xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.h (revision 29332c0dcee1e80c9fb871e06c3160bd5deb1b44)
1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
15 
16 #include "PPCRegisterInfo.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
18 
19 #define GET_INSTRINFO_HEADER
20 #include "PPCGenInstrInfo.inc"
21 
22 namespace llvm {
23 
24 /// PPCII - This namespace holds all of the PowerPC target-specific
25 /// per-instruction flags.  These must match the corresponding definitions in
26 /// PPC.td and PPCInstrFormats.td.
27 namespace PPCII {
28 enum {
29   // PPC970 Instruction Flags.  These flags describe the characteristics of the
30   // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
31   // raw machine instructions.
32 
33   /// PPC970_First - This instruction starts a new dispatch group, so it will
34   /// always be the first one in the group.
35   PPC970_First = 0x1,
36 
37   /// PPC970_Single - This instruction starts a new dispatch group and
38   /// terminates it, so it will be the sole instruction in the group.
39   PPC970_Single = 0x2,
40 
41   /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
42   /// two dispatch pipes to be available to issue.
43   PPC970_Cracked = 0x4,
44 
45   /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
46   /// an instruction is issued to.
47   PPC970_Shift = 3,
48   PPC970_Mask = 0x07 << PPC970_Shift
49 };
50 enum PPC970_Unit {
51   /// These are the various PPC970 execution unit pipelines.  Each instruction
52   /// is one of these.
53   PPC970_Pseudo = 0 << PPC970_Shift,   // Pseudo instruction
54   PPC970_FXU    = 1 << PPC970_Shift,   // Fixed Point (aka Integer/ALU) Unit
55   PPC970_LSU    = 2 << PPC970_Shift,   // Load Store Unit
56   PPC970_FPU    = 3 << PPC970_Shift,   // Floating Point Unit
57   PPC970_CRU    = 4 << PPC970_Shift,   // Control Register Unit
58   PPC970_VALU   = 5 << PPC970_Shift,   // Vector ALU
59   PPC970_VPERM  = 6 << PPC970_Shift,   // Vector Permute Unit
60   PPC970_BRU    = 7 << PPC970_Shift    // Branch Unit
61 };
62 
63 enum {
64   /// Shift count to bypass PPC970 flags
65   NewDef_Shift = 6,
66 
67   /// This instruction is an X-Form memory operation.
68   XFormMemOp = 0x1 << NewDef_Shift,
69   /// This instruction is prefixed.
70   Prefixed = 0x1 << (NewDef_Shift+1)
71 };
72 } // end namespace PPCII
73 
74 // Instructions that have an immediate form might be convertible to that
75 // form if the correct input is a result of a load immediate. In order to
76 // know whether the transformation is special, we might need to know some
77 // of the details of the two forms.
78 struct ImmInstrInfo {
79   // Is the immediate field in the immediate form signed or unsigned?
80   uint64_t SignedImm : 1;
81   // Does the immediate need to be a multiple of some value?
82   uint64_t ImmMustBeMultipleOf : 5;
83   // Is R0/X0 treated specially by the original r+r instruction?
84   // If so, in which operand?
85   uint64_t ZeroIsSpecialOrig : 3;
86   // Is R0/X0 treated specially by the new r+i instruction?
87   // If so, in which operand?
88   uint64_t ZeroIsSpecialNew : 3;
89   // Is the operation commutative?
90   uint64_t IsCommutative : 1;
91   // The operand number to check for add-immediate def.
92   uint64_t OpNoForForwarding : 3;
93   // The operand number for the immediate.
94   uint64_t ImmOpNo : 3;
95   // The opcode of the new instruction.
96   uint64_t ImmOpcode : 16;
97   // The size of the immediate.
98   uint64_t ImmWidth : 5;
99   // The immediate should be truncated to N bits.
