1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===---------------------------------------------------------------------===// 8 // 9 // This pass performs peephole optimizations to clean up ugly code 10 // sequences at the MachineInstruction layer. It runs at the end of 11 // the SSA phases, following VSX swap removal. A pass of dead code 12 // elimination follows this one for quick clean-up of any dead 13 // instructions introduced here. Although we could do this as callbacks 14 // from the generic peephole pass, this would have a couple of bad 15 // effects: it might remove optimization opportunities for VSX swap 16 // removal, and it would miss cleanups made possible following VSX 17 // swap removal. 18 // 19 // NOTE: We run the verifier after this pass in Asserts/Debug builds so it 20 // is important to keep the code valid after transformations. 21 // Common causes of errors stem from violating the contract specified 22 // by kill flags. Whenever a transformation changes the live range of 23 // a register, that register should be added to the work list using 24 // addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation 25 // is changing the definition of a register (i.e. removing the single 26 // definition of the original vreg), it needs to provide a dummy 27 // definition of that register using addDummyDef(<MBB>, <Reg>). 28 //===---------------------------------------------------------------------===// 29 30 #include "MCTargetDesc/PPCMCTargetDesc.h" 31 #include "MCTargetDesc/PPCPredicates.h" 32 #include "PPC.h" 33 #include "PPCInstrBuilder.h" 34 #include "PPCInstrInfo.h" 35 #include "PPCMachineFunctionInfo.h" 36 #include "PPCTargetMachine.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 40 #include "llvm/CodeGen/MachineDominators.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Support/Debug.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "ppc-mi-peepholes" 52 53 STATISTIC(RemoveTOCSave, "Number of TOC saves removed"); 54 STATISTIC(MultiTOCSaves, 55 "Number of functions with multiple TOC saves that must be kept"); 56 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue"); 57 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions"); 58 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions"); 59 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI"); 60 STATISTIC(NumConvertedToImmediateForm, 61 "Number of instructions converted to their immediate form"); 62 STATISTIC(NumFunctionsEnteredInMIPeephole, 63 "Number of functions entered in PPC MI Peepholes"); 64 STATISTIC(NumFixedPointIterations, 65 "Number of fixed-point iterations converting reg-reg instructions " 66 "to reg-imm ones"); 67 STATISTIC(NumRotatesCollapsed, 68 "Number of pairs of rotate left, clear left/right collapsed"); 69 STATISTIC(NumEXTSWAndSLDICombined, 70 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI"); 71 STATISTIC(NumLoadImmZeroFoldedAndRemoved, 72 "Number of LI(8) reg, 0 that are folded to r0 and removed"); 73 74 static cl::opt<bool> 75 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true), 76 cl::desc("Iterate to a fixed point when attempting to " 77 "convert reg-reg instructions to reg-imm")); 78 79 static cl::opt<bool> 80 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true), 81 cl::desc("Convert eligible reg+reg instructions to reg+imm")); 82 83 static cl::opt<bool> 84 EnableSExtElimination("ppc-eliminate-signext", 85 cl::desc("enable elimination of sign-extensions"), 86 cl::init(true), cl::Hidden); 87 88 static cl::opt<bool> 89 EnableZExtElimination("ppc-eliminate-zeroext", 90 cl::desc("enable elimination of zero-extensions"), 91 cl::init(true), cl::Hidden); 92 93 static cl::opt<bool> 94 EnableTrapOptimization("ppc-opt-conditional-trap", 95 cl::desc("enable optimization of conditional traps"), 96 cl::init(false), cl::Hidden); 97 98 namespace { 99 100 struct PPCMIPeephole : public MachineFunctionPass { 101 102 static char ID; 103 const PPCInstrInfo *TII; 104 MachineFunction *MF; 105 MachineRegisterInfo *MRI; 106 LiveVariables *LV; 107 108 PPCMIPeephole() : MachineFunctionPass(ID) { 109 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry()); 110 } 111 112 private: 113 MachineDominatorTree *MDT; 114 MachinePostDominatorTree *MPDT; 115 MachineBlockFrequencyInfo *MBFI; 116 BlockFrequency EntryFreq; 117 SmallSet<Register, 16> RegsToUpdate; 118 119 // Initialize class variables. 120 void initialize(MachineFunction &MFParm); 121 122 // Perform peepholes. 123 bool simplifyCode(); 124 125 // Perform peepholes. 126 bool eliminateRedundantCompare(); 127 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves); 128 bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase); 129 bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI, 130 MachineInstr *&ToErase); 131 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves, 132 MachineInstr *MI); 133 134 // A number of transformations will eliminate the definition of a register 135 // as all of its uses will be removed. However, this leaves a register 136 // without a definition for LiveVariables. Such transformations should 137 // use this function to provide a dummy definition of the register that 138 // will simply be removed by DCE. 139 void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) { 140 BuildMI(MBB, At, At->getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), Reg); 141 } 142 void addRegToUpdateWithLine(Register Reg, int Line); 143 void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI, 144 SmallVectorImpl<MachineInstr *> &PHIs, 145 Register Dst); 146 147 public: 148 149 void getAnalysisUsage(AnalysisUsage &AU) const override { 150 AU.addRequired<LiveVariables>(); 151 AU.addRequired<MachineDominatorTree>(); 152 AU.addRequired<MachinePostDominatorTree>(); 153 AU.addRequired<MachineBlockFrequencyInfo>(); 154 AU.addPreserved<LiveVariables>(); 155 AU.addPreserved<MachineDominatorTree>(); 156 AU.addPreserved<MachinePostDominatorTree>(); 157 AU.addPreserved<MachineBlockFrequencyInfo>(); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 // Main entry point for this pass. 162 bool runOnMachineFunction(MachineFunction &MF) override { 163 initialize(MF); 164 // At this point, TOC pointer should not be used in a function that uses 165 // PC-Relative addressing. 166 assert((MF.getRegInfo().use_empty(PPC::X2) || 167 !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) && 168 "TOC pointer used in a function using PC-Relative addressing!"); 169 if (skipFunction(MF.getFunction())) 170 return false; 171 bool Changed = simplifyCode(); 172 #ifndef NDEBUG 173 if (Changed) 174 MF.verify(this, "Error in PowerPC MI Peephole optimization, compile with " 175 "-mllvm -disable-ppc-peephole"); 176 #endif 177 return Changed; 178 } 179 }; 180 181 #define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__) 182 void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) { 183 if (!Register::isVirtualRegister(Reg)) 184 return; 185 if (RegsToUpdate.insert(Reg).second) 186 LLVM_DEBUG(dbgs() << "Adding register: " << Register::virtReg2Index(Reg) 187 << " on line " << Line 188 << " for re-computation of kill flags\n"); 189 } 190 191 // Initialize class variables. 192 void PPCMIPeephole::initialize(MachineFunction &MFParm) { 193 MF = &MFParm; 194 MRI = &MF->getRegInfo(); 195 MDT = &getAnalysis<MachineDominatorTree>(); 196 MPDT = &getAnalysis<MachinePostDominatorTree>(); 197 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 198 LV = &getAnalysis<LiveVariables>(); 199 EntryFreq = MBFI->getEntryFreq(); 200 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 201 RegsToUpdate.clear(); 202 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n"); 203 LLVM_DEBUG(MF->dump()); 204 } 205 206 static MachineInstr *getVRegDefOrNull(MachineOperand *Op, 207 MachineRegisterInfo *MRI) { 208 assert(Op && "Invalid Operand!"); 209 if (!Op->isReg()) 210 return nullptr; 211 212 Register Reg = Op->getReg(); 213 if (!Reg.isVirtual()) 214 return nullptr; 215 216 return MRI->getVRegDef(Reg); 217 } 218 219 // This function returns number of known zero bits in output of MI 220 // starting from the most significant bit. 221 static unsigned getKnownLeadingZeroCount(const unsigned Reg, 222 const PPCInstrInfo *TII, 223 const MachineRegisterInfo *MRI) { 224 MachineInstr *MI = MRI->getVRegDef(Reg); 225 unsigned Opcode = MI->getOpcode(); 226 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 227 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec) 228 return MI->getOperand(3).getImm(); 229 230 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 231 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) 232 return MI->getOperand(3).getImm(); 233 234 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 235 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 236 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 237 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 238 return 32 + MI->getOperand(3).getImm(); 239 240 if (Opcode == PPC::ANDI_rec) { 241 uint16_t Imm = MI->getOperand(2).getImm(); 242 return 48 + llvm::countl_zero(Imm); 243 } 244 245 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 246 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 247 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8) 248 // The result ranges from 0 to 32. 249 return 58; 250 251 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 252 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec) 253 // The result ranges from 0 to 64. 