xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp (revision 3e8eb5c7f4909209c042403ddee340b2ee7003a5)
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "ppc-mi-peepholes"
41 
42 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
43 STATISTIC(MultiTOCSaves,
44           "Number of functions with multiple TOC saves that must be kept");
45 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
46 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
47 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
48 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
49 STATISTIC(NumConvertedToImmediateForm,
50           "Number of instructions converted to their immediate form");
51 STATISTIC(NumFunctionsEnteredInMIPeephole,
52           "Number of functions entered in PPC MI Peepholes");
53 STATISTIC(NumFixedPointIterations,
54           "Number of fixed-point iterations converting reg-reg instructions "
55           "to reg-imm ones");
56 STATISTIC(NumRotatesCollapsed,
57           "Number of pairs of rotate left, clear left/right collapsed");
58 STATISTIC(NumEXTSWAndSLDICombined,
59           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
61           "Number of LI(8) reg, 0 that are folded to r0 and removed");
62 
63 static cl::opt<bool>
64 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
65                    cl::desc("Iterate to a fixed point when attempting to "
66                             "convert reg-reg instructions to reg-imm"));
67 
68 static cl::opt<bool>
69 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
70               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
71 
72 static cl::opt<bool>
73     EnableSExtElimination("ppc-eliminate-signext",
74                           cl::desc("enable elimination of sign-extensions"),
75                           cl::init(false), cl::Hidden);
76 
77 static cl::opt<bool>
78     EnableZExtElimination("ppc-eliminate-zeroext",
79                           cl::desc("enable elimination of zero-extensions"),
80                           cl::init(false), cl::Hidden);
81 
82 static cl::opt<bool>
83     EnableTrapOptimization("ppc-opt-conditional-trap",
84                            cl::desc("enable optimization of conditional traps"),
85                            cl::init(false), cl::Hidden);
86 
87 namespace {
88 
89 struct PPCMIPeephole : public MachineFunctionPass {
90 
91   static char ID;
92   const PPCInstrInfo *TII;
93   MachineFunction *MF;
94   MachineRegisterInfo *MRI;
95 
96   PPCMIPeephole() : MachineFunctionPass(ID) {
97     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
98   }
99 
100 private:
101   MachineDominatorTree *MDT;
102   MachinePostDominatorTree *MPDT;
103   MachineBlockFrequencyInfo *MBFI;
104   uint64_t EntryFreq;
105 
106   // Initialize class variables.
107   void initialize(MachineFunction &MFParm);
108 
109   // Perform peepholes.
110   bool simplifyCode();
111 
112   // Perform peepholes.
113   bool eliminateRedundantCompare();
114   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
115   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
116   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
117   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
118                       MachineInstr *MI);
119 
120 public:
121 
122   void getAnalysisUsage(AnalysisUsage &AU) const override {
123     AU.addRequired<MachineDominatorTree>();
124     AU.addRequired<MachinePostDominatorTree>();
125     AU.addRequired<MachineBlockFrequencyInfo>();
126     AU.addPreserved<MachineDominatorTree>();
127     AU.addPreserved<MachinePostDominatorTree>();
128     AU.addPreserved<MachineBlockFrequencyInfo>();
129     MachineFunctionPass::getAnalysisUsage(AU);
130   }
131 
132   // Main entry point for this pass.
133   bool runOnMachineFunction(MachineFunction &MF) override {
134     initialize(MF);
135     // At this point, TOC pointer should not be used in a function that uses
136     // PC-Relative addressing.
137     assert((MF.getRegInfo().use_empty(PPC::X2) ||
138             !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
139            "TOC pointer used in a function using PC-Relative addressing!");
140     if (skipFunction(MF.getFunction()))
141       return false;
142     return simplifyCode();
143   }
144 };
145 
146 // Initialize class variables.
147 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
148   MF = &MFParm;
149   MRI = &MF->getRegInfo();
150   MDT = &getAnalysis<MachineDominatorTree>();
151   MPDT = &getAnalysis<MachinePostDominatorTree>();
152   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
153   EntryFreq = MBFI->getEntryFreq();
154   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
155   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
156   LLVM_DEBUG(MF->dump());
157 }
158 
159 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
160                                       MachineRegisterInfo *MRI) {
161   assert(Op && "Invalid Operand!");
162   if (!Op->isReg())
163     return nullptr;
164 
165   Register Reg = Op->getReg();
166   if (!Register::isVirtualRegister(Reg))
167     return nullptr;
168 
169   return MRI->getVRegDef(Reg);
170 }
171 
172 // This function returns number of known zero bits in output of MI
173 // starting from the most significant bit.
174 static unsigned
175 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
176   unsigned Opcode = MI->getOpcode();
177   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
178       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
179     return MI->getOperand(3).getImm();
180 
181   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
182       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
183     return MI->getOperand(3).getImm();
184 
185   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
186        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
187        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
188       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
189     return 32 + MI->getOperand(3).getImm();
190 
191   if (Opcode == PPC::ANDI_rec) {
192     uint16_t Imm = MI->getOperand(2).getImm();
193     return 48 + countLeadingZeros(Imm);
194   }
195 
196   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
197       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
198       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
199     // The result ranges from 0 to 32.
200     return 58;
201 
202   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
203       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
204     // The result ranges from 0 to 64.
205     return 57;
206 
207   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
208       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
209       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
210       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
211     return 48;
212 
213   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
214       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
215       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
216       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
217     return 56;
218 
219   if (TII->isZeroExtended(*MI))
220     return 32;
221 
222   return 0;
223 }
224 
225 // This function maintains a map for the pairs <TOC Save Instr, Keep>
226 // Each time a new TOC save is encountered, it checks if any of the existing
227 // ones are dominated by the new one. If so, it marks the existing one as
228 // redundant by setting it's entry in the map as false. It then adds the new
229 // instruction to the map with either true or false depending on if any
230 // existing instructions dominated the new one.
231 void PPCMIPeephole::UpdateTOCSaves(
232   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
233   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
234   // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
235   // here only support it under ELFv2.
236   if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
237     PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
238 
239     MachineBasicBlock *Entry = &MF->front();
240     uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
241 
242     // If the block in which the TOC save resides is in a block that
243     // post-dominates Entry, or a block that is hotter than entry (keep in mind
244     // that early MachineLICM has already run so the TOC save won't be hoisted)
245     // we can just do the save in the prologue.
246     if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
247       FI->setMustSaveTOC(true);
248 
249     // If we are saving the TOC in the prologue, all the TOC saves can be
250     // removed from the code.
251     if (FI->mustSaveTOC()) {
252       for (auto &TOCSave : TOCSaves)
253         TOCSave.second = false;
254       // Add new instruction to map.
255       TOCSaves[MI] = false;
256       return;
257     }
258   }
259 
260   bool Keep = true;
261   for (auto &I : TOCSaves) {
262     MachineInstr *CurrInst = I.first;
263     // If new instruction dominates an existing one, mark existing one as
264     // redundant.
