1//===-- PPCScheduleP9.td - PPC P9 Scheduling Definitions ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the itinerary class data for the POWER9 processor. 10// 11//===----------------------------------------------------------------------===// 12def P9Model : SchedMachineModel { 13 // The maximum number of instructions to be issued at the same time. 14 // While a value of 8 is technically correct since 8 instructions can be 15 // fetched from the instruction cache. However, only 6 instructions may be 16 // actually dispatched at a time. 17 let IssueWidth = 8; 18 19 // Load latency is 4 or 5 cycles depending on the load. This latency assumes 20 // that we have a cache hit. For a cache miss the load latency will be more. 21 // There are two instructions (lxvl, lxvll) that have a latency of 6 cycles. 22 // However it is not worth bumping this value up to 6 when the vast majority 23 // of instructions are 4 or 5 cycles. 24 let LoadLatency = 5; 25 26 // A total of 16 cycles to recover from a branch mispredict. 27 let MispredictPenalty = 16; 28 29 // Try to make sure we have at least 10 dispatch groups in a loop. 30 // A dispatch group is 6 instructions. 31 let LoopMicroOpBufferSize = 60; 32 33 // As iops are dispatched to a slice, they are held in an independent slice 34 // issue queue until all register sources and other dependencies have been 35 // resolved and they can be issued. Each of four execution slices has an 36 // 11-entry iop issue queue. 37 let MicroOpBufferSize = 44; 38 39 let CompleteModel = 1; 40 41 // Do not support SPE (Signal Processing Engine) or prefixed instructions on 42 // Power 9, or MMA, or paired vector mem ops, or PC relative mem ops, or 43 // instructions introduced after ISA 3.0. 44 let UnsupportedFeatures = [HasSPE, PrefixInstrs, MMA, 45 PairedVectorMemops, 46 PCRelativeMemops, IsISA3_1, IsISAFuture]; 47} 48 49let SchedModel = P9Model in { 50 51 // ***************** Processor Resources ***************** 52 53 // Dispatcher slots: 54 // x0, x1, x2, and x3 are the dedicated slice dispatch ports, where each 55 // corresponds to one of the four execution slices. 56 def DISPx02 : ProcResource<2>; 57 def DISPx13 : ProcResource<2>; 58 // The xa and xb ports can be used to send an iop to either of the two slices 59 // of the superslice, but are restricted to iops with only two primary sources. 60 def DISPxab : ProcResource<2>; 61 // b0 and b1 are dedicated dispatch ports into the branch slice. 62 def DISPb01 : ProcResource<2>; 63 64 // Any non BR dispatch ports 65 def DISP_NBR 66 : ProcResGroup<[ DISPx02, DISPx13, DISPxab]>; 67 def DISP_SS : ProcResGroup<[ DISPx02, DISPx13]>; 68 69 // Issue Ports 70 // An instruction can go down one of two issue queues. 71 // Address Generation (AGEN) mainly for loads and stores. 72 // Execution (EXEC) for most other instructions. 73 // Some instructions cannot be run on just any issue queue and may require an 74 // Even or an Odd queue. The EXECE represents the even queues and the EXECO 75 // represents the odd queues. 