xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCReduceCRLogicals.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass aims to reduce the number of logical operations on bits in the CR
10 // register. These instructions have a fairly high latency and only a single
11 // pipeline at their disposal in modern PPC cores. Furthermore, they have a
12 // tendency to occur in fairly small blocks where there's little opportunity
13 // to hide the latency between the CR logical operation and its user.
14 //
15 //===---------------------------------------------------------------------===//
16 
17 #include "PPC.h"
18 #include "PPCInstrInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/Support/Debug.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "ppc-reduce-cr-ops"
32 
33 STATISTIC(NumContainedSingleUseBinOps,
34           "Number of single-use binary CR logical ops contained in a block");
35 STATISTIC(NumToSplitBlocks,
36           "Number of binary CR logical ops that can be used to split blocks");
37 STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
38 STATISTIC(TotalNullaryCRLogicals,
39           "Number of nullary CR logical ops (CRSET/CRUNSET).");
40 STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
41 STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
42 STATISTIC(NumBlocksSplitOnBinaryCROp,
43           "Number of blocks split on CR binary logical ops.");
44 STATISTIC(NumNotSplitIdenticalOperands,
45           "Number of blocks not split due to operands being identical.");
46 STATISTIC(NumNotSplitChainCopies,
47           "Number of blocks not split due to operands being chained copies.");
48 STATISTIC(NumNotSplitWrongOpcode,
49           "Number of blocks not split due to the wrong opcode.");
50 
51 /// Given a basic block \p Successor that potentially contains PHIs, this
52 /// function will look for any incoming values in the PHIs that are supposed to
53 /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
54 /// Any such PHIs will be updated to reflect reality.
55 static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
56                        MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
57   for (auto &MI : Successor->instrs()) {
58     if (!MI.isPHI())
59       continue;
60     // This is a really ugly-looking loop, but it was pillaged directly from
61     // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
62     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
63       MachineOperand &MO = MI.getOperand(i);
64       if (MO.getMBB() == OrigMBB) {
65         // Check if the instruction is actually defined in NewMBB.
66         if (MI.getOperand(i - 1).isReg()) {
67           MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
68           if (DefMI->getParent() == NewMBB ||
69               !OrigMBB->isSuccessor(Successor)) {
70             MO.setMBB(NewMBB);
71             break;
72           }
73         }
74       }
75     }
76   }
77 }
78 
79 /// Given a basic block \p Successor that potentially contains PHIs, this
80 /// function will look for PHIs that have an incoming value from \p OrigMBB
81 /// and will add the same incoming value from \p NewMBB.
82 /// NOTE: This should only be used if \p NewMBB is an immediate dominator of
83 /// \p OrigMBB.
84 static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
85                                     MachineBasicBlock *OrigMBB,
86                                     MachineBasicBlock *NewMBB,
87                                     MachineRegisterInfo *MRI) {
88   assert(OrigMBB->isSuccessor(NewMBB) &&
89          "NewMBB must be a successor of OrigMBB");
90   for (auto &MI : Successor->instrs()) {
91     if (!MI.isPHI())
92       continue;
93     // This is a really ugly-looking loop, but it was pillaged directly from
94     // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
95     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
96       MachineOperand &MO = MI.getOperand(i);
97       if (MO.getMBB() == OrigMBB) {
98         MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
99         MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
100         break;
101       }
102     }
103   }
104 }
105 
106 struct BlockSplitInfo {
107   MachineInstr *OrigBranch;
108   MachineInstr *SplitBefore;
109   MachineInstr *SplitCond;
110   bool InvertNewBranch;
111   bool InvertOrigBranch;
112   bool BranchToFallThrough;
113   const MachineBranchProbabilityInfo *MBPI;
114   MachineInstr *MIToDelete;
115   MachineInstr *NewCond;
116   bool allInstrsInSameMBB() {
117     if (!OrigBranch || !SplitBefore || !SplitCond)
118       return false;
119     MachineBasicBlock *MBB = OrigBranch->getParent();
120     if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
121       return false;
122     if (MIToDelete && MIToDelete->getParent() != MBB)
123       return false;
124     if (NewCond && NewCond->getParent() != MBB)
125       return false;
126     return true;
127   }
128 };
129 
130 /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
131 /// branch is \p OrigBranch. The target of the new branch can either be the same
132 /// as the target of the original branch or the fallthrough successor of the
133 /// original block as determined by \p BranchToFallThrough. The branch
134 /// conditions will be inverted according to \p InvertNewBranch and
135 /// \p InvertOrigBranch. If an instruction that previously fed the branch is to
136 /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
137 /// the branch condition. The branch probabilities will be set if the
138 /// MachineBranchProbabilityInfo isn't null.
