xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCScheduleP9.td (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1//===-- PPCScheduleP9.td - PPC P9 Scheduling Definitions ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the itinerary class data for the POWER9 processor.
10//
11//===----------------------------------------------------------------------===//
12include "PPCInstrInfo.td"
13
14def P9Model : SchedMachineModel {
15  // The maximum number of instructions to be issued at the same time.
16  // While a value of 8 is technically correct since 8 instructions can be
17  // fetched from the instruction cache. However, only 6 instructions may be
18  // actually dispatched at a time.
19  let IssueWidth = 8;
20
21  // Load latency is 4 or 5 cycles depending on the load. This latency assumes
22  // that we have a cache hit. For a cache miss the load latency will be more.
23  // There are two instructions (lxvl, lxvll) that have a latency of 6 cycles.
24  // However it is not worth bumping this value up to 6 when the vast majority
25  // of instructions are 4 or 5 cycles.
26  let LoadLatency = 5;
27
28  // A total of 16 cycles to recover from a branch mispredict.
29  let MispredictPenalty = 16;
30
31  // Try to make sure we have at least 10 dispatch groups in a loop.
32  // A dispatch group is 6 instructions.
33  let LoopMicroOpBufferSize = 60;
34
35  // As iops are dispatched to a slice, they are held in an independent slice
36  // issue queue until all register sources and other dependencies have been
37  // resolved and they can be issued. Each of four execution slices has an
38  // 11-entry iop issue queue.
39  let MicroOpBufferSize = 44;
40
41  let CompleteModel = 1;
42
43  // Do not support QPX (Quad Processing eXtension), SPE (Signal Processing
44  // Engine), prefixed instructions on Power 9, PC relative mem ops, or
45  // instructions introduced in ISA 3.1.
46  let UnsupportedFeatures = [HasQPX, HasSPE, PrefixInstrs, PCRelativeMemops,
47                             IsISA3_1];
48
49}
50
51let SchedModel = P9Model in {
52
53  // ***************** Processor Resources *****************
54
55  // Dispatcher slots:
56  // x0, x1, x2, and x3 are the dedicated slice dispatch ports, where each
57  // corresponds to one of the four execution slices.
58  def DISPx02 : ProcResource<2>;
59  def DISPx13 : ProcResource<2>;
60  // The xa and xb ports can be used to send an iop to either of the two slices
61  // of the superslice, but are restricted to iops with only two primary sources.
62  def DISPxab : ProcResource<2>;
63  // b0 and b1 are dedicated dispatch ports into the branch slice.
64  def DISPb01 : ProcResource<2>;
65
66  // Any non BR dispatch ports
67  def DISP_NBR
68      : ProcResGroup<[ DISPx02, DISPx13, DISPxab]>;
69  def DISP_SS : ProcResGroup<[ DISPx02, DISPx13]>;
70
71  // Issue Ports
72  // An instruction can go down one of two issue queues.
73  // Address Generation (AGEN) mainly for loads and stores.
74  // Execution (EXEC) for most other instructions.
75  // Some instructions cannot be run on just any issue queue and may require an
76  // Even or an Odd queue. The EXECE represents the even queues and the EXECO
77  // represents the odd queues.
78  def IP_AGEN : ProcResource<4>;
79  def IP_EXEC : ProcResource<4>;
80  def IP_EXECE : ProcResource<2> {
81    //Even Exec Ports
82    let Super = IP_EXEC;
83  }
84  def IP_EXECO : ProcResource<2> {
85    //Odd Exec Ports
86    let Super = IP_EXEC;
87  }
88
89  // Pipeline Groups
90  // Four ALU (Fixed Point Arithmetic) units in total. Two even, two Odd.
91  def ALU : ProcResource<4>;
92  def ALUE : ProcResource<2> {
93    //Even ALU pipelines
94    let Super = ALU;
95  }
96  def ALUO : ProcResource<2> {
97    //Odd ALU pipelines
98    let Super = ALU;
99  }
100
101  // Two DIV (Fixed Point Divide) units.
102  def DIV : ProcResource<2>;
103
104  // Four DP (Floating Point) units in total. Two even, two Odd.
105  def DP : ProcResource<4>;
106  def DPE : ProcResource<2> {
107    //Even DP pipelines
108    let Super = DP;
109  }
110  def DPO : ProcResource<2> {
111    //Odd DP pipelines
112    let Super = DP;
113  }
114
115  // Four LS (Load or Store) units.
