10b57cec5SDimitry Andric //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===---------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This pass aims to reduce the number of logical operations on bits in the CR
100b57cec5SDimitry Andric // register. These instructions have a fairly high latency and only a single
110b57cec5SDimitry Andric // pipeline at their disposal in modern PPC cores. Furthermore, they have a
120b57cec5SDimitry Andric // tendency to occur in fairly small blocks where there's little opportunity
130b57cec5SDimitry Andric // to hide the latency between the CR logical operation and its user.
140b57cec5SDimitry Andric //
150b57cec5SDimitry Andric //===---------------------------------------------------------------------===//
160b57cec5SDimitry Andric
170b57cec5SDimitry Andric #include "PPC.h"
180b57cec5SDimitry Andric #include "PPCInstrInfo.h"
190b57cec5SDimitry Andric #include "PPCTargetMachine.h"
200b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h"
210b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
220b57cec5SDimitry Andric #include "llvm/CodeGen/MachineDominators.h"
230b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h"
240b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
250b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
260b57cec5SDimitry Andric #include "llvm/Config/llvm-config.h"
27480093f4SDimitry Andric #include "llvm/InitializePasses.h"
280b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
290b57cec5SDimitry Andric
300b57cec5SDimitry Andric using namespace llvm;
310b57cec5SDimitry Andric
320b57cec5SDimitry Andric #define DEBUG_TYPE "ppc-reduce-cr-ops"
330b57cec5SDimitry Andric
340b57cec5SDimitry Andric STATISTIC(NumContainedSingleUseBinOps,
350b57cec5SDimitry Andric "Number of single-use binary CR logical ops contained in a block");
360b57cec5SDimitry Andric STATISTIC(NumToSplitBlocks,
370b57cec5SDimitry Andric "Number of binary CR logical ops that can be used to split blocks");
380b57cec5SDimitry Andric STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
390b57cec5SDimitry Andric STATISTIC(TotalNullaryCRLogicals,
400b57cec5SDimitry Andric "Number of nullary CR logical ops (CRSET/CRUNSET).");
410b57cec5SDimitry Andric STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
420b57cec5SDimitry Andric STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
430b57cec5SDimitry Andric STATISTIC(NumBlocksSplitOnBinaryCROp,
440b57cec5SDimitry Andric "Number of blocks split on CR binary logical ops.");
450b57cec5SDimitry Andric STATISTIC(NumNotSplitIdenticalOperands,
460b57cec5SDimitry Andric "Number of blocks not split due to operands being identical.");
470b57cec5SDimitry Andric STATISTIC(NumNotSplitChainCopies,
480b57cec5SDimitry Andric "Number of blocks not split due to operands being chained copies.");
490b57cec5SDimitry Andric STATISTIC(NumNotSplitWrongOpcode,
500b57cec5SDimitry Andric "Number of blocks not split due to the wrong opcode.");
510b57cec5SDimitry Andric
520b57cec5SDimitry Andric /// Given a basic block \p Successor that potentially contains PHIs, this
530b57cec5SDimitry Andric /// function will look for any incoming values in the PHIs that are supposed to
540b57cec5SDimitry Andric /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
550b57cec5SDimitry Andric /// Any such PHIs will be updated to reflect reality.
updatePHIs(MachineBasicBlock * Successor,MachineBasicBlock * OrigMBB,MachineBasicBlock * NewMBB,MachineRegisterInfo * MRI)560b57cec5SDimitry Andric static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
570b57cec5SDimitry Andric MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
580b57cec5SDimitry Andric for (auto &MI : Successor->instrs()) {
590b57cec5SDimitry Andric if (!MI.isPHI())
600b57cec5SDimitry Andric continue;
610b57cec5SDimitry Andric // This is a really ugly-looking loop, but it was pillaged directly from
620b57cec5SDimitry Andric // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
630b57cec5SDimitry Andric for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
640b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i);
650b57cec5SDimitry Andric if (MO.getMBB() == OrigMBB) {
660b57cec5SDimitry Andric // Check if the instruction is actually defined in NewMBB.
670b57cec5SDimitry Andric if (MI.getOperand(i - 1).isReg()) {
680b57cec5SDimitry Andric MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
690b57cec5SDimitry Andric if (DefMI->getParent() == NewMBB ||
700b57cec5SDimitry Andric !OrigMBB->isSuccessor(Successor)) {
710b57cec5SDimitry Andric MO.setMBB(NewMBB);
720b57cec5SDimitry Andric break;
730b57cec5SDimitry Andric }
740b57cec5SDimitry Andric }
750b57cec5SDimitry Andric }
760b57cec5SDimitry Andric }
770b57cec5SDimitry Andric }
780b57cec5SDimitry Andric }
790b57cec5SDimitry Andric
800b57cec5SDimitry Andric /// Given a basic block \p Successor that potentially contains PHIs, this
810b57cec5SDimitry Andric /// function will look for PHIs that have an incoming value from \p OrigMBB
820b57cec5SDimitry Andric /// and will add the same incoming value from \p NewMBB.
830b57cec5SDimitry Andric /// NOTE: This should only be used if \p NewMBB is an immediate dominator of
840b57cec5SDimitry Andric /// \p OrigMBB.
