1 //===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Top-level implementation for the PowerPC target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCTargetMachine.h" 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "PPC.h" 16 #include "PPCMachineFunctionInfo.h" 17 #include "PPCMachineScheduler.h" 18 #include "PPCMacroFusion.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetObjectFile.h" 21 #include "PPCTargetTransformInfo.h" 22 #include "TargetInfo/PowerPCTargetInfo.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/Localizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MachineScheduler.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include <cassert> 48 #include <memory> 49 #include <optional> 50 #include <string> 51 52 using namespace llvm; 53 54 55 static cl::opt<bool> 56 EnableBranchCoalescing("enable-ppc-branch-coalesce", cl::Hidden, 57 cl::desc("enable coalescing of duplicate branches for PPC")); 58 static cl:: 59 opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden, 60 cl::desc("Disable CTR loops for PPC")); 61 62 static cl:: 63 opt<bool> DisableInstrFormPrep("disable-ppc-instr-form-prep", cl::Hidden, 64 cl::desc("Disable PPC loop instr form prep")); 65 66 static cl::opt<bool> 67 VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early", 68 cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early")); 69 70 static cl:: 71 opt<bool> DisableVSXSwapRemoval("disable-ppc-vsx-swap-removal", cl::Hidden, 72 cl::desc("Disable VSX Swap Removal for PPC")); 73 74 static cl:: 75 opt<bool> DisableMIPeephole("disable-ppc-peephole", cl::Hidden, 76 cl::desc("Disable machine peepholes for PPC")); 77 78 static cl::opt<bool> 79 EnableGEPOpt("ppc-gep-opt", cl::Hidden, 80 cl::desc("Enable optimizations on complex GEPs"), 81 cl::init(true)); 82 83 static cl::opt<bool> 84 EnablePrefetch("enable-ppc-prefetching", 85 cl::desc("enable software prefetching on PPC"), 86 cl::init(false), cl::Hidden); 87 88 static cl::opt<bool> 89 EnableExtraTOCRegDeps("enable-ppc-extra-toc-reg-deps", 90 cl::desc("Add extra TOC register dependencies"), 91 cl::init(true), cl::Hidden); 92 93 static cl::opt<bool> 94 EnableMachineCombinerPass("ppc-machine-combiner", 95 cl::desc("Enable the machine combiner pass"), 96 cl::init(true), cl::Hidden); 97 98 static cl::opt<bool> 99 ReduceCRLogical("ppc-reduce-cr-logicals", 100 cl::desc("Expand eligible cr-logical binary ops to branches"), 101 cl::init(true), cl::Hidden); 102 103 static cl::opt<bool> EnablePPCGenScalarMASSEntries( 104 "enable-ppc-gen-scalar-mass", cl::init(false), 105 cl::desc("Enable lowering math functions to their corresponding MASS " 106 "(scalar) entries"), 107 cl::Hidden); 108 109 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCTarget() { 110 // Register the targets 111 RegisterTargetMachine<PPCTargetMachine> A(getThePPC32Target()); 112 RegisterTargetMachine<PPCTargetMachine> B(getThePPC32LETarget()); 113 RegisterTargetMachine<PPCTargetMachine> C(getThePPC64Target()); 114 RegisterTargetMachine<PPCTargetMachine> D(getThePPC64LETarget()); 115 116 PassRegistry &PR = *PassRegistry::getPassRegistry(); 117 #ifndef NDEBUG 118 initializePPCCTRLoopsVerifyPass(PR); 119 #endif 120 initializePPCLoopInstrFormPrepPass(PR); 121 initializePPCTOCRegDepsPass(PR); 122 initializePPCEarlyReturnPass(PR); 123 initializePPCVSXCopyPass(PR); 124 initializePPCVSXFMAMutatePass(PR); 125 initializePPCVSXSwapRemovalPass(PR); 126 