76 def IP_AGEN : ProcResource<4>; 77 def IP_EXEC : ProcResource<4>; 78 def IP_EXECE : ProcResource<2> { 79 //Even Exec Ports 80 let Super = IP_EXEC; 81 } 82 def IP_EXECO : ProcResource<2> { 83 //Odd Exec Ports 84 let Super = IP_EXEC; 85 } 86 87 // Pipeline Groups 88 // Four ALU (Fixed Point Arithmetic) units in total. Two even, two Odd. 89 def ALU : ProcResource<4>; 90 def ALUE : ProcResource<2> { 91 //Even ALU pipelines 92 let Super = ALU; 93 } 94 def ALUO : ProcResource<2> { 95 //Odd ALU pipelines 96 let Super = ALU; 97 } 98 99 // Two DIV (Fixed Point Divide) units. 100 def DIV : ProcResource<2>; 101 102 // Four DP (Floating Point) units in total. Two even, two Odd. 103 def DP : ProcResource<4>; 104 def DPE : ProcResource<2> { 105 //Even DP pipelines 106 let Super = DP; 107 } 108 def DPO : ProcResource<2> { 109 //Odd DP pipelines 110 let Super = DP; 111 } 112 113 // Four LS (Load or Store) units. 114 def LS : ProcResource<4>; 115 116 // Two PM (Permute) units. 117 def PM : ProcResource<2>; 118 119 // Only one DFU (Decimal Floating Point and Quad Precision) unit. 120 def DFU : ProcResource<1>; 121 122 // Only one Branch unit. 123 def BR : ProcResource<1> { 124 let BufferSize = 16; 125 } 126 127 // Only one CY (Crypto) unit. 128 def CY : ProcResource<1>; 129 130 // ***************** SchedWriteRes Definitions ***************** 131 132 // Dispatcher 133 // Dispatch Rules: '-' or 'V' 134 // Vector ('V') - vector iops (128-bit operand) take only one decode and 135 // dispatch slot but are dispatched to both the even and odd slices of a 136 // superslice. 137 def DISP_1C : SchedWriteRes<[DISP_NBR]> { 138 let NumMicroOps = 0; 139 let Latency = 1; 140 } 141 // Dispatch Rules: 'E' 142 // Even slice ('E')- certain operations must be sent only to an even slice. 143 // Also consumes odd dispatch slice slot of the same superslice at dispatch 144 def DISP_EVEN_1C : SchedWriteRes<[ DISPx02, DISPx13 ]> { 145 let NumMicroOps = 0; 146 let Latency = 1; 147 } 148 // Dispatch Rules: 'P' 149 // Paired ('P') - certain cracked and expanded iops are paired such that they 150 // must dispatch together to the same superslice. 151 def DISP_PAIR_1C : SchedWriteRes<[ DISP_SS, DISP_SS]> { 152 let NumMicroOps = 0; 153 let Latency = 1; 154 } 155 // Tuple Restricted ('R') - certain iops preclude dispatching more than one 156 // operation per slice for the super- slice to which they are dispatched 157 def DISP_3SLOTS_1C : SchedWriteRes<[DISPx02, DISPx13, DISPxab]> { 158 let NumMicroOps = 0; 159 let Latency = 1; 160 } 161 // Each execution and branch slice can receive up to two iops per cycle 162 def DISP_BR_1C : SchedWriteRes<[ DISPxab ]> { 163 let NumMicroOps = 0; 164 let Latency = 1; 165 } 166 167 // Issue Ports 168 def IP_AGEN_1C : SchedWriteRes<[IP_AGEN]> { 169 let NumMicroOps = 0; 170 let Latency = 1; 171 } 172 173 def IP_EXEC_1C : SchedWriteRes<[IP_EXEC]> { 174 let NumMicroOps = 0; 175 let Latency = 1; 176 } 177 178 def IP_EXECE_1C : SchedWriteRes<[IP_EXECE]> { 179 let NumMicroOps = 0; 180 let Latency = 1; 181 } 182 183 def IP_EXECO_1C : SchedWriteRes<[IP_EXECO]> { 184 let NumMicroOps = 0; 185 let Latency = 1; 186 } 187 188 //Pipeline Groups 189 190 // ALU Units 191 // An ALU may take either 2 or 3 cycles to complete the operation. 192 // However, the ALU unit is only ever busy for 1 cycle at a time and may 193 // receive new instructions each cycle. 