139 static bool splitMBB(BlockSplitInfo &BSI) {
140   assert(BSI.allInstrsInSameMBB() &&
141          "All instructions must be in the same block.");
142 
143   MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
144   MachineFunction *MF = ThisMBB->getParent();
145   MachineRegisterInfo *MRI = &MF->getRegInfo();
146   assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
147   if (ThisMBB->succ_size() != 2) {
148     LLVM_DEBUG(
149         dbgs() << "Don't know how to handle blocks that don't have exactly"
150                << " two successors.\n");
151     return false;
152   }
153 
154   const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
155   unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
156   unsigned InvertedOpcode =
157       OrigBROpcode == PPC::BC
158           ? PPC::BCn
159           : OrigBROpcode == PPC::BCn
160                 ? PPC::BC
161                 : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
162   unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
163   MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
164   MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
165                                            ? *ThisMBB->succ_rbegin()
166                                            : *ThisMBB->succ_begin();
167   MachineBasicBlock *NewBRTarget =
168       BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
169 
170   // It's impossible to know the precise branch probability after the split.
171   // But it still needs to be reasonable, the whole probability to original
172   // targets should not be changed.
173   // After split NewBRTarget will get two incoming edges. Assume P0 is the
174   // original branch probability to NewBRTarget, P1 and P2 are new branch
175   // probabilies to NewBRTarget after split. If the two edge frequencies are
176   // same, then
177   //      F * P1 = F * P0 / 2            ==>  P1 = P0 / 2
178   //      F * (1 - P1) * P2 = F * P1     ==>  P2 = P1 / (1 - P1)
179   BranchProbability ProbToNewTarget, ProbFallThrough;     // Prob for new Br.
180   BranchProbability ProbOrigTarget, ProbOrigFallThrough;  // Prob for orig Br.
181   ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown();
182   ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown();
183   if (BSI.MBPI) {
184     if (BSI.BranchToFallThrough) {
185       ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2;
186       ProbFallThrough = ProbToNewTarget.getCompl();
187       ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl();
188       ProbOrigTarget = ProbOrigFallThrough.getCompl();
189     } else {
190       ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2;
191       ProbFallThrough = ProbToNewTarget.getCompl();
192       ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl();
193       ProbOrigFallThrough = ProbOrigTarget.getCompl();
194     }
195   }
196 
197   // Create a new basic block.
198   MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
199   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
200   MachineFunction::iterator It = ThisMBB->getIterator();
201   MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
202   MF->insert(++It, NewMBB);
203 
204   // Move everything after SplitBefore into the new block.
205   NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
206   NewMBB->transferSuccessors(ThisMBB);
207   if (!ProbOrigTarget.isUnknown()) {
208     auto MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigTarget);
209     NewMBB->setSuccProbability(MBBI, ProbOrigTarget);
210     MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigFallThrough);
211     NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough);
212   }
213 
214   // Add the two successors to ThisMBB.
215   ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
216   ThisMBB->addSuccessor(NewMBB, ProbFallThrough);
217 
218   // Add the branches to ThisMBB.
219   BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
220           TII->get(NewBROpcode))
221       .addReg(BSI.SplitCond->getOperand(0).getReg())
222       .addMBB(NewBRTarget);
223   BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
224           TII->get(PPC::B))
225       .addMBB(NewMBB);
226   if (BSI.MIToDelete)
227     BSI.MIToDelete->eraseFromParent();
228 
229   // Change the condition on the original branch and invert it if requested.
