xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCLoopInstrFormPrep.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to prepare loops for ppc preferred addressing
10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with
11 // update)
12 // Additional PHIs are created for loop induction variables used by load/store
13 // instructions so that preferred addressing modes can be used.
14 //
15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they
16 //    can satisfy the DS/DQ form displacement requirements.
17 //    Generically, this means transforming loops like this:
18 //    for (int i = 0; i < n; ++i) {
19 //      unsigned long x1 = *(unsigned long *)(p + i + 5);
20 //      unsigned long x2 = *(unsigned long *)(p + i + 9);
21 //    }
22 //
23 //    to look like this:
24 //
25 //    unsigned NewP = p + 5;
26 //    for (int i = 0; i < n; ++i) {
27 //      unsigned long x1 = *(unsigned long *)(i + NewP);
28 //      unsigned long x2 = *(unsigned long *)(i + NewP + 4);
29 //    }
30 //
31 // 2: D/DS form with update preparation, prepare the load/store instructions so
32 //    that we can use update form to do pre-increment.
33 //    Generically, this means transforming loops like this:
34 //    for (int i = 0; i < n; ++i)
35 //      array[i] = c;
36 //
37 //    to look like this:
38 //
39 //    T *p = array[-1];
40 //    for (int i = 0; i < n; ++i)
41 //      *++p = c;
42 //
43 // 3: common multiple chains for the load/stores with same offsets in the loop,
44 //    so that we can reuse the offsets and reduce the register pressure in the
45 //    loop. This transformation can also increase the loop ILP as now each chain
46 //    uses its own loop induction add/addi. But this will increase the number of
47 //    add/addi in the loop.
48 //
49 //    Generically, this means transforming loops like this:
50 //
51 //    char *p;
52 //    A1 = p + base1
53 //    A2 = p + base1 + offset
54 //    B1 = p + base2
55 //    B2 = p + base2 + offset
56 //
57 //    for (int i = 0; i < n; i++)
58 //      unsigned long x1 = *(unsigned long *)(A1 + i);
59 //      unsigned long x2 = *(unsigned long *)(A2 + i)
60 //      unsigned long x3 = *(unsigned long *)(B1 + i);
61 //      unsigned long x4 = *(unsigned long *)(B2 + i);
62 //    }
63 //
64 //    to look like this:
65 //
66 //    A1_new = p + base1 // chain 1
67 //    B1_new = p + base2 // chain 2, now inside the loop, common offset is
68 //                       // reused.
69 //
70 //    for (long long i = 0; i < n; i+=count) {
71 //      unsigned long x1 = *(unsigned long *)(A1_new + i);
72 //      unsigned long x2 = *(unsigned long *)((A1_new + i) + offset);
73 //      unsigned long x3 = *(unsigned long *)(B1_new + i);
74 //      unsigned long x4 = *(unsigned long *)((B1_new + i) + offset);
75 //    }
76 //===----------------------------------------------------------------------===//
77 
78 #include "PPC.h"
79 #include "PPCSubtarget.h"
80 #include "PPCTargetMachine.h"
81 #include "llvm/ADT/DepthFirstIterator.h"
82 #include "llvm/ADT/SmallPtrSet.h"
83 #include "llvm/ADT/SmallSet.h"
84 #include "llvm/ADT/SmallVector.h"
85 #include "llvm/ADT/Statistic.h"
86 #include "llvm/Analysis/LoopInfo.h"
87 #include "llvm/Analysis/ScalarEvolution.h"
88 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
89 #include "llvm/IR/BasicBlock.h"
90 #include "llvm/IR/CFG.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/IntrinsicsPowerPC.h"
96 #include "llvm/IR/Module.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/InitializePasses.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Transforms/Scalar.h"
105 #include "llvm/Transforms/Utils.h"
106 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
107 #include "llvm/Transforms/Utils/Local.h"
108 #include "llvm/Transforms/Utils/LoopUtils.h"
109 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
110 #include <cassert>
111 #include <cmath>
112 #include <iterator>
113 #include <utility>
114 
115 #define DEBUG_TYPE "ppc-loop-instr-form-prep"
116 
117 using namespace llvm;
118 
119 static cl::opt<unsigned>
120     MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24),
121                 cl::desc("Potential common base number threshold per function "
122                          "for PPC loop prep"));
123 
124 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update",
125                                  cl::init(true), cl::Hidden,
126   cl::desc("prefer update form when ds form is also a update form"));
127 
128 static cl::opt<bool> EnableUpdateFormForNonConstInc(
129     "ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden,
130     cl::desc("prepare update form when the load/store increment is a loop "
131              "invariant non-const value."));
132 
133 static cl::opt<bool> EnableChainCommoning(
134     "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden,
135     cl::desc("Enable chain commoning in PPC loop prepare pass."));
136 
137 // Sum of following 3 per loop thresholds for all loops can not be larger
138 // than MaxVarsPrep.
139 // now the thresholds for each kind prep are exterimental values on Power9.
140 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars",
141                                  cl::Hidden, cl::init(3),
142   cl::desc("Potential PHI threshold per loop for PPC loop prep of update "
143            "form"));
144 
145 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars",
146                                  cl::Hidden, cl::init(3),
147   cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form"));
148 
149 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars",
150                                  cl::Hidden, cl::init(8),
151   cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form"));
152 
153 // Commoning chain will reduce the register pressure, so we don't consider about
154 // the PHI nodes number.
155 // But commoning chain will increase the addi/add number in the loop and also
156 // increase loop ILP. Maximum chain number should be same with hardware
157 // IssueWidth, because we won't benefit from ILP if the parallel chains number
158 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so
159 // there would be 4 buckets at most on P9(IssueWidth is 8).
160 static cl::opt<unsigned> MaxVarsChainCommon(
161     "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4),
162     cl::desc("Bucket number per loop for PPC loop chain common"));
163 
164 // If would not be profitable if the common base has only one load/store, ISEL
165 // should already be able to choose best load/store form based on offset for
166 // single load/store. Set minimal profitable value default to 2 and make it as
167 // an option.
168 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold",
169                                     cl::Hidden, cl::init(2),
170   cl::desc("Minimal common base load/store instructions triggering DS/DQ form "
171            "preparation"));
172 
173 static cl::opt<unsigned> ChainCommonPrepMinThreshold(
174     "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4),
175     cl::desc("Minimal common base load/store instructions triggering chain "
176              "commoning preparation. Must be not smaller than 4"));
177 
178 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form");
179 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form");
180 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form");
181 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten");
182 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten");
183 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten");
184 STATISTIC(ChainCommoningRewritten, "Num of commoning chains");
185 
186 namespace {
187   struct BucketElement {
188     BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {}
189     BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {}
190 
191     const SCEV *Offset;
192     Instruction *Instr;
193   };
194 
195   struct Bucket {
196     Bucket(const SCEV *B, Instruction *I)
197         : BaseSCEV(B), Elements(1, BucketElement(I)) {
198       ChainSize = 0;
199     }
200 
201     // The base of the whole bucket.
