1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineCombinerPattern.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/PseudoSourceValue.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "ppc-instr-info" 49 50 #define GET_INSTRMAP_INFO 51 #define GET_INSTRINFO_CTOR_DTOR 52 #include "PPCGenInstrInfo.inc" 53 54 STATISTIC(NumStoreSPILLVSRRCAsVec, 55 "Number of spillvsrrc spilled to stack as vec"); 56 STATISTIC(NumStoreSPILLVSRRCAsGpr, 57 "Number of spillvsrrc spilled to stack as gpr"); 58 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 59 STATISTIC(CmpIselsConverted, 60 "Number of ISELs that depend on comparison of constants converted"); 61 STATISTIC(MissedConvertibleImmediateInstrs, 62 "Number of compare-immediate instructions fed by constants"); 63 STATISTIC(NumRcRotatesConvertedToRcAnd, 64 "Number of record-form rotates converted to record-form andi"); 65 66 static cl:: 67 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 68 cl::desc("Disable analysis for CTR loops")); 69 70 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 71 cl::desc("Disable compare instruction optimization"), cl::Hidden); 72 73 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 74 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 75 cl::Hidden); 76 77 static cl::opt<bool> 78 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 79 cl::desc("Use the old (incorrect) instruction latency calculation")); 80 81 static cl::opt<float> 82 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 83 cl::desc("register pressure factor for the transformations.")); 84 85 static cl::opt<bool> EnableFMARegPressureReduction( 86 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 87 cl::desc("enable register pressure reduce in machine combiner pass.")); 88 89 // Pin the vtable to this file. 90 void PPCInstrInfo::anchor() {} 91 92 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 93 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 94 /* CatchRetOpcode */ -1, 95 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 96 Subtarget(STI), RI(STI.getTargetMachine()) {} 97 98 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 99 /// this target when scheduling the DAG. 100 ScheduleHazardRecognizer * 101 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 102 const ScheduleDAG *DAG) const { 103 unsigned Directive = 104 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 105 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 106 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 107 const InstrItineraryData *II = 108 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 109 return new ScoreboardHazardRecognizer(II, DAG); 110 } 111 112 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 113 } 114 115 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 116 /// to use for this target when scheduling the DAG. 117 ScheduleHazardRecognizer * 118 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 119 const ScheduleDAG *DAG) const { 120 unsigned Directive = 121 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 122 123 // FIXME: Leaving this as-is until we have POWER9 scheduling info 124 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 125 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 126 127 // Most subtargets use a PPC970 recognizer. 128 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 129 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 130 assert(DAG->TII && "No InstrInfo?"); 131 132 return new PPCHazardRecognizer970(*DAG); 133 } 134 135 return new ScoreboardHazardRecognizer(II, DAG); 136 } 137 138 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 139 const MachineInstr &MI, 140 unsigned *PredCost) const { 141 if (!ItinData || UseOldLatencyCalc) 142 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 143 144 // The default implementation of getInstrLatency calls getStageLatency, but 145 // getStageLatency does not do the right thing for us. While we have 146 // itinerary, most cores are fully pipelined, and so the itineraries only 147 // express the first part of the pipeline, not every stage. Instead, we need 148 // to use the listed output operand cycle number (using operand 0 here, which 149 // is an output). 150 151 unsigned Latency = 1; 152 unsigned DefClass = MI.getDesc().getSchedClass(); 153 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 154 const MachineOperand &MO = MI.getOperand(i); 155 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 156 continue; 157 158 int Cycle = ItinData->getOperandCycle(DefClass, i); 159 if (Cycle < 0) 160 continue; 161 162 Latency = std::max(Latency, (unsigned) Cycle); 163 } 164 165 return Latency; 166 } 167 168 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 169 const MachineInstr &DefMI, unsigned DefIdx, 170 const MachineInstr &UseMI, 171 unsigned UseIdx) const { 172 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 173 UseMI, UseIdx); 174 175 if (!DefMI.getParent()) 176 return Latency; 177 178 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 179 Register Reg = DefMO.getReg(); 180 181 bool IsRegCR; 182 if (Reg.isVirtual()) { 183 const MachineRegisterInfo *MRI = 184 &DefMI.getParent()->getParent()->getRegInfo(); 185 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 186 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 187 } else { 188 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 189 PPC::CRBITRCRegClass.contains(Reg); 190 } 191 192 if (UseMI.isBranch() && IsRegCR) { 193 if (Latency < 0) 194 Latency = getInstrLatency(ItinData, DefMI); 195 196 // On some cores, there is an additional delay between writing to a condition 197 // register, and using it from a branch. 198 unsigned Directive = Subtarget.getCPUDirective(); 199 switch (Directive) { 200 default: break; 201 case PPC::DIR_7400: 202 case PPC::DIR_750: 203 case PPC::DIR_970: 204 case PPC::DIR_E5500: 205 case PPC::DIR_PWR4: 206 case PPC::DIR_PWR5: 207 case PPC::DIR_PWR5X: 208 case PPC::DIR_PWR6: 209 case PPC::DIR_PWR6X: 210 case PPC::DIR_PWR7: 211 case PPC::DIR_PWR8: 212 // FIXME: Is this needed for POWER9? 213 Latency += 2; 214 break; 215 } 216 } 217 218 return Latency; 219 } 220 221 /// This is an architecture-specific helper function of reassociateOps. 222 /// Set special operand attributes for new instructions after reassociation. 223 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 224 MachineInstr &OldMI2, 225 MachineInstr &NewMI1, 226 MachineInstr &NewMI2) const { 227 // Propagate FP flags from the original instructions. 228 // But clear poison-generating flags because those may not be valid now. 229 uint32_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 230 NewMI1.setFlags(IntersectedFlags); 231 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 232 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 233 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 234 235 NewMI2.setFlags(IntersectedFlags); 236 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 237 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 238 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 239 } 240 241 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 242 uint32_t Flags) const { 243 MI.setFlags(Flags); 244 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 245 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 246 MI.clearFlag(MachineInstr::MIFlag::IsExact); 247 } 248 249 // This function does not list all associative and commutative operations, but 250 // only those worth feeding through the machine combiner in an attempt to 251 // reduce the critical path. Mostly, this means floating-point operations, 252 // because they have high latencies(>=5) (compared to other operations, such as 253 // and/or, which are also associative and commutative, but have low latencies). 254 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, 255 bool Invert) const { 256 if (Invert) 257 return false; 258 switch (Inst.getOpcode()) { 259 // Floating point: 260 // FP Add: 261 case PPC::FADD: 262 case PPC::FADDS: 263 // FP Multiply: 264 case PPC::FMUL: 265 case PPC::FMULS: 266 // Altivec Add: 267 case PPC::VADDFP: 268 // VSX Add: 269 case PPC::XSADDDP: 270 case PPC::XVADDDP: 271 case PPC::XVADDSP: 272 case PPC::XSADDSP: 273 // VSX Multiply: 274 case PPC::XSMULDP: 275 case PPC::XVMULDP: 276 case PPC::XVMULSP: 277 case PPC::XSMULSP: 278 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 279 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 280 // Fixed point: 281 // Multiply: 282 case PPC::MULHD: 283 case PPC::MULLD: 284 case PPC::MULHW: 285 case PPC::MULLW: 286 return true; 287 default: 288 return false; 289 } 290 } 291 292 #define InfoArrayIdxFMAInst 0 293 #define InfoArrayIdxFAddInst 1 294 #define InfoArrayIdxFMULInst 2 295 #define InfoArrayIdxAddOpIdx 3 296 #define InfoArrayIdxMULOpIdx 4 297 #define InfoArrayIdxFSubInst 5 298 // Array keeps info for FMA instructions: 299 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 300 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 301 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 302 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 303 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 304 // second MUL operand index is plus 1; 305 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 306 static const uint16_t FMAOpIdxInfo[][6] = { 307 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 308 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 309 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 310 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 311 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 312 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 313 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 314 315 // Check if an opcode is a FMA instruction. If it is, return the index in array 316 // FMAOpIdxInfo. Otherwise, return -1. 317 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 318 for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++) 319 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 320 return I; 321 return -1; 322 } 323 324 // On PowerPC target, we have two kinds of patterns related to FMA: 325 // 1: Improve ILP. 326 // Try to reassociate FMA chains like below: 327 // 328 // Pattern 1: 329 // A = FADD X, Y (Leaf) 330 // B = FMA A, M21, M22 (Prev) 331 // C = FMA B, M31, M32 (Root) 332 // --> 333 // A = FMA X, M21, M22 334 // B = FMA Y, M31, M32 335 // C = FADD A, B 336 // 337 // Pattern 2: 338 // A = FMA X, M11, M12 (Leaf) 339 // B = FMA A, M21, M22 (Prev) 340 // C = FMA B, M31, M32 (Root) 341 // --> 342 // A = FMUL M11, M12 343 // B = FMA X, M21, M22 344 // D = FMA A, M31, M32 345 // C = FADD B, D 346 // 347 // breaking the dependency between A and B, allowing FMA to be executed in 348 // parallel (or back-to-back in a pipeline) instead of depending on each other. 349 // 350 // 2: Reduce register pressure. 351 // Try to reassociate FMA with FSUB and a constant like below: 352 // C is a floating point const. 353 // 354 // Pattern 1: 355 // A = FSUB X, Y (Leaf) 356 // D = FMA B, C, A (Root) 357 // --> 358 // A = FMA B, Y, -C 359 // D = FMA A, X, C 360 // 361 // Pattern 2: 362 // A = FSUB X, Y (Leaf) 363 // D = FMA B, A, C (Root) 364 // --> 365 // A = FMA B, Y, -C 366 // D = FMA A, X, C 367 // 368 // Before the transformation, A must be assigned with different hardware 369 // register with D. After the transformation, A and D must be assigned with 370 // same hardware register due to TIE attribute of FMA instructions. 371 // 372 bool PPCInstrInfo::getFMAPatterns( 373 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 374 bool DoRegPressureReduce) const { 375 MachineBasicBlock *MBB = Root.getParent(); 376 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 377 const TargetRegisterInfo *TRI = &getRegisterInfo(); 378 379 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 380 for (const auto &MO : Instr.explicit_operands()) 381 if (!(MO.isReg() && MO.getReg().isVirtual())) 382 return false; 383 return true; 384 }; 385 386 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 387 unsigned OpType) { 388 if (Instr.getOpcode() != 389 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 390 return false; 391 392 // Instruction can be reassociated. 393 // fast math flags may prohibit reassociation. 394 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 395 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 396 return false; 397 398 // Instruction operands are virtual registers for reassociation. 399 if (!IsAllOpsVirtualReg(Instr)) 400 return false; 401 402 // For register pressure reassociation, the FSub must have only one use as 403 // we want to delete the sub to save its def. 404 if (OpType == InfoArrayIdxFSubInst && 405 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 406 return false; 407 408 return true; 409 }; 410 411 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 412 int16_t &MulOpIdx, bool IsLeaf) { 413 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 414 if (Idx < 0) 415 return false; 416 417 // Instruction can be reassociated. 418 // fast math flags may prohibit reassociation. 419 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 420 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 421 return false; 422 423 // Instruction operands are virtual registers for reassociation. 424 if (!IsAllOpsVirtualReg(Instr)) 425 return false; 426 427 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 428 if (IsLeaf) 429 return true; 430 431 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 432 433 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 434 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 435 // If 'add' operand's def is not in current block, don't do ILP related opt. 436 if (!MIAdd || MIAdd->getParent() != MBB) 437 return false; 438 439 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 440 // as this fma will be changed later. 441 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 442 }; 443 444 int16_t AddOpIdx = -1; 445 int16_t MulOpIdx = -1; 446 447 bool IsUsedOnceL = false; 448 bool IsUsedOnceR = false; 449 MachineInstr *MULInstrL = nullptr; 450 MachineInstr *MULInstrR = nullptr; 451 452 auto IsRPReductionCandidate = [&]() { 453 // Currently, we only support float and double. 454 // FIXME: add support for other types. 455 unsigned Opcode = Root.getOpcode(); 456 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 457 return false; 458 459 // Root must be a valid FMA like instruction. 460 // Treat it as leaf as we don't care its add operand. 461 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 462 assert((MulOpIdx >= 0) && "mul operand index not right!"); 463 Register MULRegL = TRI->lookThruSingleUseCopyChain( 464 Root.getOperand(MulOpIdx).getReg(), MRI); 465 Register MULRegR = TRI->lookThruSingleUseCopyChain( 466 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 467 if (!MULRegL && !MULRegR) 468 return false; 469 470 if (MULRegL && !MULRegR) { 471 MULRegR = 472 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 473 IsUsedOnceL = true; 474 } else if (!MULRegL && MULRegR) { 475 MULRegL = 476 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 477 IsUsedOnceR = true; 478 } else { 479 IsUsedOnceL = true; 480 IsUsedOnceR = true; 481 } 482 483 if (!MULRegL.isVirtual() || !MULRegR.isVirtual()) 484 return false; 485 486 MULInstrL = MRI->getVRegDef(MULRegL); 487 MULInstrR = MRI->getVRegDef(MULRegR); 488 return true; 489 } 490 return false; 491 }; 492 493 // Register pressure fma reassociation patterns. 494 if (DoRegPressureReduce && IsRPReductionCandidate()) { 495 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 496 // Register pressure pattern 1 497 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 498 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 499 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 500 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 501 return true; 502 } 503 504 // Register pressure pattern 2 505 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 506 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 507 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 508 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 509 return true; 510 } 511 } 512 513 // ILP fma reassociation patterns. 514 // Root must be a valid FMA like instruction. 515 AddOpIdx = -1; 516 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 517 return false; 518 519 assert((AddOpIdx >= 0) && "add operand index not right!"); 520 521 Register RegB = Root.getOperand(AddOpIdx).getReg(); 522 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 523 524 // Prev must be a valid FMA like instruction. 525 AddOpIdx = -1; 526 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 527 return false; 528 529 assert((AddOpIdx >= 0) && "add operand index not right!"); 530 531 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 532 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 533 AddOpIdx = -1; 534 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 535 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 536 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 537 return true; 538 } 539 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 540 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 541 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 542 return true; 543 } 544 return false; 545 } 546 547 void PPCInstrInfo::finalizeInsInstrs( 548 MachineInstr &Root, MachineCombinerPattern &P, 549 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 550 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 551 552 MachineFunction *MF = Root.getMF(); 553 MachineRegisterInfo *MRI = &MF->getRegInfo(); 554 const TargetRegisterInfo *TRI = &getRegisterInfo(); 555 MachineConstantPool *MCP = MF->getConstantPool(); 556 557 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 558 if (Idx < 0) 559 return; 560 561 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 562 563 // For now we only need to fix up placeholder for register pressure reduce 564 // patterns. 565 Register ConstReg = 0; 566 switch (P) { 567 case MachineCombinerPattern::REASSOC_XY_BCA: 568 ConstReg = 569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 570 break; 571 case MachineCombinerPattern::REASSOC_XY_BAC: 572 ConstReg = 573 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 574 break; 575 default: 576 // Not register pressure reduce patterns. 577 return; 578 } 579 580 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 581 // Get const value from const pool. 582 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 583 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 584 585 // Get negative fp const. 586 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 587 F1.changeSign(); 588 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 589 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 590 591 // Put negative fp const into constant pool. 592 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 593 594 MachineOperand *Placeholder = nullptr; 595 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 596 for (auto *Inst : InsInstrs) { 597 for (MachineOperand &Operand : Inst->explicit_operands()) { 598 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 599 if (Operand.getReg() == PPC::ZERO8) { 600 Placeholder = &Operand; 601 break; 602 } 603 } 604 } 605 606 assert(Placeholder && "Placeholder does not exist!"); 607 608 // Generate instructions to load the const fp from constant pool. 609 // We only support PPC64 and medium code model. 610 Register LoadNewConst = 611 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 612 613 // Fill the placeholder with the new load from constant pool. 614 Placeholder->setReg(LoadNewConst); 615 } 616 617 bool PPCInstrInfo::shouldReduceRegisterPressure( 618 const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const { 619 620 if (!EnableFMARegPressureReduction) 621 return false; 622 623 // Currently, we only enable register pressure reducing in machine combiner 624 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 625 // support. 626 // 627 // So we need following instructions to access a TOC entry: 628 // 629 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 630 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 631 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 632 // 633 // FIXME: add more supported targets, like Small and Large code model, PPC32, 634 // AIX. 635 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 636 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 637 return false; 638 639 const TargetRegisterInfo *TRI = &getRegisterInfo(); 640 const MachineFunction *MF = MBB->getParent(); 641 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 642 643 auto GetMBBPressure = 644 [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> { 645 RegionPressure Pressure; 646 RegPressureTracker RPTracker(Pressure); 647 648 // Initialize the register pressure tracker. 649 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 650 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 651 652 for (const auto &MI : reverse(*MBB)) { 653 if (MI.isDebugValue() || MI.isDebugLabel()) 654 continue; 655 RegisterOperands RegOpers; 656 RegOpers.collect(MI, *TRI, *MRI, false, false); 657 RPTracker.recedeSkipDebugValues(); 658 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 659 RPTracker.recede(RegOpers); 660 } 661 662 // Close the RPTracker to finalize live ins. 663 RPTracker.closeRegion(); 664 665 return RPTracker.getPressure().MaxSetPressure; 666 }; 667 668 // For now we only care about float and double type fma. 669 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 670 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 671 672 // Only reduce register pressure when pressure is high. 673 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 674 (float)VSSRCLimit * FMARPFactor; 675 } 676 677 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 678 // I has only one memory operand which is load from constant pool. 679 if (!I->hasOneMemOperand()) 680 return false; 681 682 MachineMemOperand *Op = I->memoperands()[0]; 683 return Op->isLoad() && Op->getPseudoValue() && 684 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 685 } 686 687 Register PPCInstrInfo::generateLoadForNewConst( 688 unsigned Idx, MachineInstr *MI, Type *Ty, 689 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 690 // Now we only support PPC64, Medium code model and P9 with vector. 691 // We have immutable pattern to access const pool. See function 692 // shouldReduceRegisterPressure. 693 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 694 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 695 "Target not supported!\n"); 696 697 MachineFunction *MF = MI->getMF(); 698 MachineRegisterInfo *MRI = &MF->getRegInfo(); 699 700 // Generate ADDIStocHA8 701 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 702 MachineInstrBuilder TOCOffset = 703 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 704 .addReg(PPC::X2) 705 .addConstantPoolIndex(Idx); 706 707 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 708 "Only float and double are supported!"); 709 710 unsigned LoadOpcode; 711 // Should be float type or double type. 712 if (Ty->isFloatTy()) 713 LoadOpcode = PPC::DFLOADf32; 714 else 715 LoadOpcode = PPC::DFLOADf64; 716 717 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 718 Register VReg2 = MRI->createVirtualRegister(RC); 719 MachineMemOperand *MMO = MF->getMachineMemOperand( 720 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 721 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 722 723 // Generate Load from constant pool. 724 MachineInstrBuilder Load = 725 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 726 .addConstantPoolIndex(Idx) 727 .addReg(VReg1, getKillRegState(true)) 728 .addMemOperand(MMO); 729 730 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 731 732 // Insert the toc load instructions into InsInstrs. 733 InsInstrs.insert(InsInstrs.begin(), Load); 734 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 735 return VReg2; 736 } 737 738 // This function returns the const value in constant pool if the \p I is a load 739 // from constant pool. 740 const Constant * 741 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 742 MachineFunction *MF = I->getMF(); 743 MachineRegisterInfo *MRI = &MF->getRegInfo(); 744 MachineConstantPool *MCP = MF->getConstantPool(); 745 assert(I->mayLoad() && "Should be a load instruction.\n"); 746 for (auto MO : I->uses()) { 747 if (!MO.isReg()) 748 continue; 749 Register Reg = MO.getReg(); 750 if (Reg == 0 || !Reg.isVirtual()) 751 continue; 752 // Find the toc address. 753 MachineInstr *DefMI = MRI->getVRegDef(Reg); 754 for (auto MO2 : DefMI->uses()) 755 if (MO2.isCPI()) 756 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 757 } 758 return nullptr; 759 } 760 761 bool PPCInstrInfo::getMachineCombinerPatterns( 762 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 763 bool DoRegPressureReduce) const { 764 // Using the machine combiner in this way is potentially expensive, so 765 // restrict to when aggressive optimizations are desired. 766 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 767 return false; 768 769 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 770 return true; 771 772 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 773 DoRegPressureReduce); 774 } 775 776 void PPCInstrInfo::genAlternativeCodeSequence( 777 MachineInstr &Root, MachineCombinerPattern Pattern, 778 SmallVectorImpl<MachineInstr *> &InsInstrs, 779 SmallVectorImpl<MachineInstr *> &DelInstrs, 780 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 781 switch (Pattern) { 782 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 783 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 784 case MachineCombinerPattern::REASSOC_XY_BCA: 785 case MachineCombinerPattern::REASSOC_XY_BAC: 786 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 787 break; 788 default: 789 // Reassociate default patterns. 