1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PPCTargetTransformInfo.h" 10 #include "llvm/Analysis/CodeMetrics.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/CodeGen/CostTable.h" 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/Support/CommandLine.h" 17 #include "llvm/Support/Debug.h" 18 using namespace llvm; 19 20 #define DEBUG_TYPE "ppctti" 21 22 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 23 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 24 25 // This is currently only used for the data prefetch pass which is only enabled 26 // for BG/Q by default. 27 static cl::opt<unsigned> 28 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 29 cl::desc("The loop prefetch cache line size")); 30 31 static cl::opt<bool> 32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 33 cl::desc("Enable using coldcc calling conv for cold " 34 "internal functions")); 35 36 static cl::opt<bool> 37 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), 38 cl::desc("Do not add instruction count to lsr cost model")); 39 40 // The latency of mtctr is only justified if there are more than 4 41 // comparisons that will be removed as a result. 42 static cl::opt<unsigned> 43 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 44 cl::desc("Loops with a constant trip count smaller than " 45 "this value will not use the count register.")); 46 47 //===----------------------------------------------------------------------===// 48 // 49 // PPC cost model. 50 // 51 //===----------------------------------------------------------------------===// 52 53 TargetTransformInfo::PopcntSupportKind 54 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 55 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 56 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 57 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 58 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 59 return TTI::PSK_Software; 60 } 61 62 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 63 TTI::TargetCostKind CostKind) { 64 if (DisablePPCConstHoist) 65 return BaseT::getIntImmCost(Imm, Ty, CostKind); 66 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 if (BitSize == 0) 71 return ~0U; 72 73 if (Imm == 0) 74 return TTI::TCC_Free; 75 76 if (Imm.getBitWidth() <= 64) { 77 if (isInt<16>(Imm.getSExtValue())) 78 return TTI::TCC_Basic; 79 80 if (isInt<32>(Imm.getSExtValue())) { 81 // A constant that can be materialized using lis. 82 if ((Imm.getZExtValue() & 0xFFFF) == 0) 83 return TTI::TCC_Basic; 84 85 return 2 * TTI::TCC_Basic; 86 } 87 } 88 89 return 4 * TTI::TCC_Basic; 90 } 91 92 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 93 const APInt &Imm, Type *Ty, 94 TTI::TargetCostKind CostKind) { 95 if (DisablePPCConstHoist) 96 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 97 98 assert(Ty->isIntegerTy()); 99 100 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 101 if (BitSize == 0) 102 return ~0U; 103 104 switch (IID) { 105 default: 106 return TTI::TCC_Free; 107 case Intrinsic::sadd_with_overflow: 108 case Intrinsic::uadd_with_overflow: 109 case Intrinsic::ssub_with_overflow: 110 case Intrinsic::usub_with_overflow: 111 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 112 return TTI::TCC_Free; 113 break; 114 case Intrinsic::experimental_stackmap: 115 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 116 return TTI::TCC_Free; 117 break; 118 case Intrinsic::experimental_patchpoint_void: 119 case Intrinsic::experimental_patchpoint_i64: 120 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 121 return TTI::TCC_Free; 122 break; 123 } 124 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 125 } 126 127 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 128 const APInt &Imm, Type *Ty, 129 TTI::TargetCostKind CostKind) { 130 if (DisablePPCConstHoist) 131 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 132 133 assert(Ty->isIntegerTy()); 134 135 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 136 if (BitSize == 0) 137 return ~0U; 138 139 unsigned ImmIdx = ~0U; 140 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 141 ZeroFree = false; 142 switch (Opcode) { 143 default: 144 return TTI::TCC_Free; 145 case Instruction::GetElementPtr: 146 // Always hoist the base address of a GetElementPtr. This prevents the 147 // creation of new constants for every base constant that gets constant 148 // folded with the offset. 