1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H 14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H 15 16 #include "PPCRegisterInfo.h" 17 #include "llvm/CodeGen/TargetInstrInfo.h" 18 19 #define GET_INSTRINFO_HEADER 20 #include "PPCGenInstrInfo.inc" 21 22 namespace llvm { 23 24 /// PPCII - This namespace holds all of the PowerPC target-specific 25 /// per-instruction flags. These must match the corresponding definitions in 26 /// PPC.td and PPCInstrFormats.td. 27 namespace PPCII { 28 enum { 29 // PPC970 Instruction Flags. These flags describe the characteristics of the 30 // PowerPC 970 (aka G5) dispatch groups and how they are formed out of 31 // raw machine instructions. 32 33 /// PPC970_First - This instruction starts a new dispatch group, so it will 34 /// always be the first one in the group. 35 PPC970_First = 0x1, 36 37 /// PPC970_Single - This instruction starts a new dispatch group and 38 /// terminates it, so it will be the sole instruction in the group. 39 PPC970_Single = 0x2, 40 41 /// PPC970_Cracked - This instruction is cracked into two pieces, requiring 42 /// two dispatch pipes to be available to issue. 43 PPC970_Cracked = 0x4, 44 45 /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that 46 /// an instruction is issued to. 47 PPC970_Shift = 3, 48 PPC970_Mask = 0x07 << PPC970_Shift 49 }; 50 enum PPC970_Unit { 51 /// These are the various PPC970 execution unit pipelines. Each instruction 52 /// is one of these. 53 PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction 54 PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit 55 PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit 56 PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit 57 PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit 58 PPC970_VALU = 5 << PPC970_Shift, // Vector ALU 59 PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit 60 PPC970_BRU = 7 << PPC970_Shift // Branch Unit 61 }; 62 63 enum { 64 /// Shift count to bypass PPC970 flags 65 NewDef_Shift = 6, 66 67 /// This instruction is an X-Form memory operation. 68 XFormMemOp = 0x1 << (NewDef_Shift+1) 69 }; 70 } // end namespace PPCII 71 72 // Instructions that have an immediate form might be convertible to that 73 // form if the correct input is a result of a load immediate. In order to 74 // know whether the transformation is special, we might need to know some 75 // of the details of the two forms. 76 struct ImmInstrInfo { 77 // Is the immediate field in the immediate form signed or unsigned? 78 uint64_t SignedImm : 1; 79 // Does the immediate need to be a multiple of some value? 80 uint64_t ImmMustBeMultipleOf : 5; 81 // Is R0/X0 treated specially by the original r+r instruction? 82 // If so, in which operand? 83 uint64_t ZeroIsSpecialOrig : 3; 84 // Is R0/X0 treated specially by the new r+i instruction? 85 // If so, in which operand? 86 uint64_t ZeroIsSpecialNew : 3; 87 // Is the operation commutative? 88 uint64_t IsCommutative : 1; 89 // The operand number to check for add-immediate def. 90 uint64_t OpNoForForwarding : 3; 91 // The operand number for the immediate. 92 uint64_t ImmOpNo : 3; 93 // The opcode of the new instruction. 94 uint64_t ImmOpcode : 16; 95 // The size of the immediate. 96 uint64_t ImmWidth : 5; 97 // The immediate should be truncated to N bits. 98 uint64_t TruncateImmTo : 5; 99 // Is the instruction summing the operand 100 uint64_t IsSummingOperands : 1; 101 }; 102 103 // Information required to convert an instruction to just a materialized 104 // immediate. 105 struct LoadImmediateInfo { 106 unsigned Imm : 16; 107 unsigned Is64Bit : 1; 108 unsigned SetCR : 1; 109 }; 110 111 class PPCSubtarget; 112 class PPCInstrInfo : public PPCGenInstrInfo { 113 PPCSubtarget &Subtarget; 114 const PPCRegisterInfo RI; 115 116 void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill, 117 int FrameIdx, const TargetRegisterClass *RC, 118 SmallVectorImpl<MachineInstr *> &NewMIs) const; 119 void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 120 unsigned DestReg, int FrameIdx, 121 const TargetRegisterClass *RC, 122 SmallVectorImpl<MachineInstr *> &NewMIs) const; 123 124 // If the inst has imm-form and one of its operand is produced by a LI, 125 // put the imm into the inst directly and remove the LI if possible. 126 bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III, 127 unsigned ConstantOpNo, MachineInstr &DefMI, 128 int64_t Imm) const; 129 // If the inst has imm-form and one of its operand is produced by an 130 // add-immediate, try to transform it when possible. 131 bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III, 132 unsigned ConstantOpNo, MachineInstr &DefMI, 133 bool KillDefMI) const; 134 // Try to find that, if the instruction 'MI' contains any operand that 135 // could be forwarded from some inst that feeds it. If yes, return the 136 // Def of that operand. And OpNoForForwarding is the operand index in 137 // the 'MI' for that 'Def'. If we see another use of this Def between 138 // the Def and the MI, SeenIntermediateUse becomes 'true'. 