265     if (I.second && MDT->dominates(MI, CurrInst))
266       I.second = false;
267     // Check if the new instruction is redundant.
268     if (MDT->dominates(CurrInst, MI)) {
269       Keep = false;
270       break;
271     }
272   }
273   // Add new instruction to map.
274   TOCSaves[MI] = Keep;
275 }
276 
277 // This function returns a list of all PHI nodes in the tree starting from
278 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
279 // The list initially only contains the root PHI. When we visit a PHI node, we
280 // add it to the list. We continue to look for other PHI node operands while
281 // there are nodes to visit in the list. The function returns false if the
282 // optimization cannot be applied on this tree.
283 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
284                                    MachineInstr *RootPHI,
285                                    SmallVectorImpl<MachineInstr *> &PHIs) {
286   PHIs.push_back(RootPHI);
287   unsigned VisitedIndex = 0;
288   while (VisitedIndex < PHIs.size()) {
289     MachineInstr *VisitedPHI = PHIs[VisitedIndex];
290     for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
291          PHIOp != NumOps; PHIOp += 2) {
292       Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
293       if (!Register::isVirtualRegister(RegOp))
294         return false;
295       MachineInstr *Instr = MRI->getVRegDef(RegOp);
296       // While collecting the PHI nodes, we check if they can be converted (i.e.
297       // all the operands are either copies, implicit defs or PHI nodes).
298       unsigned Opcode = Instr->getOpcode();
299       if (Opcode == PPC::COPY) {
300         Register Reg = Instr->getOperand(1).getReg();
301         if (!Register::isVirtualRegister(Reg) ||
302             MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
303           return false;
304       } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
305         return false;
306       // If we detect a cycle in the PHI nodes, we exit. It would be
307       // possible to change cycles as well, but that would add a lot
308       // of complexity for a case that is unlikely to occur with MMA
309       // code.
310       if (Opcode != PPC::PHI)
311         continue;
312       if (llvm::is_contained(PHIs, Instr))
313         return false;
314       PHIs.push_back(Instr);
315     }
316     VisitedIndex++;
317   }
318   return true;
319 }
320 
321 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
322 // primed accumulator PHI nodes. The list is traversed in reverse order to
323 // change all the PHI operands of a PHI node before changing the node itself.
324 // We keep a map to associate each changed PHI node to its non-changed form.
325 static void convertUnprimedAccPHIs(const PPCInstrInfo *TII,
326                                    MachineRegisterInfo *MRI,
327                                    SmallVectorImpl<MachineInstr *> &PHIs,
328                                    Register Dst) {
329   DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
330   for (MachineInstr *PHI : llvm::reverse(PHIs)) {
331     SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
332     // We check if the current PHI node can be changed by looking at its
333     // operands. If all the operands are either copies from primed
334     // accumulators, implicit definitions or other unprimed accumulator
335     // PHI nodes, we change it.
336     for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
337          PHIOp += 2) {
338       Register RegOp = PHI->getOperand(PHIOp).getReg();
339       MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
340       unsigned Opcode = PHIInput->getOpcode();
341       assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
342               Opcode == PPC::PHI) &&
343              "Unexpected instruction");
344       if (Opcode == PPC::COPY) {
345         assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
346                    &PPC::ACCRCRegClass &&
347                "Unexpected register class");
348         PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
349       } else if (Opcode == PPC::IMPLICIT_DEF) {
350         Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
351         BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
352                 TII->get(PPC::IMPLICIT_DEF), AccReg);
353         PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
354                           PHI->getOperand(PHIOp + 1)});
355       } else if (Opcode == PPC::PHI) {
356         // We found a PHI operand. At this point we know this operand
357         // has already been changed so we get its associated changed form
358         // from the map.
359         assert(ChangedPHIMap.count(PHIInput) == 1 &&
360                "This PHI node should have already been changed.");
361         MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
362         PHIOps.push_back({MachineOperand::CreateReg(
363                               PrimedAccPHI->getOperand(0).getReg(), false),
364                           PHI->getOperand(PHIOp + 1)});
365       }
366     }
367     Register AccReg = Dst;
368     // If the PHI node we are changing is the root node, the register it defines
369     // will be the destination register of the original copy (of the PHI def).
370     // For all other PHI's in the list, we need to create another primed
371     // accumulator virtual register as the PHI will no longer define the
372     // unprimed accumulator.
373     if (PHI != PHIs[0])
374       AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
375     MachineInstrBuilder NewPHI = BuildMI(
376         *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
377     for (auto RegMBB : PHIOps)
378       NewPHI.add(RegMBB.first).add(RegMBB.second);
379     ChangedPHIMap[PHI] = NewPHI.getInstr();
380   }
381 }
382 
383 // Perform peephole optimizations.
384 bool PPCMIPeephole::simplifyCode() {
385   bool Simplified = false;
386   bool TrapOpt = false;
387   MachineInstr* ToErase = nullptr;
388   std::map<MachineInstr *, bool> TOCSaves;
389   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
390   NumFunctionsEnteredInMIPeephole++;
391   if (ConvertRegReg) {
392     // Fixed-point conversion of reg/reg instructions fed by load-immediate
393     // into reg/imm instructions. FIXME: This is expensive, control it with
394     // an option.
395     bool SomethingChanged = false;
396     do {
397       NumFixedPointIterations++;
398       SomethingChanged = false;
399       for (MachineBasicBlock &MBB : *MF) {
400         for (MachineInstr &MI : MBB) {
401           if (MI.isDebugInstr())
402             continue;
403 
404           if (TII->convertToImmediateForm(MI)) {
405             // We don't erase anything in case the def has other uses. Let DCE
406             // remove it if it can be removed.
407             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
408             LLVM_DEBUG(MI.dump());
409             NumConvertedToImmediateForm++;
410             SomethingChanged = true;
411             Simplified = true;
412             continue;
413           }
414         }
415       }
416     } while (SomethingChanged && FixedPointRegToImm);
417   }
418 
419   for (MachineBasicBlock &MBB : *MF) {
420     for (MachineInstr &MI : MBB) {
421 
422       // If the previous instruction was marked for elimination,
423       // remove it now.
424       if (ToErase) {
425         ToErase->eraseFromParent();
426         ToErase = nullptr;
427       }
428       // If a conditional trap instruction got optimized to an
429       // unconditional trap, eliminate all the instructions after
430       // the trap.
431       if (EnableTrapOptimization && TrapOpt) {
432         ToErase = &MI;
433         continue;
434       }
435 
436       // Ignore debug instructions.
437       if (MI.isDebugInstr())
438         continue;
439 
440       // Per-opcode peepholes.