149 if (Idx == 0) 150 return 2 * TTI::TCC_Basic; 151 return TTI::TCC_Free; 152 case Instruction::And: 153 RunFree = true; // (for the rotate-and-mask instructions) 154 LLVM_FALLTHROUGH; 155 case Instruction::Add: 156 case Instruction::Or: 157 case Instruction::Xor: 158 ShiftedFree = true; 159 LLVM_FALLTHROUGH; 160 case Instruction::Sub: 161 case Instruction::Mul: 162 case Instruction::Shl: 163 case Instruction::LShr: 164 case Instruction::AShr: 165 ImmIdx = 1; 166 break; 167 case Instruction::ICmp: 168 UnsignedFree = true; 169 ImmIdx = 1; 170 // Zero comparisons can use record-form instructions. 171 LLVM_FALLTHROUGH; 172 case Instruction::Select: 173 ZeroFree = true; 174 break; 175 case Instruction::PHI: 176 case Instruction::Call: 177 case Instruction::Ret: 178 case Instruction::Load: 179 case Instruction::Store: 180 break; 181 } 182 183 if (ZeroFree && Imm == 0) 184 return TTI::TCC_Free; 185 186 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 187 if (isInt<16>(Imm.getSExtValue())) 188 return TTI::TCC_Free; 189 190 if (RunFree) { 191 if (Imm.getBitWidth() <= 32 && 192 (isShiftedMask_32(Imm.getZExtValue()) || 193 isShiftedMask_32(~Imm.getZExtValue()))) 194 return TTI::TCC_Free; 195 196 if (ST->isPPC64() && 197 (isShiftedMask_64(Imm.getZExtValue()) || 198 isShiftedMask_64(~Imm.getZExtValue()))) 199 return TTI::TCC_Free; 200 } 201 202 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 203 return TTI::TCC_Free; 204 205 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 206 return TTI::TCC_Free; 207 } 208 209 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 210 } 211 212 unsigned 213 PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands, 214 TTI::TargetCostKind CostKind) { 215 // We already implement getCastInstrCost and getMemoryOpCost where we perform 216 // the vector adjustment there. 217 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U)) 218 return BaseT::getUserCost(U, Operands, CostKind); 219 220 if (U->getType()->isVectorTy()) { 221 // Instructions that need to be split should cost more. 222 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); 223 return LT.first * BaseT::getUserCost(U, Operands, CostKind); 224 } 225 226 return BaseT::getUserCost(U, Operands, CostKind); 227 } 228 229 // Determining the address of a TLS variable results in a function call in 230 // certain TLS models. 231 static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM, 232 SmallPtrSetImpl<const Value *> &Visited) { 233 // No need to traverse again if we already checked this operand. 234 if (!Visited.insert(MemAddr).second) 235 return false; 236 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 237 if (!GV) { 238 // Recurse to check for constants that refer to TLS global variables. 239 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 240 for (const auto &CO : CV->operands()) 241 if (memAddrUsesCTR(CO, TM, Visited)) 242 return true; 243 return false; 244 } 245 246 if (!GV->isThreadLocal()) 247 return false; 248 TLSModel::Model Model = TM.getTLSModel(GV); 249 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic; 250 } 251 252 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo, 253 SmallPtrSetImpl<const Value *> &Visited) { 254 const PPCTargetMachine &TM = ST->getTargetMachine(); 255 256 // Loop through the inline asm constraints and look for something that 257 // clobbers ctr. 258 auto asmClobbersCTR = [](InlineAsm *IA) { 259 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 260 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 261 InlineAsm::ConstraintInfo &C = CIV[i]; 262 if (C.Type != InlineAsm::isInput) 263 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 264 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 265 return true; 266 } 267 return false; 268 }; 269 270 auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) { 271 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 272 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 273 274 return false; 275 }; 276 277 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 278 J != JE; ++J) { 279 if (CallInst *CI = dyn_cast<CallInst>(J)) { 280 // Inline ASM is okay, unless it clobbers the ctr register. 281 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) { 282 if (asmClobbersCTR(IA)) 283 return true; 284 continue; 285 } 286 287 if (Function *F = CI->getCalledFunction()) { 288 // Most intrinsics don't become function calls, but some might. 289 // sin, cos, exp and log are always calls. 