xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/RegisterPressure.h"
33 #include "llvm/CodeGen/ScheduleDAG.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/raw_ostream.h"
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "ppc-instr-info"
47 
48 #define GET_INSTRMAP_INFO
49 #define GET_INSTRINFO_CTOR_DTOR
50 #include "PPCGenInstrInfo.inc"
51 
52 STATISTIC(NumStoreSPILLVSRRCAsVec,
53           "Number of spillvsrrc spilled to stack as vec");
54 STATISTIC(NumStoreSPILLVSRRCAsGpr,
55           "Number of spillvsrrc spilled to stack as gpr");
56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
57 STATISTIC(CmpIselsConverted,
58           "Number of ISELs that depend on comparison of constants converted");
59 STATISTIC(MissedConvertibleImmediateInstrs,
60           "Number of compare-immediate instructions fed by constants");
61 STATISTIC(NumRcRotatesConvertedToRcAnd,
62           "Number of record-form rotates converted to record-form andi");
63 
64 static cl::
65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
66             cl::desc("Disable analysis for CTR loops"));
67 
68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
69 cl::desc("Disable compare instruction optimization"), cl::Hidden);
70 
71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
73 cl::Hidden);
74 
75 static cl::opt<bool>
76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
77   cl::desc("Use the old (incorrect) instruction latency calculation"));
78 
79 static cl::opt<float>
80     FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
81                 cl::desc("register pressure factor for the transformations."));
82 
83 static cl::opt<bool> EnableFMARegPressureReduction(
84     "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
85     cl::desc("enable register pressure reduce in machine combiner pass."));
86 
87 // Pin the vtable to this file.
88 void PPCInstrInfo::anchor() {}
89 
90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
91     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
92                       /* CatchRetOpcode */ -1,
93                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
94       Subtarget(STI), RI(STI.getTargetMachine()) {}
95 
96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
97 /// this target when scheduling the DAG.
98 ScheduleHazardRecognizer *
99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
100                                            const ScheduleDAG *DAG) const {
101   unsigned Directive =
102       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
103   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
104       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
105     const InstrItineraryData *II =
106         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
107     return new ScoreboardHazardRecognizer(II, DAG);
108   }
109 
110   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
111 }
112 
113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
114 /// to use for this target when scheduling the DAG.
115 ScheduleHazardRecognizer *
116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
117                                                  const ScheduleDAG *DAG) const {
118   unsigned Directive =
119       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
120 
121   // FIXME: Leaving this as-is until we have POWER9 scheduling info
122   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
123     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
124 
125   // Most subtargets use a PPC970 recognizer.
126   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
127       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
128     assert(DAG->TII && "No InstrInfo?");
129 
130     return new PPCHazardRecognizer970(*DAG);
131   }
132 
133   return new ScoreboardHazardRecognizer(II, DAG);
134 }
135 
136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
137                                        const MachineInstr &MI,
138                                        unsigned *PredCost) const {
139   if (!ItinData || UseOldLatencyCalc)
140     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
141 
142   // The default implementation of getInstrLatency calls getStageLatency, but
143   // getStageLatency does not do the right thing for us. While we have
144   // itinerary, most cores are fully pipelined, and so the itineraries only
145   // express the first part of the pipeline, not every stage. Instead, we need
146   // to use the listed output operand cycle number (using operand 0 here, which
147   // is an output).
148 
149   unsigned Latency = 1;
150   unsigned DefClass = MI.getDesc().getSchedClass();
151   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
152     const MachineOperand &MO = MI.getOperand(i);
153     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
154       continue;
155 
156     int Cycle = ItinData->getOperandCycle(DefClass, i);
157     if (Cycle < 0)
158       continue;
159 
160     Latency = std::max(Latency, (unsigned) Cycle);
161   }
162 
163   return Latency;
164 }
165 
166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
167                                     const MachineInstr &DefMI, unsigned DefIdx,
168                                     const MachineInstr &UseMI,
169                                     unsigned UseIdx) const {
170   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
171                                                    UseMI, UseIdx);
172 
173   if (!DefMI.getParent())
174     return Latency;
175 
176   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
177   Register Reg = DefMO.getReg();
178 
179   bool IsRegCR;
180   if (Register::isVirtualRegister(Reg)) {
181     const MachineRegisterInfo *MRI =
182         &DefMI.getParent()->getParent()->getRegInfo();
183     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
184               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
185   } else {
186     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
187               PPC::CRBITRCRegClass.contains(Reg);
188   }
189 
190   if (UseMI.isBranch() && IsRegCR) {
191     if (Latency < 0)
192       Latency = getInstrLatency(ItinData, DefMI);
193 
194     // On some cores, there is an additional delay between writing to a condition
195     // register, and using it from a branch.
196     unsigned Directive = Subtarget.getCPUDirective();
197     switch (Directive) {
198     default: break;
199     case PPC::DIR_7400:
200     case PPC::DIR_750:
201     case PPC::DIR_970:
202     case PPC::DIR_E5500:
203     case PPC::DIR_PWR4:
204     case PPC::DIR_PWR5:
205     case PPC::DIR_PWR5X:
206     case PPC::DIR_PWR6:
207     case PPC::DIR_PWR6X:
208     case PPC::DIR_PWR7:
209     case PPC::DIR_PWR8:
210     // FIXME: Is this needed for POWER9?
211       Latency += 2;
212       break;
213     }
214   }
215 
216   return Latency;
217 }
218 
219 /// This is an architecture-specific helper function of reassociateOps.
220 /// Set special operand attributes for new instructions after reassociation.
221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
222                                          MachineInstr &OldMI2,
223                                          MachineInstr &NewMI1,
224                                          MachineInstr &NewMI2) const {
225   // Propagate FP flags from the original instructions.
226   // But clear poison-generating flags because those may not be valid now.
227   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
228   NewMI1.setFlags(IntersectedFlags);
229   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
230   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
231   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
232 
233   NewMI2.setFlags(IntersectedFlags);
234   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
235   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
236   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
237 }
238 
239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
240                                          uint16_t Flags) const {
241   MI.setFlags(Flags);
242   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
243   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
244   MI.clearFlag(MachineInstr::MIFlag::IsExact);
245 }
246 
247 // This function does not list all associative and commutative operations, but
248 // only those worth feeding through the machine combiner in an attempt to
249 // reduce the critical path. Mostly, this means floating-point operations,
250 // because they have high latencies(>=5) (compared to other operations, such as
251 // and/or, which are also associative and commutative, but have low latencies).
252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
253   switch (Inst.getOpcode()) {
254   // Floating point:
255   // FP Add:
256   case PPC::FADD:
257   case PPC::FADDS:
258   // FP Multiply:
259   case PPC::FMUL:
260   case PPC::FMULS:
261   // Altivec Add:
262   case PPC::VADDFP:
263   // VSX Add:
264   case PPC::XSADDDP:
265   case PPC::XVADDDP:
266   case PPC::XVADDSP:
267   case PPC::XSADDSP:
268   // VSX Multiply:
269   case PPC::XSMULDP:
270   case PPC::XVMULDP:
271   case PPC::XVMULSP:
272   case PPC::XSMULSP:
273     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
274            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
275   // Fixed point:
276   // Multiply:
277   case PPC::MULHD:
278   case PPC::MULLD:
279   case PPC::MULHW:
280   case PPC::MULLW:
281     return true;
282   default:
283     return false;
284   }
285 }
286 
287 #define InfoArrayIdxFMAInst 0
288 #define InfoArrayIdxFAddInst 1
289 #define InfoArrayIdxFMULInst 2
290 #define InfoArrayIdxAddOpIdx 3
291 #define InfoArrayIdxMULOpIdx 4
292 #define InfoArrayIdxFSubInst 5
293 // Array keeps info for FMA instructions:
294 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
299 //                                second MUL operand index is plus 1;
300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
301 static const uint16_t FMAOpIdxInfo[][6] = {
302     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
303     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
304     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
305     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
306     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
307     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
308     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
309 
310 // Check if an opcode is a FMA instruction. If it is, return the index in array
311 // FMAOpIdxInfo. Otherwise, return -1.
312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
313   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
314     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
315       return I;
316   return -1;
317 }
318 
319 // On PowerPC target, we have two kinds of patterns related to FMA:
320 // 1: Improve ILP.
321 // Try to reassociate FMA chains like below:
322 //
323 // Pattern 1:
324 //   A =  FADD X,  Y          (Leaf)
325 //   B =  FMA  A,  M21,  M22  (Prev)
326 //   C =  FMA  B,  M31,  M32  (Root)
327 // -->
328 //   A =  FMA  X,  M21,  M22
329 //   B =  FMA  Y,  M31,  M32
330 //   C =  FADD A,  B
331 //
332 // Pattern 2:
333 //   A =  FMA  X,  M11,  M12  (Leaf)
334 //   B =  FMA  A,  M21,  M22  (Prev)
335 //   C =  FMA  B,  M31,  M32  (Root)
336 // -->
337 //   A =  FMUL M11,  M12
338 //   B =  FMA  X,  M21,  M22
339 //   D =  FMA  A,  M31,  M32
340 //   C =  FADD B,  D
341 //
342 // breaking the dependency between A and B, allowing FMA to be executed in
343 // parallel (or back-to-back in a pipeline) instead of depending on each other.
344 //
345 // 2: Reduce register pressure.
346 // Try to reassociate FMA with FSUB and a constant like below:
347 // C is a floating point const.
348 //
349 // Pattern 1:
350 //   A = FSUB  X,  Y      (Leaf)
351 //   D = FMA   B,  C,  A  (Root)
352 // -->
353 //   A = FMA   B,  Y,  -C
354 //   D = FMA   A,  X,  C
355 //
356 // Pattern 2:
357 //   A = FSUB  X,  Y      (Leaf)
358 //   D = FMA   B,  A,  C  (Root)
359 // -->
360 //   A = FMA   B,  Y,  -C
361 //   D = FMA   A,  X,  C
362 //
363 //  Before the transformation, A must be assigned with different hardware
364 //  register with D. After the transformation, A and D must be assigned with
365 //  same hardware register due to TIE attribute of FMA instructions.
366 //
367 bool PPCInstrInfo::getFMAPatterns(
368     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
369     bool DoRegPressureReduce) const {
370   MachineBasicBlock *MBB = Root.getParent();
371   const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
372   const TargetRegisterInfo *TRI = &getRegisterInfo();
373 
374   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
375     for (const auto &MO : Instr.explicit_operands())
376       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
377         return false;
378     return true;
379   };
380 
381   auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
382                                     unsigned OpType) {
383     if (Instr.getOpcode() !=
384         FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
385       return false;
386 
387     // Instruction can be reassociated.
388     // fast math flags may prohibit reassociation.
389     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
390           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
391       return false;
392 
393     // Instruction operands are virtual registers for reassociation.
394     if (!IsAllOpsVirtualReg(Instr))
395       return false;
396 
397     // For register pressure reassociation, the FSub must have only one use as
398     // we want to delete the sub to save its def.
399     if (OpType == InfoArrayIdxFSubInst &&
400         !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
401       return false;
402 
403     return true;
404   };
405 
406   auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
407                                int16_t &MulOpIdx, bool IsLeaf) {
408     int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
409     if (Idx < 0)
410       return false;
411 
412     // Instruction can be reassociated.
413     // fast math flags may prohibit reassociation.
414     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
415           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
416       return false;
417 
418     // Instruction operands are virtual registers for reassociation.
419     if (!IsAllOpsVirtualReg(Instr))
420       return false;
421 
422     MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
423     if (IsLeaf)
424       return true;
425 
426     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
427 
428     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
429     MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
430     // If 'add' operand's def is not in current block, don't do ILP related opt.
431     if (!MIAdd || MIAdd->getParent() != MBB)
432       return false;
433 
434     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
435     // as this fma will be changed later.
436     return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
437   };
438 
439   int16_t AddOpIdx = -1;
440   int16_t MulOpIdx = -1;
441 
442   bool IsUsedOnceL = false;
443   bool IsUsedOnceR = false;
444   MachineInstr *MULInstrL = nullptr;
445   MachineInstr *MULInstrR = nullptr;
446 
447   auto IsRPReductionCandidate = [&]() {
448     // Currently, we only support float and double.
449     // FIXME: add support for other types.
450     unsigned Opcode = Root.getOpcode();
451     if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
452       return false;
453 
454     // Root must be a valid FMA like instruction.
455     // Treat it as leaf as we don't care its add operand.
456     if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
457       assert((MulOpIdx >= 0) && "mul operand index not right!");
458       Register MULRegL = TRI->lookThruSingleUseCopyChain(
459           Root.getOperand(MulOpIdx).getReg(), MRI);
460       Register MULRegR = TRI->lookThruSingleUseCopyChain(
461           Root.getOperand(MulOpIdx + 1).getReg(), MRI);
462       if (!MULRegL && !MULRegR)
463         return false;
464 
465       if (MULRegL && !MULRegR) {
466         MULRegR =
467             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
468         IsUsedOnceL = true;
469       } else if (!MULRegL && MULRegR) {
470         MULRegL =
471             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
472         IsUsedOnceR = true;
473       } else {
474         IsUsedOnceL = true;
475         IsUsedOnceR = true;
476       }
477 
478       if (!Register::isVirtualRegister(MULRegL) ||
479           !Register::isVirtualRegister(MULRegR))
480         return false;
481 
482       MULInstrL = MRI->getVRegDef(MULRegL);
483       MULInstrR = MRI->getVRegDef(MULRegR);
484       return true;
485     }
486     return false;
487   };
488 
489   // Register pressure fma reassociation patterns.
490   if (DoRegPressureReduce && IsRPReductionCandidate()) {
491     assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
492     // Register pressure pattern 1
493     if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
494         IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
495       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
496       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
497       return true;
498     }
499 
500     // Register pressure pattern 2
501     if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
502          IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
503       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
504       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
505       return true;
506     }
507   }
508 
509   // ILP fma reassociation patterns.
510   // Root must be a valid FMA like instruction.
511   AddOpIdx = -1;
512   if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
513     return false;
514 
515   assert((AddOpIdx >= 0) && "add operand index not right!");
516 
517   Register RegB = Root.getOperand(AddOpIdx).getReg();
518   MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
519 
520   // Prev must be a valid FMA like instruction.
521   AddOpIdx = -1;
522   if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
523     return false;
524 
525   assert((AddOpIdx >= 0) && "add operand index not right!");
526 
527   Register RegA = Prev->getOperand(AddOpIdx).getReg();
528   MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
529   AddOpIdx = -1;
530   if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
531     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
532     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
533     return true;
534   }
535   if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
536     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
537     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
538     return true;
539   }
540   return false;
541 }
542 
543 void PPCInstrInfo::finalizeInsInstrs(
544     MachineInstr &Root, MachineCombinerPattern &P,
545     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
546   assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
547 
548   MachineFunction *MF = Root.getMF();
549   MachineRegisterInfo *MRI = &MF->getRegInfo();
550   const TargetRegisterInfo *TRI = &getRegisterInfo();
551   MachineConstantPool *MCP = MF->getConstantPool();
552 
553   int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
554   if (Idx < 0)
555     return;
556 
557   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
558 
559   // For now we only need to fix up placeholder for register pressure reduce
560   // patterns.
561   Register ConstReg = 0;
562   switch (P) {
563   case MachineCombinerPattern::REASSOC_XY_BCA:
564     ConstReg =
565         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
566     break;
567   case MachineCombinerPattern::REASSOC_XY_BAC:
568     ConstReg =
569         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
570     break;
571   default:
572     // Not register pressure reduce patterns.
573     return;
574   }
575 
576   MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
577   // Get const value from const pool.
578   const Constant *C = getConstantFromConstantPool(ConstDefInstr);
579   assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
580 
581   // Get negative fp const.
582   APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
583   F1.changeSign();
584   Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
585   Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
586 
587   // Put negative fp const into constant pool.
588   unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
589 
590   MachineOperand *Placeholder = nullptr;
591   // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
592   for (auto *Inst : InsInstrs) {
593     for (MachineOperand &Operand : Inst->explicit_operands()) {
594       assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
595       if (Operand.getReg() == PPC::ZERO8) {
596         Placeholder = &Operand;
597         break;
598       }
599     }
600   }
601 
602   assert(Placeholder && "Placeholder does not exist!");
603 
604   // Generate instructions to load the const fp from constant pool.
605   // We only support PPC64 and medium code model.
606   Register LoadNewConst =
607       generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
608 
609   // Fill the placeholder with the new load from constant pool.
610   Placeholder->setReg(LoadNewConst);
611 }
612 
613 bool PPCInstrInfo::shouldReduceRegisterPressure(
614     MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
615 
616   if (!EnableFMARegPressureReduction)
617     return false;
618 
619   // Currently, we only enable register pressure reducing in machine combiner
620   // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
621   // support.
622   //
623   // So we need following instructions to access a TOC entry:
624   //
625   // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
626   // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
627   //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
628   //
629   // FIXME: add more supported targets, like Small and Large code model, PPC32,
630   // AIX.
631   if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
632         Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
633     return false;
634 
635   const TargetRegisterInfo *TRI = &getRegisterInfo();
636   MachineFunction *MF = MBB->getParent();
637   MachineRegisterInfo *MRI = &MF->getRegInfo();
638 
639   auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
640     RegionPressure Pressure;
641     RegPressureTracker RPTracker(Pressure);
642 
643     // Initialize the register pressure tracker.
644     RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
645                    /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
646 
647     for (MachineBasicBlock::iterator MII = MBB->instr_end(),
648                                      MIE = MBB->instr_begin();
649          MII != MIE; --MII) {
650       MachineInstr &MI = *std::prev(MII);
651       if (MI.isDebugValue() || MI.isDebugLabel())
652         continue;
653       RegisterOperands RegOpers;
654       RegOpers.collect(MI, *TRI, *MRI, false, false);
655       RPTracker.recedeSkipDebugValues();
656       assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
657       RPTracker.recede(RegOpers);
658     }
659 
660     // Close the RPTracker to finalize live ins.
661     RPTracker.closeRegion();
662 
663     return RPTracker.getPressure().MaxSetPressure;
664   };
665 
666   // For now we only care about float and double type fma.
667   unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
668       *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
669 
670   // Only reduce register pressure when pressure is high.
671   return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
672          (float)VSSRCLimit * FMARPFactor;
673 }
674 
675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
676   // I has only one memory operand which is load from constant pool.
677   if (!I->hasOneMemOperand())
678     return false;
679 
680   MachineMemOperand *Op = I->memoperands()[0];
681   return Op->isLoad() && Op->getPseudoValue() &&
682          Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
683 }
684 
685 Register PPCInstrInfo::generateLoadForNewConst(
686     unsigned Idx, MachineInstr *MI, Type *Ty,
687     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
688   // Now we only support PPC64, Medium code model and P9 with vector.
689   // We have immutable pattern to access const pool. See function
690   // shouldReduceRegisterPressure.
691   assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
692           Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
693          "Target not supported!\n");
694 
695   MachineFunction *MF = MI->getMF();
696   MachineRegisterInfo *MRI = &MF->getRegInfo();
697 
698   // Generate ADDIStocHA8
699   Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
700   MachineInstrBuilder TOCOffset =
701       BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
702           .addReg(PPC::X2)
703           .addConstantPoolIndex(Idx);
704 
705   assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
706          "Only float and double are supported!");
707 
708   unsigned LoadOpcode;
709   // Should be float type or double type.
710   if (Ty->isFloatTy())
711     LoadOpcode = PPC::DFLOADf32;
712   else
713     LoadOpcode = PPC::DFLOADf64;
714 
715   const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
716   Register VReg2 = MRI->createVirtualRegister(RC);
717   MachineMemOperand *MMO = MF->getMachineMemOperand(
718       MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
719       Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
720 
721   // Generate Load from constant pool.
722   MachineInstrBuilder Load =
723       BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
724           .addConstantPoolIndex(Idx)
725           .addReg(VReg1, getKillRegState(true))
726           .addMemOperand(MMO);
727 
728   Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
729 
730   // Insert the toc load instructions into InsInstrs.
731   InsInstrs.insert(InsInstrs.begin(), Load);
732   InsInstrs.insert(InsInstrs.begin(), TOCOffset);
733   return VReg2;
734 }
735 
736 // This function returns the const value in constant pool if the \p I is a load
737 // from constant pool.
738 const Constant *
739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
740   MachineFunction *MF = I->getMF();
741   MachineRegisterInfo *MRI = &MF->getRegInfo();
742   MachineConstantPool *MCP = MF->getConstantPool();
743   assert(I->mayLoad() && "Should be a load instruction.\n");
744   for (auto MO : I->uses()) {
745     if (!MO.isReg())
746       continue;
747     Register Reg = MO.getReg();
748     if (Reg == 0 || !Register::isVirtualRegister(Reg))
749       continue;
750     // Find the toc address.
751     MachineInstr *DefMI = MRI->getVRegDef(Reg);
752     for (auto MO2 : DefMI->uses())
753       if (MO2.isCPI())
754         return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
755   }
756   return nullptr;
757 }
758 
759 bool PPCInstrInfo::getMachineCombinerPatterns(
760     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
761     bool DoRegPressureReduce) const {
762   // Using the machine combiner in this way is potentially expensive, so
763   // restrict to when aggressive optimizations are desired.
764   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
765     return false;
766 
767   if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
768     return true;
769 
770   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
771                                                      DoRegPressureReduce);
772 }
773 
774 void PPCInstrInfo::genAlternativeCodeSequence(
775     MachineInstr &Root, MachineCombinerPattern Pattern,
776     SmallVectorImpl<MachineInstr *> &InsInstrs,
777     SmallVectorImpl<MachineInstr *> &DelInstrs,
778     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
779   switch (Pattern) {
780   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
781   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
782   case MachineCombinerPattern::REASSOC_XY_BCA:
783   case MachineCombinerPattern::REASSOC_XY_BAC:
784     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
785     break;
786   default:
787     // Reassociate default patterns.