139 MachineInstr *getForwardingDefMI(MachineInstr &MI, 140 unsigned &OpNoForForwarding, 141 bool &SeenIntermediateUse) const; 142 143 // Can the user MI have it's source at index \p OpNoForForwarding 144 // forwarded from an add-immediate that feeds it? 145 bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III, 146 unsigned OpNoForForwarding) const; 147 bool isDefMIElgibleForForwarding(MachineInstr &DefMI, 148 const ImmInstrInfo &III, 149 MachineOperand *&ImmMO, 150 MachineOperand *&RegMO) const; 151 bool isImmElgibleForForwarding(const MachineOperand &ImmMO, 152 const MachineInstr &DefMI, 153 const ImmInstrInfo &III, 154 int64_t &Imm) const; 155 bool isRegElgibleForForwarding(const MachineOperand &RegMO, 156 const MachineInstr &DefMI, 157 const MachineInstr &MI, bool KillDefMI, 158 bool &IsFwdFeederRegKilled) const; 159 const unsigned *getStoreOpcodesForSpillArray() const; 160 const unsigned *getLoadOpcodesForSpillArray() const; 161 virtual void anchor(); 162 163 protected: 164 /// Commutes the operands in the given instruction. 165 /// The commutable operands are specified by their indices OpIdx1 and OpIdx2. 166 /// 167 /// Do not call this method for a non-commutable instruction or for 168 /// non-commutable pair of operand indices OpIdx1 and OpIdx2. 169 /// Even though the instruction is commutable, the method may still 170 /// fail to commute the operands, null pointer is returned in such cases. 171 /// 172 /// For example, we can commute rlwimi instructions, but only if the 173 /// rotate amt is zero. We also have to munge the immediates a bit. 174 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, 175 unsigned OpIdx1, 176 unsigned OpIdx2) const override; 177 178 public: 179 explicit PPCInstrInfo(PPCSubtarget &STI); 180 181 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As 182 /// such, whenever a client has an instance of instruction info, it should 183 /// always be able to get register info as well (through this method). 184 /// 185 const PPCRegisterInfo &getRegisterInfo() const { return RI; } 186 187 bool isXFormMemOp(unsigned Opcode) const { 188 return get(Opcode).TSFlags & PPCII::XFormMemOp; 189 } 190 static bool isSameClassPhysRegCopy(unsigned Opcode) { 191 unsigned CopyOpcodes[] = 192 { PPC::OR, PPC::OR8, PPC::FMR, PPC::VOR, PPC::XXLOR, PPC::XXLORf, 193 PPC::XSCPSGNDP, PPC::MCRF, PPC::QVFMR, PPC::QVFMRs, PPC::QVFMRb, 194 PPC::CROR, PPC::EVOR, -1U }; 195 for (int i = 0; CopyOpcodes[i] != -1U; i++) 196 if (Opcode == CopyOpcodes[i]) 197 return true; 198 return false; 199 } 200 201 ScheduleHazardRecognizer * 202 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 203 const ScheduleDAG *DAG) const override; 204 ScheduleHazardRecognizer * 205 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 206 const ScheduleDAG *DAG) const override; 207 208 unsigned getInstrLatency(const InstrItineraryData *ItinData, 209 const MachineInstr &MI, 210 unsigned *PredCost = nullptr) const override; 211 212 int getOperandLatency(const InstrItineraryData *ItinData, 213 const MachineInstr &DefMI, unsigned DefIdx, 214 const MachineInstr &UseMI, 215 unsigned UseIdx) const override; 216 int getOperandLatency(const InstrItineraryData *ItinData, 217 SDNode *DefNode, unsigned DefIdx, 218 SDNode *UseNode, unsigned UseIdx) const override { 219 return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx, 220 UseNode, UseIdx); 221 } 222 223 bool hasLowDefLatency(const TargetSchedModel &SchedModel, 224 const MachineInstr &DefMI, 225 unsigned DefIdx) const override { 226 // Machine LICM should hoist all instructions in low-register-pressure 227 // situations; none are sufficiently free to justify leaving in a loop 228 // body. 229 return false; 230 } 231 232 bool useMachineCombiner() const override { 233 return true; 234 } 235 236 /// Return true when there is potentially a faster code sequence 237 /// for an instruction chain ending in <Root>. All potential patterns are 238 /// output in the <Pattern> array. 239 bool getMachineCombinerPatterns( 240 MachineInstr &Root, 241 SmallVectorImpl<MachineCombinerPattern> &P) const override; 242 243 bool isAssociativeAndCommutative(const MachineInstr &Inst) const override; 244 245 bool isCoalescableExtInstr(const MachineInstr &MI, 246 unsigned &SrcReg, unsigned &DstReg, 247 unsigned &SubIdx) const override; 248 unsigned isLoadFromStackSlot(const MachineInstr &MI, 249 int &FrameIndex) const override; 250 bool isReallyTriviallyReMaterializable(const MachineInstr &MI, 251 AAResults *AA) const override; 252 unsigned isStoreToStackSlot(const MachineInstr &MI, 253 int &FrameIndex) const override; 254 255 bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, 256 unsigned &SrcOpIdx2) const override; 257 258 void insertNoop(MachineBasicBlock &MBB, 259 MachineBasicBlock::iterator MI) const override; 260 261 262 // Branch analysis. 