xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCPreEmitPeephole.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pre-emit peephole for catching opportunities introduced by late passes such
10 // as MachineBlockPlacement.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPC.h"
15 #include "PPCInstrInfo.h"
16 #include "PPCSubtarget.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LivePhysRegs.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/RegisterScavenging.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "ppc-pre-emit-peephole"
32 
33 STATISTIC(NumRRConvertedInPreEmit,
34           "Number of r+r instructions converted to r+i in pre-emit peephole");
35 STATISTIC(NumRemovedInPreEmit,
36           "Number of instructions deleted in pre-emit peephole");
37 STATISTIC(NumberOfSelfCopies,
38           "Number of self copy instructions eliminated");
39 STATISTIC(NumFrameOffFoldInPreEmit,
40           "Number of folding frame offset by using r+r in pre-emit peephole");
41 STATISTIC(NumCmpsInPreEmit,
42           "Number of compares eliminated in pre-emit peephole");
43 
44 static cl::opt<bool>
45 EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden, cl::init(true),
46                      cl::desc("enable PC Relative linker optimization"));
47 
48 static cl::opt<bool>
49 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
50                    cl::desc("Run pre-emit peephole optimizations."));
51 
52 static cl::opt<uint64_t>
53 DSCRValue("ppc-set-dscr", cl::Hidden,
54           cl::desc("Set the Data Stream Control Register."));
55 
56 namespace {
57 
58 static bool hasPCRelativeForm(MachineInstr &Use) {
59   switch (Use.getOpcode()) {
60   default:
61     return false;
62   case PPC::LBZ:
63   case PPC::LBZ8:
64   case PPC::LHA:
65   case PPC::LHA8:
66   case PPC::LHZ:
67   case PPC::LHZ8:
68   case PPC::LWZ:
69   case PPC::LWZ8:
70   case PPC::STB:
71   case PPC::STB8:
72   case PPC::STH:
73   case PPC::STH8:
74   case PPC::STW:
75   case PPC::STW8:
76   case PPC::LD:
77   case PPC::STD:
78   case PPC::LWA:
79   case PPC::LXSD:
80   case PPC::LXSSP:
81   case PPC::LXV:
82   case PPC::STXSD:
83   case PPC::STXSSP:
84   case PPC::STXV:
85   case PPC::LFD:
86   case PPC::LFS:
87   case PPC::STFD:
88   case PPC::STFS:
89   case PPC::DFLOADf32:
90   case PPC::DFLOADf64:
91   case PPC::DFSTOREf32:
92   case PPC::DFSTOREf64:
93     return true;
94   }
95 }
96 
97   class PPCPreEmitPeephole : public MachineFunctionPass {
98   public:
99     static char ID;
100     PPCPreEmitPeephole() : MachineFunctionPass(ID) {
101       initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
102     }
103 
104     void getAnalysisUsage(AnalysisUsage &AU) const override {
105       MachineFunctionPass::getAnalysisUsage(AU);
106     }
107 
108     MachineFunctionProperties getRequiredProperties() const override {
109       return MachineFunctionProperties().set(
110           MachineFunctionProperties::Property::NoVRegs);
111     }
112 
113     // This function removes any redundant load immediates. It has two level
114     // loops - The outer loop finds the load immediates BBI that could be used
115     // to replace following redundancy. The inner loop scans instructions that
116     // after BBI to find redundancy and update kill/dead flags accordingly. If
117     // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
118     // that modify the def register of BBI would break the scanning.
119     // DeadOrKillToUnset is a pointer to the previous operand that had the
120     // kill/dead flag set. It keeps track of the def register of BBI, the use
121     // registers of AfterBBIs and the def registers of AfterBBIs.
122     bool removeRedundantLIs(MachineBasicBlock &MBB,
123                             const TargetRegisterInfo *TRI) {
124       LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
125                  MBB.dump(); dbgs() << "\n");
126 
127       DenseSet<MachineInstr *> InstrsToErase;
128       for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
129         // Skip load immediate that is marked to be erased later because it
130         // cannot be used to replace any other instructions.