788     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
789                                                 DelInstrs, InstrIdxForVirtReg);
790     break;
791   }
792 }
793 
794 void PPCInstrInfo::reassociateFMA(
795     MachineInstr &Root, MachineCombinerPattern Pattern,
796     SmallVectorImpl<MachineInstr *> &InsInstrs,
797     SmallVectorImpl<MachineInstr *> &DelInstrs,
798     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
799   MachineFunction *MF = Root.getMF();
800   MachineRegisterInfo &MRI = MF->getRegInfo();
801   const TargetRegisterInfo *TRI = &getRegisterInfo();
802   MachineOperand &OpC = Root.getOperand(0);
803   Register RegC = OpC.getReg();
804   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
805   MRI.constrainRegClass(RegC, RC);
806 
807   unsigned FmaOp = Root.getOpcode();
808   int16_t Idx = getFMAOpIdxInfo(FmaOp);
809   assert(Idx >= 0 && "Root must be a FMA instruction");
810 
811   bool IsILPReassociate =
812       (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
813       (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
814 
815   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
816   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
817 
818   MachineInstr *Prev = nullptr;
819   MachineInstr *Leaf = nullptr;
820   switch (Pattern) {
821   default:
822     llvm_unreachable("not recognized pattern!");
823   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
824   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
825     Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
826     Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
827     break;
828   case MachineCombinerPattern::REASSOC_XY_BAC: {
829     Register MULReg =
830         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
831     Leaf = MRI.getVRegDef(MULReg);
832     break;
833   }
834   case MachineCombinerPattern::REASSOC_XY_BCA: {
835     Register MULReg = TRI->lookThruCopyLike(
836         Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
837     Leaf = MRI.getVRegDef(MULReg);
838     break;
839   }
840   }
841 
842   uint16_t IntersectedFlags = 0;
843   if (IsILPReassociate)
844     IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
845   else
846     IntersectedFlags = Root.getFlags() & Leaf->getFlags();
847 
848   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
849                             bool &KillFlag) {
850     Reg = Operand.getReg();
851     MRI.constrainRegClass(Reg, RC);
852     KillFlag = Operand.isKill();
853   };
854 
855   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
856                              Register &MulOp2, Register &AddOp,
857                              bool &MulOp1KillFlag, bool &MulOp2KillFlag,
858                              bool &AddOpKillFlag) {
859     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
860     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
861     GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
862   };
863 
864   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
865       RegA21, RegB;
866   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
867        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
868        KillA11 = false, KillA21 = false, KillB = false;
869 
870   GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
871 
872   if (IsILPReassociate)
873     GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
874 
875   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
876     GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
877     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
878   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
879     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
880     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
881   } else {
882     // Get FSUB instruction info.
883     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
884     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
885   }
886 
887   // Create new virtual registers for the new results instead of
888   // recycling legacy ones because the MachineCombiner's computation of the
889   // critical path requires a new register definition rather than an existing
890   // one.
891   // For register pressure reassociation, we only need create one virtual
892   // register for the new fma.
893   Register NewVRA = MRI.createVirtualRegister(RC);
894   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
895 
896   Register NewVRB = 0;
897   if (IsILPReassociate) {
898     NewVRB = MRI.createVirtualRegister(RC);
899     InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
900   }
901 
902   Register NewVRD = 0;
903   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
904     NewVRD = MRI.createVirtualRegister(RC);
905     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
906   }
907 
908   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
909                                 Register RegMul1, bool KillRegMul1,
910                                 Register RegMul2, bool KillRegMul2) {
911     MI->getOperand(AddOpIdx).setReg(RegAdd);
912     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
913     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
914     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
915     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
916     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
917   };
918 
919   MachineInstrBuilder NewARegPressure, NewCRegPressure;
920   switch (Pattern) {
921   default:
922     llvm_unreachable("not recognized pattern!");
923   case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
924     // Create new instructions for insertion.
925     MachineInstrBuilder MINewB =
926         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
927             .addReg(RegX, getKillRegState(KillX))
928             .addReg(RegM21, getKillRegState(KillM21))
929             .addReg(RegM22, getKillRegState(KillM22));
930     MachineInstrBuilder MINewA =
931         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
932             .addReg(RegY, getKillRegState(KillY))
933             .addReg(RegM31, getKillRegState(KillM31))
934             .addReg(RegM32, getKillRegState(KillM32));
935     // If AddOpIdx is not 1, adjust the order.
936     if (AddOpIdx != 1) {
937       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
938       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
939     }
940 
941     MachineInstrBuilder MINewC =
942         BuildMI(*MF, Root.getDebugLoc(),
943                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
944             .addReg(NewVRB, getKillRegState(true))
945             .addReg(NewVRA, getKillRegState(true));
946 
947     // Update flags for newly created instructions.
948     setSpecialOperandAttr(*MINewA, IntersectedFlags);
949     setSpecialOperandAttr(*MINewB, IntersectedFlags);
950     setSpecialOperandAttr(*MINewC, IntersectedFlags);
951 
952     // Record new instructions for insertion.
953     InsInstrs.push_back(MINewA);
954     InsInstrs.push_back(MINewB);
955     InsInstrs.push_back(MINewC);
956     break;
957   }
958   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
959     assert(NewVRD && "new FMA register not created!");
960     // Create new instructions for insertion.
961     MachineInstrBuilder MINewA =
962         BuildMI(*MF, Leaf->getDebugLoc(),
963                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
964             .addReg(RegM11, getKillRegState(KillM11))
965             .addReg(RegM12, getKillRegState(KillM12));
966     MachineInstrBuilder MINewB =
967         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
968             .addReg(RegX, getKillRegState(KillX))
969             .addReg(RegM21, getKillRegState(KillM21))
970             .addReg(RegM22, getKillRegState(KillM22));
971     MachineInstrBuilder MINewD =
972         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
973             .addReg(NewVRA, getKillRegState(true))
974             .addReg(RegM31, getKillRegState(KillM31))
975             .addReg(RegM32, getKillRegState(KillM32));
976     // If AddOpIdx is not 1, adjust the order.
977     if (AddOpIdx != 1) {
978       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
979       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
980                          KillM32);
981     }
982 
983     MachineInstrBuilder MINewC =
984         BuildMI(*MF, Root.getDebugLoc(),
985                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
986             .addReg(NewVRB, getKillRegState(true))
987             .addReg(NewVRD, getKillRegState(true));
988 
989     // Update flags for newly created instructions.
990     setSpecialOperandAttr(*MINewA, IntersectedFlags);
991     setSpecialOperandAttr(*MINewB, IntersectedFlags);
992     setSpecialOperandAttr(*MINewD, IntersectedFlags);
993     setSpecialOperandAttr(*MINewC, IntersectedFlags);
994 
995     // Record new instructions for insertion.
996     InsInstrs.push_back(MINewA);
997     InsInstrs.push_back(MINewB);
998     InsInstrs.push_back(MINewD);
999     InsInstrs.push_back(MINewC);
1000     break;
1001   }
1002   case MachineCombinerPattern::REASSOC_XY_BAC:
1003   case MachineCombinerPattern::REASSOC_XY_BCA: {
1004     Register VarReg;
1005     bool KillVarReg = false;
1006     if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
1007       VarReg = RegM31;
1008       KillVarReg = KillM31;
1009     } else {
1010       VarReg = RegM32;
1011       KillVarReg = KillM32;
1012     }
1013     // We don't want to get negative const from memory pool too early, as the
1014     // created entry will not be deleted even if it has no users. Since all
1015     // operand of Leaf and Root are virtual register, we use zero register
1016     // here as a placeholder. When the InsInstrs is selected in
1017     // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1018     // with a virtual register which is a load from constant pool.
1019     NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1020                           .addReg(RegB, getKillRegState(RegB))
1021                           .addReg(RegY, getKillRegState(KillY))
1022                           .addReg(PPC::ZERO8);
1023     NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1024                           .addReg(NewVRA, getKillRegState(true))
1025                           .addReg(RegX, getKillRegState(KillX))
1026                           .addReg(VarReg, getKillRegState(KillVarReg));
1027     // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1028     // both at index 1, no need to adjust.
1029     // FIXME: when add more fma instructions support, like fma/fmas, adjust
1030     // the operand index here.
1031     break;
1032   }
1033   }
1034 
1035   if (!IsILPReassociate) {
1036     setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1037     setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1038 
1039     InsInstrs.push_back(NewARegPressure);
1040     InsInstrs.push_back(NewCRegPressure);
1041   }
1042 
1043   assert(!InsInstrs.empty() &&
1044          "Insertion instructions set should not be empty!");
1045 
1046   // Record old instructions for deletion.
1047   DelInstrs.push_back(Leaf);
1048   if (IsILPReassociate)
1049     DelInstrs.push_back(Prev);
1050   DelInstrs.push_back(&Root);
1051 }
1052 
1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1055                                          Register &SrcReg, Register &DstReg,
1056                                          unsigned &SubIdx) const {
1057   switch (MI.getOpcode()) {
1058   default: return false;
1059   case PPC::EXTSW:
1060   case PPC::EXTSW_32:
1061   case PPC::EXTSW_32_64:
1062     SrcReg = MI.getOperand(1).getReg();
1063     DstReg = MI.getOperand(0).getReg();
1064     SubIdx = PPC::sub_32;
1065     return true;
1066   }
1067 }
1068 
1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1070                                            int &FrameIndex) const {
1071   unsigned Opcode = MI.getOpcode();
1072   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1073   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1074 
1075   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1076     // Check for the operands added by addFrameReference (the immediate is the
1077     // offset which defaults to 0).
1078     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1079         MI.getOperand(2).isFI()) {
1080       FrameIndex = MI.getOperand(2).getIndex();
1081       return MI.getOperand(0).getReg();
1082     }
1083   }
1084   return 0;
1085 }
1086 
1087 // For opcodes with the ReMaterializable flag set, this function is called to
1088 // verify the instruction is really rematable.
1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
1090                                                      AliasAnalysis *AA) const {
1091   switch (MI.getOpcode()) {
1092   default:
1093     // This function should only be called for opcodes with the ReMaterializable
1094     // flag set.
1095     llvm_unreachable("Unknown rematerializable operation!");
1096     break;
1097   case PPC::LI:
1098   case PPC::LI8:
1099   case PPC::PLI:
1100   case PPC::PLI8:
1101   case PPC::LIS:
1102   case PPC::LIS8:
1103   case PPC::ADDIStocHA:
1104   case PPC::ADDIStocHA8:
1105   case PPC::ADDItocL:
1106   case PPC::LOAD_STACK_GUARD:
1107   case PPC::XXLXORz:
1108   case PPC::XXLXORspz:
1109   case PPC::XXLXORdpz:
1110   case PPC::XXLEQVOnes:
1111   case PPC::XXSPLTI32DX:
1112   case PPC::V_SET0B:
1113   case PPC::V_SET0H:
1114   case PPC::V_SET0:
1115   case PPC::V_SETALLONESB:
1116   case PPC::V_SETALLONESH:
1117   case PPC::V_SETALLONES:
1118   case PPC::CRSET:
1119   case PPC::CRUNSET:
1120   case PPC::XXSETACCZ:
1121     return true;
1122   }
1123   return false;
1124 }
1125 
1126 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1127                                           int &FrameIndex) const {
1128   unsigned Opcode = MI.getOpcode();
1129   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1130   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1131 
1132   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1133     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1134         MI.getOperand(2).isFI()) {
1135       FrameIndex = MI.getOperand(2).getIndex();
1136       return MI.getOperand(0).getReg();
1137     }
1138   }
1139   return 0;
1140 }
1141 
1142 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1143                                                    unsigned OpIdx1,
1144                                                    unsigned OpIdx2) const {
1145   MachineFunction &MF = *MI.getParent()->getParent();
1146 
1147   // Normal instructions can be commuted the obvious way.
1148   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1149     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1150   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1151   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1152   // changing the relative order of the mask operands might change what happens
1153   // to the high-bits of the mask (and, thus, the result).
1154 
1155   // Cannot commute if it has a non-zero rotate count.
1156   if (MI.getOperand(3).getImm() != 0)
1157     return nullptr;
1158 
1159   // If we have a zero rotate count, we have:
1160   //   M = mask(MB,ME)
1161   //   Op0 = (Op1 & ~M) | (Op2 & M)
1162   // Change this to:
1163   //   M = mask((ME+1)&31, (MB-1)&31)
1164   //   Op0 = (Op2 & ~M) | (Op1 & M)
1165 
1166   // Swap op1/op2
1167   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1168          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1169   Register Reg0 = MI.getOperand(0).getReg();
1170   Register Reg1 = MI.getOperand(1).getReg();
1171   Register Reg2 = MI.getOperand(2).getReg();
1172   unsigned SubReg1 = MI.getOperand(1).getSubReg();
1173   unsigned SubReg2 = MI.getOperand(2).getSubReg();
1174   bool Reg1IsKill = MI.getOperand(1).isKill();
1175   bool Reg2IsKill = MI.getOperand(2).isKill();
1176   bool ChangeReg0 = false;
1177   // If machine instrs are no longer in two-address forms, update
1178   // destination register as well.
1179   if (Reg0 == Reg1) {
1180     // Must be two address instruction!
1181     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
1182            "Expecting a two-address instruction!");
1183     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1184     Reg2IsKill = false;
1185     ChangeReg0 = true;
1186   }
1187 
1188   // Masks.
1189   unsigned MB = MI.getOperand(4).getImm();
1190   unsigned ME = MI.getOperand(5).getImm();
1191 
1192   // We can't commute a trivial mask (there is no way to represent an all-zero
1193   // mask).
1194   if (MB == 0 && ME == 31)
1195     return nullptr;
1196 
1197   if (NewMI) {
1198     // Create a new instruction.
1199     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1200     bool Reg0IsDead = MI.getOperand(0).isDead();
1201     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1202         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1203         .addReg(Reg2, getKillRegState(Reg2IsKill))
1204         .addReg(Reg1, getKillRegState(Reg1IsKill))
1205         .addImm((ME + 1) & 31)
1206         .addImm((MB - 1) & 31);
1207   }
1208 
1209   if (ChangeReg0) {
1210     MI.getOperand(0).setReg(Reg2);
1211     MI.getOperand(0).setSubReg(SubReg2);
1212   }
1213   MI.getOperand(2).setReg(Reg1);
1214   MI.getOperand(1).setReg(Reg2);
1215   MI.getOperand(2).setSubReg(SubReg1);
1216   MI.getOperand(1).setSubReg(SubReg2);
1217   MI.getOperand(2).setIsKill(Reg1IsKill);
1218   MI.getOperand(1).setIsKill(Reg2IsKill);
1219 
1220   // Swap the mask around.
1221   MI.getOperand(4).setImm((ME + 1) & 31);
1222   MI.getOperand(5).setImm((MB - 1) & 31);
1223   return &MI;
1224 }
1225 
1226 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1227                                          unsigned &SrcOpIdx1,
1228                                          unsigned &SrcOpIdx2) const {
1229   // For VSX A-Type FMA instructions, it is the first two operands that can be
1230   // commuted, however, because the non-encoded tied input operand is listed
1231   // first, the operands to swap are actually the second and third.
1232 
1233   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1234   if (AltOpc == -1)
1235     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1236 
1237   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1238   // and SrcOpIdx2.
1239   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1240 }
1241 
1242 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1243                               MachineBasicBlock::iterator MI) const {
1244   // This function is used for scheduling, and the nop wanted here is the type
1245   // that terminates dispatch groups on the POWER cores.
1246   unsigned Directive = Subtarget.getCPUDirective();
1247   unsigned Opcode;
1248   switch (Directive) {
1249   default:            Opcode = PPC::NOP; break;
1250   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1251   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1252   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1253   // FIXME: Update when POWER9 scheduling model is ready.
1254   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1255   }
1256 
1257   DebugLoc DL;
1258   BuildMI(MBB, MI, DL, get(Opcode));
1259 }
1260 
1261 /// Return the noop instruction to use for a noop.
1262 MCInst PPCInstrInfo::getNop() const {
1263   MCInst Nop;
1264   Nop.setOpcode(PPC::NOP);
1265   return Nop;
1266 }
1267 
1268 // Branch analysis.
1269 // Note: If the condition register is set to CTR or CTR8 then this is a
1270 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1271 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1272                                  MachineBasicBlock *&TBB,
1273                                  MachineBasicBlock *&FBB,
1274                                  SmallVectorImpl<MachineOperand> &Cond,
1275                                  bool AllowModify) const {
1276   bool isPPC64 = Subtarget.isPPC64();
1277 
1278   // If the block has no terminators, it just falls into the block after it.
1279   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1280   if (I == MBB.end())
1281     return false;
1282 
1283   if (!isUnpredicatedTerminator(*I))
1284     return false;
1285 
1286   if (AllowModify) {
1287     // If the BB ends with an unconditional branch to the fallthrough BB,
1288     // we eliminate the branch instruction.
1289     if (I->getOpcode() == PPC::B &&
1290         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1291       I->eraseFromParent();
1292 
1293       // We update iterator after deleting the last branch.
1294       I = MBB.getLastNonDebugInstr();
1295       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1296         return false;
1297     }
1298   }
1299 
1300   // Get the last instruction in the block.
1301   MachineInstr &LastInst = *I;
1302 
1303   // If there is only one terminator instruction, process it.
1304   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1305     if (LastInst.getOpcode() == PPC::B) {
1306       if (!LastInst.getOperand(0).isMBB())
1307         return true;
1308       TBB = LastInst.getOperand(0).getMBB();
1309       return false;
1310     } else if (LastInst.getOpcode() == PPC::BCC) {
1311       if (!LastInst.getOperand(2).isMBB())
1312         return true;
1313       // Block ends with fall-through condbranch.
1314       TBB = LastInst.getOperand(2).getMBB();
1315       Cond.push_back(LastInst.getOperand(0));
1316       Cond.push_back(LastInst.getOperand(1));
1317       return false;
1318     } else if (LastInst.getOpcode() == PPC::BC) {
1319       if (!LastInst.getOperand(1).isMBB())
1320         return true;
1321       // Block ends with fall-through condbranch.
1322       TBB = LastInst.getOperand(1).getMBB();
1323       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1324       Cond.push_back(LastInst.getOperand(0));
1325       return false;
1326     } else if (LastInst.getOpcode() == PPC::BCn) {
1327       if (!LastInst.getOperand(1).isMBB())
1328         return true;
1329       // Block ends with fall-through condbranch.
1330       TBB = LastInst.getOperand(1).getMBB();
1331       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1332       Cond.push_back(LastInst.getOperand(0));
1333       return false;
1334     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1335                LastInst.getOpcode() == PPC::BDNZ) {
1336       if (!LastInst.getOperand(0).isMBB())
1337         return true;
1338       if (DisableCTRLoopAnal)
1339         return true;
1340       TBB = LastInst.getOperand(0).getMBB();
1341       Cond.push_back(MachineOperand::CreateImm(1));
1342       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1343                                                true));
1344       return false;
1345     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1346                LastInst.getOpcode() == PPC::BDZ) {
1347       if (!LastInst.getOperand(0).isMBB())
1348         return true;
1349       if (DisableCTRLoopAnal)
1350         return true;
1351       TBB = LastInst.getOperand(0).getMBB();
1352       Cond.push_back(MachineOperand::CreateImm(0));
1353       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1354                                                true));
1355       return false;
1356     }
1357 
1358     // Otherwise, don't know what this is.
1359     return true;
1360   }
1361 
1362   // Get the instruction before it if it's a terminator.
1363   MachineInstr &SecondLastInst = *I;
1364 
1365   // If there are three terminators, we don't know what sort of block this is.
1366   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1367     return true;
1368 
1369   // If the block ends with PPC::B and PPC:BCC, handle it.
1370   if (SecondLastInst.getOpcode() == PPC::BCC &&
1371       LastInst.getOpcode() == PPC::B) {
1372     if (!SecondLastInst.getOperand(2).isMBB() ||
1373         !LastInst.getOperand(0).isMBB())
1374       return true;
1375     TBB = SecondLastInst.getOperand(2).getMBB();
1376     Cond.push_back(SecondLastInst.getOperand(0));
1377     Cond.push_back(SecondLastInst.getOperand(1));
1378     FBB = LastInst.getOperand(0).getMBB();
1379     return false;
1380   } else if (SecondLastInst.getOpcode() == PPC::BC &&
1381              LastInst.getOpcode() == PPC::B) {
1382     if (!SecondLastInst.getOperand(1).isMBB() ||
1383         !LastInst.getOperand(0).isMBB())
1384       return true;
1385     TBB = SecondLastInst.getOperand(1).getMBB();
1386     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1387     Cond.push_back(SecondLastInst.getOperand(0));
1388     FBB = LastInst.getOperand(0).getMBB();
1389     return false;
1390   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1391              LastInst.getOpcode() == PPC::B) {
1392     if (!SecondLastInst.getOperand(1).isMBB() ||
1393         !LastInst.getOperand(0).isMBB())
1394       return true;
1395     TBB = SecondLastInst.getOperand(1).getMBB();
1396     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1397     Cond.push_back(SecondLastInst.getOperand(0));
1398     FBB = LastInst.getOperand(0).getMBB();
1399     return false;
1400   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1401               SecondLastInst.getOpcode() == PPC::BDNZ) &&
1402              LastInst.getOpcode() == PPC::B) {
1403     if (!SecondLastInst.getOperand(0).isMBB() ||
1404         !LastInst.getOperand(0).isMBB())
1405       return true;
1406     if (DisableCTRLoopAnal)
1407       return true;
1408     TBB = SecondLastInst.getOperand(0).getMBB();
1409     Cond.push_back(MachineOperand::CreateImm(1));
1410     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1411                                              true));
1412     FBB = LastInst.getOperand(0).getMBB();
1413     return false;
1414   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1415               SecondLastInst.getOpcode() == PPC::BDZ) &&
1416              LastInst.getOpcode() == PPC::B) {
1417     if (!SecondLastInst.getOperand(0).isMBB() ||
1418         !LastInst.getOperand(0).isMBB())
1419       return true;
1420     if (DisableCTRLoopAnal)
1421       return true;
1422     TBB = SecondLastInst.getOperand(0).getMBB();
1423     Cond.push_back(MachineOperand::CreateImm(0));
1424     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1425                                              true));
1426     FBB = LastInst.getOperand(0).getMBB();
1427     return false;
1428   }
1429 
1430   // If the block ends with two PPC:Bs, handle it.  The second one is not
1431   // executed, so remove it.