100   uint64_t TruncateImmTo : 5;
101   // Is the instruction summing the operand
102   uint64_t IsSummingOperands : 1;
103 };
104 
105 // Information required to convert an instruction to just a materialized
106 // immediate.
107 struct LoadImmediateInfo {
108   unsigned Imm : 16;
109   unsigned Is64Bit : 1;
110   unsigned SetCR : 1;
111 };
112 
113 // Index into the OpcodesForSpill array.
114 enum SpillOpcodeKey {
115   SOK_Int4Spill,
116   SOK_Int8Spill,
117   SOK_Float8Spill,
118   SOK_Float4Spill,
119   SOK_CRSpill,
120   SOK_CRBitSpill,
121   SOK_VRVectorSpill,
122   SOK_VSXVectorSpill,
123   SOK_VectorFloat8Spill,
124   SOK_VectorFloat4Spill,
125   SOK_SpillToVSR,
126   SOK_PairedVecSpill,
127   SOK_AccumulatorSpill,
128   SOK_UAccumulatorSpill,
129   SOK_SPESpill,
130   SOK_PairedG8Spill,
131   SOK_LastOpcodeSpill // This must be last on the enum.
132 };
133 
134 // Define list of load and store spill opcodes.
135 #define NoInstr PPC::INSTRUCTION_LIST_END
136 #define Pwr8LoadOpcodes                                                        \
137   {                                                                            \
138     PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \
139         PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,    \
140         PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, PPC::EVLDD,             \
141         PPC::RESTORE_QUADWORD                                                  \
142   }
143 
144 #define Pwr9LoadOpcodes                                                        \
145   {                                                                            \
146     PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \
147         PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64,                \
148         PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr,         \
149         NoInstr, PPC::RESTORE_QUADWORD                                         \
150   }
151 
152 #define Pwr10LoadOpcodes                                                       \
153   {                                                                            \
154     PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \
155         PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64,                \
156         PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC,       \
157         PPC::RESTORE_UACC, NoInstr, PPC::RESTORE_QUADWORD                      \
158   }
159 
160 #define Pwr8StoreOpcodes                                                       \
161   {                                                                            \
162     PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
163         PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,                    \
164         PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, PPC::EVSTDD,            \
165         PPC::SPILL_QUADWORD                                                    \
166   }
167 
168 #define Pwr9StoreOpcodes                                                       \
169   {                                                                            \
170     PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
171         PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,                \
172         PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr,                \
173         PPC::SPILL_QUADWORD                                                    \
174   }
175 
176 #define Pwr10StoreOpcodes                                                      \
177   {                                                                            \
178     PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
179         PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,                \
180         PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC,       \
181         NoInstr, PPC::SPILL_QUADWORD                                           \
182   }
183 
184 // Initialize arrays for load and store spill opcodes on supported subtargets.
185 #define StoreOpcodesForSpill                                                   \
186   { Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes }
187 #define LoadOpcodesForSpill                                                    \
188   { Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes }
189 
190 class PPCSubtarget;
191 class PPCInstrInfo : public PPCGenInstrInfo {
192   PPCSubtarget &Subtarget;
193   const PPCRegisterInfo RI;
194   const unsigned StoreSpillOpcodesArray[3][SOK_LastOpcodeSpill] =
195       StoreOpcodesForSpill;
196   const unsigned LoadSpillOpcodesArray[3][SOK_LastOpcodeSpill] =
197       LoadOpcodesForSpill;
198 
199   void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
200                            int FrameIdx, const TargetRegisterClass *RC,
201                            SmallVectorImpl<MachineInstr *> &NewMIs) const;
202   void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
203                             unsigned DestReg, int FrameIdx,
204                             const TargetRegisterClass *RC,
205                             SmallVectorImpl<MachineInstr *> &NewMIs) const;
206 
207   // Replace the instruction with single LI if possible. \p DefMI must be LI or
208   // LI8.
209   bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
210                     unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
211   // If the inst is imm-form and its register operand is produced by a ADDI, put
212   // the imm into the inst directly and remove the ADDI if possible.
