1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to prepare loops for ppc preferred addressing 10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with 11 // update) 12 // Additional PHIs are created for loop induction variables used by load/store 13 // instructions so that preferred addressing modes can be used. 14 // 15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they 16 // can satisfy the DS/DQ form displacement requirements. 17 // Generically, this means transforming loops like this: 18 // for (int i = 0; i < n; ++i) { 19 // unsigned long x1 = *(unsigned long *)(p + i + 5); 20 // unsigned long x2 = *(unsigned long *)(p + i + 9); 21 // } 22 // 23 // to look like this: 24 // 25 // unsigned NewP = p + 5; 26 // for (int i = 0; i < n; ++i) { 27 // unsigned long x1 = *(unsigned long *)(i + NewP); 28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4); 29 // } 30 // 31 // 2: D/DS form with update preparation, prepare the load/store instructions so 32 // that we can use update form to do pre-increment. 33 // Generically, this means transforming loops like this: 34 // for (int i = 0; i < n; ++i) 35 // array[i] = c; 36 // 37 // to look like this: 38 // 39 // T *p = array[-1]; 40 // for (int i = 0; i < n; ++i) 41 // *++p = c; 42 // 43 // 3: common multiple chains for the load/stores with same offsets in the loop, 44 // so that we can reuse the offsets and reduce the register pressure in the 45 // loop. This transformation can also increase the loop ILP as now each chain 46 // uses its own loop induction add/addi. But this will increase the number of 47 // add/addi in the loop. 48 // 49 // Generically, this means transforming loops like this: 50 // 51 // char *p; 52 // A1 = p + base1 53 // A2 = p + base1 + offset 54 // B1 = p + base2 55 // B2 = p + base2 + offset 56 // 57 // for (int i = 0; i < n; i++) 58 // unsigned long x1 = *(unsigned long *)(A1 + i); 59 // unsigned long x2 = *(unsigned long *)(A2 + i) 60 // unsigned long x3 = *(unsigned long *)(B1 + i); 61 // unsigned long x4 = *(unsigned long *)(B2 + i); 62 // } 63 // 64 // to look like this: 65 // 66 // A1_new = p + base1 // chain 1 67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is 68 // // reused. 69 // 70 // for (long long i = 0; i < n; i+=count) { 71 // unsigned long x1 = *(unsigned long *)(A1_new + i); 72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset); 73 // unsigned long x3 = *(unsigned long *)(B1_new + i); 74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset); 75 // } 76 //===----------------------------------------------------------------------===// 77 78 #include "PPC.h" 79 #include "PPCSubtarget.h" 80 #include "PPCTargetMachine.h" 81 #include "llvm/ADT/DepthFirstIterator.h" 82 #include "llvm/ADT/SmallPtrSet.h" 83 #include "llvm/ADT/SmallSet.h" 84 #include "llvm/ADT/SmallVector.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/ScalarEvolution.h" 88 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 89 #include "llvm/IR/BasicBlock.h" 90 #include "llvm/IR/CFG.h" 91 #include "llvm/IR/Dominators.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/IntrinsicsPowerPC.h" 96 #include "llvm/IR/Module.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/InitializePasses.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Transforms/Scalar.h" 105 #include "llvm/Transforms/Utils.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/LoopUtils.h" 109 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 110 #include <cassert> 111 #include <cmath> 112 #include <iterator> 113 #include <utility> 114 115 #define DEBUG_TYPE "ppc-loop-instr-form-prep" 116 117 using namespace llvm; 118 119 static cl::opt<unsigned> 120 MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24), 121 cl::desc("Potential common base number threshold per function " 122 "for PPC loop prep")); 123 124 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update", 125 cl::init(true), cl::Hidden, 126 cl::desc("prefer update form when ds form is also a update form")); 127 128 static cl::opt<bool> EnableUpdateFormForNonConstInc( 129 "ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden, 130 cl::desc("prepare update form when the load/store increment is a loop " 131 "invariant non-const value.")); 132 133 static cl::opt<bool> EnableChainCommoning( 134 "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden, 135 cl::desc("Enable chain commoning in PPC loop prepare pass.")); 136 137 // Sum of following 3 per loop thresholds for all loops can not be larger 138 // than MaxVarsPrep. 139 // now the thresholds for each kind prep are exterimental values on Power9. 140 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars", 141 cl::Hidden, cl::init(3), 142 cl::desc("Potential PHI threshold per loop for PPC loop prep of update " 143 "form")); 144 145 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars", 146 cl::Hidden, cl::init(3), 147 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); 148 149 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars", 150 cl::Hidden, cl::init(8), 151 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); 152 153 // Commoning chain will reduce the register pressure, so we don't consider about 154 // the PHI nodes number. 155 // But commoning chain will increase the addi/add number in the loop and also 156 // increase loop ILP. Maximum chain number should be same with hardware 157 // IssueWidth, because we won't benefit from ILP if the parallel chains number 158 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so 159 // there would be 4 buckets at most on P9(IssueWidth is 8). 160 static cl::opt<unsigned> MaxVarsChainCommon( 161 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4), 162 cl::desc("Bucket number per loop for PPC loop chain common")); 163 164 // If would not be profitable if the common base has only one load/store, ISEL 165 // should already be able to choose best load/store form based on offset for 166 // single load/store. Set minimal profitable value default to 2 and make it as 167 // an option. 168 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold", 169 cl::Hidden, cl::init(2), 170 cl::desc("Minimal common base load/store instructions triggering DS/DQ form " 171 "preparation")); 172 173 static cl::opt<unsigned> ChainCommonPrepMinThreshold( 174 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4), 175 cl::desc("Minimal common base load/store instructions triggering chain " 176 "commoning preparation. Must be not smaller than 4")); 177 178 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); 179 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); 180 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); 181 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); 182 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); 183 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); 184 STATISTIC(ChainCommoningRewritten, "Num of commoning chains"); 185 186 namespace { 187 struct BucketElement { 188 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {} 189 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} 190 191 const SCEV *Offset; 192 Instruction *Instr; 193 }; 194 195 struct Bucket { 196 Bucket(const SCEV *B, Instruction *I) 197 : BaseSCEV(B), Elements(1, BucketElement(I)) { 198 ChainSize = 0; 199 } 200 201 // The base of the whole bucket. 