254 return 57; 255 256 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX || 257 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 258 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 259 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8) 260 return 48; 261 262 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX || 263 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 264 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 265 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8) 266 return 56; 267 268 if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec || 269 Opcode == PPC::AND8_rec) 270 return std::max( 271 getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI), 272 getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI)); 273 274 if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR || 275 Opcode == PPC::XOR8 || Opcode == PPC::OR_rec || 276 Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec || 277 Opcode == PPC::XOR8_rec) 278 return std::min( 279 getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI), 280 getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI)); 281 282 if (TII->isZeroExtended(Reg, MRI)) 283 return 32; 284 285 return 0; 286 } 287 288 // This function maintains a map for the pairs <TOC Save Instr, Keep> 289 // Each time a new TOC save is encountered, it checks if any of the existing 290 // ones are dominated by the new one. If so, it marks the existing one as 291 // redundant by setting it's entry in the map as false. It then adds the new 292 // instruction to the map with either true or false depending on if any 293 // existing instructions dominated the new one. 294 void PPCMIPeephole::UpdateTOCSaves( 295 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) { 296 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here"); 297 // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part, 298 // here only support it under ELFv2. 299 if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) { 300 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 301 302 MachineBasicBlock *Entry = &MF->front(); 303 BlockFrequency CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()); 304 305 // If the block in which the TOC save resides is in a block that 306 // post-dominates Entry, or a block that is hotter than entry (keep in mind 307 // that early MachineLICM has already run so the TOC save won't be hoisted) 308 // we can just do the save in the prologue. 309 if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry)) 310 FI->setMustSaveTOC(true); 311 312 // If we are saving the TOC in the prologue, all the TOC saves can be 313 // removed from the code. 314 if (FI->mustSaveTOC()) { 315 for (auto &TOCSave : TOCSaves) 316 TOCSave.second = false; 317 // Add new instruction to map. 318 TOCSaves[MI] = false; 319 return; 320 } 321 } 322 323 bool Keep = true; 324 for (auto &I : TOCSaves) { 325 MachineInstr *CurrInst = I.first; 326 // If new instruction dominates an existing one, mark existing one as 327 // redundant. 328 if (I.second && MDT->dominates(MI, CurrInst)) 329 I.second = false; 330 // Check if the new instruction is redundant. 331 if (MDT->dominates(CurrInst, MI)) { 332 Keep = false; 333 break; 334 } 335 } 336 // Add new instruction to map. 337 TOCSaves[MI] = Keep; 338 } 339 340 // This function returns a list of all PHI nodes in the tree starting from 341 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes. 342 // The list initially only contains the root PHI. When we visit a PHI node, we 343 // add it to the list. We continue to look for other PHI node operands while 344 // there are nodes to visit in the list. The function returns false if the 345 // optimization cannot be applied on this tree. 346 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI, 347 MachineInstr *RootPHI, 348 SmallVectorImpl<MachineInstr *> &PHIs) { 349 PHIs.push_back(RootPHI); 350 unsigned VisitedIndex = 0; 351 while (VisitedIndex < PHIs.size()) { 352 MachineInstr *VisitedPHI = PHIs[VisitedIndex]; 353 for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands(); 354 PHIOp != NumOps; PHIOp += 2) { 355 Register RegOp = VisitedPHI->getOperand(PHIOp).getReg(); 356 if (!RegOp.isVirtual()) 357 return false; 358 MachineInstr *Instr = MRI->getVRegDef(RegOp); 359 // While collecting the PHI nodes, we check if they can be converted (i.e. 360 // all the operands are either copies, implicit defs or PHI nodes). 361 unsigned Opcode = Instr->getOpcode(); 362 if (Opcode == PPC::COPY) { 363 Register Reg = Instr->getOperand(1).getReg(); 364 if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass) 365 return false; 366 } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI) 367 return false; 368 // If we detect a cycle in the PHI nodes, we exit. It would be 369 // possible to change cycles as well, but that would add a lot 370 // of complexity for a case that is unlikely to occur with MMA 371 // code. 372 if (Opcode != PPC::PHI) 373 continue; 374 if (llvm::is_contained(PHIs, Instr)) 375 return false; 376 PHIs.push_back(Instr); 377 } 378 VisitedIndex++; 379 } 380 return true; 381 } 382 383 // This function changes the unprimed accumulator PHI nodes in the PHIs list to 384 // primed accumulator PHI nodes. The list is traversed in reverse order to 385 // change all the PHI operands of a PHI node before changing the node itself. 386 // We keep a map to associate each changed PHI node to its non-changed form. 387 void PPCMIPeephole::convertUnprimedAccPHIs( 388 const PPCInstrInfo *TII, MachineRegisterInfo *MRI, 389 SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) { 390 DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap; 391 for (MachineInstr *PHI : llvm::reverse(PHIs)) { 392 SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps; 393 // We check if the current PHI node can be changed by looking at its 394 // operands. If all the operands are either copies from primed 395 // accumulators, implicit definitions or other unprimed accumulator 396 // PHI nodes, we change it. 397 for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps; 398 PHIOp += 2) { 399 Register RegOp = PHI->getOperand(PHIOp).getReg(); 400 MachineInstr *PHIInput = MRI->getVRegDef(RegOp); 401 unsigned Opcode = PHIInput->getOpcode(); 402 assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF || 403 Opcode == PPC::PHI) && 404 "Unexpected instruction"); 405 if (Opcode == PPC::COPY) { 406 assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) == 407 &PPC::ACCRCRegClass && 408 "Unexpected register class"); 409 PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)}); 410 } else if (Opcode == PPC::IMPLICIT_DEF) { 411 Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); 412 BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(), 413 TII->get(PPC::IMPLICIT_DEF), AccReg); 414 PHIOps.push_back({MachineOperand::CreateReg(AccReg, false), 415 PHI->getOperand(PHIOp + 1)}); 416 } else if (Opcode == PPC::PHI) { 417 // We found a PHI operand. At this point we know this operand 418 // has already been changed so we get its associated changed form 419 // from the map. 420 assert(ChangedPHIMap.count(PHIInput) == 1 && 421 "This PHI node should have already been changed."); 422 MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput); 423 PHIOps.push_back({MachineOperand::CreateReg( 424 PrimedAccPHI->getOperand(0).getReg(), false), 425 PHI->getOperand(PHIOp + 1)}); 426 } 427 } 428 Register AccReg = Dst; 429 // If the PHI node we are changing is the root node, the register it defines 430 // will be the destination register of the original copy (of the PHI def). 431 // For all other PHI's in the list, we need to create another primed 432 // accumulator virtual register as the PHI will no longer define the 433 // unprimed accumulator. 434 if (PHI != PHIs[0]) 435 AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); 436 MachineInstrBuilder NewPHI = BuildMI( 437 *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg); 438 for (auto RegMBB : PHIOps) { 439 NewPHI.add(RegMBB.first).add(RegMBB.second); 440 if (MRI->isSSA()) 441 addRegToUpdate(RegMBB.first.getReg()); 442 } 443 ChangedPHIMap[PHI] = NewPHI.getInstr(); 444 LLVM_DEBUG(dbgs() << "Converting PHI: "); 445 LLVM_DEBUG(PHI->dump()); 446 LLVM_DEBUG(dbgs() << "To: "); 447 LLVM_DEBUG(NewPHI.getInstr()->dump()); 448 } 449 } 450 451 // Perform peephole optimizations. 452 bool PPCMIPeephole::simplifyCode() { 453 bool Simplified = false; 454 bool TrapOpt = false; 455 MachineInstr* ToErase = nullptr; 456 std::map<MachineInstr *, bool> TOCSaves; 457 const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); 458 NumFunctionsEnteredInMIPeephole++; 459 if (ConvertRegReg) { 460 // Fixed-point conversion of reg/reg instructions fed by load-immediate 461 // into reg/imm instructions. FIXME: This is expensive, control it with 462 // an option. 463 bool SomethingChanged = false; 464 do { 465 NumFixedPointIterations++; 466 SomethingChanged = false; 467 for (MachineBasicBlock &MBB : *MF) { 468 for (MachineInstr &MI : MBB) { 469 if (MI.isDebugInstr()) 470 continue; 471 472 SmallSet<Register, 4> RRToRIRegsToUpdate; 473 if (!TII->convertToImmediateForm(MI, RRToRIRegsToUpdate)) 474 continue; 475 for (Register R : RRToRIRegsToUpdate) 476 addRegToUpdate(R); 477 // The updated instruction may now have new register operands. 478 // Conservatively add them to recompute the flags as well. 479 for (const MachineOperand &MO : MI.operands()) 480 if (MO.isReg()) 481 addRegToUpdate(MO.getReg()); 482 // We don't erase anything in case the def has other uses. Let DCE 483 // remove it if it can be removed. 