xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCPreEmitPeephole.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pre-emit peephole for catching opportunities introduced by late passes such
10 // as MachineBlockPlacement.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPC.h"
15 #include "PPCInstrInfo.h"
16 #include "PPCSubtarget.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LivePhysRegs.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/RegisterScavenging.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "ppc-pre-emit-peephole"
32 
33 STATISTIC(NumRRConvertedInPreEmit,
34           "Number of r+r instructions converted to r+i in pre-emit peephole");
35 STATISTIC(NumRemovedInPreEmit,
36           "Number of instructions deleted in pre-emit peephole");
37 STATISTIC(NumberOfSelfCopies,
38           "Number of self copy instructions eliminated");
39 STATISTIC(NumFrameOffFoldInPreEmit,
40           "Number of folding frame offset by using r+r in pre-emit peephole");
41 
42 static cl::opt<bool>
43 EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden, cl::init(true),
44                      cl::desc("enable PC Relative linker optimization"));
45 
46 static cl::opt<bool>
47 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
48                    cl::desc("Run pre-emit peephole optimizations."));
49 
50 static cl::opt<uint64_t>
51 DSCRValue("ppc-set-dscr", cl::Hidden,
52           cl::desc("Set the Data Stream Control Register."));
53 
54 namespace {
55 
56 static bool hasPCRelativeForm(MachineInstr &Use) {
57   switch (Use.getOpcode()) {
58   default:
59     return false;
60   case PPC::LBZ:
61   case PPC::LBZ8:
62   case PPC::LHA:
63   case PPC::LHA8:
64   case PPC::LHZ:
65   case PPC::LHZ8:
66   case PPC::LWZ:
67   case PPC::LWZ8:
68   case PPC::STB:
69   case PPC::STB8:
70   case PPC::STH:
71   case PPC::STH8:
72   case PPC::STW:
73   case PPC::STW8:
74   case PPC::LD:
75   case PPC::STD:
76   case PPC::LWA:
77   case PPC::LXSD:
78   case PPC::LXSSP:
79   case PPC::LXV:
80   case PPC::STXSD:
81   case PPC::STXSSP:
82   case PPC::STXV:
83   case PPC::LFD:
84   case PPC::LFS:
85   case PPC::STFD:
86   case PPC::STFS:
87   case PPC::DFLOADf32:
88   case PPC::DFLOADf64:
89   case PPC::DFSTOREf32:
90   case PPC::DFSTOREf64:
91     return true;
92   }
93 }
94 
95   class PPCPreEmitPeephole : public MachineFunctionPass {
96   public:
97     static char ID;
98     PPCPreEmitPeephole() : MachineFunctionPass(ID) {
99       initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
100     }
101 
102     void getAnalysisUsage(AnalysisUsage &AU) const override {
103       MachineFunctionPass::getAnalysisUsage(AU);
104     }
105 
106     MachineFunctionProperties getRequiredProperties() const override {
107       return MachineFunctionProperties().set(
108           MachineFunctionProperties::Property::NoVRegs);
109     }
110 
111     // This function removes any redundant load immediates. It has two level
112     // loops - The outer loop finds the load immediates BBI that could be used
113     // to replace following redundancy. The inner loop scans instructions that
114     // after BBI to find redundancy and update kill/dead flags accordingly. If
115     // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
116     // that modify the def register of BBI would break the scanning.
117     // DeadOrKillToUnset is a pointer to the previous operand that had the
118     // kill/dead flag set. It keeps track of the def register of BBI, the use
119     // registers of AfterBBIs and the def registers of AfterBBIs.
120     bool removeRedundantLIs(MachineBasicBlock &MBB,
121                             const TargetRegisterInfo *TRI) {
122       LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
123                  MBB.dump(); dbgs() << "\n");
124 
125       DenseSet<MachineInstr *> InstrsToErase;
126       for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
127         // Skip load immediate that is marked to be erased later because it
128         // cannot be used to replace any other instructions.