202 const SCEV *BaseSCEV; 203 204 // All elements in the bucket. In the bucket, the element with the BaseSCEV 205 // has no offset and all other elements are stored as offsets to the 206 // BaseSCEV. 207 SmallVector<BucketElement, 16> Elements; 208 209 // The potential chains size. This is used for chain commoning only. 210 unsigned ChainSize; 211 212 // The base for each potential chain. This is used for chain commoning only. 213 SmallVector<BucketElement, 16> ChainBases; 214 }; 215 216 // "UpdateForm" is not a real PPC instruction form, it stands for dform 217 // load/store with update like ldu/stdu, or Prefetch intrinsic. 218 // For DS form instructions, their displacements must be multiple of 4. 219 // For DQ form instructions, their displacements must be multiple of 16. 220 enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning }; 221 222 class PPCLoopInstrFormPrep : public FunctionPass { 223 public: 224 static char ID; // Pass ID, replacement for typeid 225 226 PPCLoopInstrFormPrep() : FunctionPass(ID) { 227 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 228 } 229 230 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 231 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 232 } 233 234 void getAnalysisUsage(AnalysisUsage &AU) const override { 235 AU.addPreserved<DominatorTreeWrapperPass>(); 236 AU.addRequired<LoopInfoWrapperPass>(); 237 AU.addPreserved<LoopInfoWrapperPass>(); 238 AU.addRequired<ScalarEvolutionWrapperPass>(); 239 } 240 241 bool runOnFunction(Function &F) override; 242 243 private: 244 PPCTargetMachine *TM = nullptr; 245 const PPCSubtarget *ST; 246 DominatorTree *DT; 247 LoopInfo *LI; 248 ScalarEvolution *SE; 249 bool PreserveLCSSA; 250 bool HasCandidateForPrepare; 251 252 /// Successful preparation number for Update/DS/DQ form in all inner most 253 /// loops. One successful preparation will put one common base out of loop, 254 /// this may leads to register presure like LICM does. 255 /// Make sure total preparation number can be controlled by option. 256 unsigned SuccPrepCount; 257 258 bool runOnLoop(Loop *L); 259 260 /// Check if required PHI node is already exist in Loop \p L. 261 bool alreadyPrepared(Loop *L, Instruction *MemI, 262 const SCEV *BasePtrStartSCEV, 263 const SCEV *BasePtrIncSCEV, PrepForm Form); 264 265 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV. 266 Value *getNodeForInc(Loop *L, Instruction *MemI, 267 const SCEV *BasePtrIncSCEV); 268 269 /// Common chains to reuse offsets for a loop to reduce register pressure. 270 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets); 271 272 /// Find out the potential commoning chains and their bases. 273 bool prepareBasesForCommoningChains(Bucket &BucketChain); 274 275 /// Rewrite load/store according to the common chains. 276 bool 277 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket, 278 SmallSet<BasicBlock *, 16> &BBChanged); 279 280 /// Collect condition matched(\p isValidCandidate() returns true) 281 /// candidates in Loop \p L. 282 SmallVector<Bucket, 16> collectCandidates( 283 Loop *L, 284 std::function<bool(const Instruction *, Value *, const Type *)> 285 isValidCandidate, 286 std::function<bool(const SCEV *)> isValidDiff, 287 unsigned MaxCandidateNum); 288 289 /// Add a candidate to candidates \p Buckets if diff between candidate and 290 /// one base in \p Buckets matches \p isValidDiff. 291 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, 292 SmallVector<Bucket, 16> &Buckets, 293 std::function<bool(const SCEV *)> isValidDiff, 294 unsigned MaxCandidateNum); 295 296 /// Prepare all candidates in \p Buckets for update form. 297 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets); 298 299 /// Prepare all candidates in \p Buckets for displacement form, now for 300 /// ds/dq. 301 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, PrepForm Form); 302 303 /// Prepare for one chain \p BucketChain, find the best base element and 304 /// update all other elements in \p BucketChain accordingly. 305 /// \p Form is used to find the best base element. 306 /// If success, best base element must be stored as the first element of 307 /// \p BucketChain. 308 /// Return false if no base element found, otherwise return true. 309 bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form); 310 311 /// Prepare for one chain \p BucketChain, find the best base element and 312 /// update all other elements in \p BucketChain accordingly. 313 /// If success, best base element must be stored as the first element of 314 /// \p BucketChain. 315 /// Return false if no base element found, otherwise return true. 316 bool prepareBaseForUpdateFormChain(Bucket &BucketChain); 317 318 /// Rewrite load/store instructions in \p BucketChain according to 319 /// preparation. 320 bool rewriteLoadStores(Loop *L, Bucket &BucketChain, 321 SmallSet<BasicBlock *, 16> &BBChanged, 322 PrepForm Form); 323 324 /// Rewrite for the base load/store of a chain. 325 std::pair<Instruction *, Instruction *> 326 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 327 Instruction *BaseMemI, bool CanPreInc, PrepForm Form, 328 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs); 329 330 /// Rewrite for the other load/stores of a chain according to the new \p 331 /// Base. 332 Instruction * 333 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base, 334 const BucketElement &Element, Value *OffToBase, 335 SmallPtrSet<Value *, 16> &DeletedPtrs); 336 }; 337 338 } // end anonymous namespace 339 340 char PPCLoopInstrFormPrep::ID = 0; 341 static const char *name = "Prepare loop for ppc preferred instruction forms"; 342 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 343 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 344 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 345 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 346 347 static constexpr StringRef PHINodeNameSuffix = ".phi"; 348 static constexpr StringRef CastNodeNameSuffix = ".cast"; 349 static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; 350 static constexpr StringRef GEPNodeOffNameSuffix = ".off"; 351 352 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { 353 return