addIncomingValuesToPHIs(MachineBasicBlock * Successor,MachineBasicBlock * OrigMBB,MachineBasicBlock * NewMBB,MachineRegisterInfo * MRI)850b57cec5SDimitry Andric static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
860b57cec5SDimitry Andric MachineBasicBlock *OrigMBB,
870b57cec5SDimitry Andric MachineBasicBlock *NewMBB,
880b57cec5SDimitry Andric MachineRegisterInfo *MRI) {
890b57cec5SDimitry Andric assert(OrigMBB->isSuccessor(NewMBB) &&
900b57cec5SDimitry Andric "NewMBB must be a successor of OrigMBB");
910b57cec5SDimitry Andric for (auto &MI : Successor->instrs()) {
920b57cec5SDimitry Andric if (!MI.isPHI())
930b57cec5SDimitry Andric continue;
940b57cec5SDimitry Andric // This is a really ugly-looking loop, but it was pillaged directly from
950b57cec5SDimitry Andric // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
960b57cec5SDimitry Andric for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
970b57cec5SDimitry Andric MachineOperand &MO = MI.getOperand(i);
980b57cec5SDimitry Andric if (MO.getMBB() == OrigMBB) {
990b57cec5SDimitry Andric MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
1000b57cec5SDimitry Andric MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
1010b57cec5SDimitry Andric break;
1020b57cec5SDimitry Andric }
1030b57cec5SDimitry Andric }
1040b57cec5SDimitry Andric }
1050b57cec5SDimitry Andric }
1060b57cec5SDimitry Andric
1070b57cec5SDimitry Andric struct BlockSplitInfo {
1080b57cec5SDimitry Andric MachineInstr *OrigBranch;
1090b57cec5SDimitry Andric MachineInstr *SplitBefore;
1100b57cec5SDimitry Andric MachineInstr *SplitCond;
1110b57cec5SDimitry Andric bool InvertNewBranch;
1120b57cec5SDimitry Andric bool InvertOrigBranch;
1130b57cec5SDimitry Andric bool BranchToFallThrough;
1140b57cec5SDimitry Andric const MachineBranchProbabilityInfo *MBPI;
1150b57cec5SDimitry Andric MachineInstr *MIToDelete;
1160b57cec5SDimitry Andric MachineInstr *NewCond;
allInstrsInSameMBBBlockSplitInfo1170b57cec5SDimitry Andric bool allInstrsInSameMBB() {
1180b57cec5SDimitry Andric if (!OrigBranch || !SplitBefore || !SplitCond)
1190b57cec5SDimitry Andric return false;
1200b57cec5SDimitry Andric MachineBasicBlock *MBB = OrigBranch->getParent();
1210b57cec5SDimitry Andric if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
1220b57cec5SDimitry Andric return false;
1230b57cec5SDimitry Andric if (MIToDelete && MIToDelete->getParent() != MBB)
1240b57cec5SDimitry Andric return false;
1250b57cec5SDimitry Andric if (NewCond && NewCond->getParent() != MBB)
1260b57cec5SDimitry Andric return false;
1270b57cec5SDimitry Andric return true;
1280b57cec5SDimitry Andric }
1290b57cec5SDimitry Andric };
1300b57cec5SDimitry Andric
1310b57cec5SDimitry Andric /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
1320b57cec5SDimitry Andric /// branch is \p OrigBranch. The target of the new branch can either be the same
1330b57cec5SDimitry Andric /// as the target of the original branch or the fallthrough successor of the
1340b57cec5SDimitry Andric /// original block as determined by \p BranchToFallThrough. The branch
1350b57cec5SDimitry Andric /// conditions will be inverted according to \p InvertNewBranch and
1360b57cec5SDimitry Andric /// \p InvertOrigBranch. If an instruction that previously fed the branch is to
1370b57cec5SDimitry Andric /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
1380b57cec5SDimitry Andric /// the branch condition. The branch probabilities will be set if the
1390b57cec5SDimitry Andric /// MachineBranchProbabilityInfo isn't null.
splitMBB(BlockSplitInfo & BSI)1400b57cec5SDimitry Andric static bool splitMBB(BlockSplitInfo &BSI) {
1410b57cec5SDimitry Andric assert(BSI.allInstrsInSameMBB() &&
1420b57cec5SDimitry Andric "All instructions must be in the same block.");
1430b57cec5SDimitry Andric
1440b57cec5SDimitry Andric MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
1450b57cec5SDimitry Andric MachineFunction *MF = ThisMBB->getParent();
1460b57cec5SDimitry Andric MachineRegisterInfo *MRI = &MF->getRegInfo();
1470b57cec5SDimitry Andric assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
1480b57cec5SDimitry Andric if (ThisMBB->succ_size() != 2) {
1490b57cec5SDimitry Andric LLVM_DEBUG(
1500b57cec5SDimitry Andric dbgs() << "Don't know how to handle blocks that don't have exactly"
1510b57cec5SDimitry Andric << " two successors.\n");
1520b57cec5SDimitry Andric return false;
1530b57cec5SDimitry Andric }
1540b57cec5SDimitry Andric
1550b57cec5SDimitry Andric const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
1560b57cec5SDimitry Andric unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
1570b57cec5SDimitry Andric unsigned InvertedOpcode =
1580b57cec5SDimitry Andric OrigBROpcode == PPC::BC
1590b57cec5SDimitry Andric ? PPC::BCn
1600b57cec5SDimitry Andric : OrigBROpcode == PPC::BCn
1610b57cec5SDimitry Andric ? PPC::BC
1620b57cec5SDimitry Andric : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
1630b57cec5SDimitry Andric unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
1640b57cec5SDimitry Andric MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
1650b57cec5SDimitry Andric MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
1660b57cec5SDimitry Andric ? *ThisMBB->succ_rbegin()
1670b57cec5SDimitry Andric : *ThisMBB->succ_begin();
1680b57cec5SDimitry Andric MachineBasicBlock *NewBRTarget =
1690b57cec5SDimitry Andric BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
1700b57cec5SDimitry Andric
1710b57cec5SDimitry Andric // It's impossible to know the precise branch probability after the split.
1720b57cec5SDimitry Andric // But it still needs to be reasonable, the whole probability to original
1730b57cec5SDimitry Andric // targets should not be changed.
1740b57cec5SDimitry Andric // After split NewBRTarget will get two incoming edges. Assume P0 is the
1750b57cec5SDimitry Andric // original branch probability to NewBRTarget, P1 and P2 are new branch
1760b57cec5SDimitry Andric // probabilies to NewBRTarget after split. If the two edge frequencies are
1770b57cec5SDimitry Andric // same, then
1780b57cec5SDimitry Andric // F * P1 = F * P0 / 2 ==> P1 = P0 / 2
1790b57cec5SDimitry Andric // F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1)
1800b57cec5SDimitry Andric BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br.
1810b57cec5SDimitry Andric BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br.