131         if (InstrsToErase.contains(&*BBI))
132           continue;
133         // Skip non-load immediate.
134         unsigned Opc = BBI->getOpcode();
135         if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
136             Opc != PPC::LIS8)
137           continue;
138         // Skip load immediate, where the operand is a relocation (e.g., $r3 =
139         // LI target-flags(ppc-lo) %const.0).
140         if (!BBI->getOperand(1).isImm())
141           continue;
142         assert(BBI->getOperand(0).isReg() &&
143                "Expected a register for the first operand");
144 
145         LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
146 
147         Register Reg = BBI->getOperand(0).getReg();
148         int64_t Imm = BBI->getOperand(1).getImm();
149         MachineOperand *DeadOrKillToUnset = nullptr;
150         if (BBI->getOperand(0).isDead()) {
151           DeadOrKillToUnset = &BBI->getOperand(0);
152           LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
153                             << " from load immediate " << *BBI
154                             << " is a unsetting candidate\n");
155         }
156         // This loop scans instructions after BBI to see if there is any
157         // redundant load immediate.
158         for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
159              ++AfterBBI) {
160           // Track the operand that kill Reg. We would unset the kill flag of
161           // the operand if there is a following redundant load immediate.
162           int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
163 
164           // We can't just clear implicit kills, so if we encounter one, stop
165           // looking further.
166           if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) {
167             LLVM_DEBUG(dbgs()
168                        << "Encountered an implicit kill, cannot proceed: ");
169             LLVM_DEBUG(AfterBBI->dump());
170             break;
171           }
172 
173           if (KillIdx != -1) {
174             assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
175             DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
176             LLVM_DEBUG(dbgs()
177                        << " Kill flag of " << *DeadOrKillToUnset << " from "
178                        << *AfterBBI << " is a unsetting candidate\n");
179           }
180 
181           if (!AfterBBI->modifiesRegister(Reg, TRI))
182             continue;
183           // Finish scanning because Reg is overwritten by a non-load
184           // instruction.
185           if (AfterBBI->getOpcode() != Opc)
186             break;
187           assert(AfterBBI->getOperand(0).isReg() &&
188                  "Expected a register for the first operand");
189           // Finish scanning because Reg is overwritten by a relocation or a
190           // different value.
191           if (!AfterBBI->getOperand(1).isImm() ||
192               AfterBBI->getOperand(1).getImm() != Imm)
193             break;
194 
195           // It loads same immediate value to the same Reg, which is redundant.
196           // We would unset kill flag in previous Reg usage to extend live range
197           // of Reg first, then remove the redundancy.
198           if (DeadOrKillToUnset) {
199             LLVM_DEBUG(dbgs()
200                        << " Unset dead/kill flag of " << *DeadOrKillToUnset
201                        << " from " << *DeadOrKillToUnset->getParent());
202             if (DeadOrKillToUnset->isDef())
203               DeadOrKillToUnset->setIsDead(false);
204             else
205               DeadOrKillToUnset->setIsKill(false);
206           }
207           DeadOrKillToUnset =
208               AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
209           if (DeadOrKillToUnset)
210             LLVM_DEBUG(dbgs()
211                        << " Dead flag of " << *DeadOrKillToUnset << " from "
212                        << *AfterBBI << " is a unsetting candidate\n");
213           InstrsToErase.insert(&*AfterBBI);
214           LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
215                      AfterBBI->dump());
216         }
217       }
218 
219       for (MachineInstr *MI : InstrsToErase) {
220         MI->eraseFromParent();
221       }
222       NumRemovedInPreEmit += InstrsToErase.size();
223       return !InstrsToErase.empty();
224     }
225 
226     // Check if this instruction is a PLDpc that is part of a GOT indirect
227     // access.
228     bool isGOTPLDpc(MachineInstr &Instr) {
229       if (Instr.getOpcode() != PPC::PLDpc)
230         return false;
231 
232       // The result must be a register.