202     const SCEV *BaseSCEV;
203 
204     // All elements in the bucket. In the bucket, the element with the BaseSCEV
205     // has no offset and all other elements are stored as offsets to the
206     // BaseSCEV.
207     SmallVector<BucketElement, 16> Elements;
208 
209     // The potential chains size. This is used for chain commoning only.
210     unsigned ChainSize;
211 
212     // The base for each potential chain. This is used for chain commoning only.
213     SmallVector<BucketElement, 16> ChainBases;
214   };
215 
216   // "UpdateForm" is not a real PPC instruction form, it stands for dform
217   // load/store with update like ldu/stdu, or Prefetch intrinsic.
218   // For DS form instructions, their displacements must be multiple of 4.
219   // For DQ form instructions, their displacements must be multiple of 16.
220   enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning };
221 
222   class PPCLoopInstrFormPrep : public FunctionPass {
223   public:
224     static char ID; // Pass ID, replacement for typeid
225 
226     PPCLoopInstrFormPrep() : FunctionPass(ID) {
227       initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
228     }
229 
230     PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
231       initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
232     }
233 
234     void getAnalysisUsage(AnalysisUsage &AU) const override {
235       AU.addPreserved<DominatorTreeWrapperPass>();
236       AU.addRequired<LoopInfoWrapperPass>();
237       AU.addPreserved<LoopInfoWrapperPass>();
238       AU.addRequired<ScalarEvolutionWrapperPass>();
239     }
240 
241     bool runOnFunction(Function &F) override;
242 
243   private:
244     PPCTargetMachine *TM = nullptr;
245     const PPCSubtarget *ST;
246     DominatorTree *DT;
247     LoopInfo *LI;
248     ScalarEvolution *SE;
249     bool PreserveLCSSA;
250     bool HasCandidateForPrepare;
251 
252     /// Successful preparation number for Update/DS/DQ form in all inner most
253     /// loops. One successful preparation will put one common base out of loop,
254     /// this may leads to register presure like LICM does.
255     /// Make sure total preparation number can be controlled by option.
256     unsigned SuccPrepCount;
257 
258     bool runOnLoop(Loop *L);
259 
260     /// Check if required PHI node is already exist in Loop \p L.
261     bool alreadyPrepared(Loop *L, Instruction *MemI,
262                          const SCEV *BasePtrStartSCEV,
263                          const SCEV *BasePtrIncSCEV, PrepForm Form);
264 
265     /// Get the value which defines the increment SCEV \p BasePtrIncSCEV.
266     Value *getNodeForInc(Loop *L, Instruction *MemI,
267                          const SCEV *BasePtrIncSCEV);
268 
269     /// Common chains to reuse offsets for a loop to reduce register pressure.
270     bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets);
271 
272     /// Find out the potential commoning chains and their bases.
273     bool prepareBasesForCommoningChains(Bucket &BucketChain);
274 
275     /// Rewrite load/store according to the common chains.
276     bool
277     rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket,
278                                         SmallSet<BasicBlock *, 16> &BBChanged);
279 
280     /// Collect condition matched(\p isValidCandidate() returns true)
281     /// candidates in Loop \p L.
282     SmallVector<Bucket, 16> collectCandidates(
283         Loop *L,
284         std::function<bool(const Instruction *, Value *, const Type *)>
285             isValidCandidate,
286         std::function<bool(const SCEV *)> isValidDiff,
287         unsigned MaxCandidateNum);
288 
289     /// Add a candidate to candidates \p Buckets if diff between candidate and
290     /// one base in \p Buckets matches \p isValidDiff.
291     void addOneCandidate(Instruction *MemI, const SCEV *LSCEV,
292                          SmallVector<Bucket, 16> &Buckets,
293                          std::function<bool(const SCEV *)> isValidDiff,
294                          unsigned MaxCandidateNum);
295 
296     /// Prepare all candidates in \p Buckets for update form.
297     bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets);
298 
299     /// Prepare all candidates in \p Buckets for displacement form, now for
300     /// ds/dq.
301     bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, PrepForm Form);
302 
303     /// Prepare for one chain \p BucketChain, find the best base element and
304     /// update all other elements in \p BucketChain accordingly.
305     /// \p Form is used to find the best base element.
306     /// If success, best base element must be stored as the first element of
307     /// \p BucketChain.
308     /// Return false if no base element found, otherwise return true.
309     bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form);
310 
311     /// Prepare for one chain \p BucketChain, find the best base element and
312     /// update all other elements in \p BucketChain accordingly.
313     /// If success, best base element must be stored as the first element of
314     /// \p BucketChain.
315     /// Return false if no base element found, otherwise return true.
316     bool prepareBaseForUpdateFormChain(Bucket &BucketChain);
317 
318     /// Rewrite load/store instructions in \p BucketChain according to
319     /// preparation.
320     bool rewriteLoadStores(Loop *L, Bucket &BucketChain,
321                            SmallSet<BasicBlock *, 16> &BBChanged,
322                            PrepForm Form);
323 
324     /// Rewrite for the base load/store of a chain.
325     std::pair<Instruction *, Instruction *>
326     rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
327                    Instruction *BaseMemI, bool CanPreInc, PrepForm Form,
328                    SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs);
329 
330     /// Rewrite for the other load/stores of a chain according to the new \p
331     /// Base.