116  def LS : ProcResource<4>;
117
118  // Two PM (Permute) units.
119  def PM : ProcResource<2>;
120
121  // Only one DFU (Decimal Floating Point and Quad Precision) unit.
122  def DFU : ProcResource<1>;
123
124  // Only one Branch unit.
125  def BR : ProcResource<1> {
126    let BufferSize = 16;
127  }
128
129  // Only one CY (Crypto) unit.
130  def CY : ProcResource<1>;
131
132  // ***************** SchedWriteRes Definitions *****************
133
134  // Dispatcher
135  // Dispatch Rules: '-' or 'V'
136  // Vector ('V') - vector iops (128-bit operand) take only one decode and
137  // dispatch slot but are dispatched to both the even and odd slices of a
138  // superslice.
139  def DISP_1C : SchedWriteRes<[DISP_NBR]> {
140    let NumMicroOps = 0;
141    let Latency = 1;
142  }
143  // Dispatch Rules: 'E'
144  // Even slice ('E')- certain operations must be sent only to an even slice.
145  // Also consumes odd dispatch slice slot of the same superslice at dispatch
146  def DISP_EVEN_1C : SchedWriteRes<[ DISPx02, DISPx13 ]> {
147    let NumMicroOps = 0;
148    let Latency = 1;
149  }
150  // Dispatch Rules: 'P'
151  // Paired ('P') - certain cracked and expanded iops are paired such that they
152  // must dispatch together to the same superslice.
153  def DISP_PAIR_1C : SchedWriteRes<[ DISP_SS, DISP_SS]> {
154    let NumMicroOps = 0;
155    let Latency = 1;
156  }
157  // Tuple Restricted ('R') - certain iops preclude dispatching more than one
158  // operation per slice for the super- slice to which they are dispatched
159  def DISP_3SLOTS_1C : SchedWriteRes<[DISPx02, DISPx13, DISPxab]> {
160    let NumMicroOps = 0;
161    let Latency = 1;
162  }
163  // Each execution and branch slice can receive up to two iops per cycle
164  def DISP_BR_1C : SchedWriteRes<[ DISPxab ]> {
165    let NumMicroOps = 0;
166    let Latency = 1;
167  }
168
169  // Issue Ports
170  def IP_AGEN_1C : SchedWriteRes<[IP_AGEN]> {
171    let NumMicroOps = 0;
172    let Latency = 1;
173  }
174
175  def IP_EXEC_1C : SchedWriteRes<[IP_EXEC]> {
176    let NumMicroOps = 0;
177    let Latency = 1;
178  }
179
180  def IP_EXECE_1C : SchedWriteRes<[IP_EXECE]> {
181    let NumMicroOps = 0;
182    let Latency = 1;
183  }
184
185  def IP_EXECO_1C : SchedWriteRes<[IP_EXECO]> {
186    let NumMicroOps = 0;
187    let Latency = 1;
188  }
189
190  //Pipeline Groups
191
192  // ALU Units
193  // An ALU may take either 2 or 3 cycles to complete the operation.
194  // However, the ALU unit is only ever busy for 1 cycle at a time and may
195  // receive new instructions each cycle.
196  def P9_ALU_2C : SchedWriteRes<[ALU]> {
197    let Latency = 2;
198  }
199
200  def P9_ALUE_2C : SchedWriteRes<[ALUE]> {
201    let Latency = 2;
202  }
203
204  def P9_ALUO_2C : SchedWriteRes<[ALUO]> {
205    let Latency = 2;
206  }
207
208  def P9_ALU_3C : SchedWriteRes<[ALU]> {
209    let Latency = 3;
210  }
211
212  def P9_ALUE_3C : SchedWriteRes<[ALUE]> {
213    let Latency = 3;
214  }
215
216  def P9_ALUO_3C : SchedWriteRes<[ALUO]> {
217    let Latency = 3;
218  }
219
220  // DIV Unit
221  // A DIV unit may take from 5 to 40 cycles to complete.
222  // Some DIV operations may keep the unit busy for up to 8 cycles.