1820b57cec5SDimitry Andric ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown();
1830b57cec5SDimitry Andric ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown();
1840b57cec5SDimitry Andric if (BSI.MBPI) {
1850b57cec5SDimitry Andric if (BSI.BranchToFallThrough) {
1860b57cec5SDimitry Andric ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2;
1870b57cec5SDimitry Andric ProbFallThrough = ProbToNewTarget.getCompl();
1880b57cec5SDimitry Andric ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl();
1890b57cec5SDimitry Andric ProbOrigTarget = ProbOrigFallThrough.getCompl();
1900b57cec5SDimitry Andric } else {
1910b57cec5SDimitry Andric ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2;
1920b57cec5SDimitry Andric ProbFallThrough = ProbToNewTarget.getCompl();
1930b57cec5SDimitry Andric ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl();
1940b57cec5SDimitry Andric ProbOrigFallThrough = ProbOrigTarget.getCompl();
1950b57cec5SDimitry Andric }
1960b57cec5SDimitry Andric }
1970b57cec5SDimitry Andric
1980b57cec5SDimitry Andric // Create a new basic block.
1990b57cec5SDimitry Andric MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
2000b57cec5SDimitry Andric const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
2010b57cec5SDimitry Andric MachineFunction::iterator It = ThisMBB->getIterator();
2020b57cec5SDimitry Andric MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
2030b57cec5SDimitry Andric MF->insert(++It, NewMBB);
2040b57cec5SDimitry Andric
2050b57cec5SDimitry Andric // Move everything after SplitBefore into the new block.
2060b57cec5SDimitry Andric NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
2070b57cec5SDimitry Andric NewMBB->transferSuccessors(ThisMBB);
2080b57cec5SDimitry Andric if (!ProbOrigTarget.isUnknown()) {
209e8d8bef9SDimitry Andric auto MBBI = find(NewMBB->successors(), OrigTarget);
2100b57cec5SDimitry Andric NewMBB->setSuccProbability(MBBI, ProbOrigTarget);
211e8d8bef9SDimitry Andric MBBI = find(NewMBB->successors(), OrigFallThrough);
2120b57cec5SDimitry Andric NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough);
2130b57cec5SDimitry Andric }
2140b57cec5SDimitry Andric
2150b57cec5SDimitry Andric // Add the two successors to ThisMBB.
2160b57cec5SDimitry Andric ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
2170b57cec5SDimitry Andric ThisMBB->addSuccessor(NewMBB, ProbFallThrough);
2180b57cec5SDimitry Andric
2190b57cec5SDimitry Andric // Add the branches to ThisMBB.
2200b57cec5SDimitry Andric BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
2210b57cec5SDimitry Andric TII->get(NewBROpcode))
2220b57cec5SDimitry Andric .addReg(BSI.SplitCond->getOperand(0).getReg())
2230b57cec5SDimitry Andric .addMBB(NewBRTarget);
2240b57cec5SDimitry Andric BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
2250b57cec5SDimitry Andric TII->get(PPC::B))
2260b57cec5SDimitry Andric .addMBB(NewMBB);
2270b57cec5SDimitry Andric if (BSI.MIToDelete)
2280b57cec5SDimitry Andric BSI.MIToDelete->eraseFromParent();
2290b57cec5SDimitry Andric
2300b57cec5SDimitry Andric // Change the condition on the original branch and invert it if requested.
2310b57cec5SDimitry Andric auto FirstTerminator = NewMBB->getFirstTerminator();
2320b57cec5SDimitry Andric if (BSI.NewCond) {
2330b57cec5SDimitry Andric assert(FirstTerminator->getOperand(0).isReg() &&
2340b57cec5SDimitry Andric "Can't update condition of unconditional branch.");
2350b57cec5SDimitry Andric FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
2360b57cec5SDimitry Andric }
2370b57cec5SDimitry Andric if (BSI.InvertOrigBranch)
2380b57cec5SDimitry Andric FirstTerminator->setDesc(TII->get(InvertedOpcode));
2390b57cec5SDimitry Andric
2400b57cec5SDimitry Andric // If any of the PHIs in the successors of NewMBB reference values that
2410b57cec5SDimitry Andric // now come from NewMBB, they need to be updated.
2420b57cec5SDimitry Andric for (auto *Succ : NewMBB->successors()) {
2430b57cec5SDimitry Andric updatePHIs(Succ, ThisMBB, NewMBB, MRI);
2440b57cec5SDimitry Andric }
2450b57cec5SDimitry Andric addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
2460b57cec5SDimitry Andric
2470b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
2480b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
2490b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
2500b57cec5SDimitry Andric return true;
2510b57cec5SDimitry Andric }
2520b57cec5SDimitry Andric
isBinary(MachineInstr & MI)2530b57cec5SDimitry Andric static bool isBinary(MachineInstr &MI) {
2540b57cec5SDimitry Andric return MI.getNumOperands() == 3;
2550b57cec5SDimitry Andric }
2560b57cec5SDimitry Andric
isNullary(MachineInstr & MI)2570b57cec5SDimitry Andric static bool isNullary(MachineInstr &MI) {
2580b57cec5SDimitry Andric return MI.getNumOperands() == 1;
2590b57cec5SDimitry Andric }
2600b57cec5SDimitry Andric
2610b57cec5SDimitry Andric /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
2620b57cec5SDimitry Andric /// a flag to indicate if the first operand of \p CROp is used as the
2630b57cec5SDimitry Andric /// SplitBefore operand, determines whether either of the branches are to be
2640b57cec5SDimitry Andric /// inverted as well as whether the new target should be the original
2650b57cec5SDimitry Andric /// fall-through block.
2660b57cec5SDimitry Andric static void
computeBranchTargetAndInversion(unsigned CROp,unsigned BROp,bool UsingDef1,bool & InvertNewBranch,bool & InvertOrigBranch,bool & TargetIsFallThrough)2670b57cec5SDimitry Andric computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
2680b57cec5SDimitry Andric bool &InvertNewBranch, bool &InvertOrigBranch,
2690b57cec5SDimitry Andric bool &TargetIsFallThrough) {
2700b57cec5SDimitry Andric // The conditions under which each of the output operands should be [un]set
2710b57cec5SDimitry Andric // can certainly be written much more concisely with just 3 if statements or
2720b57cec5SDimitry Andric // ternary expressions. However, this provides a much clearer overview to the
2730b57cec5SDimitry Andric // reader as to what is set for each <CROp, BROp, OpUsed> combination.