230   auto FirstTerminator = NewMBB->getFirstTerminator();
231   if (BSI.NewCond) {
232     assert(FirstTerminator->getOperand(0).isReg() &&
233            "Can't update condition of unconditional branch.");
234     FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
235   }
236   if (BSI.InvertOrigBranch)
237     FirstTerminator->setDesc(TII->get(InvertedOpcode));
238 
239   // If any of the PHIs in the successors of NewMBB reference values that
240   // now come from NewMBB, they need to be updated.
241   for (auto *Succ : NewMBB->successors()) {
242     updatePHIs(Succ, ThisMBB, NewMBB, MRI);
243   }
244   addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
245 
246   LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
247   LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
248   LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
249   return true;
250 }
251 
252 static bool isBinary(MachineInstr &MI) {
253   return MI.getNumOperands() == 3;
254 }
255 
256 static bool isNullary(MachineInstr &MI) {
257   return MI.getNumOperands() == 1;
258 }
259 
260 /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
261 /// a flag to indicate if the first operand of \p CROp is used as the
262 /// SplitBefore operand, determines whether either of the branches are to be
263 /// inverted as well as whether the new target should be the original
264 /// fall-through block.
265 static void
266 computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
267                                 bool &InvertNewBranch, bool &InvertOrigBranch,
268                                 bool &TargetIsFallThrough) {
269   // The conditions under which each of the output operands should be [un]set
270   // can certainly be written much more concisely with just 3 if statements or
271   // ternary expressions. However, this provides a much clearer overview to the
272   // reader as to what is set for each <CROp, BROp, OpUsed> combination.
273   if (BROp == PPC::BC || BROp == PPC::BCLR) {
274     // Regular branches.
275     switch (CROp) {
276     default:
277       llvm_unreachable("Don't know how to handle this CR logical.");
278     case PPC::CROR:
279       InvertNewBranch = false;
280       InvertOrigBranch = false;
281       TargetIsFallThrough = false;
282       return;
283     case PPC::CRAND:
284       InvertNewBranch = true;
285       InvertOrigBranch = false;
286       TargetIsFallThrough = true;
287       return;
288     case PPC::CRNAND:
289       InvertNewBranch = true;
290       InvertOrigBranch = true;
291       TargetIsFallThrough = false;
292       return;
293     case PPC::CRNOR:
294       InvertNewBranch = false;
295       InvertOrigBranch = true;
296       TargetIsFallThrough = true;
297       return;
298     case PPC::CRORC:
299       InvertNewBranch = UsingDef1;
300       InvertOrigBranch = !UsingDef1;
301       TargetIsFallThrough = false;
302       return;
303     case PPC::CRANDC:
304       InvertNewBranch = !UsingDef1;
305       InvertOrigBranch = !UsingDef1;
306       TargetIsFallThrough = true;
307       return;
308     }
309   } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
310     // Negated branches.
311     switch (CROp) {
312     default:
313       llvm_unreachable("Don't know how to handle this CR logical.");
314     case PPC::CROR:
315       InvertNewBranch = true;
316       InvertOrigBranch = false;
317       TargetIsFallThrough = true;
318       return;
319     case PPC::CRAND:
320       InvertNewBranch = false;
321       InvertOrigBranch = false;
322       TargetIsFallThrough = false;
323       return;
324     case PPC::CRNAND:
325       InvertNewBranch = false;
326       InvertOrigBranch = true;
327       TargetIsFallThrough = true;
328       return;
329     case PPC::CRNOR:
330       InvertNewBranch = true;
331       InvertOrigBranch = true;
332       TargetIsFallThrough = false;
333       return;
334     case PPC::CRORC:
335       InvertNewBranch = !UsingDef1;
336       InvertOrigBranch = !UsingDef1;
337       TargetIsFallThrough = true;
338       return;
339     case PPC::CRANDC:
340       InvertNewBranch = UsingDef1;
341       InvertOrigBranch = !UsingDef1;
342       TargetIsFallThrough = false;
343       return;
344     }
345   } else
346     llvm_unreachable("Don't know how to handle this branch.");
347 }
348 
349 namespace {
350 
351 class PPCReduceCRLogicals : public MachineFunctionPass {
352 
353 public:
354   static char ID;
355   struct CRLogicalOpInfo {
356     MachineInstr *MI;
357     // FIXME: If chains of copies are to be handled, this should be a vector.
