1//===-- PPCRegisterInfo.td - The PowerPC Register File -----*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// 10//===----------------------------------------------------------------------===// 11 12let Namespace = "PPC" in { 13def sub_lt : SubRegIndex<1>; 14def sub_gt : SubRegIndex<1, 1>; 15def sub_eq : SubRegIndex<1, 2>; 16def sub_un : SubRegIndex<1, 3>; 17def sub_32 : SubRegIndex<32>; 18def sub_64 : SubRegIndex<64>; 19} 20 21 22class PPCReg<string n> : Register<n> { 23 let Namespace = "PPC"; 24} 25 26// We identify all our registers with a 5-bit ID, for consistency's sake. 27 28// GPR - One of the 32 32-bit general-purpose registers 29class GPR<bits<5> num, string n> : PPCReg<n> { 30 let HWEncoding{4-0} = num; 31} 32 33// GP8 - One of the 32 64-bit general-purpose registers 34class GP8<GPR SubReg, string n> : PPCReg<n> { 35 let HWEncoding = SubReg.HWEncoding; 36 let SubRegs = [SubReg]; 37 let SubRegIndices = [sub_32]; 38} 39 40// SPE - One of the 32 64-bit general-purpose registers (SPE) 41class SPE<GPR SubReg, string n> : PPCReg<n> { 42 let HWEncoding = SubReg.HWEncoding; 43 let SubRegs = [SubReg]; 44 let SubRegIndices = [sub_32]; 45} 46 47// SPR - One of the 32-bit special-purpose registers 48class SPR<bits<10> num, string n> : PPCReg<n> { 49 let HWEncoding{9-0} = num; 50} 51 52// FPR - One of the 32 64-bit floating-point registers 53class FPR<bits<5> num, string n> : PPCReg<n> { 54 let HWEncoding{4-0} = num; 55} 56 57// QFPR - One of the 32 256-bit floating-point vector registers (used for QPX) 58class QFPR<FPR SubReg, string n> : PPCReg<n> { 59 let HWEncoding = SubReg.HWEncoding; 60 let SubRegs = [SubReg]; 61 let SubRegIndices = [sub_64]; 62} 63 64// VF - One of the 32 64-bit floating-point subregisters of the vector 65// registers (used by VSX). 66class VF<bits<5> num, string n> : PPCReg<n> { 67 let HWEncoding{4-0} = num; 68 let HWEncoding{5} = 1; 69} 70 71// VR - One of the 32 128-bit vector registers 72class VR<VF SubReg, string n> : PPCReg<n> { 73 let HWEncoding{4-0} = SubReg.HWEncoding{4-0}; 74 let HWEncoding{5} = 0; 75 let SubRegs = [SubReg]; 76 let SubRegIndices = [sub_64]; 77} 78 79// VSRL - One of the 32 128-bit VSX registers that overlap with the scalar 80// floating-point registers. 81class VSRL<FPR SubReg, string n> : PPCReg<n> { 82 let HWEncoding = SubReg.HWEncoding; 83 let SubRegs = [SubReg]; 84 let SubRegIndices = [sub_64]; 85} 86 87// VSXReg - One of the VSX registers in the range vs32-vs63 with numbering 88// and encoding to match. 89class VSXReg<bits<6> num, string n> : PPCReg<n> { 90 let HWEncoding{5-0} = num; 91} 92 93// CR - One of the 8 4-bit condition registers 94class CR<bits<3> num, string n, list<Register> subregs> : PPCReg<n> { 95 let HWEncoding{2-0} = num; 96 let SubRegs = subregs; 97} 98 99// CRBIT - One of the 32 1-bit condition register fields 100class CRBIT<bits<5> num, string n> : PPCReg<n> { 101 let HWEncoding{4-0} = num; 102} 103 104// General-purpose registers 105foreach Index = 0-31 in { 106 def R#Index : GPR<Index, "r"#Index>, DwarfRegNum<[-2, Index]>; 107} 108 109// 64-bit General-purpose registers 110foreach Index = 0-31 in { 111 def X#Index : GP8<!cast<GPR>("R"#Index), "r"#Index>, 112 DwarfRegNum<[Index, -2]>; 113} 114 115// SPE registers 116foreach Index = 0-31 in { 117 def S#Index : SPE<!cast<GPR>("R"#Index), "r"#Index>, 118 DwarfRegNum<[!add(Index, 1200), !add(Index, 1200)]>; 119} 120 121// Floating-point registers 122foreach Index = 0-31 in { 123 def F#Index : FPR<Index, "f"#Index>, 124 DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>; 125} 126 127// 64-bit Floating-point subregisters of Altivec registers 128// Note: the register names are v0-v31 or vs32-vs63 depending on the use. 129// Custom C++ code is used to produce the correct name and encoding. 