xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCPreEmitPeephole.cpp (revision d5e3895ea4fe4ef9db8823774e07b4368180a23e)
1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pre-emit peephole for catching opportunities introduced by late passes such
10 // as MachineBlockPlacement.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPC.h"
15 #include "PPCInstrInfo.h"
16 #include "PPCSubtarget.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LivePhysRegs.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Support/Debug.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "ppc-pre-emit-peephole"
31 
32 STATISTIC(NumRRConvertedInPreEmit,
33           "Number of r+r instructions converted to r+i in pre-emit peephole");
34 STATISTIC(NumRemovedInPreEmit,
35           "Number of instructions deleted in pre-emit peephole");
36 STATISTIC(NumberOfSelfCopies,
37           "Number of self copy instructions eliminated");
38 STATISTIC(NumFrameOffFoldInPreEmit,
39           "Number of folding frame offset by using r+r in pre-emit peephole");
40 
41 static cl::opt<bool>
42 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
43                    cl::desc("Run pre-emit peephole optimizations."));
44 
45 namespace {
46   class PPCPreEmitPeephole : public MachineFunctionPass {
47   public:
48     static char ID;
49     PPCPreEmitPeephole() : MachineFunctionPass(ID) {
50       initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
51     }
52 
53     void getAnalysisUsage(AnalysisUsage &AU) const override {
54       MachineFunctionPass::getAnalysisUsage(AU);
55     }
56 
57     MachineFunctionProperties getRequiredProperties() const override {
58       return MachineFunctionProperties().set(
59           MachineFunctionProperties::Property::NoVRegs);
60     }
61 
62     // This function removes any redundant load immediates. It has two level
63     // loops - The outer loop finds the load immediates BBI that could be used
64     // to replace following redundancy. The inner loop scans instructions that
65     // after BBI to find redundancy and update kill/dead flags accordingly. If
66     // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
67     // that modify the def register of BBI would break the scanning.
68     // DeadOrKillToUnset is a pointer to the previous operand that had the
69     // kill/dead flag set. It keeps track of the def register of BBI, the use
70     // registers of AfterBBIs and the def registers of AfterBBIs.
71     bool removeRedundantLIs(MachineBasicBlock &MBB,
72                             const TargetRegisterInfo *TRI) {
73       LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
74                  MBB.dump(); dbgs() << "\n");
75 
76       DenseSet<MachineInstr *> InstrsToErase;
77       for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
78         // Skip load immediate that is marked to be erased later because it
79         // cannot be used to replace any other instructions.
80         if (InstrsToErase.find(&*BBI) != InstrsToErase.end())
81           continue;
82         // Skip non-load immediate.
83         unsigned Opc = BBI->getOpcode();
84         if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
85             Opc != PPC::LIS8)
86           continue;
87         // Skip load immediate, where the operand is a relocation (e.g., $r3 =
88         // LI target-flags(ppc-lo) %const.0).
89         if (!BBI->getOperand(1).isImm())
90           continue;
91         assert(BBI->getOperand(0).isReg() &&
92                "Expected a register for the first operand");
93 
94         LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
95 
96         Register Reg = BBI->getOperand(0).getReg();
97         int64_t Imm = BBI->getOperand(1).getImm();
98         MachineOperand *DeadOrKillToUnset = nullptr;
99         if (BBI->getOperand(0).isDead()) {
100           DeadOrKillToUnset = &BBI->getOperand(0);
101           LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
102                             << " from load immediate " << *BBI
103                             << " is a unsetting candidate\n");
104         }
105         // This loop scans instructions after BBI to see if there is any
106         // redundant load immediate.
107         for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
108              ++AfterBBI) {
109           // Track the operand that kill Reg. We would unset the kill flag of
110           // the operand if there is a following redundant load immediate.
111           int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
112 
113           // We can't just clear implicit kills, so if we encounter one, stop
114           // looking further.