358     std::pair<MachineInstr*, MachineInstr*> CopyDefs;
359     std::pair<MachineInstr*, MachineInstr*> TrueDefs;
360     unsigned IsBinary : 1;
361     unsigned IsNullary : 1;
362     unsigned ContainedInBlock : 1;
363     unsigned FeedsISEL : 1;
364     unsigned FeedsBR : 1;
365     unsigned FeedsLogical : 1;
366     unsigned SingleUse : 1;
367     unsigned DefsSingleUse : 1;
368     unsigned SubregDef1;
369     unsigned SubregDef2;
370     CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
371                         ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
372                         FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
373                         SubregDef1(0), SubregDef2(0) { }
374     void dump();
375   };
376 
377 private:
378   const PPCInstrInfo *TII;
379   MachineFunction *MF;
380   MachineRegisterInfo *MRI;
381   const MachineBranchProbabilityInfo *MBPI;
382 
383   // A vector to contain all the CR logical operations
384   std::vector<CRLogicalOpInfo> AllCRLogicalOps;
385   void initialize(MachineFunction &MFParm);
386   void collectCRLogicals();
387   bool handleCROp(CRLogicalOpInfo &CRI);
388   bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
389   static bool isCRLogical(MachineInstr &MI) {
390     unsigned Opc = MI.getOpcode();
391     return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
392       Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
393       Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
394       Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
395   }
396   bool simplifyCode() {
397     bool Changed = false;
398     // Not using a range-based for loop here as the vector may grow while being
399     // operated on.
400     for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
401       Changed |= handleCROp(AllCRLogicalOps[i]);
402     return Changed;
403   }
404 
405 public:
406   PPCReduceCRLogicals() : MachineFunctionPass(ID) {
407     initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
408   }
409 
410   MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
411                                   MachineInstr *&CpDef);
412   bool runOnMachineFunction(MachineFunction &MF) override {
413     if (skipFunction(MF.getFunction()))
414       return false;
415 
416     // If the subtarget doesn't use CR bits, there's nothing to do.
417     const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
418     if (!STI.useCRBits())
419       return false;
420 
421     initialize(MF);
422     collectCRLogicals();
423     return simplifyCode();
424   }
425   CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
426   void getAnalysisUsage(AnalysisUsage &AU) const override {
427     AU.addRequired<MachineBranchProbabilityInfo>();
428     AU.addRequired<MachineDominatorTree>();
429     MachineFunctionPass::getAnalysisUsage(AU);
430   }
431 };
432 
433 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
434 LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
435   dbgs() << "CRLogicalOpMI: ";
436   MI->dump();
437   dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
438   dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
439   dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
440   dbgs() << ", DefsSingleUse: " << DefsSingleUse;
441   dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
442   dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
443   if (!IsNullary) {
444     dbgs() << "\nDefs:\n";
445     TrueDefs.first->dump();
446   }
447   if (IsBinary)
448     TrueDefs.second->dump();
449   dbgs() << "\n";
450   if (CopyDefs.first) {
451     dbgs() << "CopyDef1: ";
452     CopyDefs.first->dump();
453   }
454   if (CopyDefs.second) {
455     dbgs() << "CopyDef2: ";
456     CopyDefs.second->dump();
457   }
458 }
459 #endif
460 
461 PPCReduceCRLogicals::CRLogicalOpInfo
462 PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
463   CRLogicalOpInfo Ret;
464   Ret.MI = &MIParam;
465   // Get the defs
466   if (isNullary(MIParam)) {
467     Ret.IsNullary = 1;
468     Ret.TrueDefs = std::make_pair(nullptr, nullptr);
469     Ret.CopyDefs = std::make_pair(nullptr, nullptr);
470   } else {
471     MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
472                                            Ret.SubregDef1, Ret.CopyDefs.first);
473     Ret.DefsSingleUse &=
474       MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
475     Ret.DefsSingleUse &=
476       MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
477     assert(Def1 && "Must be able to find a definition of operand 1.");
478     if (isBinary(MIParam)) {
479       Ret.IsBinary = 1;
480       MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
481                                              Ret.SubregDef2,
482                                              Ret.CopyDefs.second);
483       Ret.DefsSingleUse &=
484         MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
485       Ret.DefsSingleUse &=
486         MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
487       assert(Def2 && "Must be able to find a definition of operand 2.");
488       Ret.TrueDefs = std::make_pair(Def1, Def2);
489     } else {
490       Ret.TrueDefs = std::make_pair(Def1, nullptr);
491       Ret.CopyDefs.second = nullptr;
492     }
493   }
494 
495   Ret.ContainedInBlock = 1;
496   // Get the uses
497   for (MachineInstr &UseMI :
498        MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
499     unsigned Opc = UseMI.getOpcode();
500     if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
501       Ret.FeedsISEL = 1;
502     if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
503         Opc == PPC::BCLRn)
504       Ret.FeedsBR = 1;
505     Ret.FeedsLogical = isCRLogical(UseMI);
506     if (UseMI.getParent() != MIParam.getParent())
507       Ret.ContainedInBlock = 0;
508   }
509   Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
510 
511   // We now know whether all the uses of the CR logical are in the same block.
