1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineCombinerPattern.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/PseudoSourceValue.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "ppc-instr-info" 49 50 #define GET_INSTRMAP_INFO 51 #define GET_INSTRINFO_CTOR_DTOR 52 #include "PPCGenInstrInfo.inc" 53 54 STATISTIC(NumStoreSPILLVSRRCAsVec, 55 "Number of spillvsrrc spilled to stack as vec"); 56 STATISTIC(NumStoreSPILLVSRRCAsGpr, 57 "Number of spillvsrrc spilled to stack as gpr"); 58 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 59 STATISTIC(CmpIselsConverted, 60 "Number of ISELs that depend on comparison of constants converted"); 61 STATISTIC(MissedConvertibleImmediateInstrs, 62 "Number of compare-immediate instructions fed by constants"); 63 STATISTIC(NumRcRotatesConvertedToRcAnd, 64 "Number of record-form rotates converted to record-form andi"); 65 66 static cl:: 67 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 68 cl::desc("Disable analysis for CTR loops")); 69 70 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 71 cl::desc("Disable compare instruction optimization"), cl::Hidden); 72 73 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 74 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 75 cl::Hidden); 76 77 static cl::opt<bool> 78 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 79 cl::desc("Use the old (incorrect) instruction latency calculation")); 80 81 static cl::opt<float> 82 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 83 cl::desc("register pressure factor for the transformations.")); 84 85 static cl::opt<bool> EnableFMARegPressureReduction( 86 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 87 cl::desc("enable register pressure reduce in machine combiner pass.")); 88 89 // Pin the vtable to this file. 90 void PPCInstrInfo::anchor() {} 91 92 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 93 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 94 /* CatchRetOpcode */ -1, 95 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 96 Subtarget(STI), RI(STI.getTargetMachine()) {} 97 98 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 99 /// this target when scheduling the DAG. 100 ScheduleHazardRecognizer * 101 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 102 const ScheduleDAG *DAG) const { 103 unsigned Directive = 104 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 105 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 106 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 107 const InstrItineraryData *II = 108 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 109 return new ScoreboardHazardRecognizer(II, DAG); 110 } 111 112 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 113 } 114 115 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 116 /// to use for this target when scheduling the DAG. 117 ScheduleHazardRecognizer * 118 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 119 const ScheduleDAG *DAG) const { 120 unsigned Directive = 121 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 122 123 // FIXME: Leaving this as-is until we have POWER9 scheduling info 124 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 125 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 126 127 // Most subtargets use a PPC970 recognizer. 128 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 129 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 130 assert(DAG->TII && "No InstrInfo?"); 131 132 return new PPCHazardRecognizer970(*DAG); 133 } 134 135 return new ScoreboardHazardRecognizer(II, DAG); 136 } 137 138 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 139 const MachineInstr &MI, 140 unsigned *PredCost) const { 141 if (!ItinData || UseOldLatencyCalc) 142 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 143 144 // The default implementation of getInstrLatency calls getStageLatency, but 145 // getStageLatency does not do the right thing for us. While we have 146 // itinerary, most cores are fully pipelined, and so the itineraries only 147 // express the first part of the pipeline, not every stage. Instead, we need 148 // to use the listed output operand cycle number (using operand 0 here, which 149 // is an output). 150 151 unsigned Latency = 1; 152 unsigned DefClass = MI.getDesc().getSchedClass(); 153 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 154 const MachineOperand &MO = MI.getOperand(i); 155 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 156 continue; 157 158 std::optional<unsigned> Cycle = ItinData->getOperandCycle(DefClass, i); 159 if (!Cycle) 160 continue; 161 162 Latency = std::max(Latency, *Cycle); 163 } 164 165 return Latency; 166 } 167 168 std::optional<unsigned> PPCInstrInfo::getOperandLatency( 169 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 170 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { 171 std::optional<unsigned> Latency = PPCGenInstrInfo::getOperandLatency( 172 ItinData, DefMI, DefIdx, UseMI, UseIdx); 173 174 if (!DefMI.getParent()) 175 return Latency; 176 177 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 178 Register Reg = DefMO.getReg(); 179 180 bool IsRegCR; 181 if (Reg.isVirtual()) { 182 const MachineRegisterInfo *MRI = 183 &DefMI.getParent()->getParent()->getRegInfo(); 184 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 185 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 186 } else { 187 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 188 PPC::CRBITRCRegClass.contains(Reg); 189 } 190 191 if (UseMI.isBranch() && IsRegCR) { 192 if (!Latency) 193 Latency = getInstrLatency(ItinData, DefMI); 194 195 // On some cores, there is an additional delay between writing to a condition 196 // register, and using it from a branch. 197 unsigned Directive = Subtarget.getCPUDirective(); 198 switch (Directive) { 199 default: break; 200 case PPC::DIR_7400: 201 case PPC::DIR_750: 202 case PPC::DIR_970: 203 case PPC::DIR_E5500: 204 case PPC::DIR_PWR4: 205 case PPC::DIR_PWR5: 206 case PPC::DIR_PWR5X: 207 case PPC::DIR_PWR6: 208 case PPC::DIR_PWR6X: 209 case PPC::DIR_PWR7: 210 case PPC::DIR_PWR8: 211 // FIXME: Is this needed for POWER9? 212 Latency = *Latency + 2; 213 break; 214 } 215 } 216 217 return Latency; 218 } 219 220 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 221 uint32_t Flags) const { 222 MI.setFlags(Flags); 223 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 MI.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies(>=5) (compared to other operations, such as 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, 234 bool Invert) const { 235 if (Invert) 236 return false; 237 switch (Inst.getOpcode()) { 238 // Floating point: 239 // FP Add: 240 case PPC::FADD: 241 case PPC::FADDS: 242 // FP Multiply: 243 case PPC::FMUL: 244 case PPC::FMULS: 245 // Altivec Add: 246 case PPC::VADDFP: 247 // VSX Add: 248 case PPC::XSADDDP: 249 case PPC::XVADDDP: 250 case PPC::XVADDSP: 251 case PPC::XSADDSP: 252 // VSX Multiply: 253 case PPC::XSMULDP: 254 case PPC::XVMULDP: 255 case PPC::XVMULSP: 256 case PPC::XSMULSP: 257 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 258 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 259 // Fixed point: 260 // Multiply: 261 case PPC::MULHD: 262 case PPC::MULLD: 263 case PPC::MULHW: 264 case PPC::MULLW: 265 return true; 266 default: 267 return false; 268 } 269 } 270 271 #define InfoArrayIdxFMAInst 0 272 #define InfoArrayIdxFAddInst 1 273 #define InfoArrayIdxFMULInst 2 274 #define InfoArrayIdxAddOpIdx 3 275 #define InfoArrayIdxMULOpIdx 4 276 #define InfoArrayIdxFSubInst 5 277 // Array keeps info for FMA instructions: 278 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 279 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 280 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 281 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 282 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 283 // second MUL operand index is plus 1; 284 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 285 static const uint16_t FMAOpIdxInfo[][6] = { 286 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 287 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 288 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 289 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 290 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 291 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 292 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 293 294 // Check if an opcode is a FMA instruction. If it is, return the index in array 295 // FMAOpIdxInfo. Otherwise, return -1. 296 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 297 for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++) 298 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 299 return I; 300 return -1; 301 } 302 303 // On PowerPC target, we have two kinds of patterns related to FMA: 304 // 1: Improve ILP. 305 // Try to reassociate FMA chains like below: 306 // 307 // Pattern 1: 308 // A = FADD X, Y (Leaf) 309 // B = FMA A, M21, M22 (Prev) 310 // C = FMA B, M31, M32 (Root) 311 // --> 312 // A = FMA X, M21, M22 313 // B = FMA Y, M31, M32 314 // C = FADD A, B 315 // 316 // Pattern 2: 317 // A = FMA X, M11, M12 (Leaf) 318 // B = FMA A, M21, M22 (Prev) 319 // C = FMA B, M31, M32 (Root) 320 // --> 321 // A = FMUL M11, M12 322 // B = FMA X, M21, M22 323 // D = FMA A, M31, M32 324 // C = FADD B, D 325 // 326 // breaking the dependency between A and B, allowing FMA to be executed in 327 // parallel (or back-to-back in a pipeline) instead of depending on each other. 328 // 329 // 2: Reduce register pressure. 330 // Try to reassociate FMA with FSUB and a constant like below: 331 // C is a floating point const. 332 // 333 // Pattern 1: 334 // A = FSUB X, Y (Leaf) 335 // D = FMA B, C, A (Root) 336 // --> 337 // A = FMA B, Y, -C 338 // D = FMA A, X, C 339 // 340 // Pattern 2: 341 // A = FSUB X, Y (Leaf) 342 // D = FMA B, A, C (Root) 343 // --> 344 // A = FMA B, Y, -C 345 // D = FMA A, X, C 346 // 347 // Before the transformation, A must be assigned with different hardware 348 // register with D. After the transformation, A and D must be assigned with 349 // same hardware register due to TIE attribute of FMA instructions. 350 // 351 bool PPCInstrInfo::getFMAPatterns( 352 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 353 bool DoRegPressureReduce) const { 354 MachineBasicBlock *MBB = Root.getParent(); 355 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 356 const TargetRegisterInfo *TRI = &getRegisterInfo(); 357 358 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 359 for (const auto &MO : Instr.explicit_operands()) 360 if (!(MO.isReg() && MO.getReg().isVirtual())) 361 return false; 362 return true; 363 }; 364 365 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 366 unsigned OpType) { 367 if (Instr.getOpcode() != 368 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 369 return false; 370 371 // Instruction can be reassociated. 372 // fast math flags may prohibit reassociation. 373 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 374 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 375 return false; 376 377 // Instruction operands are virtual registers for reassociation. 378 if (!IsAllOpsVirtualReg(Instr)) 379 return false; 380 381 // For register pressure reassociation, the FSub must have only one use as 382 // we want to delete the sub to save its def. 383 if (OpType == InfoArrayIdxFSubInst && 384 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 385 return false; 386 387 return true; 388 }; 389 390 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 391 int16_t &MulOpIdx, bool IsLeaf) { 392 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 393 if (Idx < 0) 394 return false; 395 396 // Instruction can be reassociated. 