129         if (InstrsToErase.contains(&*BBI))
130           continue;
131         // Skip non-load immediate.
132         unsigned Opc = BBI->getOpcode();
133         if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
134             Opc != PPC::LIS8)
135           continue;
136         // Skip load immediate, where the operand is a relocation (e.g., $r3 =
137         // LI target-flags(ppc-lo) %const.0).
138         if (!BBI->getOperand(1).isImm())
139           continue;
140         assert(BBI->getOperand(0).isReg() &&
141                "Expected a register for the first operand");
142 
143         LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
144 
145         Register Reg = BBI->getOperand(0).getReg();
146         int64_t Imm = BBI->getOperand(1).getImm();
147         MachineOperand *DeadOrKillToUnset = nullptr;
148         if (BBI->getOperand(0).isDead()) {
149           DeadOrKillToUnset = &BBI->getOperand(0);
150           LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
151                             << " from load immediate " << *BBI
152                             << " is a unsetting candidate\n");
153         }
154         // This loop scans instructions after BBI to see if there is any
155         // redundant load immediate.
156         for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
157              ++AfterBBI) {
158           // Track the operand that kill Reg. We would unset the kill flag of
159           // the operand if there is a following redundant load immediate.
160           int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
161 
162           // We can't just clear implicit kills, so if we encounter one, stop
163           // looking further.
164           if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) {
165             LLVM_DEBUG(dbgs()
166                        << "Encountered an implicit kill, cannot proceed: ");
167             LLVM_DEBUG(AfterBBI->dump());
168             break;
169           }
170 
171           if (KillIdx != -1) {
172             assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
173             DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
174             LLVM_DEBUG(dbgs()
175                        << " Kill flag of " << *DeadOrKillToUnset << " from "
176                        << *AfterBBI << " is a unsetting candidate\n");
177           }
178 
179           if (!AfterBBI->modifiesRegister(Reg, TRI))
180             continue;
181           // Finish scanning because Reg is overwritten by a non-load
182           // instruction.
183           if (AfterBBI->getOpcode() != Opc)
184             break;
185           assert(AfterBBI->getOperand(0).isReg() &&
186                  "Expected a register for the first operand");
187           // Finish scanning because Reg is overwritten by a relocation or a
188           // different value.
189           if (!AfterBBI->getOperand(1).isImm() ||
190               AfterBBI->getOperand(1).getImm() != Imm)
191             break;
192 
193           // It loads same immediate value to the same Reg, which is redundant.
194           // We would unset kill flag in previous Reg usage to extend live range
195           // of Reg first, then remove the redundancy.
196           if (DeadOrKillToUnset) {
197             LLVM_DEBUG(dbgs()
198                        << " Unset dead/kill flag of " << *DeadOrKillToUnset
199                        << " from " << *DeadOrKillToUnset->getParent());
200             if (DeadOrKillToUnset->isDef())
201               DeadOrKillToUnset->setIsDead(false);
202             else
203               DeadOrKillToUnset->setIsKill(false);
204           }
205           DeadOrKillToUnset =
206               AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
207           if (DeadOrKillToUnset)
208             LLVM_DEBUG(dbgs()
209                        << " Dead flag of " << *DeadOrKillToUnset << " from "
210                        << *AfterBBI << " is a unsetting candidate\n");
211           InstrsToErase.insert(&*AfterBBI);
212           LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
213                      AfterBBI->dump());
214         }
215       }
216 
217       for (MachineInstr *MI : InstrsToErase) {
218         MI->eraseFromParent();
219       }
220       NumRemovedInPreEmit += InstrsToErase.size();
221       return !InstrsToErase.empty();
222     }
223 
224     // Check if this instruction is a PLDpc that is part of a GOT indirect
225     // access.
226     bool isGOTPLDpc(MachineInstr &Instr) {
227       if (Instr.getOpcode() != PPC::PLDpc)
228         return false;
229 
230       // The result must be a register.