130foreach Index = 0-31 in { 131 def VF#Index : VF<Index, "v" #Index>, 132 DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>; 133} 134 135// QPX Floating-point registers 136foreach Index = 0-31 in { 137 def QF#Index : QFPR<!cast<FPR>("F"#Index), "q"#Index>, 138 DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>; 139} 140 141// Vector registers 142foreach Index = 0-31 in { 143 def V#Index : VR<!cast<VF>("VF"#Index), "v"#Index>, 144 DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>; 145} 146 147// VSX registers 148foreach Index = 0-31 in { 149 def VSL#Index : VSRL<!cast<FPR>("F"#Index), "vs"#Index>, 150 DwarfRegAlias<!cast<FPR>("F"#Index)>; 151} 152 153// Dummy VSX registers, this defines string: "vs32"-"vs63", and is only used for 154// asm printing. 155foreach Index = 32-63 in { 156 def VSX#Index : VSXReg<Index, "vs"#Index>; 157} 158 159// The reprsentation of r0 when treated as the constant 0. 160def ZERO : GPR<0, "0">, DwarfRegAlias<R0>; 161def ZERO8 : GP8<ZERO, "0">, DwarfRegAlias<X0>; 162 163// Representations of the frame pointer used by ISD::FRAMEADDR. 164def FP : GPR<0 /* arbitrary */, "**FRAME POINTER**">; 165def FP8 : GP8<FP, "**FRAME POINTER**">; 166 167// Representations of the base pointer used by setjmp. 168def BP : GPR<0 /* arbitrary */, "**BASE POINTER**">; 169def BP8 : GP8<BP, "**BASE POINTER**">; 170 171// Condition register bits 172def CR0LT : CRBIT< 0, "0">; 173def CR0GT : CRBIT< 1, "1">; 174def CR0EQ : CRBIT< 2, "2">; 175def CR0UN : CRBIT< 3, "3">; 176def CR1LT : CRBIT< 4, "4">; 177def CR1GT : CRBIT< 5, "5">; 178def CR1EQ : CRBIT< 6, "6">; 179def CR1UN : CRBIT< 7, "7">; 180def CR2LT : CRBIT< 8, "8">; 181def CR2GT : CRBIT< 9, "9">; 182def CR2EQ : CRBIT<10, "10">; 183def CR2UN : CRBIT<11, "11">; 184def CR3LT : CRBIT<12, "12">; 185def CR3GT : CRBIT<13, "13">; 186def CR3EQ : CRBIT<14, "14">; 187def CR3UN : CRBIT<15, "15">; 188def CR4LT : CRBIT<16, "16">; 189def CR4GT : CRBIT<17, "17">; 190def CR4EQ : CRBIT<18, "18">; 191def CR4UN : CRBIT<19, "19">; 192def CR5LT : CRBIT<20, "20">; 193def CR5GT : CRBIT<21, "21">; 194def CR5EQ : CRBIT<22, "22">; 195def CR5UN : CRBIT<23, "23">; 196def CR6LT : CRBIT<24, "24">; 197def CR6GT : CRBIT<25, "25">; 198def CR6EQ : CRBIT<26, "26">; 199def CR6UN : CRBIT<27, "27">; 200def CR7LT : CRBIT<28, "28">; 201def CR7GT : CRBIT<29, "29">; 202def CR7EQ : CRBIT<30, "30">; 203def CR7UN : CRBIT<31, "31">; 204 205// Condition registers 206let SubRegIndices = [sub_lt, sub_gt, sub_eq, sub_un] in { 207def CR0 : CR<0, "cr0", [CR0LT, CR0GT, CR0EQ, CR0UN]>, DwarfRegNum<[68, 68]>; 208def CR1 : CR<1, "cr1", [CR1LT, CR1GT, CR1EQ, CR1UN]>, DwarfRegNum<[69, 69]>; 209def CR2 : CR<2, "cr2", [CR2LT, CR2GT, CR2EQ, CR2UN]>, DwarfRegNum<[70, 70]>; 210def CR3 : CR<3, "cr3", [CR3LT, CR3GT, CR3EQ, CR3UN]>, DwarfRegNum<[71, 71]>; 211def CR4 : CR<4, "cr4", [CR4LT, CR4GT, CR4EQ, CR4UN]>, DwarfRegNum<[72, 72]>; 212def CR5 : CR<5, "cr5", [CR5LT, CR5GT, CR5EQ, CR5UN]>, DwarfRegNum<[73, 73]>; 213def CR6 : CR<6, "cr6", [CR6LT, CR6GT, CR6EQ, CR6UN]>, DwarfRegNum<[74, 74]>; 214def CR7 : CR<7, "cr7", [CR7LT, CR7GT, CR7EQ, CR7UN]>, DwarfRegNum<[75, 75]>; 215} 216 217// Link register 218def LR : SPR<8, "lr">, DwarfRegNum<[-2, 65]>; 219//let Aliases = [LR] in 220def