263 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 264 MachineBasicBlock *&FBB, 265 SmallVectorImpl<MachineOperand> &Cond, 266 bool AllowModify) const override; 267 unsigned removeBranch(MachineBasicBlock &MBB, 268 int *BytesRemoved = nullptr) const override; 269 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 270 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, 271 const DebugLoc &DL, 272 int *BytesAdded = nullptr) const override; 273 274 // Select analysis. 275 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond, 276 unsigned, unsigned, int &, int &, int &) const override; 277 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 278 const DebugLoc &DL, unsigned DstReg, 279 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 280 unsigned FalseReg) const override; 281 282 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 283 const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, 284 bool KillSrc) const override; 285 286 void storeRegToStackSlot(MachineBasicBlock &MBB, 287 MachineBasicBlock::iterator MBBI, 288 unsigned SrcReg, bool isKill, int FrameIndex, 289 const TargetRegisterClass *RC, 290 const TargetRegisterInfo *TRI) const override; 291 292 void loadRegFromStackSlot(MachineBasicBlock &MBB, 293 MachineBasicBlock::iterator MBBI, 294 unsigned DestReg, int FrameIndex, 295 const TargetRegisterClass *RC, 296 const TargetRegisterInfo *TRI) const override; 297 298 unsigned getStoreOpcodeForSpill(unsigned Reg, 299 const TargetRegisterClass *RC = nullptr) const; 300 301 unsigned getLoadOpcodeForSpill(unsigned Reg, 302 const TargetRegisterClass *RC = nullptr) const; 303 304 bool 305 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override; 306 307 bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg, 308 MachineRegisterInfo *MRI) const override; 309 310 // If conversion by predication (only supported by some branch instructions). 311 // All of the profitability checks always return true; it is always 312 // profitable to use the predicated branches. 313 bool isProfitableToIfCvt(MachineBasicBlock &MBB, 314 unsigned NumCycles, unsigned ExtraPredCycles, 315 BranchProbability Probability) const override { 316 return true; 317 } 318 319 bool isProfitableToIfCvt(MachineBasicBlock &TMBB, 320 unsigned NumT, unsigned ExtraT, 321 MachineBasicBlock &FMBB, 322 unsigned NumF, unsigned ExtraF, 323 BranchProbability Probability) const override; 324 325 bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 326 BranchProbability Probability) const override { 327 return true; 328 } 329 330 bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, 331 MachineBasicBlock &FMBB) const override { 332 return false; 333 } 334 335 // Predication support. 336 bool isPredicated(const MachineInstr &MI) const override; 337 338 bool isUnpredicatedTerminator(const MachineInstr &MI) const override; 339 340 bool PredicateInstruction(MachineInstr &MI, 341 ArrayRef<MachineOperand> Pred) const override; 342 343 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 344 ArrayRef<MachineOperand> Pred2) const override; 345 346 bool DefinesPredicate(MachineInstr &MI, 347 std::vector<MachineOperand> &Pred) const override; 348 349 // Comparison optimization. 350 351 bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 352 unsigned &SrcReg2, int &Mask, int &Value) const override; 353 354 bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 355 unsigned SrcReg2, int Mask, int Value, 356 const MachineRegisterInfo *MRI) const override; 357 358 359 /// Return true if get the base operand, byte offset of an instruction and 360 /// the memory width. Width is the size of memory that is being 361 /// loaded/stored (e.g. 1, 2, 4, 8). 362 bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt, 363 const MachineOperand *&BaseOp, 364 int64_t &Offset, unsigned &Width, 365 const TargetRegisterInfo *TRI) const; 366 367 /// Return true if two MIs access different memory addresses and false 368 /// otherwise 369 bool 370 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 371 const MachineInstr &MIb) const override; 372 373 /// GetInstSize - Return the number of bytes of code the specified 374 /// instruction may be. This returns the maximum number of bytes. 375 /// 376 unsigned getInstSizeInBytes(const MachineInstr &MI) const override; 377 378 void getNoop(MCInst &NopInst) const override; 379 380 std::pair<unsigned, unsigned> 381 decomposeMachineOperandsTargetFlags(unsigned TF) const override; 382 383 ArrayRef<std::pair<unsigned, const char *>> 384 getSerializableDirectMachineOperandTargetFlags() const override; 385 386 ArrayRef<std::pair<unsigned, const char *>> 387 getSerializableBitmaskMachineOperandTargetFlags() const override; 388 389 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 390 bool expandVSXMemPseudo(MachineInstr &MI) const; 391 392 // Lower pseudo instructions after register allocation. 