194 def P9_ALU_2C : SchedWriteRes<[ALU]> { 195 let Latency = 2; 196 } 197 198 def P9_ALUE_2C : SchedWriteRes<[ALUE]> { 199 let Latency = 2; 200 } 201 202 def P9_ALUO_2C : SchedWriteRes<[ALUO]> { 203 let Latency = 2; 204 } 205 206 def P9_ALU_3C : SchedWriteRes<[ALU]> { 207 let Latency = 3; 208 } 209 210 def P9_ALUE_3C : SchedWriteRes<[ALUE]> { 211 let Latency = 3; 212 } 213 214 def P9_ALUO_3C : SchedWriteRes<[ALUO]> { 215 let Latency = 3; 216 } 217 218 // DIV Unit 219 // A DIV unit may take from 5 to 40 cycles to complete. 220 // Some DIV operations may keep the unit busy for up to 8 cycles. 221 def P9_DIV_5C : SchedWriteRes<[DIV]> { 222 let Latency = 5; 223 } 224 225 def P9_DIV_12C : SchedWriteRes<[DIV]> { 226 let Latency = 12; 227 } 228 229 def P9_DIV_16C_8 : SchedWriteRes<[DIV]> { 230 let ResourceCycles = [8]; 231 let Latency = 16; 232 } 233 234 def P9_DIV_24C_8 : SchedWriteRes<[DIV]> { 235 let ResourceCycles = [8]; 236 let Latency = 24; 237 } 238 239 def P9_DIV_40C_8 : SchedWriteRes<[DIV]> { 240 let ResourceCycles = [8]; 241 let Latency = 40; 242 } 243 244 // DP Unit 245 // A DP unit may take from 2 to 36 cycles to complete. 246 // Some DP operations keep the unit busy for up to 10 cycles. 247 def P9_DP_5C : SchedWriteRes<[DP]> { 248 let Latency = 5; 249 } 250 251 def P9_DP_7C : SchedWriteRes<[DP]> { 252 let Latency = 7; 253 } 254 255 def P9_DPE_7C : SchedWriteRes<[DPE]> { 256 let Latency = 7; 257 } 258 259 def P9_DPO_7C : SchedWriteRes<[DPO]> { 260 let Latency = 7; 261 } 262 263 def P9_DP_22C_5 : SchedWriteRes<[DP]> { 264 let ResourceCycles = [5]; 265 let Latency = 22; 266 } 267 268 def P9_DPO_24C_8 : SchedWriteRes<[DPO]> { 269 let ResourceCycles = [8]; 270 let Latency = 24; 271 } 272 273 def P9_DPE_24C_8 : SchedWriteRes<[DPE]> { 274 let ResourceCycles = [8]; 275 let Latency = 24; 276 } 277 278 def P9_DP_26C_5 : SchedWriteRes<[DP]> { 279 let ResourceCycles = [5]; 280 let Latency = 22; 281 } 282 283 def P9_DPE_27C_10 : SchedWriteRes<[DP]> { 284 let ResourceCycles = [10]; 285 let Latency = 27; 286 } 287 288 def P9_DPO_27C_10 : SchedWriteRes<[DP]> { 289 let ResourceCycles = [10]; 290 let Latency = 27; 291 } 292 293 def P9_DP_33C_8 : SchedWriteRes<[DP]> { 294 let ResourceCycles = [8]; 295 let Latency = 33; 296 } 297 298 def P9_DPE_33C_8 : SchedWriteRes<[DPE]> { 299 let ResourceCycles = [8]; 300 let Latency = 33; 301 } 302 303 def P9_DPO_33C_8 : SchedWriteRes<[DPO]> { 304 let ResourceCycles = [8]; 305 let Latency = 33; 306 } 307 308 def P9_DP_36C_10 : SchedWriteRes<[DP]> { 309 let ResourceCycles = [10]; 310 let Latency = 36; 311 } 312 313 def P9_DPE_36C_10 : SchedWriteRes<[DP]> { 314 let ResourceCycles = [10]; 315 let Latency = 36; 316 } 317 318 def P9_DPO_36C_10 : SchedWriteRes<[DP]> { 319 let ResourceCycles = [10]; 320 let Latency = 36; 321 } 322 323 // PM Unit 324 // Three cycle permute operations. 325 def P9_PM_3C : SchedWriteRes<[PM]> { 326 let Latency = 3; 327 } 328 329 // Load and Store Units 330 // Loads can have 4, 5 or 6 cycles of latency. 331 // Stores are listed as having a single cycle of latency. This is not 332 // completely accurate since it takes more than 1 cycle to actually store 333 // the value. However, since the store does not produce a result it can be 334 // considered complete after one cycle. 