484 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: "); 485 LLVM_DEBUG(MI.dump()); 486 NumConvertedToImmediateForm++; 487 SomethingChanged = true; 488 Simplified = true; 489 continue; 490 } 491 } 492 } while (SomethingChanged && FixedPointRegToImm); 493 } 494 495 // Since we are deleting this instruction, we need to run LiveVariables 496 // on any of its definitions that are marked as needing an update since 497 // we can't run LiveVariables on a deleted register. This only needs 498 // to be done for defs since uses will have their own defining 499 // instructions so we won't be running LiveVariables on a deleted reg. 500 auto recomputeLVForDyingInstr = [&]() { 501 if (RegsToUpdate.empty()) 502 return; 503 for (MachineOperand &MO : ToErase->operands()) { 504 if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(MO.getReg())) 505 continue; 506 Register RegToUpdate = MO.getReg(); 507 RegsToUpdate.erase(RegToUpdate); 508 // If some transformation has introduced an additional definition of 509 // this register (breaking SSA), we can safely convert this def to 510 // a def of an invalid register as the instruction is going away. 511 if (!MRI->getUniqueVRegDef(RegToUpdate)) 512 MO.setReg(PPC::NoRegister); 513 LV->recomputeForSingleDefVirtReg(RegToUpdate); 514 } 515 }; 516 517 for (MachineBasicBlock &MBB : *MF) { 518 for (MachineInstr &MI : MBB) { 519 520 // If the previous instruction was marked for elimination, 521 // remove it now. 522 if (ToErase) { 523 LLVM_DEBUG(dbgs() << "Deleting instruction: "); 524 LLVM_DEBUG(ToErase->dump()); 525 recomputeLVForDyingInstr(); 526 ToErase->eraseFromParent(); 527 ToErase = nullptr; 528 } 529 // If a conditional trap instruction got optimized to an 530 // unconditional trap, eliminate all the instructions after 531 // the trap. 532 if (EnableTrapOptimization && TrapOpt) { 533 ToErase = &MI; 534 continue; 535 } 536 537 // Ignore debug instructions. 538 if (MI.isDebugInstr()) 539 continue; 540 541 // Per-opcode peepholes. 542 switch (MI.getOpcode()) { 543 544 default: 545 break; 546 case PPC::COPY: { 547 Register Src = MI.getOperand(1).getReg(); 548 Register Dst = MI.getOperand(0).getReg(); 549 if (!Src.isVirtual() || !Dst.isVirtual()) 550 break; 551 if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass || 552 MRI->getRegClass(Dst) != &PPC::ACCRCRegClass) 553 break; 554 555 // We are copying an unprimed accumulator to a primed accumulator. 556 // If the input to the copy is a PHI that is fed only by (i) copies in 557 // the other direction (ii) implicitly defined unprimed accumulators or 558 // (iii) other PHI nodes satisfying (i) and (ii), we can change 559 // the PHI to a PHI on primed accumulators (as long as we also change 560 // its operands). To detect and change such copies, we first get a list 561 // of all the PHI nodes starting from the root PHI node in BFS order. 562 // We then visit all these PHI nodes to check if they can be changed to 563 // primed accumulator PHI nodes and if so, we change them. 564 MachineInstr *RootPHI = MRI->getVRegDef(Src); 565 if (RootPHI->getOpcode() != PPC::PHI) 566 break; 567 568 SmallVector<MachineInstr *, 4> PHIs; 569 if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs)) 570 break; 571 572 convertUnprimedAccPHIs(TII, MRI, PHIs, Dst); 573 574 ToErase = &MI; 575 break; 576 } 577 case PPC::LI: 578 case PPC::LI8: { 579 // If we are materializing a zero, look for any use operands for which 580 // zero means immediate zero. All such operands can be replaced with 581 // PPC::ZERO. 582 if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0) 583 break; 584 Register MIDestReg = MI.getOperand(0).getReg(); 585 bool Folded = false; 586 for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg)) 587 Folded |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg); 588 if (MRI->use_nodbg_empty(MIDestReg)) { 589 ++NumLoadImmZeroFoldedAndRemoved; 590 ToErase = &MI; 591 } 592 if (Folded) 593 addRegToUpdate(MIDestReg); 594 Simplified |= Folded; 595 break; 596 } 597 case PPC::STW: 598 case PPC::STD: { 599 MachineFrameInfo &MFI = MF->getFrameInfo(); 600 if (MFI.hasVarSizedObjects() || 601 (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() && 602 !MF->getSubtarget<PPCSubtarget>().isAIXABI())) 603 break; 604 // When encountering a TOC save instruction, call UpdateTOCSaves 605 // to add it to the TOCSaves map and mark any existing TOC saves 606 // it dominates as redundant. 607 if (TII->isTOCSaveMI(MI)) 608 UpdateTOCSaves(TOCSaves, &MI); 609 break; 610 } 611 case PPC::XXPERMDI: { 612 // Perform simplifications of 2x64 vector swaps and splats. 613 // A swap is identified by an immediate value of 2, and a splat 614 // is identified by an immediate value of 0 or 3. 615 int Immed = MI.getOperand(3).getImm(); 616 617 if (Immed == 1) 618 break; 619 620 // For each of these simplifications, we need the two source 621 // regs to match. Unfortunately, MachineCSE ignores COPY and 622 // SUBREG_TO_REG, so for example we can see 623 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed. 624 // We have to look through chains of COPY and SUBREG_TO_REG 625 // to find the real source values for comparison. 626 Register TrueReg1 = 627 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); 628 Register TrueReg2 = 629 TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI); 630 631 if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual())) 632 break; 633 634 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1); 635 636 if (!DefMI) 637 break; 638 639 unsigned DefOpc = DefMI->getOpcode(); 640 641 // If this is a splat fed by a splatting load, the splat is 642 // redundant. Replace with a copy. This doesn't happen directly due 643 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting 644 // a load of a double to a vector of 64-bit integers. 645 auto isConversionOfLoadAndSplat = [=]() -> bool { 646 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) 647 return false; 648 Register FeedReg1 = 649 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); 650 if (FeedReg1.isVirtual()) { 651 MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1); 652 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) 653 return true; 654 } 655 return false; 656 }; 657 if ((Immed == 0 || Immed == 3) && 658 (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) { 659 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat " 660 "to load-and-splat/copy: "); 661 LLVM_DEBUG(MI.dump()); 662 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 663 MI.getOperand(0).getReg()) 664 .add(MI.getOperand(1)); 665 addRegToUpdate(MI.getOperand(1).getReg()); 666 ToErase = &MI; 667 Simplified = true; 668 } 669 670 // If this is a splat or a swap fed by another splat, we 671 // can replace it with a copy. 672 if (DefOpc == PPC::XXPERMDI) { 673 Register DefReg1 = DefMI->getOperand(1).getReg(); 674 Register DefReg2 = DefMI->getOperand(2).getReg(); 675 unsigned DefImmed = DefMI->getOperand(3).getImm(); 676 677 // If the two inputs are not the same register, check to see if 678 // they originate from the same virtual register after only 679 // copy-like instructions. 680 if (DefReg1 != DefReg2) { 681 Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI); 682 Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI); 683 684 if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual())) 685 break; 686 } 687 688 if (DefImmed == 0 || DefImmed == 3) { 689 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat " 690 "to splat/copy: "); 691 LLVM_DEBUG(MI.dump()); 692 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 693 MI.getOperand(0).getReg()) 694 .add(MI.getOperand(1)); 695 addRegToUpdate(MI.getOperand(1).getReg()); 696 ToErase = &MI; 697 Simplified = true; 698 } 699 700 // If this is a splat fed by a swap, we can simplify modify 701 // the splat to splat the other value from the swap's input 702 // parameter. 703 else if ((Immed == 0 || Immed == 3) && DefImmed == 2) { 704 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: "); 705 LLVM_DEBUG(MI.dump()); 706 addRegToUpdate(MI.getOperand(1).getReg()); 707 addRegToUpdate(MI.getOperand(2).getReg()); 708 MI.getOperand(1).setReg(DefReg1); 709 MI.getOperand(2).setReg(DefReg2); 710 MI.getOperand(3).setImm(3 - Immed); 711 addRegToUpdate(DefReg1); 712 addRegToUpdate(DefReg2); 713 Simplified = true; 714 } 715 716 // If this is a swap fed by a swap, we can replace it 717 // with a copy from the first swap's input. 718 else if (Immed == 2 && DefImmed == 2) { 719 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: "); 720 LLVM_DEBUG(MI.dump()); 721 addRegToUpdate(MI.getOperand(1).getReg()); 722 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 723 MI.getOperand(0).getReg()) 724 .add(DefMI->getOperand(1)); 725 addRegToUpdate(DefMI->getOperand(0).getReg()); 726 addRegToUpdate(DefMI->getOperand(1).getReg()); 727 ToErase = &MI; 728 Simplified = true; 729 } 730 } else if ((Immed == 0 || Immed == 3 || Immed == 2) && 731 DefOpc == PPC::XXPERMDIs && 732 (DefMI->getOperand(2).getImm() == 0 || 733 DefMI->getOperand(2).getImm() == 3)) { 734 ToErase = &MI; 735 Simplified = true; 736 // Swap of a splat, convert to copy. 737 if (Immed == 2) { 738 LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): "); 739 LLVM_DEBUG(MI.dump()); 740 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 741 MI.getOperand(0).getReg()) 742 .add(MI.getOperand(1)); 743 addRegToUpdate(MI.getOperand(1).getReg()); 744 break; 745 } 746 // Splat fed by another splat - switch the output of the first 747 // and remove the second. 