new PPCLoopInstrFormPrep(TM); 354 } 355 356 static bool IsPtrInBounds(Value *BasePtr) { 357 Value *StrippedBasePtr = BasePtr; 358 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr)) 359 StrippedBasePtr = BC->getOperand(0); 360 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr)) 361 return GEP->isInBounds(); 362 363 return false; 364 } 365 366 static std::string getInstrName(const Value *I, StringRef Suffix) { 367 assert(I && "Invalid paramater!"); 368 if (I->hasName()) 369 return (I->getName() + Suffix).str(); 370 else 371 return ""; 372 } 373 374 static Value *getPointerOperandAndType(Value *MemI, 375 Type **PtrElementType = nullptr) { 376 377 Value *PtrValue = nullptr; 378 Type *PointerElementType = nullptr; 379 380 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) { 381 PtrValue = LMemI->getPointerOperand(); 382 PointerElementType = LMemI->getType(); 383 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) { 384 PtrValue = SMemI->getPointerOperand(); 385 PointerElementType = SMemI->getValueOperand()->getType(); 386 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) { 387 PointerElementType = Type::getInt8Ty(MemI->getContext()); 388 if (IMemI->getIntrinsicID() == Intrinsic::prefetch || 389 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { 390 PtrValue = IMemI->getArgOperand(0); 391 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { 392 PtrValue = IMemI->getArgOperand(1); 393 } 394 } 395 /*Get ElementType if PtrElementType is not null.*/ 396 if (PtrElementType) 397 *PtrElementType = PointerElementType; 398 399 return PtrValue; 400 } 401 402 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { 403 if (skipFunction(F)) 404 return false; 405 406 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 407 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 408 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 409 DT = DTWP ? &DTWP->getDomTree() : nullptr; 410 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 411 ST = TM ? TM->getSubtargetImpl(F) : nullptr; 412 SuccPrepCount = 0; 413 414 bool MadeChange = false; 415 416 for (Loop *I : *LI) 417 for (Loop *L : depth_first(I)) 418 MadeChange |= runOnLoop(L); 419 420 return MadeChange; 421 } 422 423 // Finding the minimal(chain_number + reusable_offset_number) is a complicated 424 // algorithmic problem. 425 // For now, the algorithm used here is simply adjusted to handle the case for 426 // manually unrolling cases. 427 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and 428 // reusable_offset_number for one base with multiple offsets. 429 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) { 430 // The minimal size for profitable chain commoning: 431 // A1 = base + offset1 432 // A2 = base + offset2 (offset2 - offset1 = X) 433 // A3 = base + offset3 434 // A4 = base + offset4 (offset4 - offset3 = X) 435 // ======> 436 // base1 = base + offset1 437 // base2 = base + offset3 438 // A1 = base1 439 // A2 = base1 + X 440 // A3 = base2 441 // A4 = base2 + X 442 // 443 // There is benefit because of reuse of offest 'X'. 444 445 assert(ChainCommonPrepMinThreshold >= 4 && 446 "Thredhold can not be smaller than 4!\n"); 447 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold) 448 return false; 449 450 // We simply select the FirstOffset as the first reusable offset between each 451 // chain element 1 and element 0. 452 const SCEV *FirstOffset = CBucket.Elements[1].Offset; 453 454 // Figure out how many times above FirstOffset is used in the chain. 455 // For a success commoning chain candidate, offset difference between each 456 // chain element 1 and element 0 must be also FirstOffset. 457 unsigned FirstOffsetReusedCount = 1; 458 459 // Figure out how many times above FirstOffset is used in the first chain. 460 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain 461 unsigned FirstOffsetReusedCountInFirstChain = 1; 462 463 unsigned EleNum = CBucket.Elements.size(); 464 bool SawChainSeparater = false; 465 for (unsigned j = 2; j != EleNum; ++j) { 466 if (SE->getMinusSCEV(CBucket.Elements[j].Offset, 467 CBucket.Elements[j - 1].Offset) == FirstOffset) { 468 if (!SawChainSeparater) 469 FirstOffsetReusedCountInFirstChain++; 470 FirstOffsetReusedCount++; 471 } else 472 // For now, if we meet any offset which is not FirstOffset, we assume we 473 // find a new Chain. 474 // This makes us miss some opportunities. 475 // For example, we can common: 476 // 477 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB} 478 // 479 // as two chains: 480 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}} 481 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2 482 // 483 // But we fail to common: 484 // 485 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA} 486 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1 487 488 SawChainSeparater = true; 489 } 490 491 // FirstOffset is not reused, skip this bucket. 492 if (FirstOffsetReusedCount == 1) 493 return false; 494 495 unsigned ChainNum = 496 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain; 497 498 // All elements are increased by FirstOffset. 499 // The number of chains should be sqrt(EleNum). 500 if (!SawChainSeparater) 501 ChainNum = (unsigned)sqrt((double)EleNum); 502 503 CBucket.ChainSize = (unsigned)(EleNum / ChainNum); 504 505 // If this is not a perfect chain(eg: not all elements can be put inside 506 // commoning chains.), skip now. 507 if (CBucket.ChainSize * ChainNum != EleNum) 508 return false; 509 510 if (SawChainSeparater) { 511 // Check that the offset seqs are the same for all chains. 512 for (unsigned i = 1; i < CBucket.ChainSize; i++) 513 for (unsigned j = 1; j < ChainNum; j++) 514 if (CBucket.Elements[i].Offset != 515 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset, 516 CBucket.Elements[j * CBucket.ChainSize].Offset)) 517 return false; 518 } 519 520 for (unsigned i = 0; i < ChainNum; i++) 521 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]); 522 523 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n"); 524 525 return true; 526 } 527 528 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L, 529 SmallVector<Bucket, 16> &Buckets) { 530 bool MadeChange = false; 531 532 if (Buckets.empty()) 533 return MadeChange; 534 535 SmallSet<BasicBlock *, 16> BBChanged; 536 537 for (auto &Bucket : Buckets) { 538 if (prepareBasesForCommoningChains(Bucket)) 539 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged); 540 } 541 542 if (MadeChange) 543 for (auto *BB : BBChanged) 544 DeleteDeadPHIs(BB); 545 return MadeChange; 546 } 547 548 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains( 549 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) { 550 bool MadeChange = false; 551 552 assert(Bucket.Elements.size() == 553 Bucket.ChainBases.size() * Bucket.ChainSize && 554 "invalid bucket for chain commoning!