223  def P9_DIV_5C : SchedWriteRes<[DIV]> {
224    let Latency = 5;
225  }
226
227  def P9_DIV_12C : SchedWriteRes<[DIV]> {
228    let Latency = 12;
229  }
230
231  def P9_DIV_16C_8 : SchedWriteRes<[DIV]> {
232    let ResourceCycles = [8];
233    let Latency = 16;
234  }
235
236  def P9_DIV_24C_8 : SchedWriteRes<[DIV]> {
237    let ResourceCycles = [8];
238    let Latency = 24;
239  }
240
241  def P9_DIV_40C_8 : SchedWriteRes<[DIV]> {
242    let ResourceCycles = [8];
243    let Latency = 40;
244  }
245
246  // DP Unit
247  // A DP unit may take from 2 to 36 cycles to complete.
248  // Some DP operations keep the unit busy for up to 10 cycles.
249  def P9_DP_5C : SchedWriteRes<[DP]> {
250    let Latency = 5;
251  }
252
253  def P9_DP_7C : SchedWriteRes<[DP]> {
254    let Latency = 7;
255  }
256
257  def P9_DPE_7C : SchedWriteRes<[DPE]> {
258    let Latency = 7;
259  }
260
261  def P9_DPO_7C : SchedWriteRes<[DPO]> {
262    let Latency = 7;
263  }
264
265  def P9_DP_22C_5 : SchedWriteRes<[DP]> {
266    let ResourceCycles = [5];
267    let Latency = 22;
268  }
269
270  def P9_DPO_24C_8 : SchedWriteRes<[DPO]> {
271    let ResourceCycles = [8];
272    let Latency = 24;
273  }
274
275  def P9_DPE_24C_8 : SchedWriteRes<[DPE]> {
276    let ResourceCycles = [8];
277    let Latency = 24;
278  }
279
280  def P9_DP_26C_5 : SchedWriteRes<[DP]> {
281    let ResourceCycles = [5];
282    let Latency = 22;
283  }
284
285  def P9_DPE_27C_10 : SchedWriteRes<[DP]> {
286    let ResourceCycles = [10];
287    let Latency = 27;
288  }
289
290  def P9_DPO_27C_10 : SchedWriteRes<[DP]> {
291    let ResourceCycles = [10];
292    let Latency = 27;
293  }
294
295  def P9_DP_33C_8 : SchedWriteRes<[DP]> {
296    let ResourceCycles = [8];
297    let Latency = 33;
298  }
299
300  def P9_DPE_33C_8 : SchedWriteRes<[DPE]> {
301    let ResourceCycles = [8];
302    let Latency = 33;
303  }
304
305  def P9_DPO_33C_8 : SchedWriteRes<[DPO]> {
306    let ResourceCycles = [8];
307    let Latency = 33;
308  }
309
310  def P9_DP_36C_10 : SchedWriteRes<[DP]> {
311    let ResourceCycles = [10];
312    let Latency = 36;
313  }
314
315  def P9_DPE_36C_10 : SchedWriteRes<[DP]> {
316    let ResourceCycles = [10];
317    let Latency = 36;
318  }
319
320  def P9_DPO_36C_10 : SchedWriteRes<[DP]> {
321    let ResourceCycles = [10];
322    let Latency = 36;
323  }
324
325  // PM Unit
326  // Three cycle permute operations.
327  def P9_PM_3C : SchedWriteRes<[PM]> {
328    let Latency = 3;
329  }
330
331  // Load and Store Units
332  // Loads can have 4, 5 or 6 cycles of latency.
333  // Stores are listed as having a single cycle of latency. This is not
334  // completely accurate since it takes more than 1 cycle to actually store
335  // the value. However, since the store does not produce a result it can be
336  // considered complete after one cycle.
337  def P9_LS_1C : SchedWriteRes<[LS]> {
338    let Latency = 1;
339  }
340
341  def P9_LS_4C : SchedWriteRes<[LS]> {
342    let Latency = 4;
343  }
344
345  def P9_LS_5C : SchedWriteRes<[LS]> {
346    let Latency = 5;
347  }
348
349  def P9_LS_6C : SchedWriteRes<[LS]> {
350    let Latency = 6;
351  }
352
353  // DFU Unit
354  // Some of the most expensive ops use the DFU.
355  // Can take from 12 cycles to 76 cycles to obtain a result.
356  // The unit may be busy for up to 62 cycles.