290 unsigned Opcode = 0; 291 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 292 switch (F->getIntrinsicID()) { 293 default: continue; 294 // If we have a call to loop_decrement or set_loop_iterations, 295 // we're definitely using CTR. 296 case Intrinsic::set_loop_iterations: 297 case Intrinsic::loop_decrement: 298 return true; 299 300 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 301 // because, although it does clobber the counter register, the 302 // control can't then return to inside the loop unless there is also 303 // an eh_sjlj_setjmp. 304 case Intrinsic::eh_sjlj_setjmp: 305 306 case Intrinsic::memcpy: 307 case Intrinsic::memmove: 308 case Intrinsic::memset: 309 case Intrinsic::powi: 310 case Intrinsic::log: 311 case Intrinsic::log2: 312 case Intrinsic::log10: 313 case Intrinsic::exp: 314 case Intrinsic::exp2: 315 case Intrinsic::pow: 316 case Intrinsic::sin: 317 case Intrinsic::cos: 318 return true; 319 case Intrinsic::copysign: 320 if (CI->getArgOperand(0)->getType()->getScalarType()-> 321 isPPC_FP128Ty()) 322 return true; 323 else 324 continue; // ISD::FCOPYSIGN is never a library call. 325 case Intrinsic::fma: Opcode = ISD::FMA; break; 326 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 327 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 328 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 329 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 330 case Intrinsic::rint: Opcode = ISD::FRINT; break; 331 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 332 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 333 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 334 case Intrinsic::round: Opcode = ISD::FROUND; break; 335 case Intrinsic::lround: Opcode = ISD::LROUND; break; 336 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 337 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break; 338 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break; 339 case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break; 340 case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break; 341 } 342 } 343 344 // PowerPC does not use [US]DIVREM or other library calls for 345 // operations on regular types which are not otherwise library calls 346 // (i.e. soft float or atomics). If adapting for targets that do, 347 // additional care is required here. 348 349 LibFunc Func; 350 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 351 LibInfo->getLibFunc(F->getName(), Func) && 352 LibInfo->hasOptimizedCodeGen(Func)) { 353 // Non-read-only functions are never treated as intrinsics. 354 if (!CI->onlyReadsMemory()) 355 return true; 356 357 // Conversion happens only for FP calls. 358 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 359 return true; 360 361 switch (Func) { 362 default: return true; 363 case LibFunc_copysign: 364 case LibFunc_copysignf: 365 continue; // ISD::FCOPYSIGN is never a library call. 366 case LibFunc_copysignl: 367 return true; 368 case LibFunc_fabs: 369 case LibFunc_fabsf: 370 case LibFunc_fabsl: 371 continue; // ISD::FABS is never a library call. 372 case LibFunc_sqrt: 373 case LibFunc_sqrtf: 374 case LibFunc_sqrtl: 375 Opcode = ISD::FSQRT; break; 376 case LibFunc_floor: 377 case LibFunc_floorf: 378 case LibFunc_floorl: 379 Opcode = ISD::FFLOOR; break; 380 case LibFunc_nearbyint: 381 case LibFunc_nearbyintf: 382 case LibFunc_nearbyintl: 383 Opcode = ISD::FNEARBYINT; break; 384 case LibFunc_ceil: 385 case LibFunc_ceilf: 386 case LibFunc_ceill: 387 Opcode = ISD::FCEIL; break; 388 case LibFunc_rint: 389 case LibFunc_rintf: 390 case LibFunc_rintl: 391 Opcode = ISD::FRINT; break; 392 case LibFunc_round: 393 case LibFunc_roundf: 394 case LibFunc_roundl: 395 Opcode = ISD::FROUND; break; 396 case LibFunc_trunc: 397 case LibFunc_truncf: 398 case LibFunc_truncl: 399 Opcode = ISD::FTRUNC; break; 400 case LibFunc_fmin: 401 case LibFunc_fminf: 402 case LibFunc_fminl: 403 Opcode = ISD::FMINNUM; break; 404 case LibFunc_fmax: 405 case LibFunc_fmaxf: 406 case LibFunc_fmaxl: 407 Opcode = ISD::FMAXNUM; break; 408 } 409 } 410 411 if (Opcode) { 412 EVT EVTy = 413 TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true); 414 415 if (EVTy == MVT::Other) 416 return true; 417 418 if (TLI->isOperationLegalOrCustom(Opcode, EVTy)) 419 continue; 420 else if (EVTy.isVector() && 421 TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType())) 422 continue; 423 424 return true; 425 } 426 } 427 428 return true; 429 } else if (isa<BinaryOperator>(J) && 430 (J->getType()->getScalarType()->isFP128Ty() || 431 J->getType()->getScalarType()->isPPC_FP128Ty())) { 432 // Most operations on f128 or ppc_f128 values become calls. 