441       switch (MI.getOpcode()) {
442 
443       default:
444         break;
445       case PPC::COPY: {
446         Register Src = MI.getOperand(1).getReg();
447         Register Dst = MI.getOperand(0).getReg();
448         if (!Register::isVirtualRegister(Src) ||
449             !Register::isVirtualRegister(Dst))
450           break;
451         if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
452             MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
453           break;
454 
455         // We are copying an unprimed accumulator to a primed accumulator.
456         // If the input to the copy is a PHI that is fed only by (i) copies in
457         // the other direction (ii) implicitly defined unprimed accumulators or
458         // (iii) other PHI nodes satisfying (i) and (ii), we can change
459         // the PHI to a PHI on primed accumulators (as long as we also change
460         // its operands). To detect and change such copies, we first get a list
461         // of all the PHI nodes starting from the root PHI node in BFS order.
462         // We then visit all these PHI nodes to check if they can be changed to
463         // primed accumulator PHI nodes and if so, we change them.
464         MachineInstr *RootPHI = MRI->getVRegDef(Src);
465         if (RootPHI->getOpcode() != PPC::PHI)
466           break;
467 
468         SmallVector<MachineInstr *, 4> PHIs;
469         if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
470           break;
471 
472         convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
473 
474         ToErase = &MI;
475         break;
476       }
477       case PPC::LI:
478       case PPC::LI8: {
479         // If we are materializing a zero, look for any use operands for which
480         // zero means immediate zero. All such operands can be replaced with
481         // PPC::ZERO.
482         if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
483           break;
484         Register MIDestReg = MI.getOperand(0).getReg();
485         for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
486           Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
487         if (MRI->use_nodbg_empty(MIDestReg)) {
488           ++NumLoadImmZeroFoldedAndRemoved;
489           ToErase = &MI;
490         }
491         break;
492       }
493       case PPC::STW:
494       case PPC::STD: {
495         MachineFrameInfo &MFI = MF->getFrameInfo();
496         if (MFI.hasVarSizedObjects() ||
497             (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
498              !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
499           break;
500         // When encountering a TOC save instruction, call UpdateTOCSaves
501         // to add it to the TOCSaves map and mark any existing TOC saves
502         // it dominates as redundant.
503         if (TII->isTOCSaveMI(MI))
504           UpdateTOCSaves(TOCSaves, &MI);
505         break;
506       }
507       case PPC::XXPERMDI: {
508         // Perform simplifications of 2x64 vector swaps and splats.
509         // A swap is identified by an immediate value of 2, and a splat
510         // is identified by an immediate value of 0 or 3.
511         int Immed = MI.getOperand(3).getImm();
512 
513         if (Immed == 1)
514           break;
515 
516         // For each of these simplifications, we need the two source
517         // regs to match.  Unfortunately, MachineCSE ignores COPY and
518         // SUBREG_TO_REG, so for example we can see
519         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
520         // We have to look through chains of COPY and SUBREG_TO_REG
521         // to find the real source values for comparison.
522         Register TrueReg1 =
523           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
524         Register TrueReg2 =
525           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
526 
527         if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
528           break;
529 
530         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
531 
532         if (!DefMI)
533           break;
534 
535         unsigned DefOpc = DefMI->getOpcode();
536 
537         // If this is a splat fed by a splatting load, the splat is
538         // redundant. Replace with a copy. This doesn't happen directly due
539         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
540         // a load of a double to a vector of 64-bit integers.
541         auto isConversionOfLoadAndSplat = [=]() -> bool {
542           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
543             return false;
544           Register FeedReg1 =
545             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
546           if (Register::isVirtualRegister(FeedReg1)) {
547             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
548             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
549               return true;
550           }
551           return false;
552         };
553         if ((Immed == 0 || Immed == 3) &&
554             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
555           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
556                                "to load-and-splat/copy: ");
557           LLVM_DEBUG(MI.dump());
558           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
559                   MI.getOperand(0).getReg())
560               .add(MI.getOperand(1));
561           ToErase = &MI;
562           Simplified = true;
563         }
564 
565         // If this is a splat or a swap fed by another splat, we
566         // can replace it with a copy.
567         if (DefOpc == PPC::XXPERMDI) {
568           Register DefReg1 = DefMI->getOperand(1).getReg();
569           Register DefReg2 = DefMI->getOperand(2).getReg();
570           unsigned DefImmed = DefMI->getOperand(3).getImm();
571 
572           // If the two inputs are not the same register, check to see if
573           // they originate from the same virtual register after only
574           // copy-like instructions.
575           if (DefReg1 != DefReg2) {
576             Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
577             Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
578 
579             if (!(FeedReg1 == FeedReg2 &&
580                   Register::isVirtualRegister(FeedReg1)))
581               break;
582           }
583 
584           if (DefImmed == 0 || DefImmed == 3) {
585             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
586                                  "to splat/copy: ");
587             LLVM_DEBUG(MI.dump());
588             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
589                     MI.getOperand(0).getReg())
590                 .add(MI.getOperand(1));
591             ToErase = &MI;
592             Simplified = true;
593           }
594 
595           // If this is a splat fed by a swap, we can simplify modify
596           // the splat to splat the other value from the swap's input
597           // parameter.
598           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
599             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
600             LLVM_DEBUG(MI.dump());
601             MI.getOperand(1).setReg(DefReg1);
602             MI.getOperand(2).setReg(DefReg2);
603             MI.getOperand(3).setImm(3 - Immed);
604             Simplified = true;
605           }
606 
607           // If this is a swap fed by a swap, we can replace it
608           // with a copy from the first swap's input.
609           else if (Immed == 2 && DefImmed == 2) {
610             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
611             LLVM_DEBUG(MI.dump());
612             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
613                     MI.getOperand(0).getReg())
614                 .add(DefMI->getOperand(1));
615             ToErase = &MI;
616             Simplified = true;
617           }
618         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
619                    DefOpc == PPC::XXPERMDIs &&
620                    (DefMI->getOperand(2).getImm() == 0 ||
621                     DefMI->getOperand(2).getImm() == 3)) {
622           ToErase = &MI;
623           Simplified = true;
624           // Swap of a splat, convert to copy.
625           if (Immed == 2) {
626             LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
627             LLVM_DEBUG(MI.dump());
628             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
629                     MI.getOperand(0).getReg())
630                 .add(MI.getOperand(1));
631             break;
632           }
633           // Splat fed by another splat - switch the output of the first
634           // and remove the second.
635           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
636           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
637           LLVM_DEBUG(MI.dump());
638         }
639         break;
640       }
641       case PPC::VSPLTB:
642       case PPC::VSPLTH:
643       case PPC::XXSPLTW: {
644         unsigned MyOpcode = MI.getOpcode();
645         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
646         Register TrueReg =
647           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
648         if (!Register::isVirtualRegister(TrueReg))
649           break;
650         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
651         if (!DefMI)
652           break;
653         unsigned DefOpcode = DefMI->getOpcode();
654         auto isConvertOfSplat = [=]() -> bool {
655           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
656             return false;
657           Register ConvReg = DefMI->getOperand(1).getReg();
658           if (!Register::isVirtualRegister(ConvReg))
659             return false;
660           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
661           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
662             Splt->getOpcode() == PPC::XXSPLTW);
663         };
664         bool AlreadySplat = (MyOpcode == DefOpcode) ||
665           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
666           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
667           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
668           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
669           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
670           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
671         // If the instruction[s] that feed this splat have already splat
672         // the value, this splat is redundant.
