1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A pre-emit peephole for catching opportunities introduced by late passes such 10 // as MachineBlockPlacement. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPC.h" 15 #include "PPCInstrInfo.h" 16 #include "PPCSubtarget.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/LivePhysRegs.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFunctionPass.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/RegisterScavenging.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "ppc-pre-emit-peephole" 31 32 STATISTIC(NumRRConvertedInPreEmit, 33 "Number of r+r instructions converted to r+i in pre-emit peephole"); 34 STATISTIC(NumRemovedInPreEmit, 35 "Number of instructions deleted in pre-emit peephole"); 36 STATISTIC(NumberOfSelfCopies, 37 "Number of self copy instructions eliminated"); 38 STATISTIC(NumFrameOffFoldInPreEmit, 39 "Number of folding frame offset by using r+r in pre-emit peephole"); 40 STATISTIC(NumCmpsInPreEmit, 41 "Number of compares eliminated in pre-emit peephole"); 42 43 static cl::opt<bool> 44 EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden, cl::init(true), 45 cl::desc("enable PC Relative linker optimization")); 46 47 static cl::opt<bool> 48 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true), 49 cl::desc("Run pre-emit peephole optimizations.")); 50 51 static cl::opt<uint64_t> 52 DSCRValue("ppc-set-dscr", cl::Hidden, 53 cl::desc("Set the Data Stream Control Register.")); 54 55 namespace { 56 57 static bool hasPCRelativeForm(MachineInstr &Use) { 58 switch (Use.getOpcode()) { 59 default: 60 return false; 61 case PPC::LBZ: 62 case PPC::LBZ8: 63 case PPC::LHA: 64 case PPC::LHA8: 65 case PPC::LHZ: 66 case PPC::LHZ8: 67 case PPC::LWZ: 68 case PPC::LWZ8: 69 case PPC::STB: 70 case PPC::STB8: 71 case PPC::STH: 72 case PPC::STH8: 73 case PPC::STW: 74 case PPC::STW8: 75 case PPC::LD: 76 case PPC::STD: 77 case PPC::LWA: 78 case PPC::LXSD: 79 case PPC::LXSSP: 80 case PPC::LXV: 81 case PPC::STXSD: 82 case PPC::STXSSP: 83 case PPC::STXV: 84 case PPC::LFD: 85 case PPC::LFS: 86 case PPC::STFD: 87 case PPC::STFS: 88 case PPC::DFLOADf32: 89 case PPC::DFLOADf64: 90 case PPC::DFSTOREf32: 91 case PPC::DFSTOREf64: 92 return true; 93 } 94 } 95 96 class PPCPreEmitPeephole : public MachineFunctionPass { 97 public: 98 static char ID; 99 PPCPreEmitPeephole() : MachineFunctionPass(ID) { 100 initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry()); 101 } 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 MachineFunctionPass::getAnalysisUsage(AU); 105 } 106 107 MachineFunctionProperties getRequiredProperties() const override { 108 return MachineFunctionProperties().set( 109 MachineFunctionProperties::Property::NoVRegs); 110 } 111 112 // This function removes any redundant load immediates. It has two level 113 // loops - The outer loop finds the load immediates BBI that could be used 114 // to replace following redundancy. The inner loop scans instructions that 115 // after BBI to find redundancy and update kill/dead flags accordingly. If 116 // AfterBBI is the same as BBI, it is redundant, otherwise any instructions 117 // that modify the def register of BBI would break the scanning. 118 // DeadOrKillToUnset is a pointer to the previous operand that had the 119 // kill/dead flag set. It keeps track of the def register of BBI, the use 120 // registers of AfterBBIs and the def registers of AfterBBIs. 