\n"); 555 SmallPtrSet<Value *, 16> DeletedPtrs; 556 557 BasicBlock *Header = L->getHeader(); 558 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 559 560 SCEVExpander SCEVE(*SE, Header->getDataLayout(), 561 "loopprepare-chaincommon"); 562 563 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) { 564 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx; 565 const SCEV *BaseSCEV = 566 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV, 567 Bucket.Elements[BaseElemIdx].Offset) 568 : Bucket.BaseSCEV; 569 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV); 570 571 // Make sure the base is able to expand. 572 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) 573 return MadeChange; 574 575 assert(BasePtrSCEV->isAffine() && 576 "Invalid SCEV type for the base ptr for a candidate chain!\n"); 577 578 std::pair<Instruction *, Instruction *> Base = rewriteForBase( 579 L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr, 580 false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs); 581 582 if (!Base.first || !Base.second) 583 return MadeChange; 584 585 // Keep track of the replacement pointer values we've inserted so that we 586 // don't generate more pointer values than necessary. 587 SmallPtrSet<Value *, 16> NewPtrs; 588 NewPtrs.insert(Base.first); 589 590 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize; 591 ++Idx) { 592 BucketElement &I = Bucket.Elements[Idx]; 593 Value *Ptr = getPointerOperandAndType(I.Instr); 594 assert(Ptr && "No pointer operand"); 595 if (NewPtrs.count(Ptr)) 596 continue; 597 598 const SCEV *OffsetSCEV = 599 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset, 600 Bucket.Elements[BaseElemIdx].Offset) 601 : Bucket.Elements[Idx].Offset; 602 603 // Make sure offset is able to expand. Only need to check one time as the 604 // offsets are reused between different chains. 605 if (!BaseElemIdx) 606 if (!SCEVE.isSafeToExpand(OffsetSCEV)) 607 return false; 608 609 Value *OffsetValue = SCEVE.expandCodeFor( 610 OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator()); 611 612 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx], 613 OffsetValue, DeletedPtrs); 614 615 assert(NewPtr && "Wrong rewrite!\n"); 616 NewPtrs.insert(NewPtr); 617 } 618 619 ++ChainCommoningRewritten; 620 } 621 622 // Clear the rewriter cache, because values that are in the rewriter's cache 623 // can be deleted below, causing the AssertingVH in the cache to trigger. 624 SCEVE.clear(); 625 626 for (auto *Ptr : DeletedPtrs) { 627 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 628 BBChanged.insert(IDel->getParent()); 629 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 630 } 631 632 MadeChange = true; 633 return MadeChange; 634 } 635 636 // Rewrite the new base according to BasePtrSCEV. 637 // bb.loop.preheader: 638 // %newstart = ... 639 // bb.loop.body: 640 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ] 641 // ... 642 // %add = getelementptr %phinode, %inc 643 // 644 // First returned instruciton is %phinode (or a type cast to %phinode), caller 645 // needs this value to rewrite other load/stores in the same chain. 646 // Second returned instruction is %add, caller needs this value to rewrite other 647 // load/stores in the same chain. 648 std::pair<Instruction *, Instruction *> 649 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 650 Instruction *BaseMemI, bool CanPreInc, 651 PrepForm Form, SCEVExpander &SCEVE, 652 SmallPtrSet<Value *, 16> &DeletedPtrs) { 653 654 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); 655 656 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); 657 658 Value *BasePtr = getPointerOperandAndType(BaseMemI); 659 assert(BasePtr && "No pointer operand"); 660 661 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext()); 662 Type *I8PtrTy = 663 PointerType::get(BaseMemI->getParent()->getContext(), 664 BasePtr->getType()->getPointerAddressSpace()); 665 666 bool IsConstantInc = false; 667 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE); 668 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV); 669 670 const SCEVConstant *BasePtrIncConstantSCEV = 671 dyn_cast<SCEVConstant>(BasePtrIncSCEV); 672 if (BasePtrIncConstantSCEV) 673 IsConstantInc = true; 674 675 // No valid representation for the increment. 676 if (!IncNode) { 677 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n"); 678 return std::make_pair(nullptr, nullptr); 679 } 680 681 if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) { 682 LLVM_DEBUG( 683 dbgs() 684 << "Update form prepare for non-const increment is not enabled!\n"); 685 return std::make_pair(nullptr, nullptr); 686 } 687 688 const SCEV *BasePtrStartSCEV = nullptr; 689 if (CanPreInc) { 690 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) && 691 "Increment is not loop invariant!\n"); 692 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), 693 IsConstantInc ? BasePtrIncConstantSCEV 694 : BasePtrIncSCEV); 695 } else 696 BasePtrStartSCEV = BasePtrSCEV->getStart(); 697 698 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) { 699 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n"); 700 return std::make_pair(nullptr, nullptr); 701 } 702 703 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); 704 705 BasicBlock *Header = L->getHeader(); 706 unsigned HeaderLoopPredCount = pred_size(Header); 707 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 708 709 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, 710 getInstrName(BaseMemI, PHINodeNameSuffix)); 711 NewPHI->insertBefore(Header->getFirstNonPHIIt()); 712 713 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, 714 LoopPredecessor->getTerminator()); 715 716 // Note that LoopPredecessor might occur in the predecessor list multiple 717 // times, and we need to add it the right number of times. 718 for (auto *PI : predecessors(Header)) { 719 if (PI != LoopPredecessor) 720 continue; 721 722 NewPHI->addIncoming(BasePtrStart, LoopPredecessor); 723 } 724 725 Instruction *PtrInc = nullptr; 726 Instruction *NewBasePtr = nullptr; 727 if (CanPreInc) { 728 BasicBlock::iterator InsPoint = Header->getFirstInsertionPt(); 729 PtrInc = GetElementPtrInst::Create( 730 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 731 InsPoint); 732 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 733 for (auto *PI : predecessors(Header)) { 734 if (PI == LoopPredecessor) 735 continue; 736 737 NewPHI->addIncoming(PtrInc, PI); 738 } 739 if (PtrInc->getType() != BasePtr->getType()) 740 NewBasePtr = 741 new BitCastInst(PtrInc, BasePtr->getType(), 742 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); 743 else 744 NewBasePtr = PtrInc; 745 } else { 746 // Note that LoopPredecessor might occur in the predecessor list multiple 747 // times, and we need to make sure no more incoming value for them in PHI. 748 for (auto *PI : predecessors(Header)) { 749 if (PI == LoopPredecessor) 750 continue; 751 752 // For the latch predecessor, we need to insert a GEP just before the 753 // terminator to increase the address. 