512   if (!Ret.IsNullary) {
513     Ret.ContainedInBlock &=
514       (MIParam.getParent() == Ret.TrueDefs.first->getParent());
515     if (Ret.IsBinary)
516       Ret.ContainedInBlock &=
517         (MIParam.getParent() == Ret.TrueDefs.second->getParent());
518   }
519   LLVM_DEBUG(Ret.dump());
520   if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
521     NumContainedSingleUseBinOps++;
522     if (Ret.FeedsBR && Ret.DefsSingleUse)
523       NumToSplitBlocks++;
524   }
525   return Ret;
526 }
527 
528 /// Looks through a COPY instruction to the actual definition of the CR-bit
529 /// register and returns the instruction that defines it.
530 /// FIXME: This currently handles what is by-far the most common case:
531 /// an instruction that defines a CR field followed by a single copy of a bit
532 /// from that field into a virtual register. If chains of copies need to be
533 /// handled, this should have a loop until a non-copy instruction is found.
534 MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
535                                                      unsigned &Subreg,
536                                                      MachineInstr *&CpDef) {
537   Subreg = -1;
538   if (!TargetRegisterInfo::isVirtualRegister(Reg))
539     return nullptr;
540   MachineInstr *Copy = MRI->getVRegDef(Reg);
541   CpDef = Copy;
542   if (!Copy->isCopy())
543     return Copy;
544   unsigned CopySrc = Copy->getOperand(1).getReg();
545   Subreg = Copy->getOperand(1).getSubReg();
546   if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
547     const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
548     // Set the Subreg
549     if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
550       Subreg = PPC::sub_eq;
551     if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
552       Subreg = PPC::sub_lt;
553     if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
554       Subreg = PPC::sub_gt;
555     if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
556       Subreg = PPC::sub_un;
557     // Loop backwards and return the first MI that modifies the physical CR Reg.
558     MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
559     while (Me != B)
560       if ((--Me)->modifiesRegister(CopySrc, TRI))
561         return &*Me;
562     return nullptr;
563   }
564   return MRI->getVRegDef(CopySrc);
565 }
566 
567 void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
568   MF = &MFParam;
569   MRI = &MF->getRegInfo();
570   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
571   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
572 
573   AllCRLogicalOps.clear();
574 }
575 
576 /// Contains all the implemented transformations on CR logical operations.
577 /// For example, a binary CR logical can be used to split a block on its inputs,
578 /// a unary CR logical might be used to change the condition code on a
579 /// comparison feeding it. A nullary CR logical might simply be removable
580 /// if the user of the bit it [un]sets can be transformed.
581 bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
582   // We can definitely split a block on the inputs to a binary CR operation
583   // whose defs and (single) use are within the same block.
584   bool Changed = false;
585   if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
586       CRI.DefsSingleUse) {
587     Changed = splitBlockOnBinaryCROp(CRI);
588     if (Changed)
589       NumBlocksSplitOnBinaryCROp++;
590   }
591   return Changed;
592 }
593 
594 /// Splits a block that contains a CR-logical operation that feeds a branch
595 /// and whose operands are produced within the block.