397 // fast math flags may prohibit reassociation. 398 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 399 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 400 return false; 401 402 // Instruction operands are virtual registers for reassociation. 403 if (!IsAllOpsVirtualReg(Instr)) 404 return false; 405 406 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 407 if (IsLeaf) 408 return true; 409 410 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 411 412 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 413 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 414 // If 'add' operand's def is not in current block, don't do ILP related opt. 415 if (!MIAdd || MIAdd->getParent() != MBB) 416 return false; 417 418 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 419 // as this fma will be changed later. 420 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 421 }; 422 423 int16_t AddOpIdx = -1; 424 int16_t MulOpIdx = -1; 425 426 bool IsUsedOnceL = false; 427 bool IsUsedOnceR = false; 428 MachineInstr *MULInstrL = nullptr; 429 MachineInstr *MULInstrR = nullptr; 430 431 auto IsRPReductionCandidate = [&]() { 432 // Currently, we only support float and double. 433 // FIXME: add support for other types. 434 unsigned Opcode = Root.getOpcode(); 435 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 436 return false; 437 438 // Root must be a valid FMA like instruction. 439 // Treat it as leaf as we don't care its add operand. 440 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 441 assert((MulOpIdx >= 0) && "mul operand index not right!"); 442 Register MULRegL = TRI->lookThruSingleUseCopyChain( 443 Root.getOperand(MulOpIdx).getReg(), MRI); 444 Register MULRegR = TRI->lookThruSingleUseCopyChain( 445 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 446 if (!MULRegL && !MULRegR) 447 return false; 448 449 if (MULRegL && !MULRegR) { 450 MULRegR = 451 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 452 IsUsedOnceL = true; 453 } else if (!MULRegL && MULRegR) { 454 MULRegL = 455 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 456 IsUsedOnceR = true; 457 } else { 458 IsUsedOnceL = true; 459 IsUsedOnceR = true; 460 } 461 462 if (!MULRegL.isVirtual() || !MULRegR.isVirtual()) 463 return false; 464 465 MULInstrL = MRI->getVRegDef(MULRegL); 466 MULInstrR = MRI->getVRegDef(MULRegR); 467 return true; 468 } 469 return false; 470 }; 471 472 // Register pressure fma reassociation patterns. 473 if (DoRegPressureReduce && IsRPReductionCandidate()) { 474 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 475 // Register pressure pattern 1 476 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 477 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 478 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 479 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 480 return true; 481 } 482 483 // Register pressure pattern 2 484 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 485 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 486 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 487 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 488 return true; 489 } 490 } 491 492 // ILP fma reassociation patterns. 493 // Root must be a valid FMA like instruction. 494 AddOpIdx = -1; 495 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 496 return false; 497 498 assert((AddOpIdx >= 0) && "add operand index not right!"); 499 500 Register RegB = Root.getOperand(AddOpIdx).getReg(); 501 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 502 503 // Prev must be a valid FMA like instruction. 504 AddOpIdx = -1; 505 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 506 return false; 507 508 assert((AddOpIdx >= 0) && "add operand index not right!"); 509 510 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 511 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 512 AddOpIdx = -1; 513 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 514 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 515 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 516 return true; 517 } 518 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 519 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 520 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 521 return true; 522 } 523 return false; 524 } 525 526 void PPCInstrInfo::finalizeInsInstrs( 527 MachineInstr &Root, MachineCombinerPattern &P, 528 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 529 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 530 531 MachineFunction *MF = Root.getMF(); 532 MachineRegisterInfo *MRI = &MF->getRegInfo(); 533 const TargetRegisterInfo *TRI = &getRegisterInfo(); 534 MachineConstantPool *MCP = MF->getConstantPool(); 535 536 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 537 if (Idx < 0) 538 return; 539 540 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 541 542 // For now we only need to fix up placeholder for register pressure reduce 543 // patterns. 544 Register ConstReg = 0; 545 switch (P) { 546 case MachineCombinerPattern::REASSOC_XY_BCA: 547 ConstReg = 548 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 549 break; 550 case MachineCombinerPattern::REASSOC_XY_BAC: 551 ConstReg = 552 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 553 break; 554 default: 555 // Not register pressure reduce patterns. 556 return; 557 } 558 559 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 560 // Get const value from const pool. 561 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 562 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 563 564 // Get negative fp const. 565 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 566 F1.changeSign(); 567 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 568 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 569 570 // Put negative fp const into constant pool. 571 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 572 573 MachineOperand *Placeholder = nullptr; 574 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 575 for (auto *Inst : InsInstrs) { 576 for (MachineOperand &Operand : Inst->explicit_operands()) { 577 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 578 if (Operand.getReg() == PPC::ZERO8) { 579 Placeholder = &Operand; 580 break; 581 } 582 } 583 } 584 585 assert(Placeholder && "Placeholder does not exist!"); 586 587 // Generate instructions to load the const fp from constant pool. 588 // We only support PPC64 and medium code model. 589 Register LoadNewConst = 590 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 591 592 // Fill the placeholder with the new load from constant pool. 593 Placeholder->setReg(LoadNewConst); 594 } 595 596 bool PPCInstrInfo::shouldReduceRegisterPressure( 597 const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const { 598 599 if (!EnableFMARegPressureReduction) 600 return false; 601 602 // Currently, we only enable register pressure reducing in machine combiner 603 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 604 // support. 605 // 606 // So we need following instructions to access a TOC entry: 607 // 608 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 609 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 610 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 611 // 612 // FIXME: add more supported targets, like Small and Large code model, PPC32, 613 // AIX. 614 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 615 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 616 return false; 617 618 const TargetRegisterInfo *TRI = &getRegisterInfo(); 619 const MachineFunction *MF = MBB->getParent(); 620 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 621 622 auto GetMBBPressure = 623 [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> { 624 RegionPressure Pressure; 625 RegPressureTracker RPTracker(Pressure); 626 627 // Initialize the register pressure tracker. 628 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 629 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 630 631 for (const auto &MI : reverse(*MBB)) { 632 if (MI.isDebugValue() || MI.isDebugLabel()) 633 continue; 634 RegisterOperands RegOpers; 635 RegOpers.collect(MI, *TRI, *MRI, false, false); 636 RPTracker.recedeSkipDebugValues(); 637 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 638 RPTracker.recede(RegOpers); 639 } 640 641 // Close the RPTracker to finalize live ins. 642 RPTracker.closeRegion(); 643 644 return RPTracker.getPressure().MaxSetPressure; 645 }; 646 647 // For now we only care about float and double type fma. 648 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 649 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 650 651 // Only reduce register pressure when pressure is high. 652 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 653 (float)VSSRCLimit * FMARPFactor; 654 } 655 656 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 657 // I has only one memory operand which is load from constant pool. 658 if (!I->hasOneMemOperand()) 659 return false; 660 661 MachineMemOperand *Op = I->memoperands()[0]; 662 return Op->isLoad() && Op->getPseudoValue() && 663 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 664 } 665 666 Register PPCInstrInfo::generateLoadForNewConst( 667 unsigned Idx, MachineInstr *MI, Type *Ty, 668 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 669 // Now we only support PPC64, Medium code model and P9 with vector. 670 // We have immutable pattern to access const pool. See function 671 // shouldReduceRegisterPressure. 672 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 673 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 674 "Target not supported!\n"); 675 676 MachineFunction *MF = MI->getMF(); 677 MachineRegisterInfo *MRI = &MF->getRegInfo(); 678 679 // Generate ADDIStocHA8 680 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 681 MachineInstrBuilder TOCOffset = 682 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 683 .addReg(PPC::X2) 684 .addConstantPoolIndex(Idx); 685 686 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 687 "Only float and double are supported!"); 688 689 unsigned LoadOpcode; 690 // Should be float type or double type. 691 if (Ty->isFloatTy()) 692 LoadOpcode = PPC::DFLOADf32; 693 else 694 LoadOpcode = PPC::DFLOADf64; 695 696 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 697 Register VReg2 = MRI->createVirtualRegister(RC); 698 MachineMemOperand *MMO = MF->getMachineMemOperand( 699 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 700 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 701 702 // Generate Load from constant pool. 703 MachineInstrBuilder Load = 704 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 705 .addConstantPoolIndex(Idx) 706 .addReg(VReg1, getKillRegState(true)) 707 .addMemOperand(MMO); 708 709 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 710 711 // Insert the toc load instructions into InsInstrs. 712 InsInstrs.insert(InsInstrs.begin(), Load); 713 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 714 return VReg2; 715 } 716 717 // This function returns the const value in constant pool if the \p I is a load 718 // from constant pool. 719 const Constant * 720 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 721 MachineFunction *MF = I->getMF(); 722 MachineRegisterInfo *MRI = &MF->getRegInfo(); 723 MachineConstantPool *MCP = MF->getConstantPool(); 724 assert(I->mayLoad() && "Should be a load instruction.