xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMacroFusion.cpp (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 //===- PPCMacroFusion.cpp - PowerPC Macro Fusion --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file contains the PowerPC implementation of the DAG scheduling
10 ///  mutation to pair instructions back to back.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPC.h"
15 #include "PPCSubtarget.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/CodeGen/MacroFusion.h"
18 
19 using namespace llvm;
20 namespace {
21 
22 class FusionFeature {
23 public:
24   typedef SmallDenseSet<unsigned> FusionOpSet;
25 
26   enum FusionKind {
27   #define FUSION_KIND(KIND) FK_##KIND
28   #define FUSION_FEATURE(KIND, HAS_FEATURE, DEP_OP_IDX, OPSET1, OPSET2) \
29     FUSION_KIND(KIND),
30   #include "PPCMacroFusion.def"
31   FUSION_KIND(END)
32   };
33 private:
34   // Each fusion feature is assigned with one fusion kind. All the
35   // instructions with the same fusion kind have the same fusion characteristic.
36   FusionKind Kd;
37   // True if this feature is enabled.
38   bool Supported;
39   // li rx, si
40   // load rt, ra, rx
41   // The dependent operand index in the second op(load). And the negative means
42   // it could be any one.
43   int DepOpIdx;
44   // The first fusion op set.
45   FusionOpSet OpSet1;
46   // The second fusion op set.
47   FusionOpSet OpSet2;
48 public:
49   FusionFeature(FusionKind Kind, bool HasFeature, int Index,
50                 const FusionOpSet &First, const FusionOpSet &Second) :
51     Kd(Kind), Supported(HasFeature), DepOpIdx(Index), OpSet1(First),
52     OpSet2(Second) {}
53 
54   bool hasOp1(unsigned Opc) const { return OpSet1.count(Opc) != 0; }
55   bool hasOp2(unsigned Opc) const { return OpSet2.count(Opc) != 0; }
56   bool isSupported() const { return Supported; }
57   Optional<unsigned> depOpIdx() const {
58     if (DepOpIdx < 0)
59       return None;
60     return DepOpIdx;
61   }
62 
63   FusionKind getKind() const { return Kd; }
64 };
65 
66 static bool matchingRegOps(const MachineInstr &FirstMI,
67                            int FirstMIOpIndex,
68                            const MachineInstr &SecondMI,
69                            int SecondMIOpIndex) {
70   const MachineOperand &Op1 = FirstMI.getOperand(FirstMIOpIndex);
71   const MachineOperand &Op2 = SecondMI.getOperand(SecondMIOpIndex);
72   if (!Op1.isReg() || !Op2.isReg())
73     return false;
74 
75   return Op1.getReg() == Op2.getReg();
76 }
77 
78 // Return true if the FirstMI meets the constraints of SecondMI according to
79 // fusion specification.
80 static bool checkOpConstraints(FusionFeature::FusionKind Kd,
81                                const MachineInstr &FirstMI,
82                                const MachineInstr &SecondMI) {
83   switch (Kd) {
84   // The hardware didn't require any specific check for the fused instructions'
85   // operands. Therefore, return true to indicate that, it is fusable.
86   default: return true;
87   // [addi rt,ra,si - lxvd2x xt,ra,rb] etc.
88   case FusionFeature::FK_AddiLoad: {
89     // lxvd2x(ra) cannot be zero
90     const MachineOperand &RA = SecondMI.getOperand(1);
91     if (!RA.isReg())
92       return true;
93 
94     return Register::isVirtualRegister(RA.getReg()) ||
95       (RA.getReg() != PPC::ZERO && RA.getReg() != PPC::ZERO8);
96   }
97   // [addis rt,ra,si - ld rt,ds(ra)] etc.
98   case FusionFeature::FK_AddisLoad: {
99     const MachineOperand &RT = SecondMI.getOperand(0);
100     if (!RT.isReg())
101       return true;
102 
103     // Only check it for non-virtual register.