673         if (AlreadySplat) {
674           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
675           LLVM_DEBUG(MI.dump());
676           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
677                   MI.getOperand(0).getReg())
678               .add(MI.getOperand(OpNo));
679           ToErase = &MI;
680           Simplified = true;
681         }
682         // Splat fed by a shift. Usually when we align value to splat into
683         // vector element zero.
684         if (DefOpcode == PPC::XXSLDWI) {
685           Register ShiftRes = DefMI->getOperand(0).getReg();
686           Register ShiftOp1 = DefMI->getOperand(1).getReg();
687           Register ShiftOp2 = DefMI->getOperand(2).getReg();
688           unsigned ShiftImm = DefMI->getOperand(3).getImm();
689           unsigned SplatImm =
690               MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
691           if (ShiftOp1 == ShiftOp2) {
692             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
693             if (MRI->hasOneNonDBGUse(ShiftRes)) {
694               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
695               LLVM_DEBUG(DefMI->dump());
696               ToErase = DefMI;
697             }
698             Simplified = true;
699             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
700                               << " to " << NewElem << " in instruction: ");
701             LLVM_DEBUG(MI.dump());
702             MI.getOperand(1).setReg(ShiftOp1);
703             MI.getOperand(2).setImm(NewElem);
704           }
705         }
706         break;
707       }
708       case PPC::XVCVDPSP: {
709         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
710         Register TrueReg =
711           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
712         if (!Register::isVirtualRegister(TrueReg))
713           break;
714         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
715 
716         // This can occur when building a vector of single precision or integer
717         // values.
718         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
719           Register DefsReg1 =
720             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
721           Register DefsReg2 =
722             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
723           if (!Register::isVirtualRegister(DefsReg1) ||
724               !Register::isVirtualRegister(DefsReg2))
725             break;
726           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
727           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
728 
729           if (!P1 || !P2)
730             break;
731 
732           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
733           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
734           // the FRSP/XSRSP.
735           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
736             unsigned Opc = RoundInstr->getOpcode();
737             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
738                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
739               Simplified = true;
740               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
741               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
742               MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
743               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
744                 if (Use.getOperand(i).isReg() &&
745                     Use.getOperand(i).getReg() == FRSPDefines)
746                   Use.getOperand(i).setReg(ConvReg1);
747               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
748               LLVM_DEBUG(RoundInstr->dump());
749               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
750               LLVM_DEBUG(MI.dump());
751               LLVM_DEBUG(dbgs() << "Through instruction:\n");
752               LLVM_DEBUG(DefMI->dump());
753               RoundInstr->eraseFromParent();
754             }
755           };
756 
757           // If the input to XVCVDPSP is a vector that was built (even
758           // partially) out of FRSP's, the FRSP(s) can safely be removed
759           // since this instruction performs the same operation.
760           if (P1 != P2) {
761             removeFRSPIfPossible(P1);
762             removeFRSPIfPossible(P2);
763             break;
764           }
765           removeFRSPIfPossible(P1);
766         }
767         break;
768       }
769       case PPC::EXTSH:
770       case PPC::EXTSH8:
771       case PPC::EXTSH8_32_64: {
772         if (!EnableSExtElimination) break;
773         Register NarrowReg = MI.getOperand(1).getReg();
774         if (!Register::isVirtualRegister(NarrowReg))
775           break;
776 
777         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
778         // If we've used a zero-extending load that we will sign-extend,
779         // just do a sign-extending load.
780         if (SrcMI->getOpcode() == PPC::LHZ ||
781             SrcMI->getOpcode() == PPC::LHZX) {
782           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
783             break;
784           auto is64Bit = [] (unsigned Opcode) {
785             return Opcode == PPC::EXTSH8;
786           };
787           auto isXForm = [] (unsigned Opcode) {
788             return Opcode == PPC::LHZX;
789           };
790           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
791             if (is64Bit)
792               if (isXForm) return PPC::LHAX8;
793               else         return PPC::LHA8;
794             else
795               if (isXForm) return PPC::LHAX;
796               else         return PPC::LHA;
797           };
798           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
799                                        isXForm(SrcMI->getOpcode()));
800           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
801           LLVM_DEBUG(SrcMI->dump());
802           LLVM_DEBUG(dbgs() << "and sign-extension\n");
803           LLVM_DEBUG(MI.dump());
804           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
805           SrcMI->setDesc(TII->get(Opc));
806           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
807           ToErase = &MI;
808           Simplified = true;
809           NumEliminatedSExt++;
810         }
811         break;
812       }
813       case PPC::EXTSW:
814       case PPC::EXTSW_32:
815       case PPC::EXTSW_32_64: {
816         if (!EnableSExtElimination) break;
817         Register NarrowReg = MI.getOperand(1).getReg();
818         if (!Register::isVirtualRegister(NarrowReg))
819           break;
820 
821         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
822         // If we've used a zero-extending load that we will sign-extend,
823         // just do a sign-extending load.
824         if (SrcMI->getOpcode() == PPC::LWZ ||
825             SrcMI->getOpcode() == PPC::LWZX) {
826           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
827             break;
828           auto is64Bit = [] (unsigned Opcode) {
829             return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
830           };
831           auto isXForm = [] (unsigned Opcode) {
832             return Opcode == PPC::LWZX;
833           };
834           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
835             if (is64Bit)
836               if (isXForm) return PPC::LWAX;
837               else         return PPC::LWA;
838             else
839               if (isXForm) return PPC::LWAX_32;
840               else         return PPC::LWA_32;
841           };
842           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
843                                        isXForm(SrcMI->getOpcode()));
844           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
845           LLVM_DEBUG(SrcMI->dump());
846           LLVM_DEBUG(dbgs() << "and sign-extension\n");
847           LLVM_DEBUG(MI.dump());
848           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
849           SrcMI->setDesc(TII->get(Opc));
850           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
851           ToErase = &MI;
852           Simplified = true;
853           NumEliminatedSExt++;
854         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
855                    TII->isSignExtended(*SrcMI)) {
856           // We can eliminate EXTSW if the input is known to be already
857           // sign-extended.
858           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
859           Register TmpReg =
860               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
861           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
862                   TmpReg);
863           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
864                   MI.getOperand(0).getReg())
865               .addReg(TmpReg)
866               .addReg(NarrowReg)
867               .addImm(PPC::sub_32);
868           ToErase = &MI;
869           Simplified = true;
870           NumEliminatedSExt++;
871         }
872         break;
873       }
874       case PPC::RLDICL: {
875         // We can eliminate RLDICL (e.g. for zero-extension)
876         // if all bits to clear are already zero in the input.