121 bool removeRedundantLIs(MachineBasicBlock &MBB, 122 const TargetRegisterInfo *TRI) { 123 LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n"; 124 MBB.dump(); dbgs() << "\n"); 125 126 DenseSet<MachineInstr *> InstrsToErase; 127 for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) { 128 // Skip load immediate that is marked to be erased later because it 129 // cannot be used to replace any other instructions. 130 if (InstrsToErase.contains(&*BBI)) 131 continue; 132 // Skip non-load immediate. 133 unsigned Opc = BBI->getOpcode(); 134 if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS && 135 Opc != PPC::LIS8) 136 continue; 137 // Skip load immediate, where the operand is a relocation (e.g., $r3 = 138 // LI target-flags(ppc-lo) %const.0). 139 if (!BBI->getOperand(1).isImm()) 140 continue; 141 assert(BBI->getOperand(0).isReg() && 142 "Expected a register for the first operand"); 143 144 LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump();); 145 146 Register Reg = BBI->getOperand(0).getReg(); 147 int64_t Imm = BBI->getOperand(1).getImm(); 148 MachineOperand *DeadOrKillToUnset = nullptr; 149 if (BBI->getOperand(0).isDead()) { 150 DeadOrKillToUnset = &BBI->getOperand(0); 151 LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset 152 << " from load immediate " << *BBI 153 << " is a unsetting candidate\n"); 154 } 155 // This loop scans instructions after BBI to see if there is any 156 // redundant load immediate. 157 for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end(); 158 ++AfterBBI) { 159 // Track the operand that kill Reg. We would unset the kill flag of 160 // the operand if there is a following redundant load immediate. 161 int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, TRI, true); 162 163 // We can't just clear implicit kills, so if we encounter one, stop 164 // looking further. 165 if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) { 166 LLVM_DEBUG(dbgs() 167 << "Encountered an implicit kill, cannot proceed: "); 168 LLVM_DEBUG(AfterBBI->dump()); 169 break; 170 } 171 172 if (KillIdx != -1) { 173 assert(!DeadOrKillToUnset && "Shouldn't kill same register twice"); 174 DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx); 175 LLVM_DEBUG(dbgs() 176 << " Kill flag of " << *DeadOrKillToUnset << " from " 177 << *AfterBBI << " is a unsetting candidate\n"); 178 } 179 180 if (!AfterBBI->modifiesRegister(Reg, TRI)) 181 continue; 182 // Finish scanning because Reg is overwritten by a non-load 183 // instruction. 184 if (AfterBBI->getOpcode() != Opc) 185 break; 186 assert(AfterBBI->getOperand(0).isReg() && 187 "Expected a register for the first operand"); 188 // Finish scanning because Reg is overwritten by a relocation or a 189 // different value. 190 if (!AfterBBI->getOperand(1).isImm() || 191 AfterBBI->getOperand(1).getImm() != Imm) 192 break; 193 194 // It loads same immediate value to the same Reg, which is redundant. 195 // We would unset kill flag in previous Reg usage to extend live range 196 // of Reg first, then remove the redundancy. 197 if (DeadOrKillToUnset) { 198 LLVM_DEBUG(dbgs() 199 << " Unset dead/kill flag of " << *DeadOrKillToUnset 200 << " from " << *DeadOrKillToUnset->getParent()); 201 if (DeadOrKillToUnset->isDef()) 202 DeadOrKillToUnset->setIsDead(false); 203 else 204 DeadOrKillToUnset->setIsKill(false); 205 } 206 DeadOrKillToUnset = 207 AfterBBI->findRegisterDefOperand(Reg, TRI, true, true); 208 if (DeadOrKillToUnset) 209 LLVM_DEBUG(dbgs() 210 << " Dead flag of " << *DeadOrKillToUnset << " from " 211 << *AfterBBI << " is a unsetting candidate\n"); 212 InstrsToErase.insert(&*AfterBBI); 213 LLVM_DEBUG(dbgs() << " Remove redundant load immediate: "; 214 AfterBBI->dump()); 215 } 216 } 217 218 for (MachineInstr *MI : InstrsToErase) { 219 MI->eraseFromParent(); 220 } 221 NumRemovedInPreEmit += InstrsToErase.size(); 222 return !InstrsToErase.empty(); 223 } 224 225 // Check if this instruction is a PLDpc that is part of a GOT indirect 226 // access. 