2740b57cec5SDimitry Andric if (BROp == PPC::BC || BROp == PPC::BCLR) {
2750b57cec5SDimitry Andric // Regular branches.
2760b57cec5SDimitry Andric switch (CROp) {
2770b57cec5SDimitry Andric default:
2780b57cec5SDimitry Andric llvm_unreachable("Don't know how to handle this CR logical.");
2790b57cec5SDimitry Andric case PPC::CROR:
2800b57cec5SDimitry Andric InvertNewBranch = false;
2810b57cec5SDimitry Andric InvertOrigBranch = false;
2820b57cec5SDimitry Andric TargetIsFallThrough = false;
2830b57cec5SDimitry Andric return;
2840b57cec5SDimitry Andric case PPC::CRAND:
2850b57cec5SDimitry Andric InvertNewBranch = true;
2860b57cec5SDimitry Andric InvertOrigBranch = false;
2870b57cec5SDimitry Andric TargetIsFallThrough = true;
2880b57cec5SDimitry Andric return;
2890b57cec5SDimitry Andric case PPC::CRNAND:
2900b57cec5SDimitry Andric InvertNewBranch = true;
2910b57cec5SDimitry Andric InvertOrigBranch = true;
2920b57cec5SDimitry Andric TargetIsFallThrough = false;
2930b57cec5SDimitry Andric return;
2940b57cec5SDimitry Andric case PPC::CRNOR:
2950b57cec5SDimitry Andric InvertNewBranch = false;
2960b57cec5SDimitry Andric InvertOrigBranch = true;
2970b57cec5SDimitry Andric TargetIsFallThrough = true;
2980b57cec5SDimitry Andric return;
2990b57cec5SDimitry Andric case PPC::CRORC:
3000b57cec5SDimitry Andric InvertNewBranch = UsingDef1;
3010b57cec5SDimitry Andric InvertOrigBranch = !UsingDef1;
3020b57cec5SDimitry Andric TargetIsFallThrough = false;
3030b57cec5SDimitry Andric return;
3040b57cec5SDimitry Andric case PPC::CRANDC:
3050b57cec5SDimitry Andric InvertNewBranch = !UsingDef1;
3060b57cec5SDimitry Andric InvertOrigBranch = !UsingDef1;
3070b57cec5SDimitry Andric TargetIsFallThrough = true;
3080b57cec5SDimitry Andric return;
3090b57cec5SDimitry Andric }
3100b57cec5SDimitry Andric } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
3110b57cec5SDimitry Andric // Negated branches.
3120b57cec5SDimitry Andric switch (CROp) {
3130b57cec5SDimitry Andric default:
3140b57cec5SDimitry Andric llvm_unreachable("Don't know how to handle this CR logical.");
3150b57cec5SDimitry Andric case PPC::CROR:
3160b57cec5SDimitry Andric InvertNewBranch = true;
3170b57cec5SDimitry Andric InvertOrigBranch = false;
3180b57cec5SDimitry Andric TargetIsFallThrough = true;
3190b57cec5SDimitry Andric return;
3200b57cec5SDimitry Andric case PPC::CRAND:
3210b57cec5SDimitry Andric InvertNewBranch = false;
3220b57cec5SDimitry Andric InvertOrigBranch = false;
3230b57cec5SDimitry Andric TargetIsFallThrough = false;
3240b57cec5SDimitry Andric return;
3250b57cec5SDimitry Andric case PPC::CRNAND:
3260b57cec5SDimitry Andric InvertNewBranch = false;
3270b57cec5SDimitry Andric InvertOrigBranch = true;
3280b57cec5SDimitry Andric TargetIsFallThrough = true;
3290b57cec5SDimitry Andric return;
3300b57cec5SDimitry Andric case PPC::CRNOR:
3310b57cec5SDimitry Andric InvertNewBranch = true;
3320b57cec5SDimitry Andric InvertOrigBranch = true;
3330b57cec5SDimitry Andric TargetIsFallThrough = false;
3340b57cec5SDimitry Andric return;
3350b57cec5SDimitry Andric case PPC::CRORC:
3360b57cec5SDimitry Andric InvertNewBranch = !UsingDef1;
3370b57cec5SDimitry Andric InvertOrigBranch = !UsingDef1;
3380b57cec5SDimitry Andric TargetIsFallThrough = true;
3390b57cec5SDimitry Andric return;
3400b57cec5SDimitry Andric case PPC::CRANDC:
3410b57cec5SDimitry Andric InvertNewBranch = UsingDef1;
3420b57cec5SDimitry Andric InvertOrigBranch = !UsingDef1;
3430b57cec5SDimitry Andric TargetIsFallThrough = false;
3440b57cec5SDimitry Andric return;
3450b57cec5SDimitry Andric }
3460b57cec5SDimitry Andric } else
3470b57cec5SDimitry Andric llvm_unreachable("Don't know how to handle this branch.");
3480b57cec5SDimitry Andric }
3490b57cec5SDimitry Andric
3500b57cec5SDimitry Andric namespace {
3510b57cec5SDimitry Andric
3520b57cec5SDimitry Andric class PPCReduceCRLogicals : public MachineFunctionPass {
3530b57cec5SDimitry Andric
3540b57cec5SDimitry Andric public:
3550b57cec5SDimitry Andric static char ID;
3560b57cec5SDimitry Andric struct CRLogicalOpInfo {
3570b57cec5SDimitry Andric MachineInstr *MI;
3580b57cec5SDimitry Andric // FIXME: If chains of copies are to be handled, this should be a vector.