332     Instruction *
333     rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base,
334                             const BucketElement &Element, Value *OffToBase,
335                             SmallPtrSet<Value *, 16> &DeletedPtrs);
336   };
337 
338 } // end anonymous namespace
339 
340 char PPCLoopInstrFormPrep::ID = 0;
341 static const char *name = "Prepare loop for ppc preferred instruction forms";
342 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
343 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
344 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
345 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
346 
347 static constexpr StringRef PHINodeNameSuffix    = ".phi";
348 static constexpr StringRef CastNodeNameSuffix   = ".cast";
349 static constexpr StringRef GEPNodeIncNameSuffix = ".inc";
350 static constexpr StringRef GEPNodeOffNameSuffix = ".off";
351 
352 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) {
353   return new PPCLoopInstrFormPrep(TM);
354 }
355 
356 static bool IsPtrInBounds(Value *BasePtr) {
357   Value *StrippedBasePtr = BasePtr;
358   while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr))
359     StrippedBasePtr = BC->getOperand(0);
360   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr))
361     return GEP->isInBounds();
362 
363   return false;
364 }
365 
366 static std::string getInstrName(const Value *I, StringRef Suffix) {
367   assert(I && "Invalid paramater!");
368   if (I->hasName())
369     return (I->getName() + Suffix).str();
370   else
371     return "";
372 }
373 
374 static Value *getPointerOperandAndType(Value *MemI,
375                                        Type **PtrElementType = nullptr) {
376 
377   Value *PtrValue = nullptr;
378   Type *PointerElementType = nullptr;
379 
380   if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) {
381     PtrValue = LMemI->getPointerOperand();
382     PointerElementType = LMemI->getType();
383   } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) {
384     PtrValue = SMemI->getPointerOperand();
385     PointerElementType = SMemI->getValueOperand()->getType();
386   } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) {
387     PointerElementType = Type::getInt8Ty(MemI->getContext());
388     if (IMemI->getIntrinsicID() == Intrinsic::prefetch ||
389         IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) {
390       PtrValue = IMemI->getArgOperand(0);
391     } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) {
392       PtrValue = IMemI->getArgOperand(1);
393     }
394   }
395   /*Get ElementType if PtrElementType is not null.*/
396   if (PtrElementType)
397     *PtrElementType = PointerElementType;
398 
399   return PtrValue;
400 }
401 
402 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) {
403   if (skipFunction(F))
404     return false;
405 
406   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
407   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
408   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
409   DT = DTWP ? &DTWP->getDomTree() : nullptr;
410   PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
411   ST = TM ? TM->getSubtargetImpl(F) : nullptr;
412   SuccPrepCount = 0;
413 
414   bool MadeChange = false;
415 
416   for (Loop *I : *LI)
417     for (Loop *L : depth_first(I))
418       MadeChange |= runOnLoop(L);
419 
420   return MadeChange;
421 }
422 
423 // Finding the minimal(chain_number + reusable_offset_number) is a complicated
424 // algorithmic problem.
425 // For now, the algorithm used here is simply adjusted to handle the case for
426 // manually unrolling cases.
427 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and
428 // reusable_offset_number for one base with multiple offsets.
429 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) {
430   // The minimal size for profitable chain commoning:
431   // A1 = base + offset1
432   // A2 = base + offset2 (offset2 - offset1 = X)
433   // A3 = base + offset3
434   // A4 = base + offset4 (offset4 - offset3 = X)
435   // ======>
436   // base1 = base + offset1
437   // base2 = base + offset3
438   // A1 = base1
439   // A2 = base1 + X
440   // A3 = base2
441   // A4 = base2 + X
442   //
443   // There is benefit because of reuse of offest 'X'.
444 
445   assert(ChainCommonPrepMinThreshold >= 4 &&
446          "Thredhold can not be smaller than 4!\n");
447   if (CBucket.Elements.size() < ChainCommonPrepMinThreshold)
448     return false;
449 
450   // We simply select the FirstOffset as the first reusable offset between each
451   // chain element 1 and element 0.
452   const SCEV *FirstOffset = CBucket.Elements[1].Offset;
453 
454   // Figure out how many times above FirstOffset is used in the chain.
455   // For a success commoning chain candidate, offset difference between each
456   // chain element 1 and element 0 must be also FirstOffset.
457   unsigned FirstOffsetReusedCount = 1;
458 
459   // Figure out how many times above FirstOffset is used in the first chain.
460   // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain
461   unsigned FirstOffsetReusedCountInFirstChain = 1;
462 
463   unsigned EleNum = CBucket.Elements.size();
464   bool SawChainSeparater = false;
465   for (unsigned j = 2; j != EleNum; ++j) {
466     if (SE->getMinusSCEV(CBucket.Elements[j].Offset,
467                          CBucket.Elements[j - 1].Offset) == FirstOffset) {
468       if (!SawChainSeparater)
469         FirstOffsetReusedCountInFirstChain++;
470       FirstOffsetReusedCount++;
471     } else
472       // For now, if we meet any offset which is not FirstOffset, we assume we
473       // find a new Chain.
474       // This makes us miss some opportunities.
475       // For example, we can common:
476       //
477       // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB}
478       //
479       // as two chains:
480       // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}}
481       // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2
482       //
483       // But we fail to common:
484       //
485       // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA}
486       // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1
487 
488       SawChainSeparater = true;
489   }
490 
491   // FirstOffset is not reused, skip this bucket.
492   if (FirstOffsetReusedCount == 1)
493     return false;
494 
495   unsigned ChainNum =
496       FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain;
497 
498   // All elements are increased by FirstOffset.
499   // The number of chains should be sqrt(EleNum).
500   if (!SawChainSeparater)
501     ChainNum = (unsigned)sqrt((double)EleNum);
502 
503   CBucket.ChainSize = (unsigned)(EleNum / ChainNum);
504 
505   // If this is not a perfect chain(eg: not all elements can be put inside
506   // commoning chains.), skip now.
507   if (CBucket.ChainSize * ChainNum != EleNum)
508     return false;
509 
510   if (SawChainSeparater) {
511     // Check that the offset seqs are the same for all chains.
512     for (unsigned i = 1; i < CBucket.ChainSize; i++)
513       for (unsigned j = 1; j < ChainNum; j++)
514         if (CBucket.Elements[i].Offset !=
515             SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset,
516                              CBucket.Elements[j * CBucket.ChainSize].Offset))
517           return false;
518   }
519 
520   for (unsigned i = 0; i < ChainNum; i++)
521     CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]);
522 
523   LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n");
524 
525   return true;
526 }
527 
528 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L,
529                                           SmallVector<Bucket, 16> &Buckets) {
530   bool MadeChange = false;
531 
532   if (Buckets.empty())
533     return MadeChange;
534 
535   SmallSet<BasicBlock *, 16> BBChanged;
536 
537   for (auto &Bucket : Buckets) {
538     if (prepareBasesForCommoningChains(Bucket))
539       MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged);
540   }
541 
542   if (MadeChange)
543     for (auto *BB : BBChanged)
544       DeleteDeadPHIs(BB);
545   return MadeChange;
546 }
547 
548 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains(
549     Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) {
550   bool MadeChange = false;
551 
552   assert(Bucket.Elements.size() ==
553              Bucket.ChainBases.size() * Bucket.ChainSize &&
554          "invalid bucket for chain commoning!\n");
555   SmallPtrSet<Value *, 16> DeletedPtrs;
556 
557   BasicBlock *Header = L->getHeader();
558   BasicBlock *LoopPredecessor = L->getLoopPredecessor();
559 
560   SCEVExpander SCEVE(*SE, Header->getDataLayout(),
561                      "loopprepare-chaincommon");
562 
563   for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) {
564     unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx;
565     const SCEV *BaseSCEV =
566         ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV,
567                                   Bucket.Elements[BaseElemIdx].Offset)
568                  : Bucket.BaseSCEV;
569     const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV);
570 
571     // Make sure the base is able to expand.