748 DefMI->getOperand(0).setReg(MI.getOperand(0).getReg()); 749 LLVM_DEBUG(dbgs() << "Removing redundant splat: "); 750 LLVM_DEBUG(MI.dump()); 751 } else if (Immed == 2 && 752 (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH || 753 DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW || 754 DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH || 755 DefOpc == PPC::VSPLTISW)) { 756 // Swap of various vector splats, convert to copy. 757 ToErase = &MI; 758 Simplified = true; 759 LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => " 760 "copy(vsplt(is)?[b|h|w]|xxspltw): "); 761 LLVM_DEBUG(MI.dump()); 762 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 763 MI.getOperand(0).getReg()) 764 .add(MI.getOperand(1)); 765 addRegToUpdate(MI.getOperand(1).getReg()); 766 } else if ((Immed == 0 || Immed == 3 || Immed == 2) && 767 TII->isLoadFromConstantPool(DefMI)) { 768 const Constant *C = TII->getConstantFromConstantPool(DefMI); 769 if (C && C->getType()->isVectorTy() && C->getSplatValue()) { 770 ToErase = &MI; 771 Simplified = true; 772 LLVM_DEBUG(dbgs() 773 << "Optimizing swap(splat pattern from constant-pool) " 774 "=> copy(splat pattern from constant-pool): "); 775 LLVM_DEBUG(MI.dump()); 776 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 777 MI.getOperand(0).getReg()) 778 .add(MI.getOperand(1)); 779 addRegToUpdate(MI.getOperand(1).getReg()); 780 } 781 } 782 break; 783 } 784 case PPC::VSPLTB: 785 case PPC::VSPLTH: 786 case PPC::XXSPLTW: { 787 unsigned MyOpcode = MI.getOpcode(); 788 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; 789 Register TrueReg = 790 TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI); 791 if (!TrueReg.isVirtual()) 792 break; 793 MachineInstr *DefMI = MRI->getVRegDef(TrueReg); 794 if (!DefMI) 795 break; 796 unsigned DefOpcode = DefMI->getOpcode(); 797 auto isConvertOfSplat = [=]() -> bool { 798 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) 799 return false; 800 Register ConvReg = DefMI->getOperand(1).getReg(); 801 if (!ConvReg.isVirtual()) 802 return false; 803 MachineInstr *Splt = MRI->getVRegDef(ConvReg); 804 return Splt && (Splt->getOpcode() == PPC::LXVWSX || 805 Splt->getOpcode() == PPC::XXSPLTW); 806 }; 807 bool AlreadySplat = (MyOpcode == DefOpcode) || 808 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || 809 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || 810 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || 811 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || 812 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| 813 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); 814 // If the instruction[s] that feed this splat have already splat 815 // the value, this splat is redundant. 816 if (AlreadySplat) { 817 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: "); 818 LLVM_DEBUG(MI.dump()); 819 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 820 MI.getOperand(0).getReg()) 821 .add(MI.getOperand(OpNo)); 822 addRegToUpdate(MI.getOperand(OpNo).getReg()); 823 ToErase = &MI; 824 Simplified = true; 825 } 826 // Splat fed by a shift. Usually when we align value to splat into 827 // vector element zero. 828 if (DefOpcode == PPC::XXSLDWI) { 829 Register ShiftRes = DefMI->getOperand(0).getReg(); 830 Register ShiftOp1 = DefMI->getOperand(1).getReg(); 831 Register ShiftOp2 = DefMI->getOperand(2).getReg(); 832 unsigned ShiftImm = DefMI->getOperand(3).getImm(); 833 unsigned SplatImm = 834 MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm(); 835 if (ShiftOp1 == ShiftOp2) { 836 unsigned NewElem = (SplatImm + ShiftImm) & 0x3; 837 if (MRI->hasOneNonDBGUse(ShiftRes)) { 838 LLVM_DEBUG(dbgs() << "Removing redundant shift: "); 839 LLVM_DEBUG(DefMI->dump()); 840 ToErase = DefMI; 841 } 842 Simplified = true; 843 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm 844 << " to " << NewElem << " in instruction: "); 845 LLVM_DEBUG(MI.dump()); 846 addRegToUpdate(MI.getOperand(OpNo).getReg()); 847 addRegToUpdate(ShiftOp1); 848 MI.getOperand(OpNo).setReg(ShiftOp1); 849 MI.getOperand(2).setImm(NewElem); 850 } 851 } 852 break; 853 } 854 case PPC::XVCVDPSP: { 855 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. 856 Register TrueReg = 857 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); 858 if (!TrueReg.isVirtual()) 859 break; 860 MachineInstr *DefMI = MRI->getVRegDef(TrueReg); 861 862 // This can occur when building a vector of single precision or integer 863 // values. 864 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { 865 Register DefsReg1 = 866 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); 867 Register DefsReg2 = 868 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI); 869 if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual()) 870 break; 871 MachineInstr *P1 = MRI->getVRegDef(DefsReg1); 872 MachineInstr *P2 = MRI->getVRegDef(DefsReg2); 873 874 if (!P1 || !P2) 875 break; 876 877 // Remove the passed FRSP/XSRSP instruction if it only feeds this MI 878 // and set any uses of that FRSP/XSRSP (in this MI) to the source of 879 // the FRSP/XSRSP. 880 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { 881 unsigned Opc = RoundInstr->getOpcode(); 882 if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) && 883 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) { 884 Simplified = true; 885 Register ConvReg1 = RoundInstr->getOperand(1).getReg(); 886 Register FRSPDefines = RoundInstr->getOperand(0).getReg(); 887 MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines)); 888 for (int i = 0, e = Use.getNumOperands(); i < e; ++i) 889 if (Use.getOperand(i).isReg() && 890 Use.getOperand(i).getReg() == FRSPDefines) 891 Use.getOperand(i).setReg(ConvReg1); 892 LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n"); 893 LLVM_DEBUG(RoundInstr->dump()); 894 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n"); 895 LLVM_DEBUG(MI.dump()); 896 LLVM_DEBUG(dbgs() << "Through instruction:\n"); 897 LLVM_DEBUG(DefMI->dump()); 898 addRegToUpdate(ConvReg1); 899 addRegToUpdate(FRSPDefines); 900 ToErase = RoundInstr; 901 } 902 }; 903 904 // If the input to XVCVDPSP is a vector that was built (even 905 // partially) out of FRSP's, the FRSP(s) can safely be removed 906 // since this instruction performs the same operation. 907 if (P1 != P2) { 908 removeFRSPIfPossible(P1); 909 removeFRSPIfPossible(P2); 910 break; 911 } 912 removeFRSPIfPossible(P1); 913 } 914 break; 915 } 916 case PPC::EXTSH: 917 case PPC::EXTSH8: 918 case PPC::EXTSH8_32_64: { 919 if (!EnableSExtElimination) break; 920 Register NarrowReg = MI.getOperand(1).getReg(); 921 if (!NarrowReg.isVirtual()) 922 break; 923 924 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); 925 unsigned SrcOpcode = SrcMI->getOpcode(); 926 // If we've used a zero-extending load that we will sign-extend, 927 // just do a sign-extending load. 928 if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) { 929 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) 930 break; 931 // Determine the new opcode. We need to make sure that if the original 932 // instruction has a 64 bit opcode we keep using a 64 bit opcode. 933 // Likewise if the source is X-Form the new opcode should also be 934 // X-Form. 935 unsigned Opc = PPC::LHA; 936 bool SourceIsXForm = SrcOpcode == PPC::LHZX; 937 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 || 938 MI.getOpcode() == PPC::EXTSH8_32_64; 939 940 if (SourceIsXForm && MIIs64Bit) 941 Opc = PPC::LHAX8; 942 else if (SourceIsXForm && !MIIs64Bit) 943 Opc = PPC::LHAX; 944 else if (MIIs64Bit) 945 Opc = PPC::LHA8; 946 947 addRegToUpdate(NarrowReg); 948 addRegToUpdate(MI.getOperand(0).getReg()); 949 950 // We are removing a definition of NarrowReg which will cause 951 // problems in AliveBlocks. Add an implicit def that will be 952 // removed so that AliveBlocks are updated correctly. 953 addDummyDef(MBB, &MI, NarrowReg); 954 LLVM_DEBUG(dbgs() << "Zero-extending load\n"); 955 LLVM_DEBUG(SrcMI->dump()); 956 LLVM_DEBUG(dbgs() << "and sign-extension\n"); 957 LLVM_DEBUG(MI.dump()); 958 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); 959 SrcMI->setDesc(TII->get(Opc)); 960 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); 961 ToErase = &MI; 962 Simplified = true; 963 NumEliminatedSExt++; 964 } 965 break; 966 } 967 case PPC::EXTSW: 968 case PPC::EXTSW_32: 969 case PPC::EXTSW_32_64: { 970 if (!EnableSExtElimination) break; 971 Register NarrowReg = MI.getOperand(1).getReg(); 972 if (!NarrowReg.isVirtual()) 973 break; 974 975 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); 976 unsigned SrcOpcode = SrcMI->getOpcode(); 977 // If we've used a zero-extending load that we will sign-extend, 978 // just do a sign-extending load. 979 if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) { 980 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) 981 break; 982 983 // The transformation from a zero-extending load to a sign-extending 984 // load is only legal when the displacement is a multiple of 4. 985 // If the displacement is not at least 4 byte aligned, don't perform 986 // the transformation. 