3590b57cec5SDimitry Andric std::pair<MachineInstr*, MachineInstr*> CopyDefs;
3600b57cec5SDimitry Andric std::pair<MachineInstr*, MachineInstr*> TrueDefs;
3610b57cec5SDimitry Andric unsigned IsBinary : 1;
3620b57cec5SDimitry Andric unsigned IsNullary : 1;
3630b57cec5SDimitry Andric unsigned ContainedInBlock : 1;
3640b57cec5SDimitry Andric unsigned FeedsISEL : 1;
3650b57cec5SDimitry Andric unsigned FeedsBR : 1;
3660b57cec5SDimitry Andric unsigned FeedsLogical : 1;
3670b57cec5SDimitry Andric unsigned SingleUse : 1;
3680b57cec5SDimitry Andric unsigned DefsSingleUse : 1;
3690b57cec5SDimitry Andric unsigned SubregDef1;
3700b57cec5SDimitry Andric unsigned SubregDef2;
CRLogicalOpInfo__anoncfc979730111::PPCReduceCRLogicals::CRLogicalOpInfo3710b57cec5SDimitry Andric CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
3720b57cec5SDimitry Andric ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
3730b57cec5SDimitry Andric FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
3740b57cec5SDimitry Andric SubregDef1(0), SubregDef2(0) { }
3750b57cec5SDimitry Andric void dump();
3760b57cec5SDimitry Andric };
3770b57cec5SDimitry Andric
3780b57cec5SDimitry Andric private:
379480093f4SDimitry Andric const PPCInstrInfo *TII = nullptr;
380480093f4SDimitry Andric MachineFunction *MF = nullptr;
381480093f4SDimitry Andric MachineRegisterInfo *MRI = nullptr;
382480093f4SDimitry Andric const MachineBranchProbabilityInfo *MBPI = nullptr;
3830b57cec5SDimitry Andric
3840b57cec5SDimitry Andric // A vector to contain all the CR logical operations
3858bcb0991SDimitry Andric SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps;
3860b57cec5SDimitry Andric void initialize(MachineFunction &MFParm);
3870b57cec5SDimitry Andric void collectCRLogicals();
3888bcb0991SDimitry Andric bool handleCROp(unsigned Idx);
3890b57cec5SDimitry Andric bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
isCRLogical(MachineInstr & MI)3900b57cec5SDimitry Andric static bool isCRLogical(MachineInstr &MI) {
3910b57cec5SDimitry Andric unsigned Opc = MI.getOpcode();
3920b57cec5SDimitry Andric return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
393bdd1243dSDimitry Andric Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CRNOT ||
394bdd1243dSDimitry Andric Opc == PPC::CREQV || Opc == PPC::CRANDC || Opc == PPC::CRORC ||
395bdd1243dSDimitry Andric Opc == PPC::CRSET || Opc == PPC::CRUNSET || Opc == PPC::CR6SET ||
396bdd1243dSDimitry Andric Opc == PPC::CR6UNSET;
3970b57cec5SDimitry Andric }
simplifyCode()3980b57cec5SDimitry Andric bool simplifyCode() {
3990b57cec5SDimitry Andric bool Changed = false;
4000b57cec5SDimitry Andric // Not using a range-based for loop here as the vector may grow while being
4010b57cec5SDimitry Andric // operated on.
4020b57cec5SDimitry Andric for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
4038bcb0991SDimitry Andric Changed |= handleCROp(i);
4040b57cec5SDimitry Andric return Changed;
4050b57cec5SDimitry Andric }
4060b57cec5SDimitry Andric
4070b57cec5SDimitry Andric public:
PPCReduceCRLogicals()4080b57cec5SDimitry Andric PPCReduceCRLogicals() : MachineFunctionPass(ID) {
4090b57cec5SDimitry Andric initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
4100b57cec5SDimitry Andric }
4110b57cec5SDimitry Andric
4120b57cec5SDimitry Andric MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
4130b57cec5SDimitry Andric MachineInstr *&CpDef);
runOnMachineFunction(MachineFunction & MF)4140b57cec5SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override {
4150b57cec5SDimitry Andric if (skipFunction(MF.getFunction()))
4160b57cec5SDimitry Andric return false;
4170b57cec5SDimitry Andric
4180b57cec5SDimitry Andric // If the subtarget doesn't use CR bits, there's nothing to do.
4190b57cec5SDimitry Andric const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
4200b57cec5SDimitry Andric if (!STI.useCRBits())
4210b57cec5SDimitry Andric return false;
4220b57cec5SDimitry Andric
4230b57cec5SDimitry Andric initialize(MF);
4240b57cec5SDimitry Andric collectCRLogicals();
4250b57cec5SDimitry Andric return simplifyCode();
4260b57cec5SDimitry Andric }
4270b57cec5SDimitry Andric CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
getAnalysisUsage(AnalysisUsage & AU) const4280b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override {
429*0fca6ea1SDimitry Andric AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
430*0fca6ea1SDimitry Andric AU.addRequired<MachineDominatorTreeWrapperPass>();
4310b57cec5SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU);
4320b57cec5SDimitry Andric }
4330b57cec5SDimitry Andric };
4340b57cec5SDimitry Andric
4350b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()4360b57cec5SDimitry Andric LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
4370b57cec5SDimitry Andric dbgs() << "CRLogicalOpMI: ";
4380b57cec5SDimitry Andric MI->dump();
4390b57cec5SDimitry Andric dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
4400b57cec5SDimitry Andric dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
4410b57cec5SDimitry Andric dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
4420b57cec5SDimitry Andric dbgs() << ", DefsSingleUse: " << DefsSingleUse;
4430b57cec5SDimitry Andric dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
4440b57cec5SDimitry Andric dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