754 BasicBlock *BB = PI; 755 BasicBlock::iterator InsPoint = BB->getTerminator()->getIterator(); 756 PtrInc = GetElementPtrInst::Create( 757 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 758 InsPoint); 759 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 760 761 NewPHI->addIncoming(PtrInc, PI); 762 } 763 PtrInc = NewPHI; 764 if (NewPHI->getType() != BasePtr->getType()) 765 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), 766 getInstrName(NewPHI, CastNodeNameSuffix), 767 Header->getFirstInsertionPt()); 768 else 769 NewBasePtr = NewPHI; 770 } 771 772 BasePtr->replaceAllUsesWith(NewBasePtr); 773 774 DeletedPtrs.insert(BasePtr); 775 776 return std::make_pair(NewBasePtr, PtrInc); 777 } 778 779 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement( 780 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element, 781 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) { 782 Instruction *NewBasePtr = Base.first; 783 Instruction *PtrInc = Base.second; 784 assert((NewBasePtr && PtrInc) && "base does not exist!\n"); 785 786 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext()); 787 788 Value *Ptr = getPointerOperandAndType(Element.Instr); 789 assert(Ptr && "No pointer operand"); 790 791 Instruction *RealNewPtr; 792 if (!Element.Offset || 793 (isa<SCEVConstant>(Element.Offset) && 794 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) { 795 RealNewPtr = NewBasePtr; 796 } else { 797 std::optional<BasicBlock::iterator> PtrIP = std::nullopt; 798 if (Instruction *I = dyn_cast<Instruction>(Ptr)) 799 PtrIP = I->getIterator(); 800 801 if (PtrIP && isa<Instruction>(NewBasePtr) && 802 cast<Instruction>(NewBasePtr)->getParent() == (*PtrIP)->getParent()) 803 PtrIP = std::nullopt; 804 else if (PtrIP && isa<PHINode>(*PtrIP)) 805 PtrIP = (*PtrIP)->getParent()->getFirstInsertionPt(); 806 else if (!PtrIP) 807 PtrIP = Element.Instr->getIterator(); 808 809 assert(OffToBase && "There should be an offset for non base element!\n"); 810 GetElementPtrInst *NewPtr = GetElementPtrInst::Create( 811 I8Ty, PtrInc, OffToBase, 812 getInstrName(Element.Instr, GEPNodeOffNameSuffix)); 813 if (PtrIP) 814 NewPtr->insertBefore(*(*PtrIP)->getParent(), *PtrIP); 815 else 816 NewPtr->insertAfter(cast<Instruction>(PtrInc)); 817 NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); 818 RealNewPtr = NewPtr; 819 } 820 821 Instruction *ReplNewPtr; 822 if (Ptr->getType() != RealNewPtr->getType()) { 823 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), 824 getInstrName(Ptr, CastNodeNameSuffix)); 825 ReplNewPtr->insertAfter(RealNewPtr); 826 } else 827 ReplNewPtr = RealNewPtr; 828 829 Ptr->replaceAllUsesWith(ReplNewPtr); 830 DeletedPtrs.insert(Ptr); 831 832 return ReplNewPtr; 833 } 834 835 void PPCLoopInstrFormPrep::addOneCandidate( 836 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets, 837 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 838 assert((MemI && getPointerOperandAndType(MemI)) && 839 "Candidate should be a memory instruction."); 840 assert(LSCEV && "Invalid SCEV for Ptr value."); 841 842 bool FoundBucket = false; 843 for (auto &B : Buckets) { 844 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) != 845 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE)) 846 continue; 847 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); 848 if (isValidDiff(Diff)) { 849 B.Elements.push_back(BucketElement(Diff, MemI)); 850 FoundBucket = true; 851 break; 852 } 853 } 854 855 if (!FoundBucket) { 856 if (Buckets.size() == MaxCandidateNum) { 857 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit " 858 << MaxCandidateNum << "\n"); 859 return; 860 } 861 Buckets.push_back(Bucket(LSCEV, MemI)); 862 } 863 } 864 865 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates( 866 Loop *L, 867 std::function<bool(const Instruction *, Value *, const Type *)> 868 isValidCandidate, 869 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 870 SmallVector<Bucket, 16> Buckets; 871 872 for (const auto &BB : L->blocks()) 873 for (auto &J : *BB) { 874 Value *PtrValue = nullptr; 875 Type *PointerElementType = nullptr; 876 PtrValue = getPointerOperandAndType(&J, &PointerElementType); 877 878 if (!PtrValue) 879 continue; 880 881 if (PtrValue->getType()->getPointerAddressSpace()) 882 continue; 883 884 if (L->isLoopInvariant(PtrValue)) 885 continue; 886 887 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); 888 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 889 if (!LARSCEV || LARSCEV->getLoop() != L) 890 continue; 891 892 // Mark that we have candidates for preparing. 893 HasCandidateForPrepare = true; 894 895 if (isValidCandidate(&J, PtrValue, PointerElementType)) 896 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum); 897 } 898 return Buckets; 899 } 900 901 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, 902 PrepForm Form) { 903 // RemainderOffsetInfo details: 904 // key: value of (Offset urem DispConstraint). For DSForm, it can 905 // be [0, 4). 906 // first of pair: the index of first BucketElement whose remainder is equal 907 // to key. For key 0, this value must be 0. 908 // second of pair: number of load/stores with the same remainder. 909 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo; 910 911 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 912 if (!BucketChain.Elements[j].Offset) 913 RemainderOffsetInfo[0] = std::make_pair(0, 1); 914 else { 915 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset) 916 ->getAPInt() 917 .urem(Form); 918 if (!RemainderOffsetInfo.contains(Remainder)) 919 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); 920 else 921 RemainderOffsetInfo[Remainder].second++; 922 } 923 } 924 // Currently we choose the most profitable base as the one which has the max 925 // number of load/store with same remainder. 926 // FIXME: adjust the base selection strategy according to load/store offset 927 // distribution. 