LR8 : SPR<8, "lr">, DwarfRegNum<[65, -2]>; 221 222// Count register 223def CTR : SPR<9, "ctr">, DwarfRegNum<[-2, 66]>; 224def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66, -2]>; 225 226// VRsave register 227def VRSAVE: SPR<256, "vrsave">, DwarfRegNum<[109]>; 228 229// SPE extra registers 230// SPE Accumulator for multiply-accumulate SPE operations. Never directly 231// accessed, so there's no real encoding for it. 232def SPEACC: DwarfRegNum<[99, 111]>; 233def SPEFSCR: SPR<512, "spefscr">, DwarfRegNum<[612, 112]>; 234 235def XER: SPR<1, "xer">, DwarfRegNum<[76]>; 236 237// Carry bit. In the architecture this is really bit 0 of the XER register 238// (which really is SPR register 1); this is the only bit interesting to a 239// compiler. 240def CARRY: SPR<1, "xer">, DwarfRegNum<[76]> { 241 let Aliases = [XER]; 242} 243 244// FP rounding mode: bits 30 and 31 of the FP status and control register 245// This is not allocated as a normal register; it appears only in 246// Uses and Defs. The ABI says it needs to be preserved by a function, 247// but this is not achieved by saving and restoring it as with 248// most registers, it has to be done in code; to make this work all the 249// return and call instructions are described as Uses of RM, so instructions 250// that do nothing but change RM will not get deleted. 251def RM: PPCReg<"**ROUNDING MODE**">; 252 253/// Register classes 254// Allocate volatiles first 255// then nonvolatiles in reverse order since stmw/lmw save from rN to r31 256def GPRC : RegisterClass<"PPC", [i32], 32, (add (sequence "R%u", 2, 12), 257 (sequence "R%u", 30, 13), 258 R31, R0, R1, FP, BP)> { 259 // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so 260 // put it at the end of the list. 261 let AltOrders = [(add (sub GPRC, R2), R2)]; 262 let AltOrderSelect = [{ 263 const PPCSubtarget &S = MF.getSubtarget<PPCSubtarget>(); 264 return S.isPPC64() && S.isSVR4ABI(); 265 }]; 266} 267 268def G8RC : RegisterClass<"PPC", [i64], 64, (add (sequence "X%u", 2, 12), 269 (sequence "X%u", 30, 14), 270 X31, X13, X0, X1, FP8, BP8)> { 271 // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so 272 // put it at the end of the list. 273 let AltOrders = [(add (sub G8RC, X2), X2)]; 274 let AltOrderSelect = [{ 275 const PPCSubtarget &S = MF.getSubtarget<PPCSubtarget>(); 276 return S.isPPC64() && S.isSVR4ABI(); 277 }]; 278} 279 280// For some instructions r0 is special (representing the value 0 instead of 281// the value in the r0 register), and we use these register subclasses to 282// prevent r0 from being allocated for use by those instructions. 283def GPRC_NOR0 : RegisterClass<"PPC", [i32], 32, (add (sub GPRC, R0), ZERO)> { 284 // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so 285 // put it at the end of the list. 286 let AltOrders = [(add (sub GPRC_NOR0, R2), R2)]; 287 let AltOrderSelect = [{ 288 const PPCSubtarget &S = MF.getSubtarget<PPCSubtarget>(); 289 return S.isPPC64() && S.isSVR4ABI(); 290 }]; 291} 292 293def G8RC_NOX0 : RegisterClass<"PPC", [i64], 64, (add (sub G8RC, X0), ZERO8)> { 294 // On non-Darwin PPC64 systems, R2 can be allocated, but must be restored, so 295 // put it at the end of the list. 296 let AltOrders = [(add (sub G8RC_NOX0, X2), X2)]; 297 let AltOrderSelect = [{ 298 const PPCSubtarget &S = MF.getSubtarget<PPCSubtarget>(); 299 return S.isPPC64() && S.isSVR4ABI(); 300 }]; 301} 302 303def SPERC : RegisterClass<"PPC", [f64], 64, (add (sequence "S%u", 2, 12), 304 (sequence "S%u", 30, 13), 305 S31, S0, S1)>; 306 