231       const MachineOperand &LoadedAddressReg = Instr.getOperand(0);
232       if (!LoadedAddressReg.isReg())
233         return false;
234 
235       // Make sure that this is a global symbol.
236       const MachineOperand &SymbolOp = Instr.getOperand(1);
237       if (!SymbolOp.isGlobal())
238         return false;
239 
240       // Finally return true only if the GOT flag is present.
241       return (SymbolOp.getTargetFlags() & PPCII::MO_GOT_FLAG);
242     }
243 
244     bool addLinkerOpt(MachineBasicBlock &MBB, const TargetRegisterInfo *TRI) {
245       MachineFunction *MF = MBB.getParent();
246       // If the linker opt is disabled then just return.
247       if (!EnablePCRelLinkerOpt)
248         return false;
249 
250       // Add this linker opt only if we are using PC Relative memops.
251       if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls())
252         return false;
253 
254       // Struct to keep track of one def/use pair for a GOT indirect access.
255       struct GOTDefUsePair {
256         MachineBasicBlock::iterator DefInst;
257         MachineBasicBlock::iterator UseInst;
258         Register DefReg;
259         Register UseReg;
260         bool StillValid;
261       };
262       // Vector of def/ues pairs in this basic block.
263       SmallVector<GOTDefUsePair, 4> CandPairs;
264       SmallVector<GOTDefUsePair, 4> ValidPairs;
265       bool MadeChange = false;
266 
267       // Run through all of the instructions in the basic block and try to
268       // collect potential pairs of GOT indirect access instructions.
269       for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
270         // Look for the initial GOT indirect load.
271         if (isGOTPLDpc(*BBI)) {
272           GOTDefUsePair CurrentPair{BBI, MachineBasicBlock::iterator(),
273                                     BBI->getOperand(0).getReg(),
274                                     PPC::NoRegister, true};
275           CandPairs.push_back(CurrentPair);
276           continue;
277         }
278 
279         // We haven't encountered any new PLD instructions, nothing to check.
280         if (CandPairs.empty())
281           continue;
282 
283         // Run through the candidate pairs and see if any of the registers
284         // defined in the PLD instructions are used by this instruction.
285         // Note: the size of CandPairs can change in the loop.
286         for (unsigned Idx = 0; Idx < CandPairs.size(); Idx++) {
287           GOTDefUsePair &Pair = CandPairs[Idx];
288           // The instruction does not use or modify this PLD's def reg,
289           // ignore it.
290           if (!BBI->readsRegister(Pair.DefReg, TRI) &&
291               !BBI->modifiesRegister(Pair.DefReg, TRI))
292             continue;
293 
294           // The use needs to be used in the address compuation and not
295           // as the register being stored for a store.
296           const MachineOperand *UseOp =
297               hasPCRelativeForm(*BBI) ? &BBI->getOperand(2) : nullptr;
298 
299           // Check for a valid use.
300           if (UseOp && UseOp->isReg() && UseOp->getReg() == Pair.DefReg &&
301               UseOp->isUse() && UseOp->isKill()) {
302             Pair.UseInst = BBI;
303             Pair.UseReg = BBI->getOperand(0).getReg();
304             ValidPairs.push_back(Pair);
305           }
306           CandPairs.erase(CandPairs.begin() + Idx);
307         }
308       }
309 
310       // Go through all of the pairs and check for any more valid uses.
311       for (auto Pair = ValidPairs.begin(); Pair != ValidPairs.end(); Pair++) {
312         // We shouldn't be here if we don't have a valid pair.
313         assert(Pair->UseInst.isValid() && Pair->StillValid &&
314                "Kept an invalid def/use pair for GOT PCRel opt");
315         // We have found a potential pair. Search through the instructions
316         // between the def and the use to see if it is valid to mark this as a
317         // linker opt.