233       const MachineOperand &LoadedAddressReg = Instr.getOperand(0);
234       if (!LoadedAddressReg.isReg())
235         return false;
236 
237       // Make sure that this is a global symbol.
238       const MachineOperand &SymbolOp = Instr.getOperand(1);
239       if (!SymbolOp.isGlobal())
240         return false;
241 
242       // Finally return true only if the GOT flag is present.
243       return (SymbolOp.getTargetFlags() & PPCII::MO_GOT_FLAG);
244     }
245 
246     bool addLinkerOpt(MachineBasicBlock &MBB, const TargetRegisterInfo *TRI) {
247       MachineFunction *MF = MBB.getParent();
248       // If the linker opt is disabled then just return.
249       if (!EnablePCRelLinkerOpt)
250         return false;
251 
252       // Add this linker opt only if we are using PC Relative memops.
253       if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls())
254         return false;
255 
256       // Struct to keep track of one def/use pair for a GOT indirect access.
257       struct GOTDefUsePair {
258         MachineBasicBlock::iterator DefInst;
259         MachineBasicBlock::iterator UseInst;
260         Register DefReg;
261         Register UseReg;
262         bool StillValid;
263       };
264       // Vector of def/ues pairs in this basic block.
265       SmallVector<GOTDefUsePair, 4> CandPairs;
266       SmallVector<GOTDefUsePair, 4> ValidPairs;
267       bool MadeChange = false;
268 
269       // Run through all of the instructions in the basic block and try to
270       // collect potential pairs of GOT indirect access instructions.
271       for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
272         // Look for the initial GOT indirect load.
273         if (isGOTPLDpc(*BBI)) {
274           GOTDefUsePair CurrentPair{BBI, MachineBasicBlock::iterator(),
275                                     BBI->getOperand(0).getReg(),
276                                     PPC::NoRegister, true};
277           CandPairs.push_back(CurrentPair);
278           continue;
279         }
280 
281         // We haven't encountered any new PLD instructions, nothing to check.
282         if (CandPairs.empty())
283           continue;
284 
285         // Run through the candidate pairs and see if any of the registers
286         // defined in the PLD instructions are used by this instruction.
287         // Note: the size of CandPairs can change in the loop.
288         for (unsigned Idx = 0; Idx < CandPairs.size(); Idx++) {
289           GOTDefUsePair &Pair = CandPairs[Idx];
290           // The instruction does not use or modify this PLD's def reg,
291           // ignore it.
292           if (!BBI->readsRegister(Pair.DefReg, TRI) &&
293               !BBI->modifiesRegister(Pair.DefReg, TRI))
294             continue;
295 
296           // The use needs to be used in the address computation and not
297           // as the register being stored for a store.
298           const MachineOperand *UseOp =
299               hasPCRelativeForm(*BBI) ? &BBI->getOperand(2) : nullptr;
300 
301           // Check for a valid use.
302           if (UseOp && UseOp->isReg() && UseOp->getReg() == Pair.DefReg &&
303               UseOp->isUse() && UseOp->isKill()) {
304             Pair.UseInst = BBI;
305             Pair.UseReg = BBI->getOperand(0).getReg();
306             ValidPairs.push_back(Pair);
307           }
308           CandPairs.erase(CandPairs.begin() + Idx);
309         }
310       }
311 
312       // Go through all of the pairs and check for any more valid uses.
313       for (auto Pair = ValidPairs.begin(); Pair != ValidPairs.end(); Pair++) {
314         // We shouldn't be here if we don't have a valid pair.
315         assert(Pair->UseInst.isValid() && Pair->StillValid &&
316                "Kept an invalid def/use pair for GOT PCRel opt");
317         // We have found a potential pair. Search through the instructions
318         // between the def and the use to see if it is valid to mark this as a
319         // linker opt.