877         // This code assume following code sequence for zero-extension.
878         //   %6 = COPY %5:sub_32; (optional)
879         //   %8 = IMPLICIT_DEF;
880         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
881         if (!EnableZExtElimination) break;
882 
883         if (MI.getOperand(2).getImm() != 0)
884           break;
885 
886         Register SrcReg = MI.getOperand(1).getReg();
887         if (!Register::isVirtualRegister(SrcReg))
888           break;
889 
890         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
891         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
892               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
893           break;
894 
895         MachineInstr *ImpDefMI, *SubRegMI;
896         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
897         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
898         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
899 
900         SrcMI = SubRegMI;
901         if (SubRegMI->getOpcode() == PPC::COPY) {
902           Register CopyReg = SubRegMI->getOperand(1).getReg();
903           if (Register::isVirtualRegister(CopyReg))
904             SrcMI = MRI->getVRegDef(CopyReg);
905         }
906 
907         unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
908         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
909           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
910           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
911                   MI.getOperand(0).getReg())
912               .addReg(SrcReg);
913           ToErase = &MI;
914           Simplified = true;
915           NumEliminatedZExt++;
916         }
917         break;
918       }
919 
920       // TODO: Any instruction that has an immediate form fed only by a PHI
921       // whose operands are all load immediate can be folded away. We currently
922       // do this for ADD instructions, but should expand it to arithmetic and
923       // binary instructions with immediate forms in the future.
924       case PPC::ADD4:
925       case PPC::ADD8: {
926         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
927           assert(PhiOp && "Invalid Operand!");
928           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
929 
930           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
931                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
932         };
933 
934         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
935                                             MachineOperand *PhiOp) {
936           assert(PhiOp && "Invalid Operand!");
937           assert(DominatorOp && "Invalid Operand!");
938           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
939           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
940 
941           // Note: the vregs only show up at odd indices position of PHI Node,
942           // the even indices position save the BB info.
943           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
944             MachineInstr *LiMI =
945                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
946             if (!LiMI ||
947                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
948                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
949                 !MDT->dominates(DefDomMI, LiMI))
950               return false;
951           }
952 
953           return true;
954         };
955 
956         MachineOperand Op1 = MI.getOperand(1);
957         MachineOperand Op2 = MI.getOperand(2);
958         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
959           std::swap(Op1, Op2);
960         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
961           break; // We don't have an ADD fed by LI's that can be transformed
962 
963         // Now we know that Op1 is the PHI node and Op2 is the dominator
964         Register DominatorReg = Op2.getReg();
965 
966         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
967                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
968                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
969         MRI->setRegClass(DominatorReg, TRC);
970 
971         // replace LIs with ADDIs
972         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
973         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
974           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
975           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
976           LLVM_DEBUG(LiMI->dump());
977 
978           // There could be repeated registers in the PHI, e.g: %1 =
979           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
980           // already replaced the def instruction, skip.
981           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
982             continue;
983 
984           assert((LiMI->getOpcode() == PPC::LI ||
985                   LiMI->getOpcode() == PPC::LI8) &&
986                  "Invalid Opcode!");
987           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
988           LiMI->RemoveOperand(1);                    // remove the imm of LI
989           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
990                                                               : PPC::ADDI8));
991           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
992               .addReg(DominatorReg)
993               .addImm(LiImm); // restore the imm of LI
994           LLVM_DEBUG(LiMI->dump());
995         }
996 
997         // Replace ADD with COPY
998         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
999         LLVM_DEBUG(MI.dump());
1000         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1001                 MI.getOperand(0).getReg())
1002             .add(Op1);
1003         ToErase = &MI;
1004         Simplified = true;
1005         NumOptADDLIs++;
1006         break;
1007       }
1008       case PPC::RLDICR: {
1009         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
1010                       combineSEXTAndSHL(MI, ToErase);
1011         break;
1012       }
1013       case PPC::RLWINM:
1014       case PPC::RLWINM_rec:
1015       case PPC::RLWINM8:
1016       case PPC::RLWINM8_rec: {
1017         Simplified = TII->combineRLWINM(MI, &ToErase);
1018         if (Simplified)
1019           ++NumRotatesCollapsed;
1020         break;
1021       }
1022       // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1023       // always trap, we will delete the node if it will never trap.
1024       case PPC::TDI:
1025       case PPC::TWI:
1026       case PPC::TD:
1027       case PPC::TW: {
1028         if (!EnableTrapOptimization) break;
1029         MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1030         MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1031         bool IsOperand2Immediate = MI.getOperand(2).isImm();
1032         // We can only do the optimization if we can get immediates
1033         // from both operands
1034         if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1035                         LiMI1->getOpcode() == PPC::LI8)))
1036           break;
1037         if (!IsOperand2Immediate &&
1038             !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1039                         LiMI2->getOpcode() == PPC::LI8)))
1040           break;
1041 
1042         auto ImmOperand0 = MI.getOperand(0).getImm();
1043         auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1044         auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1045                                                : LiMI2->getOperand(1).getImm();
1046 
1047         // We will replace the MI with an unconditional trap if it will always
1048         // trap.
1049         if ((ImmOperand0 == 31) ||
1050             ((ImmOperand0 & 0x10) &&
1051              ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1052             ((ImmOperand0 & 0x8) &&
1053              ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1054             ((ImmOperand0 & 0x2) &&
1055              ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1056             ((ImmOperand0 & 0x1) &&
1057              ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1058             ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1059           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1060           TrapOpt = true;
1061         }
1062         // We will delete the MI if it will never trap.
1063         ToErase = &MI;
1064         Simplified = true;
1065         break;
1066       }
1067       }
1068     }
1069 
1070     // If the last instruction was marked for elimination,
1071     // remove it now.
1072     if (ToErase) {
1073       ToErase->eraseFromParent();
1074       ToErase = nullptr;
1075     }
1076     // Reset TrapOpt to false at the end of the basic block.
1077     if (EnableTrapOptimization)
1078       TrapOpt = false;
1079   }
1080 
1081   // Eliminate all the TOC save instructions which are redundant.
1082   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1083   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1084   if (FI->mustSaveTOC())
1085     NumTOCSavesInPrologue++;
1086 
1087   // We try to eliminate redundant compare instruction.