790 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 791 DelInstrs, InstrIdxForVirtReg); 792 break; 793 } 794 } 795 796 void PPCInstrInfo::reassociateFMA( 797 MachineInstr &Root, MachineCombinerPattern Pattern, 798 SmallVectorImpl<MachineInstr *> &InsInstrs, 799 SmallVectorImpl<MachineInstr *> &DelInstrs, 800 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 801 MachineFunction *MF = Root.getMF(); 802 MachineRegisterInfo &MRI = MF->getRegInfo(); 803 const TargetRegisterInfo *TRI = &getRegisterInfo(); 804 MachineOperand &OpC = Root.getOperand(0); 805 Register RegC = OpC.getReg(); 806 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 807 MRI.constrainRegClass(RegC, RC); 808 809 unsigned FmaOp = Root.getOpcode(); 810 int16_t Idx = getFMAOpIdxInfo(FmaOp); 811 assert(Idx >= 0 && "Root must be a FMA instruction"); 812 813 bool IsILPReassociate = 814 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 815 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 816 817 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 818 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 819 820 MachineInstr *Prev = nullptr; 821 MachineInstr *Leaf = nullptr; 822 switch (Pattern) { 823 default: 824 llvm_unreachable("not recognized pattern!"); 825 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 826 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 827 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 828 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 829 break; 830 case MachineCombinerPattern::REASSOC_XY_BAC: { 831 Register MULReg = 832 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 833 Leaf = MRI.getVRegDef(MULReg); 834 break; 835 } 836 case MachineCombinerPattern::REASSOC_XY_BCA: { 837 Register MULReg = TRI->lookThruCopyLike( 838 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 839 Leaf = MRI.getVRegDef(MULReg); 840 break; 841 } 842 } 843 844 uint32_t IntersectedFlags = 0; 845 if (IsILPReassociate) 846 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 847 else 848 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 849 850 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 851 bool &KillFlag) { 852 Reg = Operand.getReg(); 853 MRI.constrainRegClass(Reg, RC); 854 KillFlag = Operand.isKill(); 855 }; 856 857 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 858 Register &MulOp2, Register &AddOp, 859 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 860 bool &AddOpKillFlag) { 861 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 862 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 863 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 864 }; 865 866 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 867 RegA21, RegB; 868 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 869 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 870 KillA11 = false, KillA21 = false, KillB = false; 871 872 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 873 874 if (IsILPReassociate) 875 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 876 877 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 878 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 879 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 880 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 881 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 882 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 883 } else { 884 // Get FSUB instruction info. 885 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 886 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 887 } 888 889 // Create new virtual registers for the new results instead of 890 // recycling legacy ones because the MachineCombiner's computation of the 891 // critical path requires a new register definition rather than an existing 892 // one. 893 // For register pressure reassociation, we only need create one virtual 894 // register for the new fma. 895 Register NewVRA = MRI.createVirtualRegister(RC); 896 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 897 898 Register NewVRB = 0; 899 if (IsILPReassociate) { 900 NewVRB = MRI.createVirtualRegister(RC); 901 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 902 } 903 904 Register NewVRD = 0; 905 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 906 NewVRD = MRI.createVirtualRegister(RC); 907 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 908 } 909 910 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 911 Register RegMul1, bool KillRegMul1, 912 Register RegMul2, bool KillRegMul2) { 913 MI->getOperand(AddOpIdx).setReg(RegAdd); 914 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 915 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 916 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 917 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 918 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 919 }; 920 921 MachineInstrBuilder NewARegPressure, NewCRegPressure; 922 switch (Pattern) { 923 default: 924 llvm_unreachable("not recognized pattern!"); 925 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 926 // Create new instructions for insertion. 927 MachineInstrBuilder MINewB = 928 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 929 .addReg(RegX, getKillRegState(KillX)) 930 .addReg(RegM21, getKillRegState(KillM21)) 931 .addReg(RegM22, getKillRegState(KillM22)); 932 MachineInstrBuilder MINewA = 933 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 934 .addReg(RegY, getKillRegState(KillY)) 935 .addReg(RegM31, getKillRegState(KillM31)) 936 .addReg(RegM32, getKillRegState(KillM32)); 937 // If AddOpIdx is not 1, adjust the order. 938 if (AddOpIdx != 1) { 939 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 940 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 941 } 942 943 MachineInstrBuilder MINewC = 944 BuildMI(*MF, Root.getDebugLoc(), 945 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 946 .addReg(NewVRB, getKillRegState(true)) 947 .addReg(NewVRA, getKillRegState(true)); 948 949 // Update flags for newly created instructions. 950 setSpecialOperandAttr(*MINewA, IntersectedFlags); 951 setSpecialOperandAttr(*MINewB, IntersectedFlags); 952 setSpecialOperandAttr(*MINewC, IntersectedFlags); 953 954 // Record new instructions for insertion. 955 InsInstrs.push_back(MINewA); 956 InsInstrs.push_back(MINewB); 957 InsInstrs.push_back(MINewC); 958 break; 959 } 960 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 961 assert(NewVRD && "new FMA register not created!"); 962 // Create new instructions for insertion. 963 MachineInstrBuilder MINewA = 964 BuildMI(*MF, Leaf->getDebugLoc(), 965 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 966 .addReg(RegM11, getKillRegState(KillM11)) 967 .addReg(RegM12, getKillRegState(KillM12)); 968 MachineInstrBuilder MINewB = 969 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 970 .addReg(RegX, getKillRegState(KillX)) 971 .addReg(RegM21, getKillRegState(KillM21)) 972 .addReg(RegM22, getKillRegState(KillM22)); 973 MachineInstrBuilder MINewD = 974 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 975 .addReg(NewVRA, getKillRegState(true)) 976 .addReg(RegM31, getKillRegState(KillM31)) 977 .addReg(RegM32, getKillRegState(KillM32)); 978 // If AddOpIdx is not 1, adjust the order. 979 if (AddOpIdx != 1) { 980 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 981 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 982 KillM32); 983 } 984 985 MachineInstrBuilder MINewC = 986 BuildMI(*MF, Root.getDebugLoc(), 987 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 988 .addReg(NewVRB, getKillRegState(true)) 989 .addReg(NewVRD, getKillRegState(true)); 990 991 // Update flags for newly created instructions. 992 setSpecialOperandAttr(*MINewA, IntersectedFlags); 993 setSpecialOperandAttr(*MINewB, IntersectedFlags); 994 setSpecialOperandAttr(*MINewD, IntersectedFlags); 995 setSpecialOperandAttr(*MINewC, IntersectedFlags); 996 997 // Record new instructions for insertion. 998 InsInstrs.push_back(MINewA); 999 InsInstrs.push_back(MINewB); 1000 InsInstrs.push_back(MINewD); 1001 InsInstrs.push_back(MINewC); 1002 break; 1003 } 1004 case MachineCombinerPattern::REASSOC_XY_BAC: 1005 case MachineCombinerPattern::REASSOC_XY_BCA: { 1006 Register VarReg; 1007 bool KillVarReg = false; 1008 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 1009 VarReg = RegM31; 1010 KillVarReg = KillM31; 1011 } else { 1012 VarReg = RegM32; 1013 KillVarReg = KillM32; 1014 } 1015 // We don't want to get negative const from memory pool too early, as the 1016 // created entry will not be deleted even if it has no users. Since all 1017 // operand of Leaf and Root are virtual register, we use zero register 1018 // here as a placeholder. When the InsInstrs is selected in 1019 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1020 // with a virtual register which is a load from constant pool. 1021 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1022 .addReg(RegB, getKillRegState(RegB)) 1023 .addReg(RegY, getKillRegState(KillY)) 1024 .addReg(PPC::ZERO8); 1025 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1026 .addReg(NewVRA, getKillRegState(true)) 1027 .addReg(RegX, getKillRegState(KillX)) 1028 .addReg(VarReg, getKillRegState(KillVarReg)); 1029 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1030 // both at index 1, no need to adjust. 1031 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1032 // the operand index here. 1033 break; 1034 } 1035 } 1036 1037 if (!IsILPReassociate) { 1038 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1039 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1040 1041 InsInstrs.push_back(NewARegPressure); 1042 InsInstrs.push_back(NewCRegPressure); 1043 } 1044 1045 assert(!InsInstrs.empty() && 1046 "Insertion instructions set should not be empty!"); 1047 1048 // Record old instructions for deletion. 1049 DelInstrs.push_back(Leaf); 1050 if (IsILPReassociate) 1051 DelInstrs.push_back(Prev); 1052 DelInstrs.push_back(&Root); 1053 } 1054 1055 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1056 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1057 Register &SrcReg, Register &DstReg, 1058 unsigned &SubIdx) const { 1059 switch (MI.getOpcode()) { 1060 default: return false; 1061 case PPC::EXTSW: 1062 case PPC::EXTSW_32: 1063 case PPC::EXTSW_32_64: 1064 SrcReg = MI.getOperand(1).getReg(); 1065 DstReg = MI.getOperand(0).getReg(); 1066 SubIdx = PPC::sub_32; 1067 return true; 1068 } 1069 } 1070 1071 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1072 int &FrameIndex) const { 1073 if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) { 1074 // Check for the operands added by addFrameReference (the immediate is the 1075 // offset which defaults to 0). 1076 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1077 MI.getOperand(2).isFI()) { 1078 FrameIndex = MI.getOperand(2).getIndex(); 1079 return MI.getOperand(0).getReg(); 1080 } 1081 } 1082 return 0; 1083 } 1084 1085 // For opcodes with the ReMaterializable flag set, this function is called to 1086 // verify the instruction is really rematable. 1087 bool PPCInstrInfo::isReallyTriviallyReMaterializable( 1088 const MachineInstr &MI) const { 1089 switch (MI.getOpcode()) { 1090 default: 1091 // This function should only be called for opcodes with the ReMaterializable 1092 // flag set. 1093 llvm_unreachable("Unknown rematerializable operation!"); 1094 break; 1095 case PPC::LI: 1096 case PPC::LI8: 1097 case PPC::PLI: 1098 case PPC::PLI8: 1099 case PPC::LIS: 1100 case PPC::LIS8: 1101 case PPC::ADDIStocHA: 1102 case PPC::ADDIStocHA8: 1103 case PPC::ADDItocL: 1104 case PPC::LOAD_STACK_GUARD: 1105 case PPC::XXLXORz: 1106 case PPC::XXLXORspz: 1107 case PPC::XXLXORdpz: 1108 case PPC::XXLEQVOnes: 1109 case PPC::XXSPLTI32DX: 1110 case PPC::XXSPLTIW: 1111 case PPC::XXSPLTIDP: 1112 case PPC::V_SET0B: 1113 case PPC::V_SET0H: 1114 case PPC::V_SET0: 1115 case PPC::V_SETALLONESB: 1116 case PPC::V_SETALLONESH: 1117 case PPC::V_SETALLONES: 1118 case PPC::CRSET: 1119 case PPC::CRUNSET: 1120 case PPC::XXSETACCZ: 1121 case PPC::XXSETACCZW: 1122 return true; 1123 } 1124 return false; 1125 } 1126 1127 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1128 int &FrameIndex) const { 1129 if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) { 1130 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1131 MI.getOperand(2).isFI()) { 1132 FrameIndex = MI.getOperand(2).getIndex(); 1133 return MI.getOperand(0).getReg(); 1134 } 1135 } 1136 return 0; 1137 } 1138 1139 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1140 unsigned OpIdx1, 1141 unsigned OpIdx2) const { 1142 MachineFunction &MF = *MI.getParent()->getParent(); 1143 1144 // Normal instructions can be commuted the obvious way. 1145 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1146 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1147 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1148 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1149 // changing the relative order of the mask operands might change what happens 1150 // to the high-bits of the mask (and, thus, the result). 1151 1152 // Cannot commute if it has a non-zero rotate count. 1153 if (MI.getOperand(3).getImm() != 0) 1154 return nullptr; 1155 1156 // If we have a zero rotate count, we have: 1157 // M = mask(MB,ME) 1158 // Op0 = (Op1 & ~M) | (Op2 & M) 1159 // Change this to: 1160 // M = mask((ME+1)&31, (MB-1)&31) 1161 // Op0 = (Op2 & ~M) | (Op1 & M) 1162 1163 // Swap op1/op2 1164 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1165 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1166 Register Reg0 = MI.getOperand(0).getReg(); 1167 Register Reg1 = MI.getOperand(1).getReg(); 1168 Register Reg2 = MI.getOperand(2).getReg(); 1169 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1170 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1171 bool Reg1IsKill = MI.getOperand(1).isKill(); 1172 bool Reg2IsKill = MI.getOperand(2).isKill(); 1173 bool ChangeReg0 = false; 1174 // If machine instrs are no longer in two-address forms, update 1175 // destination register as well. 1176 if (Reg0 == Reg1) { 1177 // Must be two address instruction! 1178 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 1179 "Expecting a two-address instruction!"); 1180 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1181 Reg2IsKill = false; 1182 ChangeReg0 = true; 1183 } 1184 1185 // Masks. 1186 unsigned MB = MI.getOperand(4).getImm(); 1187 unsigned ME = MI.getOperand(5).getImm(); 1188 1189 // We can't commute a trivial mask (there is no way to represent an all-zero 1190 // mask). 1191 if (MB == 0 && ME == 31) 1192 return nullptr; 1193 1194 if (NewMI) { 1195 // Create a new instruction. 1196 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1197 bool Reg0IsDead = MI.getOperand(0).isDead(); 1198 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1199 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1200 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1201 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1202 .addImm((ME + 1) & 31) 1203 .addImm((MB - 1) & 31); 1204 } 1205 1206 if (ChangeReg0) { 1207 MI.getOperand(0).setReg(Reg2); 1208 MI.getOperand(0).setSubReg(SubReg2); 1209 } 1210 MI.getOperand(2).setReg(Reg1); 1211 MI.getOperand(1).setReg(Reg2); 1212 MI.getOperand(2).setSubReg(SubReg1); 1213 MI.getOperand(1).setSubReg(SubReg2); 1214 MI.getOperand(2).setIsKill(Reg1IsKill); 1215 MI.getOperand(1).setIsKill(Reg2IsKill); 1216 1217 // Swap the mask around. 1218 MI.getOperand(4).setImm((ME + 1) & 31); 1219 MI.getOperand(5).setImm((MB - 1) & 31); 1220 return &MI; 1221 } 1222 1223 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1224 unsigned &SrcOpIdx1, 1225 unsigned &SrcOpIdx2) const { 1226 // For VSX A-Type FMA instructions, it is the first two operands that can be 1227 // commuted, however, because the non-encoded tied input operand is listed 1228 // first, the operands to swap are actually the second and third. 1229 1230 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1231 if (AltOpc == -1) 1232 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1233 1234 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1235 // and SrcOpIdx2. 1236 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1237 } 1238 1239 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1240 MachineBasicBlock::iterator MI) const { 1241 // This function is used for scheduling, and the nop wanted here is the type 1242 // that terminates dispatch groups on the POWER cores. 1243 unsigned Directive = Subtarget.getCPUDirective(); 1244 unsigned Opcode; 1245 switch (Directive) { 1246 default: Opcode = PPC::NOP; break; 1247 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1248 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1249 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1250 // FIXME: Update when POWER9 scheduling model is ready. 1251 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1252 } 1253 1254 DebugLoc DL; 1255 BuildMI(MBB, MI, DL, get(Opcode)); 1256 } 1257 1258 /// Return the noop instruction to use for a noop. 1259 MCInst PPCInstrInfo::getNop() const { 1260 MCInst Nop; 1261 Nop.setOpcode(PPC::NOP); 1262 return Nop; 1263 } 1264 1265 // Branch analysis. 1266 // Note: If the condition register is set to CTR or CTR8 then this is a 1267 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1268 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1269 MachineBasicBlock *&TBB, 1270 MachineBasicBlock *&FBB, 1271 SmallVectorImpl<MachineOperand> &Cond, 1272 bool AllowModify) const { 1273 bool isPPC64 = Subtarget.isPPC64(); 1274 1275 // If the block has no terminators, it just falls into the block after it. 1276 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1277 if (I == MBB.end()) 1278 return false; 1279 1280 if (!isUnpredicatedTerminator(*I)) 1281 return false; 1282 1283 if (AllowModify) { 1284 // If the BB ends with an unconditional branch to the fallthrough BB, 1285 // we eliminate the branch instruction. 1286 if (I->getOpcode() == PPC::B && 1287 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1288 I->eraseFromParent(); 1289 1290 // We update iterator after deleting the last branch. 1291 I = MBB.getLastNonDebugInstr(); 1292 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1293 return false; 1294 } 1295 } 1296 1297 // Get the last instruction in the block. 1298 MachineInstr &LastInst = *I; 1299 1300 // If there is only one terminator instruction, process it. 1301 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1302 if (LastInst.getOpcode() == PPC::B) { 1303 if (!LastInst.getOperand(0).isMBB()) 1304 return true; 1305 TBB = LastInst.getOperand(0).getMBB(); 1306 return false; 1307 } else if (LastInst.getOpcode() == PPC::BCC) { 1308 if (!LastInst.getOperand(2).isMBB()) 1309 return true; 1310 // Block ends with fall-through condbranch. 1311 TBB = LastInst.getOperand(2).getMBB(); 1312 Cond.push_back(LastInst.getOperand(0)); 1313 Cond.push_back(LastInst.getOperand(1)); 1314 return false; 1315 } else if (LastInst.getOpcode() == PPC::BC) { 1316 if (!LastInst.getOperand(1).isMBB()) 1317 return true; 1318 // Block ends with fall-through condbranch. 1319 TBB = LastInst.getOperand(1).getMBB(); 1320 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1321 Cond.push_back(LastInst.getOperand(0)); 1322 return false; 1323 } else if (LastInst.getOpcode() == PPC::BCn) { 1324 if (!LastInst.getOperand(1).isMBB()) 1325 return true; 1326 // Block ends with fall-through condbranch. 1327 TBB = LastInst.getOperand(1).getMBB(); 1328 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1329 Cond.push_back(LastInst.getOperand(0)); 1330 return false; 1331 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1332 LastInst.getOpcode() == PPC::BDNZ) { 1333 if (!LastInst.getOperand(0).isMBB()) 1334 return true; 1335 if (DisableCTRLoopAnal) 1336 return true; 1337 TBB = LastInst.getOperand(0).getMBB(); 1338 Cond.push_back(MachineOperand::CreateImm(1)); 1339 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1340 true)); 1341 return false; 1342 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1343 LastInst.getOpcode() == PPC::BDZ) { 1344 if (!LastInst.getOperand(0).isMBB()) 1345 return true; 1346 if (DisableCTRLoopAnal) 1347 return true; 1348 TBB = LastInst.getOperand(0).getMBB(); 1349 Cond.push_back(MachineOperand::CreateImm(0)); 1350 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1351 true)); 1352 return false; 1353 } 1354 1355 // Otherwise, don't know what this is. 1356 return true; 1357 } 1358 1359 // Get the instruction before it if it's a terminator. 1360 MachineInstr &SecondLastInst = *I; 1361 1362 // If there are three terminators, we don't know what sort of block this is. 1363 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1364 return true; 1365 1366 // If the block ends with PPC::B and PPC:BCC, handle it. 1367 if (SecondLastInst.getOpcode() == PPC::BCC && 1368 LastInst.getOpcode() == PPC::B) { 1369 if (!SecondLastInst.getOperand(2).isMBB() || 1370 !LastInst.getOperand(0).isMBB()) 1371 return true; 1372 TBB = SecondLastInst.getOperand(2).getMBB(); 1373 Cond.push_back(SecondLastInst.getOperand(0)); 1374 Cond.push_back(SecondLastInst.getOperand(1)); 1375 FBB = LastInst.getOperand(0).getMBB(); 1376 return false; 1377 } else if (SecondLastInst.getOpcode() == PPC::BC && 1378 LastInst.getOpcode() == PPC::B) { 1379 if (!SecondLastInst.getOperand(1).isMBB() || 1380 !LastInst.getOperand(0).isMBB()) 1381 return true; 1382 TBB = SecondLastInst.getOperand(1).getMBB(); 1383 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1384 Cond.push_back(SecondLastInst.getOperand(0)); 1385 FBB = LastInst.getOperand(0).getMBB(); 1386 return false; 1387 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1388 LastInst.getOpcode() == PPC::B) { 1389 if (!SecondLastInst.getOperand(1).isMBB() || 1390 !LastInst.getOperand(0).isMBB()) 1391 return true; 1392 TBB = SecondLastInst.getOperand(1).getMBB(); 1393 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1394 Cond.push_back(SecondLastInst.getOperand(0)); 1395 FBB = LastInst.getOperand(0).getMBB(); 1396 return false; 1397 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1398 SecondLastInst.getOpcode() == PPC::BDNZ) && 1399 LastInst.getOpcode() == PPC::B) { 1400 if (!SecondLastInst.getOperand(0).isMBB() || 1401 !LastInst.getOperand(0).isMBB()) 1402 return true; 1403 if (DisableCTRLoopAnal) 1404 return true; 1405 TBB = SecondLastInst.getOperand(0).getMBB(); 1406 Cond.push_back(MachineOperand::CreateImm(1)); 1407 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1408 true)); 1409 FBB = LastInst.getOperand(0).getMBB(); 1410 return false; 1411 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1412 SecondLastInst.getOpcode() == PPC::BDZ) && 1413 LastInst.getOpcode() == PPC::B) { 1414 if (!SecondLastInst.getOperand(0).isMBB() || 1415 !LastInst.getOperand(0).isMBB()) 1416 return true; 1417 if (DisableCTRLoopAnal) 1418 return true; 1419 TBB = SecondLastInst.getOperand(0).getMBB(); 1420 Cond.push_back(MachineOperand::CreateImm(0)); 1421 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1422 true)); 1423 FBB = LastInst.getOperand(0).getMBB(); 1424 return false; 1425 } 1426 1427 // If the block ends with two PPC:Bs, handle it. The second one is not 1428 // executed, so remove it. 1429 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1430 if (!SecondLastInst.getOperand(0).isMBB()) 1431 return true; 1432 TBB = SecondLastInst.getOperand(0).getMBB(); 1433 I = LastInst; 1434 if (AllowModify) 1435 I->eraseFromParent(); 1436 return false; 1437 } 1438 1439 // Otherwise, can't handle this. 1440 return true; 1441 } 1442 1443 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1444 int *BytesRemoved) const { 1445 assert(!BytesRemoved && "code size not handled"); 1446 1447 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1448 if (I == MBB.end()) 1449 return 0; 1450 1451 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1452 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1453 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1454 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1455 return 0; 1456 1457 // Remove the branch. 1458 I->eraseFromParent(); 1459 1460 I = MBB.end(); 1461 1462 if (I == MBB.begin()) return 1; 1463 --I; 1464 if (I->getOpcode() != PPC::BCC && 1465 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1466 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1467 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1468 return 1; 1469 1470 // Remove the branch. 1471 I->eraseFromParent(); 1472 return 2; 1473 } 1474 1475 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1476 MachineBasicBlock *TBB, 1477 MachineBasicBlock *FBB, 1478 ArrayRef<MachineOperand> Cond, 1479 const DebugLoc &DL, 1480 int *BytesAdded) const { 1481 // Shouldn't be a fall through. 1482 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1483 assert((Cond.size() == 2 || Cond.size() == 0) && 1484 "PPC branch conditions have two components!"); 1485 assert(!BytesAdded && "code size not handled"); 1486 1487 bool isPPC64 = Subtarget.isPPC64(); 1488 1489 // One-way branch. 