1432   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1433     if (!SecondLastInst.getOperand(0).isMBB())
1434       return true;
1435     TBB = SecondLastInst.getOperand(0).getMBB();
1436     I = LastInst;
1437     if (AllowModify)
1438       I->eraseFromParent();
1439     return false;
1440   }
1441 
1442   // Otherwise, can't handle this.
1443   return true;
1444 }
1445 
1446 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1447                                     int *BytesRemoved) const {
1448   assert(!BytesRemoved && "code size not handled");
1449 
1450   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1451   if (I == MBB.end())
1452     return 0;
1453 
1454   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1455       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1456       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1457       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1458     return 0;
1459 
1460   // Remove the branch.
1461   I->eraseFromParent();
1462 
1463   I = MBB.end();
1464 
1465   if (I == MBB.begin()) return 1;
1466   --I;
1467   if (I->getOpcode() != PPC::BCC &&
1468       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1469       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1470       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1471     return 1;
1472 
1473   // Remove the branch.
1474   I->eraseFromParent();
1475   return 2;
1476 }
1477 
1478 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1479                                     MachineBasicBlock *TBB,
1480                                     MachineBasicBlock *FBB,
1481                                     ArrayRef<MachineOperand> Cond,
1482                                     const DebugLoc &DL,
1483                                     int *BytesAdded) const {
1484   // Shouldn't be a fall through.
1485   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1486   assert((Cond.size() == 2 || Cond.size() == 0) &&
1487          "PPC branch conditions have two components!");
1488   assert(!BytesAdded && "code size not handled");
1489 
1490   bool isPPC64 = Subtarget.isPPC64();
1491 
1492   // One-way branch.
1493   if (!FBB) {
1494     if (Cond.empty())   // Unconditional branch
1495       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1496     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1497       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1498                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1499                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1500     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1501       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1502     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1503       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1504     else                // Conditional branch
1505       BuildMI(&MBB, DL, get(PPC::BCC))
1506           .addImm(Cond[0].getImm())
1507           .add(Cond[1])
1508           .addMBB(TBB);
1509     return 1;
1510   }
1511 
1512   // Two-way Conditional Branch.
1513   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1514     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1515                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1516                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1517   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1518     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1519   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1520     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1521   else
1522     BuildMI(&MBB, DL, get(PPC::BCC))
1523         .addImm(Cond[0].getImm())
1524         .add(Cond[1])
1525         .addMBB(TBB);
1526   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1527   return 2;
1528 }
1529 
1530 // Select analysis.
1531 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1532                                    ArrayRef<MachineOperand> Cond,
1533                                    Register DstReg, Register TrueReg,
1534                                    Register FalseReg, int &CondCycles,
1535                                    int &TrueCycles, int &FalseCycles) const {
1536   if (Cond.size() != 2)
1537     return false;
1538 
1539   // If this is really a bdnz-like condition, then it cannot be turned into a
1540   // select.
1541   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1542     return false;
1543 
1544   // Check register classes.
1545   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1546   const TargetRegisterClass *RC =
1547     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1548   if (!RC)
1549     return false;
1550 
1551   // isel is for regular integer GPRs only.
1552   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1553       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1554       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1555       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1556     return false;
1557 
1558   // FIXME: These numbers are for the A2, how well they work for other cores is
1559   // an open question. On the A2, the isel instruction has a 2-cycle latency
1560   // but single-cycle throughput. These numbers are used in combination with
1561   // the MispredictPenalty setting from the active SchedMachineModel.
1562   CondCycles = 1;
1563   TrueCycles = 1;
1564   FalseCycles = 1;
1565 
1566   return true;
1567 }
1568 
1569 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1570                                 MachineBasicBlock::iterator MI,
1571                                 const DebugLoc &dl, Register DestReg,
1572                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1573                                 Register FalseReg) const {
1574   assert(Cond.size() == 2 &&
1575          "PPC branch conditions have two components!");
1576 
1577   // Get the register classes.
1578   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1579   const TargetRegisterClass *RC =
1580     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1581   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1582 
1583   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1584                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1585   assert((Is64Bit ||
1586           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1587           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1588          "isel is for regular integer GPRs only");
1589 
1590   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1591   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1592 
1593   unsigned SubIdx = 0;
1594   bool SwapOps = false;
1595   switch (SelectPred) {
1596   case PPC::PRED_EQ:
1597   case PPC::PRED_EQ_MINUS:
1598   case PPC::PRED_EQ_PLUS:
1599       SubIdx = PPC::sub_eq; SwapOps = false; break;
1600   case PPC::PRED_NE:
1601   case PPC::PRED_NE_MINUS:
1602   case PPC::PRED_NE_PLUS:
1603       SubIdx = PPC::sub_eq; SwapOps = true; break;
1604   case PPC::PRED_LT:
1605   case PPC::PRED_LT_MINUS:
1606   case PPC::PRED_LT_PLUS:
1607       SubIdx = PPC::sub_lt; SwapOps = false; break;
1608   case PPC::PRED_GE:
1609   case PPC::PRED_GE_MINUS:
1610   case PPC::PRED_GE_PLUS:
1611       SubIdx = PPC::sub_lt; SwapOps = true; break;
1612   case PPC::PRED_GT:
1613   case PPC::PRED_GT_MINUS:
1614   case PPC::PRED_GT_PLUS:
1615       SubIdx = PPC::sub_gt; SwapOps = false; break;
1616   case PPC::PRED_LE:
1617   case PPC::PRED_LE_MINUS:
1618   case PPC::PRED_LE_PLUS:
1619       SubIdx = PPC::sub_gt; SwapOps = true; break;
1620   case PPC::PRED_UN:
1621   case PPC::PRED_UN_MINUS:
1622   case PPC::PRED_UN_PLUS:
1623       SubIdx = PPC::sub_un; SwapOps = false; break;
1624   case PPC::PRED_NU:
1625   case PPC::PRED_NU_MINUS:
1626   case PPC::PRED_NU_PLUS:
1627       SubIdx = PPC::sub_un; SwapOps = true; break;
1628   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1629   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1630   }
1631 
1632   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1633            SecondReg = SwapOps ? TrueReg  : FalseReg;
1634 
1635   // The first input register of isel cannot be r0. If it is a member
1636   // of a register class that can be r0, then copy it first (the
1637   // register allocator should eliminate the copy).
1638   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1639       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1640     const TargetRegisterClass *FirstRC =
1641       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1642         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1643     Register OldFirstReg = FirstReg;
1644     FirstReg = MRI.createVirtualRegister(FirstRC);
1645     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1646       .addReg(OldFirstReg);
1647   }
1648 
1649   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1650     .addReg(FirstReg).addReg(SecondReg)
1651     .addReg(Cond[1].getReg(), 0, SubIdx);
1652 }
1653 
1654 static unsigned getCRBitValue(unsigned CRBit) {
1655   unsigned Ret = 4;
1656   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1657       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1658       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1659       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1660     Ret = 3;
1661   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1662       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1663       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1664       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1665     Ret = 2;
1666   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1667       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1668       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1669       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1670     Ret = 1;
1671   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1672       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1673       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1674       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1675     Ret = 0;
1676 
1677   assert(Ret != 4 && "Invalid CR bit register");
1678   return Ret;
1679 }
1680 
1681 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1682                                MachineBasicBlock::iterator I,
1683                                const DebugLoc &DL, MCRegister DestReg,
1684                                MCRegister SrcReg, bool KillSrc) const {
1685   // We can end up with self copies and similar things as a result of VSX copy
1686   // legalization. Promote them here.
1687   const TargetRegisterInfo *TRI = &getRegisterInfo();
1688   if (PPC::F8RCRegClass.contains(DestReg) &&
1689       PPC::VSRCRegClass.contains(SrcReg)) {
1690     MCRegister SuperReg =
1691         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1692 
1693     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1694       llvm_unreachable("nop VSX copy");
1695 
1696     DestReg = SuperReg;
1697   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1698              PPC::VSRCRegClass.contains(DestReg)) {
1699     MCRegister SuperReg =
1700         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1701 
1702     if (VSXSelfCopyCrash && DestReg == SuperReg)
1703       llvm_unreachable("nop VSX copy");
1704 
1705     SrcReg = SuperReg;
1706   }
1707 
1708   // Different class register copy
1709   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1710       PPC::GPRCRegClass.contains(DestReg)) {
1711     MCRegister CRReg = getCRFromCRBit(SrcReg);
1712     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1713     getKillRegState(KillSrc);
1714     // Rotate the CR bit in the CR fields to be the least significant bit and
1715     // then mask with 0x1 (MB = ME = 31).
1716     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1717        .addReg(DestReg, RegState::Kill)
1718        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1719        .addImm(31)
1720        .addImm(31);
1721     return;
1722   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1723              (PPC::G8RCRegClass.contains(DestReg) ||
1724               PPC::GPRCRegClass.contains(DestReg))) {
1725     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1726     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1727     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1728     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1729     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1730     getKillRegState(KillSrc);
1731     if (CRNum == 7)
1732       return;
1733     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1734     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1735         .addReg(DestReg, RegState::Kill)
1736         .addImm(CRNum * 4 + 4)
1737         .addImm(28)
1738         .addImm(31);
1739     return;
1740   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1741              PPC::VSFRCRegClass.contains(DestReg)) {
1742     assert(Subtarget.hasDirectMove() &&
1743            "Subtarget doesn't support directmove, don't know how to copy.");
1744     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1745     NumGPRtoVSRSpill++;
1746     getKillRegState(KillSrc);
1747     return;
1748   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1749              PPC::G8RCRegClass.contains(DestReg)) {
1750     assert(Subtarget.hasDirectMove() &&
1751            "Subtarget doesn't support directmove, don't know how to copy.");
1752     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1753     getKillRegState(KillSrc);
1754     return;
1755   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1756              PPC::GPRCRegClass.contains(DestReg)) {
1757     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1758     getKillRegState(KillSrc);
1759     return;
1760   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1761              PPC::SPERCRegClass.contains(DestReg)) {
1762     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1763     getKillRegState(KillSrc);
1764     return;
1765   }
1766 
1767   unsigned Opc;
1768   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1769     Opc = PPC::OR;
1770   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1771     Opc = PPC::OR8;
1772   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1773     Opc = PPC::FMR;
1774   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1775     Opc = PPC::MCRF;
1776   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1777     Opc = PPC::VOR;
1778   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1779     // There are two different ways this can be done:
1780     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1781     //      issue in VSU pipeline 0.
1782     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1783     //      can go to either pipeline.
1784     // We'll always use xxlor here, because in practically all cases where
1785     // copies are generated, they are close enough to some use that the
1786     // lower-latency form is preferable.
1787     Opc = PPC::XXLOR;
1788   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1789            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1790     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1791   else if (Subtarget.pairedVectorMemops() &&
1792            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1793     if (SrcReg > PPC::VSRp15)
1794       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1795     else
1796       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1797     if (DestReg > PPC::VSRp15)
1798       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1799     else
1800       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1801     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1802       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1803     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1804       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1805     return;
1806   }
1807   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1808     Opc = PPC::CROR;
1809   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1810     Opc = PPC::EVOR;
1811   else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1812             PPC::UACCRCRegClass.contains(DestReg)) &&
1813            (PPC::ACCRCRegClass.contains(SrcReg) ||
1814             PPC::UACCRCRegClass.contains(SrcReg))) {
1815     // If primed, de-prime the source register, copy the individual registers
1816     // and prime the destination if needed. The vector subregisters are
1817     // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1818     // source is primed, we need to re-prime it after the copy as well.
1819     PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1820     bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1821     bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1822     MCRegister VSLSrcReg =
1823         PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1824     MCRegister VSLDestReg =
1825         PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1826     if (SrcPrimed)
1827       BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1828     for (unsigned Idx = 0; Idx < 4; Idx++)
1829       BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1830           .addReg(VSLSrcReg + Idx)
1831           .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1832     if (DestPrimed)
1833       BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1834     if (SrcPrimed && !KillSrc)
1835       BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1836     return;
1837   } else if (PPC::G8pRCRegClass.contains(DestReg) &&
1838              PPC::G8pRCRegClass.contains(SrcReg)) {
1839     // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1840     unsigned DestRegIdx = DestReg - PPC::G8p0;
1841     MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1842     MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1843     unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1844     MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1845     MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1846     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1847         .addReg(SrcRegSub0)
1848         .addReg(SrcRegSub0, getKillRegState(KillSrc));
1849     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1850         .addReg(SrcRegSub1)
1851         .addReg(SrcRegSub1, getKillRegState(KillSrc));
1852     return;
1853   } else
1854     llvm_unreachable("Impossible reg-to-reg copy");
1855 
1856   const MCInstrDesc &MCID = get(Opc);
1857   if (MCID.getNumOperands() == 3)
1858     BuildMI(MBB, I, DL, MCID, DestReg)
1859       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1860   else
1861     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1862 }
1863 
1864 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1865   int OpcodeIndex = 0;
1866 
1867   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1868       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1869     OpcodeIndex = SOK_Int4Spill;
1870   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1871              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1872     OpcodeIndex = SOK_Int8Spill;
1873   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1874     OpcodeIndex = SOK_Float8Spill;
1875   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1876     OpcodeIndex = SOK_Float4Spill;
1877   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1878     OpcodeIndex = SOK_SPESpill;
1879   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1880     OpcodeIndex = SOK_CRSpill;
1881   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1882     OpcodeIndex = SOK_CRBitSpill;
1883   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1884     OpcodeIndex = SOK_VRVectorSpill;
1885   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1886     OpcodeIndex = SOK_VSXVectorSpill;
1887   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1888     OpcodeIndex = SOK_VectorFloat8Spill;
1889   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1890     OpcodeIndex = SOK_VectorFloat4Spill;
1891   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1892     OpcodeIndex = SOK_SpillToVSR;
1893   } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1894     assert(Subtarget.pairedVectorMemops() &&
1895            "Register unexpected when paired memops are disabled.");
1896     OpcodeIndex = SOK_AccumulatorSpill;
1897   } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1898     assert(Subtarget.pairedVectorMemops() &&
1899            "Register unexpected when paired memops are disabled.");
1900     OpcodeIndex = SOK_UAccumulatorSpill;
1901   } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1902     assert(Subtarget.pairedVectorMemops() &&
1903            "Register unexpected when paired memops are disabled.");
1904     OpcodeIndex = SOK_PairedVecSpill;
1905   } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1906     OpcodeIndex = SOK_PairedG8Spill;
1907   } else {
1908     llvm_unreachable("Unknown regclass!");
1909   }
1910   return OpcodeIndex;
1911 }
1912 
1913 unsigned
1914 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1915   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1916   return OpcodesForSpill[getSpillIndex(RC)];
1917 }
1918 
1919 unsigned
1920 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1921   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1922   return OpcodesForSpill[getSpillIndex(RC)];
1923 }
1924 
1925 void PPCInstrInfo::StoreRegToStackSlot(
1926     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1927     const TargetRegisterClass *RC,
1928     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1929   unsigned Opcode = getStoreOpcodeForSpill(RC);
1930   DebugLoc DL;
1931 
1932   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1933   FuncInfo->setHasSpills();
1934 
1935   NewMIs.push_back(addFrameReference(
1936       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1937       FrameIdx));
1938 
1939   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1940       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1941     FuncInfo->setSpillsCR();
1942 
1943   if (isXFormMemOp(Opcode))
1944     FuncInfo->setHasNonRISpills();
1945 }
1946 
1947 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1948     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1949     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1950     const TargetRegisterInfo *TRI) const {
1951   MachineFunction &MF = *MBB.getParent();
1952   SmallVector<MachineInstr *, 4> NewMIs;
1953 
1954   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1955 
1956   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1957     MBB.insert(MI, NewMIs[i]);
1958 
1959   const MachineFrameInfo &MFI = MF.getFrameInfo();
1960   MachineMemOperand *MMO = MF.getMachineMemOperand(
1961       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1962       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1963       MFI.getObjectAlign(FrameIdx));
1964   NewMIs.back()->addMemOperand(MF, MMO);
1965 }
1966 
1967 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1968                                        MachineBasicBlock::iterator MI,
1969                                        Register SrcReg, bool isKill,
1970                                        int FrameIdx,
1971                                        const TargetRegisterClass *RC,
1972                                        const TargetRegisterInfo *TRI) const {
1973   // We need to avoid a situation in which the value from a VRRC register is
1974   // spilled using an Altivec instruction and reloaded into a VSRC register
1975   // using a VSX instruction. The issue with this is that the VSX
1976   // load/store instructions swap the doublewords in the vector and the Altivec
1977   // ones don't. The register classes on the spill/reload may be different if
1978   // the register is defined using an Altivec instruction and is then used by a
1979   // VSX instruction.
1980   RC = updatedRC(RC);
1981   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1982 }
1983 
1984 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1985                                         unsigned DestReg, int FrameIdx,
1986                                         const TargetRegisterClass *RC,
1987                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1988                                         const {
1989   unsigned Opcode = getLoadOpcodeForSpill(RC);
1990   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1991                                      FrameIdx));
1992   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1993 
1994   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1995       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1996     FuncInfo->setSpillsCR();
1997 
1998   if (isXFormMemOp(Opcode))
1999     FuncInfo->setHasNonRISpills();
2000 }
2001 
2002 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
2003     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
2004     int FrameIdx, const TargetRegisterClass *RC,
2005     const TargetRegisterInfo *TRI) const {
2006   MachineFunction &MF = *MBB.getParent();
2007   SmallVector<MachineInstr*, 4> NewMIs;
2008   DebugLoc DL;
2009   if (MI != MBB.end()) DL = MI->getDebugLoc();
2010 
2011   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2012   FuncInfo->setHasSpills();
2013 
2014   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2015 
2016   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
2017     MBB.insert(MI, NewMIs[i]);
2018 
2019   const MachineFrameInfo &MFI = MF.getFrameInfo();
2020   MachineMemOperand *MMO = MF.getMachineMemOperand(
2021       MachinePointerInfo::getFixedStack(MF, FrameIdx),
2022       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2023       MFI.getObjectAlign(FrameIdx));
2024   NewMIs.back()->addMemOperand(MF, MMO);
2025 }
2026 
2027 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2028                                         MachineBasicBlock::iterator MI,
2029                                         Register DestReg, int FrameIdx,
2030                                         const TargetRegisterClass *RC,
2031                                         const TargetRegisterInfo *TRI) const {
2032   // We need to avoid a situation in which the value from a VRRC register is
2033   // spilled using an Altivec instruction and reloaded into a VSRC register
2034   // using a VSX instruction. The issue with this is that the VSX
2035   // load/store instructions swap the doublewords in the vector and the Altivec
2036   // ones don't. The register classes on the spill/reload may be different if
2037   // the register is defined using an Altivec instruction and is then used by a
2038   // VSX instruction.
2039   RC = updatedRC(RC);
2040 
2041   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2042 }
2043 
2044 bool PPCInstrInfo::
2045 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2046   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2047   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2048     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2049   else
2050     // Leave the CR# the same, but invert the condition.
2051     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2052   return false;
2053 }
2054 
2055 // For some instructions, it is legal to fold ZERO into the RA register field.
2056 // This function performs that fold by replacing the operand with PPC::ZERO,
2057 // it does not consider whether the load immediate zero is no longer in use.
2058 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2059                                      Register Reg) const {
2060   // A zero immediate should always be loaded with a single li.
2061   unsigned DefOpc = DefMI.getOpcode();
2062   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2063     return false;
2064   if (!DefMI.getOperand(1).isImm())
2065     return false;
2066   if (DefMI.getOperand(1).getImm() != 0)
2067     return false;
2068 
2069   // Note that we cannot here invert the arguments of an isel in order to fold
2070   // a ZERO into what is presented as the second argument. All we have here
2071   // is the condition bit, and that might come from a CR-logical bit operation.
2072 
2073   const MCInstrDesc &UseMCID = UseMI.getDesc();
2074 
2075   // Only fold into real machine instructions.
2076   if (UseMCID.isPseudo())
2077     return false;
2078 
2079   // We need to find which of the User's operands is to be folded, that will be
2080   // the operand that matches the given register ID.
2081   unsigned UseIdx;
2082   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2083     if (UseMI.getOperand(UseIdx).isReg() &&
2084         UseMI.getOperand(UseIdx).getReg() == Reg)
2085       break;
2086 
2087   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2088   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2089 
2090   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
2091 
2092   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2093   // register (which might also be specified as a pointer class kind).
2094   if (UseInfo->isLookupPtrRegClass()) {
2095     if (UseInfo->RegClass /* Kind */ != 1)
2096       return false;
2097   } else {
2098     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2099         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2100       return false;
2101   }
2102 
2103   // Make sure this is not tied to an output register (or otherwise
2104   // constrained). This is true for ST?UX registers, for example, which
2105   // are tied to their output registers.
2106   if (UseInfo->Constraints != 0)
2107     return false;
2108 
2109   MCRegister ZeroReg;
2110   if (UseInfo->isLookupPtrRegClass()) {
2111     bool isPPC64 = Subtarget.isPPC64();
2112     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2113   } else {
2114     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2115               PPC::ZERO8 : PPC::ZERO;
2116   }
2117 
2118   UseMI.getOperand(UseIdx).setReg(ZeroReg);
2119   return true;
2120 }
2121 
2122 // Folds zero into instructions which have a load immediate zero as an operand
2123 // but also recognize zero as immediate zero. If the definition of the load
2124 // has no more users it is deleted.
2125 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2126                                  Register Reg, MachineRegisterInfo *MRI) const {
2127   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2128   if (MRI->use_nodbg_empty(Reg))
2129     DefMI.eraseFromParent();
2130   return Changed;
2131 }
2132 
2133 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2134   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2135        I != IE; ++I)
2136     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
2137       return true;
2138   return false;
2139 }
2140 
2141 // We should make sure that, if we're going to predicate both sides of a
2142 // condition (a diamond), that both sides don't define the counter register. We
2143 // can predicate counter-decrement-based branches, but while that predicates
2144 // the branching, it does not predicate the counter decrement. If we tried to
2145 // merge the triangle into one predicated block, we'd decrement the counter
2146 // twice.