928 // For example, if we have one candidate chain for DS form preparation, which 929 // contains following load/stores with different remainders: 930 // 1: 10 load/store whose remainder is 1; 931 // 2: 9 load/store whose remainder is 2; 932 // 3: 1 for remainder 3 and 0 for remainder 0; 933 // Now we will choose the first load/store whose remainder is 1 as base and 934 // adjust all other load/stores according to new base, so we will get 10 DS 935 // form and 10 X form. 936 // But we should be more clever, for this case we could use two bases, one for 937 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and 938 // 1 X form. 939 unsigned MaxCountRemainder = 0; 940 for (unsigned j = 0; j < (unsigned)Form; j++) 941 if ((RemainderOffsetInfo.contains(j)) && 942 RemainderOffsetInfo[j].second > 943 RemainderOffsetInfo[MaxCountRemainder].second) 944 MaxCountRemainder = j; 945 946 // Abort when there are too few insts with common base. 947 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) 948 return false; 949 950 // If the first value is most profitable, no needed to adjust BucketChain 951 // elements as they are substracted the first value when collecting. 952 if (MaxCountRemainder == 0) 953 return true; 954 955 // Adjust load/store to the new chosen base. 956 const SCEV *Offset = 957 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; 958 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 959 for (auto &E : BucketChain.Elements) { 960 if (E.Offset) 961 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 962 else 963 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 964 } 965 966 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], 967 BucketChain.Elements[0]); 968 return true; 969 } 970 971 // FIXME: implement a more clever base choosing policy. 972 // Currently we always choose an exist load/store offset. This maybe lead to 973 // suboptimal code sequences. For example, for one DS chain with offsets 974 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp 975 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a 976 // multipler of 4, it cannot be represented by sint16. 977 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { 978 // We have a choice now of which instruction's memory operand we use as the 979 // base for the generated PHI. Always picking the first instruction in each 980 // bucket does not work well, specifically because that instruction might 981 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, 982 // the choice is somewhat arbitrary, because the backend will happily 983 // generate direct offsets from both the pre-incremented and 984 // post-incremented pointer values. Thus, we'll pick the first non-prefetch 985 // instruction in each bucket, and adjust the recurrence and other offsets 986 // accordingly. 987 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 988 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr)) 989 if (II->getIntrinsicID() == Intrinsic::prefetch) 990 continue; 991 992 // If we'd otherwise pick the first element anyway, there's nothing to do. 993 if (j == 0) 994 break; 995 996 // If our chosen element has no offset from the base pointer, there's 997 // nothing to do. 998 if (!BucketChain.Elements[j].Offset || 999 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero()) 1000 break; 1001 1002 const SCEV *Offset = BucketChain.Elements[j].Offset; 1003 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 1004 for (auto &E : BucketChain.Elements) { 1005 if (E.Offset) 1006 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 1007 else 1008 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 1009 } 1010 1011 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); 1012 break; 1013 } 1014 return true; 1015 } 1016 1017 bool PPCLoopInstrFormPrep::rewriteLoadStores( 1018 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged, 1019 PrepForm Form) { 1020 bool MadeChange = false; 1021 1022 const SCEVAddRecExpr *BasePtrSCEV = 1023 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV); 1024 if (!BasePtrSCEV->isAffine()) 1025 return MadeChange; 1026 1027 BasicBlock *Header = L->getHeader(); 1028 SCEVExpander SCEVE(*SE, Header->getDataLayout(), 1029 "loopprepare-formrewrite"); 1030 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) 1031 return MadeChange; 1032 1033 SmallPtrSet<Value *, 16> DeletedPtrs; 1034 1035 // For some DS form load/store instructions, it can also be an update form, 1036 // if the stride is constant and is a multipler of 4. Use update form if 1037 // prefer it. 1038 bool CanPreInc = (Form == UpdateForm || 1039 ((Form == DSForm) && 1040 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) && 1041 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) 1042 ->getAPInt() 1043 .urem(4) && 1044 PreferUpdateForm)); 1045 1046 std::pair<Instruction *, Instruction *> Base = 1047 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr, 1048 CanPreInc, Form, SCEVE, DeletedPtrs); 1049 1050 if (!Base.first || !Base.second) 1051 return MadeChange; 1052 1053 // Keep track of the replacement pointer values we've inserted so that we 1054 // don't generate more pointer values than necessary. 1055 SmallPtrSet<Value *, 16> NewPtrs; 1056 NewPtrs.insert(Base.first); 1057 1058 for (const BucketElement &BE : llvm::drop_begin(BucketChain.Elements)) { 1059 Value *Ptr = getPointerOperandAndType(BE.Instr); 1060 assert(Ptr && "No pointer operand"); 1061 if (NewPtrs.count(Ptr)) 1062 continue; 1063 1064 Instruction *NewPtr = rewriteForBucketElement( 1065 Base, BE, 1066 BE.Offset ? cast<SCEVConstant>(BE.Offset)->getValue() : nullptr, 1067 DeletedPtrs); 1068 assert(NewPtr && "wrong rewrite!\n"); 1069 NewPtrs.insert(NewPtr); 1070 } 1071 1072 // Clear the rewriter cache, because values that are in the rewriter's cache 1073 // can be deleted below, causing the AssertingVH in the cache to trigger. 1074 SCEVE.clear(); 1075 1076 for (auto *Ptr : DeletedPtrs) { 1077 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 1078 BBChanged.insert(IDel->getParent()); 1079 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 1080 } 1081 1082 MadeChange = true; 1083 1084 SuccPrepCount++; 1085 1086 if (Form == DSForm && !CanPreInc) 1087 DSFormChainRewritten++; 1088 else if (Form == DQForm) 1089 DQFormChainRewritten++; 1090 else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) 1091 UpdFormChainRewritten++; 1092 1093 return MadeChange; 1094 } 1095 1096 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, 1097 SmallVector<Bucket, 16> &Buckets) { 1098 bool MadeChange = false; 1099 if (Buckets.empty()) 1100 return MadeChange; 1101 SmallSet<BasicBlock *, 16> BBChanged; 1102 for (auto &Bucket : Buckets) 1103 // The base address of each bucket is transformed into a phi and the others 1104 // are rewritten based on new base. 1105 if (prepareBaseForUpdateFormChain(Bucket)) 1106 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); 1107 1108 if (MadeChange) 1109 for (auto *BB : BBChanged) 1110 DeleteDeadPHIs(BB); 1111 return MadeChange; 1112 } 1113 1114 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, 1115 SmallVector<Bucket, 16> &Buckets, 1116 PrepForm Form) { 1117 bool MadeChange = false; 1118 1119 if (Buckets.empty()) 1120 return MadeChange; 1121 1122 SmallSet<BasicBlock *, 16> BBChanged; 1123 for (auto &Bucket : Buckets) { 1124 if (Bucket.Elements.size() < DispFormPrepMinThreshold) 1125 continue; 1126 if (prepareBaseForDispFormChain(Bucket, Form)) 1127 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); 1128 } 1129 1130 if (MadeChange) 1131 for (auto *BB : BBChanged) 1132 DeleteDeadPHIs(BB); 1133 return MadeChange; 1134 } 1135 1136 // Find the loop invariant increment node for SCEV BasePtrIncSCEV. 