4450b57cec5SDimitry Andric if (!IsNullary) {
4460b57cec5SDimitry Andric dbgs() << "\nDefs:\n";
4470b57cec5SDimitry Andric TrueDefs.first->dump();
4480b57cec5SDimitry Andric }
4490b57cec5SDimitry Andric if (IsBinary)
4500b57cec5SDimitry Andric TrueDefs.second->dump();
4510b57cec5SDimitry Andric dbgs() << "\n";
4520b57cec5SDimitry Andric if (CopyDefs.first) {
4530b57cec5SDimitry Andric dbgs() << "CopyDef1: ";
4540b57cec5SDimitry Andric CopyDefs.first->dump();
4550b57cec5SDimitry Andric }
4560b57cec5SDimitry Andric if (CopyDefs.second) {
4570b57cec5SDimitry Andric dbgs() << "CopyDef2: ";
4580b57cec5SDimitry Andric CopyDefs.second->dump();
4590b57cec5SDimitry Andric }
4600b57cec5SDimitry Andric }
4610b57cec5SDimitry Andric #endif
4620b57cec5SDimitry Andric
4630b57cec5SDimitry Andric PPCReduceCRLogicals::CRLogicalOpInfo
createCRLogicalOpInfo(MachineInstr & MIParam)4640b57cec5SDimitry Andric PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
4650b57cec5SDimitry Andric CRLogicalOpInfo Ret;
4660b57cec5SDimitry Andric Ret.MI = &MIParam;
4670b57cec5SDimitry Andric // Get the defs
4680b57cec5SDimitry Andric if (isNullary(MIParam)) {
4690b57cec5SDimitry Andric Ret.IsNullary = 1;
4700b57cec5SDimitry Andric Ret.TrueDefs = std::make_pair(nullptr, nullptr);
4710b57cec5SDimitry Andric Ret.CopyDefs = std::make_pair(nullptr, nullptr);
4720b57cec5SDimitry Andric } else {
4730b57cec5SDimitry Andric MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
4740b57cec5SDimitry Andric Ret.SubregDef1, Ret.CopyDefs.first);
475480093f4SDimitry Andric assert(Def1 && "Must be able to find a definition of operand 1.");
4760b57cec5SDimitry Andric Ret.DefsSingleUse &=
4770b57cec5SDimitry Andric MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
4780b57cec5SDimitry Andric Ret.DefsSingleUse &=
4790b57cec5SDimitry Andric MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
4800b57cec5SDimitry Andric if (isBinary(MIParam)) {
4810b57cec5SDimitry Andric Ret.IsBinary = 1;
4820b57cec5SDimitry Andric MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
4830b57cec5SDimitry Andric Ret.SubregDef2,
4840b57cec5SDimitry Andric Ret.CopyDefs.second);
485480093f4SDimitry Andric assert(Def2 && "Must be able to find a definition of operand 2.");
4860b57cec5SDimitry Andric Ret.DefsSingleUse &=
4870b57cec5SDimitry Andric MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
4880b57cec5SDimitry Andric Ret.DefsSingleUse &=
4890b57cec5SDimitry Andric MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
4900b57cec5SDimitry Andric Ret.TrueDefs = std::make_pair(Def1, Def2);
4910b57cec5SDimitry Andric } else {
4920b57cec5SDimitry Andric Ret.TrueDefs = std::make_pair(Def1, nullptr);
4930b57cec5SDimitry Andric Ret.CopyDefs.second = nullptr;
4940b57cec5SDimitry Andric }
4950b57cec5SDimitry Andric }
4960b57cec5SDimitry Andric
4970b57cec5SDimitry Andric Ret.ContainedInBlock = 1;
4980b57cec5SDimitry Andric // Get the uses
4990b57cec5SDimitry Andric for (MachineInstr &UseMI :
5000b57cec5SDimitry Andric MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
5010b57cec5SDimitry Andric unsigned Opc = UseMI.getOpcode();
5020b57cec5SDimitry Andric if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
5030b57cec5SDimitry Andric Ret.FeedsISEL = 1;
5040b57cec5SDimitry Andric if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
5050b57cec5SDimitry Andric Opc == PPC::BCLRn)
5060b57cec5SDimitry Andric Ret.FeedsBR = 1;
5070b57cec5SDimitry Andric Ret.FeedsLogical = isCRLogical(UseMI);
5080b57cec5SDimitry Andric if (UseMI.getParent() != MIParam.getParent())
5090b57cec5SDimitry Andric Ret.ContainedInBlock = 0;
5100b57cec5SDimitry Andric }
5110b57cec5SDimitry Andric Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
5120b57cec5SDimitry Andric
5130b57cec5SDimitry Andric // We now know whether all the uses of the CR logical are in the same block.
5140b57cec5SDimitry Andric if (!Ret.IsNullary) {
5150b57cec5SDimitry Andric Ret.ContainedInBlock &=
5160b57cec5SDimitry Andric (MIParam.getParent() == Ret.TrueDefs.first->getParent());
5170b57cec5SDimitry Andric if (Ret.IsBinary)
5180b57cec5SDimitry Andric Ret.ContainedInBlock &=
5190b57cec5SDimitry Andric (MIParam.getParent() == Ret.TrueDefs.second->getParent());
5200b57cec5SDimitry Andric }
5210b57cec5SDimitry Andric LLVM_DEBUG(Ret.dump());
5220b57cec5SDimitry Andric if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
5230b57cec5SDimitry Andric NumContainedSingleUseBinOps++;
5240b57cec5SDimitry Andric if (Ret.FeedsBR && Ret.DefsSingleUse)
5250b57cec5SDimitry Andric NumToSplitBlocks++;
5260b57cec5SDimitry Andric }
5270b57cec5SDimitry Andric return Ret;
5280b57cec5SDimitry Andric }
5290b57cec5SDimitry Andric
5300b57cec5SDimitry Andric /// Looks through a COPY instruction to the actual definition of the CR-bit
5310b57cec5SDimitry Andric /// register and returns the instruction that defines it.
5320b57cec5SDimitry Andric /// FIXME: This currently handles what is by-far the most common case:
5330b57cec5SDimitry Andric /// an instruction that defines a CR field followed by a single copy of a bit
5340b57cec5SDimitry Andric /// from that field into a virtual register. If chains of copies need to be
5350b57cec5SDimitry Andric /// handled, this should have a loop until a non-copy instruction is found.