2147 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2148                      unsigned NumT, unsigned ExtraT,
2149                      MachineBasicBlock &FMBB,
2150                      unsigned NumF, unsigned ExtraF,
2151                      BranchProbability Probability) const {
2152   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2153 }
2154 
2155 
2156 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2157   // The predicated branches are identified by their type, not really by the
2158   // explicit presence of a predicate. Furthermore, some of them can be
2159   // predicated more than once. Because if conversion won't try to predicate
2160   // any instruction which already claims to be predicated (by returning true
2161   // here), always return false. In doing so, we let isPredicable() be the
2162   // final word on whether not the instruction can be (further) predicated.
2163 
2164   return false;
2165 }
2166 
2167 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2168                                         const MachineBasicBlock *MBB,
2169                                         const MachineFunction &MF) const {
2170   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2171   // across them, since some FP operations may change content of FPSCR.
2172   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2173   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
2174     return true;
2175   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2176 }
2177 
2178 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2179                                         ArrayRef<MachineOperand> Pred) const {
2180   unsigned OpC = MI.getOpcode();
2181   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2182     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2183       bool isPPC64 = Subtarget.isPPC64();
2184       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2185                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2186       // Need add Def and Use for CTR implicit operand.
2187       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2188           .addReg(Pred[1].getReg(), RegState::Implicit)
2189           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2190     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2191       MI.setDesc(get(PPC::BCLR));
2192       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2193     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2194       MI.setDesc(get(PPC::BCLRn));
2195       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2196     } else {
2197       MI.setDesc(get(PPC::BCCLR));
2198       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2199           .addImm(Pred[0].getImm())
2200           .add(Pred[1]);
2201     }
2202 
2203     return true;
2204   } else if (OpC == PPC::B) {
2205     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2206       bool isPPC64 = Subtarget.isPPC64();
2207       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2208                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2209       // Need add Def and Use for CTR implicit operand.
2210       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2211           .addReg(Pred[1].getReg(), RegState::Implicit)
2212           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2213     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2214       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2215       MI.RemoveOperand(0);
2216 
2217       MI.setDesc(get(PPC::BC));
2218       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2219           .add(Pred[1])
2220           .addMBB(MBB);
2221     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2222       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2223       MI.RemoveOperand(0);
2224 
2225       MI.setDesc(get(PPC::BCn));
2226       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2227           .add(Pred[1])
2228           .addMBB(MBB);
2229     } else {
2230       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2231       MI.RemoveOperand(0);
2232 
2233       MI.setDesc(get(PPC::BCC));
2234       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2235           .addImm(Pred[0].getImm())
2236           .add(Pred[1])
2237           .addMBB(MBB);
2238     }
2239 
2240     return true;
2241   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2242              OpC == PPC::BCTRL8) {
2243     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2244       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2245 
2246     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
2247     bool isPPC64 = Subtarget.isPPC64();
2248 
2249     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2250       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2251                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2252       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2253     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2254       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2255                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2256       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2257     } else {
2258       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2259                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2260       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2261           .addImm(Pred[0].getImm())
2262           .add(Pred[1]);
2263     }
2264 
2265     // Need add Def and Use for LR implicit operand.
2266     if (setLR)
2267       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2268           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2269           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2270 
2271     return true;
2272   }
2273 
2274   return false;
2275 }
2276 
2277 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2278                                      ArrayRef<MachineOperand> Pred2) const {
2279   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2280   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2281 
2282   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2283     return false;
2284   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2285     return false;
2286 
2287   // P1 can only subsume P2 if they test the same condition register.
2288   if (Pred1[1].getReg() != Pred2[1].getReg())
2289     return false;
2290 
2291   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2292   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2293 
2294   if (P1 == P2)
2295     return true;
2296 
2297   // Does P1 subsume P2, e.g. GE subsumes GT.
2298   if (P1 == PPC::PRED_LE &&
2299       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2300     return true;
2301   if (P1 == PPC::PRED_GE &&
2302       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2303     return true;
2304 
2305   return false;
2306 }
2307 
2308 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2309                                      std::vector<MachineOperand> &Pred,
2310                                      bool SkipDead) const {
2311   // Note: At the present time, the contents of Pred from this function is
2312   // unused by IfConversion. This implementation follows ARM by pushing the
2313   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2314   // predicate, instructions defining CTR or CTR8 are also included as
2315   // predicate-defining instructions.
2316 
2317   const TargetRegisterClass *RCs[] =
2318     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2319       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2320 
2321   bool Found = false;
2322   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2323     const MachineOperand &MO = MI.getOperand(i);
2324     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
2325       const TargetRegisterClass *RC = RCs[c];
2326       if (MO.isReg()) {
2327         if (MO.isDef() && RC->contains(MO.getReg())) {
2328           Pred.push_back(MO);
2329           Found = true;
2330         }
2331       } else if (MO.isRegMask()) {
2332         for (TargetRegisterClass::iterator I = RC->begin(),
2333              IE = RC->end(); I != IE; ++I)
2334           if (MO.clobbersPhysReg(*I)) {
2335             Pred.push_back(MO);
2336             Found = true;
2337           }
2338       }
2339     }
2340   }
2341 
2342   return Found;
2343 }
2344 
2345 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2346                                   Register &SrcReg2, int &Mask,
2347                                   int &Value) const {
2348   unsigned Opc = MI.getOpcode();
2349 
2350   switch (Opc) {
2351   default: return false;
2352   case PPC::CMPWI:
2353   case PPC::CMPLWI:
2354   case PPC::CMPDI:
2355   case PPC::CMPLDI:
2356     SrcReg = MI.getOperand(1).getReg();
2357     SrcReg2 = 0;
2358     Value = MI.getOperand(2).getImm();
2359     Mask = 0xFFFF;
2360     return true;
2361   case PPC::CMPW:
2362   case PPC::CMPLW:
2363   case PPC::CMPD:
2364   case PPC::CMPLD:
2365   case PPC::FCMPUS:
2366   case PPC::FCMPUD:
2367     SrcReg = MI.getOperand(1).getReg();
2368     SrcReg2 = MI.getOperand(2).getReg();
2369     Value = 0;
2370     Mask = 0;
2371     return true;
2372   }
2373 }
2374 
2375 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2376                                         Register SrcReg2, int Mask, int Value,
2377                                         const MachineRegisterInfo *MRI) const {
2378   if (DisableCmpOpt)
2379     return false;
2380 
2381   int OpC = CmpInstr.getOpcode();
2382   Register CRReg = CmpInstr.getOperand(0).getReg();
2383 
2384   // FP record forms set CR1 based on the exception status bits, not a
2385   // comparison with zero.
2386   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2387     return false;
2388 
2389   const TargetRegisterInfo *TRI = &getRegisterInfo();
2390   // The record forms set the condition register based on a signed comparison
2391   // with zero (so says the ISA manual). This is not as straightforward as it
2392   // seems, however, because this is always a 64-bit comparison on PPC64, even
2393   // for instructions that are 32-bit in nature (like slw for example).
2394   // So, on PPC32, for unsigned comparisons, we can use the record forms only
2395   // for equality checks (as those don't depend on the sign). On PPC64,
2396   // we are restricted to equality for unsigned 64-bit comparisons and for
2397   // signed 32-bit comparisons the applicability is more restricted.
2398   bool isPPC64 = Subtarget.isPPC64();
2399   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
2400   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2401   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2402 
2403   // Look through copies unless that gets us to a physical register.
2404   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2405   if (ActualSrc.isVirtual())
2406     SrcReg = ActualSrc;
2407 
2408   // Get the unique definition of SrcReg.
2409   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2410   if (!MI) return false;
2411 
2412   bool equalityOnly = false;
2413   bool noSub = false;
2414   if (isPPC64) {
2415     if (is32BitSignedCompare) {
2416       // We can perform this optimization only if MI is sign-extending.
2417       if (isSignExtended(*MI))
2418         noSub = true;
2419       else
2420         return false;
2421     } else if (is32BitUnsignedCompare) {
2422       // We can perform this optimization, equality only, if MI is
2423       // zero-extending.
2424       if (isZeroExtended(*MI)) {
2425         noSub = true;
2426         equalityOnly = true;
2427       } else
2428         return false;
2429     } else
2430       equalityOnly = is64BitUnsignedCompare;
2431   } else
2432     equalityOnly = is32BitUnsignedCompare;
2433 
2434   if (equalityOnly) {
2435     // We need to check the uses of the condition register in order to reject
2436     // non-equality comparisons.
2437     for (MachineRegisterInfo::use_instr_iterator
2438          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2439          I != IE; ++I) {
2440       MachineInstr *UseMI = &*I;
2441       if (UseMI->getOpcode() == PPC::BCC) {
2442         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2443         unsigned PredCond = PPC::getPredicateCondition(Pred);
2444         // We ignore hint bits when checking for non-equality comparisons.
2445         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2446           return false;
2447       } else if (UseMI->getOpcode() == PPC::ISEL ||
2448                  UseMI->getOpcode() == PPC::ISEL8) {
2449         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2450         if (SubIdx != PPC::sub_eq)
2451           return false;
2452       } else
2453         return false;
2454     }
2455   }
2456 
2457   MachineBasicBlock::iterator I = CmpInstr;
2458 
2459   // Scan forward to find the first use of the compare.
2460   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2461        ++I) {
2462     bool FoundUse = false;
2463     for (MachineRegisterInfo::use_instr_iterator
2464          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2465          J != JE; ++J)
2466       if (&*J == &*I) {
2467         FoundUse = true;
2468         break;
2469       }
2470 
2471     if (FoundUse)
2472       break;
2473   }
2474 
2475   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2476   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2477 
2478   // There are two possible candidates which can be changed to set CR[01].
2479   // One is MI, the other is a SUB instruction.
2480   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2481   MachineInstr *Sub = nullptr;
2482   if (SrcReg2 != 0)
2483     // MI is not a candidate for CMPrr.
2484     MI = nullptr;
2485   // FIXME: Conservatively refuse to convert an instruction which isn't in the
2486   // same BB as the comparison. This is to allow the check below to avoid calls
2487   // (and other explicit clobbers); instead we should really check for these
2488   // more explicitly (in at least a few predecessors).
2489   else if (MI->getParent() != CmpInstr.getParent())
2490     return false;
2491   else if (Value != 0) {
2492     // The record-form instructions set CR bit based on signed comparison
2493     // against 0. We try to convert a compare against 1 or -1 into a compare
2494     // against 0 to exploit record-form instructions. For example, we change
2495     // the condition "greater than -1" into "greater than or equal to 0"
2496     // and "less than 1" into "less than or equal to 0".
2497 
2498     // Since we optimize comparison based on a specific branch condition,
2499     // we don't optimize if condition code is used by more than once.
2500     if (equalityOnly || !MRI->hasOneUse(CRReg))
2501       return false;
2502 
2503     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2504     if (UseMI->getOpcode() != PPC::BCC)
2505       return false;
2506 
2507     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2508     unsigned PredCond = PPC::getPredicateCondition(Pred);
2509     unsigned PredHint = PPC::getPredicateHint(Pred);
2510     int16_t Immed = (int16_t)Value;
2511 
2512     // When modifying the condition in the predicate, we propagate hint bits
2513     // from the original predicate to the new one.
2514     if (Immed == -1 && PredCond == PPC::PRED_GT)
2515       // We convert "greater than -1" into "greater than or equal to 0",
2516       // since we are assuming signed comparison by !equalityOnly
2517       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2518     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2519       // We convert "less than or equal to -1" into "less than 0".
2520       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2521     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2522       // We convert "less than 1" into "less than or equal to 0".
2523       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2524     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2525       // We convert "greater than or equal to 1" into "greater than 0".
2526       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2527     else
2528       return false;
2529 
2530     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2531   }
2532 
2533   // Search for Sub.
2534   --I;
2535 
2536   // Get ready to iterate backward from CmpInstr.
2537   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2538 
2539   for (; I != E && !noSub; --I) {
2540     const MachineInstr &Instr = *I;
2541     unsigned IOpC = Instr.getOpcode();
2542 
2543     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2544                              Instr.readsRegister(PPC::CR0, TRI)))
2545       // This instruction modifies or uses the record condition register after
2546       // the one we want to change. While we could do this transformation, it
2547       // would likely not be profitable. This transformation removes one
2548       // instruction, and so even forcing RA to generate one move probably
2549       // makes it unprofitable.
2550       return false;
2551 
2552     // Check whether CmpInstr can be made redundant by the current instruction.
2553     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2554          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2555         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2556         ((Instr.getOperand(1).getReg() == SrcReg &&
2557           Instr.getOperand(2).getReg() == SrcReg2) ||
2558         (Instr.getOperand(1).getReg() == SrcReg2 &&
2559          Instr.getOperand(2).getReg() == SrcReg))) {
2560       Sub = &*I;
2561       break;
2562     }
2563 
2564     if (I == B)
2565       // The 'and' is below the comparison instruction.
2566       return false;
2567   }
2568 
2569   // Return false if no candidates exist.
2570   if (!MI && !Sub)
2571     return false;
2572 
2573   // The single candidate is called MI.
2574   if (!MI) MI = Sub;
2575 
2576   int NewOpC = -1;
2577   int MIOpC = MI->getOpcode();
2578   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2579       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2580     NewOpC = MIOpC;
2581   else {
2582     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2583     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2584       NewOpC = MIOpC;
2585   }
2586 
2587   // FIXME: On the non-embedded POWER architectures, only some of the record
2588   // forms are fast, and we should use only the fast ones.
2589 
2590   // The defining instruction has a record form (or is already a record
2591   // form). It is possible, however, that we'll need to reverse the condition
2592   // code of the users.
2593   if (NewOpC == -1)
2594     return false;
2595 
2596   // This transformation should not be performed if `nsw` is missing and is not
2597   // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2598   // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2599   // CRReg can reflect if compared values are equal, this optz is still valid.
2600   if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2601       Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2602     return false;
2603 
2604   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2605   // needs to be updated to be based on SUB.  Push the condition code
2606   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2607   // condition code of these operands will be modified.
2608   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2609   // comparison against 0, which may modify predicate.
2610   bool ShouldSwap = false;
2611   if (Sub && Value == 0) {
2612     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2613       Sub->getOperand(2).getReg() == SrcReg;
2614 
2615     // The operands to subf are the opposite of sub, so only in the fixed-point
2616     // case, invert the order.
2617     ShouldSwap = !ShouldSwap;
2618   }
2619 
2620   if (ShouldSwap)
2621     for (MachineRegisterInfo::use_instr_iterator
2622          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2623          I != IE; ++I) {
2624       MachineInstr *UseMI = &*I;
2625       if (UseMI->getOpcode() == PPC::BCC) {
2626         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2627         unsigned PredCond = PPC::getPredicateCondition(Pred);
2628         assert((!equalityOnly ||
2629                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2630                "Invalid predicate for equality-only optimization");
2631         (void)PredCond; // To suppress warning in release build.
2632         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2633                                 PPC::getSwappedPredicate(Pred)));
2634       } else if (UseMI->getOpcode() == PPC::ISEL ||
2635                  UseMI->getOpcode() == PPC::ISEL8) {
2636         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2637         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2638                "Invalid CR bit for equality-only optimization");
2639 
2640         if (NewSubReg == PPC::sub_lt)
2641           NewSubReg = PPC::sub_gt;
2642         else if (NewSubReg == PPC::sub_gt)
2643           NewSubReg = PPC::sub_lt;
2644 
2645         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2646                                                  NewSubReg));
2647       } else // We need to abort on a user we don't understand.
2648         return false;
2649     }
2650   assert(!(Value != 0 && ShouldSwap) &&
2651          "Non-zero immediate support and ShouldSwap"
2652          "may conflict in updating predicate");
2653 
2654   // Create a new virtual register to hold the value of the CR set by the
2655   // record-form instruction. If the instruction was not previously in
2656   // record form, then set the kill flag on the CR.
2657   CmpInstr.eraseFromParent();
2658 
2659   MachineBasicBlock::iterator MII = MI;
2660   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2661           get(TargetOpcode::COPY), CRReg)
2662     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2663 
2664   // Even if CR0 register were dead before, it is alive now since the
2665   // instruction we just built uses it.
2666   MI->clearRegisterDeads(PPC::CR0);
2667 
2668   if (MIOpC != NewOpC) {
2669     // We need to be careful here: we're replacing one instruction with
2670     // another, and we need to make sure that we get all of the right
2671     // implicit uses and defs. On the other hand, the caller may be holding
2672     // an iterator to this instruction, and so we can't delete it (this is
2673     // specifically the case if this is the instruction directly after the
2674     // compare).
2675 
2676     // Rotates are expensive instructions. If we're emitting a record-form
2677     // rotate that can just be an andi/andis, we should just emit that.
2678     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2679       Register GPRRes = MI->getOperand(0).getReg();
2680       int64_t SH = MI->getOperand(2).getImm();
2681       int64_t MB = MI->getOperand(3).getImm();
2682       int64_t ME = MI->getOperand(4).getImm();
2683       // We can only do this if both the start and end of the mask are in the
2684       // same halfword.
2685       bool MBInLoHWord = MB >= 16;
2686       bool MEInLoHWord = ME >= 16;
2687       uint64_t Mask = ~0LLU;
2688 
2689       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2690         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2691         // The mask value needs to shift right 16 if we're emitting andis.
2692         Mask >>= MBInLoHWord ? 0 : 16;
2693         NewOpC = MIOpC == PPC::RLWINM
2694                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2695                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2696       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2697                  (ME - MB + 1 == SH) && (MB >= 16)) {
2698         // If we are rotating by the exact number of bits as are in the mask
2699         // and the mask is in the least significant bits of the register,
2700         // that's just an andis. (as long as the GPR result has no uses).
2701         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2702         Mask >>= 16;
2703         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2704       }
2705       // If we've set the mask, we can transform.
2706       if (Mask != ~0LLU) {
2707         MI->RemoveOperand(4);
2708         MI->RemoveOperand(3);
2709         MI->getOperand(2).setImm(Mask);
2710         NumRcRotatesConvertedToRcAnd++;
2711       }
2712     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2713       int64_t MB = MI->getOperand(3).getImm();
2714       if (MB >= 48) {
2715         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2716         NewOpC = PPC::ANDI8_rec;
2717         MI->RemoveOperand(3);
2718         MI->getOperand(2).setImm(Mask);
2719         NumRcRotatesConvertedToRcAnd++;
2720       }
2721     }
2722 
2723     const MCInstrDesc &NewDesc = get(NewOpC);
2724     MI->setDesc(NewDesc);
2725 
2726     if (NewDesc.ImplicitDefs)
2727       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2728            *ImpDefs; ++ImpDefs)
2729         if (!MI->definesRegister(*ImpDefs))
2730           MI->addOperand(*MI->getParent()->getParent(),
2731                          MachineOperand::CreateReg(*ImpDefs, true, true));
2732     if (NewDesc.ImplicitUses)
2733       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2734            *ImpUses; ++ImpUses)
2735         if (!MI->readsRegister(*ImpUses))
2736           MI->addOperand(*MI->getParent()->getParent(),
2737                          MachineOperand::CreateReg(*ImpUses, false, true));
2738   }
2739   assert(MI->definesRegister(PPC::CR0) &&
2740          "Record-form instruction does not define cr0?");
2741 
2742   // Modify the condition code of operands in OperandsToUpdate.
2743   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2744   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2745   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2746     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2747 
2748   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2749     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2750 
2751   return true;
2752 }
2753 
2754 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2755     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2756     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2757     const TargetRegisterInfo *TRI) const {
2758   const MachineOperand *BaseOp;
2759   OffsetIsScalable = false;
2760   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2761     return false;
2762   BaseOps.push_back(BaseOp);
2763   return true;
2764 }
2765 
2766 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2767                                 const TargetRegisterInfo *TRI) {
2768   // If this is a volatile load/store, don't mess with it.
2769   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2770     return false;
2771 
2772   if (LdSt.getOperand(2).isFI())
2773     return true;
2774 
2775   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2776   // Can't cluster if the instruction modifies the base register
2777   // or it is update form. e.g. ld r2,3(r2)
2778   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2779     return false;
2780 
2781   return true;
2782 }
2783 
2784 // Only cluster instruction pair that have the same opcode, and they are
2785 // clusterable according to PowerPC specification.
2786 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2787                                      const PPCSubtarget &Subtarget) {
2788   switch (FirstOpc) {
2789   default:
2790     return false;
2791   case PPC::STD:
2792   case PPC::STFD:
2793   case PPC::STXSD:
2794   case PPC::DFSTOREf64:
2795     return FirstOpc == SecondOpc;
2796   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2797   // 32bit and 64bit instruction selection. They are clusterable pair though
2798   // they are different opcode.
2799   case PPC::STW:
2800   case PPC::STW8:
2801     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2802   }
2803 }
2804 
2805 bool PPCInstrInfo::shouldClusterMemOps(
2806     ArrayRef<const MachineOperand *> BaseOps1,
2807     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2808     unsigned NumBytes) const {
2809 
2810   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2811   const MachineOperand &BaseOp1 = *BaseOps1.front();
2812   const MachineOperand &BaseOp2 = *BaseOps2.front();
2813   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2814          "Only base registers and frame indices are supported.");
2815 
2816   // The NumLoads means the number of loads that has been clustered.
2817   // Don't cluster memory op if there are already two ops clustered at least.
2818   if (NumLoads > 2)
2819     return false;
2820 
2821   // Cluster the load/store only when they have the same base
2822   // register or FI.
2823   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2824       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2825       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2826     return false;
2827 
2828   // Check if the load/store are clusterable according to the PowerPC
2829   // specification.
2830   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2831   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2832   unsigned FirstOpc = FirstLdSt.getOpcode();
2833   unsigned SecondOpc = SecondLdSt.getOpcode();
2834   const TargetRegisterInfo *TRI = &getRegisterInfo();
2835   // Cluster the load/store only when they have the same opcode, and they are
2836   // clusterable opcode according to PowerPC specification.
2837   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2838     return false;
2839 
2840   // Can't cluster load/store that have ordered or volatile memory reference.