572     if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
573       return MadeChange;
574 
575     assert(BasePtrSCEV->isAffine() &&
576            "Invalid SCEV type for the base ptr for a candidate chain!\n");
577 
578     std::pair<Instruction *, Instruction *> Base = rewriteForBase(
579         L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr,
580         false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs);
581 
582     if (!Base.first || !Base.second)
583       return MadeChange;
584 
585     // Keep track of the replacement pointer values we've inserted so that we
586     // don't generate more pointer values than necessary.
587     SmallPtrSet<Value *, 16> NewPtrs;
588     NewPtrs.insert(Base.first);
589 
590     for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize;
591          ++Idx) {
592       BucketElement &I = Bucket.Elements[Idx];
593       Value *Ptr = getPointerOperandAndType(I.Instr);
594       assert(Ptr && "No pointer operand");
595       if (NewPtrs.count(Ptr))
596         continue;
597 
598       const SCEV *OffsetSCEV =
599           BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset,
600                                          Bucket.Elements[BaseElemIdx].Offset)
601                       : Bucket.Elements[Idx].Offset;
602 
603       // Make sure offset is able to expand. Only need to check one time as the
604       // offsets are reused between different chains.
605       if (!BaseElemIdx)
606         if (!SCEVE.isSafeToExpand(OffsetSCEV))
607           return false;
608 
609       Value *OffsetValue = SCEVE.expandCodeFor(
610           OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator());
611 
612       Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx],
613                                                     OffsetValue, DeletedPtrs);
614 
615       assert(NewPtr && "Wrong rewrite!\n");
616       NewPtrs.insert(NewPtr);
617     }
618 
619     ++ChainCommoningRewritten;
620   }
621 
622   // Clear the rewriter cache, because values that are in the rewriter's cache
623   // can be deleted below, causing the AssertingVH in the cache to trigger.
624   SCEVE.clear();
625 
626   for (auto *Ptr : DeletedPtrs) {
627     if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
628       BBChanged.insert(IDel->getParent());
629     RecursivelyDeleteTriviallyDeadInstructions(Ptr);
630   }
631 
632   MadeChange = true;
633   return MadeChange;
634 }
635 
636 // Rewrite the new base according to BasePtrSCEV.
637 // bb.loop.preheader:
638 //   %newstart = ...
639 // bb.loop.body:
640 //   %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ]
641 //   ...
642 //   %add = getelementptr %phinode, %inc
643 //
644 // First returned instruciton is %phinode (or a type cast to %phinode), caller
645 // needs this value to rewrite other load/stores in the same chain.
646 // Second returned instruction is %add, caller needs this value to rewrite other
647 // load/stores in the same chain.
648 std::pair<Instruction *, Instruction *>
649 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
650                                      Instruction *BaseMemI, bool CanPreInc,
651                                      PrepForm Form, SCEVExpander &SCEVE,
652                                      SmallPtrSet<Value *, 16> &DeletedPtrs) {
653 
654   LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n");
655 
656   assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?");
657 
658   Value *BasePtr = getPointerOperandAndType(BaseMemI);
659   assert(BasePtr && "No pointer operand");
660 
661   Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext());
662   Type *I8PtrTy =
663       PointerType::get(BaseMemI->getParent()->getContext(),
664                        BasePtr->getType()->getPointerAddressSpace());
665 
666   bool IsConstantInc = false;
667   const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE);
668   Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV);
669 
670   const SCEVConstant *BasePtrIncConstantSCEV =
671       dyn_cast<SCEVConstant>(BasePtrIncSCEV);
672   if (BasePtrIncConstantSCEV)
673     IsConstantInc = true;
674 
675   // No valid representation for the increment.
676   if (!IncNode) {
677     LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n");
678     return std::make_pair(nullptr, nullptr);
679   }
680 
681   if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) {
682     LLVM_DEBUG(
683         dbgs()
684         << "Update form prepare for non-const increment is not enabled!\n");
685     return std::make_pair(nullptr, nullptr);
686   }
687 
688   const SCEV *BasePtrStartSCEV = nullptr;
689   if (CanPreInc) {
690     assert(SE->isLoopInvariant(BasePtrIncSCEV, L) &&
691            "Increment is not loop invariant!\n");
692     BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(),
693                                         IsConstantInc ? BasePtrIncConstantSCEV
694                                                       : BasePtrIncSCEV);
695   } else
696     BasePtrStartSCEV = BasePtrSCEV->getStart();
697 
698   if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) {
699     LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n");
700     return std::make_pair(nullptr, nullptr);
701   }
702 
703   LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n");
704 
705   BasicBlock *Header = L->getHeader();
706   unsigned HeaderLoopPredCount = pred_size(Header);
707   BasicBlock *LoopPredecessor = L->getLoopPredecessor();
708 
709   PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount,
710                                     getInstrName(BaseMemI, PHINodeNameSuffix));
711   NewPHI->insertBefore(Header->getFirstNonPHIIt());
712 
713   Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy,
714                                             LoopPredecessor->getTerminator());
715 
716   // Note that LoopPredecessor might occur in the predecessor list multiple
717   // times, and we need to add it the right number of times.
718   for (auto *PI : predecessors(Header)) {
719     if (PI != LoopPredecessor)
720       continue;
721 
722     NewPHI->addIncoming(BasePtrStart, LoopPredecessor);
723   }
724 
725   Instruction *PtrInc = nullptr;
726   Instruction *NewBasePtr = nullptr;
727   if (CanPreInc) {
728     BasicBlock::iterator InsPoint = Header->getFirstInsertionPt();
729     PtrInc = GetElementPtrInst::Create(
730         I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
731         InsPoint);
732     cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
733     for (auto *PI : predecessors(Header)) {
734       if (PI == LoopPredecessor)
735         continue;
736 
737       NewPHI->addIncoming(PtrInc, PI);
738     }
739     if (PtrInc->getType() != BasePtr->getType())
740       NewBasePtr =
741           new BitCastInst(PtrInc, BasePtr->getType(),
742                           getInstrName(PtrInc, CastNodeNameSuffix), InsPoint);
743     else
744       NewBasePtr = PtrInc;
745   } else {
746     // Note that LoopPredecessor might occur in the predecessor list multiple
747     // times, and we need to make sure no more incoming value for them in PHI.
748     for (auto *PI : predecessors(Header)) {
749       if (PI == LoopPredecessor)
750         continue;
751 
752       // For the latch predecessor, we need to insert a GEP just before the
753       // terminator to increase the address.