1088   Simplified |= eliminateRedundantCompare();
1089 
1090   return Simplified;
1091 }
1092 
1093 // helper functions for eliminateRedundantCompare
1094 static bool isEqOrNe(MachineInstr *BI) {
1095   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1096   unsigned PredCond = PPC::getPredicateCondition(Pred);
1097   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1098 }
1099 
1100 static bool isSupportedCmpOp(unsigned opCode) {
1101   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1102           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1103           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1104           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1105 }
1106 
1107 static bool is64bitCmpOp(unsigned opCode) {
1108   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1109           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1110 }
1111 
1112 static bool isSignedCmpOp(unsigned opCode) {
1113   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1114           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1115 }
1116 
1117 static unsigned getSignedCmpOpCode(unsigned opCode) {
1118   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1119   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1120   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1121   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1122   return opCode;
1123 }
1124 
1125 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1126 // (LT x) to (LE x-1)
1127 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1128   uint64_t Imm = CMPI->getOperand(2).getImm();
1129   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1130   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1131     return 0;
1132 
1133   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1134   unsigned PredCond = PPC::getPredicateCondition(Pred);
1135   unsigned PredHint = PPC::getPredicateHint(Pred);
1136   if (PredCond == PPC::PRED_GE)
1137     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1138   if (PredCond == PPC::PRED_LT)
1139     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1140 
1141   return 0;
1142 }
1143 
1144 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1145 // (LE x) to (LT x+1)
1146 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1147   uint64_t Imm = CMPI->getOperand(2).getImm();
1148   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1149   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1150     return 0;
1151 
1152   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1153   unsigned PredCond = PPC::getPredicateCondition(Pred);
1154   unsigned PredHint = PPC::getPredicateHint(Pred);
1155   if (PredCond == PPC::PRED_GT)
1156     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1157   if (PredCond == PPC::PRED_LE)
1158     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1159 
1160   return 0;
1161 }
1162 
1163 // This takes a Phi node and returns a register value for the specified BB.
1164 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1165                                        MachineBasicBlock *MBB) {
1166   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1167     MachineOperand &MO = Phi->getOperand(I);
1168     if (MO.getMBB() == MBB)
1169       return Phi->getOperand(I-1).getReg();
1170   }
1171   llvm_unreachable("invalid src basic block for this Phi node\n");
1172   return 0;
1173 }
1174 
1175 // This function tracks the source of the register through register copy.
1176 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1177 // assuming that the control comes from BB1 into BB2.
1178 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1179                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1180   unsigned SrcReg = Reg;
1181   while (true) {
1182     unsigned NextReg = SrcReg;
1183     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1184     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1185       NextReg = getIncomingRegForBlock(Inst, BB1);
1186       // We track through PHI only once to avoid infinite loop.
1187       BB1 = nullptr;
1188     }
1189     else if (Inst->isFullCopy())
1190       NextReg = Inst->getOperand(1).getReg();
1191     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1192       break;
1193     SrcReg = NextReg;
1194   }
1195   return SrcReg;
1196 }
1197 
1198 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1199                                           MachineBasicBlock *&PredMBB,
1200                                           MachineBasicBlock *&MBBtoMoveCmp,
1201                                           MachineRegisterInfo *MRI) {
1202 
1203   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1204     auto BII = BB.getFirstInstrTerminator();
1205     // We optimize BBs ending with a conditional branch.
1206     // We check only for BCC here, not BCCLR, because BCCLR
1207     // will be formed only later in the pipeline.
1208     if (BB.succ_size() == 2 &&
1209         BII != BB.instr_end() &&
1210         (*BII).getOpcode() == PPC::BCC &&
1211         (*BII).getOperand(1).isReg()) {
1212       // We optimize only if the condition code is used only by one BCC.
1213       Register CndReg = (*BII).getOperand(1).getReg();
1214       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1215         return false;
1216 
1217       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1218       // We assume compare and branch are in the same BB for ease of analysis.
1219       if (CMPI->getParent() != &BB)
1220         return false;
1221 
1222       // We skip this BB if a physical register is used in comparison.
1223       for (MachineOperand &MO : CMPI->operands())
1224         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1225           return false;
1226 
1227       return true;
1228     }
1229     return false;
1230   };
1231 
1232   // If this BB has more than one successor, we can create a new BB and
1233   // move the compare instruction in the new BB.
1234   // So far, we do not move compare instruction to a BB having multiple
1235   // successors to avoid potentially increasing code size.
1236   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1237     return BB.succ_size() == 1;
1238   };
1239 
1240   if (!isEligibleBB(MBB))
1241     return false;
1242 
1243   unsigned NumPredBBs = MBB.pred_size();
1244   if (NumPredBBs == 1) {
1245     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1246     if (isEligibleBB(*TmpMBB)) {
1247       PredMBB = TmpMBB;
1248       MBBtoMoveCmp = nullptr;
1249       return true;
1250     }
1251   }
1252   else if (NumPredBBs == 2) {
1253     // We check for partially redundant case.
1254     // So far, we support cases with only two predecessors
1255     // to avoid increasing the number of instructions.
1256     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1257     MachineBasicBlock *Pred1MBB = *PI;
1258     MachineBasicBlock *Pred2MBB = *(PI+1);
1259 
1260     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1261       // We assume Pred1MBB is the BB containing the compare to be merged and
1262       // Pred2MBB is the BB to which we will append a compare instruction.
1263       // Hence we can proceed as is.
1264     }
1265     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1266       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1267       std::swap(Pred1MBB, Pred2MBB);
1268     }
1269     else return false;
1270 
1271     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1272     // We cannot move the compare instruction if operands are not available
1273     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1274     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1275     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1276     for (int I = 1; I <= 2; I++)
1277       if (CMPI->getOperand(I).isReg()) {
1278         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1279         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1280           return false;
1281       }
1282 
1283     PredMBB = Pred1MBB;
1284     MBBtoMoveCmp = Pred2MBB;
1285     return true;
1286   }
1287 
1288   return false;
1289 }
1290 
1291 // This function will iterate over the input map containing a pair of TOC save
1292 // instruction and a flag. The flag will be set to false if the TOC save is
1293 // proven redundant. This function will erase from the basic block all the TOC
1294 // saves marked as redundant.
1295 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1296     std::map<MachineInstr *, bool> &TOCSaves) {
1297   bool Simplified = false;
1298   int NumKept = 0;
1299   for (auto TOCSave : TOCSaves) {
1300     if (!TOCSave.second) {
1301       TOCSave.first->eraseFromParent();
1302       RemoveTOCSave++;
1303       Simplified = true;
1304     } else {
1305       NumKept++;
1306     }
1307   }
1308 
1309   if (NumKept > 1)
1310     MultiTOCSaves++;
1311 
1312   return Simplified;
1313 }
1314 
1315 // If multiple conditional branches are executed based on the (essentially)
1316 // same comparison, we merge compare instructions into one and make multiple
1317 // conditional branches on this comparison.
1318 // For example,
1319 //   if (a == 0) { ... }
1320 //   else if (a < 0) { ... }
1321 // can be executed by one compare and two conditional branches instead of
1322 // two pairs of a compare and a conditional branch.
1323 //
1324 // This method merges two compare instructions in two MBBs and modifies the
1325 // compare and conditional branch instructions if needed.