2841   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2842       !isLdStSafeToCluster(SecondLdSt, TRI))
2843     return false;
2844 
2845   int64_t Offset1 = 0, Offset2 = 0;
2846   unsigned Width1 = 0, Width2 = 0;
2847   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2848   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2849       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2850       Width1 != Width2)
2851     return false;
2852 
2853   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2854          "getMemOperandWithOffsetWidth return incorrect base op");
2855   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2856   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2857   return Offset1 + Width1 == Offset2;
2858 }
2859 
2860 /// GetInstSize - Return the number of bytes of code the specified
2861 /// instruction may be.  This returns the maximum number of bytes.
2862 ///
2863 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2864   unsigned Opcode = MI.getOpcode();
2865 
2866   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2867     const MachineFunction *MF = MI.getParent()->getParent();
2868     const char *AsmStr = MI.getOperand(0).getSymbolName();
2869     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2870   } else if (Opcode == TargetOpcode::STACKMAP) {
2871     StackMapOpers Opers(&MI);
2872     return Opers.getNumPatchBytes();
2873   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2874     PatchPointOpers Opers(&MI);
2875     return Opers.getNumPatchBytes();
2876   } else {
2877     return get(Opcode).getSize();
2878   }
2879 }
2880 
2881 std::pair<unsigned, unsigned>
2882 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2883   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2884   return std::make_pair(TF & Mask, TF & ~Mask);
2885 }
2886 
2887 ArrayRef<std::pair<unsigned, const char *>>
2888 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2889   using namespace PPCII;
2890   static const std::pair<unsigned, const char *> TargetFlags[] = {
2891       {MO_LO, "ppc-lo"},
2892       {MO_HA, "ppc-ha"},
2893       {MO_TPREL_LO, "ppc-tprel-lo"},
2894       {MO_TPREL_HA, "ppc-tprel-ha"},
2895       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2896       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2897       {MO_TOC_LO, "ppc-toc-lo"},
2898       {MO_TLS, "ppc-tls"}};
2899   return makeArrayRef(TargetFlags);
2900 }
2901 
2902 ArrayRef<std::pair<unsigned, const char *>>
2903 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2904   using namespace PPCII;
2905   static const std::pair<unsigned, const char *> TargetFlags[] = {
2906       {MO_PLT, "ppc-plt"},
2907       {MO_PIC_FLAG, "ppc-pic"},
2908       {MO_PCREL_FLAG, "ppc-pcrel"},
2909       {MO_GOT_FLAG, "ppc-got"},
2910       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2911       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2912       {MO_TLSLD_FLAG, "ppc-tlsld"},
2913       {MO_TPREL_FLAG, "ppc-tprel"},
2914       {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
2915       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2916       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2917       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2918   return makeArrayRef(TargetFlags);
2919 }
2920 
2921 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2922 // The VSX versions have the advantage of a full 64-register target whereas
2923 // the FP ones have the advantage of lower latency and higher throughput. So
2924 // what we are after is using the faster instructions in low register pressure
2925 // situations and using the larger register file in high register pressure
2926 // situations.
2927 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2928     unsigned UpperOpcode, LowerOpcode;
2929     switch (MI.getOpcode()) {
2930     case PPC::DFLOADf32:
2931       UpperOpcode = PPC::LXSSP;
2932       LowerOpcode = PPC::LFS;
2933       break;
2934     case PPC::DFLOADf64:
2935       UpperOpcode = PPC::LXSD;
2936       LowerOpcode = PPC::LFD;
2937       break;
2938     case PPC::DFSTOREf32:
2939       UpperOpcode = PPC::STXSSP;
2940       LowerOpcode = PPC::STFS;
2941       break;
2942     case PPC::DFSTOREf64:
2943       UpperOpcode = PPC::STXSD;
2944       LowerOpcode = PPC::STFD;
2945       break;
2946     case PPC::XFLOADf32:
2947       UpperOpcode = PPC::LXSSPX;
2948       LowerOpcode = PPC::LFSX;
2949       break;
2950     case PPC::XFLOADf64:
2951       UpperOpcode = PPC::LXSDX;
2952       LowerOpcode = PPC::LFDX;
2953       break;
2954     case PPC::XFSTOREf32:
2955       UpperOpcode = PPC::STXSSPX;
2956       LowerOpcode = PPC::STFSX;
2957       break;
2958     case PPC::XFSTOREf64:
2959       UpperOpcode = PPC::STXSDX;
2960       LowerOpcode = PPC::STFDX;
2961       break;
2962     case PPC::LIWAX:
2963       UpperOpcode = PPC::LXSIWAX;
2964       LowerOpcode = PPC::LFIWAX;
2965       break;
2966     case PPC::LIWZX:
2967       UpperOpcode = PPC::LXSIWZX;
2968       LowerOpcode = PPC::LFIWZX;
2969       break;
2970     case PPC::STIWX:
2971       UpperOpcode = PPC::STXSIWX;
2972       LowerOpcode = PPC::STFIWX;
2973       break;
2974     default:
2975       llvm_unreachable("Unknown Operation!");
2976     }
2977 
2978     Register TargetReg = MI.getOperand(0).getReg();
2979     unsigned Opcode;
2980     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2981         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2982       Opcode = LowerOpcode;
2983     else
2984       Opcode = UpperOpcode;
2985     MI.setDesc(get(Opcode));
2986     return true;
2987 }
2988 
2989 static bool isAnImmediateOperand(const MachineOperand &MO) {
2990   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2991 }
2992 
2993 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2994   auto &MBB = *MI.getParent();
2995   auto DL = MI.getDebugLoc();
2996 
2997   switch (MI.getOpcode()) {
2998   case PPC::BUILD_UACC: {
2999     MCRegister ACC = MI.getOperand(0).getReg();
3000     MCRegister UACC = MI.getOperand(1).getReg();
3001     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3002       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3003       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3004       // FIXME: This can easily be improved to look up to the top of the MBB
3005       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3006       // we can just re-target any such XXLOR's to DstVSR + offset.
3007       for (int VecNo = 0; VecNo < 4; VecNo++)
3008         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3009             .addReg(SrcVSR + VecNo)
3010             .addReg(SrcVSR + VecNo);
3011     }
3012     // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers.
3013     // So after building the 4 copies, we can replace the BUILD_UACC instruction
3014     // with a NOP.
3015     LLVM_FALLTHROUGH;
3016   }
3017   case PPC::KILL_PAIR: {
3018     MI.setDesc(get(PPC::UNENCODED_NOP));
3019     MI.RemoveOperand(1);
3020     MI.RemoveOperand(0);
3021     return true;
3022   }
3023   case TargetOpcode::LOAD_STACK_GUARD: {
3024     assert(Subtarget.isTargetLinux() &&
3025            "Only Linux target is expected to contain LOAD_STACK_GUARD");
3026     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3027     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3028     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3029     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3030         .addImm(Offset)
3031         .addReg(Reg);
3032     return true;
3033   }
3034   case PPC::DFLOADf32:
3035   case PPC::DFLOADf64:
3036   case PPC::DFSTOREf32:
3037   case PPC::DFSTOREf64: {
3038     assert(Subtarget.hasP9Vector() &&
3039            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3040     assert(MI.getOperand(2).isReg() &&
3041            isAnImmediateOperand(MI.getOperand(1)) &&
3042            "D-form op must have register and immediate operands");
3043     return expandVSXMemPseudo(MI);
3044   }
3045   case PPC::XFLOADf32:
3046   case PPC::XFSTOREf32:
3047   case PPC::LIWAX:
3048   case PPC::LIWZX:
3049   case PPC::STIWX: {
3050     assert(Subtarget.hasP8Vector() &&
3051            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3052     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3053            "X-form op must have register and register operands");
3054     return expandVSXMemPseudo(MI);
3055   }
3056   case PPC::XFLOADf64:
3057   case PPC::XFSTOREf64: {
3058     assert(Subtarget.hasVSX() &&
3059            "Invalid X-Form Pseudo-ops on target that has no VSX.");
3060     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3061            "X-form op must have register and register operands");
3062     return expandVSXMemPseudo(MI);
3063   }
3064   case PPC::SPILLTOVSR_LD: {
3065     Register TargetReg = MI.getOperand(0).getReg();
3066     if (PPC::VSFRCRegClass.contains(TargetReg)) {
3067       MI.setDesc(get(PPC::DFLOADf64));
3068       return expandPostRAPseudo(MI);
3069     }
3070     else
3071       MI.setDesc(get(PPC::LD));
3072     return true;
3073   }
3074   case PPC::SPILLTOVSR_ST: {
3075     Register SrcReg = MI.getOperand(0).getReg();
3076     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3077       NumStoreSPILLVSRRCAsVec++;
3078       MI.setDesc(get(PPC::DFSTOREf64));
3079       return expandPostRAPseudo(MI);
3080     } else {
3081       NumStoreSPILLVSRRCAsGpr++;
3082       MI.setDesc(get(PPC::STD));
3083     }
3084     return true;
3085   }
3086   case PPC::SPILLTOVSR_LDX: {
3087     Register TargetReg = MI.getOperand(0).getReg();
3088     if (PPC::VSFRCRegClass.contains(TargetReg))
3089       MI.setDesc(get(PPC::LXSDX));
3090     else
3091       MI.setDesc(get(PPC::LDX));
3092     return true;
3093   }
3094   case PPC::SPILLTOVSR_STX: {
3095     Register SrcReg = MI.getOperand(0).getReg();
3096     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3097       NumStoreSPILLVSRRCAsVec++;
3098       MI.setDesc(get(PPC::STXSDX));
3099     } else {
3100       NumStoreSPILLVSRRCAsGpr++;
3101       MI.setDesc(get(PPC::STDX));
3102     }
3103     return true;
3104   }
3105 
3106   case PPC::CFENCE8: {
3107     auto Val = MI.getOperand(0).getReg();
3108     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
3109     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3110         .addImm(PPC::PRED_NE_MINUS)
3111         .addReg(PPC::CR7)
3112         .addImm(1);
3113     MI.setDesc(get(PPC::ISYNC));
3114     MI.RemoveOperand(0);
3115     return true;
3116   }
3117   }
3118   return false;
3119 }
3120 
3121 // Essentially a compile-time implementation of a compare->isel sequence.
3122 // It takes two constants to compare, along with the true/false registers
3123 // and the comparison type (as a subreg to a CR field) and returns one
3124 // of the true/false registers, depending on the comparison results.
3125 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3126                           unsigned TrueReg, unsigned FalseReg,
3127                           unsigned CRSubReg) {
3128   // Signed comparisons. The immediates are assumed to be sign-extended.
3129   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3130     switch (CRSubReg) {
3131     default: llvm_unreachable("Unknown integer comparison type.");
3132     case PPC::sub_lt:
3133       return Imm1 < Imm2 ? TrueReg : FalseReg;
3134     case PPC::sub_gt:
3135       return Imm1 > Imm2 ? TrueReg : FalseReg;
3136     case PPC::sub_eq:
3137       return Imm1 == Imm2 ? TrueReg : FalseReg;
3138     }
3139   }
3140   // Unsigned comparisons.
3141   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3142     switch (CRSubReg) {
3143     default: llvm_unreachable("Unknown integer comparison type.");
3144     case PPC::sub_lt:
3145       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3146     case PPC::sub_gt:
3147       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3148     case PPC::sub_eq:
3149       return Imm1 == Imm2 ? TrueReg : FalseReg;
3150     }
3151   }
3152   return PPC::NoRegister;
3153 }
3154 
3155 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3156                                               unsigned OpNo,
3157                                               int64_t Imm) const {
3158   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3159   // Replace the REG with the Immediate.
3160   Register InUseReg = MI.getOperand(OpNo).getReg();
3161   MI.getOperand(OpNo).ChangeToImmediate(Imm);
3162 
3163   // We need to make sure that the MI didn't have any implicit use
3164   // of this REG any more. We don't call MI.implicit_operands().empty() to
3165   // return early, since MI's MCID might be changed in calling context, as a
3166   // result its number of explicit operands may be changed, thus the begin of
3167   // implicit operand is changed.
3168   const TargetRegisterInfo *TRI = &getRegisterInfo();
3169   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
3170   if (UseOpIdx >= 0) {
3171     MachineOperand &MO = MI.getOperand(UseOpIdx);
3172     if (MO.isImplicit())
3173       // The operands must always be in the following order:
3174       // - explicit reg defs,
3175       // - other explicit operands (reg uses, immediates, etc.),
3176       // - implicit reg defs
3177       // - implicit reg uses
3178       // Therefore, removing the implicit operand won't change the explicit
3179       // operands layout.
3180       MI.RemoveOperand(UseOpIdx);
3181   }
3182 }
3183 
3184 // Replace an instruction with one that materializes a constant (and sets
3185 // CR0 if the original instruction was a record-form instruction).
3186 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3187                                       const LoadImmediateInfo &LII) const {
3188   // Remove existing operands.
3189   int OperandToKeep = LII.SetCR ? 1 : 0;
3190   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3191     MI.RemoveOperand(i);
3192 
3193   // Replace the instruction.
3194   if (LII.SetCR) {
3195     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3196     // Set the immediate.
3197     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3198         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3199     return;
3200   }
3201   else
3202     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3203 
3204   // Set the immediate.
3205   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3206       .addImm(LII.Imm);
3207 }
3208 
3209 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3210                                            bool &SeenIntermediateUse) const {
3211   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3212          "Should be called after register allocation.");
3213   const TargetRegisterInfo *TRI = &getRegisterInfo();
3214   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3215   It++;
3216   SeenIntermediateUse = false;
3217   for (; It != E; ++It) {
3218     if (It->modifiesRegister(Reg, TRI))
3219       return &*It;
3220     if (It->readsRegister(Reg, TRI))
3221       SeenIntermediateUse = true;
3222   }
3223   return nullptr;
3224 }
3225 
3226 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3227   MachineInstr &MI,
3228   unsigned &OpNoForForwarding,
3229   bool &SeenIntermediateUse) const {
3230   OpNoForForwarding = ~0U;
3231   MachineInstr *DefMI = nullptr;
3232   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3233   const TargetRegisterInfo *TRI = &getRegisterInfo();
3234   // If we're in SSA, get the defs through the MRI. Otherwise, only look
3235   // within the basic block to see if the register is defined using an
3236   // LI/LI8/ADDI/ADDI8.
3237   if (MRI->isSSA()) {
3238     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3239       if (!MI.getOperand(i).isReg())
3240         continue;
3241       Register Reg = MI.getOperand(i).getReg();
3242       if (!Register::isVirtualRegister(Reg))
3243         continue;
3244       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3245       if (Register::isVirtualRegister(TrueReg)) {
3246         DefMI = MRI->getVRegDef(TrueReg);
3247         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
3248             DefMI->getOpcode() == PPC::ADDI ||
3249             DefMI->getOpcode() == PPC::ADDI8) {
3250           OpNoForForwarding = i;
3251           // The ADDI and LI operand maybe exist in one instruction at same
3252           // time. we prefer to fold LI operand as LI only has one Imm operand
3253           // and is more possible to be converted. So if current DefMI is
3254           // ADDI/ADDI8, we continue to find possible LI/LI8.
3255           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3256             break;
3257         }
3258       }
3259     }
3260   } else {
3261     // Looking back through the definition for each operand could be expensive,
3262     // so exit early if this isn't an instruction that either has an immediate
3263     // form or is already an immediate form that we can handle.
3264     ImmInstrInfo III;
3265     unsigned Opc = MI.getOpcode();
3266     bool ConvertibleImmForm =
3267         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3268         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3269         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3270         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3271         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3272         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3273         Opc == PPC::RLWINM8_rec;
3274     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3275                        ? isVFRegister(MI.getOperand(0).getReg())
3276                        : false;
3277     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3278       return nullptr;
3279 
3280     // Don't convert or %X, %Y, %Y since that's just a register move.
3281     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3282         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3283       return nullptr;
3284     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3285       MachineOperand &MO = MI.getOperand(i);
3286       SeenIntermediateUse = false;
3287       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3288         Register Reg = MI.getOperand(i).getReg();
3289         // If we see another use of this reg between the def and the MI,
3290         // we want to flat it so the def isn't deleted.
3291         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3292         if (DefMI) {
3293           // Is this register defined by some form of add-immediate (including
3294           // load-immediate) within this basic block?
3295           switch (DefMI->getOpcode()) {
3296           default:
3297             break;
3298           case PPC::LI:
3299           case PPC::LI8:
3300           case PPC::ADDItocL:
3301           case PPC::ADDI:
3302           case PPC::ADDI8:
3303             OpNoForForwarding = i;
3304             return DefMI;
3305           }
3306         }
3307       }
3308     }
3309   }
3310   return OpNoForForwarding == ~0U ? nullptr : DefMI;
3311 }
3312 
3313 unsigned PPCInstrInfo::getSpillTarget() const {
3314   // With P10, we may need to spill paired vector registers or accumulator
3315   // registers. MMA implies paired vectors, so we can just check that.
3316   bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3317   return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
3318 }
3319 
3320 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3321   return StoreSpillOpcodesArray[getSpillTarget()];
3322 }
3323 
3324 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3325   return LoadSpillOpcodesArray[getSpillTarget()];
3326 }
3327 
3328 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
3329                                      unsigned RegNo) const {
3330   // Conservatively clear kill flag for the register if the instructions are in
3331   // different basic blocks and in SSA form, because the kill flag may no longer
3332   // be right. There is no need to bother with dead flags since defs with no
3333   // uses will be handled by DCE.
3334   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
3335   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
3336     MRI.clearKillFlags(RegNo);
3337     return;
3338   }
3339 
3340   // Instructions between [StartMI, EndMI] should be in same basic block.
3341   assert((StartMI->getParent() == EndMI->getParent()) &&
3342          "Instructions are not in same basic block");
3343 
3344   // If before RA, StartMI may be def through COPY, we need to adjust it to the
3345   // real def. See function getForwardingDefMI.
3346   if (MRI.isSSA()) {
3347     bool Reads, Writes;
3348     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
3349     if (!Reads && !Writes) {
3350       assert(Register::isVirtualRegister(RegNo) &&
3351              "Must be a virtual register");
3352       // Get real def and ignore copies.
3353       StartMI = MRI.getVRegDef(RegNo);
3354     }
3355   }
3356 
3357   bool IsKillSet = false;
3358 
3359   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
3360     MachineOperand &MO = MI.getOperand(Index);
3361     if (MO.isReg() && MO.isUse() && MO.isKill() &&
3362         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
3363       MO.setIsKill(false);
3364   };
3365 
3366   // Set killed flag for EndMI.
3367   // No need to do anything if EndMI defines RegNo.
3368   int UseIndex =
3369       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
3370   if (UseIndex != -1) {
3371     EndMI->getOperand(UseIndex).setIsKill(true);
3372     IsKillSet = true;
3373     // Clear killed flag for other EndMI operands related to RegNo. In some
3374     // upexpected cases, killed may be set multiple times for same register
3375     // operand in same MI.
3376     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
3377       if (i != UseIndex)
3378         clearOperandKillInfo(*EndMI, i);
3379   }
3380 
3381   // Walking the inst in reverse order (EndMI -> StartMI].
3382   MachineBasicBlock::reverse_iterator It = *EndMI;
3383   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
3384   // EndMI has been handled above, skip it here.
3385   It++;
3386   MachineOperand *MO = nullptr;
3387   for (; It != E; ++It) {
3388     // Skip insturctions which could not be a def/use of RegNo.
3389     if (It->isDebugInstr() || It->isPosition())
3390       continue;
3391 
3392     // Clear killed flag for all It operands related to RegNo. In some
3393     // upexpected cases, killed may be set multiple times for same register
3394     // operand in same MI.
3395     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
3396         clearOperandKillInfo(*It, i);
3397 
3398     // If killed is not set, set killed for its last use or set dead for its def
3399     // if no use found.
3400     if (!IsKillSet) {
3401       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
3402         // Use found, set it killed.
3403         IsKillSet = true;
3404         MO->setIsKill(true);
3405         continue;
3406       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
3407                                                   &getRegisterInfo()))) {
3408         // No use found, set dead for its def.
3409         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
3410         MO->setIsDead(true);
3411         break;
3412       }
3413     }
3414 
3415     if ((&*It) == StartMI)
3416       break;
3417   }
3418   // Ensure RegMo liveness is killed after EndMI.
3419   assert((IsKillSet || (MO && MO->isDead())) &&
3420          "RegNo should be killed or dead");
3421 }
3422 
3423 // This opt tries to convert the following imm form to an index form to save an
3424 // add for stack variables.
3425 // Return false if no such pattern found.
3426 //
3427 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3428 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3429 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
3430 //
3431 // can be converted to:
3432 //
3433 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3434 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
3435 //
3436 // In order to eliminate ADD instr, make sure that:
3437 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3438 //    new ADDI instr and ADDI can only take int16 Imm.
3439 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3440 //    between ADDI and ADD instr since its original def in ADDI will be changed
3441 //    in new ADDI instr. And also there should be no new def for it between
3442 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3443 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3444 //    between ADD and Imm instr since ADD instr will be eliminated.
3445 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3446 //    moved to Index instr.
3447 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3448   MachineFunction *MF = MI.getParent()->getParent();
3449   MachineRegisterInfo *MRI = &MF->getRegInfo();
3450   bool PostRA = !MRI->isSSA();
3451   // Do this opt after PEI which is after RA. The reason is stack slot expansion
3452   // in PEI may expose such opportunities since in PEI, stack slot offsets to
3453   // frame base(OffsetAddi) are determined.
3454   if (!PostRA)
3455     return false;
3456   unsigned ToBeDeletedReg = 0;
3457   int64_t OffsetImm = 0;
3458   unsigned XFormOpcode = 0;
3459   ImmInstrInfo III;
3460 
3461   // Check if Imm instr meets requirement.
3462   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3463                                     III))
3464     return false;
3465 
3466   bool OtherIntermediateUse = false;
3467   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3468 
3469   // Exit if there is other use between ADD and Imm instr or no def found.
3470   if (OtherIntermediateUse || !ADDMI)
3471     return false;
3472 
3473   // Check if ADD instr meets requirement.