357  def P9_DFU_12C : SchedWriteRes<[DFU]> {
358    let Latency = 12;
359  }
360
361  def P9_DFU_23C : SchedWriteRes<[DFU]> {
362    let Latency = 23;
363    let ResourceCycles = [11];
364  }
365
366  def P9_DFU_24C : SchedWriteRes<[DFU]> {
367    let Latency = 24;
368    let ResourceCycles = [12];
369  }
370
371  def P9_DFU_37C : SchedWriteRes<[DFU]> {
372    let Latency = 37;
373    let ResourceCycles = [25];
374  }
375
376  def P9_DFU_58C : SchedWriteRes<[DFU]> {
377    let Latency = 58;
378    let ResourceCycles = [44];
379  }
380
381  def P9_DFU_76C : SchedWriteRes<[DFU]> {
382    let Latency = 76;
383    let ResourceCycles = [62];
384  }
385
386  // 2 or 5 cycle latencies for the branch unit.
387  def P9_BR_2C : SchedWriteRes<[BR]> {
388    let Latency = 2;
389  }
390
391  def P9_BR_5C : SchedWriteRes<[BR]> {
392    let Latency = 5;
393  }
394
395  // 6 cycle latency for the crypto unit
396  def P9_CY_6C : SchedWriteRes<[CY]> {
397    let Latency = 6;
398  }
399
400  // ***************** WriteSeq Definitions *****************
401
402  // These are combinations of the resources listed above.
403  // The idea is that some cracked instructions cannot be done in parallel and
404  // so the latencies for their resources must be added.
405  def P9_LoadAndALUOp_6C : WriteSequence<[P9_LS_4C, P9_ALU_2C]>;
406  def P9_LoadAndALUOp_7C : WriteSequence<[P9_LS_5C, P9_ALU_2C]>;
407  def P9_LoadAndALU2Op_7C : WriteSequence<[P9_LS_4C, P9_ALU_3C]>;
408  def P9_LoadAndALU2Op_8C : WriteSequence<[P9_LS_5C, P9_ALU_3C]>;
409  def P9_LoadAndPMOp_8C : WriteSequence<[P9_LS_5C, P9_PM_3C]>;
410  def P9_LoadAndLoadOp_8C : WriteSequence<[P9_LS_4C, P9_LS_4C]>;
411  def P9_IntDivAndALUOp_18C_8 : WriteSequence<[P9_DIV_16C_8, P9_ALU_2C]>;
412  def P9_IntDivAndALUOp_26C_8 : WriteSequence<[P9_DIV_24C_8, P9_ALU_2C]>;
413  def P9_IntDivAndALUOp_42C_8 : WriteSequence<[P9_DIV_40C_8, P9_ALU_2C]>;
414  def P9_StoreAndALUOp_3C : WriteSequence<[P9_LS_1C, P9_ALU_2C]>;
415  def P9_ALUOpAndALUOp_4C : WriteSequence<[P9_ALU_2C, P9_ALU_2C]>;
416  def P9_ALU2OpAndALU2Op_6C : WriteSequence<[P9_ALU_3C, P9_ALU_3C]>;
417  def P9_ALUOpAndALUOpAndALUOp_6C :
418    WriteSequence<[P9_ALU_2C, P9_ALU_2C, P9_ALU_2C]>;
419  def P9_DPOpAndALUOp_7C : WriteSequence<[P9_DP_5C, P9_ALU_2C]>;
420  def P9_DPOpAndALU2Op_10C : WriteSequence<[P9_DP_7C, P9_ALU_3C]>;
421  def P9_DPOpAndALU2Op_25C_5 : WriteSequence<[P9_DP_22C_5, P9_ALU_3C]>;
422  def P9_DPOpAndALU2Op_29C_5 : WriteSequence<[P9_DP_26C_5, P9_ALU_3C]>;
423  def P9_DPOpAndALU2Op_36C_8 : WriteSequence<[P9_DP_33C_8, P9_ALU_3C]>;
424  def P9_DPOpAndALU2Op_39C_10 : WriteSequence<[P9_DP_36C_10, P9_ALU_3C]>;
425  def P9_BROpAndALUOp_7C : WriteSequence<[P9_BR_5C, P9_ALU_2C]>;
426
427  // Include the resource requirements of individual instructions.
428  include "P9InstrResources.td"
429
430}
431
432