318         MachineBasicBlock::iterator BBI = Pair->DefInst;
319         ++BBI;
320         for (; BBI != Pair->UseInst; ++BBI) {
321           if (BBI->readsRegister(Pair->UseReg, TRI) ||
322               BBI->modifiesRegister(Pair->UseReg, TRI)) {
323             Pair->StillValid = false;
324             break;
325           }
326         }
327 
328         if (!Pair->StillValid)
329           continue;
330 
331         // The load/store instruction that uses the address from the PLD will
332         // either use a register (for a store) or define a register (for the
333         // load). That register will be added as an implicit def to the PLD
334         // and as an implicit use on the second memory op. This is a precaution
335         // to prevent future passes from using that register between the two
336         // instructions.
337         MachineOperand ImplDef =
338             MachineOperand::CreateReg(Pair->UseReg, true, true);
339         MachineOperand ImplUse =
340             MachineOperand::CreateReg(Pair->UseReg, false, true);
341         Pair->DefInst->addOperand(ImplDef);
342         Pair->UseInst->addOperand(ImplUse);
343 
344         // Create the symbol.
345         MCContext &Context = MF->getContext();
346         MCSymbol *Symbol = Context.createNamedTempSymbol("pcrel");
347         MachineOperand PCRelLabel =
348             MachineOperand::CreateMCSymbol(Symbol, PPCII::MO_PCREL_OPT_FLAG);
349         Pair->DefInst->addOperand(*MF, PCRelLabel);
350         Pair->UseInst->addOperand(*MF, PCRelLabel);
351         MadeChange |= true;
352       }
353       return MadeChange;
354     }
355 
356     // This function removes redundant pairs of accumulator prime/unprime
357     // instructions. In some situations, it's possible the compiler inserts an
358     // accumulator prime instruction followed by an unprime instruction (e.g.
359     // when we store an accumulator after restoring it from a spill). If the
360     // accumulator is not used between the two, they can be removed. This
361     // function removes these redundant pairs from basic blocks.
362     // The algorithm is quite straightforward - every time we encounter a prime
363     // instruction, the primed register is added to a candidate set. Any use
364     // other than a prime removes the candidate from the set and any de-prime
365     // of a current candidate marks both the prime and de-prime for removal.
366     // This way we ensure we only remove prime/de-prime *pairs* with no
367     // intervening uses.
368     bool removeAccPrimeUnprime(MachineBasicBlock &MBB) {
369       DenseSet<MachineInstr *> InstrsToErase;
370       // Initially, none of the acc registers are candidates.
371       SmallVector<MachineInstr *, 8> Candidates(
372           PPC::UACCRCRegClass.getNumRegs(), nullptr);
373 
374       for (MachineInstr &BBI : MBB.instrs()) {
375         unsigned Opc = BBI.getOpcode();
376         // If we are visiting a xxmtacc instruction, we add it and its operand
377         // register to the candidate set.
378         if (Opc == PPC::XXMTACC) {
379           Register Acc = BBI.getOperand(0).getReg();
380           assert(PPC::ACCRCRegClass.contains(Acc) &&
381                  "Unexpected register for XXMTACC");
382           Candidates[Acc - PPC::ACC0] = &BBI;
383         }
384         // If we are visiting a xxmfacc instruction and its operand register is
385         // in the candidate set, we mark the two instructions for removal.
386         else if (Opc == PPC::XXMFACC) {
387           Register Acc = BBI.getOperand(0).getReg();
388           assert(PPC::ACCRCRegClass.contains(Acc) &&
389                  "Unexpected register for XXMFACC");
390           if (!Candidates[Acc - PPC::ACC0])
391             continue;
392           InstrsToErase.insert(&BBI);
393           InstrsToErase.insert(Candidates[Acc - PPC::ACC0]);
394         }
395         // If we are visiting an instruction using an accumulator register
396         // as operand, we remove it from the candidate set.