320         MachineBasicBlock::iterator BBI = Pair->DefInst;
321         ++BBI;
322         for (; BBI != Pair->UseInst; ++BBI) {
323           if (BBI->readsRegister(Pair->UseReg, TRI) ||
324               BBI->modifiesRegister(Pair->UseReg, TRI)) {
325             Pair->StillValid = false;
326             break;
327           }
328         }
329 
330         if (!Pair->StillValid)
331           continue;
332 
333         // The load/store instruction that uses the address from the PLD will
334         // either use a register (for a store) or define a register (for the
335         // load). That register will be added as an implicit def to the PLD
336         // and as an implicit use on the second memory op. This is a precaution
337         // to prevent future passes from using that register between the two
338         // instructions.
339         MachineOperand ImplDef =
340             MachineOperand::CreateReg(Pair->UseReg, true, true);
341         MachineOperand ImplUse =
342             MachineOperand::CreateReg(Pair->UseReg, false, true);
343         Pair->DefInst->addOperand(ImplDef);
344         Pair->UseInst->addOperand(ImplUse);
345 
346         // Create the symbol.
347         MCContext &Context = MF->getContext();
348         MCSymbol *Symbol = Context.createNamedTempSymbol("pcrel");
349         MachineOperand PCRelLabel =
350             MachineOperand::CreateMCSymbol(Symbol, PPCII::MO_PCREL_OPT_FLAG);
351         Pair->DefInst->addOperand(*MF, PCRelLabel);
352         Pair->UseInst->addOperand(*MF, PCRelLabel);
353         MadeChange |= true;
354       }
355       return MadeChange;
356     }
357 
358     // This function removes redundant pairs of accumulator prime/unprime
359     // instructions. In some situations, it's possible the compiler inserts an
360     // accumulator prime instruction followed by an unprime instruction (e.g.
361     // when we store an accumulator after restoring it from a spill). If the
362     // accumulator is not used between the two, they can be removed. This
363     // function removes these redundant pairs from basic blocks.
364     // The algorithm is quite straightforward - every time we encounter a prime
365     // instruction, the primed register is added to a candidate set. Any use
366     // other than a prime removes the candidate from the set and any de-prime
367     // of a current candidate marks both the prime and de-prime for removal.
368     // This way we ensure we only remove prime/de-prime *pairs* with no
369     // intervening uses.
370     bool removeAccPrimeUnprime(MachineBasicBlock &MBB) {
371       DenseSet<MachineInstr *> InstrsToErase;
372       // Initially, none of the acc registers are candidates.
373       SmallVector<MachineInstr *, 8> Candidates(
374           PPC::UACCRCRegClass.getNumRegs(), nullptr);
375 
376       for (MachineInstr &BBI : MBB.instrs()) {
377         unsigned Opc = BBI.getOpcode();
378         // If we are visiting a xxmtacc instruction, we add it and its operand
379         // register to the candidate set.
380         if (Opc == PPC::XXMTACC) {
381           Register Acc = BBI.getOperand(0).getReg();
382           assert(PPC::ACCRCRegClass.contains(Acc) &&
383                  "Unexpected register for XXMTACC");
384           Candidates[Acc - PPC::ACC0] = &BBI;
385         }
386         // If we are visiting a xxmfacc instruction and its operand register is
387         // in the candidate set, we mark the two instructions for removal.
388         else if (Opc == PPC::XXMFACC) {
389           Register Acc = BBI.getOperand(0).getReg();
390           assert(PPC::ACCRCRegClass.contains(Acc) &&
391                  "Unexpected register for XXMFACC");
392           if (!Candidates[Acc - PPC::ACC0])
393             continue;
394           InstrsToErase.insert(&BBI);
395           InstrsToErase.insert(Candidates[Acc - PPC::ACC0]);
396         }
397         // If we are visiting an instruction using an accumulator register
398         // as operand, we remove it from the candidate set.