3474   if (!isADDInstrEligibleForFolding(*ADDMI))
3475     return false;
3476 
3477   unsigned ScaleRegIdx = 0;
3478   int64_t OffsetAddi = 0;
3479   MachineInstr *ADDIMI = nullptr;
3480 
3481   // Check if there is a valid ToBeChangedReg in ADDMI.
3482   // 1: It must be killed.
3483   // 2: Its definition must be a valid ADDIMI.
3484   // 3: It must satify int16 offset requirement.
3485   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3486     ScaleRegIdx = 2;
3487   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3488     ScaleRegIdx = 1;
3489   else
3490     return false;
3491 
3492   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3493   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3494   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3495   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3496                        MachineBasicBlock::iterator End) {
3497     for (auto It = ++Start; It != End; It++)
3498       if (It->modifiesRegister(Reg, &getRegisterInfo()))
3499         return true;
3500     return false;
3501   };
3502 
3503   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3504   // treated as special zero when ScaleReg is R0/X0 register.
3505   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3506       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3507     return false;
3508 
3509   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3510   // and Imm Instr.
3511   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3512     return false;
3513 
3514   // Now start to do the transformation.
3515   LLVM_DEBUG(dbgs() << "Replace instruction: "
3516                     << "\n");
3517   LLVM_DEBUG(ADDIMI->dump());
3518   LLVM_DEBUG(ADDMI->dump());
3519   LLVM_DEBUG(MI.dump());
3520   LLVM_DEBUG(dbgs() << "with: "
3521                     << "\n");
3522 
3523   // Update ADDI instr.
3524   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3525 
3526   // Update Imm instr.
3527   MI.setDesc(get(XFormOpcode));
3528   MI.getOperand(III.ImmOpNo)
3529       .ChangeToRegister(ScaleReg, false, false,
3530                         ADDMI->getOperand(ScaleRegIdx).isKill());
3531 
3532   MI.getOperand(III.OpNoForForwarding)
3533       .ChangeToRegister(ToBeChangedReg, false, false, true);
3534 
3535   // Eliminate ADD instr.
3536   ADDMI->eraseFromParent();
3537 
3538   LLVM_DEBUG(ADDIMI->dump());
3539   LLVM_DEBUG(MI.dump());
3540 
3541   return true;
3542 }
3543 
3544 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3545                                                  int64_t &Imm) const {
3546   unsigned Opc = ADDIMI.getOpcode();
3547 
3548   // Exit if the instruction is not ADDI.
3549   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3550     return false;
3551 
3552   // The operand may not necessarily be an immediate - it could be a relocation.
3553   if (!ADDIMI.getOperand(2).isImm())
3554     return false;
3555 
3556   Imm = ADDIMI.getOperand(2).getImm();
3557 
3558   return true;
3559 }
3560 
3561 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3562   unsigned Opc = ADDMI.getOpcode();
3563 
3564   // Exit if the instruction is not ADD.
3565   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3566 }
3567 
3568 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3569                                                 unsigned &ToBeDeletedReg,
3570                                                 unsigned &XFormOpcode,
3571                                                 int64_t &OffsetImm,
3572                                                 ImmInstrInfo &III) const {
3573   // Only handle load/store.
3574   if (!MI.mayLoadOrStore())
3575     return false;
3576 
3577   unsigned Opc = MI.getOpcode();
3578 
3579   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3580 
3581   // Exit if instruction has no index form.
3582   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3583     return false;
3584 
3585   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3586   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3587                        III, true))
3588     return false;
3589 
3590   if (!III.IsSummingOperands)
3591     return false;
3592 
3593   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3594   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3595   // Only support imm operands, not relocation slots or others.
3596   if (!ImmOperand.isImm())
3597     return false;
3598 
3599   assert(RegOperand.isReg() && "Instruction format is not right");
3600 
3601   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3602   if (!RegOperand.isKill())
3603     return false;
3604 
3605   ToBeDeletedReg = RegOperand.getReg();
3606   OffsetImm = ImmOperand.getImm();
3607 
3608   return true;
3609 }
3610 
3611 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3612                                          MachineInstr *&ADDIMI,
3613                                          int64_t &OffsetAddi,
3614                                          int64_t OffsetImm) const {
3615   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3616   MachineOperand &MO = ADDMI->getOperand(Index);
3617 
3618   if (!MO.isKill())
3619     return false;
3620 
3621   bool OtherIntermediateUse = false;
3622 
3623   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3624   // Currently handle only one "add + Imminstr" pair case, exit if other
3625   // intermediate use for ToBeChangedReg found.
3626   // TODO: handle the cases where there are other "add + Imminstr" pairs
3627   // with same offset in Imminstr which is like:
3628   //
3629   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3630   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3631   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3632   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3633   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3634   //
3635   // can be converted to:
3636   //
3637   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3638   //                                       (OffsetAddi + OffsetImm)
3639   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3640   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3641 
3642   if (OtherIntermediateUse || !ADDIMI)
3643     return false;
3644   // Check if ADDI instr meets requirement.
3645   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3646     return false;
3647 
3648   if (isInt<16>(OffsetAddi + OffsetImm))
3649     return true;
3650   return false;
3651 }
3652 
3653 // If this instruction has an immediate form and one of its operands is a
3654 // result of a load-immediate or an add-immediate, convert it to
3655 // the immediate form if the constant is in range.
3656 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3657                                           MachineInstr **KilledDef) const {
3658   MachineFunction *MF = MI.getParent()->getParent();
3659   MachineRegisterInfo *MRI = &MF->getRegInfo();
3660   bool PostRA = !MRI->isSSA();
3661   bool SeenIntermediateUse = true;
3662   unsigned ForwardingOperand = ~0U;
3663   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3664                                            SeenIntermediateUse);
3665   if (!DefMI)
3666     return false;
3667   assert(ForwardingOperand < MI.getNumOperands() &&
3668          "The forwarding operand needs to be valid at this point");
3669   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3670   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3671   if (KilledDef && KillFwdDefMI)
3672     *KilledDef = DefMI;
3673 
3674   // If this is a imm instruction and its register operands is produced by ADDI,
3675   // put the imm into imm inst directly.
3676   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3677           PPC::INSTRUCTION_LIST_END &&
3678       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3679     return true;
3680 
3681   ImmInstrInfo III;
3682   bool IsVFReg = MI.getOperand(0).isReg()
3683                      ? isVFRegister(MI.getOperand(0).getReg())
3684                      : false;
3685   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3686   // If this is a reg+reg instruction that has a reg+imm form,
3687   // and one of the operands is produced by an add-immediate,
3688   // try to convert it.
3689   if (HasImmForm &&
3690       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3691                                  KillFwdDefMI))
3692     return true;
3693 
3694   // If this is a reg+reg instruction that has a reg+imm form,
3695   // and one of the operands is produced by LI, convert it now.
3696   if (HasImmForm &&
3697       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3698     return true;
3699 
3700   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3701   // can be simpified to LI.
3702   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3703     return true;
3704 
3705   return false;
3706 }
3707 
3708 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3709                                  MachineInstr **ToErase) const {
3710   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3711   unsigned FoldingReg = MI.getOperand(1).getReg();
3712   if (!Register::isVirtualRegister(FoldingReg))
3713     return false;
3714   MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3715   if (SrcMI->getOpcode() != PPC::RLWINM &&
3716       SrcMI->getOpcode() != PPC::RLWINM_rec &&
3717       SrcMI->getOpcode() != PPC::RLWINM8 &&
3718       SrcMI->getOpcode() != PPC::RLWINM8_rec)
3719     return false;
3720   assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3721           MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3722           SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3723          "Invalid PPC::RLWINM Instruction!");
3724   uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3725   uint64_t SHMI = MI.getOperand(2).getImm();
3726   uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3727   uint64_t MBMI = MI.getOperand(3).getImm();
3728   uint64_t MESrc = SrcMI->getOperand(4).getImm();
3729   uint64_t MEMI = MI.getOperand(4).getImm();
3730 
3731   assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3732          "Invalid PPC::RLWINM Instruction!");
3733   // If MBMI is bigger than MEMI, we always can not get run of ones.
3734   // RotatedSrcMask non-wrap:
3735   //                 0........31|32........63
3736   // RotatedSrcMask:   B---E        B---E
3737   // MaskMI:         -----------|--E  B------
3738   // Result:           -----          ---      (Bad candidate)
3739   //
3740   // RotatedSrcMask wrap:
3741   //                 0........31|32........63
3742   // RotatedSrcMask: --E   B----|--E    B----
3743   // MaskMI:         -----------|--E  B------
3744   // Result:         ---   -----|---    -----  (Bad candidate)
3745   //
3746   // One special case is RotatedSrcMask is a full set mask.
3747   // RotatedSrcMask full:
3748   //                 0........31|32........63
3749   // RotatedSrcMask: ------EB---|-------EB---
3750   // MaskMI:         -----------|--E  B------
3751   // Result:         -----------|---  -------  (Good candidate)
3752 
3753   // Mark special case.
3754   bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3755 
3756   // For other MBMI > MEMI cases, just return.
3757   if ((MBMI > MEMI) && !SrcMaskFull)
3758     return false;
3759 
3760   // Handle MBMI <= MEMI cases.
3761   APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3762   // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3763   // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3764   // while in PowerPC ISA, lowerest bit is at index 63.
3765   APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3766 
3767   APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3768   APInt FinalMask = RotatedSrcMask & MaskMI;
3769   uint32_t NewMB, NewME;
3770   bool Simplified = false;
3771 
3772   // If final mask is 0, MI result should be 0 too.
3773   if (FinalMask.isNullValue()) {
3774     bool Is64Bit =
3775         (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3776     Simplified = true;
3777     LLVM_DEBUG(dbgs() << "Replace Instr: ");
3778     LLVM_DEBUG(MI.dump());
3779 
3780     if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3781       // Replace MI with "LI 0"
3782       MI.RemoveOperand(4);
3783       MI.RemoveOperand(3);
3784       MI.RemoveOperand(2);
3785       MI.getOperand(1).ChangeToImmediate(0);
3786       MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3787     } else {
3788       // Replace MI with "ANDI_rec reg, 0"
3789       MI.RemoveOperand(4);
3790       MI.RemoveOperand(3);
3791       MI.getOperand(2).setImm(0);
3792       MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3793       MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3794       if (SrcMI->getOperand(1).isKill()) {
3795         MI.getOperand(1).setIsKill(true);
3796         SrcMI->getOperand(1).setIsKill(false);
3797       } else
3798         // About to replace MI.getOperand(1), clear its kill flag.
3799         MI.getOperand(1).setIsKill(false);
3800     }
3801 
3802     LLVM_DEBUG(dbgs() << "With: ");
3803     LLVM_DEBUG(MI.dump());
3804 
3805   } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3806               NewMB <= NewME) ||
3807              SrcMaskFull) {
3808     // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3809     // than NewME. Otherwise we get a 64 bit value after folding, but MI
3810     // return a 32 bit value.
3811     Simplified = true;
3812     LLVM_DEBUG(dbgs() << "Converting Instr: ");
3813     LLVM_DEBUG(MI.dump());
3814 
3815     uint16_t NewSH = (SHSrc + SHMI) % 32;
3816     MI.getOperand(2).setImm(NewSH);
3817     // If SrcMI mask is full, no need to update MBMI and MEMI.
3818     if (!SrcMaskFull) {
3819       MI.getOperand(3).setImm(NewMB);
3820       MI.getOperand(4).setImm(NewME);
3821     }
3822     MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3823     if (SrcMI->getOperand(1).isKill()) {
3824       MI.getOperand(1).setIsKill(true);
3825       SrcMI->getOperand(1).setIsKill(false);
3826     } else
3827       // About to replace MI.getOperand(1), clear its kill flag.
3828       MI.getOperand(1).setIsKill(false);
3829 
3830     LLVM_DEBUG(dbgs() << "To: ");
3831     LLVM_DEBUG(MI.dump());
3832   }
3833   if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3834       !SrcMI->hasImplicitDef()) {
3835     // If FoldingReg has no non-debug use and it has no implicit def (it
3836     // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3837     // Otherwise keep it.
3838     *ToErase = SrcMI;
3839     LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3840     LLVM_DEBUG(SrcMI->dump());
3841   }
3842   return Simplified;
3843 }
3844 
3845 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3846                                    ImmInstrInfo &III, bool PostRA) const {
3847   // The vast majority of the instructions would need their operand 2 replaced
3848   // with an immediate when switching to the reg+imm form. A marked exception
3849   // are the update form loads/stores for which a constant operand 2 would need
3850   // to turn into a displacement and move operand 1 to the operand 2 position.
3851   III.ImmOpNo = 2;
3852   III.OpNoForForwarding = 2;
3853   III.ImmWidth = 16;
3854   III.ImmMustBeMultipleOf = 1;
3855   III.TruncateImmTo = 0;
3856   III.IsSummingOperands = false;
3857   switch (Opc) {
3858   default: return false;
3859   case PPC::ADD4:
3860   case PPC::ADD8:
3861     III.SignedImm = true;
3862     III.ZeroIsSpecialOrig = 0;
3863     III.ZeroIsSpecialNew = 1;
3864     III.IsCommutative = true;
3865     III.IsSummingOperands = true;
3866     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3867     break;
3868   case PPC::ADDC:
3869   case PPC::ADDC8:
3870     III.SignedImm = true;
3871     III.ZeroIsSpecialOrig = 0;
3872     III.ZeroIsSpecialNew = 0;
3873     III.IsCommutative = true;
3874     III.IsSummingOperands = true;
3875     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3876     break;
3877   case PPC::ADDC_rec:
3878     III.SignedImm = true;
3879     III.ZeroIsSpecialOrig = 0;
3880     III.ZeroIsSpecialNew = 0;
3881     III.IsCommutative = true;
3882     III.IsSummingOperands = true;
3883     III.ImmOpcode = PPC::ADDIC_rec;
3884     break;
3885   case PPC::SUBFC:
3886   case PPC::SUBFC8:
3887     III.SignedImm = true;
3888     III.ZeroIsSpecialOrig = 0;
3889     III.ZeroIsSpecialNew = 0;
3890     III.IsCommutative = false;
3891     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3892     break;
3893   case PPC::CMPW:
3894   case PPC::CMPD:
3895     III.SignedImm = true;
3896     III.ZeroIsSpecialOrig = 0;
3897     III.ZeroIsSpecialNew = 0;
3898     III.IsCommutative = false;
3899     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3900     break;
3901   case PPC::CMPLW:
3902   case PPC::CMPLD:
3903     III.SignedImm = false;
3904     III.ZeroIsSpecialOrig = 0;
3905     III.ZeroIsSpecialNew = 0;
3906     III.IsCommutative = false;
3907     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3908     break;
3909   case PPC::AND_rec:
3910   case PPC::AND8_rec:
3911   case PPC::OR:
3912   case PPC::OR8:
3913   case PPC::XOR:
3914   case PPC::XOR8:
3915     III.SignedImm = false;
3916     III.ZeroIsSpecialOrig = 0;
3917     III.ZeroIsSpecialNew = 0;
3918     III.IsCommutative = true;
3919     switch(Opc) {
3920     default: llvm_unreachable("Unknown opcode");
3921     case PPC::AND_rec:
3922       III.ImmOpcode = PPC::ANDI_rec;
3923       break;
3924     case PPC::AND8_rec:
3925       III.ImmOpcode = PPC::ANDI8_rec;
3926       break;
3927     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3928     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3929     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3930     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3931     }
3932     break;
3933   case PPC::RLWNM:
3934   case PPC::RLWNM8:
3935   case PPC::RLWNM_rec:
3936   case PPC::RLWNM8_rec:
3937   case PPC::SLW:
3938   case PPC::SLW8:
3939   case PPC::SLW_rec:
3940   case PPC::SLW8_rec:
3941   case PPC::SRW:
3942   case PPC::SRW8:
3943   case PPC::SRW_rec:
3944   case PPC::SRW8_rec:
3945   case PPC::SRAW:
3946   case PPC::SRAW_rec:
3947     III.SignedImm = false;
3948     III.ZeroIsSpecialOrig = 0;
3949     III.ZeroIsSpecialNew = 0;
3950     III.IsCommutative = false;
3951     // This isn't actually true, but the instructions ignore any of the
3952     // upper bits, so any immediate loaded with an LI is acceptable.
3953     // This does not apply to shift right algebraic because a value
3954     // out of range will produce a -1/0.
3955     III.ImmWidth = 16;
3956     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3957         Opc == PPC::RLWNM8_rec)
3958       III.TruncateImmTo = 5;
3959     else
3960       III.TruncateImmTo = 6;
3961     switch(Opc) {
3962     default: llvm_unreachable("Unknown opcode");
3963     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3964     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3965     case PPC::RLWNM_rec:
3966       III.ImmOpcode = PPC::RLWINM_rec;
3967       break;
3968     case PPC::RLWNM8_rec:
3969       III.ImmOpcode = PPC::RLWINM8_rec;
3970       break;
3971     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3972     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3973     case PPC::SLW_rec:
3974       III.ImmOpcode = PPC::RLWINM_rec;
3975       break;
3976     case PPC::SLW8_rec:
3977       III.ImmOpcode = PPC::RLWINM8_rec;
3978       break;
3979     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3980     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3981     case PPC::SRW_rec:
3982       III.ImmOpcode = PPC::RLWINM_rec;
3983       break;
3984     case PPC::SRW8_rec:
3985       III.ImmOpcode = PPC::RLWINM8_rec;
3986       break;
3987     case PPC::SRAW:
3988       III.ImmWidth = 5;
3989       III.TruncateImmTo = 0;
3990       III.ImmOpcode = PPC::SRAWI;
3991       break;
3992     case PPC::SRAW_rec:
3993       III.ImmWidth = 5;
3994       III.TruncateImmTo = 0;
3995       III.ImmOpcode = PPC::SRAWI_rec;
3996       break;
3997     }
3998     break;
3999   case PPC::RLDCL:
4000   case PPC::RLDCL_rec:
4001   case PPC::RLDCR:
4002   case PPC::RLDCR_rec:
4003   case PPC::SLD:
4004   case PPC::SLD_rec:
4005   case PPC::SRD:
4006   case PPC::SRD_rec:
4007   case PPC::SRAD:
4008   case PPC::SRAD_rec:
4009     III.SignedImm = false;
4010     III.ZeroIsSpecialOrig = 0;
4011     III.ZeroIsSpecialNew = 0;
4012     III.IsCommutative = false;
4013     // This isn't actually true, but the instructions ignore any of the
4014     // upper bits, so any immediate loaded with an LI is acceptable.
4015     // This does not apply to shift right algebraic because a value
4016     // out of range will produce a -1/0.
4017     III.ImmWidth = 16;
4018     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4019         Opc == PPC::RLDCR_rec)
4020       III.TruncateImmTo = 6;
4021     else
4022       III.TruncateImmTo = 7;
4023     switch(Opc) {
4024     default: llvm_unreachable("Unknown opcode");
4025     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4026     case PPC::RLDCL_rec:
4027       III.ImmOpcode = PPC::RLDICL_rec;
4028       break;
4029     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4030     case PPC::RLDCR_rec:
4031       III.ImmOpcode = PPC::RLDICR_rec;
4032       break;
4033     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4034     case PPC::SLD_rec:
4035       III.ImmOpcode = PPC::RLDICR_rec;
4036       break;
4037     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4038     case PPC::SRD_rec:
4039       III.ImmOpcode = PPC::RLDICL_rec;
4040       break;
4041     case PPC::SRAD:
4042       III.ImmWidth = 6;
4043       III.TruncateImmTo = 0;
4044       III.ImmOpcode = PPC::SRADI;
4045        break;
4046     case PPC::SRAD_rec:
4047       III.ImmWidth = 6;
4048       III.TruncateImmTo = 0;
4049       III.ImmOpcode = PPC::SRADI_rec;
4050       break;
4051     }
4052     break;
4053   // Loads and stores:
4054   case PPC::LBZX:
4055   case PPC::LBZX8:
4056   case PPC::LHZX:
4057   case PPC::LHZX8:
4058   case PPC::LHAX:
4059   case PPC::LHAX8:
4060   case PPC::LWZX:
4061   case PPC::LWZX8:
4062   case PPC::LWAX:
4063   case PPC::LDX:
4064   case PPC::LFSX:
4065   case PPC::LFDX:
4066   case PPC::STBX:
4067   case PPC::STBX8:
4068   case PPC::STHX:
4069   case PPC::STHX8:
4070   case PPC::STWX:
4071   case PPC::STWX8:
4072   case PPC::STDX:
4073   case PPC::STFSX:
4074   case PPC::STFDX:
4075     III.SignedImm = true;
4076     III.ZeroIsSpecialOrig = 1;
4077     III.ZeroIsSpecialNew = 2;
4078     III.IsCommutative = true;
4079     III.IsSummingOperands = true;
4080     III.ImmOpNo = 1;
4081     III.OpNoForForwarding = 2;
4082     switch(Opc) {
4083     default: llvm_unreachable("Unknown opcode");
4084     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4085     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4086     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4087     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4088     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4089     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4090     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4091     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4092     case PPC::LWAX:
4093       III.ImmOpcode = PPC::LWA;
4094       III.ImmMustBeMultipleOf = 4;
4095       break;
4096     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4097     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4098     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4099     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4100     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4101     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4102     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4103     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4104     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4105     case PPC::STDX:
4106       III.ImmOpcode = PPC::STD;
4107       III.ImmMustBeMultipleOf = 4;
4108       break;
4109     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4110     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4111     }
4112     break;
4113   case PPC::LBZUX:
4114   case PPC::LBZUX8:
4115   case PPC::LHZUX:
4116   case PPC::LHZUX8:
4117   case PPC::LHAUX:
4118   case PPC::LHAUX8:
4119   case PPC::LWZUX:
4120   case PPC::LWZUX8:
4121   case PPC::LDUX:
4122   case PPC::LFSUX:
4123   case PPC::LFDUX:
4124   case PPC::STBUX:
4125   case PPC::STBUX8:
4126   case PPC::STHUX:
4127   case PPC::STHUX8:
4128   case PPC::STWUX:
4129   case PPC::STWUX8:
4130   case PPC::STDUX:
4131   case PPC::STFSUX:
4132   case PPC::STFDUX:
4133     III.SignedImm = true;
4134     III.ZeroIsSpecialOrig = 2;
4135     III.ZeroIsSpecialNew = 3;
4136     III.IsCommutative = false;
4137     III.IsSummingOperands = true;
4138     III.ImmOpNo = 2;
4139     III.OpNoForForwarding = 3;
4140     switch(Opc) {
4141     default: llvm_unreachable("Unknown opcode");
4142     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4143     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4144     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4145     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4146     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4147     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4148     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4149     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4150     case PPC::LDUX:
4151       III.ImmOpcode = PPC::LDU;
4152       III.ImmMustBeMultipleOf = 4;
4153       break;
4154     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4155     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4156     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4157     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4158     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4159     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4160     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4161     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4162     case PPC::STDUX:
4163       III.ImmOpcode = PPC::STDU;
4164       III.ImmMustBeMultipleOf = 4;
4165       break;
4166     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4167     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4168     }
4169     break;
4170   // Power9 and up only. For some of these, the X-Form version has access to all
4171   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4172   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4173   // into or stored from is one of the VR registers.