213   bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
214                                      unsigned OpNoForForwarding) const;
215   // If the inst is x-form and has imm-form and one of its operand is produced
216   // by a LI, put the imm into the inst directly and remove the LI if possible.
217   bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
218                                  unsigned ConstantOpNo,
219                                  MachineInstr &DefMI) const;
220   // If the inst is x-form and has imm-form and one of its operand is produced
221   // by an add-immediate, try to transform it when possible.
222   bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
223                                   unsigned ConstantOpNo, MachineInstr &DefMI,
224                                   bool KillDefMI) const;
225   // Try to find that, if the instruction 'MI' contains any operand that
226   // could be forwarded from some inst that feeds it. If yes, return the
227   // Def of that operand. And OpNoForForwarding is the operand index in
228   // the 'MI' for that 'Def'. If we see another use of this Def between
229   // the Def and the MI, SeenIntermediateUse becomes 'true'.
230   MachineInstr *getForwardingDefMI(MachineInstr &MI,
231                                    unsigned &OpNoForForwarding,
232                                    bool &SeenIntermediateUse) const;
233 
234   // Can the user MI have it's source at index \p OpNoForForwarding
235   // forwarded from an add-immediate that feeds it?
236   bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
237                                    unsigned OpNoForForwarding) const;
238   bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
239                                    const ImmInstrInfo &III,
240                                    MachineOperand *&ImmMO,
241                                    MachineOperand *&RegMO) const;
242   bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
243                                  const MachineInstr &DefMI,
244                                  const ImmInstrInfo &III,
245                                  int64_t &Imm,
246                                  int64_t BaseImm = 0) const;
247   bool isRegElgibleForForwarding(const MachineOperand &RegMO,
248                                  const MachineInstr &DefMI,
249                                  const MachineInstr &MI, bool KillDefMI,
250                                  bool &IsFwdFeederRegKilled) const;
251   unsigned getSpillTarget() const;
252   const unsigned *getStoreOpcodesForSpillArray() const;
253   const unsigned *getLoadOpcodesForSpillArray() const;
254   unsigned getSpillIndex(const TargetRegisterClass *RC) const;
255   int16_t getFMAOpIdxInfo(unsigned Opcode) const;
256   void reassociateFMA(MachineInstr &Root, MachineCombinerPattern Pattern,
257                       SmallVectorImpl<MachineInstr *> &InsInstrs,
258                       SmallVectorImpl<MachineInstr *> &DelInstrs,
259                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
260   bool isLoadFromConstantPool(MachineInstr *I) const;
261   Register
262   generateLoadForNewConst(unsigned Idx, MachineInstr *MI, Type *Ty,
263                           SmallVectorImpl<MachineInstr *> &InsInstrs) const;
264   const Constant *getConstantFromConstantPool(MachineInstr *I) const;
265   virtual void anchor();
266 
267 protected:
268   /// Commutes the operands in the given instruction.
269   /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
270   ///
271   /// Do not call this method for a non-commutable instruction or for
272   /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
273   /// Even though the instruction is commutable, the method may still
274   /// fail to commute the operands, null pointer is returned in such cases.
275   ///
276   /// For example, we can commute rlwimi instructions, but only if the
277   /// rotate amt is zero.  We also have to munge the immediates a bit.
278   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
279                                        unsigned OpIdx1,
280                                        unsigned OpIdx2) const override;
281 
282 public:
283   explicit PPCInstrInfo(PPCSubtarget &STI);
284 
285   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
286   /// such, whenever a client has an instance of instruction info, it should
287   /// always be able to get register info as well (through this method).