596 /// Example:
597 ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
598 ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
599 ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
600 ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
601 ///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
602 ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
603 /// Becomes:
604 ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
605 ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
606 ///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
607 ///
608 ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
609 ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
610 ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
611 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
612   if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
613     LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
614     NumNotSplitIdenticalOperands++;
615     return false;
616   }
617   if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
618       CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
619     LLVM_DEBUG(
620         dbgs() << "Unable to split because one of the operands is a PHI or "
621                   "chain of copies.\n");
622     NumNotSplitChainCopies++;
623     return false;
624   }
625   // Note: keep in sync with computeBranchTargetAndInversion().
626   if (CRI.MI->getOpcode() != PPC::CROR &&
627       CRI.MI->getOpcode() != PPC::CRAND &&
628       CRI.MI->getOpcode() != PPC::CRNOR &&
629       CRI.MI->getOpcode() != PPC::CRNAND &&
630       CRI.MI->getOpcode() != PPC::CRORC &&
631       CRI.MI->getOpcode() != PPC::CRANDC) {
632     LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
633     NumNotSplitWrongOpcode++;
634     return false;
635   }
636   LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
637   MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
638   MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
639 
640   bool UsingDef1 = false;
641   MachineInstr *SplitBefore = &*Def2It;
642   for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
643     if (Def1It == Def2It) { // Def2 comes before Def1.
644       SplitBefore = &*Def1It;
645       UsingDef1 = true;
646       break;
647     }
648   }
649 
650   LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
651   LLVM_DEBUG(CRI.MI->getParent()->dump());
652   LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
653 
654   // Get the branch instruction.
655   MachineInstr *Branch =
656     MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
657 
658   // We want the new block to have no code in it other than the definition
659   // of the input to the CR logical and the CR logical itself. So we move
660   // those to the bottom of the block (just before the branch). Then we
661   // will split before the CR logical.
662   MachineBasicBlock *MBB = SplitBefore->getParent();
663   auto FirstTerminator = MBB->getFirstTerminator();
664   MachineBasicBlock::iterator FirstInstrToMove =
665     UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
666   MachineBasicBlock::iterator SecondInstrToMove =
667     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
668 
669   // The instructions that need to be moved are not guaranteed to be
670   // contiguous. Move them individually.
671   // FIXME: If one of the operands is a chain of (single use) copies, they
672   // can all be moved and we can still split.
673   MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
674   if (FirstInstrToMove != SecondInstrToMove)
675     MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
676   MBB->splice(FirstTerminator, MBB, CRI.MI);
677 
678   unsigned Opc = CRI.MI->getOpcode();
679   bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
680   computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
681                                   InvertNewBranch, InvertOrigBranch,
682                                   TargetIsFallThrough);
683   MachineInstr *SplitCond =
684     UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
685   LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
686   LLVM_DEBUG(dbgs() << " the original branch and the target is the "
687                     << (TargetIsFallThrough ? "fallthrough block\n"
688                                             : "orig. target block\n"));
689   LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
690   BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
691     InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
692     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
693   bool Changed = splitMBB(BSI);
694   // If we've split on a CR logical that is fed by a CR logical,
695   // recompute the source CR logical as it may be usable for splitting.
696   if (Changed) {
697     bool Input1CRlogical =
698       CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
699     bool Input2CRlogical =
700       CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
701     if (Input1CRlogical)
702       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
703     if (Input2CRlogical)
704       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
705   }
706   return Changed;
707 }
708 
709 void PPCReduceCRLogicals::collectCRLogicals() {
710   for (MachineBasicBlock &MBB : *MF) {
711     for (MachineInstr &MI : MBB) {
712       if (isCRLogical(MI)) {
713         AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
714         TotalCRLogicals++;
715         if (AllCRLogicalOps.back().IsNullary)
716           TotalNullaryCRLogicals++;
717         else if (AllCRLogicalOps.back().IsBinary)
718           TotalBinaryCRLogicals++;
719         else
720           TotalUnaryCRLogicals++;
721       }
722     }
723   }
724 }
725 
726 } // end anonymous namespace
727 
728 INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
729                       "PowerPC Reduce CR logical Operation", false, false)
730 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
731 INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
732                     "PowerPC Reduce CR logical Operation", false, false)
733 
734 char PPCReduceCRLogicals::ID = 0;
735 FunctionPass*
736 llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }
737