\n"); 725 for (auto MO : I->uses()) { 726 if (!MO.isReg()) 727 continue; 728 Register Reg = MO.getReg(); 729 if (Reg == 0 || !Reg.isVirtual()) 730 continue; 731 // Find the toc address. 732 MachineInstr *DefMI = MRI->getVRegDef(Reg); 733 for (auto MO2 : DefMI->uses()) 734 if (MO2.isCPI()) 735 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 736 } 737 return nullptr; 738 } 739 740 bool PPCInstrInfo::getMachineCombinerPatterns( 741 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 742 bool DoRegPressureReduce) const { 743 // Using the machine combiner in this way is potentially expensive, so 744 // restrict to when aggressive optimizations are desired. 745 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOptLevel::Aggressive) 746 return false; 747 748 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 749 return true; 750 751 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 752 DoRegPressureReduce); 753 } 754 755 void PPCInstrInfo::genAlternativeCodeSequence( 756 MachineInstr &Root, MachineCombinerPattern Pattern, 757 SmallVectorImpl<MachineInstr *> &InsInstrs, 758 SmallVectorImpl<MachineInstr *> &DelInstrs, 759 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 760 switch (Pattern) { 761 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 762 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 763 case MachineCombinerPattern::REASSOC_XY_BCA: 764 case MachineCombinerPattern::REASSOC_XY_BAC: 765 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 766 break; 767 default: 768 // Reassociate default patterns. 769 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 770 DelInstrs, InstrIdxForVirtReg); 771 break; 772 } 773 } 774 775 void PPCInstrInfo::reassociateFMA( 776 MachineInstr &Root, MachineCombinerPattern Pattern, 777 SmallVectorImpl<MachineInstr *> &InsInstrs, 778 SmallVectorImpl<MachineInstr *> &DelInstrs, 779 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 780 MachineFunction *MF = Root.getMF(); 781 MachineRegisterInfo &MRI = MF->getRegInfo(); 782 const TargetRegisterInfo *TRI = &getRegisterInfo(); 783 MachineOperand &OpC = Root.getOperand(0); 784 Register RegC = OpC.getReg(); 785 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 786 MRI.constrainRegClass(RegC, RC); 787 788 unsigned FmaOp = Root.getOpcode(); 789 int16_t Idx = getFMAOpIdxInfo(FmaOp); 790 assert(Idx >= 0 && "Root must be a FMA instruction"); 791 792 bool IsILPReassociate = 793 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 794 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 795 796 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 797 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 798 799 MachineInstr *Prev = nullptr; 800 MachineInstr *Leaf = nullptr; 801 switch (Pattern) { 802 default: 803 llvm_unreachable("not recognized pattern!"); 804 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 805 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 806 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 807 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 808 break; 809 case MachineCombinerPattern::REASSOC_XY_BAC: { 810 Register MULReg = 811 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 812 Leaf = MRI.getVRegDef(MULReg); 813 break; 814 } 815 case MachineCombinerPattern::REASSOC_XY_BCA: { 816 Register MULReg = TRI->lookThruCopyLike( 817 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 818 Leaf = MRI.getVRegDef(MULReg); 819 break; 820 } 821 } 822 823 uint32_t IntersectedFlags = 0; 824 if (IsILPReassociate) 825 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 826 else 827 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 828 829 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 830 bool &KillFlag) { 831 Reg = Operand.getReg(); 832 MRI.constrainRegClass(Reg, RC); 833 KillFlag = Operand.isKill(); 834 }; 835 836 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 837 Register &MulOp2, Register &AddOp, 838 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 839 bool &AddOpKillFlag) { 840 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 841 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 842 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 843 }; 844 845 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 846 RegA21, RegB; 847 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 848 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 849 KillA11 = false, KillA21 = false, KillB = false; 850 851 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 852 853 if (IsILPReassociate) 854 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 855 856 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 857 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 858 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 859 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 860 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 861 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 862 } else { 863 // Get FSUB instruction info. 864 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 865 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 866 } 867 868 // Create new virtual registers for the new results instead of 869 // recycling legacy ones because the MachineCombiner's computation of the 870 // critical path requires a new register definition rather than an existing 871 // one. 872 // For register pressure reassociation, we only need create one virtual 873 // register for the new fma. 874 Register NewVRA = MRI.createVirtualRegister(RC); 875 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 876 877 Register NewVRB = 0; 878 if (IsILPReassociate) { 879 NewVRB = MRI.createVirtualRegister(RC); 880 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 881 } 882 883 Register NewVRD = 0; 884 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 885 NewVRD = MRI.createVirtualRegister(RC); 886 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 887 } 888 889 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 890 Register RegMul1, bool KillRegMul1, 891 Register RegMul2, bool KillRegMul2) { 892 MI->getOperand(AddOpIdx).setReg(RegAdd); 893 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 894 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 895 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 896 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 897 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 898 }; 899 900 MachineInstrBuilder NewARegPressure, NewCRegPressure; 901 switch (Pattern) { 902 default: 903 llvm_unreachable("not recognized pattern!"); 904 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 905 // Create new instructions for insertion. 906 MachineInstrBuilder MINewB = 907 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 908 .addReg(RegX, getKillRegState(KillX)) 909 .addReg(RegM21, getKillRegState(KillM21)) 910 .addReg(RegM22, getKillRegState(KillM22)); 911 MachineInstrBuilder MINewA = 912 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 913 .addReg(RegY, getKillRegState(KillY)) 914 .addReg(RegM31, getKillRegState(KillM31)) 915 .addReg(RegM32, getKillRegState(KillM32)); 916 // If AddOpIdx is not 1, adjust the order. 917 if (AddOpIdx != 1) { 918 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 919 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 920 } 921 922 MachineInstrBuilder MINewC = 923 BuildMI(*MF, Root.getDebugLoc(), 924 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 925 .addReg(NewVRB, getKillRegState(true)) 926 .addReg(NewVRA, getKillRegState(true)); 927 928 // Update flags for newly created instructions. 929 setSpecialOperandAttr(*MINewA, IntersectedFlags); 930 setSpecialOperandAttr(*MINewB, IntersectedFlags); 931 setSpecialOperandAttr(*MINewC, IntersectedFlags); 932 933 // Record new instructions for insertion. 934 InsInstrs.push_back(MINewA); 935 InsInstrs.push_back(MINewB); 936 InsInstrs.push_back(MINewC); 937 break; 938 } 939 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 940 assert(NewVRD && "new FMA register not created!"); 941 // Create new instructions for insertion. 942 MachineInstrBuilder MINewA = 943 BuildMI(*MF, Leaf->getDebugLoc(), 944 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 945 .addReg(RegM11, getKillRegState(KillM11)) 946 .addReg(RegM12, getKillRegState(KillM12)); 947 MachineInstrBuilder MINewB = 948 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 949 .addReg(RegX, getKillRegState(KillX)) 950 .addReg(RegM21, getKillRegState(KillM21)) 951 .addReg(RegM22, getKillRegState(KillM22)); 952 MachineInstrBuilder MINewD = 953 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 954 .addReg(NewVRA, getKillRegState(true)) 955 .addReg(RegM31, getKillRegState(KillM31)) 956 .addReg(RegM32, getKillRegState(KillM32)); 957 // If AddOpIdx is not 1, adjust the order. 958 if (AddOpIdx != 1) { 959 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 960 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 961 KillM32); 962 } 963 964 MachineInstrBuilder MINewC = 965 BuildMI(*MF, Root.getDebugLoc(), 966 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 967 .addReg(NewVRB, getKillRegState(true)) 968 .addReg(NewVRD, getKillRegState(true)); 969 970 // Update flags for newly created instructions. 971 setSpecialOperandAttr(*MINewA, IntersectedFlags); 972 setSpecialOperandAttr(*MINewB, IntersectedFlags); 973 setSpecialOperandAttr(*MINewD, IntersectedFlags); 974 setSpecialOperandAttr(*MINewC, IntersectedFlags); 975 976 // Record new instructions for insertion. 977 InsInstrs.push_back(MINewA); 978 InsInstrs.push_back(MINewB); 979 InsInstrs.push_back(MINewD); 980 InsInstrs.push_back(MINewC); 981 break; 982 } 983 case MachineCombinerPattern::REASSOC_XY_BAC: 984 case MachineCombinerPattern::REASSOC_XY_BCA: { 985 Register VarReg; 986 bool KillVarReg = false; 987 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 988 VarReg = RegM31; 989 KillVarReg = KillM31; 990 } else { 991 VarReg = RegM32; 992 KillVarReg = KillM32; 993 } 994 // We don't want to get negative const from memory pool too early, as the 995 // created entry will not be deleted even if it has no users. Since all 996 // operand of Leaf and Root are virtual register, we use zero register 997 // here as a placeholder. When the InsInstrs is selected in 998 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 999 // with a virtual register which is a load from constant pool. 1000 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1001 .addReg(RegB, getKillRegState(RegB)) 1002 .addReg(RegY, getKillRegState(KillY)) 1003 .addReg(PPC::ZERO8); 1004 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1005 .addReg(NewVRA, getKillRegState(true)) 1006 .addReg(RegX, getKillRegState(KillX)) 1007 .addReg(VarReg, getKillRegState(KillVarReg)); 1008 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1009 // both at index 1, no need to adjust. 1010 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1011 // the operand index here. 1012 break; 1013 } 1014 } 1015 1016 if (!IsILPReassociate) { 1017 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1018 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1019 1020 InsInstrs.push_back(NewARegPressure); 1021 InsInstrs.push_back(NewCRegPressure); 1022 } 1023 1024 assert(!InsInstrs.empty() && 1025 "Insertion instructions set should not be empty!"); 1026 1027 // Record old instructions for deletion. 