227 bool isGOTPLDpc(MachineInstr &Instr) { 228 if (Instr.getOpcode() != PPC::PLDpc) 229 return false; 230 231 // The result must be a register. 232 const MachineOperand &LoadedAddressReg = Instr.getOperand(0); 233 if (!LoadedAddressReg.isReg()) 234 return false; 235 236 // Make sure that this is a global symbol. 237 const MachineOperand &SymbolOp = Instr.getOperand(1); 238 if (!SymbolOp.isGlobal()) 239 return false; 240 241 // Finally return true only if the GOT flag is present. 242 return PPCInstrInfo::hasGOTFlag(SymbolOp.getTargetFlags()); 243 } 244 245 bool addLinkerOpt(MachineBasicBlock &MBB, const TargetRegisterInfo *TRI) { 246 MachineFunction *MF = MBB.getParent(); 247 // If the linker opt is disabled then just return. 248 if (!EnablePCRelLinkerOpt) 249 return false; 250 251 // Add this linker opt only if we are using PC Relative memops. 252 if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) 253 return false; 254 255 // Struct to keep track of one def/use pair for a GOT indirect access. 256 struct GOTDefUsePair { 257 MachineBasicBlock::iterator DefInst; 258 MachineBasicBlock::iterator UseInst; 259 Register DefReg; 260 Register UseReg; 261 bool StillValid; 262 }; 263 // Vector of def/ues pairs in this basic block. 264 SmallVector<GOTDefUsePair, 4> CandPairs; 265 SmallVector<GOTDefUsePair, 4> ValidPairs; 266 bool MadeChange = false; 267 268 // Run through all of the instructions in the basic block and try to 269 // collect potential pairs of GOT indirect access instructions. 270 for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) { 271 // Look for the initial GOT indirect load. 272 if (isGOTPLDpc(*BBI)) { 273 GOTDefUsePair CurrentPair{BBI, MachineBasicBlock::iterator(), 274 BBI->getOperand(0).getReg(), 275 PPC::NoRegister, true}; 276 CandPairs.push_back(CurrentPair); 277 continue; 278 } 279 280 // We haven't encountered any new PLD instructions, nothing to check. 281 if (CandPairs.empty()) 282 continue; 283 284 // Run through the candidate pairs and see if any of the registers 285 // defined in the PLD instructions are used by this instruction. 286 // Note: the size of CandPairs can change in the loop. 287 for (unsigned Idx = 0; Idx < CandPairs.size(); Idx++) { 288 GOTDefUsePair &Pair = CandPairs[Idx]; 289 // The instruction does not use or modify this PLD's def reg, 290 // ignore it. 291 if (!BBI->readsRegister(Pair.DefReg, TRI) && 292 !BBI->modifiesRegister(Pair.DefReg, TRI)) 293 continue; 294 295 // The use needs to be used in the address computation and not 296 // as the register being stored for a store. 297 const MachineOperand *UseOp = 298 hasPCRelativeForm(*BBI) ? &BBI->getOperand(2) : nullptr; 299 300 // Check for a valid use. 301 if (UseOp && UseOp->isReg() && UseOp->getReg() == Pair.DefReg && 302 UseOp->isUse() && UseOp->isKill()) { 303 Pair.UseInst = BBI; 304 Pair.UseReg = BBI->getOperand(0).getReg(); 305 ValidPairs.push_back(Pair); 306 } 307 CandPairs.erase(CandPairs.begin() + Idx); 308 } 309 } 310 311 // Go through all of the pairs and check for any more valid uses. 312 for (auto Pair = ValidPairs.begin(); Pair != ValidPairs.end(); Pair++) { 313 // We shouldn't be here if we don't have a valid pair. 314 assert(Pair->UseInst.isValid() && Pair->StillValid && 315 "Kept an invalid def/use pair for GOT PCRel opt"); 316 // We have found a potential pair. Search through the instructions 317 // between the def and the use to see if it is valid to mark this as a 318 // linker opt. 319 