1490 if (!FBB) { 1491 if (Cond.empty()) // Unconditional branch 1492 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1493 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1494 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1495 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1496 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1497 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1498 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1499 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1500 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1501 else // Conditional branch 1502 BuildMI(&MBB, DL, get(PPC::BCC)) 1503 .addImm(Cond[0].getImm()) 1504 .add(Cond[1]) 1505 .addMBB(TBB); 1506 return 1; 1507 } 1508 1509 // Two-way Conditional Branch. 1510 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1511 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1512 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1513 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1514 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1515 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1516 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1517 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1518 else 1519 BuildMI(&MBB, DL, get(PPC::BCC)) 1520 .addImm(Cond[0].getImm()) 1521 .add(Cond[1]) 1522 .addMBB(TBB); 1523 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1524 return 2; 1525 } 1526 1527 // Select analysis. 1528 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1529 ArrayRef<MachineOperand> Cond, 1530 Register DstReg, Register TrueReg, 1531 Register FalseReg, int &CondCycles, 1532 int &TrueCycles, int &FalseCycles) const { 1533 if (Cond.size() != 2) 1534 return false; 1535 1536 // If this is really a bdnz-like condition, then it cannot be turned into a 1537 // select. 1538 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1539 return false; 1540 1541 // If the conditional branch uses a physical register, then it cannot be 1542 // turned into a select. 1543 if (Cond[1].getReg().isPhysical()) 1544 return false; 1545 1546 // Check register classes. 1547 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1548 const TargetRegisterClass *RC = 1549 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1550 if (!RC) 1551 return false; 1552 1553 // isel is for regular integer GPRs only. 1554 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1555 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1556 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1557 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1558 return false; 1559 1560 // FIXME: These numbers are for the A2, how well they work for other cores is 1561 // an open question. On the A2, the isel instruction has a 2-cycle latency 1562 // but single-cycle throughput. These numbers are used in combination with 1563 // the MispredictPenalty setting from the active SchedMachineModel. 1564 CondCycles = 1; 1565 TrueCycles = 1; 1566 FalseCycles = 1; 1567 1568 return true; 1569 } 1570 1571 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1572 MachineBasicBlock::iterator MI, 1573 const DebugLoc &dl, Register DestReg, 1574 ArrayRef<MachineOperand> Cond, Register TrueReg, 1575 Register FalseReg) const { 1576 assert(Cond.size() == 2 && 1577 "PPC branch conditions have two components!"); 1578 1579 // Get the register classes. 1580 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1581 const TargetRegisterClass *RC = 1582 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1583 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1584 1585 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1586 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1587 assert((Is64Bit || 1588 PPC::GPRCRegClass.hasSubClassEq(RC) || 1589 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1590 "isel is for regular integer GPRs only"); 1591 1592 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1593 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1594 1595 unsigned SubIdx = 0; 1596 bool SwapOps = false; 1597 switch (SelectPred) { 1598 case PPC::PRED_EQ: 1599 case PPC::PRED_EQ_MINUS: 1600 case PPC::PRED_EQ_PLUS: 1601 SubIdx = PPC::sub_eq; SwapOps = false; break; 1602 case PPC::PRED_NE: 1603 case PPC::PRED_NE_MINUS: 1604 case PPC::PRED_NE_PLUS: 1605 SubIdx = PPC::sub_eq; SwapOps = true; break; 1606 case PPC::PRED_LT: 1607 case PPC::PRED_LT_MINUS: 1608 case PPC::PRED_LT_PLUS: 1609 SubIdx = PPC::sub_lt; SwapOps = false; break; 1610 case PPC::PRED_GE: 1611 case PPC::PRED_GE_MINUS: 1612 case PPC::PRED_GE_PLUS: 1613 SubIdx = PPC::sub_lt; SwapOps = true; break; 1614 case PPC::PRED_GT: 1615 case PPC::PRED_GT_MINUS: 1616 case PPC::PRED_GT_PLUS: 1617 SubIdx = PPC::sub_gt; SwapOps = false; break; 1618 case PPC::PRED_LE: 1619 case PPC::PRED_LE_MINUS: 1620 case PPC::PRED_LE_PLUS: 1621 SubIdx = PPC::sub_gt; SwapOps = true; break; 1622 case PPC::PRED_UN: 1623 case PPC::PRED_UN_MINUS: 1624 case PPC::PRED_UN_PLUS: 1625 SubIdx = PPC::sub_un; SwapOps = false; break; 1626 case PPC::PRED_NU: 1627 case PPC::PRED_NU_MINUS: 1628 case PPC::PRED_NU_PLUS: 1629 SubIdx = PPC::sub_un; SwapOps = true; break; 1630 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1631 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1632 } 1633 1634 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1635 SecondReg = SwapOps ? TrueReg : FalseReg; 1636 1637 // The first input register of isel cannot be r0. If it is a member 1638 // of a register class that can be r0, then copy it first (the 1639 // register allocator should eliminate the copy). 1640 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1641 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1642 const TargetRegisterClass *FirstRC = 1643 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1644 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1645 Register OldFirstReg = FirstReg; 1646 FirstReg = MRI.createVirtualRegister(FirstRC); 1647 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1648 .addReg(OldFirstReg); 1649 } 1650 1651 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1652 .addReg(FirstReg).addReg(SecondReg) 1653 .addReg(Cond[1].getReg(), 0, SubIdx); 1654 } 1655 1656 static unsigned getCRBitValue(unsigned CRBit) { 1657 unsigned Ret = 4; 1658 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1659 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1660 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1661 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1662 Ret = 3; 1663 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1664 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1665 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1666 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1667 Ret = 2; 1668 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1669 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1670 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1671 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1672 Ret = 1; 1673 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1674 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1675 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1676 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1677 Ret = 0; 1678 1679 assert(Ret != 4 && "Invalid CR bit register"); 1680 return Ret; 1681 } 1682 1683 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1684 MachineBasicBlock::iterator I, 1685 const DebugLoc &DL, MCRegister DestReg, 1686 MCRegister SrcReg, bool KillSrc) const { 1687 // We can end up with self copies and similar things as a result of VSX copy 1688 // legalization. Promote them here. 1689 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1690 if (PPC::F8RCRegClass.contains(DestReg) && 1691 PPC::VSRCRegClass.contains(SrcReg)) { 1692 MCRegister SuperReg = 1693 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1694 1695 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1696 llvm_unreachable("nop VSX copy"); 1697 1698 DestReg = SuperReg; 1699 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1700 PPC::VSRCRegClass.contains(DestReg)) { 1701 MCRegister SuperReg = 1702 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1703 1704 if (VSXSelfCopyCrash && DestReg == SuperReg) 1705 llvm_unreachable("nop VSX copy"); 1706 1707 SrcReg = SuperReg; 1708 } 1709 1710 // Different class register copy 1711 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1712 PPC::GPRCRegClass.contains(DestReg)) { 1713 MCRegister CRReg = getCRFromCRBit(SrcReg); 1714 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1715 getKillRegState(KillSrc); 1716 // Rotate the CR bit in the CR fields to be the least significant bit and 1717 // then mask with 0x1 (MB = ME = 31). 1718 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1719 .addReg(DestReg, RegState::Kill) 1720 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1721 .addImm(31) 1722 .addImm(31); 1723 return; 1724 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1725 (PPC::G8RCRegClass.contains(DestReg) || 1726 PPC::GPRCRegClass.contains(DestReg))) { 1727 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1728 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1729 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1730 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1731 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1732 getKillRegState(KillSrc); 1733 if (CRNum == 7) 1734 return; 1735 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1736 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1737 .addReg(DestReg, RegState::Kill) 1738 .addImm(CRNum * 4 + 4) 1739 .addImm(28) 1740 .addImm(31); 1741 return; 1742 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1743 PPC::VSFRCRegClass.contains(DestReg)) { 1744 assert(Subtarget.hasDirectMove() && 1745 "Subtarget doesn't support directmove, don't know how to copy."); 1746 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1747 NumGPRtoVSRSpill++; 1748 getKillRegState(KillSrc); 1749 return; 1750 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1751 PPC::G8RCRegClass.contains(DestReg)) { 1752 assert(Subtarget.hasDirectMove() && 1753 "Subtarget doesn't support directmove, don't know how to copy."); 1754 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1755 getKillRegState(KillSrc); 1756 return; 1757 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1758 PPC::GPRCRegClass.contains(DestReg)) { 1759 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1760 getKillRegState(KillSrc); 1761 return; 1762 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1763 PPC::SPERCRegClass.contains(DestReg)) { 1764 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1765 getKillRegState(KillSrc); 1766 return; 1767 } 1768 1769 unsigned Opc; 1770 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1771 Opc = PPC::OR; 1772 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1773 Opc = PPC::OR8; 1774 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1775 Opc = PPC::FMR; 1776 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1777 Opc = PPC::MCRF; 1778 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1779 Opc = PPC::VOR; 1780 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1781 // There are two different ways this can be done: 1782 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1783 // issue in VSU pipeline 0. 1784 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1785 // can go to either pipeline. 1786 // We'll always use xxlor here, because in practically all cases where 1787 // copies are generated, they are close enough to some use that the 1788 // lower-latency form is preferable. 1789 Opc = PPC::XXLOR; 1790 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1791 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1792 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1793 else if (Subtarget.pairedVectorMemops() && 1794 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1795 if (SrcReg > PPC::VSRp15) 1796 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1797 else 1798 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1799 if (DestReg > PPC::VSRp15) 1800 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1801 else 1802 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1803 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1804 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1805 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1806 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1807 return; 1808 } 1809 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1810 Opc = PPC::CROR; 1811 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1812 Opc = PPC::EVOR; 1813 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1814 PPC::UACCRCRegClass.contains(DestReg)) && 1815 (PPC::ACCRCRegClass.contains(SrcReg) || 1816 PPC::UACCRCRegClass.contains(SrcReg))) { 1817 // If primed, de-prime the source register, copy the individual registers 1818 // and prime the destination if needed. The vector subregisters are 1819 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1820 // source is primed, we need to re-prime it after the copy as well. 1821 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1822 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1823 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1824 MCRegister VSLSrcReg = 1825 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1826 MCRegister VSLDestReg = 1827 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1828 if (SrcPrimed) 1829 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1830 for (unsigned Idx = 0; Idx < 4; Idx++) 1831 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1832 .addReg(VSLSrcReg + Idx) 1833 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1834 if (DestPrimed) 1835 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1836 if (SrcPrimed && !KillSrc) 1837 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1838 return; 1839 } else if (PPC::G8pRCRegClass.contains(DestReg) && 1840 PPC::G8pRCRegClass.contains(SrcReg)) { 1841 // TODO: Handle G8RC to G8pRC (and vice versa) copy. 1842 unsigned DestRegIdx = DestReg - PPC::G8p0; 1843 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; 1844 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; 1845 unsigned SrcRegIdx = SrcReg - PPC::G8p0; 1846 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; 1847 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; 1848 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) 1849 .addReg(SrcRegSub0) 1850 .addReg(SrcRegSub0, getKillRegState(KillSrc)); 1851 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) 1852 .addReg(SrcRegSub1) 1853 .addReg(SrcRegSub1, getKillRegState(KillSrc)); 1854 return; 1855 } else 1856 llvm_unreachable("Impossible reg-to-reg copy"); 1857 1858 const MCInstrDesc &MCID = get(Opc); 1859 if (MCID.getNumOperands() == 3) 1860 BuildMI(MBB, I, DL, MCID, DestReg) 1861 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1862 else 1863 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1864 } 1865 1866 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1867 int OpcodeIndex = 0; 1868 1869 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1870 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1871 OpcodeIndex = SOK_Int4Spill; 1872 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1873 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1874 OpcodeIndex = SOK_Int8Spill; 1875 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1876 OpcodeIndex = SOK_Float8Spill; 1877 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1878 OpcodeIndex = SOK_Float4Spill; 1879 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1880 OpcodeIndex = SOK_SPESpill; 1881 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1882 OpcodeIndex = SOK_CRSpill; 1883 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1884 OpcodeIndex = SOK_CRBitSpill; 1885 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1886 OpcodeIndex = SOK_VRVectorSpill; 1887 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1888 OpcodeIndex = SOK_VSXVectorSpill; 1889 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1890 OpcodeIndex = SOK_VectorFloat8Spill; 1891 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1892 OpcodeIndex = SOK_VectorFloat4Spill; 1893 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1894 OpcodeIndex = SOK_SpillToVSR; 1895 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1896 assert(Subtarget.pairedVectorMemops() && 1897 "Register unexpected when paired memops are disabled."); 1898 OpcodeIndex = SOK_AccumulatorSpill; 1899 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1900 assert(Subtarget.pairedVectorMemops() && 1901 "Register unexpected when paired memops are disabled."); 1902 OpcodeIndex = SOK_UAccumulatorSpill; 1903 } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) { 1904 assert(Subtarget.pairedVectorMemops() && 1905 "Register unexpected when paired memops are disabled."); 1906 OpcodeIndex = SOK_WAccumulatorSpill; 1907 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1908 assert(Subtarget.pairedVectorMemops() && 1909 "Register unexpected when paired memops are disabled."); 1910 OpcodeIndex = SOK_PairedVecSpill; 1911 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { 1912 OpcodeIndex = SOK_PairedG8Spill; 1913 } else { 1914 llvm_unreachable("Unknown regclass!"); 1915 } 1916 return OpcodeIndex; 1917 } 1918 1919 unsigned 1920 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1921 ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray(); 1922 return OpcodesForSpill[getSpillIndex(RC)]; 1923 } 1924 1925 unsigned 1926 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1927 ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray(); 1928 return OpcodesForSpill[getSpillIndex(RC)]; 1929 } 1930 1931 void PPCInstrInfo::StoreRegToStackSlot( 1932 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1933 const TargetRegisterClass *RC, 1934 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1935 unsigned Opcode = getStoreOpcodeForSpill(RC); 1936 DebugLoc DL; 1937 1938 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1939 FuncInfo->setHasSpills(); 1940 1941 NewMIs.push_back(addFrameReference( 1942 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1943 FrameIdx)); 1944 1945 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1946 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1947 FuncInfo->setSpillsCR(); 1948 1949 if (isXFormMemOp(Opcode)) 1950 FuncInfo->setHasNonRISpills(); 1951 } 1952 1953 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1954 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1955 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1956 const TargetRegisterInfo *TRI) const { 1957 MachineFunction &MF = *MBB.getParent(); 1958 SmallVector<MachineInstr *, 4> NewMIs; 1959 1960 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1961 1962 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1963 MBB.insert(MI, NewMIs[i]); 1964 1965 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1966 MachineMemOperand *MMO = MF.getMachineMemOperand( 1967 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1968 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1969 MFI.getObjectAlign(FrameIdx)); 1970 NewMIs.back()->addMemOperand(MF, MMO); 1971 } 1972 1973 void PPCInstrInfo::storeRegToStackSlot( 1974 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 1975 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1976 const TargetRegisterInfo *TRI, Register VReg) const { 1977 // We need to avoid a situation in which the value from a VRRC register is 1978 // spilled using an Altivec instruction and reloaded into a VSRC register 1979 // using a VSX instruction. The issue with this is that the VSX 1980 // load/store instructions swap the doublewords in the vector and the Altivec 1981 // ones don't. The register classes on the spill/reload may be different if 1982 // the register is defined using an Altivec instruction and is then used by a 1983 // VSX instruction. 1984 RC = updatedRC(RC); 1985 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1986 } 1987 1988 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1989 unsigned DestReg, int FrameIdx, 1990 const TargetRegisterClass *RC, 1991 SmallVectorImpl<MachineInstr *> &NewMIs) 1992 const { 1993 unsigned Opcode = getLoadOpcodeForSpill(RC); 1994 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1995 FrameIdx)); 1996 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1997 1998 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1999 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 2000 FuncInfo->setSpillsCR(); 2001 2002 if (isXFormMemOp(Opcode)) 2003 FuncInfo->setHasNonRISpills(); 2004 } 2005 2006 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 2007 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 2008 int FrameIdx, const TargetRegisterClass *RC, 2009 const TargetRegisterInfo *TRI) const { 2010 MachineFunction &MF = *MBB.getParent(); 2011 SmallVector<MachineInstr*, 4> NewMIs; 2012 DebugLoc DL; 2013 if (MI != MBB.end()) DL = MI->getDebugLoc(); 2014 2015 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2016 FuncInfo->setHasSpills(); 2017 2018 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 2019 2020 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 2021 MBB.insert(MI, NewMIs[i]); 2022 2023 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2024 MachineMemOperand *MMO = MF.getMachineMemOperand( 2025 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2026 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2027 MFI.getObjectAlign(FrameIdx)); 2028 NewMIs.back()->addMemOperand(MF, MMO); 2029 } 2030 2031 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2032 MachineBasicBlock::iterator MI, 2033 Register DestReg, int FrameIdx, 2034 const TargetRegisterClass *RC, 2035 const TargetRegisterInfo *TRI, 2036 Register VReg) const { 2037 // We need to avoid a situation in which the value from a VRRC register is 2038 // spilled using an Altivec instruction and reloaded into a VSRC register 2039 // using a VSX instruction. The issue with this is that the VSX 2040 // load/store instructions swap the doublewords in the vector and the Altivec 2041 // ones don't. The register classes on the spill/reload may be different if 2042 // the register is defined using an Altivec instruction and is then used by a 2043 // VSX instruction. 2044 RC = updatedRC(RC); 2045 2046 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2047 } 2048 2049 bool PPCInstrInfo:: 2050 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2051 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2052 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2053 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2054 else 2055 // Leave the CR# the same, but invert the condition. 2056 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2057 return false; 2058 } 2059 2060 // For some instructions, it is legal to fold ZERO into the RA register field. 2061 // This function performs that fold by replacing the operand with PPC::ZERO, 2062 // it does not consider whether the load immediate zero is no longer in use. 2063 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2064 Register Reg) const { 2065 // A zero immediate should always be loaded with a single li. 2066 unsigned DefOpc = DefMI.getOpcode(); 2067 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2068 return false; 2069 if (!DefMI.getOperand(1).isImm()) 2070 return false; 2071 if (DefMI.getOperand(1).getImm() != 0) 2072 return false; 2073 2074 // Note that we cannot here invert the arguments of an isel in order to fold 2075 // a ZERO into what is presented as the second argument. All we have here 2076 // is the condition bit, and that might come from a CR-logical bit operation. 2077 2078 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2079 2080 // Only fold into real machine instructions. 2081 if (UseMCID.isPseudo()) 2082 return false; 2083 2084 // We need to find which of the User's operands is to be folded, that will be 2085 // the operand that matches the given register ID. 2086 unsigned UseIdx; 2087 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2088 if (UseMI.getOperand(UseIdx).isReg() && 2089 UseMI.getOperand(UseIdx).getReg() == Reg) 2090 break; 2091 2092 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2093 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2094 2095 const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx]; 2096 2097 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2098 // register (which might also be specified as a pointer class kind). 2099 if (UseInfo->isLookupPtrRegClass()) { 2100 if (UseInfo->RegClass /* Kind */ != 1) 2101 return false; 2102 } else { 2103 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2104 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2105 return false; 2106 } 2107 2108 // Make sure this is not tied to an output register (or otherwise 2109 // constrained). This is true for ST?UX registers, for example, which 2110 // are tied to their output registers. 2111 if (UseInfo->Constraints != 0) 2112 return false; 2113 2114 MCRegister ZeroReg; 2115 if (UseInfo->isLookupPtrRegClass()) { 2116 bool isPPC64 = Subtarget.isPPC64(); 2117 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2118 } else { 2119 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2120 PPC::ZERO8 : PPC::ZERO; 2121 } 2122 2123 LLVM_DEBUG(dbgs() << "Folded immediate zero for: "); 2124 LLVM_DEBUG(UseMI.dump()); 2125 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2126 LLVM_DEBUG(dbgs() << "Into: "); 2127 LLVM_DEBUG(UseMI.dump()); 2128 return true; 2129 } 2130 2131 // Folds zero into instructions which have a load immediate zero as an operand 2132 // but also recognize zero as immediate zero. If the definition of the load 2133 // has no more users it is deleted. 