288   ///
289   const PPCRegisterInfo &getRegisterInfo() const { return RI; }
290 
291   bool isXFormMemOp(unsigned Opcode) const {
292     return get(Opcode).TSFlags & PPCII::XFormMemOp;
293   }
294   bool isPrefixed(unsigned Opcode) const {
295     return get(Opcode).TSFlags & PPCII::Prefixed;
296   }
297 
298   static bool isSameClassPhysRegCopy(unsigned Opcode) {
299     unsigned CopyOpcodes[] = {PPC::OR,        PPC::OR8,   PPC::FMR,
300                               PPC::VOR,       PPC::XXLOR, PPC::XXLORf,
301                               PPC::XSCPSGNDP, PPC::MCRF,  PPC::CROR,
302                               PPC::EVOR,      -1U};
303     for (int i = 0; CopyOpcodes[i] != -1U; i++)
304       if (Opcode == CopyOpcodes[i])
305         return true;
306     return false;
307   }
308 
309   ScheduleHazardRecognizer *
310   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
311                                const ScheduleDAG *DAG) const override;
312   ScheduleHazardRecognizer *
313   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
314                                      const ScheduleDAG *DAG) const override;
315 
316   unsigned getInstrLatency(const InstrItineraryData *ItinData,
317                            const MachineInstr &MI,
318                            unsigned *PredCost = nullptr) const override;
319 
320   int getOperandLatency(const InstrItineraryData *ItinData,
321                         const MachineInstr &DefMI, unsigned DefIdx,
322                         const MachineInstr &UseMI,
323                         unsigned UseIdx) const override;
324   int getOperandLatency(const InstrItineraryData *ItinData,
325                         SDNode *DefNode, unsigned DefIdx,
326                         SDNode *UseNode, unsigned UseIdx) const override {
327     return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
328                                               UseNode, UseIdx);
329   }
330 
331   bool hasLowDefLatency(const TargetSchedModel &SchedModel,
332                         const MachineInstr &DefMI,
333                         unsigned DefIdx) const override {
334     // Machine LICM should hoist all instructions in low-register-pressure
335     // situations; none are sufficiently free to justify leaving in a loop
336     // body.
337     return false;
338   }
339 
340   bool useMachineCombiner() const override {
341     return true;
342   }
343 
344   /// When getMachineCombinerPatterns() finds patterns, this function generates
345   /// the instructions that could replace the original code sequence
346   void genAlternativeCodeSequence(
347       MachineInstr &Root, MachineCombinerPattern Pattern,
348       SmallVectorImpl<MachineInstr *> &InsInstrs,
349       SmallVectorImpl<MachineInstr *> &DelInstrs,
350       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
351 
352   /// Return true when there is potentially a faster code sequence for a fma
353   /// chain ending in \p Root. All potential patterns are output in the \p
354   /// P array.
355   bool getFMAPatterns(MachineInstr &Root,
356                       SmallVectorImpl<MachineCombinerPattern> &P,
357                       bool DoRegPressureReduce) const;
358 
359   /// Return true when there is potentially a faster code sequence
360   /// for an instruction chain ending in <Root>. All potential patterns are
361   /// output in the <Pattern> array.
362   bool getMachineCombinerPatterns(MachineInstr &Root,
363                                   SmallVectorImpl<MachineCombinerPattern> &P,
364                                   bool DoRegPressureReduce) const override;
365 
366   /// On PowerPC, we leverage machine combiner pass to reduce register pressure
367   /// when the register pressure is high for one BB.
368   /// Return true if register pressure for \p MBB is high and ABI is supported
369   /// to reduce register pressure. Otherwise return false.
370   bool
371   shouldReduceRegisterPressure(MachineBasicBlock *MBB,
372                                RegisterClassInfo *RegClassInfo) const override;
373 
374   /// Fixup the placeholders we put in genAlternativeCodeSequence() for
375   /// MachineCombiner.
376   void
377   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
378                     SmallVectorImpl<MachineInstr *> &InsInstrs) const override;
379 
380   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
381 
382   /// On PowerPC, we try to reassociate FMA chain which will increase
383   /// instruction size. Set extension resource length limit to 1 for edge case.