4174   case PPC::LXVX:
4175   case PPC::LXSSPX:
4176   case PPC::LXSDX:
4177   case PPC::STXVX:
4178   case PPC::STXSSPX:
4179   case PPC::STXSDX:
4180   case PPC::XFLOADf32:
4181   case PPC::XFLOADf64:
4182   case PPC::XFSTOREf32:
4183   case PPC::XFSTOREf64:
4184     if (!Subtarget.hasP9Vector())
4185       return false;
4186     III.SignedImm = true;
4187     III.ZeroIsSpecialOrig = 1;
4188     III.ZeroIsSpecialNew = 2;
4189     III.IsCommutative = true;
4190     III.IsSummingOperands = true;
4191     III.ImmOpNo = 1;
4192     III.OpNoForForwarding = 2;
4193     III.ImmMustBeMultipleOf = 4;
4194     switch(Opc) {
4195     default: llvm_unreachable("Unknown opcode");
4196     case PPC::LXVX:
4197       III.ImmOpcode = PPC::LXV;
4198       III.ImmMustBeMultipleOf = 16;
4199       break;
4200     case PPC::LXSSPX:
4201       if (PostRA) {
4202         if (IsVFReg)
4203           III.ImmOpcode = PPC::LXSSP;
4204         else {
4205           III.ImmOpcode = PPC::LFS;
4206           III.ImmMustBeMultipleOf = 1;
4207         }
4208         break;
4209       }
4210       LLVM_FALLTHROUGH;
4211     case PPC::XFLOADf32:
4212       III.ImmOpcode = PPC::DFLOADf32;
4213       break;
4214     case PPC::LXSDX:
4215       if (PostRA) {
4216         if (IsVFReg)
4217           III.ImmOpcode = PPC::LXSD;
4218         else {
4219           III.ImmOpcode = PPC::LFD;
4220           III.ImmMustBeMultipleOf = 1;
4221         }
4222         break;
4223       }
4224       LLVM_FALLTHROUGH;
4225     case PPC::XFLOADf64:
4226       III.ImmOpcode = PPC::DFLOADf64;
4227       break;
4228     case PPC::STXVX:
4229       III.ImmOpcode = PPC::STXV;
4230       III.ImmMustBeMultipleOf = 16;
4231       break;
4232     case PPC::STXSSPX:
4233       if (PostRA) {
4234         if (IsVFReg)
4235           III.ImmOpcode = PPC::STXSSP;
4236         else {
4237           III.ImmOpcode = PPC::STFS;
4238           III.ImmMustBeMultipleOf = 1;
4239         }
4240         break;
4241       }
4242       LLVM_FALLTHROUGH;
4243     case PPC::XFSTOREf32:
4244       III.ImmOpcode = PPC::DFSTOREf32;
4245       break;
4246     case PPC::STXSDX:
4247       if (PostRA) {
4248         if (IsVFReg)
4249           III.ImmOpcode = PPC::STXSD;
4250         else {
4251           III.ImmOpcode = PPC::STFD;
4252           III.ImmMustBeMultipleOf = 1;
4253         }
4254         break;
4255       }
4256       LLVM_FALLTHROUGH;
4257     case PPC::XFSTOREf64:
4258       III.ImmOpcode = PPC::DFSTOREf64;
4259       break;
4260     }
4261     break;
4262   }
4263   return true;
4264 }
4265 
4266 // Utility function for swaping two arbitrary operands of an instruction.
4267 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4268   assert(Op1 != Op2 && "Cannot swap operand with itself.");
4269 
4270   unsigned MaxOp = std::max(Op1, Op2);
4271   unsigned MinOp = std::min(Op1, Op2);
4272   MachineOperand MOp1 = MI.getOperand(MinOp);
4273   MachineOperand MOp2 = MI.getOperand(MaxOp);
4274   MI.RemoveOperand(std::max(Op1, Op2));
4275   MI.RemoveOperand(std::min(Op1, Op2));
4276 
4277   // If the operands we are swapping are the two at the end (the common case)
4278   // we can just remove both and add them in the opposite order.
4279   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4280     MI.addOperand(MOp2);
4281     MI.addOperand(MOp1);
4282   } else {
4283     // Store all operands in a temporary vector, remove them and re-add in the
4284     // right order.
4285     SmallVector<MachineOperand, 2> MOps;
4286     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4287     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4288       MOps.push_back(MI.getOperand(i));
4289       MI.RemoveOperand(i);
4290     }
4291     // MOp2 needs to be added next.
4292     MI.addOperand(MOp2);
4293     // Now add the rest.
4294     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4295       if (i == MaxOp)
4296         MI.addOperand(MOp1);
4297       else {
4298         MI.addOperand(MOps.back());
4299         MOps.pop_back();
4300       }
4301     }
4302   }
4303 }
4304 
4305 // Check if the 'MI' that has the index OpNoForForwarding
4306 // meets the requirement described in the ImmInstrInfo.
4307 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4308                                                const ImmInstrInfo &III,
4309                                                unsigned OpNoForForwarding
4310                                                ) const {
4311   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4312   // would not work pre-RA, we can only do the check post RA.
4313   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4314   if (MRI.isSSA())
4315     return false;
4316 
4317   // Cannot do the transform if MI isn't summing the operands.
4318   if (!III.IsSummingOperands)
4319     return false;
4320 
4321   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4322   if (!III.ZeroIsSpecialOrig)
4323     return false;
4324 
4325   // We cannot do the transform if the operand we are trying to replace
4326   // isn't the same as the operand the instruction allows.
4327   if (OpNoForForwarding != III.OpNoForForwarding)
4328     return false;
4329 
4330   // Check if the instruction we are trying to transform really has
4331   // the special zero register as its operand.
4332   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4333       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4334     return false;
4335 
4336   // This machine instruction is convertible if it is,
4337   // 1. summing the operands.
4338   // 2. one of the operands is special zero register.
4339   // 3. the operand we are trying to replace is allowed by the MI.
4340   return true;
4341 }
4342 
4343 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4344 // accordingly.
4345 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4346                                                const ImmInstrInfo &III,
4347                                                MachineOperand *&ImmMO,
4348                                                MachineOperand *&RegMO) const {
4349   unsigned Opc = DefMI.getOpcode();
4350   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4351     return false;
4352 
4353   assert(DefMI.getNumOperands() >= 3 &&
4354          "Add inst must have at least three operands");
4355   RegMO = &DefMI.getOperand(1);
4356   ImmMO = &DefMI.getOperand(2);
4357 
4358   // Before RA, ADDI first operand could be a frame index.
4359   if (!RegMO->isReg())
4360     return false;
4361 
4362   // This DefMI is elgible for forwarding if it is:
4363   // 1. add inst
4364   // 2. one of the operands is Imm/CPI/Global.
4365   return isAnImmediateOperand(*ImmMO);
4366 }
4367 
4368 bool PPCInstrInfo::isRegElgibleForForwarding(
4369     const MachineOperand &RegMO, const MachineInstr &DefMI,
4370     const MachineInstr &MI, bool KillDefMI,
4371     bool &IsFwdFeederRegKilled) const {
4372   // x = addi y, imm
4373   // ...
4374   // z = lfdx 0, x   -> z = lfd imm(y)
4375   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4376   // of "y" between the DEF of "x" and "z".
4377   // The query is only valid post RA.
4378   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4379   if (MRI.isSSA())
4380     return false;
4381 
4382   Register Reg = RegMO.getReg();
4383 
4384   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4385   MachineBasicBlock::const_reverse_iterator It = MI;
4386   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4387   It++;
4388   for (; It != E; ++It) {
4389     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4390       return false;
4391     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4392       IsFwdFeederRegKilled = true;
4393     // Made it to DefMI without encountering a clobber.
4394     if ((&*It) == &DefMI)
4395       break;
4396   }
4397   assert((&*It) == &DefMI && "DefMI is missing");
4398 
4399   // If DefMI also defines the register to be forwarded, we can only forward it
4400   // if DefMI is being erased.
4401   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4402     return KillDefMI;
4403 
4404   return true;
4405 }
4406 
4407 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4408                                              const MachineInstr &DefMI,
4409                                              const ImmInstrInfo &III,
4410                                              int64_t &Imm,
4411                                              int64_t BaseImm) const {
4412   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4413   if (DefMI.getOpcode() == PPC::ADDItocL) {
4414     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
4415     // However, we know that, it is 16-bit width, and has the alignment of 4.
4416     // Check if the instruction met the requirement.
4417     if (III.ImmMustBeMultipleOf > 4 ||
4418        III.TruncateImmTo || III.ImmWidth != 16)
4419       return false;
4420 
4421     // Going from XForm to DForm loads means that the displacement needs to be
4422     // not just an immediate but also a multiple of 4, or 16 depending on the
4423     // load. A DForm load cannot be represented if it is a multiple of say 2.
4424     // XForm loads do not have this restriction.
4425     if (ImmMO.isGlobal()) {
4426       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
4427       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4428         return false;
4429     }
4430 
4431     return true;
4432   }
4433 
4434   if (ImmMO.isImm()) {
4435     // It is Imm, we need to check if the Imm fit the range.
4436     // Sign-extend to 64-bits.
4437     // DefMI may be folded with another imm form instruction, the result Imm is
4438     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4439     APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4440     if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4441       return false;
4442     if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4443       return false;
4444     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4445 
4446     if (Imm % III.ImmMustBeMultipleOf)
4447       return false;
4448     if (III.TruncateImmTo)
4449       Imm &= ((1 << III.TruncateImmTo) - 1);
4450   }
4451   else
4452     return false;
4453 
4454   // This ImmMO is forwarded if it meets the requriement describle
4455   // in ImmInstrInfo
4456   return true;
4457 }
4458 
4459 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4460                                 unsigned OpNoForForwarding,
4461                                 MachineInstr **KilledDef) const {
4462   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4463       !DefMI.getOperand(1).isImm())
4464     return false;
4465 
4466   MachineFunction *MF = MI.getParent()->getParent();
4467   MachineRegisterInfo *MRI = &MF->getRegInfo();
4468   bool PostRA = !MRI->isSSA();
4469 
4470   int64_t Immediate = DefMI.getOperand(1).getImm();
4471   // Sign-extend to 64-bits.
4472   int64_t SExtImm = SignExtend64<16>(Immediate);
4473 
4474   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
4475   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4476 
4477   bool ReplaceWithLI = false;
4478   bool Is64BitLI = false;
4479   int64_t NewImm = 0;
4480   bool SetCR = false;
4481   unsigned Opc = MI.getOpcode();
4482   switch (Opc) {
4483   default:
4484     return false;
4485 
4486   // FIXME: Any branches conditional on such a comparison can be made
4487   // unconditional. At this time, this happens too infrequently to be worth
4488   // the implementation effort, but if that ever changes, we could convert
4489   // such a pattern here.
4490   case PPC::CMPWI:
4491   case PPC::CMPLWI:
4492   case PPC::CMPDI:
4493   case PPC::CMPLDI: {
4494     // Doing this post-RA would require dataflow analysis to reliably find uses
4495     // of the CR register set by the compare.
4496     // No need to fixup killed/dead flag since this transformation is only valid
4497     // before RA.
4498     if (PostRA)
4499       return false;
4500     // If a compare-immediate is fed by an immediate and is itself an input of
4501     // an ISEL (the most common case) into a COPY of the correct register.
4502     bool Changed = false;
4503     Register DefReg = MI.getOperand(0).getReg();
4504     int64_t Comparand = MI.getOperand(2).getImm();
4505     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4506                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
4507                                 : Comparand;
4508 
4509     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4510       unsigned UseOpc = CompareUseMI.getOpcode();
4511       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4512         continue;
4513       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4514       Register TrueReg = CompareUseMI.getOperand(1).getReg();
4515       Register FalseReg = CompareUseMI.getOperand(2).getReg();
4516       unsigned RegToCopy =
4517           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4518       if (RegToCopy == PPC::NoRegister)
4519         continue;
4520       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4521       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4522         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4523         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4524         CompareUseMI.RemoveOperand(3);
4525         CompareUseMI.RemoveOperand(2);
4526         continue;
4527       }
4528       LLVM_DEBUG(
4529           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4530       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4531       LLVM_DEBUG(dbgs() << "Is converted to:\n");
4532       // Convert to copy and remove unneeded operands.
4533       CompareUseMI.setDesc(get(PPC::COPY));
4534       CompareUseMI.RemoveOperand(3);
4535       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
4536       CmpIselsConverted++;
4537       Changed = true;
4538       LLVM_DEBUG(CompareUseMI.dump());
4539     }
4540     if (Changed)
4541       return true;
4542     // This may end up incremented multiple times since this function is called
4543     // during a fixed-point transformation, but it is only meant to indicate the
4544     // presence of this opportunity.
4545     MissedConvertibleImmediateInstrs++;
4546     return false;
4547   }
4548 
4549   // Immediate forms - may simply be convertable to an LI.
4550   case PPC::ADDI:
4551   case PPC::ADDI8: {
4552     // Does the sum fit in a 16-bit signed field?
4553     int64_t Addend = MI.getOperand(2).getImm();
4554     if (isInt<16>(Addend + SExtImm)) {
4555       ReplaceWithLI = true;
4556       Is64BitLI = Opc == PPC::ADDI8;
4557       NewImm = Addend + SExtImm;
4558       break;
4559     }
4560     return false;
4561   }
4562   case PPC::SUBFIC:
4563   case PPC::SUBFIC8: {
4564     // Only transform this if the CARRY implicit operand is dead.
4565     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4566       return false;
4567     int64_t Minuend = MI.getOperand(2).getImm();
4568     if (isInt<16>(Minuend - SExtImm)) {
4569       ReplaceWithLI = true;
4570       Is64BitLI = Opc == PPC::SUBFIC8;
4571       NewImm = Minuend - SExtImm;
4572       break;
4573     }
4574     return false;
4575   }
4576   case PPC::RLDICL:
4577   case PPC::RLDICL_rec:
4578   case PPC::RLDICL_32:
4579   case PPC::RLDICL_32_64: {
4580     // Use APInt's rotate function.
4581     int64_t SH = MI.getOperand(2).getImm();
4582     int64_t MB = MI.getOperand(3).getImm();
4583     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4584                 SExtImm, true);
4585     InVal = InVal.rotl(SH);
4586     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4587     InVal &= Mask;
4588     // Can't replace negative values with an LI as that will sign-extend
4589     // and not clear the left bits. If we're setting the CR bit, we will use
4590     // ANDI_rec which won't sign extend, so that's safe.
4591     if (isUInt<15>(InVal.getSExtValue()) ||
4592         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4593       ReplaceWithLI = true;
4594       Is64BitLI = Opc != PPC::RLDICL_32;
4595       NewImm = InVal.getSExtValue();
4596       SetCR = Opc == PPC::RLDICL_rec;
4597       break;
4598     }
4599     return false;
4600   }
4601   case PPC::RLWINM:
4602   case PPC::RLWINM8:
4603   case PPC::RLWINM_rec:
4604   case PPC::RLWINM8_rec: {
4605     int64_t SH = MI.getOperand(2).getImm();
4606     int64_t MB = MI.getOperand(3).getImm();
4607     int64_t ME = MI.getOperand(4).getImm();
4608     APInt InVal(32, SExtImm, true);
4609     InVal = InVal.rotl(SH);
4610     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4611     InVal &= Mask;
4612     // Can't replace negative values with an LI as that will sign-extend
4613     // and not clear the left bits. If we're setting the CR bit, we will use
4614     // ANDI_rec which won't sign extend, so that's safe.
4615     bool ValueFits = isUInt<15>(InVal.getSExtValue());
4616     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4617                   isUInt<16>(InVal.getSExtValue()));
4618     if (ValueFits) {
4619       ReplaceWithLI = true;
4620       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4621       NewImm = InVal.getSExtValue();
4622       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4623       break;
4624     }
4625     return false;
4626   }
4627   case PPC::ORI:
4628   case PPC::ORI8:
4629   case PPC::XORI:
4630   case PPC::XORI8: {
4631     int64_t LogicalImm = MI.getOperand(2).getImm();
4632     int64_t Result = 0;
4633     if (Opc == PPC::ORI || Opc == PPC::ORI8)
4634       Result = LogicalImm | SExtImm;
4635     else
4636       Result = LogicalImm ^ SExtImm;
4637     if (isInt<16>(Result)) {
4638       ReplaceWithLI = true;
4639       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4640       NewImm = Result;
4641       break;
4642     }
4643     return false;
4644   }
4645   }
4646 
4647   if (ReplaceWithLI) {
4648     // We need to be careful with CR-setting instructions we're replacing.
4649     if (SetCR) {
4650       // We don't know anything about uses when we're out of SSA, so only
4651       // replace if the new immediate will be reproduced.
4652       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4653       if (PostRA && ImmChanged)
4654         return false;
4655 
4656       if (!PostRA) {
4657         // If the defining load-immediate has no other uses, we can just replace
4658         // the immediate with the new immediate.
4659         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4660           DefMI.getOperand(1).setImm(NewImm);
4661 
4662         // If we're not using the GPR result of the CR-setting instruction, we
4663         // just need to and with zero/non-zero depending on the new immediate.
4664         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4665           if (NewImm) {
4666             assert(Immediate && "Transformation converted zero to non-zero?");
4667             NewImm = Immediate;
4668           }
4669         } else if (ImmChanged)
4670           return false;
4671       }
4672     }
4673 
4674     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4675     LLVM_DEBUG(MI.dump());
4676     LLVM_DEBUG(dbgs() << "Fed by:\n");
4677     LLVM_DEBUG(DefMI.dump());
4678     LoadImmediateInfo LII;
4679     LII.Imm = NewImm;
4680     LII.Is64Bit = Is64BitLI;
4681     LII.SetCR = SetCR;
4682     // If we're setting the CR, the original load-immediate must be kept (as an
4683     // operand to ANDI_rec/ANDI8_rec).
4684     if (KilledDef && SetCR)
4685       *KilledDef = nullptr;
4686     replaceInstrWithLI(MI, LII);
4687 
4688     // Fixup killed/dead flag after transformation.
4689     // Pattern:
4690     // ForwardingOperandReg = LI imm1
4691     // y = op2 imm2, ForwardingOperandReg(killed)
4692     if (IsForwardingOperandKilled)
4693       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4694 
4695     LLVM_DEBUG(dbgs() << "With:\n");
4696     LLVM_DEBUG(MI.dump());
4697     return true;
4698   }
4699   return false;
4700 }
4701 
4702 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4703     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4704   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4705   bool PostRA = !MRI->isSSA();
4706   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4707   // for post-ra.
4708   if (PostRA)
4709     return false;
4710 
4711   // Only handle load/store.
4712   if (!MI.mayLoadOrStore())
4713     return false;
4714 
4715   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4716 
4717   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4718          "MI must have x-form opcode");
4719 
4720   // get Imm Form info.
4721   ImmInstrInfo III;
4722   bool IsVFReg = MI.getOperand(0).isReg()
4723                      ? isVFRegister(MI.getOperand(0).getReg())
4724                      : false;
4725 
4726   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4727     return false;
4728 
4729   if (!III.IsSummingOperands)
4730     return false;
4731 
4732   if (OpNoForForwarding != III.OpNoForForwarding)
4733     return false;
4734 
4735   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4736   if (!ImmOperandMI.isImm())
4737     return false;
4738 
4739   // Check DefMI.
4740   MachineOperand *ImmMO = nullptr;
4741   MachineOperand *RegMO = nullptr;
4742   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4743     return false;
4744   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4745 
4746   // Check Imm.
4747   // Set ImmBase from imm instruction as base and get new Imm inside
4748   // isImmElgibleForForwarding.
4749   int64_t ImmBase = ImmOperandMI.getImm();
4750   int64_t Imm = 0;
4751   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4752     return false;
4753 
4754   // Get killed info in case fixup needed after transformation.
4755   unsigned ForwardKilledOperandReg = ~0U;
4756   if (MI.getOperand(III.OpNoForForwarding).isKill())
4757     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4758 
4759   // Do the transform
4760   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4761   LLVM_DEBUG(MI.dump());
4762   LLVM_DEBUG(dbgs() << "Fed by:\n");
4763   LLVM_DEBUG(DefMI.dump());
4764 
4765   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4766   if (RegMO->isKill()) {
4767     MI.getOperand(III.OpNoForForwarding).setIsKill(true);
4768     // Clear the killed flag in RegMO. Doing this here can handle some cases
4769     // that DefMI and MI are not in same basic block.
4770     RegMO->setIsKill(false);
4771   }
4772   MI.getOperand(III.ImmOpNo).setImm(Imm);
4773 
4774   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4775   if (DefMI.getParent() == MI.getParent()) {
4776     // Check if reg is killed between MI and DefMI.