115           if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) {
116             LLVM_DEBUG(dbgs()
117                        << "Encountered an implicit kill, cannot proceed: ");
118             LLVM_DEBUG(AfterBBI->dump());
119             break;
120           }
121 
122           if (KillIdx != -1) {
123             assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
124             DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
125             LLVM_DEBUG(dbgs()
126                        << " Kill flag of " << *DeadOrKillToUnset << " from "
127                        << *AfterBBI << " is a unsetting candidate\n");
128           }
129 
130           if (!AfterBBI->modifiesRegister(Reg, TRI))
131             continue;
132           // Finish scanning because Reg is overwritten by a non-load
133           // instruction.
134           if (AfterBBI->getOpcode() != Opc)
135             break;
136           assert(AfterBBI->getOperand(0).isReg() &&
137                  "Expected a register for the first operand");
138           // Finish scanning because Reg is overwritten by a relocation or a
139           // different value.
140           if (!AfterBBI->getOperand(1).isImm() ||
141               AfterBBI->getOperand(1).getImm() != Imm)
142             break;
143 
144           // It loads same immediate value to the same Reg, which is redundant.
145           // We would unset kill flag in previous Reg usage to extend live range
146           // of Reg first, then remove the redundancy.
147           if (DeadOrKillToUnset) {
148             LLVM_DEBUG(dbgs()
149                        << " Unset dead/kill flag of " << *DeadOrKillToUnset
150                        << " from " << *DeadOrKillToUnset->getParent());
151             if (DeadOrKillToUnset->isDef())
152               DeadOrKillToUnset->setIsDead(false);
153             else
154               DeadOrKillToUnset->setIsKill(false);
155           }
156           DeadOrKillToUnset =
157               AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
158           if (DeadOrKillToUnset)
159             LLVM_DEBUG(dbgs()
160                        << " Dead flag of " << *DeadOrKillToUnset << " from "
161                        << *AfterBBI << " is a unsetting candidate\n");
162           InstrsToErase.insert(&*AfterBBI);
163           LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
164                      AfterBBI->dump());
165         }
166       }
167 
168       for (MachineInstr *MI : InstrsToErase) {
169         MI->eraseFromParent();
170       }
171       NumRemovedInPreEmit += InstrsToErase.size();
172       return !InstrsToErase.empty();
173     }
174 
175     bool runOnMachineFunction(MachineFunction &MF) override {
176       if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) {
177         // Remove UNENCODED_NOP even when this pass is disabled.
178         // This needs to be done unconditionally so we don't emit zeros
179         // in the instruction stream.
180         SmallVector<MachineInstr *, 4> InstrsToErase;
181         for (MachineBasicBlock &MBB : MF)
182           for (MachineInstr &MI : MBB)
183             if (MI.getOpcode() == PPC::UNENCODED_NOP)
184               InstrsToErase.push_back(&MI);
185         for (MachineInstr *MI : InstrsToErase)
186           MI->eraseFromParent();
187         return false;
188       }
189       bool Changed = false;
190       const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
191       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
192       SmallVector<MachineInstr *, 4> InstrsToErase;
193       for (MachineBasicBlock &MBB : MF) {
194         Changed |= removeRedundantLIs(MBB, TRI);
195         for (MachineInstr &MI : MBB) {
196           unsigned Opc = MI.getOpcode();
197           if (Opc == PPC::UNENCODED_NOP) {
198             InstrsToErase.push_back(&MI);
199             continue;
200           }
201           // Detect self copies - these can result from running AADB.