MachineBasicBlock::iterator BBI = Pair->DefInst; 320 ++BBI; 321 for (; BBI != Pair->UseInst; ++BBI) { 322 if (BBI->readsRegister(Pair->UseReg, TRI) || 323 BBI->modifiesRegister(Pair->UseReg, TRI)) { 324 Pair->StillValid = false; 325 break; 326 } 327 } 328 329 if (!Pair->StillValid) 330 continue; 331 332 // The load/store instruction that uses the address from the PLD will 333 // either use a register (for a store) or define a register (for the 334 // load). That register will be added as an implicit def to the PLD 335 // and as an implicit use on the second memory op. This is a precaution 336 // to prevent future passes from using that register between the two 337 // instructions. 338 MachineOperand ImplDef = 339 MachineOperand::CreateReg(Pair->UseReg, true, true); 340 MachineOperand ImplUse = 341 MachineOperand::CreateReg(Pair->UseReg, false, true); 342 Pair->DefInst->addOperand(ImplDef); 343 Pair->UseInst->addOperand(ImplUse); 344 345 // Create the symbol. 346 MCContext &Context = MF->getContext(); 347 MCSymbol *Symbol = Context.createNamedTempSymbol("pcrel"); 348 MachineOperand PCRelLabel = 349 MachineOperand::CreateMCSymbol(Symbol, PPCII::MO_PCREL_OPT_FLAG); 350 Pair->DefInst->addOperand(*MF, PCRelLabel); 351 Pair->UseInst->addOperand(*MF, PCRelLabel); 352 MadeChange |= true; 353 } 354 return MadeChange; 355 } 356 357 // This function removes redundant pairs of accumulator prime/unprime 358 // instructions. In some situations, it's possible the compiler inserts an 359 // accumulator prime instruction followed by an unprime instruction (e.g. 360 // when we store an accumulator after restoring it from a spill). If the 361 // accumulator is not used between the two, they can be removed. This 362 // function removes these redundant pairs from basic blocks. 363 // The algorithm is quite straightforward - every time we encounter a prime 364 // instruction, the primed register is added to a candidate set. Any use 365 // other than a prime removes the candidate from the set and any de-prime 366 // of a current candidate marks both the prime and de-prime for removal. 367 // This way we ensure we only remove prime/de-prime *pairs* with no 368 // intervening uses. 369 bool removeAccPrimeUnprime(MachineBasicBlock &MBB) { 370 DenseSet<MachineInstr *> InstrsToErase; 371 // Initially, none of the acc registers are candidates. 372 SmallVector<MachineInstr *, 8> Candidates( 373 PPC::UACCRCRegClass.getNumRegs(), nullptr); 374 375 for (MachineInstr &BBI : MBB.instrs()) { 376 unsigned Opc = BBI.getOpcode(); 377 // If we are visiting a xxmtacc instruction, we add it and its operand 378 // register to the candidate set. 379 if (Opc == PPC::XXMTACC) { 380 Register Acc = BBI.getOperand(0).getReg(); 381 assert(PPC::ACCRCRegClass.contains(Acc) && 382 "Unexpected register for XXMTACC"); 383 Candidates[Acc - PPC::ACC0] = &BBI; 384 } 385 // If we are visiting a xxmfacc instruction and its operand register is 386 // in the candidate set, we mark the two instructions for removal. 387 else if (Opc == PPC::XXMFACC) { 388 Register Acc = BBI.getOperand(0).getReg(); 389 assert(PPC::ACCRCRegClass.contains(Acc) && 390 "Unexpected register for XXMFACC"); 391 if (!Candidates[Acc - PPC::ACC0]) 392 continue; 393 InstrsToErase.insert(&BBI); 394 InstrsToErase.insert(Candidates[Acc - PPC::ACC0]); 395 } 396 // If we are visiting an instruction using an accumulator register 397 // as operand, we remove it from the candidate set. 398 else { 399 for (MachineOperand &Operand : BBI.operands()) { 400 if (!Operand.isReg()) 401 continue; 402 Register Reg = Operand.getReg(); 403 if (PPC::ACCRCRegClass.contains(Reg)) 404 