433 return true; 434 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 435 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 436 CastInst *CI = cast<CastInst>(J); 437 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 438 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 439 isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) || 440 isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType())) 441 return true; 442 } else if (isLargeIntegerTy(!TM.isPPC64(), 443 J->getType()->getScalarType()) && 444 (J->getOpcode() == Instruction::UDiv || 445 J->getOpcode() == Instruction::SDiv || 446 J->getOpcode() == Instruction::URem || 447 J->getOpcode() == Instruction::SRem)) { 448 return true; 449 } else if (!TM.isPPC64() && 450 isLargeIntegerTy(false, J->getType()->getScalarType()) && 451 (J->getOpcode() == Instruction::Shl || 452 J->getOpcode() == Instruction::AShr || 453 J->getOpcode() == Instruction::LShr)) { 454 // Only on PPC32, for 128-bit integers (specifically not 64-bit 455 // integers), these might be runtime calls. 456 return true; 457 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 458 // On PowerPC, indirect jumps use the counter register. 459 return true; 460 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 461 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 462 return true; 463 } 464 465 // FREM is always a call. 466 if (J->getOpcode() == Instruction::FRem) 467 return true; 468 469 if (ST->useSoftFloat()) { 470 switch(J->getOpcode()) { 471 case Instruction::FAdd: 472 case Instruction::FSub: 473 case Instruction::FMul: 474 case Instruction::FDiv: 475 case Instruction::FPTrunc: 476 case Instruction::FPExt: 477 case Instruction::FPToUI: 478 case Instruction::FPToSI: 479 case Instruction::UIToFP: 480 case Instruction::SIToFP: 481 case Instruction::FCmp: 482 return true; 483 } 484 } 485 486 for (Value *Operand : J->operands()) 487 if (memAddrUsesCTR(Operand, TM, Visited)) 488 return true; 489 } 490 491 return false; 492 } 493 494 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 495 AssumptionCache &AC, 496 TargetLibraryInfo *LibInfo, 497 HardwareLoopInfo &HWLoopInfo) { 498 const PPCTargetMachine &TM = ST->getTargetMachine(); 499 TargetSchedModel SchedModel; 500 SchedModel.init(ST); 501 502 // Do not convert small short loops to CTR loop. 503 unsigned ConstTripCount = SE.getSmallConstantTripCount(L); 504 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 505 SmallPtrSet<const Value *, 32> EphValues; 506 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 507 CodeMetrics Metrics; 508 for (BasicBlock *BB : L->blocks()) 509 Metrics.analyzeBasicBlock(BB, *this, EphValues); 510 // 6 is an approximate latency for the mtctr instruction. 511 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 512 return false; 513 } 514 515 // We don't want to spill/restore the counter register, and so we don't 516 // want to use the counter register if the loop contains calls. 517 SmallPtrSet<const Value *, 4> Visited; 518 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 519 I != IE; ++I) 520 if (mightUseCTR(*I, LibInfo, Visited)) 521 return false; 522 523 SmallVector<BasicBlock*, 4> ExitingBlocks; 524 L->getExitingBlocks(ExitingBlocks); 525 526 // If there is an exit edge known to be frequently taken, 527 // we should not transform this loop. 528 for (auto &BB : ExitingBlocks) { 529 Instruction *TI = BB->getTerminator(); 530 if (!TI) continue; 531 532 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 533 uint64_t TrueWeight = 0, FalseWeight = 0; 534 if (!BI->isConditional() || 535 !BI->extractProfMetadata(TrueWeight, FalseWeight)) 536 continue; 537 538 // If the exit path is more frequent than the loop path, 539 // we return here without further analysis for this loop. 540 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 541 if (( TrueIsExit && FalseWeight < TrueWeight) || 542 (!TrueIsExit && FalseWeight > TrueWeight)) 543 return false; 544 } 545 } 546 547 // If an exit block has a PHI that accesses a TLS variable as one of the 548 // incoming values from the loop, we cannot produce a CTR loop because the 549 // address for that value will be computed in the loop. 550 SmallVector<BasicBlock *, 4> ExitBlocks; 551 L->getExitBlocks(ExitBlocks); 552 for (auto &BB : ExitBlocks) { 553 for (auto &PHI : BB->phis()) { 554 for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx; 555 Idx++) { 556 const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx); 557 const Value *IncomingValue = PHI.getIncomingValue(Idx); 558 if (L->contains(IncomingBB) && 559 memAddrUsesCTR(IncomingValue, TM, Visited)) 560 return false; 561 } 562 } 563 } 564 565 LLVMContext &C = L->getHeader()->getContext(); 566 HWLoopInfo.CountType = TM.isPPC64() ? 