1028 DelInstrs.push_back(Leaf); 1029 if (IsILPReassociate) 1030 DelInstrs.push_back(Prev); 1031 DelInstrs.push_back(&Root); 1032 } 1033 1034 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1035 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1036 Register &SrcReg, Register &DstReg, 1037 unsigned &SubIdx) const { 1038 switch (MI.getOpcode()) { 1039 default: return false; 1040 case PPC::EXTSW: 1041 case PPC::EXTSW_32: 1042 case PPC::EXTSW_32_64: 1043 SrcReg = MI.getOperand(1).getReg(); 1044 DstReg = MI.getOperand(0).getReg(); 1045 SubIdx = PPC::sub_32; 1046 return true; 1047 } 1048 } 1049 1050 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1051 int &FrameIndex) const { 1052 if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) { 1053 // Check for the operands added by addFrameReference (the immediate is the 1054 // offset which defaults to 0). 1055 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1056 MI.getOperand(2).isFI()) { 1057 FrameIndex = MI.getOperand(2).getIndex(); 1058 return MI.getOperand(0).getReg(); 1059 } 1060 } 1061 return 0; 1062 } 1063 1064 // For opcodes with the ReMaterializable flag set, this function is called to 1065 // verify the instruction is really rematable. 1066 bool PPCInstrInfo::isReallyTriviallyReMaterializable( 1067 const MachineInstr &MI) const { 1068 switch (MI.getOpcode()) { 1069 default: 1070 // Let base implementaion decide. 1071 break; 1072 case PPC::LI: 1073 case PPC::LI8: 1074 case PPC::PLI: 1075 case PPC::PLI8: 1076 case PPC::LIS: 1077 case PPC::LIS8: 1078 case PPC::ADDIStocHA: 1079 case PPC::ADDIStocHA8: 1080 case PPC::ADDItocL: 1081 case PPC::LOAD_STACK_GUARD: 1082 case PPC::XXLXORz: 1083 case PPC::XXLXORspz: 1084 case PPC::XXLXORdpz: 1085 case PPC::XXLEQVOnes: 1086 case PPC::XXSPLTI32DX: 1087 case PPC::XXSPLTIW: 1088 case PPC::XXSPLTIDP: 1089 case PPC::V_SET0B: 1090 case PPC::V_SET0H: 1091 case PPC::V_SET0: 1092 case PPC::V_SETALLONESB: 1093 case PPC::V_SETALLONESH: 1094 case PPC::V_SETALLONES: 1095 case PPC::CRSET: 1096 case PPC::CRUNSET: 1097 case PPC::XXSETACCZ: 1098 case PPC::XXSETACCZW: 1099 return true; 1100 } 1101 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 1102 } 1103 1104 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1105 int &FrameIndex) const { 1106 if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) { 1107 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1108 MI.getOperand(2).isFI()) { 1109 FrameIndex = MI.getOperand(2).getIndex(); 1110 return MI.getOperand(0).getReg(); 1111 } 1112 } 1113 return 0; 1114 } 1115 1116 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1117 unsigned OpIdx1, 1118 unsigned OpIdx2) const { 1119 MachineFunction &MF = *MI.getParent()->getParent(); 1120 1121 // Normal instructions can be commuted the obvious way. 1122 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1123 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1124 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1125 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1126 // changing the relative order of the mask operands might change what happens 1127 // to the high-bits of the mask (and, thus, the result). 1128 1129 // Cannot commute if it has a non-zero rotate count. 1130 if (MI.getOperand(3).getImm() != 0) 1131 return nullptr; 1132 1133 // If we have a zero rotate count, we have: 1134 // M = mask(MB,ME) 1135 // Op0 = (Op1 & ~M) | (Op2 & M) 1136 // Change this to: 1137 // M = mask((ME+1)&31, (MB-1)&31) 1138 // Op0 = (Op2 & ~M) | (Op1 & M) 1139 1140 // Swap op1/op2 1141 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1142 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1143 Register Reg0 = MI.getOperand(0).getReg(); 1144 Register Reg1 = MI.getOperand(1).getReg(); 1145 Register Reg2 = MI.getOperand(2).getReg(); 1146 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1147 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1148 bool Reg1IsKill = MI.getOperand(1).isKill(); 1149 bool Reg2IsKill = MI.getOperand(2).isKill(); 1150 bool ChangeReg0 = false; 1151 // If machine instrs are no longer in two-address forms, update 1152 // destination register as well. 1153 if (Reg0 == Reg1) { 1154 // Must be two address instruction (i.e. op1 is tied to op0). 1155 assert(MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) == 0 && 1156 "Expecting a two-address instruction!"); 1157 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1158 Reg2IsKill = false; 1159 ChangeReg0 = true; 1160 } 1161 1162 // Masks. 1163 unsigned MB = MI.getOperand(4).getImm(); 1164 unsigned ME = MI.getOperand(5).getImm(); 1165 1166 // We can't commute a trivial mask (there is no way to represent an all-zero 1167 // mask). 1168 if (MB == 0 && ME == 31) 1169 return nullptr; 1170 1171 if (NewMI) { 1172 // Create a new instruction. 1173 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1174 bool Reg0IsDead = MI.getOperand(0).isDead(); 1175 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1176 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1177 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1178 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1179 .addImm((ME + 1) & 31) 1180 .addImm((MB - 1) & 31); 1181 } 1182 1183 if (ChangeReg0) { 1184 MI.getOperand(0).setReg(Reg2); 1185 MI.getOperand(0).setSubReg(SubReg2); 1186 } 1187 MI.getOperand(2).setReg(Reg1); 1188 MI.getOperand(1).setReg(Reg2); 1189 MI.getOperand(2).setSubReg(SubReg1); 1190 MI.getOperand(1).setSubReg(SubReg2); 1191 MI.getOperand(2).setIsKill(Reg1IsKill); 1192 MI.getOperand(1).setIsKill(Reg2IsKill); 1193 1194 // Swap the mask around. 1195 MI.getOperand(4).setImm((ME + 1) & 31); 1196 MI.getOperand(5).setImm((MB - 1) & 31); 1197 return &MI; 1198 } 1199 1200 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1201 unsigned &SrcOpIdx1, 1202 unsigned &SrcOpIdx2) const { 1203 // For VSX A-Type FMA instructions, it is the first two operands that can be 1204 // commuted, however, because the non-encoded tied input operand is listed 1205 // first, the operands to swap are actually the second and third. 1206 1207 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1208 if (AltOpc == -1) 1209 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1210 1211 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1212 // and SrcOpIdx2. 1213 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1214 } 1215 1216 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1217 MachineBasicBlock::iterator MI) const { 1218 // This function is used for scheduling, and the nop wanted here is the type 1219 // that terminates dispatch groups on the POWER cores. 1220 unsigned Directive = Subtarget.getCPUDirective(); 1221 unsigned Opcode; 1222 switch (Directive) { 1223 default: Opcode = PPC::NOP; break; 1224 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1225 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1226 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1227 // FIXME: Update when POWER9 scheduling model is ready. 1228 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1229 } 1230 1231 DebugLoc DL; 1232 BuildMI(MBB, MI, DL, get(Opcode)); 1233 } 1234 1235 /// Return the noop instruction to use for a noop. 1236 MCInst PPCInstrInfo::getNop() const { 1237 MCInst Nop; 1238 Nop.setOpcode(PPC::NOP); 1239 return Nop; 1240 } 1241 1242 // Branch analysis. 1243 // Note: If the condition register is set to CTR or CTR8 then this is a 1244 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1245 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1246 MachineBasicBlock *&TBB, 1247 MachineBasicBlock *&FBB, 1248 SmallVectorImpl<MachineOperand> &Cond, 1249 bool AllowModify) const { 1250 bool isPPC64 = Subtarget.isPPC64(); 1251 1252 // If the block has no terminators, it just falls into the block after it. 1253 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1254 if (I == MBB.end()) 1255 return false; 1256 1257 if (!isUnpredicatedTerminator(*I)) 1258 return false; 1259 1260 if (AllowModify) { 1261 // If the BB ends with an unconditional branch to the fallthrough BB, 1262 // we eliminate the branch instruction. 1263 if (I->getOpcode() == PPC::B && 1264 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1265 I->eraseFromParent(); 1266 1267 // We update iterator after deleting the last branch. 1268 I = MBB.getLastNonDebugInstr(); 1269 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1270 return false; 1271 } 1272 } 1273 1274 // Get the last instruction in the block. 1275 MachineInstr &LastInst = *I; 1276 1277 // If there is only one terminator instruction, process it. 1278 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1279 if (LastInst.getOpcode() == PPC::B) { 1280 if (!LastInst.getOperand(0).isMBB()) 1281 return true; 1282 TBB = LastInst.getOperand(0).getMBB(); 1283 return false; 1284 } else if (LastInst.getOpcode() == PPC::BCC) { 1285 if (!LastInst.getOperand(2).isMBB()) 1286 return true; 1287 // Block ends with fall-through condbranch. 1288 TBB = LastInst.getOperand(2).getMBB(); 1289 Cond.push_back(LastInst.getOperand(0)); 1290 Cond.push_back(LastInst.getOperand(1)); 1291 return false; 1292 } else if (LastInst.getOpcode() == PPC::BC) { 1293 if (!LastInst.getOperand(1).isMBB()) 1294 return true; 1295 // Block ends with fall-through condbranch. 1296 TBB = LastInst.getOperand(1).getMBB(); 1297 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1298 Cond.push_back(LastInst.getOperand(0)); 1299 return false; 1300 } else if (LastInst.getOpcode() == PPC::BCn) { 1301 if (!LastInst.getOperand(1).isMBB()) 1302 return true; 1303 // Block ends with fall-through condbranch. 1304 TBB = LastInst.getOperand(1).getMBB(); 1305 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1306 Cond.push_back(LastInst.getOperand(0)); 1307 return false; 1308 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1309 LastInst.getOpcode() == PPC::BDNZ) { 1310 if (!LastInst.getOperand(0).isMBB()) 1311 return true; 1312 if (DisableCTRLoopAnal) 1313 return true; 1314 TBB = LastInst.getOperand(0).getMBB(); 1315 Cond.push_back(MachineOperand::CreateImm(1)); 1316 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1317 true)); 1318 return false; 1319 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1320 LastInst.getOpcode() == PPC::BDZ) { 1321 if (!LastInst.getOperand(0).isMBB()) 1322 return true; 1323 if (DisableCTRLoopAnal) 1324 return true; 1325 TBB = LastInst.getOperand(0).getMBB(); 1326 Cond.push_back(MachineOperand::CreateImm(0)); 1327 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1328 true)); 1329 return false; 1330 } 1331 1332 // Otherwise, don't know what this is. 1333 return true; 1334 } 1335 1336 // Get the instruction before it if it's a terminator. 