399         else {
400           for (MachineOperand &Operand : BBI.operands()) {
401             if (!Operand.isReg())
402               continue;
403             Register Reg = Operand.getReg();
404             if (PPC::ACCRCRegClass.contains(Reg))
405               Candidates[Reg - PPC::ACC0] = nullptr;
406           }
407         }
408       }
409 
410       for (MachineInstr *MI : InstrsToErase)
411         MI->eraseFromParent();
412       NumRemovedInPreEmit += InstrsToErase.size();
413       return !InstrsToErase.empty();
414     }
415 
416     bool runOnMachineFunction(MachineFunction &MF) override {
417       // If the user wants to set the DSCR using command-line options,
418       // load in the specified value at the start of main.
419       if (DSCRValue.getNumOccurrences() > 0 && MF.getName().equals("main") &&
420           MF.getFunction().hasExternalLinkage()) {
421         DSCRValue = (uint32_t)(DSCRValue & 0x01FFFFFF); // 25-bit DSCR mask
422         RegScavenger RS;
423         MachineBasicBlock &MBB = MF.front();
424         // Find an unused GPR according to register liveness
425         RS.enterBasicBlock(MBB);
426         unsigned InDSCR = RS.FindUnusedReg(&PPC::GPRCRegClass);
427         if (InDSCR) {
428           const PPCInstrInfo *TII =
429               MF.getSubtarget<PPCSubtarget>().getInstrInfo();
430           DebugLoc dl;
431           MachineBasicBlock::iterator IP = MBB.begin(); // Insert Point
432           // Copy the 32-bit DSCRValue integer into the GPR InDSCR using LIS and
433           // ORI, then move to DSCR. If the requested DSCR value is contained
434           // in a 16-bit signed number, we can emit a single `LI`, but the
435           // impact of saving one instruction in one function does not warrant
436           // any additional complexity in the logic here.
437           BuildMI(MBB, IP, dl, TII->get(PPC::LIS), InDSCR)
438               .addImm(DSCRValue >> 16);
439           BuildMI(MBB, IP, dl, TII->get(PPC::ORI), InDSCR)
440               .addReg(InDSCR)
441               .addImm(DSCRValue & 0xFFFF);
442           BuildMI(MBB, IP, dl, TII->get(PPC::MTUDSCR))
443               .addReg(InDSCR, RegState::Kill);
444         } else
445           errs() << "Warning: Ran out of registers - Unable to set DSCR as "
446                     "requested";
447       }
448 
449       if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) {
450         // Remove UNENCODED_NOP even when this pass is disabled.
451         // This needs to be done unconditionally so we don't emit zeros
452         // in the instruction stream.
453         SmallVector<MachineInstr *, 4> InstrsToErase;
454         for (MachineBasicBlock &MBB : MF)
455           for (MachineInstr &MI : MBB)
456             if (MI.getOpcode() == PPC::UNENCODED_NOP)
457               InstrsToErase.push_back(&MI);
458         for (MachineInstr *MI : InstrsToErase)
459           MI->eraseFromParent();
460         return false;
461       }
462       bool Changed = false;
463       const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
464       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
465       SmallVector<MachineInstr *, 4> InstrsToErase;
466       for (MachineBasicBlock &MBB : MF) {
467         Changed |= removeRedundantLIs(MBB, TRI);
468         Changed |= addLinkerOpt(MBB, TRI);
469         Changed |= removeAccPrimeUnprime(MBB);
470         for (MachineInstr &MI : MBB) {
471           unsigned Opc = MI.getOpcode();
472           if (Opc == PPC::UNENCODED_NOP) {
473             InstrsToErase.push_back(&MI);
474             continue;
475           }
476           // Detect self copies - these can result from running AADB.