397         else {
398           for (MachineOperand &Operand : BBI.operands()) {
399             if (!Operand.isReg())
400               continue;
401             Register Reg = Operand.getReg();
402             if (PPC::ACCRCRegClass.contains(Reg))
403               Candidates[Reg - PPC::ACC0] = nullptr;
404           }
405         }
406       }
407 
408       for (MachineInstr *MI : InstrsToErase)
409         MI->eraseFromParent();
410       NumRemovedInPreEmit += InstrsToErase.size();
411       return !InstrsToErase.empty();
412     }
413 
414     bool runOnMachineFunction(MachineFunction &MF) override {
415       // If the user wants to set the DSCR using command-line options,
416       // load in the specified value at the start of main.
417       if (DSCRValue.getNumOccurrences() > 0 && MF.getName().equals("main") &&
418           MF.getFunction().hasExternalLinkage()) {
419         DSCRValue = (uint32_t)(DSCRValue & 0x01FFFFFF); // 25-bit DSCR mask
420         RegScavenger RS;
421         MachineBasicBlock &MBB = MF.front();
422         // Find an unused GPR according to register liveness
423         RS.enterBasicBlock(MBB);
424         unsigned InDSCR = RS.FindUnusedReg(&PPC::GPRCRegClass);
425         if (InDSCR) {
426           const PPCInstrInfo *TII =
427               MF.getSubtarget<PPCSubtarget>().getInstrInfo();
428           DebugLoc dl;
429           MachineBasicBlock::iterator IP = MBB.begin(); // Insert Point
430           // Copy the 32-bit DSCRValue integer into the GPR InDSCR using LIS and
431           // ORI, then move to DSCR. If the requested DSCR value is contained
432           // in a 16-bit signed number, we can emit a single `LI`, but the
433           // impact of saving one instruction in one function does not warrant
434           // any additional complexity in the logic here.
435           BuildMI(MBB, IP, dl, TII->get(PPC::LIS), InDSCR)
436               .addImm(DSCRValue >> 16);
437           BuildMI(MBB, IP, dl, TII->get(PPC::ORI), InDSCR)
438               .addReg(InDSCR)
439               .addImm(DSCRValue & 0xFFFF);
440           BuildMI(MBB, IP, dl, TII->get(PPC::MTUDSCR))
441               .addReg(InDSCR, RegState::Kill);
442         } else
443           errs() << "Warning: Ran out of registers - Unable to set DSCR as "
444                     "requested";
445       }
446 
447       if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) {
448         // Remove UNENCODED_NOP even when this pass is disabled.
449         // This needs to be done unconditionally so we don't emit zeros
450         // in the instruction stream.
451         SmallVector<MachineInstr *, 4> InstrsToErase;
452         for (MachineBasicBlock &MBB : MF)
453           for (MachineInstr &MI : MBB)
454             if (MI.getOpcode() == PPC::UNENCODED_NOP)
455               InstrsToErase.push_back(&MI);
456         for (MachineInstr *MI : InstrsToErase)
457           MI->eraseFromParent();
458         return false;
459       }
460       bool Changed = false;
461       const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
462       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
463       SmallVector<MachineInstr *, 4> InstrsToErase;
464       for (MachineBasicBlock &MBB : MF) {
465         Changed |= removeRedundantLIs(MBB, TRI);
466         Changed |= addLinkerOpt(MBB, TRI);
467         Changed |= removeAccPrimeUnprime(MBB);
468         for (MachineInstr &MI : MBB) {
469           unsigned Opc = MI.getOpcode();
470           if (Opc == PPC::UNENCODED_NOP) {
471             InstrsToErase.push_back(&MI);
472             continue;
473           }
474           // Detect self copies - these can result from running AADB.