1337 MachineInstr &SecondLastInst = *I; 1338 1339 // If there are three terminators, we don't know what sort of block this is. 1340 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1341 return true; 1342 1343 // If the block ends with PPC::B and PPC:BCC, handle it. 1344 if (SecondLastInst.getOpcode() == PPC::BCC && 1345 LastInst.getOpcode() == PPC::B) { 1346 if (!SecondLastInst.getOperand(2).isMBB() || 1347 !LastInst.getOperand(0).isMBB()) 1348 return true; 1349 TBB = SecondLastInst.getOperand(2).getMBB(); 1350 Cond.push_back(SecondLastInst.getOperand(0)); 1351 Cond.push_back(SecondLastInst.getOperand(1)); 1352 FBB = LastInst.getOperand(0).getMBB(); 1353 return false; 1354 } else if (SecondLastInst.getOpcode() == PPC::BC && 1355 LastInst.getOpcode() == PPC::B) { 1356 if (!SecondLastInst.getOperand(1).isMBB() || 1357 !LastInst.getOperand(0).isMBB()) 1358 return true; 1359 TBB = SecondLastInst.getOperand(1).getMBB(); 1360 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1361 Cond.push_back(SecondLastInst.getOperand(0)); 1362 FBB = LastInst.getOperand(0).getMBB(); 1363 return false; 1364 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1365 LastInst.getOpcode() == PPC::B) { 1366 if (!SecondLastInst.getOperand(1).isMBB() || 1367 !LastInst.getOperand(0).isMBB()) 1368 return true; 1369 TBB = SecondLastInst.getOperand(1).getMBB(); 1370 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1371 Cond.push_back(SecondLastInst.getOperand(0)); 1372 FBB = LastInst.getOperand(0).getMBB(); 1373 return false; 1374 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1375 SecondLastInst.getOpcode() == PPC::BDNZ) && 1376 LastInst.getOpcode() == PPC::B) { 1377 if (!SecondLastInst.getOperand(0).isMBB() || 1378 !LastInst.getOperand(0).isMBB()) 1379 return true; 1380 if (DisableCTRLoopAnal) 1381 return true; 1382 TBB = SecondLastInst.getOperand(0).getMBB(); 1383 Cond.push_back(MachineOperand::CreateImm(1)); 1384 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1385 true)); 1386 FBB = LastInst.getOperand(0).getMBB(); 1387 return false; 1388 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1389 SecondLastInst.getOpcode() == PPC::BDZ) && 1390 LastInst.getOpcode() == PPC::B) { 1391 if (!SecondLastInst.getOperand(0).isMBB() || 1392 !LastInst.getOperand(0).isMBB()) 1393 return true; 1394 if (DisableCTRLoopAnal) 1395 return true; 1396 TBB = SecondLastInst.getOperand(0).getMBB(); 1397 Cond.push_back(MachineOperand::CreateImm(0)); 1398 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1399 true)); 1400 FBB = LastInst.getOperand(0).getMBB(); 1401 return false; 1402 } 1403 1404 // If the block ends with two PPC:Bs, handle it. The second one is not 1405 // executed, so remove it. 1406 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1407 if (!SecondLastInst.getOperand(0).isMBB()) 1408 return true; 1409 TBB = SecondLastInst.getOperand(0).getMBB(); 1410 I = LastInst; 1411 if (AllowModify) 1412 I->eraseFromParent(); 1413 return false; 1414 } 1415 1416 // Otherwise, can't handle this. 1417 return true; 1418 } 1419 1420 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1421 int *BytesRemoved) const { 1422 assert(!BytesRemoved && "code size not handled"); 1423 1424 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1425 if (I == MBB.end()) 1426 return 0; 1427 1428 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1429 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1430 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1431 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1432 return 0; 1433 1434 // Remove the branch. 1435 I->eraseFromParent(); 1436 1437 I = MBB.end(); 1438 1439 if (I == MBB.begin()) return 1; 1440 --I; 1441 if (I->getOpcode() != PPC::BCC && 1442 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1443 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1444 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1445 return 1; 1446 1447 // Remove the branch. 1448 I->eraseFromParent(); 1449 return 2; 1450 } 1451 1452 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1453 MachineBasicBlock *TBB, 1454 MachineBasicBlock *FBB, 1455 ArrayRef<MachineOperand> Cond, 1456 const DebugLoc &DL, 1457 int *BytesAdded) const { 1458 // Shouldn't be a fall through. 1459 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1460 assert((Cond.size() == 2 || Cond.size() == 0) && 1461 "PPC branch conditions have two components!"); 1462 assert(!BytesAdded && "code size not handled"); 1463 1464 bool isPPC64 = Subtarget.isPPC64(); 1465 1466 // One-way branch. 1467 if (!FBB) { 1468 if (Cond.empty()) // Unconditional branch 1469 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1470 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1471 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1472 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1473 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1474 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1475 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1476 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1477 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1478 else // Conditional branch 1479 BuildMI(&MBB, DL, get(PPC::BCC)) 1480 .addImm(Cond[0].getImm()) 1481 .add(Cond[1]) 1482 .addMBB(TBB); 1483 return 1; 1484 } 1485 1486 // Two-way Conditional Branch. 1487 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1488 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1489 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1490 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1491 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1492 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1493 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1494 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1495 else 1496 BuildMI(&MBB, DL, get(PPC::BCC)) 1497 .addImm(Cond[0].getImm()) 1498 .add(Cond[1]) 1499 .addMBB(TBB); 1500 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1501 return 2; 1502 } 1503 1504 // Select analysis. 1505 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1506 ArrayRef<MachineOperand> Cond, 1507 Register DstReg, Register TrueReg, 1508 Register FalseReg, int &CondCycles, 1509 int &TrueCycles, int &FalseCycles) const { 1510 if (!Subtarget.hasISEL()) 1511 return false; 1512 1513 if (Cond.size() != 2) 1514 return false; 1515 1516 // If this is really a bdnz-like condition, then it cannot be turned into a 1517 // select. 1518 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1519 return false; 1520 1521 // If the conditional branch uses a physical register, then it cannot be 1522 // turned into a select. 1523 if (Cond[1].getReg().isPhysical()) 1524 return false; 1525 1526 // Check register classes. 1527 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1528 const TargetRegisterClass *RC = 1529 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1530 if (!RC) 1531 return false; 1532 1533 // isel is for regular integer GPRs only. 1534 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1535 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1536 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1537 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1538 return false; 1539 1540 // FIXME: These numbers are for the A2, how well they work for other cores is 1541 // an open question. On the A2, the isel instruction has a 2-cycle latency 1542 // but single-cycle throughput. These numbers are used in combination with 1543 // the MispredictPenalty setting from the active SchedMachineModel. 1544 CondCycles = 1; 1545 TrueCycles = 1; 1546 FalseCycles = 1; 1547 1548 return true; 1549 } 1550 1551 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1552 MachineBasicBlock::iterator MI, 1553 const DebugLoc &dl, Register DestReg, 1554 ArrayRef<MachineOperand> Cond, Register TrueReg, 1555 Register FalseReg) const { 1556 assert(Cond.size() == 2 && 1557 "PPC branch conditions have two components!"); 1558 1559 // Get the register classes. 1560 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1561 const TargetRegisterClass *RC = 1562 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1563 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1564 1565 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1566 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1567 assert((Is64Bit || 1568 PPC::GPRCRegClass.hasSubClassEq(RC) || 1569 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1570 "isel is for regular integer GPRs only"); 1571 1572 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1573 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1574 1575 unsigned SubIdx = 0; 1576 bool SwapOps = false; 1577 switch (SelectPred) { 1578 case PPC::PRED_EQ: 1579 case PPC::PRED_EQ_MINUS: 1580 case PPC::PRED_EQ_PLUS: 1581 SubIdx = PPC::sub_eq; SwapOps = false; break; 1582 case PPC::PRED_NE: 1583 case PPC::PRED_NE_MINUS: 1584 case PPC::PRED_NE_PLUS: 1585 SubIdx = PPC::sub_eq; SwapOps = true; break; 1586 case PPC::PRED_LT: 1587 case PPC::PRED_LT_MINUS: 1588 case PPC::PRED_LT_PLUS: 1589 SubIdx = PPC::sub_lt; SwapOps = false; break; 1590 case PPC::PRED_GE: 1591 case PPC::PRED_GE_MINUS: 1592 case PPC::PRED_GE_PLUS: 1593 SubIdx = PPC::sub_lt; SwapOps = true; break; 1594 case PPC::PRED_GT: 1595 case PPC::PRED_GT_MINUS: 1596 case PPC::PRED_GT_PLUS: 1597 SubIdx = PPC::sub_gt; SwapOps = false; break; 1598 case PPC::PRED_LE: 1599 case PPC::PRED_LE_MINUS: 1600 case PPC::PRED_LE_PLUS: 1601 SubIdx = PPC::sub_gt; SwapOps = true; break; 1602 case PPC::PRED_UN: 1603 case PPC::PRED_UN_MINUS: 1604 case PPC::PRED_UN_PLUS: 1605 SubIdx = PPC::sub_un; SwapOps = false; break; 1606 case PPC::PRED_NU: 1607 case PPC::PRED_NU_MINUS: 1608 case PPC::PRED_NU_PLUS: 1609 SubIdx = PPC::sub_un; SwapOps = true; break; 1610 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1611 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1612 } 1613 1614 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1615 SecondReg = SwapOps ? TrueReg : FalseReg; 1616 1617 // The first input register of isel cannot be r0. If it is a member 1618 // of a register class that can be r0, then copy it first (the 1619 // register allocator should eliminate the copy). 1620 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1621 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1622 const TargetRegisterClass *FirstRC = 1623 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1624 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1625 Register OldFirstReg = FirstReg; 1626 FirstReg = MRI.createVirtualRegister(FirstRC); 1627 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1628 .addReg(OldFirstReg); 1629 } 1630 1631 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1632 .addReg(FirstReg).addReg(SecondReg) 1633 .addReg(Cond[1].getReg(), 0, SubIdx); 1634 } 1635 1636 static unsigned getCRBitValue(unsigned CRBit) { 1637 unsigned Ret = 4; 1638 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1639 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1640 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1641 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1642 Ret = 3; 1643 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1644 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1645 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1646 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1647 Ret = 2; 1648 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1649 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1650 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1651 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1652 Ret = 1; 1653 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1654 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1655 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1656 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1657 Ret = 0; 1658 1659 assert(Ret != 4 && "Invalid CR bit register"); 1660 return Ret; 1661 } 1662 1663 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1664 MachineBasicBlock::iterator I, 1665 const DebugLoc &DL, MCRegister DestReg, 1666 MCRegister SrcReg, bool KillSrc) const { 1667 // We can end up with self copies and similar things as a result of VSX copy 1668 // legalization. Promote them here. 1669 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1670 if (PPC::F8RCRegClass.contains(DestReg) && 1671 PPC::VSRCRegClass.contains(SrcReg)) { 1672 MCRegister SuperReg = 1673 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1674 1675 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1676 llvm_unreachable("nop VSX copy"); 1677 1678 DestReg = SuperReg; 1679 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1680 PPC::VSRCRegClass.contains(DestReg)) { 1681 MCRegister SuperReg = 1682 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1683 1684 if (VSXSelfCopyCrash && DestReg == SuperReg) 1685 llvm_unreachable("nop VSX copy"); 1686 1687 SrcReg = SuperReg; 1688 } 1689 1690 // Different class register copy 1691 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1692 PPC::GPRCRegClass.contains(DestReg)) { 1693 MCRegister CRReg = getCRFromCRBit(SrcReg); 1694 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1695 getKillRegState(KillSrc); 1696 // Rotate the CR bit in the CR fields to be the least significant bit and 1697 // then mask with 0x1 (MB = ME = 31). 