477           if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
478             const MCInstrDesc &MCID = TII->get(Opc);
479             if (MCID.getNumOperands() == 3 &&
480                 MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
481                 MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
482               NumberOfSelfCopies++;
483               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
484               LLVM_DEBUG(MI.dump());
485               InstrsToErase.push_back(&MI);
486               continue;
487             }
488             else if (MCID.getNumOperands() == 2 &&
489                      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
490               NumberOfSelfCopies++;
491               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
492               LLVM_DEBUG(MI.dump());
493               InstrsToErase.push_back(&MI);
494               continue;
495             }
496           }
497           MachineInstr *DefMIToErase = nullptr;
498           if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
499             Changed = true;
500             NumRRConvertedInPreEmit++;
501             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
502             LLVM_DEBUG(MI.dump());
503             if (DefMIToErase) {
504               InstrsToErase.push_back(DefMIToErase);
505             }
506           }
507           if (TII->foldFrameOffset(MI)) {
508             Changed = true;
509             NumFrameOffFoldInPreEmit++;
510             LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
511             LLVM_DEBUG(MI.dump());
512           }
513           if (TII->optimizeCmpPostRA(MI)) {
514             Changed = true;
515             NumCmpsInPreEmit++;
516             LLVM_DEBUG(dbgs() << "Optimize compare by using record form: ");
517             LLVM_DEBUG(MI.dump());
518             InstrsToErase.push_back(&MI);
519           }
520         }
521 
522         // Eliminate conditional branch based on a constant CR bit by
523         // CRSET or CRUNSET. We eliminate the conditional branch or
524         // convert it into an unconditional branch. Also, if the CR bit
525         // is not used by other instructions, we eliminate CRSET as well.
526         auto I = MBB.getFirstInstrTerminator();
527         if (I == MBB.instr_end())
528           continue;
529         MachineInstr *Br = &*I;
530         if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
531           continue;
532         MachineInstr *CRSetMI = nullptr;
533         Register CRBit = Br->getOperand(0).getReg();
534         unsigned CRReg = getCRFromCRBit(CRBit);
535         bool SeenUse = false;
536         MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
537         for (It++; It != Er; It++) {
538           if (It->modifiesRegister(CRBit, TRI)) {
539             if ((It->getOpcode() == PPC::CRUNSET ||
540                  It->getOpcode() == PPC::CRSET) &&
541                 It->getOperand(0).getReg() == CRBit)
542               CRSetMI = &*It;
543             break;
544           }
545           if (It->readsRegister(CRBit, TRI))
546             SeenUse = true;
547         }
548         if (!CRSetMI) continue;
549 
550         unsigned CRSetOp = CRSetMI->getOpcode();
551         if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
552             (Br->getOpcode() == PPC::BC  && CRSetOp == PPC::CRUNSET)) {
553           // Remove this branch since it cannot be taken.
554           InstrsToErase.push_back(Br);
555           MBB.removeSuccessor(Br->getOperand(1).getMBB());
556         }
557         else {
558           // This conditional branch is always taken. So, remove all branches
559           // and insert an unconditional branch to the destination of this.
560           MachineBasicBlock::iterator It = Br, Er = MBB.end();
561           for (; It != Er; It++) {
562             if (It->isDebugInstr()) continue;
563             assert(It->isTerminator() && "Non-terminator after a terminator");
564             InstrsToErase.push_back(&*It);
565           }
566           if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
567             ArrayRef<MachineOperand> NoCond;
568             TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
569                               NoCond, Br->getDebugLoc());
570           }
571           for (auto &Succ : MBB.successors())
572             if (Succ != Br->getOperand(1).getMBB()) {
573               MBB.removeSuccessor(Succ);
574               break;
575             }
576         }
577 
578         // If the CRBit is not used by another instruction, we can eliminate
579         // CRSET/CRUNSET instruction.
580         if (!SeenUse) {
581           // We need to check use of the CRBit in successors.
582           for (auto &SuccMBB : MBB.successors())
583             if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
584               SeenUse = true;
585               break;
586             }
587           if (!SeenUse)
588             InstrsToErase.push_back(CRSetMI);
589         }
590       }
591       for (MachineInstr *MI : InstrsToErase) {
592         LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
593         LLVM_DEBUG(MI->dump());
594         MI->eraseFromParent();
595         NumRemovedInPreEmit++;
596       }
597       return Changed;
598     }
599   };
600 }
601 
602 INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
603                 false, false)
604 char PPCPreEmitPeephole::ID = 0;
605 
606 FunctionPass *llvm::createPPCPreEmitPeepholePass() {
607   return new PPCPreEmitPeephole();
608 }
609