4777     auto IsKilledFor = [&](unsigned Reg) {
4778       MachineBasicBlock::const_reverse_iterator It = MI;
4779       MachineBasicBlock::const_reverse_iterator E = DefMI;
4780       It++;
4781       for (; It != E; ++It) {
4782         if (It->killsRegister(Reg))
4783           return true;
4784       }
4785       return false;
4786     };
4787 
4788     // Update kill flag
4789     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4790       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4791     if (ForwardKilledOperandReg != ~0U)
4792       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4793   }
4794 
4795   LLVM_DEBUG(dbgs() << "With:\n");
4796   LLVM_DEBUG(MI.dump());
4797   return true;
4798 }
4799 
4800 // If an X-Form instruction is fed by an add-immediate and one of its operands
4801 // is the literal zero, attempt to forward the source of the add-immediate to
4802 // the corresponding D-Form instruction with the displacement coming from
4803 // the immediate being added.
4804 bool PPCInstrInfo::transformToImmFormFedByAdd(
4805     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4806     MachineInstr &DefMI, bool KillDefMI) const {
4807   //         RegMO ImmMO
4808   //           |    |
4809   // x = addi reg, imm  <----- DefMI
4810   // y = op    0 ,  x   <----- MI
4811   //                |
4812   //         OpNoForForwarding
4813   // Check if the MI meet the requirement described in the III.
4814   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4815     return false;
4816 
4817   // Check if the DefMI meet the requirement
4818   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4819   MachineOperand *ImmMO = nullptr;
4820   MachineOperand *RegMO = nullptr;
4821   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4822     return false;
4823   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4824 
4825   // As we get the Imm operand now, we need to check if the ImmMO meet
4826   // the requirement described in the III. If yes set the Imm.
4827   int64_t Imm = 0;
4828   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4829     return false;
4830 
4831   bool IsFwdFeederRegKilled = false;
4832   // Check if the RegMO can be forwarded to MI.
4833   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4834                                  IsFwdFeederRegKilled))
4835     return false;
4836 
4837   // Get killed info in case fixup needed after transformation.
4838   unsigned ForwardKilledOperandReg = ~0U;
4839   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4840   bool PostRA = !MRI.isSSA();
4841   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4842     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4843 
4844   // We know that, the MI and DefMI both meet the pattern, and
4845   // the Imm also meet the requirement with the new Imm-form.
4846   // It is safe to do the transformation now.
4847   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4848   LLVM_DEBUG(MI.dump());
4849   LLVM_DEBUG(dbgs() << "Fed by:\n");
4850   LLVM_DEBUG(DefMI.dump());
4851 
4852   // Update the base reg first.
4853   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4854                                                         false, false,
4855                                                         RegMO->isKill());
4856 
4857   // Then, update the imm.
4858   if (ImmMO->isImm()) {
4859     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4860     // directly.
4861     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4862   }
4863   else {
4864     // Otherwise, it is Constant Pool Index(CPI) or Global,
4865     // which is relocation in fact. We need to replace the special zero
4866     // register with ImmMO.
4867     // Before that, we need to fixup the target flags for imm.
4868     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4869     if (DefMI.getOpcode() == PPC::ADDItocL)
4870       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4871 
4872     // MI didn't have the interface such as MI.setOperand(i) though
4873     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4874     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4875     // and, add the ImmMO, then, move back all the operands behind ZERO.
4876     SmallVector<MachineOperand, 2> MOps;
4877     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4878       MOps.push_back(MI.getOperand(i));
4879       MI.RemoveOperand(i);
4880     }
4881 
4882     // Remove the last MO in the list, which is ZERO operand in fact.
4883     MOps.pop_back();
4884     // Add the imm operand.
4885     MI.addOperand(*ImmMO);
4886     // Now add the rest back.
4887     for (auto &MO : MOps)
4888       MI.addOperand(MO);
4889   }
4890 
4891   // Update the opcode.
4892   MI.setDesc(get(III.ImmOpcode));
4893 
4894   // Fix up killed/dead flag after transformation.
4895   // Pattern 1:
4896   // x = ADD KilledFwdFeederReg, imm
4897   // n = opn KilledFwdFeederReg(killed), regn
4898   // y = XOP 0, x
4899   // Pattern 2:
4900   // x = ADD reg(killed), imm
4901   // y = XOP 0, x
4902   if (IsFwdFeederRegKilled || RegMO->isKill())
4903     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4904   // Pattern 3:
4905   // ForwardKilledOperandReg = ADD reg, imm
4906   // y = XOP 0, ForwardKilledOperandReg(killed)
4907   if (ForwardKilledOperandReg != ~0U)
4908     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4909 
4910   LLVM_DEBUG(dbgs() << "With:\n");
4911   LLVM_DEBUG(MI.dump());
4912 
4913   return true;
4914 }
4915 
4916 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4917                                              const ImmInstrInfo &III,
4918                                              unsigned ConstantOpNo,
4919                                              MachineInstr &DefMI) const {
4920   // DefMI must be LI or LI8.
4921   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4922       !DefMI.getOperand(1).isImm())
4923     return false;
4924 
4925   // Get Imm operand and Sign-extend to 64-bits.
4926   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4927 
4928   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4929   bool PostRA = !MRI.isSSA();
4930   // Exit early if we can't convert this.
4931   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4932     return false;
4933   if (Imm % III.ImmMustBeMultipleOf)
4934     return false;
4935   if (III.TruncateImmTo)
4936     Imm &= ((1 << III.TruncateImmTo) - 1);
4937   if (III.SignedImm) {
4938     APInt ActualValue(64, Imm, true);
4939     if (!ActualValue.isSignedIntN(III.ImmWidth))
4940       return false;
4941   } else {
4942     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4943     if ((uint64_t)Imm > UnsignedMax)
4944       return false;
4945   }
4946 
4947   // If we're post-RA, the instructions don't agree on whether register zero is
4948   // special, we can transform this as long as the register operand that will
4949   // end up in the location where zero is special isn't R0.
4950   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4951     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4952       III.ZeroIsSpecialNew + 1;
4953     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4954     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4955     // If R0 is in the operand where zero is special for the new instruction,
4956     // it is unsafe to transform if the constant operand isn't that operand.
4957     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4958         ConstantOpNo != III.ZeroIsSpecialNew)
4959       return false;
4960     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4961         ConstantOpNo != PosForOrigZero)
4962       return false;
4963   }
4964 
4965   // Get killed info in case fixup needed after transformation.
4966   unsigned ForwardKilledOperandReg = ~0U;
4967   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4968     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4969 
4970   unsigned Opc = MI.getOpcode();
4971   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4972                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4973                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4974                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4975   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4976                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4977   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4978                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4979   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4980                     Opc == PPC::SRD_rec;
4981 
4982   MI.setDesc(get(III.ImmOpcode));
4983   if (ConstantOpNo == III.OpNoForForwarding) {
4984     // Converting shifts to immediate form is a bit tricky since they may do
4985     // one of three things:
4986     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4987     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4988     //    setting CR0)
4989     // 3. If the shift amount is in [1, OpSize), it's just a shift
4990     if (SpecialShift32 || SpecialShift64) {
4991       LoadImmediateInfo LII;
4992       LII.Imm = 0;
4993       LII.SetCR = SetCR;
4994       LII.Is64Bit = SpecialShift64;
4995       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4996       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4997         replaceInstrWithLI(MI, LII);
4998       // Shifts by zero don't change the value. If we don't need to set CR0,
4999       // just convert this to a COPY. Can't do this post-RA since we've already
5000       // cleaned up the copies.
5001       else if (!SetCR && ShAmt == 0 && !PostRA) {
5002         MI.RemoveOperand(2);
5003         MI.setDesc(get(PPC::COPY));
5004       } else {
5005         // The 32 bit and 64 bit instructions are quite different.
5006         if (SpecialShift32) {
5007           // Left shifts use (N, 0, 31-N).
5008           // Right shifts use (32-N, N, 31) if 0 < N < 32.
5009           //              use (0, 0, 31)    if N == 0.
5010           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5011           uint64_t MB = RightShift ? ShAmt : 0;
5012           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5013           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5014           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5015             .addImm(ME);
5016         } else {
5017           // Left shifts use (N, 63-N).
5018           // Right shifts use (64-N, N) if 0 < N < 64.
5019           //              use (0, 0)    if N == 0.
5020           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5021           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5022           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5023           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5024         }
5025       }
5026     } else
5027       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5028   }
5029   // Convert commutative instructions (switch the operands and convert the
5030   // desired one to an immediate.
5031   else if (III.IsCommutative) {
5032     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5033     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5034   } else
5035     llvm_unreachable("Should have exited early!");
5036 
5037   // For instructions for which the constant register replaces a different
5038   // operand than where the immediate goes, we need to swap them.
5039   if (III.OpNoForForwarding != III.ImmOpNo)
5040     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5041 
5042   // If the special R0/X0 register index are different for original instruction
5043   // and new instruction, we need to fix up the register class in new
5044   // instruction.
5045   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5046     if (III.ZeroIsSpecialNew) {
5047       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5048       // need to fix up register class.
5049       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5050       if (Register::isVirtualRegister(RegToModify)) {
5051         const TargetRegisterClass *NewRC =
5052           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5053           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5054         MRI.setRegClass(RegToModify, NewRC);
5055       }
5056     }
5057   }
5058 
5059   // Fix up killed/dead flag after transformation.
5060   // Pattern:
5061   // ForwardKilledOperandReg = LI imm
5062   // y = XOP reg, ForwardKilledOperandReg(killed)
5063   if (ForwardKilledOperandReg != ~0U)
5064     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
5065   return true;
5066 }
5067 
5068 const TargetRegisterClass *
5069 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5070   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5071     return &PPC::VSRCRegClass;
5072   return RC;
5073 }
5074 
5075 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5076   return PPC::getRecordFormOpcode(Opcode);
5077 }
5078 
5079 // This function returns true if the machine instruction
5080 // always outputs a value by sign-extending a 32 bit value,
5081 // i.e. 0 to 31-th bits are same as 32-th bit.
5082 static bool isSignExtendingOp(const MachineInstr &MI) {
5083   int Opcode = MI.getOpcode();
5084   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
5085       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
5086       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
5087       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
5088       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
5089       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
5090       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
5091       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5092       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
5093       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
5094       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
5095       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
5096       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
5097       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
5098       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
5099       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
5100       Opcode == PPC::EXTSB8_32_64)
5101     return true;
5102 
5103   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
5104     return true;
5105 
5106   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5107        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5108       MI.getOperand(3).getImm() > 0 &&
5109       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5110     return true;
5111 
5112   return false;
5113 }
5114 
5115 // This function returns true if the machine instruction
5116 // always outputs zeros in higher 32 bits.
5117 static bool isZeroExtendingOp(const MachineInstr &MI) {
5118   int Opcode = MI.getOpcode();
5119   // The 16-bit immediate is sign-extended in li/lis.
5120   // If the most significant bit is zero, all higher bits are zero.
5121   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
5122       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5123     int64_t Imm = MI.getOperand(1).getImm();
5124     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5125       return true;
5126   }
5127 
5128   // We have some variations of rotate-and-mask instructions
5129   // that clear higher 32-bits.
5130   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5131        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5132        Opcode == PPC::RLDICL_32_64) &&
5133       MI.getOperand(3).getImm() >= 32)
5134     return true;
5135 
5136   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5137       MI.getOperand(3).getImm() >= 32 &&
5138       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
5139     return true;
5140 
5141   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5142        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5143        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5144       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5145     return true;
5146 
5147   // There are other instructions that clear higher 32-bits.
5148   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
5149       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
5150       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
5151       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
5152       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
5153       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
5154       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
5155       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
5156       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
5157       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
5158       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
5159       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
5160       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
5161       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
5162       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
5163       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
5164       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
5165       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
5166       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5167       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
5168       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
5169       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
5170       Opcode == PPC::MFVSRWZ)
5171     return true;
5172 
5173   return false;
5174 }
5175 
5176 // This function returns true if the input MachineInstr is a TOC save
5177 // instruction.
5178 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5179   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5180     return false;
5181   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5182   unsigned StackOffset = MI.getOperand(1).getImm();
5183   Register StackReg = MI.getOperand(2).getReg();
5184   Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5185   if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5186     return true;
5187 
5188   return false;
5189 }
5190 
5191 // We limit the max depth to track incoming values of PHIs or binary ops
5192 // (e.g. AND) to avoid excessive cost.
5193 const unsigned MAX_DEPTH = 1;
5194 
5195 bool
5196 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
5197                                    const unsigned Depth) const {
5198   const MachineFunction *MF = MI.getParent()->getParent();
5199   const MachineRegisterInfo *MRI = &MF->getRegInfo();
5200 
5201   // If we know this instruction returns sign- or zero-extended result,
5202   // return true.
5203   if (SignExt ? isSignExtendingOp(MI):
5204                 isZeroExtendingOp(MI))
5205     return true;
5206 
5207   switch (MI.getOpcode()) {
5208   case PPC::COPY: {
5209     Register SrcReg = MI.getOperand(1).getReg();
5210 
5211     // In both ELFv1 and v2 ABI, method parameters and the return value
5212     // are sign- or zero-extended.
5213     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5214       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5215       // We check the ZExt/SExt flags for a method parameter.
5216       if (MI.getParent()->getBasicBlock() ==
5217           &MF->getFunction().getEntryBlock()) {
5218         Register VReg = MI.getOperand(0).getReg();
5219         if (MF->getRegInfo().isLiveIn(VReg))
5220           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
5221                            FuncInfo->isLiveInZExt(VReg);
5222       }
5223 
5224       // For a method return value, we check the ZExt/SExt flags in attribute.
5225       // We assume the following code sequence for method call.
5226       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5227       //   BL8_NOP @func,...
5228       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5229       //   %5 = COPY %x3; G8RC:%5
5230       if (SrcReg == PPC::X3) {
5231         const MachineBasicBlock *MBB = MI.getParent();
5232         MachineBasicBlock::const_instr_iterator II =
5233           MachineBasicBlock::const_instr_iterator(&MI);
5234         if (II != MBB->instr_begin() &&
5235             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
5236           const MachineInstr &CallMI = *(--II);
5237           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
5238             const Function *CalleeFn =
5239               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
5240             if (!CalleeFn)
5241               return false;
5242             const IntegerType *IntTy =
5243               dyn_cast<IntegerType>(CalleeFn->getReturnType());
5244             const AttributeSet &Attrs =
5245               CalleeFn->getAttributes().getRetAttributes();
5246             if (IntTy && IntTy->getBitWidth() <= 32)
5247               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
5248                                                   Attribute::ZExt);
5249           }
5250         }
5251       }
5252     }
5253 
5254     // If this is a copy from another register, we recursively check source.
5255     if (!Register::isVirtualRegister(SrcReg))
5256       return false;
5257     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5258     if (SrcMI != NULL)
5259       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5260 
5261     return false;
5262   }
5263 
5264   case PPC::ANDI_rec:
5265   case PPC::ANDIS_rec:
5266   case PPC::ORI:
5267   case PPC::ORIS:
5268   case PPC::XORI:
5269   case PPC::XORIS:
5270   case PPC::ANDI8_rec:
5271   case PPC::ANDIS8_rec:
5272   case PPC::ORI8:
5273   case PPC::ORIS8:
5274   case PPC::XORI8:
5275   case PPC::XORIS8: {
5276     // logical operation with 16-bit immediate does not change the upper bits.
5277     // So, we track the operand register as we do for register copy.
5278     Register SrcReg = MI.getOperand(1).getReg();
5279     if (!Register::isVirtualRegister(SrcReg))
5280       return false;
5281     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5282     if (SrcMI != NULL)
5283       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5284 
5285     return false;
5286   }
5287 
5288   // If all incoming values are sign-/zero-extended,
5289   // the output of OR, ISEL or PHI is also sign-/zero-extended.
5290   case PPC::OR:
5291   case PPC::OR8:
5292   case PPC::ISEL:
5293   case PPC::PHI: {
5294     if (Depth >= MAX_DEPTH)
5295       return false;
5296 
5297     // The input registers for PHI are operand 1, 3, ...
5298     // The input registers for others are operand 1 and 2.
5299     unsigned E = 3, D = 1;
5300     if (MI.getOpcode() == PPC::PHI) {
5301       E = MI.getNumOperands();
5302       D = 2;
5303     }
5304 
5305     for (unsigned I = 1; I != E; I += D) {
5306       if (MI.getOperand(I).isReg()) {
5307         Register SrcReg = MI.getOperand(I).getReg();
5308         if (!Register::isVirtualRegister(SrcReg))
5309           return false;
5310         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5311         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
5312           return false;
5313       }
5314       else
5315         return false;
5316     }
5317     return true;
5318   }
5319 
5320   // If at least one of the incoming values of an AND is zero extended
5321   // then the output is also zero-extended. If both of the incoming values
5322   // are sign-extended then the output is also sign extended.
5323   case PPC::AND:
5324   case PPC::AND8: {
5325     if (Depth >= MAX_DEPTH)
5326        return false;
5327 
5328     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
5329 
5330     Register SrcReg1 = MI.getOperand(1).getReg();
5331     Register SrcReg2 = MI.getOperand(2).getReg();
5332 
5333     if (!Register::isVirtualRegister(SrcReg1) ||
5334         !Register::isVirtualRegister(SrcReg2))
5335       return false;
5336 
5337     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
5338     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
5339     if (!MISrc1 || !MISrc2)
5340         return false;
5341 
5342     if(SignExt)
5343         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
5344                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5345     else
5346         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
5347                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5348   }
5349 
5350   default:
5351     break;
5352   }
5353   return false;
5354 }
5355 
5356 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5357   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5358 }
5359 
5360 namespace {
5361 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5362   MachineInstr *Loop, *EndLoop, *LoopCount;
5363   MachineFunction *MF;
5364   const TargetInstrInfo *TII;
5365   int64_t TripCount;
5366 
5367 public:
5368   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5369                        MachineInstr *LoopCount)
5370       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5371         MF(Loop->getParent()->getParent()),
5372         TII(MF->getSubtarget().getInstrInfo()) {
5373     // Inspect the Loop instruction up-front, as it may be deleted when we call
5374     // createTripCountGreaterCondition.
5375     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5376       TripCount = LoopCount->getOperand(1).getImm();
5377     else
5378       TripCount = -1;
5379   }
5380 
5381   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5382     // Only ignore the terminator.
5383     return MI == EndLoop;
5384   }
5385 
5386   Optional<bool>
5387   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
5388                                   SmallVectorImpl<MachineOperand> &Cond) override {
5389     if (TripCount == -1) {
5390       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5391       // so we don't need to generate any thing here.
5392       Cond.push_back(MachineOperand::CreateImm(0));
5393       Cond.push_back(MachineOperand::CreateReg(
5394           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5395           true));
5396       return {};
5397     }
5398 
5399     return TripCount > TC;
5400   }
5401 
5402   void setPreheader(MachineBasicBlock *NewPreheader) override {
5403     // Do nothing. We want the LOOP setup instruction to stay in the *old*
5404     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5405   }
5406 
5407   void adjustTripCount(int TripCountAdjust) override {
5408     // If the loop trip count is a compile-time value, then just change the
5409     // value.
5410     if (LoopCount->getOpcode() == PPC::LI8 ||
5411         LoopCount->getOpcode() == PPC::LI) {
5412       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5413       LoopCount->getOperand(1).setImm(TripCount);
5414       return;
5415     }
5416 
5417     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5418     // so we don't need to generate any thing here.
5419   }
5420 
5421   void disposed() override {
5422     Loop->eraseFromParent();
5423     // Ensure the loop setup instruction is deleted too.
5424     LoopCount->eraseFromParent();
5425   }
5426 };
5427 } // namespace
5428 
5429 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5430 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5431   // We really "analyze" only hardware loops right now.
5432   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5433   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5434   if (Preheader == LoopBB)
5435     Preheader = *std::next(LoopBB->pred_begin());
5436   MachineFunction *MF = Preheader->getParent();
5437 
5438   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5439     SmallPtrSet<MachineBasicBlock *, 8> Visited;
5440     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5441       Register LoopCountReg = LoopInst->getOperand(0).getReg();
5442       MachineRegisterInfo &MRI = MF->getRegInfo();
5443       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5444       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5445     }
5446   }
5447   return nullptr;
5448 }
5449 
5450 MachineInstr *PPCInstrInfo::findLoopInstr(
5451     MachineBasicBlock &PreHeader,
5452     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5453 
5454   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5455 
5456   // The loop set-up instruction should be in preheader
5457   for (auto &I : PreHeader.instrs())
5458     if (I.getOpcode() == LOOPi)
5459       return &I;
5460   return nullptr;
5461 }
5462 
5463 // Return true if get the base operand, byte offset of an instruction and the
5464 // memory width. Width is the size of memory that is being loaded/stored.
5465 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5466     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5467     unsigned &Width, const TargetRegisterInfo *TRI) const {
5468   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5469     return false;
5470 
5471   // Handle only loads/stores with base register followed by immediate offset.
5472   if (!LdSt.getOperand(1).isImm() ||
5473       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5474     return false;
5475   if (!LdSt.getOperand(1).isImm() ||
5476       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5477     return false;
5478 
5479   if (!LdSt.hasOneMemOperand())
5480     return false;
5481 
5482   Width = (*LdSt.memoperands_begin())->getSize();
5483   Offset = LdSt.getOperand(1).getImm();
5484   BaseReg = &LdSt.getOperand(2);
5485   return true;
5486 }
5487 
5488 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5489     const MachineInstr &MIa, const MachineInstr &MIb) const {
5490   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5491   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5492 
5493   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5494       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5495     return false;
5496 
5497   // Retrieve the base register, offset from the base register and width. Width
5498   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
5499   // base registers are identical, and the offset of a lower memory access +
5500   // the width doesn't overlap the offset of a higher memory access,
5501   // then the memory accesses are different.
5502   const TargetRegisterInfo *TRI = &getRegisterInfo();
5503   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5504   int64_t OffsetA = 0, OffsetB = 0;
5505   unsigned int WidthA = 0, WidthB = 0;
5506   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5507       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5508     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5509       int LowOffset = std::min(OffsetA, OffsetB);
5510       int HighOffset = std::max(OffsetA, OffsetB);
5511       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5512       if (LowOffset + LowWidth <= HighOffset)
5513         return true;
5514     }
5515   }
5516   return false;
5517 }
5518