202           if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
203             const MCInstrDesc &MCID = TII->get(Opc);
204             if (MCID.getNumOperands() == 3 &&
205                 MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
206                 MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
207               NumberOfSelfCopies++;
208               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
209               LLVM_DEBUG(MI.dump());
210               InstrsToErase.push_back(&MI);
211               continue;
212             }
213             else if (MCID.getNumOperands() == 2 &&
214                      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
215               NumberOfSelfCopies++;
216               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
217               LLVM_DEBUG(MI.dump());
218               InstrsToErase.push_back(&MI);
219               continue;
220             }
221           }
222           MachineInstr *DefMIToErase = nullptr;
223           if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
224             Changed = true;
225             NumRRConvertedInPreEmit++;
226             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
227             LLVM_DEBUG(MI.dump());
228             if (DefMIToErase) {
229               InstrsToErase.push_back(DefMIToErase);
230             }
231           }
232           if (TII->foldFrameOffset(MI)) {
233             Changed = true;
234             NumFrameOffFoldInPreEmit++;
235             LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
236             LLVM_DEBUG(MI.dump());
237           }
238         }
239 
240         // Eliminate conditional branch based on a constant CR bit by
241         // CRSET or CRUNSET. We eliminate the conditional branch or
242         // convert it into an unconditional branch. Also, if the CR bit
243         // is not used by other instructions, we eliminate CRSET as well.
244         auto I = MBB.getFirstInstrTerminator();
245         if (I == MBB.instr_end())
246           continue;
247         MachineInstr *Br = &*I;
248         if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
249           continue;
250         MachineInstr *CRSetMI = nullptr;
251         Register CRBit = Br->getOperand(0).getReg();
252         unsigned CRReg = getCRFromCRBit(CRBit);
253         bool SeenUse = false;
254         MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
255         for (It++; It != Er; It++) {
256           if (It->modifiesRegister(CRBit, TRI)) {
257             if ((It->getOpcode() == PPC::CRUNSET ||
258                  It->getOpcode() == PPC::CRSET) &&
259                 It->getOperand(0).getReg() == CRBit)
260               CRSetMI = &*It;
261             break;
262           }
263           if (It->readsRegister(CRBit, TRI))
264             SeenUse = true;
265         }
266         if (!CRSetMI) continue;
267 
268         unsigned CRSetOp = CRSetMI->getOpcode();
269         if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
270             (Br->getOpcode() == PPC::BC  && CRSetOp == PPC::CRUNSET)) {
271           // Remove this branch since it cannot be taken.
272           InstrsToErase.push_back(Br);
273           MBB.removeSuccessor(Br->getOperand(1).getMBB());
274         }
275         else {
276           // This conditional branch is always taken. So, remove all branches
277           // and insert an unconditional branch to the destination of this.
278           MachineBasicBlock::iterator It = Br, Er = MBB.end();
279           for (; It != Er; It++) {
280             if (It->isDebugInstr()) continue;
281             assert(It->isTerminator() && "Non-terminator after a terminator");
282             InstrsToErase.push_back(&*It);
283           }
284           if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
285             ArrayRef<MachineOperand> NoCond;
286             TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
287                               NoCond, Br->getDebugLoc());
288           }
289           for (auto &Succ : MBB.successors())
290             if (Succ != Br->getOperand(1).getMBB()) {
291               MBB.removeSuccessor(Succ);
292               break;
293             }
294         }
295 
296         // If the CRBit is not used by another instruction, we can eliminate
297         // CRSET/CRUNSET instruction.
298         if (!SeenUse) {
299           // We need to check use of the CRBit in successors.
300           for (auto &SuccMBB : MBB.successors())
301             if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
302               SeenUse = true;
303               break;
304             }
305           if (!SeenUse)
306             InstrsToErase.push_back(CRSetMI);
307         }
308       }
309       for (MachineInstr *MI : InstrsToErase) {
310         LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
311         LLVM_DEBUG(MI->dump());
312         MI->eraseFromParent();
313         NumRemovedInPreEmit++;
314       }
315       return Changed;
316     }
317   };
318 }
319 
320 INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
321                 false, false)
322 char PPCPreEmitPeephole::ID = 0;
323 
324 FunctionPass *llvm::createPPCPreEmitPeepholePass() {
325   return new PPCPreEmitPeephole();
326 }
327