Candidates[Reg - PPC::ACC0] = nullptr; 405 } 406 } 407 } 408 409 for (MachineInstr *MI : InstrsToErase) 410 MI->eraseFromParent(); 411 NumRemovedInPreEmit += InstrsToErase.size(); 412 return !InstrsToErase.empty(); 413 } 414 415 bool runOnMachineFunction(MachineFunction &MF) override { 416 // If the user wants to set the DSCR using command-line options, 417 // load in the specified value at the start of main. 418 if (DSCRValue.getNumOccurrences() > 0 && MF.getName() == "main" && 419 MF.getFunction().hasExternalLinkage()) { 420 DSCRValue = (uint32_t)(DSCRValue & 0x01FFFFFF); // 25-bit DSCR mask 421 RegScavenger RS; 422 MachineBasicBlock &MBB = MF.front(); 423 // Find an unused GPR according to register liveness 424 RS.enterBasicBlock(MBB); 425 unsigned InDSCR = RS.FindUnusedReg(&PPC::GPRCRegClass); 426 if (InDSCR) { 427 const PPCInstrInfo *TII = 428 MF.getSubtarget<PPCSubtarget>().getInstrInfo(); 429 DebugLoc dl; 430 MachineBasicBlock::iterator IP = MBB.begin(); // Insert Point 431 // Copy the 32-bit DSCRValue integer into the GPR InDSCR using LIS and 432 // ORI, then move to DSCR. If the requested DSCR value is contained 433 // in a 16-bit signed number, we can emit a single `LI`, but the 434 // impact of saving one instruction in one function does not warrant 435 // any additional complexity in the logic here. 436 BuildMI(MBB, IP, dl, TII->get(PPC::LIS), InDSCR) 437 .addImm(DSCRValue >> 16); 438 BuildMI(MBB, IP, dl, TII->get(PPC::ORI), InDSCR) 439 .addReg(InDSCR) 440 .addImm(DSCRValue & 0xFFFF); 441 BuildMI(MBB, IP, dl, TII->get(PPC::MTUDSCR)) 442 .addReg(InDSCR, RegState::Kill); 443 } else 444 errs() << "Warning: Ran out of registers - Unable to set DSCR as " 445 "requested"; 446 } 447 448 if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) { 449 // Remove UNENCODED_NOP even when this pass is disabled. 450 // This needs to be done unconditionally so we don't emit zeros 451 // in the instruction stream. 452 SmallVector<MachineInstr *, 4> InstrsToErase; 453 for (MachineBasicBlock &MBB : MF) 454 for (MachineInstr &MI : MBB) 455 if (MI.getOpcode() == PPC::UNENCODED_NOP) 456 InstrsToErase.push_back(&MI); 457 for (MachineInstr *MI : InstrsToErase) 458 MI->eraseFromParent(); 459 return false; 460 } 461 bool Changed = false; 462 const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo(); 463 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 464 SmallVector<MachineInstr *, 4> InstrsToErase; 465 for (MachineBasicBlock &MBB : MF) { 466 Changed |= removeRedundantLIs(MBB, TRI); 467 Changed |= addLinkerOpt(MBB, TRI); 468 Changed |= removeAccPrimeUnprime(MBB); 469 for (MachineInstr &MI : MBB) { 470 unsigned Opc = MI.getOpcode(); 471 if (Opc == PPC::UNENCODED_NOP) { 472 InstrsToErase.push_back(&MI); 473 continue; 474 } 475 // Detect self copies - these can result from running AADB. 476 if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) { 477 const MCInstrDesc &MCID = TII->get(Opc); 478 if (MCID.getNumOperands() == 3 && 479 MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 480 MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) { 481 NumberOfSelfCopies++; 482 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: "); 483 LLVM_DEBUG(MI.dump()); 484 InstrsToErase.push_back(&MI); 485 continue; 486 } 487 else if (MCID.getNumOperands() == 2 && 488 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { 489 NumberOfSelfCopies++; 490 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: "); 491 LLVM_DEBUG(MI.dump()); 492 InstrsToErase.push_back(&MI); 493 continue; 494 } 495 } 496 MachineInstr *DefMIToErase = nullptr; 497 SmallSet<Register, 4> UpdatedRegs; 