2134 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2135 Register Reg, MachineRegisterInfo *MRI) const { 2136 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2137 if (MRI->use_nodbg_empty(Reg)) 2138 DefMI.eraseFromParent(); 2139 return Changed; 2140 } 2141 2142 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2143 for (MachineInstr &MI : MBB) 2144 if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8)) 2145 return true; 2146 return false; 2147 } 2148 2149 // We should make sure that, if we're going to predicate both sides of a 2150 // condition (a diamond), that both sides don't define the counter register. We 2151 // can predicate counter-decrement-based branches, but while that predicates 2152 // the branching, it does not predicate the counter decrement. If we tried to 2153 // merge the triangle into one predicated block, we'd decrement the counter 2154 // twice. 2155 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2156 unsigned NumT, unsigned ExtraT, 2157 MachineBasicBlock &FMBB, 2158 unsigned NumF, unsigned ExtraF, 2159 BranchProbability Probability) const { 2160 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2161 } 2162 2163 2164 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2165 // The predicated branches are identified by their type, not really by the 2166 // explicit presence of a predicate. Furthermore, some of them can be 2167 // predicated more than once. Because if conversion won't try to predicate 2168 // any instruction which already claims to be predicated (by returning true 2169 // here), always return false. In doing so, we let isPredicable() be the 2170 // final word on whether not the instruction can be (further) predicated. 2171 2172 return false; 2173 } 2174 2175 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2176 const MachineBasicBlock *MBB, 2177 const MachineFunction &MF) const { 2178 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2179 // across them, since some FP operations may change content of FPSCR. 2180 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2181 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2182 return true; 2183 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2184 } 2185 2186 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2187 ArrayRef<MachineOperand> Pred) const { 2188 unsigned OpC = MI.getOpcode(); 2189 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2190 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2191 bool isPPC64 = Subtarget.isPPC64(); 2192 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2193 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2194 // Need add Def and Use for CTR implicit operand. 2195 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2196 .addReg(Pred[1].getReg(), RegState::Implicit) 2197 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2198 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2199 MI.setDesc(get(PPC::BCLR)); 2200 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2201 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2202 MI.setDesc(get(PPC::BCLRn)); 2203 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2204 } else { 2205 MI.setDesc(get(PPC::BCCLR)); 2206 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2207 .addImm(Pred[0].getImm()) 2208 .add(Pred[1]); 2209 } 2210 2211 return true; 2212 } else if (OpC == PPC::B) { 2213 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2214 bool isPPC64 = Subtarget.isPPC64(); 2215 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2216 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2217 // Need add Def and Use for CTR implicit operand. 2218 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2219 .addReg(Pred[1].getReg(), RegState::Implicit) 2220 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2221 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2222 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2223 MI.removeOperand(0); 2224 2225 MI.setDesc(get(PPC::BC)); 2226 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2227 .add(Pred[1]) 2228 .addMBB(MBB); 2229 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2230 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2231 MI.removeOperand(0); 2232 2233 MI.setDesc(get(PPC::BCn)); 2234 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2235 .add(Pred[1]) 2236 .addMBB(MBB); 2237 } else { 2238 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2239 MI.removeOperand(0); 2240 2241 MI.setDesc(get(PPC::BCC)); 2242 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2243 .addImm(Pred[0].getImm()) 2244 .add(Pred[1]) 2245 .addMBB(MBB); 2246 } 2247 2248 return true; 2249 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2250 OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || 2251 OpC == PPC::BCTRL8_RM) { 2252 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2253 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2254 2255 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || 2256 OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; 2257 bool isPPC64 = Subtarget.isPPC64(); 2258 2259 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2260 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2261 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2262 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2263 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2264 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2265 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2266 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2267 } else { 2268 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2269 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2270 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2271 .addImm(Pred[0].getImm()) 2272 .add(Pred[1]); 2273 } 2274 2275 // Need add Def and Use for LR implicit operand. 2276 if (setLR) 2277 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2278 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2279 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2280 if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) 2281 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2282 .addReg(PPC::RM, RegState::ImplicitDefine); 2283 2284 return true; 2285 } 2286 2287 return false; 2288 } 2289 2290 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2291 ArrayRef<MachineOperand> Pred2) const { 2292 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2293 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2294 2295 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2296 return false; 2297 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2298 return false; 2299 2300 // P1 can only subsume P2 if they test the same condition register. 2301 if (Pred1[1].getReg() != Pred2[1].getReg()) 2302 return false; 2303 2304 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2305 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2306 2307 if (P1 == P2) 2308 return true; 2309 2310 // Does P1 subsume P2, e.g. GE subsumes GT. 2311 if (P1 == PPC::PRED_LE && 2312 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2313 return true; 2314 if (P1 == PPC::PRED_GE && 2315 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2316 return true; 2317 2318 return false; 2319 } 2320 2321 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2322 std::vector<MachineOperand> &Pred, 2323 bool SkipDead) const { 2324 // Note: At the present time, the contents of Pred from this function is 2325 // unused by IfConversion. This implementation follows ARM by pushing the 2326 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2327 // predicate, instructions defining CTR or CTR8 are also included as 2328 // predicate-defining instructions. 2329 2330 const TargetRegisterClass *RCs[] = 2331 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2332 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2333 2334 bool Found = false; 2335 for (const MachineOperand &MO : MI.operands()) { 2336 for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) { 2337 const TargetRegisterClass *RC = RCs[c]; 2338 if (MO.isReg()) { 2339 if (MO.isDef() && RC->contains(MO.getReg())) { 2340 Pred.push_back(MO); 2341 Found = true; 2342 } 2343 } else if (MO.isRegMask()) { 2344 for (MCPhysReg R : *RC) 2345 if (MO.clobbersPhysReg(R)) { 2346 Pred.push_back(MO); 2347 Found = true; 2348 } 2349 } 2350 } 2351 } 2352 2353 return Found; 2354 } 2355 2356 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2357 Register &SrcReg2, int64_t &Mask, 2358 int64_t &Value) const { 2359 unsigned Opc = MI.getOpcode(); 2360 2361 switch (Opc) { 2362 default: return false; 2363 case PPC::CMPWI: 2364 case PPC::CMPLWI: 2365 case PPC::CMPDI: 2366 case PPC::CMPLDI: 2367 SrcReg = MI.getOperand(1).getReg(); 2368 SrcReg2 = 0; 2369 Value = MI.getOperand(2).getImm(); 2370 Mask = 0xFFFF; 2371 return true; 2372 case PPC::CMPW: 2373 case PPC::CMPLW: 2374 case PPC::CMPD: 2375 case PPC::CMPLD: 2376 case PPC::FCMPUS: 2377 case PPC::FCMPUD: 2378 SrcReg = MI.getOperand(1).getReg(); 2379 SrcReg2 = MI.getOperand(2).getReg(); 2380 Value = 0; 2381 Mask = 0; 2382 return true; 2383 } 2384 } 2385 2386 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2387 Register SrcReg2, int64_t Mask, 2388 int64_t Value, 2389 const MachineRegisterInfo *MRI) const { 2390 if (DisableCmpOpt) 2391 return false; 2392 2393 int OpC = CmpInstr.getOpcode(); 2394 Register CRReg = CmpInstr.getOperand(0).getReg(); 2395 2396 // FP record forms set CR1 based on the exception status bits, not a 2397 // comparison with zero. 2398 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2399 return false; 2400 2401 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2402 // The record forms set the condition register based on a signed comparison 2403 // with zero (so says the ISA manual). This is not as straightforward as it 2404 // seems, however, because this is always a 64-bit comparison on PPC64, even 2405 // for instructions that are 32-bit in nature (like slw for example). 2406 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2407 // for equality checks (as those don't depend on the sign). On PPC64, 2408 // we are restricted to equality for unsigned 64-bit comparisons and for 2409 // signed 32-bit comparisons the applicability is more restricted. 2410 bool isPPC64 = Subtarget.isPPC64(); 2411 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2412 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2413 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2414 2415 // Look through copies unless that gets us to a physical register. 2416 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2417 if (ActualSrc.isVirtual()) 2418 SrcReg = ActualSrc; 2419 2420 // Get the unique definition of SrcReg. 2421 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2422 if (!MI) return false; 2423 2424 bool equalityOnly = false; 2425 bool noSub = false; 2426 if (isPPC64) { 2427 if (is32BitSignedCompare) { 2428 // We can perform this optimization only if SrcReg is sign-extending. 2429 if (isSignExtended(SrcReg, MRI)) 2430 noSub = true; 2431 else 2432 return false; 2433 } else if (is32BitUnsignedCompare) { 2434 // We can perform this optimization, equality only, if SrcReg is 2435 // zero-extending. 2436 if (isZeroExtended(SrcReg, MRI)) { 2437 noSub = true; 2438 equalityOnly = true; 2439 } else 2440 return false; 2441 } else 2442 equalityOnly = is64BitUnsignedCompare; 2443 } else 2444 equalityOnly = is32BitUnsignedCompare; 2445 2446 if (equalityOnly) { 2447 // We need to check the uses of the condition register in order to reject 2448 // non-equality comparisons. 2449 for (MachineRegisterInfo::use_instr_iterator 2450 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2451 I != IE; ++I) { 2452 MachineInstr *UseMI = &*I; 2453 if (UseMI->getOpcode() == PPC::BCC) { 2454 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2455 unsigned PredCond = PPC::getPredicateCondition(Pred); 2456 // We ignore hint bits when checking for non-equality comparisons. 2457 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2458 return false; 2459 } else if (UseMI->getOpcode() == PPC::ISEL || 2460 UseMI->getOpcode() == PPC::ISEL8) { 2461 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2462 if (SubIdx != PPC::sub_eq) 2463 return false; 2464 } else 2465 return false; 2466 } 2467 } 2468 2469 MachineBasicBlock::iterator I = CmpInstr; 2470 2471 // Scan forward to find the first use of the compare. 2472 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2473 ++I) { 2474 bool FoundUse = false; 2475 for (MachineRegisterInfo::use_instr_iterator 2476 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2477 J != JE; ++J) 2478 if (&*J == &*I) { 2479 FoundUse = true; 2480 break; 2481 } 2482 2483 if (FoundUse) 2484 break; 2485 } 2486 2487 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2488 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2489 2490 // There are two possible candidates which can be changed to set CR[01]. 2491 // One is MI, the other is a SUB instruction. 2492 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2493 MachineInstr *Sub = nullptr; 2494 if (SrcReg2 != 0) 2495 // MI is not a candidate for CMPrr. 2496 MI = nullptr; 2497 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2498 // same BB as the comparison. This is to allow the check below to avoid calls 2499 // (and other explicit clobbers); instead we should really check for these 2500 // more explicitly (in at least a few predecessors). 2501 else if (MI->getParent() != CmpInstr.getParent()) 2502 return false; 2503 else if (Value != 0) { 2504 // The record-form instructions set CR bit based on signed comparison 2505 // against 0. We try to convert a compare against 1 or -1 into a compare 2506 // against 0 to exploit record-form instructions. For example, we change 2507 // the condition "greater than -1" into "greater than or equal to 0" 2508 // and "less than 1" into "less than or equal to 0". 2509 2510 // Since we optimize comparison based on a specific branch condition, 2511 // we don't optimize if condition code is used by more than once. 2512 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2513 return false; 2514 2515 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2516 if (UseMI->getOpcode() != PPC::BCC) 2517 return false; 2518 2519 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2520 unsigned PredCond = PPC::getPredicateCondition(Pred); 2521 unsigned PredHint = PPC::getPredicateHint(Pred); 2522 int16_t Immed = (int16_t)Value; 2523 2524 // When modifying the condition in the predicate, we propagate hint bits 2525 // from the original predicate to the new one. 2526 if (Immed == -1 && PredCond == PPC::PRED_GT) 2527 // We convert "greater than -1" into "greater than or equal to 0", 2528 // since we are assuming signed comparison by !equalityOnly 2529 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2530 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2531 // We convert "less than or equal to -1" into "less than 0". 2532 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2533 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2534 // We convert "less than 1" into "less than or equal to 0". 2535 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2536 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2537 // We convert "greater than or equal to 1" into "greater than 0". 2538 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2539 else 2540 return false; 2541 2542 // Convert the comparison and its user to a compare against zero with the 2543 // appropriate predicate on the branch. Zero comparison might provide 2544 // optimization opportunities post-RA (see optimization in 2545 // PPCPreEmitPeephole.cpp). 2546 UseMI->getOperand(0).setImm(Pred); 2547 CmpInstr.getOperand(2).setImm(0); 2548 } 2549 2550 // Search for Sub. 2551 --I; 2552 2553 // Get ready to iterate backward from CmpInstr. 2554 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2555 2556 for (; I != E && !noSub; --I) { 2557 const MachineInstr &Instr = *I; 2558 unsigned IOpC = Instr.getOpcode(); 2559 2560 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2561 Instr.readsRegister(PPC::CR0, TRI))) 2562 // This instruction modifies or uses the record condition register after 2563 // the one we want to change. While we could do this transformation, it 2564 // would likely not be profitable. This transformation removes one 2565 // instruction, and so even forcing RA to generate one move probably 2566 // makes it unprofitable. 2567 return false; 2568 2569 // Check whether CmpInstr can be made redundant by the current instruction. 2570 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2571 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2572 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2573 ((Instr.getOperand(1).getReg() == SrcReg && 2574 Instr.getOperand(2).getReg() == SrcReg2) || 2575 (Instr.getOperand(1).getReg() == SrcReg2 && 2576 Instr.getOperand(2).getReg() == SrcReg))) { 2577 Sub = &*I; 2578 break; 2579 } 2580 2581 if (I == B) 2582 // The 'and' is below the comparison instruction. 2583 return false; 2584 } 2585 2586 // Return false if no candidates exist. 2587 if (!MI && !Sub) 2588 return false; 2589 2590 // The single candidate is called MI. 2591 if (!MI) MI = Sub; 2592 2593 int NewOpC = -1; 2594 int MIOpC = MI->getOpcode(); 2595 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2596 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2597 NewOpC = MIOpC; 2598 else { 2599 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2600 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2601 NewOpC = MIOpC; 2602 } 2603 2604 // FIXME: On the non-embedded POWER architectures, only some of the record 2605 // forms are fast, and we should use only the fast ones. 2606 2607 // The defining instruction has a record form (or is already a record 2608 // form). It is possible, however, that we'll need to reverse the condition 2609 // code of the users. 2610 if (NewOpC == -1) 2611 return false; 2612 2613 // This transformation should not be performed if `nsw` is missing and is not 2614 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2615 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2616 // CRReg can reflect if compared values are equal, this optz is still valid. 2617 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2618 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2619 return false; 2620 2621 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2622 // needs to be updated to be based on SUB. Push the condition code 2623 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2624 // condition code of these operands will be modified. 2625 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2626 // comparison against 0, which may modify predicate. 2627 bool ShouldSwap = false; 2628 if (Sub && Value == 0) { 2629 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2630 Sub->getOperand(2).getReg() == SrcReg; 2631 2632 // The operands to subf are the opposite of sub, so only in the fixed-point 2633 // case, invert the order. 2634 ShouldSwap = !ShouldSwap; 2635 } 2636 2637 if (ShouldSwap) 2638 for (MachineRegisterInfo::use_instr_iterator 2639 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2640 I != IE; ++I) { 2641 MachineInstr *UseMI = &*I; 2642 if (UseMI->getOpcode() == PPC::BCC) { 2643 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2644 unsigned PredCond = PPC::getPredicateCondition(Pred); 2645 assert((!equalityOnly || 2646 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2647 "Invalid predicate for equality-only optimization"); 2648 (void)PredCond; // To suppress warning in release build. 2649 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2650 PPC::getSwappedPredicate(Pred))); 2651 } else if (UseMI->getOpcode() == PPC::ISEL || 2652 UseMI->getOpcode() == PPC::ISEL8) { 2653 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2654 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2655 "Invalid CR bit for equality-only optimization"); 2656 2657 if (NewSubReg == PPC::sub_lt) 2658 NewSubReg = PPC::sub_gt; 2659 else if (NewSubReg == PPC::sub_gt) 2660 NewSubReg = PPC::sub_lt; 2661 2662 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2663 NewSubReg)); 2664 } else // We need to abort on a user we don't understand. 2665 return false; 2666 } 2667 assert(!(Value != 0 && ShouldSwap) && 2668 "Non-zero immediate support and ShouldSwap" 2669 "may conflict in updating predicate"); 2670 2671 // Create a new virtual register to hold the value of the CR set by the 2672 // record-form instruction. If the instruction was not previously in 2673 // record form, then set the kill flag on the CR. 2674 CmpInstr.eraseFromParent(); 2675 2676 MachineBasicBlock::iterator MII = MI; 2677 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2678 get(TargetOpcode::COPY), CRReg) 2679 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2680 2681 // Even if CR0 register were dead before, it is alive now since the 2682 // instruction we just built uses it. 2683 MI->clearRegisterDeads(PPC::CR0); 2684 2685 if (MIOpC != NewOpC) { 2686 // We need to be careful here: we're replacing one instruction with 2687 // another, and we need to make sure that we get all of the right 2688 // implicit uses and defs. On the other hand, the caller may be holding 2689 // an iterator to this instruction, and so we can't delete it (this is 2690 // specifically the case if this is the instruction directly after the 2691 // compare). 2692 2693 // Rotates are expensive instructions. If we're emitting a record-form 2694 // rotate that can just be an andi/andis, we should just emit that. 2695 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2696 Register GPRRes = MI->getOperand(0).getReg(); 2697 int64_t SH = MI->getOperand(2).getImm(); 2698 int64_t MB = MI->getOperand(3).getImm(); 2699 int64_t ME = MI->getOperand(4).getImm(); 2700 // We can only do this if both the start and end of the mask are in the 2701 // same halfword. 2702 bool MBInLoHWord = MB >= 16; 2703 bool MEInLoHWord = ME >= 16; 2704 uint64_t Mask = ~0LLU; 2705 2706 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2707 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2708 // The mask value needs to shift right 16 if we're emitting andis. 2709 Mask >>= MBInLoHWord ? 0 : 16; 2710 NewOpC = MIOpC == PPC::RLWINM 2711 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2712 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2713 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2714 (ME - MB + 1 == SH) && (MB >= 16)) { 2715 // If we are rotating by the exact number of bits as are in the mask 2716 // and the mask is in the least significant bits of the register, 2717 // that's just an andis. (as long as the GPR result has no uses). 2718 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2719 Mask >>= 16; 2720 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2721 } 2722 // If we've set the mask, we can transform. 2723 if (Mask != ~0LLU) { 2724 MI->removeOperand(4); 2725 MI->removeOperand(3); 2726 MI->getOperand(2).setImm(Mask); 2727 NumRcRotatesConvertedToRcAnd++; 2728 } 2729 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2730 int64_t MB = MI->getOperand(3).getImm(); 2731 if (MB >= 48) { 2732 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2733 NewOpC = PPC::ANDI8_rec; 2734 MI->removeOperand(3); 2735 MI->getOperand(2).setImm(Mask); 2736 NumRcRotatesConvertedToRcAnd++; 2737 } 2738 } 2739 2740 const MCInstrDesc &NewDesc = get(NewOpC); 2741 MI->setDesc(NewDesc); 2742 2743 for (MCPhysReg ImpDef : NewDesc.implicit_defs()) { 2744 if (!MI->definesRegister(ImpDef)) { 2745 MI->addOperand(*MI->getParent()->getParent(), 2746 MachineOperand::CreateReg(ImpDef, true, true)); 2747 } 2748 } 2749 for (MCPhysReg ImpUse : NewDesc.implicit_uses()) { 2750 if (!MI->readsRegister(ImpUse)) { 2751 MI->addOperand(*MI->getParent()->getParent(), 2752 MachineOperand::CreateReg(ImpUse, false, true)); 2753 } 2754 } 2755 } 2756 assert(MI->definesRegister(PPC::CR0) && 2757 "Record-form instruction does not define cr0?"); 2758 2759 // Modify the condition code of operands in OperandsToUpdate. 2760 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2761 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2762 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2763 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2764 2765 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2766 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2767 2768 return true; 2769 } 2770 2771 bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const { 2772 MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo(); 2773 if (MRI->isSSA()) 2774 return false; 2775 2776 Register SrcReg, SrcReg2; 2777 int64_t CmpMask, CmpValue; 2778 if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue)) 2779 return false; 2780 2781 // Try to optimize the comparison against 0. 2782 if (CmpValue || !CmpMask || SrcReg2) 2783 return false; 2784 2785 // The record forms set the condition register based on a signed comparison 2786 // with zero (see comments in optimizeCompareInstr). Since we can't do the 2787 // equality checks in post-RA, we are more restricted on a unsigned 2788 // comparison. 2789 unsigned Opc = CmpMI.getOpcode(); 2790 if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI) 2791 return false; 2792 2793 // The record forms are always based on a 64-bit comparison on PPC64 2794 // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit 2795 // comparison. Since we can't do the equality checks in post-RA, we bail out 2796 // the case. 2797 if (Subtarget.isPPC64() && Opc == PPC::CMPWI) 2798 return false; 2799 2800 // CmpMI can't be deleted if it has implicit def. 2801 if (CmpMI.hasImplicitDef()) 2802 return false; 2803 2804 bool SrcRegHasOtherUse = false; 2805 MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse); 2806 if (!SrcMI || !SrcMI->definesRegister(SrcReg)) 2807 return false; 2808 2809 MachineOperand RegMO = CmpMI.getOperand(0); 2810 Register CRReg = RegMO.getReg(); 2811 if (CRReg != PPC::CR0) 2812 return false; 2813 2814 // Make sure there is no def/use of CRReg between SrcMI and CmpMI. 