987 bool IsWordAligned = false; 988 if (SrcMI->getOperand(1).isGlobal()) { 989 const GlobalObject *GO = 990 dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal()); 991 if (GO && GO->getAlign() && *GO->getAlign() >= 4 && 992 (SrcMI->getOperand(1).getOffset() % 4 == 0)) 993 IsWordAligned = true; 994 } else if (SrcMI->getOperand(1).isImm()) { 995 int64_t Value = SrcMI->getOperand(1).getImm(); 996 if (Value % 4 == 0) 997 IsWordAligned = true; 998 } 999 1000 // Determine the new opcode. We need to make sure that if the original 1001 // instruction has a 64 bit opcode we keep using a 64 bit opcode. 1002 // Likewise if the source is X-Form the new opcode should also be 1003 // X-Form. 1004 unsigned Opc = PPC::LWA_32; 1005 bool SourceIsXForm = SrcOpcode == PPC::LWZX; 1006 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW || 1007 MI.getOpcode() == PPC::EXTSW_32_64; 1008 1009 if (SourceIsXForm && MIIs64Bit) 1010 Opc = PPC::LWAX; 1011 else if (SourceIsXForm && !MIIs64Bit) 1012 Opc = PPC::LWAX_32; 1013 else if (MIIs64Bit) 1014 Opc = PPC::LWA; 1015 1016 if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32)) 1017 break; 1018 1019 addRegToUpdate(NarrowReg); 1020 addRegToUpdate(MI.getOperand(0).getReg()); 1021 1022 // We are removing a definition of NarrowReg which will cause 1023 // problems in AliveBlocks. Add an implicit def that will be 1024 // removed so that AliveBlocks are updated correctly. 1025 addDummyDef(MBB, &MI, NarrowReg); 1026 LLVM_DEBUG(dbgs() << "Zero-extending load\n"); 1027 LLVM_DEBUG(SrcMI->dump()); 1028 LLVM_DEBUG(dbgs() << "and sign-extension\n"); 1029 LLVM_DEBUG(MI.dump()); 1030 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); 1031 SrcMI->setDesc(TII->get(Opc)); 1032 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); 1033 ToErase = &MI; 1034 Simplified = true; 1035 NumEliminatedSExt++; 1036 } else if (MI.getOpcode() == PPC::EXTSW_32_64 && 1037 TII->isSignExtended(NarrowReg, MRI)) { 1038 // We can eliminate EXTSW if the input is known to be already 1039 // sign-extended. 1040 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n"); 1041 Register TmpReg = 1042 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); 1043 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), 1044 TmpReg); 1045 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG), 1046 MI.getOperand(0).getReg()) 1047 .addReg(TmpReg) 1048 .addReg(NarrowReg) 1049 .addImm(PPC::sub_32); 1050 ToErase = &MI; 1051 Simplified = true; 1052 NumEliminatedSExt++; 1053 } 1054 break; 1055 } 1056 case PPC::RLDICL: { 1057 // We can eliminate RLDICL (e.g. for zero-extension) 1058 // if all bits to clear are already zero in the input. 1059 // This code assume following code sequence for zero-extension. 1060 // %6 = COPY %5:sub_32; (optional) 1061 // %8 = IMPLICIT_DEF; 1062 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32; 1063 if (!EnableZExtElimination) break; 1064 1065 if (MI.getOperand(2).getImm() != 0) 1066 break; 1067 1068 Register SrcReg = MI.getOperand(1).getReg(); 1069 if (!SrcReg.isVirtual()) 1070 break; 1071 1072 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 1073 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG && 1074 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg())) 1075 break; 1076 1077 MachineInstr *ImpDefMI, *SubRegMI; 1078 ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg()); 1079 SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg()); 1080 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break; 1081 1082 SrcMI = SubRegMI; 1083 if (SubRegMI->getOpcode() == PPC::COPY) { 1084 Register CopyReg = SubRegMI->getOperand(1).getReg(); 1085 if (CopyReg.isVirtual()) 1086 SrcMI = MRI->getVRegDef(CopyReg); 1087 } 1088 if (!SrcMI->getOperand(0).isReg()) 1089 break; 1090 1091 unsigned KnownZeroCount = 1092 getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI); 1093 if (MI.getOperand(3).getImm() <= KnownZeroCount) { 1094 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n"); 1095 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 1096 MI.getOperand(0).getReg()) 1097 .addReg(SrcReg); 1098 addRegToUpdate(SrcReg); 1099 ToErase = &MI; 1100 Simplified = true; 1101 NumEliminatedZExt++; 1102 } 1103 break; 1104 } 1105 1106 // TODO: Any instruction that has an immediate form fed only by a PHI 1107 // whose operands are all load immediate can be folded away. We currently 1108 // do this for ADD instructions, but should expand it to arithmetic and 1109 // binary instructions with immediate forms in the future. 1110 case PPC::ADD4: 1111 case PPC::ADD8: { 1112 auto isSingleUsePHI = [&](MachineOperand *PhiOp) { 1113 assert(PhiOp && "Invalid Operand!"); 1114 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); 1115 1116 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) && 1117 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg()); 1118 }; 1119 1120 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp, 1121 MachineOperand *PhiOp) { 1122 assert(PhiOp && "Invalid Operand!"); 1123 assert(DominatorOp && "Invalid Operand!"); 1124 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); 1125 MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI); 1126 1127 // Note: the vregs only show up at odd indices position of PHI Node, 1128 // the even indices position save the BB info. 1129 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { 1130 MachineInstr *LiMI = 1131 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); 1132 if (!LiMI || 1133 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8) 1134 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) || 1135 !MDT->dominates(DefDomMI, LiMI)) 1136 return false; 1137 } 1138 1139 return true; 1140 }; 1141 1142 MachineOperand Op1 = MI.getOperand(1); 1143 MachineOperand Op2 = MI.getOperand(2); 1144 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2)) 1145 std::swap(Op1, Op2); 1146 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1)) 1147 break; // We don't have an ADD fed by LI's that can be transformed 1148 1149 // Now we know that Op1 is the PHI node and Op2 is the dominator 1150 Register DominatorReg = Op2.getReg(); 1151 1152 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8 1153 ? &PPC::G8RC_and_G8RC_NOX0RegClass 1154 : &PPC::GPRC_and_GPRC_NOR0RegClass; 1155 MRI->setRegClass(DominatorReg, TRC); 1156 1157 // replace LIs with ADDIs 1158 MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI); 1159 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { 1160 MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); 1161 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: "); 1162 LLVM_DEBUG(LiMI->dump()); 1163 1164 // There could be repeated registers in the PHI, e.g: %1 = 1165 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've 1166 // already replaced the def instruction, skip. 1167 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8) 1168 continue; 1169 1170 assert((LiMI->getOpcode() == PPC::LI || 1171 LiMI->getOpcode() == PPC::LI8) && 1172 "Invalid Opcode!"); 1173 auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI 1174 LiMI->removeOperand(1); // remove the imm of LI 1175 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI 1176 : PPC::ADDI8)); 1177 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI) 1178 .addReg(DominatorReg) 1179 .addImm(LiImm); // restore the imm of LI 1180 LLVM_DEBUG(LiMI->dump()); 1181 } 1182 1183 // Replace ADD with COPY 1184 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: "); 1185 LLVM_DEBUG(MI.dump()); 1186 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 1187 MI.getOperand(0).getReg()) 1188 .add(Op1); 1189 addRegToUpdate(Op1.getReg()); 1190 addRegToUpdate(Op2.getReg()); 1191 ToErase = &MI; 1192 Simplified = true; 1193 NumOptADDLIs++; 1194 break; 1195 } 1196 case PPC::RLDICR: { 1197 Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) || 1198 combineSEXTAndSHL(MI, ToErase); 1199 break; 1200 } 1201 case PPC::ANDI_rec: 1202 case PPC::ANDI8_rec: 1203 case PPC::ANDIS_rec: 1204 case PPC::ANDIS8_rec: { 1205 Register TrueReg = 1206 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); 1207 if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(TrueReg)) 1208 break; 1209 1210 MachineInstr *SrcMI = MRI->getVRegDef(TrueReg); 1211 if (!SrcMI) 1212 break; 1213 1214 unsigned SrcOpCode = SrcMI->getOpcode(); 1215 if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR) 1216 break; 1217 1218 Register SrcReg, DstReg; 1219 SrcReg = SrcMI->getOperand(1).getReg(); 1220 DstReg = MI.getOperand(1).getReg(); 1221 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg); 1222 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DstReg); 1223 if (DstRC != SrcRC) 1224 break; 1225 1226 uint64_t AndImm = MI.getOperand(2).getImm(); 1227 if (MI.getOpcode() == PPC::ANDIS_rec || 1228 MI.getOpcode() == PPC::ANDIS8_rec) 1229 AndImm <<= 16; 1230 uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(AndImm); 1231 uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(AndImm); 1232 uint64_t ImmSrc = SrcMI->getOperand(3).getImm(); 1233 1234 // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0` 1235 // if all bits to AND are already zero in the input. 