI::OperandValueKind Op2Info,
759                                        TTI::OperandValueProperties Opd1PropInfo,
760                                        TTI::OperandValueProperties Opd2PropInfo,
761                                        ArrayRef<const Value *> Args,
762                                        const Instruction *CxtI) {
763   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
764   // TODO: Handle more cost kinds.
765   if (CostKind != TTI::TCK_RecipThroughput)
766     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
767                                          Op2Info, Opd1PropInfo,
768                                          Opd2PropInfo, Args, CxtI);
769 
770   // Fallback to the default implementation.
771   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
772                                            Op2Info,
773                                            Opd1PropInfo, Opd2PropInfo);
774   return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
775 }
776 
777 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
778                                Type *SubTp) {
779   // Legalize the type.
780   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
781 
782   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
783   // (at least in the sense that there need only be one non-loop-invariant
784   // instruction). We need one such shuffle instruction for each actual
785   // register (this is not true for arbitrary shuffles, but is true for the
786   // structured types of shuffles covered by TTI::ShuffleKind).
787   return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
788                               nullptr);
789 }
790 
791 int PPCTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
792   if (CostKind != TTI::TCK_RecipThroughput)
793     return Opcode == Instruction::PHI ? 0 : 1;
794   // Branches are assumed to be predicted.
795   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
796 }
797 
798 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
799                                  TTI::TargetCostKind CostKind,
800                                  const Instruction *I) {
801   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
802 
803   int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I);
804   Cost = vectorCostAdjustment(Cost, Opcode, Dst, Src);
805   // TODO: Allow non-throughput costs that aren't binary.
806   if (CostKind != TTI::TCK_RecipThroughput)
807     return Cost == 0 ? 0 : 1;
808   return Cost;
809 }
810 
811 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
812                                    TTI::TargetCostKind CostKind,
813                                    const Instruction *I) {
814   int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
815   // TODO: Handle other cost kinds.
816   if (CostKind != TTI::TCK_RecipThroughput)
817     return Cost;
818   return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
819 }
820 
821 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
822   assert(Val->isVectorTy() && "This must be a vector type");
823 
824   int ISD = TLI->InstructionOpcodeToISD(Opcode);
825   assert(ISD && "Invalid opcode");
826 
827   int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
828   Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
829 
830   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
831     // Double-precision scalars are already located in index #0 (or #1 if LE).
832     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
833         Index == (ST->isLittleEndian() ? 1 : 0))
834       return 0;
835 
836     return Cost;
837 
838   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
839     // Floating point scalars are already located in index #0.
840     if (Index == 0)
841       return 0;
842 
843     return Cost;
844 
845   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
846     if (ST->hasP9Altivec()) {
847       if (ISD == ISD::INSERT_VECTOR_ELT)
848         // A move-to VSR and a permute/insert.  Assume vector operation cost
849         // for both (cost will be 2x on P9).
850         return vectorCostAdjustment(2, Opcode, Val, nullptr);
851 
852       // It's an extract.  Maybe we can do a cheap move-from VSR.
853       unsigned EltSize = Val->getScalarSizeInBits();
854       if (EltSize == 64) {
855         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
856         if (Index == MfvsrdIndex)
857           return 1;
858       } else if (EltSize == 32) {
859         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
860         if (Index == MfvsrwzIndex)
861           return 1;
862       }
863 
864       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
865       // The cost of the load constant for a vector extract is disregarded
866       // (invariant, easily schedulable).
867       return vectorCostAdjustment(1, Opcode, Val, nullptr);
868 
869     } else if (ST->hasDirectMove())
870       // Assume permute has standard cost.
871       // Assume move-to/move-from VSR have 2x standard cost.
872       return 3;
873   }
874 
875   // Estimated cost of a load-hit-store delay.  This was obtained
876   // experimentally as a minimum needed to prevent unprofitable
877   // vectorization for the paq8p benchmark.  It may need to be
878   // raised further if other unprofitable cases remain.
879   unsigned LHSPenalty = 2;
880   if (ISD == ISD::INSERT_VECTOR_ELT)
881     LHSPenalty += 7;
882 
883   // Vector element insert/extract with Altivec is very expensive,
884   // because they require store and reload with the attendant
885   // processor stall for load-hit-store.  Until VSX is available,
886   // these need to be estimated as very costly.
887   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
888       ISD == ISD::INSERT_VECTOR_ELT)
889     return LHSPenalty + Cost;
890 
891   return Cost;
892 }
893 
894 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
895                                 MaybeAlign Alignment, unsigned AddressSpace,
896                                 TTI::TargetCostKind CostKind,
897                                 const Instruction *I) {
898   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
899     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
900                                   CostKind);
901   // Legalize the type.