2815 bool SeenUseOfCRReg = false; 2816 bool IsCRRegKilled = false; 2817 if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled, 2818 SeenUseOfCRReg) || 2819 SrcMI->definesRegister(CRReg) || SeenUseOfCRReg) 2820 return false; 2821 2822 int SrcMIOpc = SrcMI->getOpcode(); 2823 int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc); 2824 if (NewOpC == -1) 2825 return false; 2826 2827 LLVM_DEBUG(dbgs() << "Replace Instr: "); 2828 LLVM_DEBUG(SrcMI->dump()); 2829 2830 const MCInstrDesc &NewDesc = get(NewOpC); 2831 SrcMI->setDesc(NewDesc); 2832 MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI) 2833 .addReg(CRReg, RegState::ImplicitDefine); 2834 SrcMI->clearRegisterDeads(CRReg); 2835 2836 // Fix up killed/dead flag for SrcReg after transformation. 2837 if (SrcRegHasOtherUse || CmpMI.getOperand(1).isKill()) 2838 fixupIsDeadOrKill(SrcMI, &CmpMI, SrcReg); 2839 2840 assert(SrcMI->definesRegister(PPC::CR0) && 2841 "Record-form instruction does not define cr0?"); 2842 2843 LLVM_DEBUG(dbgs() << "with: "); 2844 LLVM_DEBUG(SrcMI->dump()); 2845 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 2846 LLVM_DEBUG(CmpMI.dump()); 2847 return true; 2848 } 2849 2850 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2851 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2852 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2853 const TargetRegisterInfo *TRI) const { 2854 const MachineOperand *BaseOp; 2855 OffsetIsScalable = false; 2856 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2857 return false; 2858 BaseOps.push_back(BaseOp); 2859 return true; 2860 } 2861 2862 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2863 const TargetRegisterInfo *TRI) { 2864 // If this is a volatile load/store, don't mess with it. 2865 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2866 return false; 2867 2868 if (LdSt.getOperand(2).isFI()) 2869 return true; 2870 2871 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2872 // Can't cluster if the instruction modifies the base register 2873 // or it is update form. e.g. ld r2,3(r2) 2874 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2875 return false; 2876 2877 return true; 2878 } 2879 2880 // Only cluster instruction pair that have the same opcode, and they are 2881 // clusterable according to PowerPC specification. 2882 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2883 const PPCSubtarget &Subtarget) { 2884 switch (FirstOpc) { 2885 default: 2886 return false; 2887 case PPC::STD: 2888 case PPC::STFD: 2889 case PPC::STXSD: 2890 case PPC::DFSTOREf64: 2891 return FirstOpc == SecondOpc; 2892 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2893 // 32bit and 64bit instruction selection. They are clusterable pair though 2894 // they are different opcode. 2895 case PPC::STW: 2896 case PPC::STW8: 2897 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2898 } 2899 } 2900 2901 bool PPCInstrInfo::shouldClusterMemOps( 2902 ArrayRef<const MachineOperand *> BaseOps1, 2903 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2904 unsigned NumBytes) const { 2905 2906 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2907 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2908 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2909 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2910 "Only base registers and frame indices are supported."); 2911 2912 // The NumLoads means the number of loads that has been clustered. 2913 // Don't cluster memory op if there are already two ops clustered at least. 2914 if (NumLoads > 2) 2915 return false; 2916 2917 // Cluster the load/store only when they have the same base 2918 // register or FI. 2919 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2920 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2921 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2922 return false; 2923 2924 // Check if the load/store are clusterable according to the PowerPC 2925 // specification. 2926 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2927 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2928 unsigned FirstOpc = FirstLdSt.getOpcode(); 2929 unsigned SecondOpc = SecondLdSt.getOpcode(); 2930 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2931 // Cluster the load/store only when they have the same opcode, and they are 2932 // clusterable opcode according to PowerPC specification. 2933 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2934 return false; 2935 2936 // Can't cluster load/store that have ordered or volatile memory reference. 2937 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2938 !isLdStSafeToCluster(SecondLdSt, TRI)) 2939 return false; 2940 2941 int64_t Offset1 = 0, Offset2 = 0; 2942 unsigned Width1 = 0, Width2 = 0; 2943 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2944 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2945 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2946 Width1 != Width2) 2947 return false; 2948 2949 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2950 "getMemOperandWithOffsetWidth return incorrect base op"); 2951 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2952 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2953 return Offset1 + Width1 == Offset2; 2954 } 2955 2956 /// GetInstSize - Return the number of bytes of code the specified 2957 /// instruction may be. This returns the maximum number of bytes. 2958 /// 2959 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2960 unsigned Opcode = MI.getOpcode(); 2961 2962 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2963 const MachineFunction *MF = MI.getParent()->getParent(); 2964 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2965 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2966 } else if (Opcode == TargetOpcode::STACKMAP) { 2967 StackMapOpers Opers(&MI); 2968 return Opers.getNumPatchBytes(); 2969 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2970 PatchPointOpers Opers(&MI); 2971 return Opers.getNumPatchBytes(); 2972 } else { 2973 return get(Opcode).getSize(); 2974 } 2975 } 2976 2977 std::pair<unsigned, unsigned> 2978 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2979 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2980 return std::make_pair(TF & Mask, TF & ~Mask); 2981 } 2982 2983 ArrayRef<std::pair<unsigned, const char *>> 2984 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2985 using namespace PPCII; 2986 static const std::pair<unsigned, const char *> TargetFlags[] = { 2987 {MO_LO, "ppc-lo"}, 2988 {MO_HA, "ppc-ha"}, 2989 {MO_TPREL_LO, "ppc-tprel-lo"}, 2990 {MO_TPREL_HA, "ppc-tprel-ha"}, 2991 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2992 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2993 {MO_TOC_LO, "ppc-toc-lo"}, 2994 {MO_TLS, "ppc-tls"}}; 2995 return ArrayRef(TargetFlags); 2996 } 2997 2998 ArrayRef<std::pair<unsigned, const char *>> 2999 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 3000 using namespace PPCII; 3001 static const std::pair<unsigned, const char *> TargetFlags[] = { 3002 {MO_PLT, "ppc-plt"}, 3003 {MO_PIC_FLAG, "ppc-pic"}, 3004 {MO_PCREL_FLAG, "ppc-pcrel"}, 3005 {MO_GOT_FLAG, "ppc-got"}, 3006 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 3007 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 3008 {MO_TLSLD_FLAG, "ppc-tlsld"}, 3009 {MO_TPREL_FLAG, "ppc-tprel"}, 3010 {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, 3011 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 3012 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 3013 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 3014 return ArrayRef(TargetFlags); 3015 } 3016 3017 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 3018 // The VSX versions have the advantage of a full 64-register target whereas 3019 // the FP ones have the advantage of lower latency and higher throughput. So 3020 // what we are after is using the faster instructions in low register pressure 3021 // situations and using the larger register file in high register pressure 3022 // situations. 3023 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 3024 unsigned UpperOpcode, LowerOpcode; 3025 switch (MI.getOpcode()) { 3026 case PPC::DFLOADf32: 3027 UpperOpcode = PPC::LXSSP; 3028 LowerOpcode = PPC::LFS; 3029 break; 3030 case PPC::DFLOADf64: 3031 UpperOpcode = PPC::LXSD; 3032 LowerOpcode = PPC::LFD; 3033 break; 3034 case PPC::DFSTOREf32: 3035 UpperOpcode = PPC::STXSSP; 3036 LowerOpcode = PPC::STFS; 3037 break; 3038 case PPC::DFSTOREf64: 3039 UpperOpcode = PPC::STXSD; 3040 LowerOpcode = PPC::STFD; 3041 break; 3042 case PPC::XFLOADf32: 3043 UpperOpcode = PPC::LXSSPX; 3044 LowerOpcode = PPC::LFSX; 3045 break; 3046 case PPC::XFLOADf64: 3047 UpperOpcode = PPC::LXSDX; 3048 LowerOpcode = PPC::LFDX; 3049 break; 3050 case PPC::XFSTOREf32: 3051 UpperOpcode = PPC::STXSSPX; 3052 LowerOpcode = PPC::STFSX; 3053 break; 3054 case PPC::XFSTOREf64: 3055 UpperOpcode = PPC::STXSDX; 3056 LowerOpcode = PPC::STFDX; 3057 break; 3058 case PPC::LIWAX: 3059 UpperOpcode = PPC::LXSIWAX; 3060 LowerOpcode = PPC::LFIWAX; 3061 break; 3062 case PPC::LIWZX: 3063 UpperOpcode = PPC::LXSIWZX; 3064 LowerOpcode = PPC::LFIWZX; 3065 break; 3066 case PPC::STIWX: 3067 UpperOpcode = PPC::STXSIWX; 3068 LowerOpcode = PPC::STFIWX; 3069 break; 3070 default: 3071 llvm_unreachable("Unknown Operation!"); 3072 } 3073 3074 Register TargetReg = MI.getOperand(0).getReg(); 3075 unsigned Opcode; 3076 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 3077 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 3078 Opcode = LowerOpcode; 3079 else 3080 Opcode = UpperOpcode; 3081 MI.setDesc(get(Opcode)); 3082 return true; 3083 } 3084 3085 static bool isAnImmediateOperand(const MachineOperand &MO) { 3086 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 3087 } 3088 3089 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 3090 auto &MBB = *MI.getParent(); 3091 auto DL = MI.getDebugLoc(); 3092 3093 switch (MI.getOpcode()) { 3094 case PPC::BUILD_UACC: { 3095 MCRegister ACC = MI.getOperand(0).getReg(); 3096 MCRegister UACC = MI.getOperand(1).getReg(); 3097 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 3098 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 3099 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 3100 // FIXME: This can easily be improved to look up to the top of the MBB 3101 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 3102 // we can just re-target any such XXLOR's to DstVSR + offset. 3103 for (int VecNo = 0; VecNo < 4; VecNo++) 3104 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 3105 .addReg(SrcVSR + VecNo) 3106 .addReg(SrcVSR + VecNo); 3107 } 3108 // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. 3109 // So after building the 4 copies, we can replace the BUILD_UACC instruction 3110 // with a NOP. 3111 [[fallthrough]]; 3112 } 3113 case PPC::KILL_PAIR: { 3114 MI.setDesc(get(PPC::UNENCODED_NOP)); 3115 MI.removeOperand(1); 3116 MI.removeOperand(0); 3117 return true; 3118 } 3119 case TargetOpcode::LOAD_STACK_GUARD: { 3120 assert(Subtarget.isTargetLinux() && 3121 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3122 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3123 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3124 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3125 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3126 .addImm(Offset) 3127 .addReg(Reg); 3128 return true; 3129 } 3130 case PPC::DFLOADf32: 3131 case PPC::DFLOADf64: 3132 case PPC::DFSTOREf32: 3133 case PPC::DFSTOREf64: { 3134 assert(Subtarget.hasP9Vector() && 3135 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3136 assert(MI.getOperand(2).isReg() && 3137 isAnImmediateOperand(MI.getOperand(1)) && 3138 "D-form op must have register and immediate operands"); 3139 return expandVSXMemPseudo(MI); 3140 } 3141 case PPC::XFLOADf32: 3142 case PPC::XFSTOREf32: 3143 case PPC::LIWAX: 3144 case PPC::LIWZX: 3145 case PPC::STIWX: { 3146 assert(Subtarget.hasP8Vector() && 3147 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3148 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3149 "X-form op must have register and register operands"); 3150 return expandVSXMemPseudo(MI); 3151 } 3152 case PPC::XFLOADf64: 3153 case PPC::XFSTOREf64: { 3154 assert(Subtarget.hasVSX() && 3155 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3156 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3157 "X-form op must have register and register operands"); 3158 return expandVSXMemPseudo(MI); 3159 } 3160 case PPC::SPILLTOVSR_LD: { 3161 Register TargetReg = MI.getOperand(0).getReg(); 3162 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3163 MI.setDesc(get(PPC::DFLOADf64)); 3164 return expandPostRAPseudo(MI); 3165 } 3166 else 3167 MI.setDesc(get(PPC::LD)); 3168 return true; 3169 } 3170 case PPC::SPILLTOVSR_ST: { 3171 Register SrcReg = MI.getOperand(0).getReg(); 3172 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3173 NumStoreSPILLVSRRCAsVec++; 3174 MI.setDesc(get(PPC::DFSTOREf64)); 3175 return expandPostRAPseudo(MI); 3176 } else { 3177 NumStoreSPILLVSRRCAsGpr++; 3178 MI.setDesc(get(PPC::STD)); 3179 } 3180 return true; 3181 } 3182 case PPC::SPILLTOVSR_LDX: { 3183 Register TargetReg = MI.getOperand(0).getReg(); 3184 if (PPC::VSFRCRegClass.contains(TargetReg)) 3185 MI.setDesc(get(PPC::LXSDX)); 3186 else 3187 MI.setDesc(get(PPC::LDX)); 3188 return true; 3189 } 3190 case PPC::SPILLTOVSR_STX: { 3191 Register SrcReg = MI.getOperand(0).getReg(); 3192 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3193 NumStoreSPILLVSRRCAsVec++; 3194 MI.setDesc(get(PPC::STXSDX)); 3195 } else { 3196 NumStoreSPILLVSRRCAsGpr++; 3197 MI.setDesc(get(PPC::STDX)); 3198 } 3199 return true; 3200 } 3201 3202 // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. 3203 case PPC::CFENCE8: { 3204 auto Val = MI.getOperand(0).getReg(); 3205 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 3206 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3207 .addImm(PPC::PRED_NE_MINUS) 3208 .addReg(PPC::CR7) 3209 .addImm(1); 3210 MI.setDesc(get(PPC::ISYNC)); 3211 MI.removeOperand(0); 3212 return true; 3213 } 3214 } 3215 return false; 3216 } 3217 3218 // Essentially a compile-time implementation of a compare->isel sequence. 3219 // It takes two constants to compare, along with the true/false registers 3220 // and the comparison type (as a subreg to a CR field) and returns one 3221 // of the true/false registers, depending on the comparison results. 3222 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3223 unsigned TrueReg, unsigned FalseReg, 3224 unsigned CRSubReg) { 3225 // Signed comparisons. The immediates are assumed to be sign-extended. 3226 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3227 switch (CRSubReg) { 3228 default: llvm_unreachable("Unknown integer comparison type."); 3229 case PPC::sub_lt: 3230 return Imm1 < Imm2 ? TrueReg : FalseReg; 3231 case PPC::sub_gt: 3232 return Imm1 > Imm2 ? TrueReg : FalseReg; 3233 case PPC::sub_eq: 3234 return Imm1 == Imm2 ? TrueReg : FalseReg; 3235 } 3236 } 3237 // Unsigned comparisons. 3238 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3239 switch (CRSubReg) { 3240 default: llvm_unreachable("Unknown integer comparison type."); 3241 case PPC::sub_lt: 3242 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3243 case PPC::sub_gt: 3244 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3245 case PPC::sub_eq: 3246 return Imm1 == Imm2 ? TrueReg : FalseReg; 3247 } 3248 } 3249 return PPC::NoRegister; 3250 } 3251 3252 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3253 unsigned OpNo, 3254 int64_t Imm) const { 3255 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3256 // Replace the REG with the Immediate. 3257 Register InUseReg = MI.getOperand(OpNo).getReg(); 3258 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3259 3260 // We need to make sure that the MI didn't have any implicit use 3261 // of this REG any more. We don't call MI.implicit_operands().empty() to 3262 // return early, since MI's MCID might be changed in calling context, as a 3263 // result its number of explicit operands may be changed, thus the begin of 3264 // implicit operand is changed. 3265 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3266 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3267 if (UseOpIdx >= 0) { 3268 MachineOperand &MO = MI.getOperand(UseOpIdx); 3269 if (MO.isImplicit()) 3270 // The operands must always be in the following order: 3271 // - explicit reg defs, 3272 // - other explicit operands (reg uses, immediates, etc.), 3273 // - implicit reg defs 3274 // - implicit reg uses 3275 // Therefore, removing the implicit operand won't change the explicit 3276 // operands layout. 3277 MI.removeOperand(UseOpIdx); 3278 } 3279 } 3280 3281 // Replace an instruction with one that materializes a constant (and sets 3282 // CR0 if the original instruction was a record-form instruction). 3283 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3284 const LoadImmediateInfo &LII) const { 3285 // Remove existing operands. 3286 int OperandToKeep = LII.SetCR ? 1 : 0; 3287 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3288 MI.removeOperand(i); 3289 3290 // Replace the instruction. 3291 if (LII.SetCR) { 3292 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3293 // Set the immediate. 3294 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3295 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3296 return; 3297 } 3298 else 3299 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3300 3301 // Set the immediate. 3302 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3303 .addImm(LII.Imm); 3304 } 3305 3306 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3307 bool &SeenIntermediateUse) const { 3308 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3309 "Should be called after register allocation."); 3310 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3311 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3312 It++; 3313 SeenIntermediateUse = false; 3314 for (; It != E; ++It) { 3315 if (It->modifiesRegister(Reg, TRI)) 3316 return &*It; 3317 if (It->readsRegister(Reg, TRI)) 3318 SeenIntermediateUse = true; 3319 } 3320 return nullptr; 3321 } 3322 3323 void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB, 3324 MachineBasicBlock::iterator MBBI, 3325 const DebugLoc &DL, Register Reg, 3326 int64_t Imm) const { 3327 assert(!MBB.getParent()->getRegInfo().isSSA() && 3328 "Register should be in non-SSA form after RA"); 3329 bool isPPC64 = Subtarget.isPPC64(); 3330 // FIXME: Materialization here is not optimal. 3331 // For some special bit patterns we can use less instructions. 3332 // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp. 3333 if (isInt<16>(Imm)) { 3334 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm); 3335 } else if (isInt<32>(Imm)) { 3336 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg) 3337 .addImm(Imm >> 16); 3338 if (Imm & 0xFFFF) 3339 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg) 3340 .addReg(Reg, RegState::Kill) 3341 .addImm(Imm & 0xFFFF); 3342 } else { 3343 assert(isPPC64 && "Materializing 64-bit immediate to single register is " 3344 "only supported in PPC64"); 3345 BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48); 3346 if ((Imm >> 32) & 0xFFFF) 3347 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3348 .addReg(Reg, RegState::Kill) 3349 .addImm((Imm >> 32) & 0xFFFF); 3350 BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg) 3351 .addReg(Reg, RegState::Kill) 3352 .addImm(32) 3353 .addImm(31); 3354 BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg) 3355 .addReg(Reg, RegState::Kill) 3356 .addImm((Imm >> 16) & 0xFFFF); 3357 if (Imm & 0xFFFF) 3358 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3359 .addReg(Reg, RegState::Kill) 3360 .addImm(Imm & 0xFFFF); 3361 } 3362 } 3363 3364 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3365 MachineInstr &MI, 3366 unsigned &OpNoForForwarding, 3367 bool &SeenIntermediateUse) const { 3368 OpNoForForwarding = ~0U; 3369 MachineInstr *DefMI = nullptr; 3370 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3371 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3372 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3373 // within the basic block to see if the register is defined using an 3374 // LI/LI8/ADDI/ADDI8. 3375 if (MRI->isSSA()) { 3376 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3377 if (!MI.getOperand(i).isReg()) 3378 continue; 3379 Register Reg = MI.getOperand(i).getReg(); 3380 if (!Reg.isVirtual()) 3381 continue; 3382 Register TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3383 if (TrueReg.isVirtual()) { 3384 MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg); 3385 if (DefMIForTrueReg->getOpcode() == PPC::LI || 3386 DefMIForTrueReg->getOpcode() == PPC::LI8 || 3387 DefMIForTrueReg->getOpcode() == PPC::ADDI || 3388 DefMIForTrueReg->getOpcode() == PPC::ADDI8) { 3389 OpNoForForwarding = i; 3390 DefMI = DefMIForTrueReg; 3391 // The ADDI and LI operand maybe exist in one instruction at same 3392 // time. we prefer to fold LI operand as LI only has one Imm operand 3393 // and is more possible to be converted. So if current DefMI is 3394 // ADDI/ADDI8, we continue to find possible LI/LI8. 3395 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3396 break; 3397 } 3398 } 3399 } 3400 } else { 3401 // Looking back through the definition for each operand could be expensive, 3402 // so exit early if this isn't an instruction that either has an immediate 3403 // form or is already an immediate form that we can handle. 3404 ImmInstrInfo III; 3405 unsigned Opc = MI.getOpcode(); 3406 bool ConvertibleImmForm = 3407 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3408 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3409 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3410 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3411 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3412 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3413 Opc == PPC::RLWINM8_rec; 3414 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3415 ? isVFRegister(MI.getOperand(0).getReg()) 3416 : false; 3417 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3418 return nullptr; 3419 3420 // Don't convert or %X, %Y, %Y since that's just a register move. 3421 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3422 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3423 return nullptr; 3424 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3425 MachineOperand &MO = MI.getOperand(i); 3426 SeenIntermediateUse = false; 3427 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3428 Register Reg = MI.getOperand(i).getReg(); 3429 // If we see another use of this reg between the def and the MI, 3430 // we want to flag it so the def isn't deleted. 3431 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3432 if (DefMI) { 3433 // Is this register defined by some form of add-immediate (including 3434 // load-immediate) within this basic block? 3435 switch (DefMI->getOpcode()) { 3436 default: 3437 break; 3438 case PPC::LI: 3439 case PPC::LI8: 3440 case PPC::ADDItocL: 3441 case PPC::ADDI: 3442 case PPC::ADDI8: 3443 OpNoForForwarding = i; 3444 return DefMI; 3445 } 3446 } 3447 } 3448 } 3449 } 3450 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3451 } 3452 3453 unsigned PPCInstrInfo::getSpillTarget() const { 3454 // With P10, we may need to spill paired vector registers or accumulator 3455 // registers. MMA implies paired vectors, so we can just check that. 3456 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3457 return Subtarget.isISAFuture() ? 3 : IsP10Variant ? 3458 2 : Subtarget.hasP9Vector() ? 3459 1 : 0; 3460 } 3461 3462 ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3463 return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3464 } 3465 3466 ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3467 return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3468 } 3469 3470 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 3471 unsigned RegNo) const { 3472 // Conservatively clear kill flag for the register if the instructions are in 3473 // different basic blocks and in SSA form, because the kill flag may no longer 3474 // be right. There is no need to bother with dead flags since defs with no 3475 // uses will be handled by DCE. 3476 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 3477 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 3478 MRI.clearKillFlags(RegNo); 3479 return; 3480 } 3481 3482 // Instructions between [StartMI, EndMI] should be in same basic block. 3483 assert((StartMI->getParent() == EndMI->getParent()) && 3484 "Instructions are not in same basic block"); 3485 3486 // If before RA, StartMI may be def through COPY, we need to adjust it to the 3487 // real def. See function getForwardingDefMI. 3488 if (MRI.isSSA()) { 3489 bool Reads, Writes; 3490 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 3491 if (!Reads && !Writes) { 3492 assert(Register::isVirtualRegister(RegNo) && 3493 "Must be a virtual register"); 3494 // Get real def and ignore copies. 3495 StartMI = MRI.getVRegDef(RegNo); 3496 } 3497 } 3498 3499 bool IsKillSet = false; 3500 3501 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 3502 MachineOperand &MO = MI.getOperand(Index); 3503 if (MO.isReg() && MO.isUse() && MO.isKill() && 3504 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 3505 MO.setIsKill(false); 3506 }; 3507 3508 // Set killed flag for EndMI. 3509 // No need to do anything if EndMI defines RegNo. 