1236 bool PatternResultZero = 1237 (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) || 1238 (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc); 1239 1240 // We can eliminate RLDICL/RLDICR if it's used to clear bits and all 1241 // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec. 1242 bool PatternRemoveRotate = 1243 SrcMI->getOperand(2).getImm() == 0 && 1244 ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) || 1245 (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63))); 1246 1247 if (!PatternResultZero && !PatternRemoveRotate) 1248 break; 1249 1250 LLVM_DEBUG(dbgs() << "Combining pair: "); 1251 LLVM_DEBUG(SrcMI->dump()); 1252 LLVM_DEBUG(MI.dump()); 1253 if (PatternResultZero) 1254 MI.getOperand(2).setImm(0); 1255 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 1256 LLVM_DEBUG(dbgs() << "To: "); 1257 LLVM_DEBUG(MI.dump()); 1258 addRegToUpdate(MI.getOperand(1).getReg()); 1259 addRegToUpdate(SrcMI->getOperand(0).getReg()); 1260 Simplified = true; 1261 break; 1262 } 1263 case PPC::RLWINM: 1264 case PPC::RLWINM_rec: 1265 case PPC::RLWINM8: 1266 case PPC::RLWINM8_rec: { 1267 // We might replace operand 1 of the instruction which will 1268 // require we recompute kill flags for it. 1269 Register OrigOp1Reg = MI.getOperand(1).isReg() 1270 ? MI.getOperand(1).getReg() 1271 : PPC::NoRegister; 1272 Simplified = TII->combineRLWINM(MI, &ToErase); 1273 if (Simplified) { 1274 addRegToUpdate(OrigOp1Reg); 1275 if (MI.getOperand(1).isReg()) 1276 addRegToUpdate(MI.getOperand(1).getReg()); 1277 ++NumRotatesCollapsed; 1278 } 1279 break; 1280 } 1281 // We will replace TD/TW/TDI/TWI with an unconditional trap if it will 1282 // always trap, we will delete the node if it will never trap. 1283 case PPC::TDI: 1284 case PPC::TWI: 1285 case PPC::TD: 1286 case PPC::TW: { 1287 if (!EnableTrapOptimization) break; 1288 MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI); 1289 MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI); 1290 bool IsOperand2Immediate = MI.getOperand(2).isImm(); 1291 // We can only do the optimization if we can get immediates 1292 // from both operands 1293 if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI || 1294 LiMI1->getOpcode() == PPC::LI8))) 1295 break; 1296 if (!IsOperand2Immediate && 1297 !(LiMI2 && (LiMI2->getOpcode() == PPC::LI || 1298 LiMI2->getOpcode() == PPC::LI8))) 1299 break; 1300 1301 auto ImmOperand0 = MI.getOperand(0).getImm(); 1302 auto ImmOperand1 = LiMI1->getOperand(1).getImm(); 1303 auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm() 1304 : LiMI2->getOperand(1).getImm(); 1305 1306 // We will replace the MI with an unconditional trap if it will always 1307 // trap. 1308 if ((ImmOperand0 == 31) || 1309 ((ImmOperand0 & 0x10) && 1310 ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) || 1311 ((ImmOperand0 & 0x8) && 1312 ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) || 1313 ((ImmOperand0 & 0x2) && 1314 ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) || 1315 ((ImmOperand0 & 0x1) && 1316 ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) || 1317 ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) { 1318 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP)); 1319 TrapOpt = true; 1320 } 1321 // We will delete the MI if it will never trap. 1322 ToErase = &MI; 1323 Simplified = true; 1324 break; 1325 } 1326 } 1327 } 1328 1329 // If the last instruction was marked for elimination, 1330 // remove it now. 1331 if (ToErase) { 1332 recomputeLVForDyingInstr(); 1333 ToErase->eraseFromParent(); 1334 ToErase = nullptr; 1335 } 1336 // Reset TrapOpt to false at the end of the basic block. 1337 if (EnableTrapOptimization) 1338 TrapOpt = false; 1339 } 1340 1341 // Eliminate all the TOC save instructions which are redundant. 1342 Simplified |= eliminateRedundantTOCSaves(TOCSaves); 1343 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 1344 if (FI->mustSaveTOC()) 1345 NumTOCSavesInPrologue++; 1346 1347 // We try to eliminate redundant compare instruction. 1348 Simplified |= eliminateRedundantCompare(); 1349 1350 // If we have made any modifications and added any registers to the set of 1351 // registers for which we need to update the kill flags, do so by recomputing 1352 // LiveVariables for those registers. 1353 for (Register Reg : RegsToUpdate) { 1354 if (!MRI->reg_empty(Reg)) 1355 LV->recomputeForSingleDefVirtReg(Reg); 1356 } 1357 return Simplified; 1358 } 1359 1360 // helper functions for eliminateRedundantCompare 1361 static bool isEqOrNe(MachineInstr *BI) { 1362 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); 1363 unsigned PredCond = PPC::getPredicateCondition(Pred); 1364 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE); 1365 } 1366 1367 static bool isSupportedCmpOp(unsigned opCode) { 1368 return (opCode == PPC::CMPLD || opCode == PPC::CMPD || 1369 opCode == PPC::CMPLW || opCode == PPC::CMPW || 1370 opCode == PPC::CMPLDI || opCode == PPC::CMPDI || 1371 opCode == PPC::CMPLWI || opCode == PPC::CMPWI); 1372 } 1373 1374 static bool is64bitCmpOp(unsigned opCode) { 1375 return (opCode == PPC::CMPLD || opCode == PPC::CMPD || 1376 opCode == PPC::CMPLDI || opCode == PPC::CMPDI); 1377 } 1378 1379 static bool isSignedCmpOp(unsigned opCode) { 1380 return (opCode == PPC::CMPD || opCode == PPC::CMPW || 1381 opCode == PPC::CMPDI || opCode == PPC::CMPWI); 1382 } 1383 1384 static unsigned getSignedCmpOpCode(unsigned opCode) { 1385 if (opCode == PPC::CMPLD) return PPC::CMPD; 1386 if (opCode == PPC::CMPLW) return PPC::CMPW; 1387 if (opCode == PPC::CMPLDI) return PPC::CMPDI; 1388 if (opCode == PPC::CMPLWI) return PPC::CMPWI; 1389 return opCode; 1390 } 1391 1392 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or 1393 // (LT x) to (LE x-1) 1394 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) { 1395 uint64_t Imm = CMPI->getOperand(2).getImm(); 1396 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); 1397 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000)) 1398 return 0; 1399 1400 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); 1401 unsigned PredCond = PPC::getPredicateCondition(Pred); 1402 unsigned PredHint = PPC::getPredicateHint(Pred); 1403 if (PredCond == PPC::PRED_GE) 1404 return PPC::getPredicate(PPC::PRED_GT, PredHint); 1405 if (PredCond == PPC::PRED_LT) 1406 return PPC::getPredicate(PPC::PRED_LE, PredHint); 1407 1408 return 0; 1409 } 1410 1411 // We can increment immediate x in (GT x) by changing it to (GE x+1) or 1412 // (LE x) to (LT x+1) 1413 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) { 1414 uint64_t Imm = CMPI->getOperand(2).getImm(); 1415 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); 1416 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF)) 1417 return 0; 1418 1419 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); 1420 unsigned PredCond = PPC::getPredicateCondition(Pred); 1421 unsigned PredHint = PPC::getPredicateHint(Pred); 1422 if (PredCond == PPC::PRED_GT) 1423 return PPC::getPredicate(PPC::PRED_GE, PredHint); 1424 if (PredCond == PPC::PRED_LE) 1425 return PPC::getPredicate(PPC::PRED_LT, PredHint); 1426 1427 return 0; 1428 } 1429 1430 // This takes a Phi node and returns a register value for the specified BB. 1431 static unsigned getIncomingRegForBlock(MachineInstr *Phi, 1432 MachineBasicBlock *MBB) { 1433 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) { 1434 MachineOperand &MO = Phi->getOperand(I); 1435 if (MO.getMBB() == MBB) 1436 return Phi->getOperand(I-1).getReg(); 1437 } 1438 llvm_unreachable("invalid src basic block for this Phi node\n"); 1439 return 0; 1440 } 1441 1442 // This function tracks the source of the register through register copy. 1443 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2 1444 // assuming that the control comes from BB1 into BB2. 1445 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1, 1446 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) { 1447 unsigned SrcReg = Reg; 1448 while (true) { 1449 unsigned NextReg = SrcReg; 1450 MachineInstr *Inst = MRI->getVRegDef(SrcReg); 1451 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) { 1452 NextReg = getIncomingRegForBlock(Inst, BB1); 1453 // We track through PHI only once to avoid infinite loop. 1454 BB1 = nullptr; 1455 } 1456 else if (Inst->isFullCopy()) 1457 NextReg = Inst->getOperand(1).getReg(); 1458 if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg)) 1459 break; 1460 SrcReg = NextReg; 1461 } 1462 return SrcReg; 1463 } 1464 1465 static bool eligibleForCompareElimination(MachineBasicBlock &MBB, 1466 MachineBasicBlock *&PredMBB, 1467 MachineBasicBlock *&MBBtoMoveCmp, 1468 MachineRegisterInfo *MRI) { 1469 1470 auto isEligibleBB = [&](MachineBasicBlock &BB) { 1471 auto BII = BB.getFirstInstrTerminator(); 1472 // We optimize BBs ending with a conditional branch. 1473 // We check only for BCC here, not BCCLR, because BCCLR 1474 // will be formed only later in the pipeline. 1475 if (BB.succ_size() == 2 && 1476 BII != BB.instr_end() && 1477 (*BII).getOpcode() == PPC::BCC && 1478 (*BII).getOperand(1).isReg()) { 1479 // We optimize only if the condition code is used only by one BCC. 1480 Register CndReg = (*BII).getOperand(1).getReg(); 1481 if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg)) 1482 return false; 1483 1484 MachineInstr *CMPI = MRI->getVRegDef(CndReg); 1485 // We assume compare and branch are in the same BB for ease of analysis. 1486 if (CMPI->getParent() != &BB) 1487 return false; 1488 1489 // We skip this BB if a physical register is used in comparison. 