902   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
903   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
904          "Invalid Opcode");
905 
906   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
907                                     CostKind);
908   // TODO: Handle other cost kinds.
909   if (CostKind != TTI::TCK_RecipThroughput)
910     return Cost;
911 
912   Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
913 
914   bool IsAltivecType = ST->hasAltivec() &&
915                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
916                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
917   bool IsVSXType = ST->hasVSX() &&
918                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
919   bool IsQPXType = ST->hasQPX() &&
920                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
921 
922   // VSX has 32b/64b load instructions. Legalization can handle loading of
923   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
924   // PPCTargetLowering can't compute the cost appropriately. So here we
925   // explicitly check this case.
926   unsigned MemBytes = Src->getPrimitiveSizeInBits();
927   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
928       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
929     return 1;
930 
931   // Aligned loads and stores are easy.
932   unsigned SrcBytes = LT.second.getStoreSize();
933   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
934     return Cost;
935 
936   // If we can use the permutation-based load sequence, then this is also
937   // relatively cheap (not counting loop-invariant instructions): one load plus
938   // one permute (the last load in a series has extra cost, but we're
939   // neglecting that here). Note that on the P7, we could do unaligned loads
940   // for Altivec types using the VSX instructions, but that's more expensive
941   // than using the permutation-based load sequence. On the P8, that's no
942   // longer true.
943   if (Opcode == Instruction::Load &&
944       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
945       *Alignment >= LT.second.getScalarType().getStoreSize())
946     return Cost + LT.first; // Add the cost of the permutations.
947 
948   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
949   // P7, unaligned vector loads are more expensive than the permutation-based
950   // load sequence, so that might be used instead, but regardless, the net cost
951   // is about the same (not counting loop-invariant instructions).
952   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
953     return Cost;
954 
955   // Newer PPC supports unaligned memory access.
956   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
957     return Cost;
958 
959   // PPC in general does not support unaligned loads and stores. They'll need
960   // to be decomposed based on the alignment factor.
961 
962   // Add the cost of each scalar load or store.
963   assert(Alignment);
964   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
965 
966   // For a vector type, there is also scalarization overhead (only for
967   // stores, loads are expanded using the vector-load + permutation sequence,
968   // which is much less expensive).
969   if (Src->isVectorTy() && Opcode == Instruction::Store)
970     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
971          ++i)
972       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
973 
974   return Cost;
975 }
976 
977 int PPCTTIImpl::getInterleavedMemoryOpCost(
978     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
979     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
980     bool UseMaskForCond, bool UseMaskForGaps) {
981   if (UseMaskForCond || UseMaskForGaps)
982     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
983                                              Alignment, AddressSpace, CostKind,
984                                              UseMaskForCond, UseMaskForGaps);
985 
986   assert(isa<VectorType>(VecTy) &&
987          "Expect a vector type for interleaved memory op");
988 
989   // Legalize the type.
990   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
991 
992   // Firstly, the cost of load/store operation.
993   int Cost =
994       getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
995                       CostKind);
996 
997   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
998   // (at least in the sense that there need only be one non-loop-invariant
999   // instruction). For each result vector, we need one shuffle per incoming
1000   // vector (except that the first shuffle can take two incoming vectors
1001   // because it does not need to take itself).
1002   Cost += Factor*(LT.first-1);
1003 
1004   return Cost;
1005 }
1006 
1007 unsigned PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1008                                            TTI::TargetCostKind CostKind) {
1009   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1010 }
1011 
1012 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1013                             LoopInfo *LI, DominatorTree *DT,
1014                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
1015   // Process nested loops first.
1016   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
1017     if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
1018       return false; // Stop search.
1019 
1020   HardwareLoopInfo HWLoopInfo(L);
1021 
1022   if (!HWLoopInfo.canAnalyze(*LI))
1023     return false;
1024 
1025   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
1026     return false;
1027 
1028   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
1029     return false;
1030 
1031   *BI = HWLoopInfo.ExitBranch;
1032   return true;
1033 }
1034 
1035 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1036                                TargetTransformInfo::LSRCost &C2) {
1037   // PowerPC default behaviour here is "instruction number 1st priority".
1038   // If LsrNoInsnsCost is set, call default implementation.
1039   if (!LsrNoInsnsCost)
1040     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
1041                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
1042            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
1043                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
1044   else
1045     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
1046 }
1047