475           if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
476             const MCInstrDesc &MCID = TII->get(Opc);
477             if (MCID.getNumOperands() == 3 &&
478                 MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
479                 MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
480               NumberOfSelfCopies++;
481               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
482               LLVM_DEBUG(MI.dump());
483               InstrsToErase.push_back(&MI);
484               continue;
485             }
486             else if (MCID.getNumOperands() == 2 &&
487                      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
488               NumberOfSelfCopies++;
489               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
490               LLVM_DEBUG(MI.dump());
491               InstrsToErase.push_back(&MI);
492               continue;
493             }
494           }
495           MachineInstr *DefMIToErase = nullptr;
496           if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
497             Changed = true;
498             NumRRConvertedInPreEmit++;
499             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
500             LLVM_DEBUG(MI.dump());
501             if (DefMIToErase) {
502               InstrsToErase.push_back(DefMIToErase);
503             }
504           }
505           if (TII->foldFrameOffset(MI)) {
506             Changed = true;
507             NumFrameOffFoldInPreEmit++;
508             LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
509             LLVM_DEBUG(MI.dump());
510           }
511         }
512 
513         // Eliminate conditional branch based on a constant CR bit by
514         // CRSET or CRUNSET. We eliminate the conditional branch or
515         // convert it into an unconditional branch. Also, if the CR bit
516         // is not used by other instructions, we eliminate CRSET as well.
517         auto I = MBB.getFirstInstrTerminator();
518         if (I == MBB.instr_end())
519           continue;
520         MachineInstr *Br = &*I;
521         if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
522           continue;
523         MachineInstr *CRSetMI = nullptr;
524         Register CRBit = Br->getOperand(0).getReg();
525         unsigned CRReg = getCRFromCRBit(CRBit);
526         bool SeenUse = false;
527         MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
528         for (It++; It != Er; It++) {
529           if (It->modifiesRegister(CRBit, TRI)) {
530             if ((It->getOpcode() == PPC::CRUNSET ||
531                  It->getOpcode() == PPC::CRSET) &&
532                 It->getOperand(0).getReg() == CRBit)
533               CRSetMI = &*It;
534             break;
535           }
536           if (It->readsRegister(CRBit, TRI))
537             SeenUse = true;
538         }
539         if (!CRSetMI) continue;
540 
541         unsigned CRSetOp = CRSetMI->getOpcode();
542         if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
543             (Br->getOpcode() == PPC::BC  && CRSetOp == PPC::CRUNSET)) {
544           // Remove this branch since it cannot be taken.
545           InstrsToErase.push_back(Br);
546           MBB.removeSuccessor(Br->getOperand(1).getMBB());
547         }
548         else {
549           // This conditional branch is always taken. So, remove all branches
550           // and insert an unconditional branch to the destination of this.
551           MachineBasicBlock::iterator It = Br, Er = MBB.end();
552           for (; It != Er; It++) {
553             if (It->isDebugInstr()) continue;
554             assert(It->isTerminator() && "Non-terminator after a terminator");
555             InstrsToErase.push_back(&*It);
556           }
557           if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
558             ArrayRef<MachineOperand> NoCond;
559             TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
560                               NoCond, Br->getDebugLoc());
561           }
562           for (auto &Succ : MBB.successors())
563             if (Succ != Br->getOperand(1).getMBB()) {
564               MBB.removeSuccessor(Succ);
565               break;
566             }
567         }
568 
569         // If the CRBit is not used by another instruction, we can eliminate
570         // CRSET/CRUNSET instruction.
571         if (!SeenUse) {
572           // We need to check use of the CRBit in successors.
573           for (auto &SuccMBB : MBB.successors())
574             if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
575               SeenUse = true;
576               break;
577             }
578           if (!SeenUse)
579             InstrsToErase.push_back(CRSetMI);
580         }
581       }
582       for (MachineInstr *MI : InstrsToErase) {
583         LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
584         LLVM_DEBUG(MI->dump());
585         MI->eraseFromParent();
586         NumRemovedInPreEmit++;
587       }
588       return Changed;
589     }
590   };
591 }
592 
593 INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
594                 false, false)
595 char PPCPreEmitPeephole::ID = 0;
596 
597 FunctionPass *llvm::createPPCPreEmitPeepholePass() {
598   return new PPCPreEmitPeephole();
599 }
600