lookThroughCRCopy(unsigned Reg,unsigned & Subreg,MachineInstr * & CpDef)5360b57cec5SDimitry Andric MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
5370b57cec5SDimitry Andric unsigned &Subreg,
5380b57cec5SDimitry Andric MachineInstr *&CpDef) {
5390b57cec5SDimitry Andric Subreg = -1;
5408bcb0991SDimitry Andric if (!Register::isVirtualRegister(Reg))
5410b57cec5SDimitry Andric return nullptr;
5420b57cec5SDimitry Andric MachineInstr *Copy = MRI->getVRegDef(Reg);
5430b57cec5SDimitry Andric CpDef = Copy;
5440b57cec5SDimitry Andric if (!Copy->isCopy())
5450b57cec5SDimitry Andric return Copy;
5468bcb0991SDimitry Andric Register CopySrc = Copy->getOperand(1).getReg();
5470b57cec5SDimitry Andric Subreg = Copy->getOperand(1).getSubReg();
548bdd1243dSDimitry Andric if (!CopySrc.isVirtual()) {
5490b57cec5SDimitry Andric const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
5500b57cec5SDimitry Andric // Set the Subreg
5510b57cec5SDimitry Andric if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
5520b57cec5SDimitry Andric Subreg = PPC::sub_eq;
5530b57cec5SDimitry Andric if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
5540b57cec5SDimitry Andric Subreg = PPC::sub_lt;
5550b57cec5SDimitry Andric if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
5560b57cec5SDimitry Andric Subreg = PPC::sub_gt;
5570b57cec5SDimitry Andric if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
5580b57cec5SDimitry Andric Subreg = PPC::sub_un;
5590b57cec5SDimitry Andric // Loop backwards and return the first MI that modifies the physical CR Reg.
5600b57cec5SDimitry Andric MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
5610b57cec5SDimitry Andric while (Me != B)
5620b57cec5SDimitry Andric if ((--Me)->modifiesRegister(CopySrc, TRI))
5630b57cec5SDimitry Andric return &*Me;
5640b57cec5SDimitry Andric return nullptr;
5650b57cec5SDimitry Andric }
5660b57cec5SDimitry Andric return MRI->getVRegDef(CopySrc);
5670b57cec5SDimitry Andric }
5680b57cec5SDimitry Andric
initialize(MachineFunction & MFParam)5690b57cec5SDimitry Andric void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
5700b57cec5SDimitry Andric MF = &MFParam;
5710b57cec5SDimitry Andric MRI = &MF->getRegInfo();
5720b57cec5SDimitry Andric TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
573*0fca6ea1SDimitry Andric MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
5740b57cec5SDimitry Andric
5750b57cec5SDimitry Andric AllCRLogicalOps.clear();
5760b57cec5SDimitry Andric }
5770b57cec5SDimitry Andric
5780b57cec5SDimitry Andric /// Contains all the implemented transformations on CR logical operations.
5790b57cec5SDimitry Andric /// For example, a binary CR logical can be used to split a block on its inputs,
5800b57cec5SDimitry Andric /// a unary CR logical might be used to change the condition code on a
5810b57cec5SDimitry Andric /// comparison feeding it. A nullary CR logical might simply be removable
5820b57cec5SDimitry Andric /// if the user of the bit it [un]sets can be transformed.
handleCROp(unsigned Idx)5838bcb0991SDimitry Andric bool PPCReduceCRLogicals::handleCROp(unsigned Idx) {
5840b57cec5SDimitry Andric // We can definitely split a block on the inputs to a binary CR operation
5850b57cec5SDimitry Andric // whose defs and (single) use are within the same block.
5860b57cec5SDimitry Andric bool Changed = false;
5878bcb0991SDimitry Andric CRLogicalOpInfo CRI = AllCRLogicalOps[Idx];
5880b57cec5SDimitry Andric if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
5890b57cec5SDimitry Andric CRI.DefsSingleUse) {
5900b57cec5SDimitry Andric Changed = splitBlockOnBinaryCROp(CRI);
5910b57cec5SDimitry Andric if (Changed)
5920b57cec5SDimitry Andric NumBlocksSplitOnBinaryCROp++;
5930b57cec5SDimitry Andric }
5940b57cec5SDimitry Andric return Changed;
5950b57cec5SDimitry Andric }
5960b57cec5SDimitry Andric
5970b57cec5SDimitry Andric /// Splits a block that contains a CR-logical operation that feeds a branch
5980b57cec5SDimitry Andric /// and whose operands are produced within the block.
5990b57cec5SDimitry Andric /// Example:
6000b57cec5SDimitry Andric /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
6010b57cec5SDimitry Andric /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
6020b57cec5SDimitry Andric /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
6030b57cec5SDimitry Andric /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
6040b57cec5SDimitry Andric /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
6050b57cec5SDimitry Andric /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
6060b57cec5SDimitry Andric /// Becomes:
6070b57cec5SDimitry Andric /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
6080b57cec5SDimitry Andric /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
6090b57cec5SDimitry Andric /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
6100b57cec5SDimitry Andric ///
6110b57cec5SDimitry Andric /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
6120b57cec5SDimitry Andric /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
6130b57cec5SDimitry Andric /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
splitBlockOnBinaryCROp(CRLogicalOpInfo & CRI)6140b57cec5SDimitry Andric bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
6150b57cec5SDimitry Andric if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
6160b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
6170b57cec5SDimitry Andric NumNotSplitIdenticalOperands++;
6180b57cec5SDimitry Andric return false;
6190b57cec5SDimitry Andric }
6200b57cec5SDimitry Andric if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
6210b57cec5SDimitry Andric CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
6220b57cec5SDimitry Andric LLVM_DEBUG(
6230b57cec5SDimitry Andric dbgs() << "Unable to split because one of the operands is a PHI or "
6240b57cec5SDimitry Andric "chain of copies.\n");
6250b57cec5SDimitry Andric NumNotSplitChainCopies++;
6260b57cec5SDimitry Andric return false;
6270b57cec5SDimitry Andric }
6280b57cec5SDimitry Andric // Note: keep in sync with computeBranchTargetAndInversion().
6290b57cec5SDimitry Andric if (CRI.MI->getOpcode() != PPC::CROR &&
6300b57cec5SDimitry Andric CRI.MI->getOpcode() != PPC::CRAND &&
6310b57cec5SDimitry Andric CRI.MI->getOpcode() != PPC::CRNOR &&
6320b57cec5SDimitry Andric CRI.MI->getOpcode() != PPC::CRNAND &&
6330b57cec5SDimitry Andric CRI.MI->getOpcode() != PPC::CRORC &&
6340b57cec5SDimitry Andric CRI.MI->getOpcode() != PPC::CRANDC) {
6350b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
6360b57cec5SDimitry Andric NumNotSplitWrongOpcode++;
6370b57cec5SDimitry Andric return false;
6380b57cec5SDimitry Andric }
6390b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
6400b57cec5SDimitry Andric MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
6410b57cec5SDimitry Andric MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
6420b57cec5SDimitry Andric
6430b57cec5SDimitry Andric bool UsingDef1 = false;
6440b57cec5SDimitry Andric MachineInstr *SplitBefore = &*Def2It;
6450b57cec5SDimitry Andric for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
6460b57cec5SDimitry Andric if (Def1It == Def2It) { // Def2 comes before Def1.