3510 int UseIndex = 3511 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 3512 if (UseIndex != -1) { 3513 EndMI->getOperand(UseIndex).setIsKill(true); 3514 IsKillSet = true; 3515 // Clear killed flag for other EndMI operands related to RegNo. In some 3516 // upexpected cases, killed may be set multiple times for same register 3517 // operand in same MI. 3518 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 3519 if (i != UseIndex) 3520 clearOperandKillInfo(*EndMI, i); 3521 } 3522 3523 // Walking the inst in reverse order (EndMI -> StartMI]. 3524 MachineBasicBlock::reverse_iterator It = *EndMI; 3525 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 3526 // EndMI has been handled above, skip it here. 3527 It++; 3528 MachineOperand *MO = nullptr; 3529 for (; It != E; ++It) { 3530 // Skip insturctions which could not be a def/use of RegNo. 3531 if (It->isDebugInstr() || It->isPosition()) 3532 continue; 3533 3534 // Clear killed flag for all It operands related to RegNo. In some 3535 // upexpected cases, killed may be set multiple times for same register 3536 // operand in same MI. 3537 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 3538 clearOperandKillInfo(*It, i); 3539 3540 // If killed is not set, set killed for its last use or set dead for its def 3541 // if no use found. 3542 if (!IsKillSet) { 3543 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 3544 // Use found, set it killed. 3545 IsKillSet = true; 3546 MO->setIsKill(true); 3547 continue; 3548 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 3549 &getRegisterInfo()))) { 3550 // No use found, set dead for its def. 3551 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 3552 MO->setIsDead(true); 3553 break; 3554 } 3555 } 3556 3557 if ((&*It) == StartMI) 3558 break; 3559 } 3560 // Ensure RegMo liveness is killed after EndMI. 3561 assert((IsKillSet || (MO && MO->isDead())) && 3562 "RegNo should be killed or dead"); 3563 } 3564 3565 // This opt tries to convert the following imm form to an index form to save an 3566 // add for stack variables. 3567 // Return false if no such pattern found. 3568 // 3569 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3570 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3571 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3572 // 3573 // can be converted to: 3574 // 3575 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3576 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3577 // 3578 // In order to eliminate ADD instr, make sure that: 3579 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3580 // new ADDI instr and ADDI can only take int16 Imm. 3581 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3582 // between ADDI and ADD instr since its original def in ADDI will be changed 3583 // in new ADDI instr. And also there should be no new def for it between 3584 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3585 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3586 // between ADD and Imm instr since ADD instr will be eliminated. 3587 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3588 // moved to Index instr. 3589 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3590 MachineFunction *MF = MI.getParent()->getParent(); 3591 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3592 bool PostRA = !MRI->isSSA(); 3593 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3594 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3595 // frame base(OffsetAddi) are determined. 3596 if (!PostRA) 3597 return false; 3598 unsigned ToBeDeletedReg = 0; 3599 int64_t OffsetImm = 0; 3600 unsigned XFormOpcode = 0; 3601 ImmInstrInfo III; 3602 3603 // Check if Imm instr meets requirement. 3604 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3605 III)) 3606 return false; 3607 3608 bool OtherIntermediateUse = false; 3609 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3610 3611 // Exit if there is other use between ADD and Imm instr or no def found. 3612 if (OtherIntermediateUse || !ADDMI) 3613 return false; 3614 3615 // Check if ADD instr meets requirement. 3616 if (!isADDInstrEligibleForFolding(*ADDMI)) 3617 return false; 3618 3619 unsigned ScaleRegIdx = 0; 3620 int64_t OffsetAddi = 0; 3621 MachineInstr *ADDIMI = nullptr; 3622 3623 // Check if there is a valid ToBeChangedReg in ADDMI. 3624 // 1: It must be killed. 3625 // 2: Its definition must be a valid ADDIMI. 3626 // 3: It must satify int16 offset requirement. 3627 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3628 ScaleRegIdx = 2; 3629 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3630 ScaleRegIdx = 1; 3631 else 3632 return false; 3633 3634 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3635 Register ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3636 Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3637 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3638 MachineBasicBlock::iterator End) { 3639 for (auto It = ++Start; It != End; It++) 3640 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3641 return true; 3642 return false; 3643 }; 3644 3645 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3646 // treated as special zero when ScaleReg is R0/X0 register. 3647 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3648 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3649 return false; 3650 3651 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3652 // and Imm Instr. 3653 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3654 return false; 3655 3656 // Now start to do the transformation. 3657 LLVM_DEBUG(dbgs() << "Replace instruction: " 3658 << "\n"); 3659 LLVM_DEBUG(ADDIMI->dump()); 3660 LLVM_DEBUG(ADDMI->dump()); 3661 LLVM_DEBUG(MI.dump()); 3662 LLVM_DEBUG(dbgs() << "with: " 3663 << "\n"); 3664 3665 // Update ADDI instr. 3666 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3667 3668 // Update Imm instr. 3669 MI.setDesc(get(XFormOpcode)); 3670 MI.getOperand(III.ImmOpNo) 3671 .ChangeToRegister(ScaleReg, false, false, 3672 ADDMI->getOperand(ScaleRegIdx).isKill()); 3673 3674 MI.getOperand(III.OpNoForForwarding) 3675 .ChangeToRegister(ToBeChangedReg, false, false, true); 3676 3677 // Eliminate ADD instr. 3678 ADDMI->eraseFromParent(); 3679 3680 LLVM_DEBUG(ADDIMI->dump()); 3681 LLVM_DEBUG(MI.dump()); 3682 3683 return true; 3684 } 3685 3686 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3687 int64_t &Imm) const { 3688 unsigned Opc = ADDIMI.getOpcode(); 3689 3690 // Exit if the instruction is not ADDI. 3691 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3692 return false; 3693 3694 // The operand may not necessarily be an immediate - it could be a relocation. 3695 if (!ADDIMI.getOperand(2).isImm()) 3696 return false; 3697 3698 Imm = ADDIMI.getOperand(2).getImm(); 3699 3700 return true; 3701 } 3702 3703 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3704 unsigned Opc = ADDMI.getOpcode(); 3705 3706 // Exit if the instruction is not ADD. 3707 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3708 } 3709 3710 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3711 unsigned &ToBeDeletedReg, 3712 unsigned &XFormOpcode, 3713 int64_t &OffsetImm, 3714 ImmInstrInfo &III) const { 3715 // Only handle load/store. 3716 if (!MI.mayLoadOrStore()) 3717 return false; 3718 3719 unsigned Opc = MI.getOpcode(); 3720 3721 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3722 3723 // Exit if instruction has no index form. 3724 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3725 return false; 3726 3727 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3728 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3729 III, true)) 3730 return false; 3731 3732 if (!III.IsSummingOperands) 3733 return false; 3734 3735 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3736 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3737 // Only support imm operands, not relocation slots or others. 3738 if (!ImmOperand.isImm()) 3739 return false; 3740 3741 assert(RegOperand.isReg() && "Instruction format is not right"); 3742 3743 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3744 if (!RegOperand.isKill()) 3745 return false; 3746 3747 ToBeDeletedReg = RegOperand.getReg(); 3748 OffsetImm = ImmOperand.getImm(); 3749 3750 return true; 3751 } 3752 3753 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3754 MachineInstr *&ADDIMI, 3755 int64_t &OffsetAddi, 3756 int64_t OffsetImm) const { 3757 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3758 MachineOperand &MO = ADDMI->getOperand(Index); 3759 3760 if (!MO.isKill()) 3761 return false; 3762 3763 bool OtherIntermediateUse = false; 3764 3765 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3766 // Currently handle only one "add + Imminstr" pair case, exit if other 3767 // intermediate use for ToBeChangedReg found. 3768 // TODO: handle the cases where there are other "add + Imminstr" pairs 3769 // with same offset in Imminstr which is like: 3770 // 3771 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3772 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3773 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3774 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3775 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3776 // 3777 // can be converted to: 3778 // 3779 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3780 // (OffsetAddi + OffsetImm) 3781 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3782 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3783 3784 if (OtherIntermediateUse || !ADDIMI) 3785 return false; 3786 // Check if ADDI instr meets requirement. 3787 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3788 return false; 3789 3790 if (isInt<16>(OffsetAddi + OffsetImm)) 3791 return true; 3792 return false; 3793 } 3794 3795 // If this instruction has an immediate form and one of its operands is a 3796 // result of a load-immediate or an add-immediate, convert it to 3797 // the immediate form if the constant is in range. 3798 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3799 MachineInstr **KilledDef) const { 3800 MachineFunction *MF = MI.getParent()->getParent(); 3801 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3802 bool PostRA = !MRI->isSSA(); 3803 bool SeenIntermediateUse = true; 3804 unsigned ForwardingOperand = ~0U; 3805 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3806 SeenIntermediateUse); 3807 if (!DefMI) 3808 return false; 3809 assert(ForwardingOperand < MI.getNumOperands() && 3810 "The forwarding operand needs to be valid at this point"); 3811 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3812 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3813 if (KilledDef && KillFwdDefMI) 3814 *KilledDef = DefMI; 3815 3816 // If this is a imm instruction and its register operands is produced by ADDI, 3817 // put the imm into imm inst directly. 3818 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3819 PPC::INSTRUCTION_LIST_END && 3820 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3821 return true; 3822 3823 ImmInstrInfo III; 3824 bool IsVFReg = MI.getOperand(0).isReg() 3825 ? isVFRegister(MI.getOperand(0).getReg()) 3826 : false; 3827 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3828 // If this is a reg+reg instruction that has a reg+imm form, 3829 // and one of the operands is produced by an add-immediate, 3830 // try to convert it. 3831 if (HasImmForm && 3832 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3833 KillFwdDefMI)) 3834 return true; 3835 3836 // If this is a reg+reg instruction that has a reg+imm form, 3837 // and one of the operands is produced by LI, convert it now. 3838 if (HasImmForm && 3839 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3840 return true; 3841 3842 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3843 // can be simpified to LI. 3844 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3845 return true; 3846 3847 return false; 3848 } 3849 3850 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3851 MachineInstr **ToErase) const { 3852 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3853 Register FoldingReg = MI.getOperand(1).getReg(); 3854 if (!FoldingReg.isVirtual()) 3855 return false; 3856 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3857 if (SrcMI->getOpcode() != PPC::RLWINM && 3858 SrcMI->getOpcode() != PPC::RLWINM_rec && 3859 SrcMI->getOpcode() != PPC::RLWINM8 && 3860 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3861 return false; 3862 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3863 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3864 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3865 "Invalid PPC::RLWINM Instruction!"); 3866 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3867 uint64_t SHMI = MI.getOperand(2).getImm(); 3868 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3869 uint64_t MBMI = MI.getOperand(3).getImm(); 3870 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3871 uint64_t MEMI = MI.getOperand(4).getImm(); 3872 3873 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3874 "Invalid PPC::RLWINM Instruction!"); 3875 // If MBMI is bigger than MEMI, we always can not get run of ones. 3876 // RotatedSrcMask non-wrap: 3877 // 0........31|32........63 3878 // RotatedSrcMask: B---E B---E 3879 // MaskMI: -----------|--E B------ 3880 // Result: ----- --- (Bad candidate) 3881 // 3882 // RotatedSrcMask wrap: 3883 // 0........31|32........63 3884 // RotatedSrcMask: --E B----|--E B---- 3885 // MaskMI: -----------|--E B------ 3886 // Result: --- -----|--- ----- (Bad candidate) 3887 // 3888 // One special case is RotatedSrcMask is a full set mask. 3889 // RotatedSrcMask full: 3890 // 0........31|32........63 3891 // RotatedSrcMask: ------EB---|-------EB--- 3892 // MaskMI: -----------|--E B------ 3893 // Result: -----------|--- ------- (Good candidate) 3894 3895 // Mark special case. 3896 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3897 3898 // For other MBMI > MEMI cases, just return. 3899 if ((MBMI > MEMI) && !SrcMaskFull) 3900 return false; 3901 3902 // Handle MBMI <= MEMI cases. 3903 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3904 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3905 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3906 // while in PowerPC ISA, lowerest bit is at index 63. 3907 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3908 3909 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3910 APInt FinalMask = RotatedSrcMask & MaskMI; 3911 uint32_t NewMB, NewME; 3912 bool Simplified = false; 3913 3914 // If final mask is 0, MI result should be 0 too. 3915 if (FinalMask.isZero()) { 3916 bool Is64Bit = 3917 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3918 Simplified = true; 3919 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3920 LLVM_DEBUG(MI.dump()); 3921 3922 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3923 // Replace MI with "LI 0" 3924 MI.removeOperand(4); 3925 MI.removeOperand(3); 3926 MI.removeOperand(2); 3927 MI.getOperand(1).ChangeToImmediate(0); 3928 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3929 } else { 3930 // Replace MI with "ANDI_rec reg, 0" 3931 MI.removeOperand(4); 3932 MI.removeOperand(3); 3933 MI.getOperand(2).setImm(0); 3934 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3935 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3936 if (SrcMI->getOperand(1).isKill()) { 3937 MI.getOperand(1).setIsKill(true); 3938 SrcMI->getOperand(1).setIsKill(false); 3939 } else 3940 // About to replace MI.getOperand(1), clear its kill flag. 3941 MI.getOperand(1).setIsKill(false); 3942 } 3943 3944 LLVM_DEBUG(dbgs() << "With: "); 3945 LLVM_DEBUG(MI.dump()); 3946 3947 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3948 NewMB <= NewME) || 3949 SrcMaskFull) { 3950 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3951 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3952 // return a 32 bit value. 3953 Simplified = true; 3954 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3955 LLVM_DEBUG(MI.dump()); 3956 3957 uint16_t NewSH = (SHSrc + SHMI) % 32; 3958 MI.getOperand(2).setImm(NewSH); 3959 // If SrcMI mask is full, no need to update MBMI and MEMI. 3960 if (!SrcMaskFull) { 3961 MI.getOperand(3).setImm(NewMB); 3962 MI.getOperand(4).setImm(NewME); 3963 } 3964 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3965 if (SrcMI->getOperand(1).isKill()) { 3966 MI.getOperand(1).setIsKill(true); 3967 SrcMI->getOperand(1).setIsKill(false); 3968 } else 3969 // About to replace MI.getOperand(1), clear its kill flag. 3970 MI.getOperand(1).setIsKill(false); 3971 3972 LLVM_DEBUG(dbgs() << "To: "); 3973 LLVM_DEBUG(MI.dump()); 3974 } 3975 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3976 !SrcMI->hasImplicitDef()) { 3977 // If FoldingReg has no non-debug use and it has no implicit def (it 3978 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3979 // Otherwise keep it. 3980 *ToErase = SrcMI; 3981 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3982 LLVM_DEBUG(SrcMI->dump()); 3983 } 3984 return Simplified; 3985 } 3986 3987 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3988 ImmInstrInfo &III, bool PostRA) const { 3989 // The vast majority of the instructions would need their operand 2 replaced 3990 // with an immediate when switching to the reg+imm form. A marked exception 3991 // are the update form loads/stores for which a constant operand 2 would need 3992 // to turn into a displacement and move operand 1 to the operand 2 position. 3993 III.ImmOpNo = 2; 3994 III.OpNoForForwarding = 2; 3995 III.ImmWidth = 16; 3996 III.ImmMustBeMultipleOf = 1; 3997 III.TruncateImmTo = 0; 3998 III.IsSummingOperands = false; 3999 switch (Opc) { 4000 default: return false; 4001 case PPC::ADD4: 4002 case PPC::ADD8: 4003 III.SignedImm = true; 4004 III.ZeroIsSpecialOrig = 0; 4005 III.ZeroIsSpecialNew = 1; 4006 III.IsCommutative = true; 4007 III.IsSummingOperands = true; 4008 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 4009 break; 4010 case PPC::ADDC: 4011 case PPC::ADDC8: 4012 III.SignedImm = true; 4013 III.ZeroIsSpecialOrig = 0; 4014 III.ZeroIsSpecialNew = 0; 4015 III.IsCommutative = true; 4016 III.IsSummingOperands = true; 4017 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 4018 break; 4019 case PPC::ADDC_rec: 4020 III.SignedImm = true; 4021 III.ZeroIsSpecialOrig = 0; 4022 III.ZeroIsSpecialNew = 0; 4023 III.IsCommutative = true; 4024 III.IsSummingOperands = true; 4025 III.ImmOpcode = PPC::ADDIC_rec; 4026 break; 4027 case PPC::SUBFC: 4028 case PPC::SUBFC8: 4029 III.SignedImm = true; 4030 III.ZeroIsSpecialOrig = 0; 4031 III.ZeroIsSpecialNew = 0; 4032 III.IsCommutative = false; 4033 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 4034 break; 4035 case PPC::CMPW: 4036 case PPC::CMPD: 4037 III.SignedImm = true; 4038 III.ZeroIsSpecialOrig = 0; 4039 III.ZeroIsSpecialNew = 0; 4040 III.IsCommutative = false; 4041 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 4042 break; 4043 case PPC::CMPLW: 4044 case PPC::CMPLD: 4045 III.SignedImm = false; 4046 III.ZeroIsSpecialOrig = 0; 4047 III.ZeroIsSpecialNew = 0; 4048 III.IsCommutative = false; 4049 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 4050 break; 4051 case PPC::AND_rec: 4052 case PPC::AND8_rec: 4053 case PPC::OR: 4054 case PPC::OR8: 4055 case PPC::XOR: 4056 case PPC::XOR8: 4057 III.SignedImm = false; 4058 III.ZeroIsSpecialOrig = 0; 4059 III.ZeroIsSpecialNew = 0; 4060 III.IsCommutative = true; 4061 switch(Opc) { 4062 default: llvm_unreachable("Unknown opcode"); 4063 case PPC::AND_rec: 4064 III.ImmOpcode = PPC::ANDI_rec; 4065 break; 4066 case PPC::AND8_rec: 4067 III.ImmOpcode = PPC::ANDI8_rec; 4068 break; 4069 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 4070 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 4071 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 4072 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 4073 } 4074 break; 4075 case PPC::RLWNM: 4076 case PPC::RLWNM8: 4077 case PPC::RLWNM_rec: 4078 case PPC::RLWNM8_rec: 4079 case PPC::SLW: 4080 case PPC::SLW8: 4081 case PPC::SLW_rec: 4082 case PPC::SLW8_rec: 4083 case PPC::SRW: 4084 case PPC::SRW8: 4085 case PPC::SRW_rec: 4086 case PPC::SRW8_rec: 4087 case PPC::SRAW: 4088 case PPC::SRAW_rec: 4089 III.SignedImm = false; 4090 III.ZeroIsSpecialOrig = 0; 4091 III.ZeroIsSpecialNew = 0; 4092 III.IsCommutative = false; 4093 // This isn't actually true, but the instructions ignore any of the 4094 // upper bits, so any immediate loaded with an LI is acceptable. 4095 // This does not apply to shift right algebraic because a value 4096 // out of range will produce a -1/0. 4097 III.ImmWidth = 16; 4098 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 4099 Opc == PPC::RLWNM8_rec) 4100 III.TruncateImmTo = 5; 4101 else 4102 III.TruncateImmTo = 6; 4103 switch(Opc) { 4104 default: llvm_unreachable("Unknown opcode"); 4105 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 4106 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 4107 case PPC::RLWNM_rec: 4108 III.ImmOpcode = PPC::RLWINM_rec; 4109 break; 4110 case PPC::RLWNM8_rec: 4111 III.ImmOpcode = PPC::RLWINM8_rec; 4112 break; 4113 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 4114 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 4115 case PPC::SLW_rec: 4116 III.ImmOpcode = PPC::RLWINM_rec; 4117 break; 4118 case PPC::SLW8_rec: 4119 III.ImmOpcode = PPC::RLWINM8_rec; 4120 break; 4121 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 4122 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 4123 case PPC::SRW_rec: 4124 III.ImmOpcode = PPC::RLWINM_rec; 4125 break; 4126 case PPC::SRW8_rec: 4127 III.ImmOpcode = PPC::RLWINM8_rec; 4128 break; 4129 case PPC::SRAW: 4130 III.ImmWidth = 5; 4131 III.TruncateImmTo = 0; 4132 III.ImmOpcode = PPC::SRAWI; 4133 break; 4134 case PPC::SRAW_rec: 4135 III.ImmWidth = 5; 4136 III.TruncateImmTo = 0; 4137 III.ImmOpcode = PPC::SRAWI_rec; 4138 break; 4139 } 4140 break; 4141 case PPC::RLDCL: 4142 case PPC::RLDCL_rec: 4143 case PPC::RLDCR: 4144 case PPC::RLDCR_rec: 4145 case PPC::SLD: 4146 case PPC::SLD_rec: 4147 case PPC::SRD: 4148 case PPC::SRD_rec: 4149 case PPC::SRAD: 4150 case PPC::SRAD_rec: 4151 III.SignedImm = false; 4152 III.ZeroIsSpecialOrig = 0; 4153 III.ZeroIsSpecialNew = 0; 4154 III.IsCommutative = false; 4155 // This isn't actually true, but the instructions ignore any of the 4156 // upper bits, so any immediate loaded with an LI is acceptable. 4157 // This does not apply to shift right algebraic because a value 4158 // out of range will produce a -1/0. 4159 III.ImmWidth = 16; 4160 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 4161 Opc == PPC::RLDCR_rec) 4162 III.TruncateImmTo = 6; 4163 else 4164 III.TruncateImmTo = 7; 4165 switch(Opc) { 4166 default: llvm_unreachable("Unknown opcode"); 4167 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4168 case PPC::RLDCL_rec: 4169 III.ImmOpcode = PPC::RLDICL_rec; 4170 break; 4171 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4172 case PPC::RLDCR_rec: 4173 III.ImmOpcode = PPC::RLDICR_rec; 4174 break; 4175 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4176 case PPC::SLD_rec: 4177 III.ImmOpcode = PPC::RLDICR_rec; 4178 break; 4179 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4180 case PPC::SRD_rec: 4181 III.ImmOpcode = PPC::RLDICL_rec; 4182 break; 4183 case PPC::SRAD: 4184 III.ImmWidth = 6; 4185 III.TruncateImmTo = 0; 4186 III.ImmOpcode = PPC::SRADI; 4187 break; 4188 case PPC::SRAD_rec: 4189 III.ImmWidth = 6; 4190 III.TruncateImmTo = 0; 4191 III.ImmOpcode = PPC::SRADI_rec; 4192 break; 4193 } 4194 break; 4195 // Loads and stores: 4196 case PPC::LBZX: 4197 case PPC::LBZX8: 4198 case PPC::LHZX: 4199 case PPC::LHZX8: 4200 case PPC::LHAX: 4201 case PPC::LHAX8: 4202 case PPC::LWZX: 4203 case PPC::LWZX8: 4204 case PPC::LWAX: 4205 case PPC::LDX: 4206 case PPC::LFSX: 4207 case PPC::LFDX: 4208 case PPC::STBX: 4209 case PPC::STBX8: 4210 case PPC::STHX: 4211 case PPC::STHX8: 4212 case PPC::STWX: 4213 case PPC::STWX8: 4214 case PPC::STDX: 4215 case PPC::STFSX: 4216 case PPC::STFDX: 4217 III.SignedImm = true; 4218 III.ZeroIsSpecialOrig = 1; 4219 III.ZeroIsSpecialNew = 2; 4220 III.IsCommutative = true; 4221 III.IsSummingOperands = true; 4222 III.ImmOpNo = 1; 4223 III.OpNoForForwarding = 2; 4224 switch(Opc) { 4225 default: llvm_unreachable("Unknown opcode"); 4226 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4227 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4228 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4229 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4230 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4231 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4232 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4233 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4234 case PPC::LWAX: 4235 III.ImmOpcode = PPC::LWA; 4236 III.ImmMustBeMultipleOf = 4; 4237 break; 4238 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4239 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4240 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4241 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4242 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4243 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4244 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4245 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4246 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4247 case PPC::STDX: 4248 III.ImmOpcode = PPC::STD; 4249 III.ImmMustBeMultipleOf = 4; 4250 break; 4251 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4252 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4253 } 4254 break; 4255 case PPC::LBZUX: 4256 case PPC::LBZUX8: 4257 case PPC::LHZUX: 4258 case PPC::LHZUX8: 4259 case PPC::LHAUX: 4260 case PPC::LHAUX8: 4261 case PPC::LWZUX: 4262 case PPC::LWZUX8: 4263 case PPC::LDUX: 4264 case PPC::LFSUX: 4265 case PPC::LFDUX: 4266 case PPC::STBUX: 4267 case PPC::STBUX8: 4268 case PPC::STHUX: 4269 case PPC::STHUX8: 4270 case PPC::STWUX: 4271 case PPC::STWUX8: 4272 case PPC::STDUX: 4273 case PPC::STFSUX: 4274 case PPC::STFDUX: 4275 III.SignedImm = true; 4276 III.ZeroIsSpecialOrig = 2; 4277 III.ZeroIsSpecialNew = 3; 4278 III.IsCommutative = false; 4279 III.IsSummingOperands = true; 4280 III.ImmOpNo = 2; 4281 III.OpNoForForwarding = 3; 4282 switch(Opc) { 4283 default: llvm_unreachable("Unknown opcode"); 4284 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4285 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4286 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4287 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4288 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4289 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4290 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4291 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4292 case PPC::LDUX: 4293 III.ImmOpcode = PPC::LDU; 4294 III.ImmMustBeMultipleOf = 4; 4295 break; 4296 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4297 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4298 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4299 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4300 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4301 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4302 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4303 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4304 case PPC::STDUX: 4305 III.ImmOpcode = PPC::STDU; 4306 III.ImmMustBeMultipleOf = 4; 4307 break; 4308 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4309 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4310 } 4311 break; 4312 // Power9 and up only. For some of these, the X-Form version has access to all 4313 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4314 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4315 // into or stored from is one of the VR registers. 