567 Type::getInt64Ty(C) : Type::getInt32Ty(C); 568 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 569 return true; 570 } 571 572 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 573 TTI::UnrollingPreferences &UP) { 574 if (ST->getCPUDirective() == PPC::DIR_A2) { 575 // The A2 is in-order with a deep pipeline, and concatenation unrolling 576 // helps expose latency-hiding opportunities to the instruction scheduler. 577 UP.Partial = UP.Runtime = true; 578 579 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 580 // often outweigh the cost of a division to compute the trip count. 581 UP.AllowExpensiveTripCount = true; 582 } 583 584 BaseT::getUnrollingPreferences(L, SE, UP); 585 } 586 587 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 588 TTI::PeelingPreferences &PP) { 589 BaseT::getPeelingPreferences(L, SE, PP); 590 } 591 // This function returns true to allow using coldcc calling convention. 592 // Returning true results in coldcc being used for functions which are cold at 593 // all call sites when the callers of the functions are not calling any other 594 // non coldcc functions. 595 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 596 return EnablePPCColdCC; 597 } 598 599 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 600 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 601 // on combining the loads generated for consecutive accesses, and failure to 602 // do so is particularly expensive. This makes it much more likely (compared 603 // to only using concatenation unrolling). 604 if (ST->getCPUDirective() == PPC::DIR_A2) 605 return true; 606 607 return LoopHasReductions; 608 } 609 610 PPCTTIImpl::TTI::MemCmpExpansionOptions 611 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 612 TTI::MemCmpExpansionOptions Options; 613 Options.LoadSizes = {8, 4, 2, 1}; 614 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 615 return Options; 616 } 617 618 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 619 return true; 620 } 621 622 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 623 assert(ClassID == GPRRC || ClassID == FPRRC || 624 ClassID == VRRC || ClassID == VSXRC); 625 if (ST->hasVSX()) { 626 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); 627 return ClassID == VSXRC ? 64 : 32; 628 } 629 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); 630 return 32; 631 } 632 633 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { 634 if (Vector) 635 return ST->hasVSX() ? VSXRC : VRRC; 636 else if (Ty && (Ty->getScalarType()->isFloatTy() || 637 Ty->getScalarType()->isDoubleTy())) 638 return ST->hasVSX() ? VSXRC : FPRRC; 639 else if (Ty && (Ty->getScalarType()->isFP128Ty() || 640 Ty->getScalarType()->isPPC_FP128Ty())) 641 return VRRC; 642 else if (Ty && Ty->getScalarType()->isHalfTy()) 643 return VSXRC; 644 else 645 return GPRRC; 646 } 647 648 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { 649 650 switch (ClassID) { 651 default: 652 llvm_unreachable("unknown register class"); 653 return "PPC::unknown register class"; 654 case GPRRC: return "PPC::GPRRC"; 655 case FPRRC: return "PPC::FPRRC"; 656 case VRRC: return "PPC::VRRC"; 657 case VSXRC: return "PPC::VSXRC"; 658 } 659 } 660 661 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { 662 if (Vector) { 663 if (ST->hasQPX()) return 256; 664 if (ST->hasAltivec()) return 128; 665 return 0; 666 } 667 668 if (ST->isPPC64()) 669 return 64; 670 return 32; 671 672 } 673 674 unsigned PPCTTIImpl::getCacheLineSize() const { 675 // Check first if the user specified a custom line size. 676 if (CacheLineSize.getNumOccurrences() > 0) 677 return CacheLineSize; 678 679 // Starting with P7 we have a cache line size of 128. 680 unsigned Directive = ST->getCPUDirective(); 681 // Assume that Future CPU has the same cache line size as the others. 682 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 683 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 684 Directive == PPC::DIR_PWR_FUTURE) 685 return 128; 686 687 // On other processors return a default of 64 bytes. 688 return 64; 689 } 690 691 unsigned PPCTTIImpl::getPrefetchDistance() const { 692 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 693 // default, only on the BG/Q). 