1698 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1699 .addReg(DestReg, RegState::Kill) 1700 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1701 .addImm(31) 1702 .addImm(31); 1703 return; 1704 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1705 (PPC::G8RCRegClass.contains(DestReg) || 1706 PPC::GPRCRegClass.contains(DestReg))) { 1707 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1708 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1709 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1710 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1711 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1712 getKillRegState(KillSrc); 1713 if (CRNum == 7) 1714 return; 1715 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1716 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1717 .addReg(DestReg, RegState::Kill) 1718 .addImm(CRNum * 4 + 4) 1719 .addImm(28) 1720 .addImm(31); 1721 return; 1722 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1723 PPC::VSFRCRegClass.contains(DestReg)) { 1724 assert(Subtarget.hasDirectMove() && 1725 "Subtarget doesn't support directmove, don't know how to copy."); 1726 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1727 NumGPRtoVSRSpill++; 1728 getKillRegState(KillSrc); 1729 return; 1730 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1731 PPC::G8RCRegClass.contains(DestReg)) { 1732 assert(Subtarget.hasDirectMove() && 1733 "Subtarget doesn't support directmove, don't know how to copy."); 1734 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1735 getKillRegState(KillSrc); 1736 return; 1737 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1738 PPC::GPRCRegClass.contains(DestReg)) { 1739 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1740 getKillRegState(KillSrc); 1741 return; 1742 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1743 PPC::SPERCRegClass.contains(DestReg)) { 1744 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1745 getKillRegState(KillSrc); 1746 return; 1747 } 1748 1749 unsigned Opc; 1750 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1751 Opc = PPC::OR; 1752 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1753 Opc = PPC::OR8; 1754 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1755 Opc = PPC::FMR; 1756 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1757 Opc = PPC::MCRF; 1758 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1759 Opc = PPC::VOR; 1760 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1761 // There are two different ways this can be done: 1762 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1763 // issue in VSU pipeline 0. 1764 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1765 // can go to either pipeline. 1766 // We'll always use xxlor here, because in practically all cases where 1767 // copies are generated, they are close enough to some use that the 1768 // lower-latency form is preferable. 1769 Opc = PPC::XXLOR; 1770 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1771 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1772 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1773 else if (Subtarget.pairedVectorMemops() && 1774 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1775 if (SrcReg > PPC::VSRp15) 1776 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1777 else 1778 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1779 if (DestReg > PPC::VSRp15) 1780 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1781 else 1782 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1783 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1784 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1785 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1786 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1787 return; 1788 } 1789 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1790 Opc = PPC::CROR; 1791 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1792 Opc = PPC::EVOR; 1793 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1794 PPC::UACCRCRegClass.contains(DestReg)) && 1795 (PPC::ACCRCRegClass.contains(SrcReg) || 1796 PPC::UACCRCRegClass.contains(SrcReg))) { 1797 // If primed, de-prime the source register, copy the individual registers 1798 // and prime the destination if needed. The vector subregisters are 1799 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1800 // source is primed, we need to re-prime it after the copy as well. 1801 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1802 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1803 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1804 MCRegister VSLSrcReg = 1805 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1806 MCRegister VSLDestReg = 1807 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1808 if (SrcPrimed) 1809 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1810 for (unsigned Idx = 0; Idx < 4; Idx++) 1811 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1812 .addReg(VSLSrcReg + Idx) 1813 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1814 if (DestPrimed) 1815 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1816 if (SrcPrimed && !KillSrc) 1817 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1818 return; 1819 } else if (PPC::G8pRCRegClass.contains(DestReg) && 1820 PPC::G8pRCRegClass.contains(SrcReg)) { 1821 // TODO: Handle G8RC to G8pRC (and vice versa) copy. 1822 unsigned DestRegIdx = DestReg - PPC::G8p0; 1823 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; 1824 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; 1825 unsigned SrcRegIdx = SrcReg - PPC::G8p0; 1826 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; 1827 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; 1828 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) 1829 .addReg(SrcRegSub0) 1830 .addReg(SrcRegSub0, getKillRegState(KillSrc)); 1831 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) 1832 .addReg(SrcRegSub1) 1833 .addReg(SrcRegSub1, getKillRegState(KillSrc)); 1834 return; 1835 } else 1836 llvm_unreachable("Impossible reg-to-reg copy"); 1837 1838 const MCInstrDesc &MCID = get(Opc); 1839 if (MCID.getNumOperands() == 3) 1840 BuildMI(MBB, I, DL, MCID, DestReg) 1841 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1842 else 1843 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1844 } 1845 1846 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1847 int OpcodeIndex = 0; 1848 1849 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1850 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1851 OpcodeIndex = SOK_Int4Spill; 1852 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1853 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1854 OpcodeIndex = SOK_Int8Spill; 1855 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1856 OpcodeIndex = SOK_Float8Spill; 1857 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1858 OpcodeIndex = SOK_Float4Spill; 1859 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1860 OpcodeIndex = SOK_SPESpill; 1861 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1862 OpcodeIndex = SOK_CRSpill; 1863 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1864 OpcodeIndex = SOK_CRBitSpill; 1865 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1866 OpcodeIndex = SOK_VRVectorSpill; 1867 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1868 OpcodeIndex = SOK_VSXVectorSpill; 1869 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1870 OpcodeIndex = SOK_VectorFloat8Spill; 1871 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1872 OpcodeIndex = SOK_VectorFloat4Spill; 1873 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1874 OpcodeIndex = SOK_SpillToVSR; 1875 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1876 assert(Subtarget.pairedVectorMemops() && 1877 "Register unexpected when paired memops are disabled."); 1878 OpcodeIndex = SOK_AccumulatorSpill; 1879 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1880 assert(Subtarget.pairedVectorMemops() && 1881 "Register unexpected when paired memops are disabled."); 1882 OpcodeIndex = SOK_UAccumulatorSpill; 1883 } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) { 1884 assert(Subtarget.pairedVectorMemops() && 1885 "Register unexpected when paired memops are disabled."); 1886 OpcodeIndex = SOK_WAccumulatorSpill; 1887 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1888 assert(Subtarget.pairedVectorMemops() && 1889 "Register unexpected when paired memops are disabled."); 1890 OpcodeIndex = SOK_PairedVecSpill; 1891 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { 1892 OpcodeIndex = SOK_PairedG8Spill; 1893 } else { 1894 llvm_unreachable("Unknown regclass!"); 1895 } 1896 return OpcodeIndex; 1897 } 1898 1899 unsigned 1900 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1901 ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray(); 1902 return OpcodesForSpill[getSpillIndex(RC)]; 1903 } 1904 1905 unsigned 1906 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1907 ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray(); 1908 return OpcodesForSpill[getSpillIndex(RC)]; 1909 } 1910 1911 void PPCInstrInfo::StoreRegToStackSlot( 1912 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1913 const TargetRegisterClass *RC, 1914 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1915 unsigned Opcode = getStoreOpcodeForSpill(RC); 1916 DebugLoc DL; 1917 1918 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1919 FuncInfo->setHasSpills(); 1920 1921 NewMIs.push_back(addFrameReference( 1922 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1923 FrameIdx)); 1924 1925 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1926 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1927 FuncInfo->setSpillsCR(); 1928 1929 if (isXFormMemOp(Opcode)) 1930 FuncInfo->setHasNonRISpills(); 1931 } 1932 1933 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1934 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1935 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1936 const TargetRegisterInfo *TRI) const { 1937 MachineFunction &MF = *MBB.getParent(); 1938 SmallVector<MachineInstr *, 4> NewMIs; 1939 1940 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1941 1942 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1943 MBB.insert(MI, NewMIs[i]); 1944 1945 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1946 MachineMemOperand *MMO = MF.getMachineMemOperand( 1947 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1948 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1949 MFI.getObjectAlign(FrameIdx)); 1950 NewMIs.back()->addMemOperand(MF, MMO); 1951 } 1952 1953 void PPCInstrInfo::storeRegToStackSlot( 1954 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 1955 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1956 const TargetRegisterInfo *TRI, Register VReg) const { 1957 // We need to avoid a situation in which the value from a VRRC register is 1958 // spilled using an Altivec instruction and reloaded into a VSRC register 1959 // using a VSX instruction. The issue with this is that the VSX 1960 // load/store instructions swap the doublewords in the vector and the Altivec 1961 // ones don't. The register classes on the spill/reload may be different if 1962 // the register is defined using an Altivec instruction and is then used by a 1963 // VSX instruction. 