4316 case PPC::LXVX: 4317 case PPC::LXSSPX: 4318 case PPC::LXSDX: 4319 case PPC::STXVX: 4320 case PPC::STXSSPX: 4321 case PPC::STXSDX: 4322 case PPC::XFLOADf32: 4323 case PPC::XFLOADf64: 4324 case PPC::XFSTOREf32: 4325 case PPC::XFSTOREf64: 4326 if (!Subtarget.hasP9Vector()) 4327 return false; 4328 III.SignedImm = true; 4329 III.ZeroIsSpecialOrig = 1; 4330 III.ZeroIsSpecialNew = 2; 4331 III.IsCommutative = true; 4332 III.IsSummingOperands = true; 4333 III.ImmOpNo = 1; 4334 III.OpNoForForwarding = 2; 4335 III.ImmMustBeMultipleOf = 4; 4336 switch(Opc) { 4337 default: llvm_unreachable("Unknown opcode"); 4338 case PPC::LXVX: 4339 III.ImmOpcode = PPC::LXV; 4340 III.ImmMustBeMultipleOf = 16; 4341 break; 4342 case PPC::LXSSPX: 4343 if (PostRA) { 4344 if (IsVFReg) 4345 III.ImmOpcode = PPC::LXSSP; 4346 else { 4347 III.ImmOpcode = PPC::LFS; 4348 III.ImmMustBeMultipleOf = 1; 4349 } 4350 break; 4351 } 4352 [[fallthrough]]; 4353 case PPC::XFLOADf32: 4354 III.ImmOpcode = PPC::DFLOADf32; 4355 break; 4356 case PPC::LXSDX: 4357 if (PostRA) { 4358 if (IsVFReg) 4359 III.ImmOpcode = PPC::LXSD; 4360 else { 4361 III.ImmOpcode = PPC::LFD; 4362 III.ImmMustBeMultipleOf = 1; 4363 } 4364 break; 4365 } 4366 [[fallthrough]]; 4367 case PPC::XFLOADf64: 4368 III.ImmOpcode = PPC::DFLOADf64; 4369 break; 4370 case PPC::STXVX: 4371 III.ImmOpcode = PPC::STXV; 4372 III.ImmMustBeMultipleOf = 16; 4373 break; 4374 case PPC::STXSSPX: 4375 if (PostRA) { 4376 if (IsVFReg) 4377 III.ImmOpcode = PPC::STXSSP; 4378 else { 4379 III.ImmOpcode = PPC::STFS; 4380 III.ImmMustBeMultipleOf = 1; 4381 } 4382 break; 4383 } 4384 [[fallthrough]]; 4385 case PPC::XFSTOREf32: 4386 III.ImmOpcode = PPC::DFSTOREf32; 4387 break; 4388 case PPC::STXSDX: 4389 if (PostRA) { 4390 if (IsVFReg) 4391 III.ImmOpcode = PPC::STXSD; 4392 else { 4393 III.ImmOpcode = PPC::STFD; 4394 III.ImmMustBeMultipleOf = 1; 4395 } 4396 break; 4397 } 4398 [[fallthrough]]; 4399 case PPC::XFSTOREf64: 4400 III.ImmOpcode = PPC::DFSTOREf64; 4401 break; 4402 } 4403 break; 4404 } 4405 return true; 4406 } 4407 4408 // Utility function for swaping two arbitrary operands of an instruction. 4409 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4410 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4411 4412 unsigned MaxOp = std::max(Op1, Op2); 4413 unsigned MinOp = std::min(Op1, Op2); 4414 MachineOperand MOp1 = MI.getOperand(MinOp); 4415 MachineOperand MOp2 = MI.getOperand(MaxOp); 4416 MI.removeOperand(std::max(Op1, Op2)); 4417 MI.removeOperand(std::min(Op1, Op2)); 4418 4419 // If the operands we are swapping are the two at the end (the common case) 4420 // we can just remove both and add them in the opposite order. 4421 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4422 MI.addOperand(MOp2); 4423 MI.addOperand(MOp1); 4424 } else { 4425 // Store all operands in a temporary vector, remove them and re-add in the 4426 // right order. 4427 SmallVector<MachineOperand, 2> MOps; 4428 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4429 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4430 MOps.push_back(MI.getOperand(i)); 4431 MI.removeOperand(i); 4432 } 4433 // MOp2 needs to be added next. 4434 MI.addOperand(MOp2); 4435 // Now add the rest. 4436 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4437 if (i == MaxOp) 4438 MI.addOperand(MOp1); 4439 else { 4440 MI.addOperand(MOps.back()); 4441 MOps.pop_back(); 4442 } 4443 } 4444 } 4445 } 4446 4447 // Check if the 'MI' that has the index OpNoForForwarding 4448 // meets the requirement described in the ImmInstrInfo. 4449 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4450 const ImmInstrInfo &III, 4451 unsigned OpNoForForwarding 4452 ) const { 4453 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4454 // would not work pre-RA, we can only do the check post RA. 4455 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4456 if (MRI.isSSA()) 4457 return false; 4458 4459 // Cannot do the transform if MI isn't summing the operands. 4460 if (!III.IsSummingOperands) 4461 return false; 4462 4463 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4464 if (!III.ZeroIsSpecialOrig) 4465 return false; 4466 4467 // We cannot do the transform if the operand we are trying to replace 4468 // isn't the same as the operand the instruction allows. 4469 if (OpNoForForwarding != III.OpNoForForwarding) 4470 return false; 4471 4472 // Check if the instruction we are trying to transform really has 4473 // the special zero register as its operand. 4474 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4475 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4476 return false; 4477 4478 // This machine instruction is convertible if it is, 4479 // 1. summing the operands. 4480 // 2. one of the operands is special zero register. 4481 // 3. the operand we are trying to replace is allowed by the MI. 4482 return true; 4483 } 4484 4485 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4486 // accordingly. 4487 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4488 const ImmInstrInfo &III, 4489 MachineOperand *&ImmMO, 4490 MachineOperand *&RegMO) const { 4491 unsigned Opc = DefMI.getOpcode(); 4492 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4493 return false; 4494 4495 assert(DefMI.getNumOperands() >= 3 && 4496 "Add inst must have at least three operands"); 4497 RegMO = &DefMI.getOperand(1); 4498 ImmMO = &DefMI.getOperand(2); 4499 4500 // Before RA, ADDI first operand could be a frame index. 4501 if (!RegMO->isReg()) 4502 return false; 4503 4504 // This DefMI is elgible for forwarding if it is: 4505 // 1. add inst 4506 // 2. one of the operands is Imm/CPI/Global. 4507 return isAnImmediateOperand(*ImmMO); 4508 } 4509 4510 bool PPCInstrInfo::isRegElgibleForForwarding( 4511 const MachineOperand &RegMO, const MachineInstr &DefMI, 4512 const MachineInstr &MI, bool KillDefMI, 4513 bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const { 4514 // x = addi y, imm 4515 // ... 4516 // z = lfdx 0, x -> z = lfd imm(y) 4517 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4518 // of "y" between the DEF of "x" and "z". 4519 // The query is only valid post RA. 4520 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4521 if (MRI.isSSA()) 4522 return false; 4523 4524 Register Reg = RegMO.getReg(); 4525 4526 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4527 MachineBasicBlock::const_reverse_iterator It = MI; 4528 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4529 It++; 4530 for (; It != E; ++It) { 4531 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4532 return false; 4533 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4534 IsFwdFeederRegKilled = true; 4535 if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4536 SeenIntermediateUse = true; 4537 // Made it to DefMI without encountering a clobber. 4538 if ((&*It) == &DefMI) 4539 break; 4540 } 4541 assert((&*It) == &DefMI && "DefMI is missing"); 4542 4543 // If DefMI also defines the register to be forwarded, we can only forward it 4544 // if DefMI is being erased. 4545 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4546 return KillDefMI; 4547 4548 return true; 4549 } 4550 4551 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4552 const MachineInstr &DefMI, 4553 const ImmInstrInfo &III, 4554 int64_t &Imm, 4555 int64_t BaseImm) const { 4556 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4557 if (DefMI.getOpcode() == PPC::ADDItocL) { 4558 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4559 // However, we know that, it is 16-bit width, and has the alignment of 4. 4560 // Check if the instruction met the requirement. 4561 if (III.ImmMustBeMultipleOf > 4 || 4562 III.TruncateImmTo || III.ImmWidth != 16) 4563 return false; 4564 4565 // Going from XForm to DForm loads means that the displacement needs to be 4566 // not just an immediate but also a multiple of 4, or 16 depending on the 4567 // load. A DForm load cannot be represented if it is a multiple of say 2. 4568 // XForm loads do not have this restriction. 4569 if (ImmMO.isGlobal()) { 4570 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4571 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4572 return false; 4573 } 4574 4575 return true; 4576 } 4577 4578 if (ImmMO.isImm()) { 4579 // It is Imm, we need to check if the Imm fit the range. 4580 // Sign-extend to 64-bits. 4581 // DefMI may be folded with another imm form instruction, the result Imm is 4582 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4583 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4584 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4585 return false; 4586 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4587 return false; 4588 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4589 4590 if (Imm % III.ImmMustBeMultipleOf) 4591 return false; 4592 if (III.TruncateImmTo) 4593 Imm &= ((1 << III.TruncateImmTo) - 1); 4594 } 4595 else 4596 return false; 4597 4598 // This ImmMO is forwarded if it meets the requriement describle 4599 // in ImmInstrInfo 4600 return true; 4601 } 4602 4603 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4604 unsigned OpNoForForwarding, 4605 MachineInstr **KilledDef) const { 4606 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4607 !DefMI.getOperand(1).isImm()) 4608 return false; 4609 4610 MachineFunction *MF = MI.getParent()->getParent(); 4611 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4612 bool PostRA = !MRI->isSSA(); 4613 4614 int64_t Immediate = DefMI.getOperand(1).getImm(); 4615 // Sign-extend to 64-bits. 4616 int64_t SExtImm = SignExtend64<16>(Immediate); 4617 4618 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4619 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4620 4621 bool ReplaceWithLI = false; 4622 bool Is64BitLI = false; 4623 int64_t NewImm = 0; 4624 bool SetCR = false; 4625 unsigned Opc = MI.getOpcode(); 4626 switch (Opc) { 4627 default: 4628 return false; 4629 4630 // FIXME: Any branches conditional on such a comparison can be made 4631 // unconditional. At this time, this happens too infrequently to be worth 4632 // the implementation effort, but if that ever changes, we could convert 4633 // such a pattern here. 4634 case PPC::CMPWI: 4635 case PPC::CMPLWI: 4636 case PPC::CMPDI: 4637 case PPC::CMPLDI: { 4638 // Doing this post-RA would require dataflow analysis to reliably find uses 4639 // of the CR register set by the compare. 4640 // No need to fixup killed/dead flag since this transformation is only valid 4641 // before RA. 4642 if (PostRA) 4643 return false; 4644 // If a compare-immediate is fed by an immediate and is itself an input of 4645 // an ISEL (the most common case) into a COPY of the correct register. 4646 bool Changed = false; 4647 Register DefReg = MI.getOperand(0).getReg(); 4648 int64_t Comparand = MI.getOperand(2).getImm(); 4649 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4650 ? (Comparand | 0xFFFFFFFFFFFF0000) 4651 : Comparand; 4652 4653 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4654 unsigned UseOpc = CompareUseMI.getOpcode(); 4655 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4656 continue; 4657 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4658 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4659 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4660 unsigned RegToCopy = 4661 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4662 if (RegToCopy == PPC::NoRegister) 4663 continue; 4664 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4665 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4666 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4667 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4668 CompareUseMI.removeOperand(3); 4669 CompareUseMI.removeOperand(2); 4670 continue; 4671 } 4672 LLVM_DEBUG( 4673 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4674 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4675 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4676 // Convert to copy and remove unneeded operands. 4677 CompareUseMI.setDesc(get(PPC::COPY)); 4678 CompareUseMI.removeOperand(3); 4679 CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1); 4680 CmpIselsConverted++; 4681 Changed = true; 4682 LLVM_DEBUG(CompareUseMI.dump()); 4683 } 4684 if (Changed) 4685 return true; 4686 // This may end up incremented multiple times since this function is called 4687 // during a fixed-point transformation, but it is only meant to indicate the 4688 // presence of this opportunity. 4689 MissedConvertibleImmediateInstrs++; 4690 return false; 4691 } 4692 4693 // Immediate forms - may simply be convertable to an LI. 4694 case PPC::ADDI: 4695 case PPC::ADDI8: { 4696 // Does the sum fit in a 16-bit signed field? 4697 int64_t Addend = MI.getOperand(2).getImm(); 4698 if (isInt<16>(Addend + SExtImm)) { 4699 ReplaceWithLI = true; 4700 Is64BitLI = Opc == PPC::ADDI8; 4701 NewImm = Addend + SExtImm; 4702 break; 4703 } 4704 return false; 4705 } 4706 case PPC::SUBFIC: 4707 case PPC::SUBFIC8: { 4708 // Only transform this if the CARRY implicit operand is dead. 4709 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4710 return false; 4711 int64_t Minuend = MI.getOperand(2).getImm(); 4712 if (isInt<16>(Minuend - SExtImm)) { 4713 ReplaceWithLI = true; 4714 Is64BitLI = Opc == PPC::SUBFIC8; 4715 NewImm = Minuend - SExtImm; 4716 break; 4717 } 4718 return false; 4719 } 4720 case PPC::RLDICL: 4721 case PPC::RLDICL_rec: 4722 case PPC::RLDICL_32: 4723 case PPC::RLDICL_32_64: { 4724 // Use APInt's rotate function. 4725 int64_t SH = MI.getOperand(2).getImm(); 4726 int64_t MB = MI.getOperand(3).getImm(); 4727 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4728 SExtImm, true); 4729 InVal = InVal.rotl(SH); 4730 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4731 InVal &= Mask; 4732 // Can't replace negative values with an LI as that will sign-extend 4733 // and not clear the left bits. If we're setting the CR bit, we will use 4734 // ANDI_rec which won't sign extend, so that's safe. 4735 if (isUInt<15>(InVal.getSExtValue()) || 4736 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4737 ReplaceWithLI = true; 4738 Is64BitLI = Opc != PPC::RLDICL_32; 4739 NewImm = InVal.getSExtValue(); 4740 SetCR = Opc == PPC::RLDICL_rec; 4741 break; 4742 } 4743 return false; 4744 } 4745 case PPC::RLWINM: 4746 case PPC::RLWINM8: 4747 case PPC::RLWINM_rec: 4748 case PPC::RLWINM8_rec: { 4749 int64_t SH = MI.getOperand(2).getImm(); 4750 int64_t MB = MI.getOperand(3).getImm(); 4751 int64_t ME = MI.getOperand(4).getImm(); 4752 APInt InVal(32, SExtImm, true); 4753 InVal = InVal.rotl(SH); 4754 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4755 InVal &= Mask; 4756 // Can't replace negative values with an LI as that will sign-extend 4757 // and not clear the left bits. If we're setting the CR bit, we will use 4758 // ANDI_rec which won't sign extend, so that's safe. 4759 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4760 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4761 isUInt<16>(InVal.getSExtValue())); 4762 if (ValueFits) { 4763 ReplaceWithLI = true; 4764 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4765 NewImm = InVal.getSExtValue(); 4766 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4767 break; 4768 } 4769 return false; 4770 } 4771 case PPC::ORI: 4772 case PPC::ORI8: 4773 case PPC::XORI: 4774 case PPC::XORI8: { 4775 int64_t LogicalImm = MI.getOperand(2).getImm(); 4776 int64_t Result = 0; 4777 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4778 Result = LogicalImm | SExtImm; 4779 else 4780 Result = LogicalImm ^ SExtImm; 4781 if (isInt<16>(Result)) { 4782 ReplaceWithLI = true; 4783 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4784 NewImm = Result; 4785 break; 4786 } 4787 return false; 4788 } 4789 } 4790 4791 if (ReplaceWithLI) { 4792 // We need to be careful with CR-setting instructions we're replacing. 4793 if (SetCR) { 4794 // We don't know anything about uses when we're out of SSA, so only 4795 // replace if the new immediate will be reproduced. 4796 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4797 if (PostRA && ImmChanged) 4798 return false; 4799 4800 if (!PostRA) { 4801 // If the defining load-immediate has no other uses, we can just replace 4802 // the immediate with the new immediate. 4803 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4804 DefMI.getOperand(1).setImm(NewImm); 4805 4806 // If we're not using the GPR result of the CR-setting instruction, we 4807 // just need to and with zero/non-zero depending on the new immediate. 4808 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4809 if (NewImm) { 4810 assert(Immediate && "Transformation converted zero to non-zero?"); 4811 NewImm = Immediate; 4812 } 4813 } else if (ImmChanged) 4814 return false; 4815 } 4816 } 4817 4818 LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n"); 4819 LLVM_DEBUG(MI.dump()); 4820 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4821 LLVM_DEBUG(DefMI.dump()); 4822 LoadImmediateInfo LII; 4823 LII.Imm = NewImm; 4824 LII.Is64Bit = Is64BitLI; 4825 LII.SetCR = SetCR; 4826 // If we're setting the CR, the original load-immediate must be kept (as an 4827 // operand to ANDI_rec/ANDI8_rec). 4828 if (KilledDef && SetCR) 4829 *KilledDef = nullptr; 4830 replaceInstrWithLI(MI, LII); 4831 4832 // Fixup killed/dead flag after transformation. 4833 // Pattern: 4834 // ForwardingOperandReg = LI imm1 4835 // y = op2 imm2, ForwardingOperandReg(killed) 4836 if (IsForwardingOperandKilled) 4837 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4838 4839 LLVM_DEBUG(dbgs() << "With:\n"); 4840 LLVM_DEBUG(MI.dump()); 4841 return true; 4842 } 4843 return false; 4844 } 4845 4846 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4847 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4848 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4849 bool PostRA = !MRI->isSSA(); 4850 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4851 // for post-ra. 4852 if (PostRA) 4853 return false; 4854 4855 // Only handle load/store. 4856 if (!MI.mayLoadOrStore()) 4857 return false; 4858 4859 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4860 4861 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4862 "MI must have x-form opcode"); 4863 4864 // get Imm Form info. 4865 ImmInstrInfo III; 4866 bool IsVFReg = MI.getOperand(0).isReg() 4867 ? isVFRegister(MI.getOperand(0).getReg()) 4868 : false; 4869 4870 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4871 return false; 4872 4873 if (!III.IsSummingOperands) 4874 return false; 4875 4876 if (OpNoForForwarding != III.OpNoForForwarding) 4877 return false; 4878 4879 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4880 if (!ImmOperandMI.isImm()) 4881 return false; 4882 4883 // Check DefMI. 4884 MachineOperand *ImmMO = nullptr; 4885 MachineOperand *RegMO = nullptr; 4886 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4887 return false; 4888 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4889 4890 // Check Imm. 4891 // Set ImmBase from imm instruction as base and get new Imm inside 4892 // isImmElgibleForForwarding. 4893 int64_t ImmBase = ImmOperandMI.getImm(); 4894 int64_t Imm = 0; 4895 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4896 return false; 4897 4898 // Get killed info in case fixup needed after transformation. 4899 unsigned ForwardKilledOperandReg = ~0U; 4900 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4901 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4902 4903 // Do the transform 4904 LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n"); 4905 LLVM_DEBUG(MI.dump()); 4906 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4907 LLVM_DEBUG(DefMI.dump()); 4908 4909 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4910 if (RegMO->isKill()) { 4911 MI.getOperand(III.OpNoForForwarding).setIsKill(true); 4912 // Clear the killed flag in RegMO. Doing this here can handle some cases 4913 // that DefMI and MI are not in same basic block. 4914 RegMO->setIsKill(false); 4915 } 4916 MI.getOperand(III.ImmOpNo).setImm(Imm); 4917 4918 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4919 if (DefMI.getParent() == MI.getParent()) { 4920 // Check if reg is killed between MI and DefMI. 4921 auto IsKilledFor = [&](unsigned Reg) { 4922 MachineBasicBlock::const_reverse_iterator It = MI; 4923 MachineBasicBlock::const_reverse_iterator E = DefMI; 4924 It++; 4925 for (; It != E; ++It) { 4926 if (It->killsRegister(Reg)) 4927 return true; 4928 } 4929 return false; 4930 }; 4931 4932 // Update kill flag 4933 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4934 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4935 if (ForwardKilledOperandReg != ~0U) 4936 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4937 } 4938 4939 LLVM_DEBUG(dbgs() << "With:\n"); 4940 LLVM_DEBUG(MI.dump()); 4941 return true; 4942 } 4943 4944 // If an X-Form instruction is fed by an add-immediate and one of its operands 4945 // is the literal zero, attempt to forward the source of the add-immediate to 4946 // the corresponding D-Form instruction with the displacement coming from 4947 // the immediate being added. 4948 bool PPCInstrInfo::transformToImmFormFedByAdd( 4949 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4950 MachineInstr &DefMI, bool KillDefMI) const { 4951 // RegMO ImmMO 4952 // | | 4953 // x = addi reg, imm <----- DefMI 4954 // y = op 0 , x <----- MI 4955 // | 4956 // OpNoForForwarding 4957 // Check if the MI meet the requirement described in the III. 4958 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4959 return false; 4960 4961 // Check if the DefMI meet the requirement 4962 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4963 MachineOperand *ImmMO = nullptr; 4964 MachineOperand *RegMO = nullptr; 4965 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4966 return false; 4967 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4968 4969 // As we get the Imm operand now, we need to check if the ImmMO meet 4970 // the requirement described in the III. If yes set the Imm. 4971 int64_t Imm = 0; 4972 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4973 return false; 4974 4975 bool IsFwdFeederRegKilled = false; 4976 bool SeenIntermediateUse = false; 4977 // Check if the RegMO can be forwarded to MI. 4978 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4979 IsFwdFeederRegKilled, SeenIntermediateUse)) 4980 return false; 4981 4982 // Get killed info in case fixup needed after transformation. 4983 unsigned ForwardKilledOperandReg = ~0U; 4984 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4985 bool PostRA = !MRI.isSSA(); 4986 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4987 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4988 4989 // We know that, the MI and DefMI both meet the pattern, and 4990 // the Imm also meet the requirement with the new Imm-form. 4991 // It is safe to do the transformation now. 4992 LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n"); 4993 LLVM_DEBUG(MI.dump()); 4994 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4995 LLVM_DEBUG(DefMI.dump()); 4996 4997 // Update the base reg first. 4998 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4999 false, false, 5000 RegMO->isKill()); 5001 5002 // Then, update the imm. 5003 if (ImmMO->isImm()) { 5004 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 5005 // directly. 5006 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 5007 } 5008 else { 5009 // Otherwise, it is Constant Pool Index(CPI) or Global, 5010 // which is relocation in fact. We need to replace the special zero 5011 // register with ImmMO. 