307def SPE4RC : RegisterClass<"PPC", [f32], 32, (add GPRC)>; 308 309// Allocate volatiles first, then non-volatiles in reverse order. With the SVR4 310// ABI the size of the Floating-point register save area is determined by the 311// allocated non-volatile register with the lowest register number, as FP 312// register N is spilled to offset 8 * (32 - N) below the back chain word of the 313// previous stack frame. By allocating non-volatiles in reverse order we make 314// sure that the Floating-point register save area is always as small as 315// possible because there aren't any unused spill slots. 316def F8RC : RegisterClass<"PPC", [f64], 64, (add (sequence "F%u", 0, 13), 317 (sequence "F%u", 31, 14))>; 318def F4RC : RegisterClass<"PPC", [f32], 32, (add F8RC)>; 319 320def VRRC : RegisterClass<"PPC", 321 [v16i8,v8i16,v4i32,v2i64,v1i128,v4f32,v2f64, f128], 322 128, 323 (add V2, V3, V4, V5, V0, V1, V6, V7, V8, V9, V10, V11, 324 V12, V13, V14, V15, V16, V17, V18, V19, V31, V30, 325 V29, V28, V27, V26, V25, V24, V23, V22, V21, V20)>; 326 327// VSX register classes (the allocation order mirrors that of the corresponding 328// subregister classes). 329def VSLRC : RegisterClass<"PPC", [v4i32,v4f32,v2f64,v2i64], 128, 330 (add (sequence "VSL%u", 0, 13), 331 (sequence "VSL%u", 31, 14))>; 332def VSRC : RegisterClass<"PPC", [v4i32,v4f32,v2f64,v2i64], 128, 333 (add VSLRC, VRRC)>; 334 335// Register classes for the 64-bit "scalar" VSX subregisters. 336def VFRC : RegisterClass<"PPC", [f64], 64, 337 (add VF2, VF3, VF4, VF5, VF0, VF1, VF6, VF7, 338 VF8, VF9, VF10, VF11, VF12, VF13, VF14, 339 VF15, VF16, VF17, VF18, VF19, VF31, VF30, 340 VF29, VF28, VF27, VF26, VF25, VF24, VF23, 341 VF22, VF21, VF20)>; 342def VSFRC : RegisterClass<"PPC", [f64], 64, (add F8RC, VFRC)>; 343 344// Allow spilling GPR's into caller-saved VSR's. 345def SPILLTOVSRRC : RegisterClass<"PPC", [i64, f64], 64, (add G8RC, (sub VSFRC, 346 (sequence "VF%u", 31, 20), 347 (sequence "F%u", 31, 14)))>; 348 349// Register class for single precision scalars in VSX registers 350def VSSRC : RegisterClass<"PPC", [f32], 32, (add VSFRC)>; 351 352// For QPX 353def QFRC : RegisterClass<"PPC", [v4f64], 256, (add (sequence "QF%u", 0, 13), 354 (sequence "QF%u", 31, 14))>; 355def QSRC : RegisterClass<"PPC", [v4f32], 128, (add QFRC)>; 356def QBRC : RegisterClass<"PPC", [v4i1], 256, (add QFRC)> { 357 // These are actually stored as floating-point values where a positive 358 // number is true and anything else (including NaN) is false. 359 let Size = 256; 360} 361 362def CRBITRC : RegisterClass<"PPC", [i1], 32, 363 (add CR2LT, CR2GT, CR2EQ, CR2UN, 364 CR3LT, CR3GT, CR3EQ, CR3UN, 365 CR4LT, CR4GT, CR4EQ, CR4UN, 366 CR5LT, CR5GT, CR5EQ, CR5UN, 367 CR6LT, CR6GT, CR6EQ, CR6UN, 368 CR7LT, CR7GT, CR7EQ, CR7UN, 369 CR1LT, CR1GT, CR1EQ, CR1UN, 370 CR0LT, CR0GT, CR0EQ, CR0UN)> { 371 let Size = 32; 372} 373 374def CRRC : RegisterClass<"PPC", [i32], 32, (add CR0, CR1, CR5, CR6, 375 CR7, CR2, CR3, CR4)>; 376 377// The CTR registers are not allocatable because they're used by the 378// decrement-and-branch instructions, and thus need to stay live across 379// multiple basic blocks. 380def CTRRC : RegisterClass<"PPC", [i32], 32, (add CTR)> { 381 let isAllocatable = 0; 382} 383def CTRRC8 : RegisterClass<"PPC", [i64], 64, (add CTR8)> { 384 let isAllocatable = 0; 385} 386 387def VRSAVERC : RegisterClass<"PPC", [i32], 32, (add VRSAVE)>; 388def CARRYRC : RegisterClass<"PPC", [i32], 32, (add CARRY, XER)> { 389 let CopyCost = -1; 390} 391 392