1137 // bb.loop.preheader: 1138 // %start = ... 1139 // bb.loop.body: 1140 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ] 1141 // ... 1142 // %add = add %phinode, %inc ; %inc is what we want to get. 1143 // 1144 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI, 1145 const SCEV *BasePtrIncSCEV) { 1146 // If the increment is a constant, no definition is needed. 1147 // Return the value directly. 1148 if (isa<SCEVConstant>(BasePtrIncSCEV)) 1149 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue(); 1150 1151 if (!SE->isLoopInvariant(BasePtrIncSCEV, L)) 1152 return nullptr; 1153 1154 BasicBlock *BB = MemI->getParent(); 1155 if (!BB) 1156 return nullptr; 1157 1158 BasicBlock *LatchBB = L->getLoopLatch(); 1159 1160 if (!LatchBB) 1161 return nullptr; 1162 1163 // Run through the PHIs and check their operands to find valid representation 1164 // for the increment SCEV. 1165 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1166 for (auto &CurrentPHI : PHIIter) { 1167 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1168 if (!CurrentPHINode) 1169 continue; 1170 1171 if (!SE->isSCEVable(CurrentPHINode->getType())) 1172 continue; 1173 1174 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1175 1176 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1177 if (!PHIBasePtrSCEV) 1178 continue; 1179 1180 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE); 1181 1182 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV)) 1183 continue; 1184 1185 // Get the incoming value from the loop latch and check if the value has 1186 // the add form with the required increment. 1187 if (CurrentPHINode->getBasicBlockIndex(LatchBB) < 0) 1188 continue; 1189 if (Instruction *I = dyn_cast<Instruction>( 1190 CurrentPHINode->getIncomingValueForBlock(LatchBB))) { 1191 Value *StrippedBaseI = I; 1192 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI)) 1193 StrippedBaseI = BC->getOperand(0); 1194 1195 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI); 1196 if (!StrippedI) 1197 continue; 1198 1199 // LSR pass may add a getelementptr instruction to do the loop increment, 1200 // also search in that getelementptr instruction. 1201 if (StrippedI->getOpcode() == Instruction::Add || 1202 (StrippedI->getOpcode() == Instruction::GetElementPtr && 1203 StrippedI->getNumOperands() == 2)) { 1204 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV) 1205 return StrippedI->getOperand(0); 1206 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV) 1207 return StrippedI->getOperand(1); 1208 } 1209 } 1210 } 1211 return nullptr; 1212 } 1213 1214 // In order to prepare for the preferred instruction form, a PHI is added. 1215 // This function will check to see if that PHI already exists and will return 1216 // true if it found an existing PHI with the matched start and increment as the 1217 // one we wanted to create. 1218 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI, 1219 const SCEV *BasePtrStartSCEV, 1220 const SCEV *BasePtrIncSCEV, 1221 PrepForm Form) { 1222 BasicBlock *BB = MemI->getParent(); 1223 if (!BB) 1224 return false; 1225 1226 BasicBlock *PredBB = L->getLoopPredecessor(); 1227 BasicBlock *LatchBB = L->getLoopLatch(); 1228 1229 if (!PredBB || !LatchBB) 1230 return false; 1231 1232 // Run through the PHIs and see if we have some that looks like a preparation 1233 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1234 for (auto & CurrentPHI : PHIIter) { 1235 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1236 if (!CurrentPHINode) 1237 continue; 1238 1239 if (!SE->isSCEVable(CurrentPHINode->getType())) 1240 continue; 1241 1242 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1243 1244 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1245 if (!PHIBasePtrSCEV) 1246 continue; 1247 1248 const SCEVConstant *PHIBasePtrIncSCEV = 1249 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE)); 1250 if (!PHIBasePtrIncSCEV) 1251 continue; 1252 1253 if (CurrentPHINode->getNumIncomingValues() == 2) { 1254 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && 1255 CurrentPHINode->getIncomingBlock(1) == PredBB) || 1256 (CurrentPHINode->getIncomingBlock(1) == LatchBB && 1257 CurrentPHINode->getIncomingBlock(0) == PredBB)) { 1258 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { 1259 // The existing PHI (CurrentPHINode) has the same start and increment 1260 // as the PHI that we wanted to create. 1261 if ((Form == UpdateForm || Form == ChainCommoning ) && 1262 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { 1263 ++PHINodeAlreadyExistsUpdate; 1264 return true; 1265 } 1266 if (Form == DSForm || Form == DQForm) { 1267 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 1268 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); 1269 if (Diff && !Diff->getAPInt().urem(Form)) { 1270 if (Form == DSForm) 1271 ++PHINodeAlreadyExistsDS; 1272 else 1273 ++PHINodeAlreadyExistsDQ; 1274 return true; 1275 } 1276 } 1277 } 1278 } 1279 } 1280 } 1281 return false; 1282 } 1283 1284 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { 1285 bool MadeChange = false; 1286 1287 // Only prep. the inner-most loop 1288 if (!L->isInnermost()) 1289 return MadeChange; 1290 1291 // Return if already done enough preparation. 1292 if (SuccPrepCount >= MaxVarsPrep) 1293 return MadeChange; 1294 1295 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); 1296 1297 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 1298 // If there is no loop predecessor, or the loop predecessor's terminator 1299 // returns a value (which might contribute to determining the loop's 1300 // iteration space), insert a new preheader for the loop. 1301 if (!LoopPredecessor || 1302 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { 1303 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); 1304 if (LoopPredecessor) 1305 MadeChange = true; 1306 } 1307 if (!LoopPredecessor) { 1308 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); 1309 return MadeChange; 1310 } 1311 // Check if a load/store has update form. This lambda is used by function 1312 // collectCandidates which can collect candidates for types defined by lambda. 1313 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue, 1314 const Type *PointerElementType) { 1315 assert((PtrValue && I) && "Invalid parameter!"); 1316 // There are no update forms for Altivec vector load/stores. 