335 def P9_LS_1C : SchedWriteRes<[LS]> { 336 let Latency = 1; 337 } 338 339 def P9_LS_4C : SchedWriteRes<[LS]> { 340 let Latency = 4; 341 } 342 343 def P9_LS_5C : SchedWriteRes<[LS]> { 344 let Latency = 5; 345 } 346 347 def P9_LS_6C : SchedWriteRes<[LS]> { 348 let Latency = 6; 349 } 350 351 // DFU Unit 352 // Some of the most expensive ops use the DFU. 353 // Can take from 12 cycles to 76 cycles to obtain a result. 354 // The unit may be busy for up to 62 cycles. 355 def P9_DFU_12C : SchedWriteRes<[DFU]> { 356 let Latency = 12; 357 } 358 359 def P9_DFU_23C : SchedWriteRes<[DFU]> { 360 let Latency = 23; 361 let ResourceCycles = [11]; 362 } 363 364 def P9_DFU_24C : SchedWriteRes<[DFU]> { 365 let Latency = 24; 366 let ResourceCycles = [12]; 367 } 368 369 def P9_DFU_37C : SchedWriteRes<[DFU]> { 370 let Latency = 37; 371 let ResourceCycles = [25]; 372 } 373 374 def P9_DFU_58C : SchedWriteRes<[DFU]> { 375 let Latency = 58; 376 let ResourceCycles = [44]; 377 } 378 379 def P9_DFU_76C : SchedWriteRes<[DFU]> { 380 let Latency = 76; 381 let ResourceCycles = [62]; 382 } 383 384 // 2 or 5 cycle latencies for the branch unit. 385 def P9_BR_2C : SchedWriteRes<[BR]> { 386 let Latency = 2; 387 } 388 389 def P9_BR_5C : SchedWriteRes<[BR]> { 390 let Latency = 5; 391 } 392 393 // 6 cycle latency for the crypto unit 394 def P9_CY_6C : SchedWriteRes<[CY]> { 395 let Latency = 6; 396 } 397 398 // ***************** WriteSeq Definitions ***************** 399 400 // These are combinations of the resources listed above. 401 // The idea is that some cracked instructions cannot be done in parallel and 402 // so the latencies for their resources must be added. 403 def P9_LoadAndALUOp_6C : WriteSequence<[P9_LS_4C, P9_ALU_2C]>; 404 def P9_LoadAndALUOp_7C : WriteSequence<[P9_LS_5C, P9_ALU_2C]>; 405 def P9_LoadAndALU2Op_7C : WriteSequence<[P9_LS_4C, P9_ALU_3C]>; 406 def P9_LoadAndALU2Op_8C : WriteSequence<[P9_LS_5C, P9_ALU_3C]>; 407 def P9_LoadAndPMOp_8C : WriteSequence<[P9_LS_5C, P9_PM_3C]>; 408 def P9_IntDivAndALUOp_18C_8 : WriteSequence<[P9_DIV_16C_8, P9_ALU_2C]>; 409 def P9_IntDivAndALUOp_26C_8 : WriteSequence<[P9_DIV_24C_8, P9_ALU_2C]>; 410 def P9_IntDivAndALUOp_42C_8 : WriteSequence<[P9_DIV_40C_8, P9_ALU_2C]>; 411 def P9_StoreAndALUOp_3C : WriteSequence<[P9_LS_1C, P9_ALU_2C]>; 412 def P9_ALUOpAndALUOp_4C : WriteSequence<[P9_ALU_2C, P9_ALU_2C]>; 413 def P9_ALU2OpAndALU2Op_6C : WriteSequence<[P9_ALU_3C, P9_ALU_3C]>; 414 def P9_ALUOpAndALUOpAndALUOp_6C : 415 WriteSequence<[P9_ALU_2C, P9_ALU_2C, P9_ALU_2C]>; 416 def P9_DPOpAndALUOp_7C : WriteSequence<[P9_DP_5C, P9_ALU_2C]>; 417 def P9_DPOpAndALU2Op_10C : WriteSequence<[P9_DP_7C, P9_ALU_3C]>; 418 def P9_DPOpAndALU2Op_25C_5 : WriteSequence<[P9_DP_22C_5, P9_ALU_3C]>; 419 def P9_DPOpAndALU2Op_29C_5 : WriteSequence<[P9_DP_26C_5, P9_ALU_3C]>; 420 def P9_DPOpAndALU2Op_36C_8 : WriteSequence<[P9_DP_33C_8, P9_ALU_3C]>; 421 def P9_DPOpAndALU2Op_39C_10 : WriteSequence<[P9_DP_36C_10, P9_ALU_3C]>; 422 def P9_BROpAndALUOp_7C : WriteSequence<[P9_BR_5C, P9_ALU_2C]>; 423 424 // Include the resource requirements of individual instructions. 425 include "P9InstrResources.td" 426 427} 428 429