104     if (!Register::isVirtualRegister(RT.getReg()))
105       // addis(rt) = ld(ra) = ld(rt)
106       // ld(rt) cannot be zero
107       if (!matchingRegOps(SecondMI, 0, SecondMI, 2) ||
108           (RT.getReg() == PPC::ZERO || RT.getReg() == PPC::ZERO8))
109           return false;
110 
111     // addis(si) first 12 bits must be all 1s or all 0s
112     const MachineOperand &SI = FirstMI.getOperand(2);
113     if (!SI.isImm())
114       return true;
115     int64_t Imm = SI.getImm();
116     if (((Imm & 0xFFF0) != 0) && ((Imm & 0xFFF0) != 0xFFF0))
117       return false;
118 
119     // If si = 1111111111110000 and the msb of the d/ds field of the load equals
120     // 1, then fusion does not occur.
121     if ((Imm & 0xFFF0) == 0xFFF0) {
122       const MachineOperand &D = SecondMI.getOperand(1);
123       if (!D.isImm())
124         return true;
125 
126       // 14 bit for DS field, while 16 bit for D field.
127       int MSB = 15;
128       if (SecondMI.getOpcode() == PPC::LD)
129         MSB = 13;
130 
131       return (D.getImm() & (1ULL << MSB)) == 0;
132     }
133     return true;
134   }
135   }
136 
137   llvm_unreachable("All the cases should have been handled");
138   return true;
139 }
140 
141 /// Check if the instr pair, FirstMI and SecondMI, should be fused together.
142 /// Given SecondMI, when FirstMI is unspecified, then check if SecondMI may be
143 /// part of a fused pair at all.
144 static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
145                                    const TargetSubtargetInfo &TSI,
146                                    const MachineInstr *FirstMI,
147                                    const MachineInstr &SecondMI) {
148   // We use the PPC namespace to avoid the need to prefix opcodes with PPC:: in
149   // the def file.
150   using namespace PPC;
151 
152   const PPCSubtarget &ST = static_cast<const PPCSubtarget&>(TSI);
153   static const FusionFeature FusionFeatures[] = {
154   #define FUSION_FEATURE(KIND, HAS_FEATURE, DEP_OP_IDX, OPSET1, OPSET2) { \
155     FusionFeature::FUSION_KIND(KIND), ST.HAS_FEATURE(), DEP_OP_IDX, { OPSET1 },\
156     { OPSET2 } },
157    #include "PPCMacroFusion.def"
158   };
159   #undef FUSION_KIND
160 
161   for (auto &Feature : FusionFeatures) {
162     // Skip if the feature is not supported.
163     if (!Feature.isSupported())
164       continue;
165 
166     // Only when the SecondMI is fusable, we are starting to look for the
167     // fusable FirstMI.
168     if (Feature.hasOp2(SecondMI.getOpcode())) {
169       // If FirstMI == nullptr, that means, we're only checking whether SecondMI
170       // can be fused at all.
171       if (!FirstMI)
172         return true;
173 
174       // Checking if the FirstMI is fusable with the SecondMI.
175       if (!Feature.hasOp1(FirstMI->getOpcode()))
176         continue;
177 
178       auto DepOpIdx = Feature.depOpIdx();
179       if (DepOpIdx.hasValue()) {
180         // Checking if the result of the FirstMI is the desired operand of the
181         // SecondMI if the DepOpIdx is set. Otherwise, ignore it.
182         if (!matchingRegOps(*FirstMI, 0, SecondMI, *DepOpIdx))
183           return false;
184       }
185 
186       // Checking more on the instruction operands.
187       if (checkOpConstraints(Feature.getKind(), *FirstMI, SecondMI))
188         return true;
189     }
190   }
191 
192   return false;
193 }
194 
195 } // end anonymous namespace
196 
197 namespace llvm {
198 
199 std::unique_ptr<ScheduleDAGMutation> createPowerPCMacroFusionDAGMutation () {
200   return createMacroFusionDAGMutation(shouldScheduleAdjacent);
201 }
202 
203 } // end namespace llvm
204