1317 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) 1318 return false; 1319 // There are no update forms for P10 lxvp/stxvp intrinsic. 1320 auto *II = dyn_cast<IntrinsicInst>(I); 1321 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || 1322 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) 1323 return false; 1324 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to 1325 // be 4's multiple (DS-form). For i64 loads/stores when the displacement 1326 // fits in a 16-bit signed field but isn't a multiple of 4, it will be 1327 // useless and possible to break some original well-form addressing mode 1328 // to make this pre-inc prep for it. 1329 if (PointerElementType->isIntegerTy(64)) { 1330 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L); 1331 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 1332 if (!LARSCEV || LARSCEV->getLoop() != L) 1333 return false; 1334 if (const SCEVConstant *StepConst = 1335 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) { 1336 const APInt &ConstInt = StepConst->getValue()->getValue(); 1337 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) 1338 return false; 1339 } 1340 } 1341 return true; 1342 }; 1343 1344 // Check if a load/store has DS form. 1345 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue, 1346 const Type *PointerElementType) { 1347 assert((PtrValue && I) && "Invalid parameter!"); 1348 if (isa<IntrinsicInst>(I)) 1349 return false; 1350 return (PointerElementType->isIntegerTy(64)) || 1351 (PointerElementType->isFloatTy()) || 1352 (PointerElementType->isDoubleTy()) || 1353 (PointerElementType->isIntegerTy(32) && 1354 llvm::any_of(I->users(), 1355 [](const User *U) { return isa<SExtInst>(U); })); 1356 }; 1357 1358 // Check if a load/store has DQ form. 1359 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue, 1360 const Type *PointerElementType) { 1361 assert((PtrValue && I) && "Invalid parameter!"); 1362 // Check if it is a P10 lxvp/stxvp intrinsic. 1363 auto *II = dyn_cast<IntrinsicInst>(I); 1364 if (II) 1365 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || 1366 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; 1367 // Check if it is a P9 vector load/store. 1368 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); 1369 }; 1370 1371 // Check if a load/store is candidate for chain commoning. 1372 // If the SCEV is only with one ptr operand in its start, we can use that 1373 // start as a chain separator. Mark this load/store as a candidate. 1374 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue, 1375 const Type *PointerElementType) { 1376 const SCEVAddRecExpr *ARSCEV = 1377 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L)); 1378 if (!ARSCEV) 1379 return false; 1380 1381 if (!ARSCEV->isAffine()) 1382 return false; 1383 1384 const SCEV *Start = ARSCEV->getStart(); 1385 1386 // A single pointer. We can treat it as offset 0. 1387 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy()) 1388 return true; 1389 1390 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start); 1391 1392 // We need a SCEVAddExpr to include both base and offset. 1393 if (!ASCEV) 1394 return false; 1395 1396 // Make sure there is only one pointer operand(base) and all other operands 1397 // are integer type. 1398 bool SawPointer = false; 1399 for (const SCEV *Op : ASCEV->operands()) { 1400 if (Op->getType()->isPointerTy()) { 1401 if (SawPointer) 1402 return false; 1403 SawPointer = true; 1404 } else if (!Op->getType()->isIntegerTy()) 1405 return false; 1406 } 1407 1408 return SawPointer; 1409 }; 1410 1411 // Check if the diff is a constant type. This is used for update/DS/DQ form 1412 // preparation. 1413 auto isValidConstantDiff = [](const SCEV *Diff) { 1414 return dyn_cast<SCEVConstant>(Diff) != nullptr; 1415 }; 1416 1417 // Make sure the diff between the base and new candidate is required type. 1418 // This is used for chain commoning preparation. 1419 auto isValidChainCommoningDiff = [](const SCEV *Diff) { 1420 assert(Diff && "Invalid Diff!\n"); 1421 1422 // Don't mess up previous dform prepare. 1423 if (isa<SCEVConstant>(Diff)) 1424 return false; 1425 1426 // A single integer type offset. 1427 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy()) 1428 return true; 1429 1430 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff); 1431 if (!ADiff) 1432 return false; 1433 1434 for (const SCEV *Op : ADiff->operands()) 1435 if (!Op->getType()->isIntegerTy()) 1436 return false; 1437 1438 return true; 1439 }; 1440 1441 HasCandidateForPrepare = false; 1442 1443 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n"); 1444 // Collect buckets of comparable addresses used by loads and stores for update 1445 // form. 1446 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates( 1447 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm); 1448 1449 // Prepare for update form. 1450 if (!UpdateFormBuckets.empty()) 1451 MadeChange |= updateFormPrep(L, UpdateFormBuckets); 1452 else if (!HasCandidateForPrepare) { 1453 LLVM_DEBUG( 1454 dbgs() 1455 << "No prepare candidates found, stop praparation for current loop!\n"); 1456 // If no candidate for preparing, return early. 1457 return MadeChange; 1458 } 1459 1460 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n"); 1461 // Collect buckets of comparable addresses used by loads and stores for DS 1462 // form. 1463 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates( 1464 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm); 1465 1466 // Prepare for DS form. 1467 if (!DSFormBuckets.empty()) 1468 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); 1469 1470 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n"); 1471 // Collect buckets of comparable addresses used by loads and stores for DQ 1472 // form. 1473 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates( 1474 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm); 1475 1476 // Prepare for DQ form. 1477 if (!DQFormBuckets.empty()) 1478 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); 1479 1480 // Collect buckets of comparable addresses used by loads and stores for chain 1481 // commoning. With chain commoning, we reuse offsets between the chains, so 1482 // the register pressure will be reduced. 1483 if (!EnableChainCommoning) { 1484 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n"); 1485 return MadeChange; 1486 } 1487 1488 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n"); 1489 SmallVector<Bucket, 16> Buckets = 1490 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff, 1491 MaxVarsChainCommon); 1492 1493 // Prepare for chain commoning. 1494 if (!Buckets.empty()) 1495 MadeChange |= chainCommoning(L, Buckets); 1496 1497 return MadeChange; 1498 } 1499