5012 // Before that, we need to fixup the target flags for imm. 5013 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 5014 if (DefMI.getOpcode() == PPC::ADDItocL) 5015 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 5016 5017 // MI didn't have the interface such as MI.setOperand(i) though 5018 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 5019 // ImmMO, we need to remove ZERO operand and all the operands behind it, 5020 // and, add the ImmMO, then, move back all the operands behind ZERO. 5021 SmallVector<MachineOperand, 2> MOps; 5022 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 5023 MOps.push_back(MI.getOperand(i)); 5024 MI.removeOperand(i); 5025 } 5026 5027 // Remove the last MO in the list, which is ZERO operand in fact. 5028 MOps.pop_back(); 5029 // Add the imm operand. 5030 MI.addOperand(*ImmMO); 5031 // Now add the rest back. 5032 for (auto &MO : MOps) 5033 MI.addOperand(MO); 5034 } 5035 5036 // Update the opcode. 5037 MI.setDesc(get(III.ImmOpcode)); 5038 5039 // Fix up killed/dead flag after transformation. 5040 // Pattern 1: 5041 // x = ADD KilledFwdFeederReg, imm 5042 // n = opn KilledFwdFeederReg(killed), regn 5043 // y = XOP 0, x 5044 // Pattern 2: 5045 // x = ADD reg(killed), imm 5046 // y = XOP 0, x 5047 if (IsFwdFeederRegKilled || RegMO->isKill()) 5048 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 5049 // Pattern 3: 5050 // ForwardKilledOperandReg = ADD reg, imm 5051 // y = XOP 0, ForwardKilledOperandReg(killed) 5052 if (ForwardKilledOperandReg != ~0U) 5053 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5054 5055 LLVM_DEBUG(dbgs() << "With:\n"); 5056 LLVM_DEBUG(MI.dump()); 5057 5058 return true; 5059 } 5060 5061 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 5062 const ImmInstrInfo &III, 5063 unsigned ConstantOpNo, 5064 MachineInstr &DefMI) const { 5065 // DefMI must be LI or LI8. 5066 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 5067 !DefMI.getOperand(1).isImm()) 5068 return false; 5069 5070 // Get Imm operand and Sign-extend to 64-bits. 5071 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 5072 5073 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 5074 bool PostRA = !MRI.isSSA(); 5075 // Exit early if we can't convert this. 5076 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 5077 return false; 5078 if (Imm % III.ImmMustBeMultipleOf) 5079 return false; 5080 if (III.TruncateImmTo) 5081 Imm &= ((1 << III.TruncateImmTo) - 1); 5082 if (III.SignedImm) { 5083 APInt ActualValue(64, Imm, true); 5084 if (!ActualValue.isSignedIntN(III.ImmWidth)) 5085 return false; 5086 } else { 5087 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 5088 if ((uint64_t)Imm > UnsignedMax) 5089 return false; 5090 } 5091 5092 // If we're post-RA, the instructions don't agree on whether register zero is 5093 // special, we can transform this as long as the register operand that will 5094 // end up in the location where zero is special isn't R0. 5095 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5096 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 5097 III.ZeroIsSpecialNew + 1; 5098 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 5099 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5100 // If R0 is in the operand where zero is special for the new instruction, 5101 // it is unsafe to transform if the constant operand isn't that operand. 5102 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 5103 ConstantOpNo != III.ZeroIsSpecialNew) 5104 return false; 5105 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 5106 ConstantOpNo != PosForOrigZero) 5107 return false; 5108 } 5109 5110 // Get killed info in case fixup needed after transformation. 5111 unsigned ForwardKilledOperandReg = ~0U; 5112 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 5113 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 5114 5115 unsigned Opc = MI.getOpcode(); 5116 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 5117 Opc == PPC::SRW || Opc == PPC::SRW_rec || 5118 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 5119 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 5120 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 5121 Opc == PPC::SRD || Opc == PPC::SRD_rec; 5122 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 5123 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 5124 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 5125 Opc == PPC::SRD_rec; 5126 5127 LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: "); 5128 LLVM_DEBUG(MI.dump()); 5129 LLVM_DEBUG(dbgs() << "Fed by load-immediate: "); 5130 LLVM_DEBUG(DefMI.dump()); 5131 MI.setDesc(get(III.ImmOpcode)); 5132 if (ConstantOpNo == III.OpNoForForwarding) { 5133 // Converting shifts to immediate form is a bit tricky since they may do 5134 // one of three things: 5135 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 5136 // 2. If the shift amount is zero, the result is unchanged (save for maybe 5137 // setting CR0) 5138 // 3. If the shift amount is in [1, OpSize), it's just a shift 5139 if (SpecialShift32 || SpecialShift64) { 5140 LoadImmediateInfo LII; 5141 LII.Imm = 0; 5142 LII.SetCR = SetCR; 5143 LII.Is64Bit = SpecialShift64; 5144 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 5145 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 5146 replaceInstrWithLI(MI, LII); 5147 // Shifts by zero don't change the value. If we don't need to set CR0, 5148 // just convert this to a COPY. Can't do this post-RA since we've already 5149 // cleaned up the copies. 5150 else if (!SetCR && ShAmt == 0 && !PostRA) { 5151 MI.removeOperand(2); 5152 MI.setDesc(get(PPC::COPY)); 5153 } else { 5154 // The 32 bit and 64 bit instructions are quite different. 5155 if (SpecialShift32) { 5156 // Left shifts use (N, 0, 31-N). 5157 // Right shifts use (32-N, N, 31) if 0 < N < 32. 5158 // use (0, 0, 31) if N == 0. 5159 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 5160 uint64_t MB = RightShift ? ShAmt : 0; 5161 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 5162 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5163 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 5164 .addImm(ME); 5165 } else { 5166 // Left shifts use (N, 63-N). 5167 // Right shifts use (64-N, N) if 0 < N < 64. 5168 // use (0, 0) if N == 0. 5169 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 5170 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 5171 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5172 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5173 } 5174 } 5175 } else 5176 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5177 } 5178 // Convert commutative instructions (switch the operands and convert the 5179 // desired one to an immediate. 5180 else if (III.IsCommutative) { 5181 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5182 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5183 } else 5184 llvm_unreachable("Should have exited early!"); 5185 5186 // For instructions for which the constant register replaces a different 5187 // operand than where the immediate goes, we need to swap them. 5188 if (III.OpNoForForwarding != III.ImmOpNo) 5189 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5190 5191 // If the special R0/X0 register index are different for original instruction 5192 // and new instruction, we need to fix up the register class in new 5193 // instruction. 5194 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5195 if (III.ZeroIsSpecialNew) { 5196 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5197 // need to fix up register class. 5198 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5199 if (RegToModify.isVirtual()) { 5200 const TargetRegisterClass *NewRC = 5201 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5202 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5203 MRI.setRegClass(RegToModify, NewRC); 5204 } 5205 } 5206 } 5207 5208 // Fix up killed/dead flag after transformation. 5209 // Pattern: 5210 // ForwardKilledOperandReg = LI imm 5211 // y = XOP reg, ForwardKilledOperandReg(killed) 5212 if (ForwardKilledOperandReg != ~0U) 5213 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5214 5215 LLVM_DEBUG(dbgs() << "With: "); 5216 LLVM_DEBUG(MI.dump()); 5217 LLVM_DEBUG(dbgs() << "\n"); 5218 return true; 5219 } 5220 5221 const TargetRegisterClass * 5222 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5223 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5224 return &PPC::VSRCRegClass; 5225 return RC; 5226 } 5227 5228 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5229 return PPC::getRecordFormOpcode(Opcode); 5230 } 5231 5232 static bool isOpZeroOfSubwordPreincLoad(int Opcode) { 5233 return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || 5234 Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU || 5235 Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 || 5236 Opcode == PPC::LHZUX8); 5237 } 5238 5239 // This function checks for sign extension from 32 bits to 64 bits. 5240 static bool definedBySignExtendingOp(const unsigned Reg, 5241 const MachineRegisterInfo *MRI) { 5242 if (!Register::isVirtualRegister(Reg)) 5243 return false; 5244 5245 MachineInstr *MI = MRI->getVRegDef(Reg); 5246 if (!MI) 5247 return false; 5248 5249 int Opcode = MI->getOpcode(); 5250 const PPCInstrInfo *TII = 5251 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5252 if (TII->isSExt32To64(Opcode)) 5253 return true; 5254 5255 // The first def of LBZU/LHZU is sign extended. 5256 if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg) 5257 return true; 5258 5259 // RLDICL generates sign-extended output if it clears at least 5260 // 33 bits from the left (MSB). 5261 if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33) 5262 return true; 5263 5264 // If at least one bit from left in a lower word is masked out, 5265 // all of 0 to 32-th bits of the output are cleared. 5266 // Hence the output is already sign extended. 5267 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5268 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5269 MI->getOperand(3).getImm() > 0 && 5270 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5271 return true; 5272 5273 // If the most significant bit of immediate in ANDIS is zero, 5274 // all of 0 to 32-th bits are cleared. 5275 if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) { 5276 uint16_t Imm = MI->getOperand(2).getImm(); 5277 if ((Imm & 0x8000) == 0) 5278 return true; 5279 } 5280 5281 return false; 5282 } 5283 5284 // This function checks the machine instruction that defines the input register 5285 // Reg. If that machine instruction always outputs a value that has only zeros 5286 // in the higher 32 bits then this function will return true. 5287 static bool definedByZeroExtendingOp(const unsigned Reg, 5288 const MachineRegisterInfo *MRI) { 5289 if (!Register::isVirtualRegister(Reg)) 5290 return false; 5291 5292 MachineInstr *MI = MRI->getVRegDef(Reg); 5293 if (!MI) 5294 return false; 5295 5296 int Opcode = MI->getOpcode(); 5297 const PPCInstrInfo *TII = 5298 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5299 if (TII->isZExt32To64(Opcode)) 5300 return true; 5301 5302 // The first def of LBZU/LHZU/LWZU are zero extended. 5303 if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU || 5304 Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) && 5305 MI->getOperand(0).getReg() == Reg) 5306 return true; 5307 5308 // The 16-bit immediate is sign-extended in li/lis. 5309 // If the most significant bit is zero, all higher bits are zero. 5310 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5311 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5312 int64_t Imm = MI->getOperand(1).getImm(); 5313 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5314 return true; 5315 } 5316 5317 // We have some variations of rotate-and-mask instructions 5318 // that clear higher 32-bits. 5319 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5320 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5321 Opcode == PPC::RLDICL_32_64) && 5322 MI->getOperand(3).getImm() >= 32) 5323 return true; 5324 5325 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5326 MI->getOperand(3).getImm() >= 32 && 5327 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) 5328 return true; 5329 5330 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5331 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5332 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5333 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5334 return true; 5335 5336 return false; 5337 } 5338 5339 // This function returns true if the input MachineInstr is a TOC save 5340 // instruction. 5341 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5342 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5343 return false; 5344 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5345 unsigned StackOffset = MI.getOperand(1).getImm(); 5346 Register StackReg = MI.getOperand(2).getReg(); 5347 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5348 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5349 return true; 5350 5351 return false; 5352 } 5353 5354 // We limit the max depth to track incoming values of PHIs or binary ops 5355 // (e.g. AND) to avoid excessive cost. 5356 const unsigned MAX_BINOP_DEPTH = 1; 5357 // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth 5358 // does not count all of the recursions. The parameter BinOpDepth is incremented 5359 // only when isSignOrZeroExtended calls itself more than once. This is done to 5360 // prevent expontential recursion. There is no parameter to track linear 5361 // recursion. 5362 std::pair<bool, bool> 5363 PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg, 5364 const unsigned BinOpDepth, 5365 const MachineRegisterInfo *MRI) const { 5366 if (!Register::isVirtualRegister(Reg)) 5367 return std::pair<bool, bool>(false, false); 5368 5369 MachineInstr *MI = MRI->getVRegDef(Reg); 5370 if (!MI) 5371 return std::pair<bool, bool>(false, false); 5372 5373 bool IsSExt = definedBySignExtendingOp(Reg, MRI); 5374 bool IsZExt = definedByZeroExtendingOp(Reg, MRI); 5375 5376 // If we know the instruction always returns sign- and zero-extended result, 5377 // return here. 5378 if (IsSExt && IsZExt) 5379 return std::pair<bool, bool>(IsSExt, IsZExt); 5380 5381 switch (MI->getOpcode()) { 5382 case PPC::COPY: { 5383 Register SrcReg = MI->getOperand(1).getReg(); 5384 5385 // In both ELFv1 and v2 ABI, method parameters and the return value 5386 // are sign- or zero-extended. 5387 const MachineFunction *MF = MI->getMF(); 5388 5389 if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5390 // If this is a copy from another register, we recursively check source. 5391 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5392 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5393 SrcExt.second || IsZExt); 5394 } 5395 5396 // From here on everything is SVR4ABI 5397 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5398 // We check the ZExt/SExt flags for a method parameter. 5399 if (MI->getParent()->getBasicBlock() == 5400 &MF->getFunction().getEntryBlock()) { 5401 Register VReg = MI->getOperand(0).getReg(); 5402 if (MF->getRegInfo().isLiveIn(VReg)) { 5403 IsSExt |= FuncInfo->isLiveInSExt(VReg); 5404 IsZExt |= FuncInfo->isLiveInZExt(VReg); 5405 return std::pair<bool, bool>(IsSExt, IsZExt); 5406 } 5407 } 5408 5409 if (SrcReg != PPC::X3) { 5410 // If this is a copy from another register, we recursively check source. 5411 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5412 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5413 SrcExt.second || IsZExt); 5414 } 5415 5416 // For a method return value, we check the ZExt/SExt flags in attribute. 5417 // We assume the following code sequence for method call. 5418 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5419 // BL8_NOP @func,... 5420 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5421 // %5 = COPY %x3; G8RC:%5 5422 const MachineBasicBlock *MBB = MI->getParent(); 5423 std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt); 5424 MachineBasicBlock::const_instr_iterator II = 5425 MachineBasicBlock::const_instr_iterator(MI); 5426 if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP) 5427 return IsExtendPair; 5428 5429 const MachineInstr &CallMI = *(--II); 5430 if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal()) 5431 return IsExtendPair; 5432 5433 const Function *CalleeFn = 5434 dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal()); 5435 if (!CalleeFn) 5436 return IsExtendPair; 5437 const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5438 if (IntTy && IntTy->getBitWidth() <= 32) { 5439 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); 5440 IsSExt |= Attrs.hasAttribute(Attribute::SExt); 5441 IsZExt |= Attrs.hasAttribute(Attribute::ZExt); 5442 return std::pair<bool, bool>(IsSExt, IsZExt); 5443 } 5444 5445 return IsExtendPair; 5446 } 5447 5448 // OR, XOR with 16-bit immediate does not change the upper 48 bits. 5449 // So, we track the operand register as we do for register copy. 5450 case PPC::ORI: 5451 case PPC::XORI: 5452 case PPC::ORI8: 5453 case PPC::XORI8: { 5454 Register SrcReg = MI->getOperand(1).getReg(); 5455 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5456 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5457 SrcExt.second || IsZExt); 5458 } 5459 5460 // OR, XOR with shifted 16-bit immediate does not change the upper 5461 // 32 bits. So, we track the operand register for zero extension. 5462 // For sign extension when the MSB of the immediate is zero, we also 5463 // track the operand register since the upper 33 bits are unchanged. 5464 case PPC::ORIS: 5465 case PPC::XORIS: 5466 case PPC::ORIS8: 5467 case PPC::XORIS8: { 5468 Register SrcReg = MI->getOperand(1).getReg(); 5469 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5470 uint16_t Imm = MI->getOperand(2).getImm(); 5471 if (Imm & 0x8000) 5472 return std::pair<bool, bool>(false, SrcExt.second || IsZExt); 5473 else 5474 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5475 SrcExt.second || IsZExt); 5476 } 5477 5478 // If all incoming values are sign-/zero-extended, 5479 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5480 case PPC::OR: 5481 case PPC::OR8: 5482 case PPC::ISEL: 5483 case PPC::PHI: { 5484 if (BinOpDepth >= MAX_BINOP_DEPTH) 5485 return std::pair<bool, bool>(false, false); 5486 5487 // The input registers for PHI are operand 1, 3, ... 5488 // The input registers for others are operand 1 and 2. 5489 unsigned OperandEnd = 3, OperandStride = 1; 5490 if (MI->getOpcode() == PPC::PHI) { 5491 OperandEnd = MI->getNumOperands(); 5492 OperandStride = 2; 5493 } 5494 5495 IsSExt = true; 5496 IsZExt = true; 5497 for (unsigned I = 1; I != OperandEnd; I += OperandStride) { 5498 if (!MI->getOperand(I).isReg()) 5499 return std::pair<bool, bool>(false, false); 5500 5501 Register SrcReg = MI->getOperand(I).getReg(); 5502 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI); 5503 IsSExt &= SrcExt.first; 5504 IsZExt &= SrcExt.second; 5505 } 5506 return std::pair<bool, bool>(IsSExt, IsZExt); 5507 } 5508 5509 // If at least one of the incoming values of an AND is zero extended 5510 // then the output is also zero-extended. If both of the incoming values 5511 // are sign-extended then the output is also sign extended. 5512 case PPC::AND: 5513 case PPC::AND8: { 5514 if (BinOpDepth >= MAX_BINOP_DEPTH) 5515 return std::pair<bool, bool>(false, false); 5516 5517 Register SrcReg1 = MI->getOperand(1).getReg(); 5518 Register SrcReg2 = MI->getOperand(2).getReg(); 5519 auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI); 5520 auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI); 5521 return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first, 5522 Src1Ext.second || Src2Ext.second); 5523 } 5524 5525 default: 5526 break; 5527 } 5528 return std::pair<bool, bool>(IsSExt, IsZExt); 5529 } 5530 5531 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5532 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5533 } 5534 5535 namespace { 5536 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5537 MachineInstr *Loop, *EndLoop, *LoopCount; 5538 MachineFunction *MF; 5539 const TargetInstrInfo *TII; 5540 int64_t TripCount; 5541 5542 public: 5543 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5544 MachineInstr *LoopCount) 5545 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5546 MF(Loop->getParent()->getParent()), 5547 TII(MF->getSubtarget().getInstrInfo()) { 5548 // Inspect the Loop instruction up-front, as it may be deleted when we call 5549 // createTripCountGreaterCondition. 5550 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5551 TripCount = LoopCount->getOperand(1).getImm(); 5552 else 5553 TripCount = -1; 5554 } 5555 5556 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5557 // Only ignore the terminator. 5558 return MI == EndLoop; 5559 } 5560 5561 std::optional<bool> createTripCountGreaterCondition( 5562 int TC, MachineBasicBlock &MBB, 5563 SmallVectorImpl<MachineOperand> &Cond) override { 5564 if (TripCount == -1) { 5565 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5566 // so we don't need to generate any thing here. 5567 Cond.push_back(MachineOperand::CreateImm(0)); 5568 Cond.push_back(MachineOperand::CreateReg( 5569 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5570 true)); 5571 return {}; 5572 } 5573 5574 return TripCount > TC; 5575 } 5576 5577 void setPreheader(MachineBasicBlock *NewPreheader) override { 5578 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5579 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5580 } 5581 5582 void adjustTripCount(int TripCountAdjust) override { 5583 // If the loop trip count is a compile-time value, then just change the 5584 // value. 5585 if (LoopCount->getOpcode() == PPC::LI8 || 5586 LoopCount->getOpcode() == PPC::LI) { 5587 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5588 LoopCount->getOperand(1).setImm(TripCount); 5589 return; 5590 } 5591 5592 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5593 // so we don't need to generate any thing here. 5594 } 5595 5596 void disposed() override { 5597 Loop->eraseFromParent(); 5598 // Ensure the loop setup instruction is deleted too. 5599 LoopCount->eraseFromParent(); 5600 } 5601 }; 5602 } // namespace 5603 5604 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5605 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5606 // We really "analyze" only hardware loops right now. 5607 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5608 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5609 if (Preheader == LoopBB) 5610 Preheader = *std::next(LoopBB->pred_begin()); 5611 MachineFunction *MF = Preheader->getParent(); 5612 5613 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5614 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5615 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5616 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5617 MachineRegisterInfo &MRI = MF->getRegInfo(); 5618 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5619 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5620 } 5621 } 5622 return nullptr; 5623 } 5624 5625 MachineInstr *PPCInstrInfo::findLoopInstr( 5626 MachineBasicBlock &PreHeader, 5627 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5628 5629 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5630 5631 // The loop set-up instruction should be in preheader 5632 for (auto &I : PreHeader.instrs()) 5633 if (I.getOpcode() == LOOPi) 5634 return &I; 5635 return nullptr; 5636 } 5637 5638 // Return true if get the base operand, byte offset of an instruction and the 5639 // memory width. Width is the size of memory that is being loaded/stored. 5640 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5641 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5642 unsigned &Width, const TargetRegisterInfo *TRI) const { 5643 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5644 return false; 5645 5646 // Handle only loads/stores with base register followed by immediate offset. 5647 if (!LdSt.getOperand(1).isImm() || 5648 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5649 return false; 5650 if (!LdSt.getOperand(1).isImm() || 5651 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5652 return false; 5653 5654 if (!LdSt.hasOneMemOperand()) 5655 return false; 5656 5657 Width = (*LdSt.memoperands_begin())->getSize(); 5658 Offset = LdSt.getOperand(1).getImm(); 5659 BaseReg = &LdSt.getOperand(2); 5660 return true; 5661 } 5662 5663 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5664 const MachineInstr &MIa, const MachineInstr &MIb) const { 5665 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5666 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5667 5668 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5669 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5670 return false; 5671 5672 // Retrieve the base register, offset from the base register and width. Width 5673 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5674 // base registers are identical, and the offset of a lower memory access + 5675 // the width doesn't overlap the offset of a higher memory access, 5676 // then the memory accesses are different. 5677 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5678 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5679 int64_t OffsetA = 0, OffsetB = 0; 5680 unsigned int WidthA = 0, WidthB = 0; 5681 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5682 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5683 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5684 int LowOffset = std::min(OffsetA, OffsetB); 5685 int HighOffset = std::max(OffsetA, OffsetB); 5686 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5687 if (LowOffset + LowWidth <= HighOffset) 5688 return true; 5689 } 5690 } 5691 return false; 5692 } 5693