6470b57cec5SDimitry Andric SplitBefore = &*Def1It;
6480b57cec5SDimitry Andric UsingDef1 = true;
6490b57cec5SDimitry Andric break;
6500b57cec5SDimitry Andric }
6510b57cec5SDimitry Andric }
6520b57cec5SDimitry Andric
6530b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
6540b57cec5SDimitry Andric LLVM_DEBUG(CRI.MI->getParent()->dump());
6550b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
6560b57cec5SDimitry Andric
6570b57cec5SDimitry Andric // Get the branch instruction.
6580b57cec5SDimitry Andric MachineInstr *Branch =
6590b57cec5SDimitry Andric MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
6600b57cec5SDimitry Andric
6610b57cec5SDimitry Andric // We want the new block to have no code in it other than the definition
6620b57cec5SDimitry Andric // of the input to the CR logical and the CR logical itself. So we move
6630b57cec5SDimitry Andric // those to the bottom of the block (just before the branch). Then we
6640b57cec5SDimitry Andric // will split before the CR logical.
6650b57cec5SDimitry Andric MachineBasicBlock *MBB = SplitBefore->getParent();
6660b57cec5SDimitry Andric auto FirstTerminator = MBB->getFirstTerminator();
6670b57cec5SDimitry Andric MachineBasicBlock::iterator FirstInstrToMove =
6680b57cec5SDimitry Andric UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
6690b57cec5SDimitry Andric MachineBasicBlock::iterator SecondInstrToMove =
6700b57cec5SDimitry Andric UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
6710b57cec5SDimitry Andric
6720b57cec5SDimitry Andric // The instructions that need to be moved are not guaranteed to be
6730b57cec5SDimitry Andric // contiguous. Move them individually.
6740b57cec5SDimitry Andric // FIXME: If one of the operands is a chain of (single use) copies, they
6750b57cec5SDimitry Andric // can all be moved and we can still split.
6760b57cec5SDimitry Andric MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
6770b57cec5SDimitry Andric if (FirstInstrToMove != SecondInstrToMove)
6780b57cec5SDimitry Andric MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
6790b57cec5SDimitry Andric MBB->splice(FirstTerminator, MBB, CRI.MI);
6800b57cec5SDimitry Andric
6810b57cec5SDimitry Andric unsigned Opc = CRI.MI->getOpcode();
6820b57cec5SDimitry Andric bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
6830b57cec5SDimitry Andric computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
6840b57cec5SDimitry Andric InvertNewBranch, InvertOrigBranch,
6850b57cec5SDimitry Andric TargetIsFallThrough);
6860b57cec5SDimitry Andric MachineInstr *SplitCond =
6870b57cec5SDimitry Andric UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
6880b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
6890b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " the original branch and the target is the "
6900b57cec5SDimitry Andric << (TargetIsFallThrough ? "fallthrough block\n"
6910b57cec5SDimitry Andric : "orig. target block\n"));
6920b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
6930b57cec5SDimitry Andric BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
6940b57cec5SDimitry Andric InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
6950b57cec5SDimitry Andric UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
6960b57cec5SDimitry Andric bool Changed = splitMBB(BSI);
6970b57cec5SDimitry Andric // If we've split on a CR logical that is fed by a CR logical,
6980b57cec5SDimitry Andric // recompute the source CR logical as it may be usable for splitting.
6990b57cec5SDimitry Andric if (Changed) {
7000b57cec5SDimitry Andric bool Input1CRlogical =
7010b57cec5SDimitry Andric CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
7020b57cec5SDimitry Andric bool Input2CRlogical =
7030b57cec5SDimitry Andric CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
7040b57cec5SDimitry Andric if (Input1CRlogical)
7050b57cec5SDimitry Andric AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
7060b57cec5SDimitry Andric if (Input2CRlogical)
7070b57cec5SDimitry Andric AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
7080b57cec5SDimitry Andric }
7090b57cec5SDimitry Andric return Changed;
7100b57cec5SDimitry Andric }
7110b57cec5SDimitry Andric
collectCRLogicals()7120b57cec5SDimitry Andric void PPCReduceCRLogicals::collectCRLogicals() {
7130b57cec5SDimitry Andric for (MachineBasicBlock &MBB : *MF) {
7140b57cec5SDimitry Andric for (MachineInstr &MI : MBB) {
7150b57cec5SDimitry Andric if (isCRLogical(MI)) {
7160b57cec5SDimitry Andric AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
7170b57cec5SDimitry Andric TotalCRLogicals++;
7180b57cec5SDimitry Andric if (AllCRLogicalOps.back().IsNullary)
7190b57cec5SDimitry Andric TotalNullaryCRLogicals++;
7200b57cec5SDimitry Andric else if (AllCRLogicalOps.back().IsBinary)
7210b57cec5SDimitry Andric TotalBinaryCRLogicals++;
7220b57cec5SDimitry Andric else
7230b57cec5SDimitry Andric TotalUnaryCRLogicals++;
7240b57cec5SDimitry Andric }
7250b57cec5SDimitry Andric }
7260b57cec5SDimitry Andric }
7270b57cec5SDimitry Andric }
7280b57cec5SDimitry Andric
7290b57cec5SDimitry Andric } // end anonymous namespace
7300b57cec5SDimitry Andric
7310b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
7320b57cec5SDimitry Andric "PowerPC Reduce CR logical Operation", false, false)
733*0fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
7340b57cec5SDimitry Andric INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
7350b57cec5SDimitry Andric "PowerPC Reduce CR logical Operation", false, false)
7360b57cec5SDimitry Andric
7370b57cec5SDimitry Andric char PPCReduceCRLogicals::ID = 0;
7380b57cec5SDimitry Andric FunctionPass*
createPPCReduceCRLogicalsPass()7390b57cec5SDimitry Andric llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }
740