384   /// Resource Length is calculated by scaled resource usage in getCycles().
385   /// Because of the division in getCycles(), it returns different cycles due to
386   /// legacy scaled resource usage. So new resource length may be same with
387   /// legacy or 1 bigger than legacy.
388   /// We need to execlude the 1 bigger case even the resource length is not
389   /// perserved for more FMA chain reassociations on PowerPC.
390   int getExtendResourceLenLimit() const override { return 1; }
391 
392   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
393                              MachineInstr &NewMI1,
394                              MachineInstr &NewMI2) const override;
395 
396   void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const override;
397 
398   bool isCoalescableExtInstr(const MachineInstr &MI,
399                              Register &SrcReg, Register &DstReg,
400                              unsigned &SubIdx) const override;
401   unsigned isLoadFromStackSlot(const MachineInstr &MI,
402                                int &FrameIndex) const override;
403   bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
404                                          AAResults *AA) const override;
405   unsigned isStoreToStackSlot(const MachineInstr &MI,
406                               int &FrameIndex) const override;
407 
408   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
409                              unsigned &SrcOpIdx2) const override;
410 
411   void insertNoop(MachineBasicBlock &MBB,
412                   MachineBasicBlock::iterator MI) const override;
413 
414 
415   // Branch analysis.
416   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
417                      MachineBasicBlock *&FBB,
418                      SmallVectorImpl<MachineOperand> &Cond,
419                      bool AllowModify) const override;
420   unsigned removeBranch(MachineBasicBlock &MBB,
421                         int *BytesRemoved = nullptr) const override;
422   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
423                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
424                         const DebugLoc &DL,
425                         int *BytesAdded = nullptr) const override;
426 
427   // Select analysis.
428   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
429                        Register, Register, Register, int &, int &,
430                        int &) const override;
431   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
432                     const DebugLoc &DL, Register DstReg,
433                     ArrayRef<MachineOperand> Cond, Register TrueReg,
434                     Register FalseReg) const override;
435 
436   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
437                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
438                    bool KillSrc) const override;
439 
440   void storeRegToStackSlot(MachineBasicBlock &MBB,
441                            MachineBasicBlock::iterator MBBI,
442                            Register SrcReg, bool isKill, int FrameIndex,
443                            const TargetRegisterClass *RC,
444                            const TargetRegisterInfo *TRI) const override;
445 
446   // Emits a register spill without updating the register class for vector
447   // registers. This ensures that when we spill a vector register the
448   // element order in the register is the same as it was in memory.
449   void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
450                                 MachineBasicBlock::iterator MBBI,
451                                 unsigned SrcReg, bool isKill, int FrameIndex,
452                                 const TargetRegisterClass *RC,
453                                 const TargetRegisterInfo *TRI) const;
454 
455   void loadRegFromStackSlot(MachineBasicBlock &MBB,
456                             MachineBasicBlock::iterator MBBI,
457                             Register DestReg, int FrameIndex,
458                             const TargetRegisterClass *RC,
459                             const TargetRegisterInfo *TRI) const override;
460 
461   // Emits a register reload without updating the register class for vector
462   // registers. This ensures that when we reload a vector register the
463   // element order in the register is the same as it was in memory.
464   void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
465                                  MachineBasicBlock::iterator MBBI,
466                                  unsigned DestReg, int FrameIndex,
467                                  const TargetRegisterClass *RC,
468                                  const TargetRegisterInfo *TRI) const;
469 
470   unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
471 
472   unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
473 
474   bool
475   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
476 
477   bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
478                      MachineRegisterInfo *MRI) const override;
479 
480   bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
481                          Register Reg) const;
482 
483   // If conversion by predication (only supported by some branch instructions).
484   // All of the profitability checks always return true; it is always
485   // profitable to use the predicated branches.