498 if (TII->convertToImmediateForm(MI, UpdatedRegs, &DefMIToErase)) { 499 Changed = true; 500 NumRRConvertedInPreEmit++; 501 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: "); 502 LLVM_DEBUG(MI.dump()); 503 if (DefMIToErase) { 504 InstrsToErase.push_back(DefMIToErase); 505 } 506 } 507 if (TII->foldFrameOffset(MI)) { 508 Changed = true; 509 NumFrameOffFoldInPreEmit++; 510 LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: "); 511 LLVM_DEBUG(MI.dump()); 512 } 513 if (TII->optimizeCmpPostRA(MI)) { 514 Changed = true; 515 NumCmpsInPreEmit++; 516 LLVM_DEBUG(dbgs() << "Optimize compare by using record form: "); 517 LLVM_DEBUG(MI.dump()); 518 InstrsToErase.push_back(&MI); 519 } 520 } 521 522 // Eliminate conditional branch based on a constant CR bit by 523 // CRSET or CRUNSET. We eliminate the conditional branch or 524 // convert it into an unconditional branch. Also, if the CR bit 525 // is not used by other instructions, we eliminate CRSET as well. 526 auto I = MBB.getFirstInstrTerminator(); 527 if (I == MBB.instr_end()) 528 continue; 529 MachineInstr *Br = &*I; 530 if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn) 531 continue; 532 MachineInstr *CRSetMI = nullptr; 533 Register CRBit = Br->getOperand(0).getReg(); 534 unsigned CRReg = getCRFromCRBit(CRBit); 535 bool SeenUse = false; 536 MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend(); 537 for (It++; It != Er; It++) { 538 if (It->modifiesRegister(CRBit, TRI)) { 539 if ((It->getOpcode() == PPC::CRUNSET || 540 It->getOpcode() == PPC::CRSET) && 541 It->getOperand(0).getReg() == CRBit) 542 CRSetMI = &*It; 543 break; 544 } 545 if (It->readsRegister(CRBit, TRI)) 546 SeenUse = true; 547 } 548 if (!CRSetMI) continue; 549 550 unsigned CRSetOp = CRSetMI->getOpcode(); 551 if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) || 552 (Br->getOpcode() == PPC::BC && CRSetOp == PPC::CRUNSET)) { 553 // Remove this branch since it cannot be taken. 554 InstrsToErase.push_back(Br); 555 MBB.removeSuccessor(Br->getOperand(1).getMBB()); 556 } 557 else { 558 // This conditional branch is always taken. So, remove all branches 559 // and insert an unconditional branch to the destination of this. 560 MachineBasicBlock::iterator It = Br, Er = MBB.end(); 561 for (; It != Er; It++) { 562 if (It->isDebugInstr()) continue; 563 assert(It->isTerminator() && "Non-terminator after a terminator"); 564 InstrsToErase.push_back(&*It); 565 } 566 if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) { 567 ArrayRef<MachineOperand> NoCond; 568 TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr, 569 NoCond, Br->getDebugLoc()); 570 } 571 for (auto &Succ : MBB.successors()) 572 if (Succ != Br->getOperand(1).getMBB()) { 573 MBB.removeSuccessor(Succ); 574 break; 575 } 576 } 577 578 // If the CRBit is not used by another instruction, we can eliminate 579 // CRSET/CRUNSET instruction. 580 if (!SeenUse) { 581 // We need to check use of the CRBit in successors. 582 for (auto &SuccMBB : MBB.successors()) 583 if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) { 584 SeenUse = true; 585 break; 586 } 587 if (!SeenUse) 588 InstrsToErase.push_back(CRSetMI); 589 } 590 } 591 for (MachineInstr *MI : InstrsToErase) { 592 LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: "); 593 LLVM_DEBUG(MI->dump()); 594 MI->eraseFromParent(); 595 NumRemovedInPreEmit++; 596 } 597 return Changed; 598 } 599 }; 600 } 601 602 INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole", 603 false, false) 604 char PPCPreEmitPeephole::ID = 0; 605 606 FunctionPass *llvm::createPPCPreEmitPeepholePass() { 607 return new PPCPreEmitPeephole(); 608 } 609