initializePPCReduceCRLogicalsPass(PR); 127 initializePPCBSelPass(PR); 128 initializePPCBranchCoalescingPass(PR); 129 initializePPCBoolRetToIntPass(PR); 130 initializePPCExpandISELPass(PR); 131 initializePPCPreEmitPeepholePass(PR); 132 initializePPCTLSDynamicCallPass(PR); 133 initializePPCMIPeepholePass(PR); 134 initializePPCLowerMASSVEntriesPass(PR); 135 initializePPCGenScalarMASSEntriesPass(PR); 136 initializePPCExpandAtomicPseudoPass(PR); 137 initializeGlobalISel(PR); 138 initializePPCCTRLoopsPass(PR); 139 initializePPCDAGToDAGISelPass(PR); 140 } 141 142 static bool isLittleEndianTriple(const Triple &T) { 143 return T.getArch() == Triple::ppc64le || T.getArch() == Triple::ppcle; 144 } 145 146 /// Return the datalayout string of a subtarget. 147 static std::string getDataLayoutString(const Triple &T) { 148 bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le; 149 std::string Ret; 150 151 // Most PPC* platforms are big endian, PPC(64)LE is little endian. 152 if (isLittleEndianTriple(T)) 153 Ret = "e"; 154 else 155 Ret = "E"; 156 157 Ret += DataLayout::getManglingComponent(T); 158 159 // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit 160 // pointers. 161 if (!is64Bit || T.getOS() == Triple::Lv2) 162 Ret += "-p:32:32"; 163 164 // Note, the alignment values for f64 and i64 on ppc64 in Darwin 165 // documentation are wrong; these are correct (i.e. "what gcc does"). 166 Ret += "-i64:64"; 167 168 // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones. 169 if (is64Bit) 170 Ret += "-n32:64"; 171 else 172 Ret += "-n32"; 173 174 // Specify the vector alignment explicitly. For v256i1 and v512i1, the 175 // calculated alignment would be 256*alignment(i1) and 512*alignment(i1), 176 // which is 256 and 512 bytes - way over aligned. 177 if (is64Bit && (T.isOSAIX() || T.isOSLinux())) 178 Ret += "-S128-v256:256:256-v512:512:512"; 179 180 return Ret; 181 } 182 183 static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL, 184 const Triple &TT) { 185 std::string FullFS = std::string(FS); 186 187 // Make sure 64-bit features are available when CPUname is generic 188 if (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le) { 189 if (!FullFS.empty()) 190 FullFS = "+64bit," + FullFS; 191 else 192 FullFS = "+64bit"; 193 } 194 195 if (OL >= CodeGenOpt::Default) { 196 if (!FullFS.empty()) 197 FullFS = "+crbits," + FullFS; 198 else 199 FullFS = "+crbits"; 200 } 201 202 if (OL != CodeGenOpt::None) { 203 if (!FullFS.empty()) 204 FullFS = "+invariant-function-descriptors," + FullFS; 205 else 206 FullFS = "+invariant-function-descriptors"; 207 } 208 209 if (TT.isOSAIX()) { 210 if (!FullFS.empty()) 211 FullFS = "+aix," + FullFS; 212 else 213 FullFS = "+aix"; 214 } 215 216 return FullFS; 217 } 218 219 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 220 if (TT.isOSAIX()) 221 return std::make_unique<TargetLoweringObjectFileXCOFF>(); 222 223 return std::make_unique<PPC64LinuxTargetObjectFile>(); 224 } 225 226 static PPCTargetMachine::PPCABI computeTargetABI(const Triple &TT, 227 const TargetOptions &Options) { 228 if (Options.MCOptions.getABIName().startswith("elfv1")) 229 return PPCTargetMachine::PPC_ABI_ELFv1; 230 else if (Options.MCOptions.getABIName().startswith("elfv2")) 231 return PPCTargetMachine::PPC_ABI_ELFv2; 232 233 assert(Options.MCOptions.getABIName().empty() && 234 "Unknown target-abi option!"); 235 236 switch (TT.getArch()) { 237 case Triple::ppc64le: 238 return PPCTargetMachine::PPC_ABI_ELFv2; 