1326 // For the above example, the input for this pass looks like:
1327 //   cmplwi r3, 0
1328 //   beq    0, .LBB0_3
1329 //   cmpwi  r3, -1
1330 //   bgt    0, .LBB0_4
1331 // So, before merging two compares, we need to modify these instructions as
1332 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1333 //   beq    0, .LBB0_3
1334 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1335 //   bge    0, .LBB0_4
1336 
1337 bool PPCMIPeephole::eliminateRedundantCompare() {
1338   bool Simplified = false;
1339 
1340   for (MachineBasicBlock &MBB2 : *MF) {
1341     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1342 
1343     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1344     // as an optimization target if
1345     // - both MBBs end with a conditional branch,
1346     // - MBB1 is the only predecessor of MBB2, and
1347     // - compare does not take a physical register as a operand in both MBBs.
1348     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1349     //
1350     // As partially redundant case, we additionally handle if MBB2 has one
1351     // additional predecessor, which has only one successor (MBB2).
1352     // In this case, we move the compare instruction originally in MBB2 into
1353     // MBBtoMoveCmp. This partially redundant case is typically appear by
1354     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1355     //
1356     // Overview of CFG of related basic blocks
1357     // Fully redundant case        Partially redundant case
1358     //   --------                   ----------------  --------
1359     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1360     //   --------                   ----------------  --------
1361     //      |    \                     (w/ 1 succ) \     |    \
1362     //      |     \                                 \    |     \
1363     //      |                                        \   |
1364     //   --------                                     --------
1365     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1366     //   -------- and 2 succ)                         -------- and 2 succ)
1367     //      |    \                                       |    \
1368     //      |     \                                      |     \
1369     //
1370     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1371       continue;
1372 
1373     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1374     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1375 
1376     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1377     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1378     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1379 
1380     // We cannot optimize an unsupported compare opcode or
1381     // a mix of 32-bit and 64-bit comaprisons
1382     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1383         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1384         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1385       continue;
1386 
1387     unsigned NewOpCode = 0;
1388     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1389     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1390     bool SwapOperands = false;
1391 
1392     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1393       // Typically, unsigned comparison is used for equality check, but
1394       // we replace it with a signed comparison if the comparison
1395       // to be merged is a signed comparison.
1396       // In other cases of opcode mismatch, we cannot optimize this.
1397 
1398       // We cannot change opcode when comparing against an immediate
1399       // if the most significant bit of the immediate is one
1400       // due to the difference in sign extension.
1401       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1402         if (!I->getOperand(2).isImm())
1403           return false;
1404         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1405         return Imm < 0;
1406       };
1407 
1408       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1409           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1410         NewOpCode = CMPI1->getOpcode();
1411       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1412                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1413         NewOpCode = CMPI2->getOpcode();
1414       else continue;
1415     }
1416 
1417     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1418       // In case of comparisons between two registers, these two registers
1419       // must be same to merge two comparisons.
1420       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1421                                          nullptr, nullptr, MRI);
1422       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1423                                          nullptr, nullptr, MRI);
1424       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1425                                          MBB1, &MBB2, MRI);
1426       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1427                                          MBB1, &MBB2, MRI);
1428 
1429       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1430         // Same pair of registers in the same order; ready to merge as is.
1431       }
1432       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1433         // Same pair of registers in different order.
1434         // We reverse the predicate to merge compare instructions.
1435         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1436         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1437         // In case of partial redundancy, we need to swap operands
1438         // in another compare instruction.
1439         SwapOperands = true;
1440       }
1441       else continue;
1442     }
1443     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1444       // In case of comparisons between a register and an immediate,
1445       // the operand register must be same for two compare instructions.
1446       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1447                                          nullptr, nullptr, MRI);
1448       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1449                                          MBB1, &MBB2, MRI);
1450       if (Cmp1Operand1 != Cmp2Operand1)
1451         continue;
1452 
1453       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1454       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1455 
1456       // If immediate are not same, we try to adjust by changing predicate;
1457       // e.g. GT imm means GE (imm+1).
1458       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1459         int Diff = Imm1 - Imm2;
1460         if (Diff < -2 || Diff > 2)
1461           continue;
1462 
1463         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1464         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1465         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1466         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1467         if (Diff == 2) {
1468           if (PredToInc2 && PredToDec1) {
1469             NewPredicate2 = PredToInc2;
1470             NewPredicate1 = PredToDec1;
1471             NewImm2++;
1472             NewImm1--;
1473           }
1474         }
1475         else if (Diff == 1) {
1476           if (PredToInc2) {
1477             NewImm2++;
1478             NewPredicate2 = PredToInc2;
1479           }
1480           else if (PredToDec1) {
1481             NewImm1--;
1482             NewPredicate1 = PredToDec1;
1483           }
1484         }
1485         else if (Diff == -1) {
1486           if (PredToDec2) {
1487             NewImm2--;
1488             NewPredicate2 = PredToDec2;
1489           }
1490           else if (PredToInc1) {
1491             NewImm1++;
1492             NewPredicate1 = PredToInc1;
1493           }
1494         }
1495         else if (Diff == -2) {
1496           if (PredToDec2 && PredToInc1) {
1497             NewPredicate2 = PredToDec2;
1498             NewPredicate1 = PredToInc1;
1499             NewImm2--;
1500             NewImm1++;
1501           }
1502         }
1503       }
1504 
1505       // We cannot merge two compares if the immediates are not same.
1506       if (NewImm2 != NewImm1)
1507         continue;
1508     }
1509 
1510     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1511     LLVM_DEBUG(CMPI1->dump());
1512     LLVM_DEBUG(BI1->dump());
1513     LLVM_DEBUG(CMPI2->dump());
1514     LLVM_DEBUG(BI2->dump());
1515 
1516     // We adjust opcode, predicates and immediate as we determined above.
1517     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1518       CMPI1->setDesc(TII->get(NewOpCode));
1519     }
1520     if (NewPredicate1) {
1521       BI1->getOperand(0).setImm(NewPredicate1);
1522     }
1523     if (NewPredicate2) {
1524       BI2->getOperand(0).setImm(NewPredicate2);
1525     }
1526     if (NewImm1 != Imm1) {
1527       CMPI1->getOperand(2).setImm(NewImm1);
1528     }
1529 
1530     if (IsPartiallyRedundant) {
1531       // We touch up the compare instruction in MBB2 and move it to
1532       // a previous BB to handle partially redundant case.