754       BasicBlock *BB = PI;
755       BasicBlock::iterator InsPoint = BB->getTerminator()->getIterator();
756       PtrInc = GetElementPtrInst::Create(
757           I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
758           InsPoint);
759       cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
760 
761       NewPHI->addIncoming(PtrInc, PI);
762     }
763     PtrInc = NewPHI;
764     if (NewPHI->getType() != BasePtr->getType())
765       NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(),
766                                    getInstrName(NewPHI, CastNodeNameSuffix),
767                                    Header->getFirstInsertionPt());
768     else
769       NewBasePtr = NewPHI;
770   }
771 
772   BasePtr->replaceAllUsesWith(NewBasePtr);
773 
774   DeletedPtrs.insert(BasePtr);
775 
776   return std::make_pair(NewBasePtr, PtrInc);
777 }
778 
779 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement(
780     std::pair<Instruction *, Instruction *> Base, const BucketElement &Element,
781     Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) {
782   Instruction *NewBasePtr = Base.first;
783   Instruction *PtrInc = Base.second;
784   assert((NewBasePtr && PtrInc) && "base does not exist!\n");
785 
786   Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext());
787 
788   Value *Ptr = getPointerOperandAndType(Element.Instr);
789   assert(Ptr && "No pointer operand");
790 
791   Instruction *RealNewPtr;
792   if (!Element.Offset ||
793       (isa<SCEVConstant>(Element.Offset) &&
794        cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) {
795     RealNewPtr = NewBasePtr;
796   } else {
797     std::optional<BasicBlock::iterator> PtrIP = std::nullopt;
798     if (Instruction *I = dyn_cast<Instruction>(Ptr))
799       PtrIP = I->getIterator();
800 
801     if (PtrIP && isa<Instruction>(NewBasePtr) &&
802         cast<Instruction>(NewBasePtr)->getParent() == (*PtrIP)->getParent())
803       PtrIP = std::nullopt;
804     else if (PtrIP && isa<PHINode>(*PtrIP))
805       PtrIP = (*PtrIP)->getParent()->getFirstInsertionPt();
806     else if (!PtrIP)
807       PtrIP = Element.Instr->getIterator();
808 
809     assert(OffToBase && "There should be an offset for non base element!\n");
810     GetElementPtrInst *NewPtr = GetElementPtrInst::Create(
811         I8Ty, PtrInc, OffToBase,
812         getInstrName(Element.Instr, GEPNodeOffNameSuffix));
813     if (PtrIP)
814       NewPtr->insertBefore(*(*PtrIP)->getParent(), *PtrIP);
815     else
816       NewPtr->insertAfter(cast<Instruction>(PtrInc));
817     NewPtr->setIsInBounds(IsPtrInBounds(Ptr));
818     RealNewPtr = NewPtr;
819   }
820 
821   Instruction *ReplNewPtr;
822   if (Ptr->getType() != RealNewPtr->getType()) {
823     ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(),
824                                  getInstrName(Ptr, CastNodeNameSuffix));
825     ReplNewPtr->insertAfter(RealNewPtr);
826   } else
827     ReplNewPtr = RealNewPtr;
828 
829   Ptr->replaceAllUsesWith(ReplNewPtr);
830   DeletedPtrs.insert(Ptr);
831 
832   return ReplNewPtr;
833 }
834 
835 void PPCLoopInstrFormPrep::addOneCandidate(
836     Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets,
837     std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
838   assert((MemI && getPointerOperandAndType(MemI)) &&
839          "Candidate should be a memory instruction.");
840   assert(LSCEV && "Invalid SCEV for Ptr value.");
841 
842   bool FoundBucket = false;
843   for (auto &B : Buckets) {
844     if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) !=
845         cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE))
846       continue;
847     const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV);
848     if (isValidDiff(Diff)) {
849       B.Elements.push_back(BucketElement(Diff, MemI));
850       FoundBucket = true;
851       break;
852     }
853   }
854 
855   if (!FoundBucket) {
856     if (Buckets.size() == MaxCandidateNum) {
857       LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit "
858                         << MaxCandidateNum << "\n");
859       return;
860     }
861     Buckets.push_back(Bucket(LSCEV, MemI));
862   }
863 }
864 
865 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates(
866     Loop *L,
867     std::function<bool(const Instruction *, Value *, const Type *)>
868         isValidCandidate,
869     std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
870   SmallVector<Bucket, 16> Buckets;
871 
872   for (const auto &BB : L->blocks())
873     for (auto &J : *BB) {
874       Value *PtrValue = nullptr;
875       Type *PointerElementType = nullptr;
876       PtrValue = getPointerOperandAndType(&J, &PointerElementType);
877 
878       if (!PtrValue)
879         continue;
880 
881       if (PtrValue->getType()->getPointerAddressSpace())
882         continue;
883 
884       if (L->isLoopInvariant(PtrValue))
885         continue;
886 
887       const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L);
888       const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
889       if (!LARSCEV || LARSCEV->getLoop() != L)
890         continue;
891 
892       // Mark that we have candidates for preparing.
893       HasCandidateForPrepare = true;
894 
895       if (isValidCandidate(&J, PtrValue, PointerElementType))
896         addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum);
897     }
898   return Buckets;
899 }
900 
901 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain,
902                                                        PrepForm Form) {
903   // RemainderOffsetInfo details:
904   // key:            value of (Offset urem DispConstraint). For DSForm, it can
905   //                 be [0, 4).
906   // first of pair:  the index of first BucketElement whose remainder is equal
907   //                 to key. For key 0, this value must be 0.
908   // second of pair: number of load/stores with the same remainder.
909   DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo;
910 
911   for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
912     if (!BucketChain.Elements[j].Offset)
913       RemainderOffsetInfo[0] = std::make_pair(0, 1);
914     else {
915       unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset)
916                                ->getAPInt()
917                                .urem(Form);
918       if (!RemainderOffsetInfo.contains(Remainder))
919         RemainderOffsetInfo[Remainder] = std::make_pair(j, 1);
920       else
921         RemainderOffsetInfo[Remainder].second++;
922     }
923   }
924   // Currently we choose the most profitable base as the one which has the max
925   // number of load/store with same remainder.
926   // FIXME: adjust the base selection strategy according to load/store offset
927   // distribution.
928   // For example, if we have one candidate chain for DS form preparation, which
929   // contains following load/stores with different remainders:
930   // 1: 10 load/store whose remainder is 1;
931   // 2: 9 load/store whose remainder is 2;
932   // 3: 1 for remainder 3 and 0 for remainder 0;
933   // Now we will choose the first load/store whose remainder is 1 as base and
934   // adjust all other load/stores according to new base, so we will get 10 DS
935   // form and 10 X form.