239 case Triple::ppc64: 240 if (TT.isPPC64ELFv2ABI()) 241 return PPCTargetMachine::PPC_ABI_ELFv2; 242 else 243 return PPCTargetMachine::PPC_ABI_ELFv1; 244 default: 245 return PPCTargetMachine::PPC_ABI_UNKNOWN; 246 } 247 } 248 249 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 250 std::optional<Reloc::Model> RM) { 251 assert((!TT.isOSAIX() || !RM || *RM == Reloc::PIC_) && 252 "Invalid relocation model for AIX."); 253 254 if (RM) 255 return *RM; 256 257 // Big Endian PPC and AIX default to PIC. 258 if (TT.getArch() == Triple::ppc64 || TT.isOSAIX()) 259 return Reloc::PIC_; 260 261 // Rest are static by default. 262 return Reloc::Static; 263 } 264 265 static CodeModel::Model 266 getEffectivePPCCodeModel(const Triple &TT, std::optional<CodeModel::Model> CM, 267 bool JIT) { 268 if (CM) { 269 if (*CM == CodeModel::Tiny) 270 report_fatal_error("Target does not support the tiny CodeModel", false); 271 if (*CM == CodeModel::Kernel) 272 report_fatal_error("Target does not support the kernel CodeModel", false); 273 return *CM; 274 } 275 276 if (JIT) 277 return CodeModel::Small; 278 if (TT.isOSAIX()) 279 return CodeModel::Small; 280 281 assert(TT.isOSBinFormatELF() && "All remaining PPC OSes are ELF based."); 282 283 if (TT.isArch32Bit()) 284 return CodeModel::Small; 285 286 assert(TT.isArch64Bit() && "Unsupported PPC architecture."); 287 return CodeModel::Medium; 288 } 289 290 291 static ScheduleDAGInstrs *createPPCMachineScheduler(MachineSchedContext *C) { 292 const PPCSubtarget &ST = C->MF->getSubtarget<PPCSubtarget>(); 293 ScheduleDAGMILive *DAG = 294 new ScheduleDAGMILive(C, ST.usePPCPreRASchedStrategy() ? 295 std::make_unique<PPCPreRASchedStrategy>(C) : 296 std::make_unique<GenericScheduler>(C)); 297 // add DAG Mutations here. 298 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 299 if (ST.hasStoreFusion()) 300 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 301 if (ST.hasFusion()) 302 DAG->addMutation(createPowerPCMacroFusionDAGMutation()); 303 304 return DAG; 305 } 306 307 static ScheduleDAGInstrs *createPPCPostMachineScheduler( 308 MachineSchedContext *C) { 309 const PPCSubtarget &ST = C->MF->getSubtarget<PPCSubtarget>(); 310 ScheduleDAGMI *DAG = 311 new ScheduleDAGMI(C, ST.usePPCPostRASchedStrategy() ? 312 std::make_unique<PPCPostRASchedStrategy>(C) : 313 std::make_unique<PostGenericScheduler>(C), true); 314 // add DAG Mutations here. 315 if (ST.hasStoreFusion()) 316 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 317 if (ST.hasFusion()) 318 DAG->addMutation(createPowerPCMacroFusionDAGMutation()); 319 return DAG; 320 } 321 322 // The FeatureString here is a little subtle. We are modifying the feature 323 // string with what are (currently) non-function specific overrides as it goes 324 // into the LLVMTargetMachine constructor and then using the stored value in the 325 // Subtarget constructor below it. 326 PPCTargetMachine::PPCTargetMachine(const Target &T, const Triple &TT, 327 StringRef CPU, StringRef FS, 328 const TargetOptions &Options, 329 std::optional<Reloc::Model> RM, 330 std::optional<CodeModel::Model> CM, 331 CodeGenOpt::Level OL, bool JIT) 332 : LLVMTargetMachine(T, getDataLayoutString(TT), TT, CPU, 333 computeFSAdditions(FS, OL, TT), Options, 334 getEffectiveRelocModel(TT, RM), 335 getEffectivePPCCodeModel(TT, CM, JIT), OL), 336 TLOF(createTLOF(getTargetTriple())), 337 TargetABI(computeTargetABI(TT, Options)), 338 Endianness(isLittleEndianTriple(TT) ? Endian::LITTLE : Endian::BIG) { 339 initAsmInfo(); 340 } 341 342 PPCTargetMachine::~PPCTargetMachine() = default; 343 344 const PPCSubtarget * 345 PPCTargetMachine::getSubtargetImpl(const Function &F) const { 346 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 347 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 348 Attribute FSAttr = F.getFnAttribute("target-features"); 349 350 std::string CPU = 351 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 352 std::string TuneCPU = 353 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; 354 std::string FS = 355 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 356 357 // FIXME: This is related to the code below to reset the target options, 358 // we need to know whether or not the soft float flag is set on the 359 // function before we can generate a subtarget. We also need to use 360 // it as a key for the subtarget since that can be the only difference 361 // between two functions. 362 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 363 // If the soft float attribute is set on the function turn on the soft float 364 // subtarget feature. 365 if (SoftFloat) 366 FS += FS.empty() ? "-hard-float" : ",-hard-float"; 367 368 auto &I = SubtargetMap[CPU + TuneCPU + FS]; 369 if (!I) { 370 // This needs to be done before we create a new subtarget since any 371 // creation will depend on the TM and the code generation flags on the 372 // function that reside in TargetOptions. 373 resetTargetOptions(F); 374 I = std::make_unique<PPCSubtarget>( 375 TargetTriple, CPU, TuneCPU, 376 // FIXME: It would be good to have the subtarget additions here 377 // not necessary. Anything that turns them on/off (overrides) ends 378 // up being put at the end of the feature string, but the defaults 379 // shouldn't require adding them. Fixing this means pulling Feature64Bit 380 // out of most of the target cpus in the .td file and making it set only 381 // as part of initialization via the TargetTriple. 382 computeFSAdditions(FS, getOptLevel(), getTargetTriple()), *this); 383 } 384 return I.get(); 385 } 386 387 //===----------------------------------------------------------------------===// 388 // Pass Pipeline Configuration 389 //===----------------------------------------------------------------------===// 390 391 namespace { 392 393 /// PPC Code Generator Pass Configuration Options. 394 class PPCPassConfig : public TargetPassConfig { 395 public: 396 PPCPassConfig(PPCTargetMachine &TM, PassManagerBase &PM) 397 : TargetPassConfig(TM, PM) { 398 // At any optimization level above -O0 we use the Machine Scheduler and not 399 // the default Post RA List Scheduler. 400 if (TM.getOptLevel() != CodeGenOpt::None) 401 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 402 } 403 404 PPCTargetMachine &getPPCTargetMachine() const { 405 return getTM<PPCTargetMachine>(); 406 } 407 408 void addIRPasses() override; 409 bool addPreISel() override; 410 bool addILPOpts() override; 411 bool addInstSelector() override; 412 void addMachineSSAOptimization() override; 413 void addPreRegAlloc() override; 414 void addPreSched2() override; 415 void addPreEmitPass() override; 416 void addPreEmitPass2() override; 417 // GlobalISEL 418 bool addIRTranslator() override; 419 bool addLegalizeMachineIR() override; 420 bool addRegBankSelect() override; 421 bool addGlobalInstructionSelect() override; 422 423 ScheduleDAGInstrs * 424 createMachineScheduler(MachineSchedContext *C) const override { 425 return createPPCMachineScheduler(C); 426 } 427 ScheduleDAGInstrs * 428 createPostMachineScheduler(MachineSchedContext *C) const override { 429 return createPPCPostMachineScheduler(C); 430 } 431 }; 432 433 } // end anonymous namespace 434 435 TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) { 436 return new PPCPassConfig(*this, PM); 437 } 438 439 void PPCPassConfig::addIRPasses() { 440 if (TM->getOptLevel() != CodeGenOpt::None) 441 addPass(createPPCBoolRetToIntPass()); 442 addPass(createAtomicExpandPass()); 443 444 // Lower generic MASSV routines to PowerPC subtarget-specific entries. 445 addPass(createPPCLowerMASSVEntriesPass()); 446 447 // Generate PowerPC target-specific entries for scalar math functions 448 // that are available in IBM MASS (scalar) library. 449 if (TM->getOptLevel() == CodeGenOpt::Aggressive && 450 EnablePPCGenScalarMASSEntries) { 451 TM->Options.PPCGenScalarMASSEntries = EnablePPCGenScalarMASSEntries; 452 addPass(createPPCGenScalarMASSEntriesPass()); 453 } 454 455 // If explicitly requested, add explicit data prefetch intrinsics. 456 if (EnablePrefetch.getNumOccurrences() > 0) 457 addPass(createLoopDataPrefetchPass()); 458 459 if (TM->getOptLevel() >= CodeGenOpt::Default && EnableGEPOpt) { 460 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 461 // and lower a GEP with multiple indices to either arithmetic operations or 462 // multiple GEPs with single index. 463 addPass(createSeparateConstOffsetFromGEPPass(true)); 464 // Call EarlyCSE pass to find and remove subexpressions in the lowered 465 // result. 466 addPass(createEarlyCSEPass()); 467 // Do loop invariant code motion in case part of the lowered result is 468 // invariant. 469 addPass(createLICMPass()); 470 } 471 472 TargetPassConfig::addIRPasses(); 473 } 474 475 bool PPCPassConfig::addPreISel() { 476 if (!DisableInstrFormPrep && getOptLevel() != CodeGenOpt::None) 477 addPass(createPPCLoopInstrFormPrepPass(getPPCTargetMachine())); 478 479 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 480 addPass(createHardwareLoopsPass()); 481 482 return false; 483 } 484 485 bool PPCPassConfig::addILPOpts() { 486 addPass(&EarlyIfConverterID); 487 488 if (EnableMachineCombinerPass) 489 addPass(&MachineCombinerID); 490 491 return true; 492 } 493 494 bool PPCPassConfig::addInstSelector() { 495 // Install an instruction selector. 496 addPass(createPPCISelDag(getPPCTargetMachine(), getOptLevel())); 497 498 #ifndef NDEBUG 499 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 500 addPass(createPPCCTRLoopsVerify()); 501 #endif 502 503 addPass(createPPCVSXCopyPass()); 504 return false; 505 } 506 507 void PPCPassConfig::addMachineSSAOptimization() { 508 // Run CTR loops pass before any cfg modification pass to prevent the 509 // canonical form of hardware loop from being destroied. 510 if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None) 511 addPass(createPPCCTRLoopsPass()); 512 513 // PPCBranchCoalescingPass need to be done before machine sinking 514 // since it merges empty blocks. 515 if (EnableBranchCoalescing && getOptLevel() != CodeGenOpt::None) 516 addPass(createPPCBranchCoalescingPass()); 517 TargetPassConfig::addMachineSSAOptimization(); 518 // For little endian, remove where possible the vector swap instructions 519 // introduced at code generation to normalize vector element order. 