1533       if (SwapOperands) {
1534         Register Op1 = CMPI2->getOperand(1).getReg();
1535         Register Op2 = CMPI2->getOperand(2).getReg();
1536         CMPI2->getOperand(1).setReg(Op2);
1537         CMPI2->getOperand(2).setReg(Op1);
1538       }
1539       if (NewImm2 != Imm2)
1540         CMPI2->getOperand(2).setImm(NewImm2);
1541 
1542       for (int I = 1; I <= 2; I++) {
1543         if (CMPI2->getOperand(I).isReg()) {
1544           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1545           if (Inst->getParent() != &MBB2)
1546             continue;
1547 
1548           assert(Inst->getOpcode() == PPC::PHI &&
1549                  "We cannot support if an operand comes from this BB.");
1550           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1551           CMPI2->getOperand(I).setReg(SrcReg);
1552         }
1553       }
1554       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1555       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1556 
1557       DebugLoc DL = CMPI2->getDebugLoc();
1558       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1559       BuildMI(MBB2, MBB2.begin(), DL,
1560               TII->get(PPC::PHI), NewVReg)
1561         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1562         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1563       BI2->getOperand(1).setReg(NewVReg);
1564     }
1565     else {
1566       // We finally eliminate compare instruction in MBB2.
1567       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1568       CMPI2->eraseFromParent();
1569     }
1570     BI2->getOperand(1).setIsKill(true);
1571     BI1->getOperand(1).setIsKill(false);
1572 
1573     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1574     LLVM_DEBUG(CMPI1->dump());
1575     LLVM_DEBUG(BI1->dump());
1576     LLVM_DEBUG(BI2->dump());
1577     if (IsPartiallyRedundant) {
1578       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1579                         << printMBBReference(*MBBtoMoveCmp)
1580                         << " to handle partial redundancy.\n");
1581       LLVM_DEBUG(CMPI2->dump());
1582     }
1583 
1584     Simplified = true;
1585   }
1586 
1587   return Simplified;
1588 }
1589 
1590 // We miss the opportunity to emit an RLDIC when lowering jump tables
1591 // since ISEL sees only a single basic block. When selecting, the clear
1592 // and shift left will be in different blocks.
1593 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1594   if (MI.getOpcode() != PPC::RLDICR)
1595     return false;
1596 
1597   Register SrcReg = MI.getOperand(1).getReg();
1598   if (!Register::isVirtualRegister(SrcReg))
1599     return false;
1600 
1601   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1602   if (SrcMI->getOpcode() != PPC::RLDICL)
1603     return false;
1604 
1605   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1606   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1607   MachineOperand MOpSHMI = MI.getOperand(2);
1608   MachineOperand MOpMEMI = MI.getOperand(3);
1609   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1610         MOpMEMI.isImm()))
1611     return false;
1612 
1613   uint64_t SHSrc = MOpSHSrc.getImm();
1614   uint64_t MBSrc = MOpMBSrc.getImm();
1615   uint64_t SHMI = MOpSHMI.getImm();
1616   uint64_t MEMI = MOpMEMI.getImm();
1617   uint64_t NewSH = SHSrc + SHMI;
1618   uint64_t NewMB = MBSrc - SHMI;
1619   if (NewMB > 63 || NewSH > 63)
1620     return false;
1621 
1622   // The bits cleared with RLDICL are [0, MBSrc).
1623   // The bits cleared with RLDICR are (MEMI, 63].
1624   // After the sequence, the bits cleared are:
1625   // [0, MBSrc-SHMI) and (MEMI, 63).
1626   //
1627   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1628   if ((63 - NewSH) != MEMI)
1629     return false;
1630 
1631   LLVM_DEBUG(dbgs() << "Converting pair: ");
1632   LLVM_DEBUG(SrcMI->dump());
1633   LLVM_DEBUG(MI.dump());
1634 
1635   MI.setDesc(TII->get(PPC::RLDIC));
1636   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1637   MI.getOperand(2).setImm(NewSH);
1638   MI.getOperand(3).setImm(NewMB);
1639   MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
1640   SrcMI->getOperand(1).setIsKill(false);
1641 
1642   LLVM_DEBUG(dbgs() << "To: ");
1643   LLVM_DEBUG(MI.dump());
1644   NumRotatesCollapsed++;
1645   // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1646   if (MRI->use_nodbg_empty(SrcReg)) {
1647     assert(!SrcMI->hasImplicitDef() &&
1648            "Not expecting an implicit def with this instr.");
1649     SrcMI->eraseFromParent();
1650   }
1651   return true;
1652 }
1653 
1654 // For case in LLVM IR
1655 // entry:
1656 //   %iconv = sext i32 %index to i64
1657 //   br i1 undef label %true, label %false
1658 // true:
1659 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1660 // ...
1661 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1662 // different BBs when conducting instruction selection. We can do a peephole
1663 // optimization to combine these two instructions into extswsli after
1664 // instruction selection.
1665 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1666                                       MachineInstr *&ToErase) {
1667   if (MI.getOpcode() != PPC::RLDICR)
1668     return false;
1669 
1670   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1671     return false;
1672 
1673   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1674 
1675   MachineOperand MOpSHMI = MI.getOperand(2);
1676   MachineOperand MOpMEMI = MI.getOperand(3);
1677   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1678     return false;
1679 
1680   uint64_t SHMI = MOpSHMI.getImm();
1681   uint64_t MEMI = MOpMEMI.getImm();
1682   if (SHMI + MEMI != 63)
1683     return false;
1684 
1685   Register SrcReg = MI.getOperand(1).getReg();
1686   if (!Register::isVirtualRegister(SrcReg))
1687     return false;
1688 
1689   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1690   if (SrcMI->getOpcode() != PPC::EXTSW &&
1691       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1692     return false;
1693 
1694   // If the register defined by extsw has more than one use, combination is not
1695   // needed.
1696   if (!MRI->hasOneNonDBGUse(SrcReg))
1697     return false;
1698 
1699   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1700   assert(SrcMI->getOperand(1).isReg() &&
1701          "EXTSW's second operand should be a register");
1702   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1703     return false;
1704 
1705   LLVM_DEBUG(dbgs() << "Combining pair: ");
1706   LLVM_DEBUG(SrcMI->dump());
1707   LLVM_DEBUG(MI.dump());
1708 
1709   MachineInstr *NewInstr =
1710       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1711               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1712                                                : TII->get(PPC::EXTSWSLI_32_64),
1713               MI.getOperand(0).getReg())
1714           .add(SrcMI->getOperand(1))
1715           .add(MOpSHMI);
1716   (void)NewInstr;
1717 
1718   LLVM_DEBUG(dbgs() << "TO: ");
1719   LLVM_DEBUG(NewInstr->dump());
1720   ++NumEXTSWAndSLDICombined;
1721   ToErase = &MI;
1722   // SrcMI, which is extsw, is of no use now, erase it.
1723   SrcMI->eraseFromParent();
1724   return true;
1725 }
1726 
1727 } // end default namespace
1728 
1729 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1730                       "PowerPC MI Peephole Optimization", false, false)
1731 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1732 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1733 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1734 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1735                     "PowerPC MI Peephole Optimization", false, false)
1736 
1737 char PPCMIPeephole::ID = 0;
1738 FunctionPass*
1739 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1740