1964 RC = updatedRC(RC); 1965 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1966 } 1967 1968 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1969 unsigned DestReg, int FrameIdx, 1970 const TargetRegisterClass *RC, 1971 SmallVectorImpl<MachineInstr *> &NewMIs) 1972 const { 1973 unsigned Opcode = getLoadOpcodeForSpill(RC); 1974 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1975 FrameIdx)); 1976 } 1977 1978 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1979 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1980 int FrameIdx, const TargetRegisterClass *RC, 1981 const TargetRegisterInfo *TRI) const { 1982 MachineFunction &MF = *MBB.getParent(); 1983 SmallVector<MachineInstr*, 4> NewMIs; 1984 DebugLoc DL; 1985 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1986 1987 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1988 1989 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1990 MBB.insert(MI, NewMIs[i]); 1991 1992 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1993 MachineMemOperand *MMO = MF.getMachineMemOperand( 1994 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1995 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1996 MFI.getObjectAlign(FrameIdx)); 1997 NewMIs.back()->addMemOperand(MF, MMO); 1998 } 1999 2000 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2001 MachineBasicBlock::iterator MI, 2002 Register DestReg, int FrameIdx, 2003 const TargetRegisterClass *RC, 2004 const TargetRegisterInfo *TRI, 2005 Register VReg) const { 2006 // We need to avoid a situation in which the value from a VRRC register is 2007 // spilled using an Altivec instruction and reloaded into a VSRC register 2008 // using a VSX instruction. The issue with this is that the VSX 2009 // load/store instructions swap the doublewords in the vector and the Altivec 2010 // ones don't. The register classes on the spill/reload may be different if 2011 // the register is defined using an Altivec instruction and is then used by a 2012 // VSX instruction. 2013 RC = updatedRC(RC); 2014 2015 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2016 } 2017 2018 bool PPCInstrInfo:: 2019 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2020 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2021 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2022 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2023 else 2024 // Leave the CR# the same, but invert the condition. 2025 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2026 return false; 2027 } 2028 2029 // For some instructions, it is legal to fold ZERO into the RA register field. 2030 // This function performs that fold by replacing the operand with PPC::ZERO, 2031 // it does not consider whether the load immediate zero is no longer in use. 2032 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2033 Register Reg) const { 2034 // A zero immediate should always be loaded with a single li. 2035 unsigned DefOpc = DefMI.getOpcode(); 2036 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2037 return false; 2038 if (!DefMI.getOperand(1).isImm()) 2039 return false; 2040 if (DefMI.getOperand(1).getImm() != 0) 2041 return false; 2042 2043 // Note that we cannot here invert the arguments of an isel in order to fold 2044 // a ZERO into what is presented as the second argument. All we have here 2045 // is the condition bit, and that might come from a CR-logical bit operation. 2046 2047 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2048 2049 // Only fold into real machine instructions. 2050 if (UseMCID.isPseudo()) 2051 return false; 2052 2053 // We need to find which of the User's operands is to be folded, that will be 2054 // the operand that matches the given register ID. 2055 unsigned UseIdx; 2056 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2057 if (UseMI.getOperand(UseIdx).isReg() && 2058 UseMI.getOperand(UseIdx).getReg() == Reg) 2059 break; 2060 2061 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2062 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2063 2064 const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx]; 2065 2066 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2067 // register (which might also be specified as a pointer class kind). 2068 if (UseInfo->isLookupPtrRegClass()) { 2069 if (UseInfo->RegClass /* Kind */ != 1) 2070 return false; 2071 } else { 2072 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2073 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2074 return false; 2075 } 2076 2077 // Make sure this is not tied to an output register (or otherwise 2078 // constrained). This is true for ST?UX registers, for example, which 2079 // are tied to their output registers. 2080 if (UseInfo->Constraints != 0) 2081 return false; 2082 2083 MCRegister ZeroReg; 2084 if (UseInfo->isLookupPtrRegClass()) { 2085 bool isPPC64 = Subtarget.isPPC64(); 2086 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2087 } else { 2088 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2089 PPC::ZERO8 : PPC::ZERO; 2090 } 2091 2092 LLVM_DEBUG(dbgs() << "Folded immediate zero for: "); 2093 LLVM_DEBUG(UseMI.dump()); 2094 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2095 LLVM_DEBUG(dbgs() << "Into: "); 2096 LLVM_DEBUG(UseMI.dump()); 2097 return true; 2098 } 2099 2100 // Folds zero into instructions which have a load immediate zero as an operand 2101 // but also recognize zero as immediate zero. If the definition of the load 2102 // has no more users it is deleted. 2103 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2104 Register Reg, MachineRegisterInfo *MRI) const { 2105 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2106 if (MRI->use_nodbg_empty(Reg)) 2107 DefMI.eraseFromParent(); 2108 return Changed; 2109 } 2110 2111 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2112 for (MachineInstr &MI : MBB) 2113 if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8)) 2114 return true; 2115 return false; 2116 } 2117 2118 // We should make sure that, if we're going to predicate both sides of a 2119 // condition (a diamond), that both sides don't define the counter register. We 2120 // can predicate counter-decrement-based branches, but while that predicates 2121 // the branching, it does not predicate the counter decrement. If we tried to 2122 // merge the triangle into one predicated block, we'd decrement the counter 2123 // twice. 2124 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2125 unsigned NumT, unsigned ExtraT, 2126 MachineBasicBlock &FMBB, 2127 unsigned NumF, unsigned ExtraF, 2128 BranchProbability Probability) const { 2129 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2130 } 2131 2132 2133 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2134 // The predicated branches are identified by their type, not really by the 2135 // explicit presence of a predicate. Furthermore, some of them can be 2136 // predicated more than once. Because if conversion won't try to predicate 2137 // any instruction which already claims to be predicated (by returning true 2138 // here), always return false. In doing so, we let isPredicable() be the 2139 // final word on whether not the instruction can be (further) predicated. 2140 2141 return false; 2142 } 2143 2144 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2145 const MachineBasicBlock *MBB, 2146 const MachineFunction &MF) const { 2147 switch (MI.getOpcode()) { 2148 default: 2149 break; 2150 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2151 // across them, since some FP operations may change content of FPSCR. 2152 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2153 case PPC::MFFS: 2154 case PPC::MTFSF: 2155 case PPC::FENCE: 2156 return true; 2157 } 2158 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2159 } 2160 2161 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2162 ArrayRef<MachineOperand> Pred) const { 2163 unsigned OpC = MI.getOpcode(); 2164 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2165 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2166 bool isPPC64 = Subtarget.isPPC64(); 2167 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2168 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2169 // Need add Def and Use for CTR implicit operand. 2170 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2171 .addReg(Pred[1].getReg(), RegState::Implicit) 2172 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2173 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2174 MI.setDesc(get(PPC::BCLR)); 2175 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2176 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2177 MI.setDesc(get(PPC::BCLRn)); 2178 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2179 } else { 2180 MI.setDesc(get(PPC::BCCLR)); 2181 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2182 .addImm(Pred[0].getImm()) 2183 .add(Pred[1]); 2184 } 2185 2186 return true; 2187 } else if (OpC == PPC::B) { 2188 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2189 bool isPPC64 = Subtarget.isPPC64(); 2190 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2191 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2192 // Need add Def and Use for CTR implicit operand. 2193 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2194 .addReg(Pred[1].getReg(), RegState::Implicit) 2195 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2196 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2197 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2198 MI.removeOperand(0); 2199 2200 MI.setDesc(get(PPC::BC)); 2201 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2202 .add(Pred[1]) 2203 .addMBB(MBB); 2204 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2205 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2206 MI.removeOperand(0); 2207 2208 MI.setDesc(get(PPC::BCn)); 2209 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2210 .add(Pred[1]) 2211 .addMBB(MBB); 2212 } else { 2213 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2214 MI.removeOperand(0); 2215 2216 MI.setDesc(get(PPC::BCC)); 2217 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2218 .addImm(Pred[0].getImm()) 2219 .add(Pred[1]) 2220 .addMBB(MBB); 2221 } 2222 2223 return true; 2224 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2225 OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || 2226 OpC == PPC::BCTRL8_RM) { 2227 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2228 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2229 2230 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || 2231 OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; 2232 bool isPPC64 = Subtarget.isPPC64(); 2233 2234 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2235 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2236 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2237 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2238 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2239 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2240 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2241 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2242 } else { 2243 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2244 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2245 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2246 .addImm(Pred[0].getImm()) 2247 .add(Pred[1]); 2248 } 2249 2250 // Need add Def and Use for LR implicit operand. 