486   bool isProfitableToIfCvt(MachineBasicBlock &MBB,
487                           unsigned NumCycles, unsigned ExtraPredCycles,
488                           BranchProbability Probability) const override {
489     return true;
490   }
491 
492   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
493                            unsigned NumT, unsigned ExtraT,
494                            MachineBasicBlock &FMBB,
495                            unsigned NumF, unsigned ExtraF,
496                            BranchProbability Probability) const override;
497 
498   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
499                                  BranchProbability Probability) const override {
500     return true;
501   }
502 
503   bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
504                                  MachineBasicBlock &FMBB) const override {
505     return false;
506   }
507 
508   // Predication support.
509   bool isPredicated(const MachineInstr &MI) const override;
510 
511   bool isSchedulingBoundary(const MachineInstr &MI,
512                             const MachineBasicBlock *MBB,
513                             const MachineFunction &MF) const override;
514 
515   bool PredicateInstruction(MachineInstr &MI,
516                             ArrayRef<MachineOperand> Pred) const override;
517 
518   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
519                          ArrayRef<MachineOperand> Pred2) const override;
520 
521   bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
522                          bool SkipDead) const override;
523 
524   // Comparison optimization.
525 
526   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
527                       Register &SrcReg2, int &Mask, int &Value) const override;
528 
529   bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
530                             Register SrcReg2, int Mask, int Value,
531                             const MachineRegisterInfo *MRI) const override;
532 
533 
534   /// Return true if get the base operand, byte offset of an instruction and
535   /// the memory width. Width is the size of memory that is being
536   /// loaded/stored (e.g. 1, 2, 4, 8).
537   bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
538                                     const MachineOperand *&BaseOp,
539                                     int64_t &Offset, unsigned &Width,
540                                     const TargetRegisterInfo *TRI) const;
541 
542   /// Get the base operand and byte offset of an instruction that reads/writes
543   /// memory.
544   bool getMemOperandsWithOffsetWidth(
545       const MachineInstr &LdSt,
546       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
547       bool &OffsetIsScalable, unsigned &Width,
548       const TargetRegisterInfo *TRI) const override;
549 
550   /// Returns true if the two given memory operations should be scheduled
551   /// adjacent.
552   bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
553                            ArrayRef<const MachineOperand *> BaseOps2,
554                            unsigned NumLoads, unsigned NumBytes) const override;
555 
556   /// Return true if two MIs access different memory addresses and false
557   /// otherwise
558   bool
559   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
560                                   const MachineInstr &MIb) const override;
561 
562   /// GetInstSize - Return the number of bytes of code the specified
563   /// instruction may be.  This returns the maximum number of bytes.
564   ///
565   unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
566 
567   MCInst getNop() const override;
568 
569   std::pair<unsigned, unsigned>
570   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
571 
572   ArrayRef<std::pair<unsigned, const char *>>
573   getSerializableDirectMachineOperandTargetFlags() const override;
574 
575   ArrayRef<std::pair<unsigned, const char *>>
576   getSerializableBitmaskMachineOperandTargetFlags() const override;
577 
578   // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
579   bool expandVSXMemPseudo(MachineInstr &MI) const;
580 
581   // Lower pseudo instructions after register allocation.
582   bool expandPostRAPseudo(MachineInstr &MI) const override;
583 
584   static bool isVFRegister(unsigned Reg) {
585     return Reg >= PPC::VF0 && Reg <= PPC::VF31;
586   }
587   static bool isVRRegister(unsigned Reg) {
588     return Reg >= PPC::V0 && Reg <= PPC::V31;
589   }
590   const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
591   static int getRecordFormOpcode(unsigned Opcode);
592 
593   bool isTOCSaveMI(const MachineInstr &MI) const;
594 
595   bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
596                             const unsigned PhiDepth) const;
597 
598   /// Return true if the output of the instruction is always a sign-extended,
599   /// i.e. 0 to 31-th bits are same as 32-th bit.