694 return 300; 695 } 696 697 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 698 unsigned Directive = ST->getCPUDirective(); 699 // The 440 has no SIMD support, but floating-point instructions 700 // have a 5-cycle latency, so unroll by 5x for latency hiding. 701 if (Directive == PPC::DIR_440) 702 return 5; 703 704 // The A2 has no SIMD support, but floating-point instructions 705 // have a 6-cycle latency, so unroll by 6x for latency hiding. 706 if (Directive == PPC::DIR_A2) 707 return 6; 708 709 // FIXME: For lack of any better information, do no harm... 710 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 711 return 1; 712 713 // For P7 and P8, floating-point instructions have a 6-cycle latency and 714 // there are two execution units, so unroll by 12x for latency hiding. 715 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 716 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready 717 // Assume that future is the same as the others. 718 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 719 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 720 Directive == PPC::DIR_PWR_FUTURE) 721 return 12; 722 723 // For most things, modern systems have two execution units (and 724 // out-of-order execution). 725 return 2; 726 } 727 728 // Adjust the cost of vector instructions on targets which there is overlap 729 // between the vector and scalar units, thereby reducing the overall throughput 730 // of vector code wrt. scalar code. 731 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1, 732 Type *Ty2) { 733 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) 734 return Cost; 735 736 std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1); 737 // If type legalization involves splitting the vector, we don't want to 738 // double the cost at every step - only the last step. 739 if (LT1.first != 1 || !LT1.second.isVector()) 740 return Cost; 741 742 int ISD = TLI->InstructionOpcodeToISD(Opcode); 743 if (TLI->isOperationExpand(ISD, LT1.second)) 744 return Cost; 745 746 if (Ty2) { 747 std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2); 748 if (LT2.first != 1 || !LT2.second.isVector()) 749 return Cost; 750 } 751 752 return Cost * 2; 753 } 754 755 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 756 TTI::TargetCostKind CostKind, 757 TTI::OperandValueKind Op1Info, 758 TTI::OperandValueKind Op2Info, 759 TTI::OperandValueProperties Opd1PropInfo, 760 TTI::OperandValueProperties Opd2PropInfo, 761 ArrayRef<const Value *> Args, 762 const Instruction *CxtI) { 763 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 764 // TODO: Handle more cost kinds. 765 if (CostKind != TTI::TCK_RecipThroughput) 766 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 767 Op2Info, Opd1PropInfo, 768 Opd2PropInfo, Args, CxtI); 769 770 // Fallback to the default implementation. 771 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 772 Op2Info, 773 Opd1PropInfo, Opd2PropInfo); 774 return vectorCostAdjustment(Cost, Opcode, Ty, nullptr); 775 } 776 777 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 778 Type *SubTp) { 779 // Legalize the type. 780 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 781 782 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 783 // (at least in the sense that there need only be one non-loop-invariant 784 // instruction). We need one such shuffle instruction for each actual 785 // register (this is not true for arbitrary shuffles, but is true for the 786 // structured types of shuffles covered by TTI::ShuffleKind). 787 return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp, 788 nullptr); 789 } 790 791 int PPCTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) { 792 if (CostKind != TTI::TCK_RecipThroughput) 793 return Opcode == Instruction::PHI ? 0 : 1; 794 // Branches are assumed to be predicted. 795 return CostKind == TTI::TCK_RecipThroughput ? 0 : 1; 796 } 797 798 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 799 TTI::TargetCostKind CostKind, 800 const Instruction *I) { 801 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 802 803 int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 804 Cost = vectorCostAdjustment(Cost, Opcode, Dst, Src); 805 // TODO: Allow non-throughput costs that aren't binary. 806 if (CostKind != TTI::TCK_RecipThroughput) 807 return Cost == 0 ? 0 : 1; 808 return Cost; 809 } 810 811 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 812 TTI::TargetCostKind CostKind, 813 const Instruction *I) { 814 int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 815 // TODO: Handle other cost kinds. 