936   // But we should be more clever, for this case we could use two bases, one for
937   // remainder 1 and the other for remainder 2, thus we could get 19 DS form and
938   // 1 X form.
939   unsigned MaxCountRemainder = 0;
940   for (unsigned j = 0; j < (unsigned)Form; j++)
941     if ((RemainderOffsetInfo.contains(j)) &&
942         RemainderOffsetInfo[j].second >
943             RemainderOffsetInfo[MaxCountRemainder].second)
944       MaxCountRemainder = j;
945 
946   // Abort when there are too few insts with common base.
947   if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold)
948     return false;
949 
950   // If the first value is most profitable, no needed to adjust BucketChain
951   // elements as they are substracted the first value when collecting.
952   if (MaxCountRemainder == 0)
953     return true;
954 
955   // Adjust load/store to the new chosen base.
956   const SCEV *Offset =
957       BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset;
958   BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
959   for (auto &E : BucketChain.Elements) {
960     if (E.Offset)
961       E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
962     else
963       E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
964   }
965 
966   std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first],
967             BucketChain.Elements[0]);
968   return true;
969 }
970 
971 // FIXME: implement a more clever base choosing policy.
972 // Currently we always choose an exist load/store offset. This maybe lead to
973 // suboptimal code sequences. For example, for one DS chain with offsets
974 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp
975 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a
976 // multipler of 4, it cannot be represented by sint16.
977 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) {
978   // We have a choice now of which instruction's memory operand we use as the
979   // base for the generated PHI. Always picking the first instruction in each
980   // bucket does not work well, specifically because that instruction might
981   // be a prefetch (and there are no pre-increment dcbt variants). Otherwise,
982   // the choice is somewhat arbitrary, because the backend will happily
983   // generate direct offsets from both the pre-incremented and
984   // post-incremented pointer values. Thus, we'll pick the first non-prefetch
985   // instruction in each bucket, and adjust the recurrence and other offsets
986   // accordingly.
987   for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
988     if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr))
989       if (II->getIntrinsicID() == Intrinsic::prefetch)
990         continue;
991 
992     // If we'd otherwise pick the first element anyway, there's nothing to do.
993     if (j == 0)
994       break;
995 
996     // If our chosen element has no offset from the base pointer, there's
997     // nothing to do.
998     if (!BucketChain.Elements[j].Offset ||
999         cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero())
1000       break;
1001 
1002     const SCEV *Offset = BucketChain.Elements[j].Offset;
1003     BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
1004     for (auto &E : BucketChain.Elements) {
1005       if (E.Offset)
1006         E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
1007       else
1008         E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
1009     }
1010 
1011     std::swap(BucketChain.Elements[j], BucketChain.Elements[0]);
1012     break;
1013   }
1014   return true;
1015 }
1016 
1017 bool PPCLoopInstrFormPrep::rewriteLoadStores(
1018     Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged,
1019     PrepForm Form) {
1020   bool MadeChange = false;
1021 
1022   const SCEVAddRecExpr *BasePtrSCEV =
1023       cast<SCEVAddRecExpr>(BucketChain.BaseSCEV);
1024   if (!BasePtrSCEV->isAffine())
1025     return MadeChange;
1026 
1027   BasicBlock *Header = L->getHeader();
1028   SCEVExpander SCEVE(*SE, Header->getDataLayout(),
1029                      "loopprepare-formrewrite");
1030   if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
1031     return MadeChange;
1032 
1033   SmallPtrSet<Value *, 16> DeletedPtrs;
1034 
1035   // For some DS form load/store instructions, it can also be an update form,
1036   // if the stride is constant and is a multipler of 4. Use update form if
1037   // prefer it.
1038   bool CanPreInc = (Form == UpdateForm ||
1039                     ((Form == DSForm) &&
1040                      isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) &&
1041                      !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE))
1042                           ->getAPInt()
1043                           .urem(4) &&
1044                      PreferUpdateForm));
1045 
1046   std::pair<Instruction *, Instruction *> Base =
1047       rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr,
1048                      CanPreInc, Form, SCEVE, DeletedPtrs);
1049 
1050   if (!Base.first || !Base.second)
1051     return MadeChange;
1052 
1053   // Keep track of the replacement pointer values we've inserted so that we
1054   // don't generate more pointer values than necessary.
1055   SmallPtrSet<Value *, 16> NewPtrs;
1056   NewPtrs.insert(Base.first);
1057 
1058   for (const BucketElement &BE : llvm::drop_begin(BucketChain.Elements)) {
1059     Value *Ptr = getPointerOperandAndType(BE.Instr);
1060     assert(Ptr && "No pointer operand");
1061     if (NewPtrs.count(Ptr))
1062       continue;
1063 
1064     Instruction *NewPtr = rewriteForBucketElement(
1065         Base, BE,
1066         BE.Offset ? cast<SCEVConstant>(BE.Offset)->getValue() : nullptr,
1067         DeletedPtrs);
1068     assert(NewPtr && "wrong rewrite!\n");
1069     NewPtrs.insert(NewPtr);
1070   }
1071 
1072   // Clear the rewriter cache, because values that are in the rewriter's cache
1073   // can be deleted below, causing the AssertingVH in the cache to trigger.
1074   SCEVE.clear();
1075 
1076   for (auto *Ptr : DeletedPtrs) {
1077     if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
1078       BBChanged.insert(IDel->getParent());
1079     RecursivelyDeleteTriviallyDeadInstructions(Ptr);
1080   }
1081 
1082   MadeChange = true;
1083 
1084   SuccPrepCount++;
1085 
1086   if (Form == DSForm && !CanPreInc)
1087     DSFormChainRewritten++;
1088   else if (Form == DQForm)
1089     DQFormChainRewritten++;
1090   else if (Form == UpdateForm || (Form == DSForm && CanPreInc))
1091     UpdFormChainRewritten++;
1092 
1093   return MadeChange;
1094 }
1095 
1096 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L,
1097                                        SmallVector<Bucket, 16> &Buckets) {
1098   bool MadeChange = false;
1099   if (Buckets.empty())
1100     return MadeChange;
1101   SmallSet<BasicBlock *, 16> BBChanged;
1102   for (auto &Bucket : Buckets)
1103     // The base address of each bucket is transformed into a phi and the others
1104     // are rewritten based on new base.