600   bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
601     return isSignOrZeroExtended(MI, true, depth);
602   }
603 
604   /// Return true if the output of the instruction is always zero-extended,
605   /// i.e. 0 to 31-th bits are all zeros
606   bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
607    return isSignOrZeroExtended(MI, false, depth);
608   }
609 
610   bool convertToImmediateForm(MachineInstr &MI,
611                               MachineInstr **KilledDef = nullptr) const;
612   bool foldFrameOffset(MachineInstr &MI) const;
613   bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
614   bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
615   bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
616   bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
617                                     unsigned &XFormOpcode,
618                                     int64_t &OffsetOfImmInstr,
619                                     ImmInstrInfo &III) const;
620   bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
621                              MachineInstr *&ADDIMI, int64_t &OffsetAddi,
622                              int64_t OffsetImm) const;
623 
624   /// Fixup killed/dead flag for register \p RegNo between instructions [\p
625   /// StartMI, \p EndMI]. Some pre-RA or post-RA transformations may violate
626   /// register killed/dead flags semantics, this function can be called to fix
627   /// up. Before calling this function,
628   /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
629   /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
630   ///    and possible definition for \p RegNo is \p StartMI or \p EndMI. For
631   ///    pre-RA cases, definition may be \p StartMI through COPY, \p StartMI
632   ///    will be adjust to true definition.
633   /// 3. We can do accurate fixup for the case when all instructions between
634   ///    [\p StartMI, \p EndMI] are in same basic block.
635   /// 4. For the case when \p StartMI and \p EndMI are not in same basic block,
636   ///    we conservatively clear kill flag for all uses of \p RegNo for pre-RA
637   ///    and for post-RA, we give an assertion as without reaching definition
638   ///    analysis post-RA, \p StartMI and \p EndMI are hard to keep right.
639   void fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
640                          unsigned RegNo) const;
641   void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
642   void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
643                                   int64_t Imm) const;
644 
645   bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
646                        bool PostRA) const;
647 
648   // In PostRA phase, try to find instruction defines \p Reg before \p MI.
649   // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
650   MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
651                                bool &SeenIntermediateUse) const;
652 
653   /// getRegNumForOperand - some operands use different numbering schemes
654   /// for the same registers. For example, a VSX instruction may have any of
655   /// vs0-vs63 allocated whereas an Altivec instruction could only have
656   /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
657   /// register number needed for the opcode/operand number combination.
658   /// The operand number argument will be useful when we need to extend this
659   /// to instructions that use both Altivec and VSX numbering (for different
660   /// operands).
661   static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
662                                       unsigned OpNo) {
663     int16_t regClass = Desc.OpInfo[OpNo].RegClass;
664     switch (regClass) {
665       // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
666       // VSX32-VSX63 during encoding/disassembling
667       case PPC::VSSRCRegClassID:
668       case PPC::VSFRCRegClassID:
669         if (isVFRegister(Reg))
670           return PPC::VSX32 + (Reg - PPC::VF0);
671         break;
672       // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
673       // VSX32-VSX63 during encoding/disassembling
674       case PPC::VSRCRegClassID:
675         if (isVRRegister(Reg))
676           return PPC::VSX32 + (Reg - PPC::V0);
677         break;
678       // Other RegClass doesn't need mapping
679       default:
680         break;
681     }
682     return Reg;
683   }
684 
685   /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
686   bool isBDNZ(unsigned Opcode) const;
687 
688   /// Find the hardware loop instruction used to set-up the specified loop.
689   /// On PPC, we have two instructions used to set-up the hardware loop
690   /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
691   /// instructions to indicate the end of a loop.
692   MachineInstr *
693   findLoopInstr(MachineBasicBlock &PreHeader,
694                 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
695 
696   /// Analyze loop L, which must be a single-basic-block loop, and if the
697   /// conditions can be understood enough produce a PipelinerLoopInfo object.
698   std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
699   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
700 };
701 
702 }
703 
704 #endif
705