816 if (CostKind != TTI::TCK_RecipThroughput) 817 return Cost; 818 return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr); 819 } 820 821 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 822 assert(Val->isVectorTy() && "This must be a vector type"); 823 824 int ISD = TLI->InstructionOpcodeToISD(Opcode); 825 assert(ISD && "Invalid opcode"); 826 827 int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index); 828 Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr); 829 830 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 831 // Double-precision scalars are already located in index #0 (or #1 if LE). 832 if (ISD == ISD::EXTRACT_VECTOR_ELT && 833 Index == (ST->isLittleEndian() ? 1 : 0)) 834 return 0; 835 836 return Cost; 837 838 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 839 // Floating point scalars are already located in index #0. 840 if (Index == 0) 841 return 0; 842 843 return Cost; 844 845 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) { 846 if (ST->hasP9Altivec()) { 847 if (ISD == ISD::INSERT_VECTOR_ELT) 848 // A move-to VSR and a permute/insert. Assume vector operation cost 849 // for both (cost will be 2x on P9). 850 return vectorCostAdjustment(2, Opcode, Val, nullptr); 851 852 // It's an extract. Maybe we can do a cheap move-from VSR. 853 unsigned EltSize = Val->getScalarSizeInBits(); 854 if (EltSize == 64) { 855 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0; 856 if (Index == MfvsrdIndex) 857 return 1; 858 } else if (EltSize == 32) { 859 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; 860 if (Index == MfvsrwzIndex) 861 return 1; 862 } 863 864 // We need a vector extract (or mfvsrld). Assume vector operation cost. 865 // The cost of the load constant for a vector extract is disregarded 866 // (invariant, easily schedulable). 867 return vectorCostAdjustment(1, Opcode, Val, nullptr); 868 869 } else if (ST->hasDirectMove()) 870 // Assume permute has standard cost. 871 // Assume move-to/move-from VSR have 2x standard cost. 872 return 3; 873 } 874 875 // Estimated cost of a load-hit-store delay. This was obtained 876 // experimentally as a minimum needed to prevent unprofitable 877 // vectorization for the paq8p benchmark. It may need to be 878 // raised further if other unprofitable cases remain. 879 unsigned LHSPenalty = 2; 880 if (ISD == ISD::INSERT_VECTOR_ELT) 881 LHSPenalty += 7; 882 883 // Vector element insert/extract with Altivec is very expensive, 884 // because they require store and reload with the attendant 885 // processor stall for load-hit-store. Until VSX is available, 886 // these need to be estimated as very costly. 887 if (ISD == ISD::EXTRACT_VECTOR_ELT || 888 ISD == ISD::INSERT_VECTOR_ELT) 889 return LHSPenalty + Cost; 890 891 return Cost; 892 } 893 894 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 895 MaybeAlign Alignment, unsigned AddressSpace, 896 TTI::TargetCostKind CostKind, 897 const Instruction *I) { 898 if (TLI->getValueType(DL, Src, true) == MVT::Other) 899 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 900 CostKind); 901 // Legalize the type. 902 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 903 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 904 "Invalid Opcode"); 905 906 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 907 CostKind); 908 // TODO: Handle other cost kinds. 909 if (CostKind != TTI::TCK_RecipThroughput) 910 return Cost; 911 912 Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr); 913 914 bool IsAltivecType = ST->hasAltivec() && 915 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 916 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 917 bool IsVSXType = ST->hasVSX() && 918 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 919 bool IsQPXType = ST->hasQPX() && 920 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 921 922 // VSX has 32b/64b load instructions. Legalization can handle loading of 923 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 924 // PPCTargetLowering can't compute the cost appropriately. So here we 925 // explicitly check this case. 926 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 927 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 928 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 929 return 1; 930 931 // Aligned loads and stores are easy. 932 unsigned SrcBytes = LT.second.getStoreSize(); 933 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes) 