1490 for (MachineOperand &MO : CMPI->operands()) 1491 if (MO.isReg() && !MO.getReg().isVirtual()) 1492 return false; 1493 1494 return true; 1495 } 1496 return false; 1497 }; 1498 1499 // If this BB has more than one successor, we can create a new BB and 1500 // move the compare instruction in the new BB. 1501 // So far, we do not move compare instruction to a BB having multiple 1502 // successors to avoid potentially increasing code size. 1503 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) { 1504 return BB.succ_size() == 1; 1505 }; 1506 1507 if (!isEligibleBB(MBB)) 1508 return false; 1509 1510 unsigned NumPredBBs = MBB.pred_size(); 1511 if (NumPredBBs == 1) { 1512 MachineBasicBlock *TmpMBB = *MBB.pred_begin(); 1513 if (isEligibleBB(*TmpMBB)) { 1514 PredMBB = TmpMBB; 1515 MBBtoMoveCmp = nullptr; 1516 return true; 1517 } 1518 } 1519 else if (NumPredBBs == 2) { 1520 // We check for partially redundant case. 1521 // So far, we support cases with only two predecessors 1522 // to avoid increasing the number of instructions. 1523 MachineBasicBlock::pred_iterator PI = MBB.pred_begin(); 1524 MachineBasicBlock *Pred1MBB = *PI; 1525 MachineBasicBlock *Pred2MBB = *(PI+1); 1526 1527 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) { 1528 // We assume Pred1MBB is the BB containing the compare to be merged and 1529 // Pred2MBB is the BB to which we will append a compare instruction. 1530 // Proceed as is if Pred1MBB is different from MBB. 1531 } 1532 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) { 1533 // We need to swap Pred1MBB and Pred2MBB to canonicalize. 1534 std::swap(Pred1MBB, Pred2MBB); 1535 } 1536 else return false; 1537 1538 if (Pred1MBB == &MBB) 1539 return false; 1540 1541 // Here, Pred2MBB is the BB to which we need to append a compare inst. 1542 // We cannot move the compare instruction if operands are not available 1543 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI). 1544 MachineInstr *BI = &*MBB.getFirstInstrTerminator(); 1545 MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg()); 1546 for (int I = 1; I <= 2; I++) 1547 if (CMPI->getOperand(I).isReg()) { 1548 MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg()); 1549 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI) 1550 return false; 1551 } 1552 1553 PredMBB = Pred1MBB; 1554 MBBtoMoveCmp = Pred2MBB; 1555 return true; 1556 } 1557 1558 return false; 1559 } 1560 1561 // This function will iterate over the input map containing a pair of TOC save 1562 // instruction and a flag. The flag will be set to false if the TOC save is 1563 // proven redundant. This function will erase from the basic block all the TOC 1564 // saves marked as redundant. 1565 bool PPCMIPeephole::eliminateRedundantTOCSaves( 1566 std::map<MachineInstr *, bool> &TOCSaves) { 1567 bool Simplified = false; 1568 int NumKept = 0; 1569 for (auto TOCSave : TOCSaves) { 1570 if (!TOCSave.second) { 1571 TOCSave.first->eraseFromParent(); 1572 RemoveTOCSave++; 1573 Simplified = true; 1574 } else { 1575 NumKept++; 1576 } 1577 } 1578 1579 if (NumKept > 1) 1580 MultiTOCSaves++; 1581 1582 return Simplified; 1583 } 1584 1585 // If multiple conditional branches are executed based on the (essentially) 1586 // same comparison, we merge compare instructions into one and make multiple 1587 // conditional branches on this comparison. 1588 // For example, 1589 // if (a == 0) { ... } 1590 // else if (a < 0) { ... } 1591 // can be executed by one compare and two conditional branches instead of 1592 // two pairs of a compare and a conditional branch. 1593 // 1594 // This method merges two compare instructions in two MBBs and modifies the 1595 // compare and conditional branch instructions if needed. 1596 // For the above example, the input for this pass looks like: 1597 // cmplwi r3, 0 1598 // beq 0, .LBB0_3 1599 // cmpwi r3, -1 1600 // bgt 0, .LBB0_4 1601 // So, before merging two compares, we need to modify these instructions as 1602 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq 1603 // beq 0, .LBB0_3 1604 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0 1605 // bge 0, .LBB0_4 1606 1607 bool PPCMIPeephole::eliminateRedundantCompare() { 1608 bool Simplified = false; 1609 1610 for (MachineBasicBlock &MBB2 : *MF) { 1611 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr; 1612 1613 // For fully redundant case, we select two basic blocks MBB1 and MBB2 1614 // as an optimization target if 1615 // - both MBBs end with a conditional branch, 1616 // - MBB1 is the only predecessor of MBB2, and 1617 // - compare does not take a physical register as a operand in both MBBs. 1618 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr. 1619 // 1620 // As partially redundant case, we additionally handle if MBB2 has one 1621 // additional predecessor, which has only one successor (MBB2). 1622 // In this case, we move the compare instruction originally in MBB2 into 1623 // MBBtoMoveCmp. This partially redundant case is typically appear by 1624 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader. 1625 // 1626 // Overview of CFG of related basic blocks 1627 // Fully redundant case Partially redundant case 1628 // -------- ---------------- -------- 1629 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ) 1630 // -------- ---------------- -------- 1631 // | \ (w/ 1 succ) \ | \ 1632 // | \ \ | \ 1633 // | \ | 1634 // -------- -------- 1635 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred 1636 // -------- and 2 succ) -------- and 2 succ) 1637 // | \ | \ 1638 // | \ | \ 1639 // 1640 if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI)) 1641 continue; 1642 1643 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator(); 1644 MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg()); 1645 1646 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator(); 1647 MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg()); 1648 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr); 1649 1650 // We cannot optimize an unsupported compare opcode or 1651 // a mix of 32-bit and 64-bit comparisons 1652 if (!isSupportedCmpOp(CMPI1->getOpcode()) || 1653 !isSupportedCmpOp(CMPI2->getOpcode()) || 1654 is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode())) 1655 continue; 1656 1657 unsigned NewOpCode = 0; 1658 unsigned NewPredicate1 = 0, NewPredicate2 = 0; 1659 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0; 1660 bool SwapOperands = false; 1661 1662 if (CMPI1->getOpcode() != CMPI2->getOpcode()) { 1663 // Typically, unsigned comparison is used for equality check, but 1664 // we replace it with a signed comparison if the comparison 1665 // to be merged is a signed comparison. 1666 // In other cases of opcode mismatch, we cannot optimize this. 1667 1668 // We cannot change opcode when comparing against an immediate 1669 // if the most significant bit of the immediate is one 1670 // due to the difference in sign extension. 1671 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) { 1672 if (!I->getOperand(2).isImm()) 1673 return false; 1674 int16_t Imm = (int16_t)I->getOperand(2).getImm(); 1675 return Imm < 0; 1676 }; 1677 1678 if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) && 1679 CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode())) 1680 NewOpCode = CMPI1->getOpcode(); 1681 else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) && 1682 getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode()) 1683 NewOpCode = CMPI2->getOpcode(); 1684 else continue; 1685 } 1686 1687 if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) { 1688 // In case of comparisons between two registers, these two registers 1689 // must be same to merge two comparisons. 1690 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), 1691 nullptr, nullptr, MRI); 1692 unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(), 1693 nullptr, nullptr, MRI); 1694 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), 1695 MBB1, &MBB2, MRI); 1696 unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(), 1697 MBB1, &MBB2, MRI); 1698 1699 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) { 1700 // Same pair of registers in the same order; ready to merge as is. 1701 } 1702 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) { 1703 // Same pair of registers in different order. 1704 // We reverse the predicate to merge compare instructions. 1705 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm(); 1706 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred); 1707 // In case of partial redundancy, we need to swap operands 1708 // in another compare instruction. 1709 SwapOperands = true; 1710 } 1711 else continue; 1712 } 1713 else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) { 1714 // In case of comparisons between a register and an immediate, 1715 // the operand register must be same for two compare instructions. 1716 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), 1717 nullptr, nullptr, MRI); 1718 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), 1719 MBB1, &MBB2, MRI); 1720 if (Cmp1Operand1 != Cmp2Operand1) 1721 continue; 1722 1723 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm(); 1724 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm(); 1725 1726 // If immediate are not same, we try to adjust by changing predicate; 1727 // e.g. GT imm means GE (imm+1). 