393 bool expandPostRAPseudo(MachineInstr &MI) const override; 394 395 static bool isVFRegister(unsigned Reg) { 396 return Reg >= PPC::VF0 && Reg <= PPC::VF31; 397 } 398 static bool isVRRegister(unsigned Reg) { 399 return Reg >= PPC::V0 && Reg <= PPC::V31; 400 } 401 const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const; 402 static int getRecordFormOpcode(unsigned Opcode); 403 404 bool isTOCSaveMI(const MachineInstr &MI) const; 405 406 bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 407 const unsigned PhiDepth) const; 408 409 /// Return true if the output of the instruction is always a sign-extended, 410 /// i.e. 0 to 31-th bits are same as 32-th bit. 411 bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const { 412 return isSignOrZeroExtended(MI, true, depth); 413 } 414 415 /// Return true if the output of the instruction is always zero-extended, 416 /// i.e. 0 to 31-th bits are all zeros 417 bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const { 418 return isSignOrZeroExtended(MI, false, depth); 419 } 420 421 bool convertToImmediateForm(MachineInstr &MI, 422 MachineInstr **KilledDef = nullptr) const; 423 bool foldFrameOffset(MachineInstr &MI) const; 424 bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const; 425 bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const; 426 bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg, 427 unsigned &XFormOpcode, 428 int64_t &OffsetOfImmInstr, 429 ImmInstrInfo &III) const; 430 bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 431 MachineInstr *&ADDIMI, int64_t &OffsetAddi, 432 int64_t OffsetImm) const; 433 434 /// Fixup killed/dead flag for register \p RegNo between instructions [\p 435 /// StartMI, \p EndMI]. Some PostRA transformations may violate register 436 /// killed/dead flags semantics, this function can be called to fix up. Before 437 /// calling this function, 438 /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI. 439 /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI) 440 /// and possible definition for \p RegNo is \p StartMI or \p EndMI. 441 /// 3. Ensure that all instructions between [\p StartMI, \p EndMI] are in same 442 /// basic block. 443 void fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 444 unsigned RegNo) const; 445 void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const; 446 void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo, 447 int64_t Imm) const; 448 449 bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III, 450 bool PostRA) const; 451 452 // In PostRA phase, try to find instruction defines \p Reg before \p MI. 453 // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist. 454 MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI, 455 bool &SeenIntermediateUse) const; 456 457 /// getRegNumForOperand - some operands use different numbering schemes 458 /// for the same registers. For example, a VSX instruction may have any of 459 /// vs0-vs63 allocated whereas an Altivec instruction could only have 460 /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual 461 /// register number needed for the opcode/operand number combination. 462 /// The operand number argument will be useful when we need to extend this 463 /// to instructions that use both Altivec and VSX numbering (for different 464 /// operands). 465 static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg, 466 unsigned OpNo) { 467 int16_t regClass = Desc.OpInfo[OpNo].RegClass; 468 switch (regClass) { 469 // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31, 470 // VSX32-VSX63 during encoding/disassembling 471 case PPC::VSSRCRegClassID: 472 case PPC::VSFRCRegClassID: 473 if (isVFRegister(Reg)) 474 return PPC::VSX32 + (Reg - PPC::VF0); 475 break; 476 // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31, 477 // VSX32-VSX63 during encoding/disassembling 478 case PPC::VSRCRegClassID: 479 if (isVRRegister(Reg)) 480 return PPC::VSX32 + (Reg - PPC::V0); 481 break; 482 // Other RegClass doesn't need mapping 483 default: 484 break; 485 } 486 return Reg; 487 } 488 489 /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero). 490 bool isBDNZ(unsigned Opcode) const; 491 492 /// Find the hardware loop instruction used to set-up the specified loop. 493 /// On PPC, we have two instructions used to set-up the hardware loop 494 /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8) 495 /// instructions to indicate the end of a loop. 496 MachineInstr * 497 findLoopInstr(MachineBasicBlock &PreHeader, 498 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const; 499 500 /// Analyze loop L, which must be a single-basic-block loop, and if the 501 /// conditions can be understood enough produce a PipelinerLoopInfo object. 502 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 503 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override; 504 }; 505 506 } 507 508 #endif 509