1105     if (prepareBaseForUpdateFormChain(Bucket))
1106       MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm);
1107 
1108   if (MadeChange)
1109     for (auto *BB : BBChanged)
1110       DeleteDeadPHIs(BB);
1111   return MadeChange;
1112 }
1113 
1114 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L,
1115                                         SmallVector<Bucket, 16> &Buckets,
1116                                         PrepForm Form) {
1117   bool MadeChange = false;
1118 
1119   if (Buckets.empty())
1120     return MadeChange;
1121 
1122   SmallSet<BasicBlock *, 16> BBChanged;
1123   for (auto &Bucket : Buckets) {
1124     if (Bucket.Elements.size() < DispFormPrepMinThreshold)
1125       continue;
1126     if (prepareBaseForDispFormChain(Bucket, Form))
1127       MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form);
1128   }
1129 
1130   if (MadeChange)
1131     for (auto *BB : BBChanged)
1132       DeleteDeadPHIs(BB);
1133   return MadeChange;
1134 }
1135 
1136 // Find the loop invariant increment node for SCEV BasePtrIncSCEV.
1137 // bb.loop.preheader:
1138 //   %start = ...
1139 // bb.loop.body:
1140 //   %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ]
1141 //   ...
1142 //   %add = add %phinode, %inc  ; %inc is what we want to get.
1143 //
1144 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI,
1145                                            const SCEV *BasePtrIncSCEV) {
1146   // If the increment is a constant, no definition is needed.
1147   // Return the value directly.
1148   if (isa<SCEVConstant>(BasePtrIncSCEV))
1149     return cast<SCEVConstant>(BasePtrIncSCEV)->getValue();
1150 
1151   if (!SE->isLoopInvariant(BasePtrIncSCEV, L))
1152     return nullptr;
1153 
1154   BasicBlock *BB = MemI->getParent();
1155   if (!BB)
1156     return nullptr;
1157 
1158   BasicBlock *LatchBB = L->getLoopLatch();
1159 
1160   if (!LatchBB)
1161     return nullptr;
1162 
1163   // Run through the PHIs and check their operands to find valid representation
1164   // for the increment SCEV.
1165   iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
1166   for (auto &CurrentPHI : PHIIter) {
1167     PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
1168     if (!CurrentPHINode)
1169       continue;
1170 
1171     if (!SE->isSCEVable(CurrentPHINode->getType()))
1172       continue;
1173 
1174     const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
1175 
1176     const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
1177     if (!PHIBasePtrSCEV)
1178       continue;
1179 
1180     const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE);
1181 
1182     if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV))
1183       continue;
1184 
1185     // Get the incoming value from the loop latch and check if the value has
1186     // the add form with the required increment.
1187     if (CurrentPHINode->getBasicBlockIndex(LatchBB) < 0)
1188       continue;
1189     if (Instruction *I = dyn_cast<Instruction>(
1190             CurrentPHINode->getIncomingValueForBlock(LatchBB))) {
1191       Value *StrippedBaseI = I;
1192       while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI))
1193         StrippedBaseI = BC->getOperand(0);
1194 
1195       Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI);
1196       if (!StrippedI)
1197         continue;
1198 
1199       // LSR pass may add a getelementptr instruction to do the loop increment,
1200       // also search in that getelementptr instruction.
1201       if (StrippedI->getOpcode() == Instruction::Add ||
1202           (StrippedI->getOpcode() == Instruction::GetElementPtr &&
1203            StrippedI->getNumOperands() == 2)) {
1204         if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV)
1205           return StrippedI->getOperand(0);
1206         if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV)
1207           return StrippedI->getOperand(1);
1208       }
1209     }
1210   }
1211   return nullptr;
1212 }
1213 
1214 // In order to prepare for the preferred instruction form, a PHI is added.
1215 // This function will check to see if that PHI already exists and will return
1216 // true if it found an existing PHI with the matched start and increment as the
1217 // one we wanted to create.
1218 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI,
1219                                            const SCEV *BasePtrStartSCEV,
1220                                            const SCEV *BasePtrIncSCEV,
1221                                            PrepForm Form) {
1222   BasicBlock *BB = MemI->getParent();
1223   if (!BB)
1224     return false;
1225 
1226   BasicBlock *PredBB = L->getLoopPredecessor();
1227   BasicBlock *LatchBB = L->getLoopLatch();
1228 
1229   if (!PredBB || !LatchBB)
1230     return false;
1231 
1232   // Run through the PHIs and see if we have some that looks like a preparation
1233   iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
1234   for (auto & CurrentPHI : PHIIter) {
1235     PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
1236     if (!CurrentPHINode)
1237       continue;
1238 
1239     if (!SE->isSCEVable(CurrentPHINode->getType()))
1240       continue;
1241 
1242     const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
1243 
1244     const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
1245     if (!PHIBasePtrSCEV)
1246       continue;
1247 
1248     const SCEVConstant *PHIBasePtrIncSCEV =
1249       dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE));
1250     if (!PHIBasePtrIncSCEV)
1251       continue;
1252 
1253     if (CurrentPHINode->getNumIncomingValues() == 2) {
1254       if ((CurrentPHINode->getIncomingBlock(0) == LatchBB &&
1255            CurrentPHINode->getIncomingBlock(1) == PredBB) ||
1256           (CurrentPHINode->getIncomingBlock(1) == LatchBB &&
1257            CurrentPHINode->getIncomingBlock(0) == PredBB)) {
1258         if (PHIBasePtrIncSCEV == BasePtrIncSCEV) {
1259           // The existing PHI (CurrentPHINode) has the same start and increment
1260           // as the PHI that we wanted to create.
1261           if ((Form == UpdateForm || Form == ChainCommoning ) &&
1262               PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) {
1263             ++PHINodeAlreadyExistsUpdate;
1264             return true;
1265           }
1266           if (Form == DSForm || Form == DQForm) {
1267             const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
1268                 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV));
1269             if (Diff && !Diff->getAPInt().urem(Form)) {
1270               if (Form == DSForm)
1271                 ++PHINodeAlreadyExistsDS;
1272               else
1273                 ++PHINodeAlreadyExistsDQ;
1274               return true;
1275             }
1276           }
1277         }
1278       }
1279     }
1280   }
1281   return false;
1282 }
1283 
1284 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) {
1285   bool MadeChange = false;
1286 
1287   // Only prep. the inner-most loop
1288   if (!L->isInnermost())
1289     return MadeChange;
1290 
1291   // Return if already done enough preparation.
1292   if (SuccPrepCount >= MaxVarsPrep)
1293     return MadeChange;
1294 
1295   LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n");
1296 
1297   BasicBlock *LoopPredecessor = L->getLoopPredecessor();
1298   // If there is no loop predecessor, or the loop predecessor's terminator
1299   // returns a value (which might contribute to determining the loop's
1300   // iteration space), insert a new preheader for the loop.
1301   if (!LoopPredecessor ||
1302       !LoopPredecessor->getTerminator()->getType()->isVoidTy()) {
1303     LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA);
1304     if (LoopPredecessor)
1305       MadeChange = true;
1306   }
1307   if (!LoopPredecessor) {
1308     LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n");
1309     return MadeChange;
1310   }
1311   // Check if a load/store has update form. This lambda is used by function
1312   // collectCandidates which can collect candidates for types defined by lambda.