934 return Cost; 935 936 // If we can use the permutation-based load sequence, then this is also 937 // relatively cheap (not counting loop-invariant instructions): one load plus 938 // one permute (the last load in a series has extra cost, but we're 939 // neglecting that here). Note that on the P7, we could do unaligned loads 940 // for Altivec types using the VSX instructions, but that's more expensive 941 // than using the permutation-based load sequence. On the P8, that's no 942 // longer true. 943 if (Opcode == Instruction::Load && 944 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 945 *Alignment >= LT.second.getScalarType().getStoreSize()) 946 return Cost + LT.first; // Add the cost of the permutations. 947 948 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 949 // P7, unaligned vector loads are more expensive than the permutation-based 950 // load sequence, so that might be used instead, but regardless, the net cost 951 // is about the same (not counting loop-invariant instructions). 952 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 953 return Cost; 954 955 // Newer PPC supports unaligned memory access. 956 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 957 return Cost; 958 959 // PPC in general does not support unaligned loads and stores. They'll need 960 // to be decomposed based on the alignment factor. 961 962 // Add the cost of each scalar load or store. 963 assert(Alignment); 964 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); 965 966 // For a vector type, there is also scalarization overhead (only for 967 // stores, loads are expanded using the vector-load + permutation sequence, 968 // which is much less expensive). 969 if (Src->isVectorTy() && Opcode == Instruction::Store) 970 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e; 971 ++i) 972 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 973 974 return Cost; 975 } 976 977 int PPCTTIImpl::getInterleavedMemoryOpCost( 978 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 979 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 980 bool UseMaskForCond, bool UseMaskForGaps) { 981 if (UseMaskForCond || UseMaskForGaps) 982 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 983 Alignment, AddressSpace, CostKind, 984 UseMaskForCond, UseMaskForGaps); 985 986 assert(isa<VectorType>(VecTy) && 987 "Expect a vector type for interleaved memory op"); 988 989 // Legalize the type. 990 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 991 992 // Firstly, the cost of load/store operation. 993 int Cost = 994 getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, 995 CostKind); 996 997 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 998 // (at least in the sense that there need only be one non-loop-invariant 999 // instruction). For each result vector, we need one shuffle per incoming 1000 // vector (except that the first shuffle can take two incoming vectors 1001 // because it does not need to take itself). 1002 Cost += Factor*(LT.first-1); 1003 1004 return Cost; 1005 } 1006 1007 unsigned PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1008 TTI::TargetCostKind CostKind) { 1009 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1010 } 1011 1012 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 1013 LoopInfo *LI, DominatorTree *DT, 1014 AssumptionCache *AC, TargetLibraryInfo *LibInfo) { 1015 // Process nested loops first. 1016 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 1017 if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo)) 1018 return false; // Stop search. 1019 1020 HardwareLoopInfo HWLoopInfo(L); 1021 1022 if (!HWLoopInfo.canAnalyze(*LI)) 1023 return false; 1024 1025 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) 1026 return false; 1027 1028 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) 1029 return false; 1030 1031 *BI = HWLoopInfo.ExitBranch; 1032 return true; 1033 } 1034 1035 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 1036 TargetTransformInfo::LSRCost &C2) { 1037 // PowerPC default behaviour here is "instruction number 1st priority". 1038 // If LsrNoInsnsCost is set, call default implementation. 1039 if (!LsrNoInsnsCost) 1040 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, 1041 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 1042 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, 1043 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); 1044 else 1045 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); 1046 } 1047