1728 if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) { 1729 int Diff = Imm1 - Imm2; 1730 if (Diff < -2 || Diff > 2) 1731 continue; 1732 1733 unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1); 1734 unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1); 1735 unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2); 1736 unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2); 1737 if (Diff == 2) { 1738 if (PredToInc2 && PredToDec1) { 1739 NewPredicate2 = PredToInc2; 1740 NewPredicate1 = PredToDec1; 1741 NewImm2++; 1742 NewImm1--; 1743 } 1744 } 1745 else if (Diff == 1) { 1746 if (PredToInc2) { 1747 NewImm2++; 1748 NewPredicate2 = PredToInc2; 1749 } 1750 else if (PredToDec1) { 1751 NewImm1--; 1752 NewPredicate1 = PredToDec1; 1753 } 1754 } 1755 else if (Diff == -1) { 1756 if (PredToDec2) { 1757 NewImm2--; 1758 NewPredicate2 = PredToDec2; 1759 } 1760 else if (PredToInc1) { 1761 NewImm1++; 1762 NewPredicate1 = PredToInc1; 1763 } 1764 } 1765 else if (Diff == -2) { 1766 if (PredToDec2 && PredToInc1) { 1767 NewPredicate2 = PredToDec2; 1768 NewPredicate1 = PredToInc1; 1769 NewImm2--; 1770 NewImm1++; 1771 } 1772 } 1773 } 1774 1775 // We cannot merge two compares if the immediates are not same. 1776 if (NewImm2 != NewImm1) 1777 continue; 1778 } 1779 1780 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n"); 1781 LLVM_DEBUG(CMPI1->dump()); 1782 LLVM_DEBUG(BI1->dump()); 1783 LLVM_DEBUG(CMPI2->dump()); 1784 LLVM_DEBUG(BI2->dump()); 1785 for (const MachineOperand &MO : CMPI1->operands()) 1786 if (MO.isReg()) 1787 addRegToUpdate(MO.getReg()); 1788 for (const MachineOperand &MO : CMPI2->operands()) 1789 if (MO.isReg()) 1790 addRegToUpdate(MO.getReg()); 1791 1792 // We adjust opcode, predicates and immediate as we determined above. 1793 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) { 1794 CMPI1->setDesc(TII->get(NewOpCode)); 1795 } 1796 if (NewPredicate1) { 1797 BI1->getOperand(0).setImm(NewPredicate1); 1798 } 1799 if (NewPredicate2) { 1800 BI2->getOperand(0).setImm(NewPredicate2); 1801 } 1802 if (NewImm1 != Imm1) { 1803 CMPI1->getOperand(2).setImm(NewImm1); 1804 } 1805 1806 if (IsPartiallyRedundant) { 1807 // We touch up the compare instruction in MBB2 and move it to 1808 // a previous BB to handle partially redundant case. 1809 if (SwapOperands) { 1810 Register Op1 = CMPI2->getOperand(1).getReg(); 1811 Register Op2 = CMPI2->getOperand(2).getReg(); 1812 CMPI2->getOperand(1).setReg(Op2); 1813 CMPI2->getOperand(2).setReg(Op1); 1814 } 1815 if (NewImm2 != Imm2) 1816 CMPI2->getOperand(2).setImm(NewImm2); 1817 1818 for (int I = 1; I <= 2; I++) { 1819 if (CMPI2->getOperand(I).isReg()) { 1820 MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg()); 1821 if (Inst->getParent() != &MBB2) 1822 continue; 1823 1824 assert(Inst->getOpcode() == PPC::PHI && 1825 "We cannot support if an operand comes from this BB."); 1826 unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp); 1827 CMPI2->getOperand(I).setReg(SrcReg); 1828 addRegToUpdate(SrcReg); 1829 } 1830 } 1831 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator()); 1832 MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2)); 1833 1834 DebugLoc DL = CMPI2->getDebugLoc(); 1835 Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass); 1836 BuildMI(MBB2, MBB2.begin(), DL, 1837 TII->get(PPC::PHI), NewVReg) 1838 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1) 1839 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp); 1840 BI2->getOperand(1).setReg(NewVReg); 1841 addRegToUpdate(NewVReg); 1842 } 1843 else { 1844 // We finally eliminate compare instruction in MBB2. 1845 // We do not need to treat CMPI2 specially here in terms of re-computing 1846 // live variables even though it is being deleted because: 1847 // - It defines a register that has a single use (already checked in 1848 // eligibleForCompareElimination()) 1849 // - The only user (BI2) is no longer using it so the register is dead (no 1850 // def, no uses) 1851 // - We do not attempt to recompute live variables for dead registers 1852 BI2->getOperand(1).setReg(BI1->getOperand(1).getReg()); 1853 CMPI2->eraseFromParent(); 1854 } 1855 1856 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n"); 1857 LLVM_DEBUG(CMPI1->dump()); 1858 LLVM_DEBUG(BI1->dump()); 1859 LLVM_DEBUG(BI2->dump()); 1860 if (IsPartiallyRedundant) { 1861 LLVM_DEBUG(dbgs() << "The following compare is moved into " 1862 << printMBBReference(*MBBtoMoveCmp) 1863 << " to handle partial redundancy.\n"); 1864 LLVM_DEBUG(CMPI2->dump()); 1865 } 1866 Simplified = true; 1867 } 1868 1869 return Simplified; 1870 } 1871 1872 // We miss the opportunity to emit an RLDIC when lowering jump tables 1873 // since ISEL sees only a single basic block. When selecting, the clear 1874 // and shift left will be in different blocks. 1875 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI, 1876 MachineInstr *&ToErase) { 1877 if (MI.getOpcode() != PPC::RLDICR) 1878 return false; 1879 1880 Register SrcReg = MI.getOperand(1).getReg(); 1881 if (!SrcReg.isVirtual()) 1882 return false; 1883 1884 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 1885 if (SrcMI->getOpcode() != PPC::RLDICL) 1886 return false; 1887 1888 MachineOperand MOpSHSrc = SrcMI->getOperand(2); 1889 MachineOperand MOpMBSrc = SrcMI->getOperand(3); 1890 MachineOperand MOpSHMI = MI.getOperand(2); 1891 MachineOperand MOpMEMI = MI.getOperand(3); 1892 if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() && 1893 MOpMEMI.isImm())) 1894 return false; 1895 1896 uint64_t SHSrc = MOpSHSrc.getImm(); 1897 uint64_t MBSrc = MOpMBSrc.getImm(); 1898 uint64_t SHMI = MOpSHMI.getImm(); 1899 uint64_t MEMI = MOpMEMI.getImm(); 1900 uint64_t NewSH = SHSrc + SHMI; 1901 uint64_t NewMB = MBSrc - SHMI; 1902 if (NewMB > 63 || NewSH > 63) 1903 return false; 1904 1905 // The bits cleared with RLDICL are [0, MBSrc). 1906 // The bits cleared with RLDICR are (MEMI, 63]. 1907 // After the sequence, the bits cleared are: 1908 // [0, MBSrc-SHMI) and (MEMI, 63). 1909 // 1910 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63]. 1911 if ((63 - NewSH) != MEMI) 1912 return false; 1913 1914 LLVM_DEBUG(dbgs() << "Converting pair: "); 1915 LLVM_DEBUG(SrcMI->dump()); 1916 LLVM_DEBUG(MI.dump()); 1917 1918 MI.setDesc(TII->get(PPC::RLDIC)); 1919 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 1920 MI.getOperand(2).setImm(NewSH); 1921 MI.getOperand(3).setImm(NewMB); 1922 addRegToUpdate(MI.getOperand(1).getReg()); 1923 addRegToUpdate(SrcMI->getOperand(0).getReg()); 1924 1925 LLVM_DEBUG(dbgs() << "To: "); 1926 LLVM_DEBUG(MI.dump()); 1927 NumRotatesCollapsed++; 1928 // If SrcReg has no non-debug use it's safe to delete its def SrcMI. 1929 if (MRI->use_nodbg_empty(SrcReg)) { 1930 assert(!SrcMI->hasImplicitDef() && 1931 "Not expecting an implicit def with this instr."); 1932 ToErase = SrcMI; 1933 } 1934 return true; 1935 } 1936 1937 // For case in LLVM IR 1938 // entry: 1939 // %iconv = sext i32 %index to i64 1940 // br i1 undef label %true, label %false 1941 // true: 1942 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv 1943 // ... 1944 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in 1945 // different BBs when conducting instruction selection. We can do a peephole 1946 // optimization to combine these two instructions into extswsli after 1947 // instruction selection. 1948 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI, 1949 MachineInstr *&ToErase) { 1950 if (MI.getOpcode() != PPC::RLDICR) 1951 return false; 1952 1953 if (!MF->getSubtarget<PPCSubtarget>().isISA3_0()) 1954 return false; 1955 1956 assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands"); 1957 1958 MachineOperand MOpSHMI = MI.getOperand(2); 1959 MachineOperand MOpMEMI = MI.getOperand(3); 1960 if (!(MOpSHMI.isImm() && MOpMEMI.isImm())) 1961 return false; 1962 1963 uint64_t SHMI = MOpSHMI.getImm(); 1964 uint64_t MEMI = MOpMEMI.getImm(); 1965 if (SHMI + MEMI != 63) 1966 return false; 1967 1968 Register SrcReg = MI.getOperand(1).getReg(); 1969 if (!SrcReg.isVirtual()) 1970 return false; 1971 1972 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 1973 if (SrcMI->getOpcode() != PPC::EXTSW && 1974 SrcMI->getOpcode() != PPC::EXTSW_32_64) 1975 return false; 1976 1977 // If the register defined by extsw has more than one use, combination is not 1978 // needed. 1979 if (!MRI->hasOneNonDBGUse(SrcReg)) 1980 return false; 1981 1982 assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands"); 1983 assert(SrcMI->getOperand(1).isReg() && 1984 "EXTSW's second operand should be a register"); 1985 if (!SrcMI->getOperand(1).getReg().isVirtual()) 1986 return false; 1987 1988 LLVM_DEBUG(dbgs() << "Combining pair: "); 1989 LLVM_DEBUG(SrcMI->dump()); 1990 LLVM_DEBUG(MI.dump()); 1991 1992 MachineInstr *NewInstr = 1993 BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), 1994 SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI) 1995 : TII->get(PPC::EXTSWSLI_32_64), 1996 MI.getOperand(0).getReg()) 1997 .add(SrcMI->getOperand(1)) 1998 .add(MOpSHMI); 1999 (void)NewInstr; 2000 2001 LLVM_DEBUG(dbgs() << "TO: "); 2002 LLVM_DEBUG(NewInstr->dump()); 2003 ++NumEXTSWAndSLDICombined; 2004 ToErase = &MI; 2005 // SrcMI, which is extsw, is of no use now, but we don't erase it here so we 2006 // can recompute its kill flags. We run DCE immediately after this pass 2007 // to clean up dead instructions such as this. 2008 addRegToUpdate(NewInstr->getOperand(1).getReg()); 2009 addRegToUpdate(SrcMI->getOperand(0).getReg()); 2010 return true; 2011 } 2012 2013 } // end default namespace 2014 2015 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE, 2016 "PowerPC MI Peephole Optimization", false, false) 2017 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2018 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 2019 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 2020 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 2021 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE, 2022 "PowerPC MI Peephole Optimization", false, false) 2023 2024 char PPCMIPeephole::ID = 0; 2025 FunctionPass* 2026 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); } 2027