520 if (TM->getTargetTriple().getArch() == Triple::ppc64le && 521 !DisableVSXSwapRemoval) 522 addPass(createPPCVSXSwapRemovalPass()); 523 // Reduce the number of cr-logical ops. 524 if (ReduceCRLogical && getOptLevel() != CodeGenOpt::None) 525 addPass(createPPCReduceCRLogicalsPass()); 526 // Target-specific peephole cleanups performed after instruction 527 // selection. 528 if (!DisableMIPeephole) { 529 addPass(createPPCMIPeepholePass()); 530 addPass(&DeadMachineInstructionElimID); 531 } 532 } 533 534 void PPCPassConfig::addPreRegAlloc() { 535 if (getOptLevel() != CodeGenOpt::None) { 536 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 537 insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID, 538 &PPCVSXFMAMutateID); 539 } 540 541 // FIXME: We probably don't need to run these for -fPIE. 542 if (getPPCTargetMachine().isPositionIndependent()) { 543 // FIXME: LiveVariables should not be necessary here! 544 // PPCTLSDynamicCallPass uses LiveIntervals which previously dependent on 545 // LiveVariables. This (unnecessary) dependency has been removed now, 546 // however a stage-2 clang build fails without LiveVariables computed here. 547 addPass(&LiveVariablesID); 548 addPass(createPPCTLSDynamicCallPass()); 549 } 550 if (EnableExtraTOCRegDeps) 551 addPass(createPPCTOCRegDepsPass()); 552 553 if (getOptLevel() != CodeGenOpt::None) 554 addPass(&MachinePipelinerID); 555 } 556 557 void PPCPassConfig::addPreSched2() { 558 if (getOptLevel() != CodeGenOpt::None) 559 addPass(&IfConverterID); 560 } 561 562 void PPCPassConfig::addPreEmitPass() { 563 addPass(createPPCPreEmitPeepholePass()); 564 addPass(createPPCExpandISELPass()); 565 566 if (getOptLevel() != CodeGenOpt::None) 567 addPass(createPPCEarlyReturnPass()); 568 } 569 570 void PPCPassConfig::addPreEmitPass2() { 571 // Schedule the expansion of AMOs at the last possible moment, avoiding the 572 // possibility for other passes to break the requirements for forward 573 // progress in the LL/SC block. 574 addPass(createPPCExpandAtomicPseudoPass()); 575 // Must run branch selection immediately preceding the asm printer. 576 addPass(createPPCBranchSelectionPass()); 577 } 578 579 TargetTransformInfo 580 PPCTargetMachine::getTargetTransformInfo(const Function &F) const { 581 return TargetTransformInfo(PPCTTIImpl(this, F)); 582 } 583 584 bool PPCTargetMachine::isLittleEndian() const { 585 assert(Endianness != Endian::NOT_DETECTED && 586 "Unable to determine endianness"); 587 return Endianness == Endian::LITTLE; 588 } 589 590 MachineFunctionInfo *PPCTargetMachine::createMachineFunctionInfo( 591 BumpPtrAllocator &Allocator, const Function &F, 592 const TargetSubtargetInfo *STI) const { 593 return PPCFunctionInfo::create<PPCFunctionInfo>(Allocator, F, STI); 594 } 595 596 static MachineSchedRegistry 597 PPCPreRASchedRegistry("ppc-prera", 598 "Run PowerPC PreRA specific scheduler", 599 createPPCMachineScheduler); 600 601 static MachineSchedRegistry 602 PPCPostRASchedRegistry("ppc-postra", 603 "Run PowerPC PostRA specific scheduler", 604 createPPCPostMachineScheduler); 605 606 // Global ISEL 607 bool PPCPassConfig::addIRTranslator() { 608 addPass(new IRTranslator()); 609 return false; 610 } 611 612 bool PPCPassConfig::addLegalizeMachineIR() { 613 addPass(new Legalizer()); 614 return false; 615 } 616 617 bool PPCPassConfig::addRegBankSelect() { 618 addPass(new RegBankSelect()); 619 return false; 620 } 621 622 bool PPCPassConfig::addGlobalInstructionSelect() { 623 addPass(new InstructionSelect(getOptLevel())); 624 return false; 625 } 626