1313   auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue,
1314                                    const Type *PointerElementType) {
1315     assert((PtrValue && I) && "Invalid parameter!");
1316     // There are no update forms for Altivec vector load/stores.
1317     if (ST && ST->hasAltivec() && PointerElementType->isVectorTy())
1318       return false;
1319     // There are no update forms for P10 lxvp/stxvp intrinsic.
1320     auto *II = dyn_cast<IntrinsicInst>(I);
1321     if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) ||
1322                II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp))
1323       return false;
1324     // See getPreIndexedAddressParts, the displacement for LDU/STDU has to
1325     // be 4's multiple (DS-form). For i64 loads/stores when the displacement
1326     // fits in a 16-bit signed field but isn't a multiple of 4, it will be
1327     // useless and possible to break some original well-form addressing mode
1328     // to make this pre-inc prep for it.
1329     if (PointerElementType->isIntegerTy(64)) {
1330       const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L);
1331       const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
1332       if (!LARSCEV || LARSCEV->getLoop() != L)
1333         return false;
1334       if (const SCEVConstant *StepConst =
1335               dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) {
1336         const APInt &ConstInt = StepConst->getValue()->getValue();
1337         if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0)
1338           return false;
1339       }
1340     }
1341     return true;
1342   };
1343 
1344   // Check if a load/store has DS form.
1345   auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue,
1346                               const Type *PointerElementType) {
1347     assert((PtrValue && I) && "Invalid parameter!");
1348     if (isa<IntrinsicInst>(I))
1349       return false;
1350     return (PointerElementType->isIntegerTy(64)) ||
1351            (PointerElementType->isFloatTy()) ||
1352            (PointerElementType->isDoubleTy()) ||
1353            (PointerElementType->isIntegerTy(32) &&
1354             llvm::any_of(I->users(),
1355                          [](const User *U) { return isa<SExtInst>(U); }));
1356   };
1357 
1358   // Check if a load/store has DQ form.
1359   auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue,
1360                                const Type *PointerElementType) {
1361     assert((PtrValue && I) && "Invalid parameter!");
1362     // Check if it is a P10 lxvp/stxvp intrinsic.
1363     auto *II = dyn_cast<IntrinsicInst>(I);
1364     if (II)
1365       return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp ||
1366              II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp;
1367     // Check if it is a P9 vector load/store.
1368     return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy());
1369   };
1370 
1371   // Check if a load/store is candidate for chain commoning.
1372   // If the SCEV is only with one ptr operand in its start, we can use that
1373   // start as a chain separator. Mark this load/store as a candidate.
1374   auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue,
1375                                        const Type *PointerElementType) {
1376     const SCEVAddRecExpr *ARSCEV =
1377         cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L));
1378     if (!ARSCEV)
1379       return false;
1380 
1381     if (!ARSCEV->isAffine())
1382       return false;
1383 
1384     const SCEV *Start = ARSCEV->getStart();
1385 
1386     // A single pointer. We can treat it as offset 0.
1387     if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy())
1388       return true;
1389 
1390     const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start);
1391 
1392     // We need a SCEVAddExpr to include both base and offset.
1393     if (!ASCEV)
1394       return false;
1395 
1396     // Make sure there is only one pointer operand(base) and all other operands
1397     // are integer type.
1398     bool SawPointer = false;
1399     for (const SCEV *Op : ASCEV->operands()) {
1400       if (Op->getType()->isPointerTy()) {
1401         if (SawPointer)
1402           return false;
1403         SawPointer = true;
1404       } else if (!Op->getType()->isIntegerTy())
1405         return false;
1406     }
1407 
1408     return SawPointer;
1409   };
1410 
1411   // Check if the diff is a constant type. This is used for update/DS/DQ form
1412   // preparation.
1413   auto isValidConstantDiff = [](const SCEV *Diff) {
1414     return dyn_cast<SCEVConstant>(Diff) != nullptr;
1415   };
1416 
1417   // Make sure the diff between the base and new candidate is required type.
1418   // This is used for chain commoning preparation.
1419   auto isValidChainCommoningDiff = [](const SCEV *Diff) {
1420     assert(Diff && "Invalid Diff!\n");
1421 
1422     // Don't mess up previous dform prepare.
1423     if (isa<SCEVConstant>(Diff))
1424       return false;
1425 
1426     // A single integer type offset.
1427     if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy())
1428       return true;
1429 
1430     const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff);
1431     if (!ADiff)
1432       return false;
1433 
1434     for (const SCEV *Op : ADiff->operands())
1435       if (!Op->getType()->isIntegerTy())
1436         return false;
1437 
1438     return true;
1439   };
1440 
1441   HasCandidateForPrepare = false;
1442 
1443   LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n");
1444   // Collect buckets of comparable addresses used by loads and stores for update
1445   // form.
1446   SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates(
1447       L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm);
1448 
1449   // Prepare for update form.
1450   if (!UpdateFormBuckets.empty())
1451     MadeChange |= updateFormPrep(L, UpdateFormBuckets);
1452   else if (!HasCandidateForPrepare) {
1453     LLVM_DEBUG(
1454         dbgs()
1455         << "No prepare candidates found, stop praparation for current loop!\n");
1456     // If no candidate for preparing, return early.
1457     return MadeChange;
1458   }
1459 
1460   LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n");
1461   // Collect buckets of comparable addresses used by loads and stores for DS
1462   // form.
1463   SmallVector<Bucket, 16> DSFormBuckets = collectCandidates(
1464       L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm);
1465 
1466   // Prepare for DS form.
1467   if (!DSFormBuckets.empty())
1468     MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm);
1469 
1470   LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n");
1471   // Collect buckets of comparable addresses used by loads and stores for DQ
1472   // form.
1473   SmallVector<Bucket, 16> DQFormBuckets = collectCandidates(
1474       L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm);
1475 
1476   // Prepare for DQ form.
1477   if (!DQFormBuckets.empty())
1478     MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm);
1479 
1480   // Collect buckets of comparable addresses used by loads and stores for chain
1481   // commoning. With chain commoning, we reuse offsets between the chains, so
1482   // the register pressure will be reduced.
1483   if (!EnableChainCommoning) {
1484     LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n");
1485     return MadeChange;
1486   }
1487 
1488   LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n");
1489   SmallVector<Bucket, 16> Buckets =
1490       collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff,
1491                         MaxVarsChainCommon);
1492 
1493   // Prepare for chain commoning.
1494   if (!Buckets.empty())
1495     MadeChange |= chainCommoning(L, Buckets);
1496 
1497   return MadeChange;
1498 }
1499