2251 if (setLR) 2252 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2253 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2254 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2255 if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) 2256 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2257 .addReg(PPC::RM, RegState::ImplicitDefine); 2258 2259 return true; 2260 } 2261 2262 return false; 2263 } 2264 2265 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2266 ArrayRef<MachineOperand> Pred2) const { 2267 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2268 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2269 2270 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2271 return false; 2272 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2273 return false; 2274 2275 // P1 can only subsume P2 if they test the same condition register. 2276 if (Pred1[1].getReg() != Pred2[1].getReg()) 2277 return false; 2278 2279 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2280 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2281 2282 if (P1 == P2) 2283 return true; 2284 2285 // Does P1 subsume P2, e.g. GE subsumes GT. 2286 if (P1 == PPC::PRED_LE && 2287 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2288 return true; 2289 if (P1 == PPC::PRED_GE && 2290 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2291 return true; 2292 2293 return false; 2294 } 2295 2296 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2297 std::vector<MachineOperand> &Pred, 2298 bool SkipDead) const { 2299 // Note: At the present time, the contents of Pred from this function is 2300 // unused by IfConversion. This implementation follows ARM by pushing the 2301 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2302 // predicate, instructions defining CTR or CTR8 are also included as 2303 // predicate-defining instructions. 2304 2305 const TargetRegisterClass *RCs[] = 2306 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2307 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2308 2309 bool Found = false; 2310 for (const MachineOperand &MO : MI.operands()) { 2311 for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) { 2312 const TargetRegisterClass *RC = RCs[c]; 2313 if (MO.isReg()) { 2314 if (MO.isDef() && RC->contains(MO.getReg())) { 2315 Pred.push_back(MO); 2316 Found = true; 2317 } 2318 } else if (MO.isRegMask()) { 2319 for (MCPhysReg R : *RC) 2320 if (MO.clobbersPhysReg(R)) { 2321 Pred.push_back(MO); 2322 Found = true; 2323 } 2324 } 2325 } 2326 } 2327 2328 return Found; 2329 } 2330 2331 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2332 Register &SrcReg2, int64_t &Mask, 2333 int64_t &Value) const { 2334 unsigned Opc = MI.getOpcode(); 2335 2336 switch (Opc) { 2337 default: return false; 2338 case PPC::CMPWI: 2339 case PPC::CMPLWI: 2340 case PPC::CMPDI: 2341 case PPC::CMPLDI: 2342 SrcReg = MI.getOperand(1).getReg(); 2343 SrcReg2 = 0; 2344 Value = MI.getOperand(2).getImm(); 2345 Mask = 0xFFFF; 2346 return true; 2347 case PPC::CMPW: 2348 case PPC::CMPLW: 2349 case PPC::CMPD: 2350 case PPC::CMPLD: 2351 case PPC::FCMPUS: 2352 case PPC::FCMPUD: 2353 SrcReg = MI.getOperand(1).getReg(); 2354 SrcReg2 = MI.getOperand(2).getReg(); 2355 Value = 0; 2356 Mask = 0; 2357 return true; 2358 } 2359 } 2360 2361 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2362 Register SrcReg2, int64_t Mask, 2363 int64_t Value, 2364 const MachineRegisterInfo *MRI) const { 2365 if (DisableCmpOpt) 2366 return false; 2367 2368 int OpC = CmpInstr.getOpcode(); 2369 Register CRReg = CmpInstr.getOperand(0).getReg(); 2370 2371 // FP record forms set CR1 based on the exception status bits, not a 2372 // comparison with zero. 2373 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2374 return false; 2375 2376 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2377 // The record forms set the condition register based on a signed comparison 2378 // with zero (so says the ISA manual). This is not as straightforward as it 2379 // seems, however, because this is always a 64-bit comparison on PPC64, even 2380 // for instructions that are 32-bit in nature (like slw for example). 2381 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2382 // for equality checks (as those don't depend on the sign). On PPC64, 2383 // we are restricted to equality for unsigned 64-bit comparisons and for 2384 // signed 32-bit comparisons the applicability is more restricted. 2385 bool isPPC64 = Subtarget.isPPC64(); 2386 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2387 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2388 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2389 2390 // Look through copies unless that gets us to a physical register. 2391 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2392 if (ActualSrc.isVirtual()) 2393 SrcReg = ActualSrc; 2394 2395 // Get the unique definition of SrcReg. 2396 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2397 if (!MI) return false; 2398 2399 bool equalityOnly = false; 2400 bool noSub = false; 2401 if (isPPC64) { 2402 if (is32BitSignedCompare) { 2403 // We can perform this optimization only if SrcReg is sign-extending. 2404 if (isSignExtended(SrcReg, MRI)) 2405 noSub = true; 2406 else 2407 return false; 2408 } else if (is32BitUnsignedCompare) { 2409 // We can perform this optimization, equality only, if SrcReg is 2410 // zero-extending. 2411 if (isZeroExtended(SrcReg, MRI)) { 2412 noSub = true; 2413 equalityOnly = true; 2414 } else 2415 return false; 2416 } else 2417 equalityOnly = is64BitUnsignedCompare; 2418 } else 2419 equalityOnly = is32BitUnsignedCompare; 2420 2421 if (equalityOnly) { 2422 // We need to check the uses of the condition register in order to reject 2423 // non-equality comparisons. 2424 for (MachineRegisterInfo::use_instr_iterator 2425 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2426 I != IE; ++I) { 2427 MachineInstr *UseMI = &*I; 2428 if (UseMI->getOpcode() == PPC::BCC) { 2429 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2430 unsigned PredCond = PPC::getPredicateCondition(Pred); 2431 // We ignore hint bits when checking for non-equality comparisons. 2432 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2433 return false; 2434 } else if (UseMI->getOpcode() == PPC::ISEL || 2435 UseMI->getOpcode() == PPC::ISEL8) { 2436 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2437 if (SubIdx != PPC::sub_eq) 2438 return false; 2439 } else 2440 return false; 2441 } 2442 } 2443 2444 MachineBasicBlock::iterator I = CmpInstr; 2445 2446 // Scan forward to find the first use of the compare. 2447 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2448 ++I) { 2449 bool FoundUse = false; 2450 for (MachineRegisterInfo::use_instr_iterator 2451 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2452 J != JE; ++J) 2453 if (&*J == &*I) { 2454 FoundUse = true; 2455 break; 2456 } 2457 2458 if (FoundUse) 2459 break; 2460 } 2461 2462 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2463 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2464 2465 // There are two possible candidates which can be changed to set CR[01]. 2466 // One is MI, the other is a SUB instruction. 2467 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2468 MachineInstr *Sub = nullptr; 2469 if (SrcReg2 != 0) 2470 // MI is not a candidate for CMPrr. 2471 MI = nullptr; 2472 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2473 // same BB as the comparison. This is to allow the check below to avoid calls 2474 // (and other explicit clobbers); instead we should really check for these 2475 // more explicitly (in at least a few predecessors). 2476 else if (MI->getParent() != CmpInstr.getParent()) 2477 return false; 2478 else if (Value != 0) { 2479 // The record-form instructions set CR bit based on signed comparison 2480 // against 0. We try to convert a compare against 1 or -1 into a compare 2481 // against 0 to exploit record-form instructions. For example, we change 2482 // the condition "greater than -1" into "greater than or equal to 0" 2483 // and "less than 1" into "less than or equal to 0". 2484 2485 // Since we optimize comparison based on a specific branch condition, 2486 // we don't optimize if condition code is used by more than once. 2487 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2488 return false; 2489 2490 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2491 if (UseMI->getOpcode() != PPC::BCC) 2492 return false; 2493 2494 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2495 unsigned PredCond = PPC::getPredicateCondition(Pred); 2496 unsigned PredHint = PPC::getPredicateHint(Pred); 2497 int16_t Immed = (int16_t)Value; 2498 2499 // When modifying the condition in the predicate, we propagate hint bits 2500 // from the original predicate to the new one. 2501 if (Immed == -1 && PredCond == PPC::PRED_GT) 2502 // We convert "greater than -1" into "greater than or equal to 0", 2503 // since we are assuming signed comparison by !equalityOnly 2504 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2505 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2506 // We convert "less than or equal to -1" into "less than 0". 2507 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2508 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2509 // We convert "less than 1" into "less than or equal to 0". 2510 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2511 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2512 // We convert "greater than or equal to 1" into "greater than 0". 2513 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2514 else 2515 return false; 2516 2517 // Convert the comparison and its user to a compare against zero with the 2518 // appropriate predicate on the branch. Zero comparison might provide 2519 // optimization opportunities post-RA (see optimization in 2520 // PPCPreEmitPeephole.cpp). 2521 UseMI->getOperand(0).setImm(Pred); 2522 CmpInstr.getOperand(2).setImm(0); 2523 } 2524 2525 // Search for Sub. 2526 --I; 2527 2528 // Get ready to iterate backward from CmpInstr. 2529 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2530 2531 for (; I != E && !noSub; --I) { 2532 const MachineInstr &Instr = *I; 2533 unsigned IOpC = Instr.getOpcode(); 2534 2535 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2536 Instr.readsRegister(PPC::CR0, TRI))) 2537 // This instruction modifies or uses the record condition register after 2538 // the one we want to change. While we could do this transformation, it 2539 // would likely not be profitable. This transformation removes one 2540 // instruction, and so even forcing RA to generate one move probably 2541 // makes it unprofitable. 2542 return false; 2543 2544 // Check whether CmpInstr can be made redundant by the current instruction. 2545 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2546 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2547 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2548 ((Instr.getOperand(1).getReg() == SrcReg && 2549 Instr.getOperand(2).getReg() == SrcReg2) || 2550 (Instr.getOperand(1).getReg() == SrcReg2 && 2551 Instr.getOperand(2).getReg() == SrcReg))) { 2552 Sub = &*I; 2553 break; 2554 } 2555 2556 if (I == B) 2557 // The 'and' is below the comparison instruction. 2558 return false; 2559 } 2560 2561 // Return false if no candidates exist. 2562 if (!MI && !Sub) 2563 return false; 2564 2565 // The single candidate is called MI. 2566 if (!MI) MI = Sub; 2567 2568 int NewOpC = -1; 2569 int MIOpC = MI->getOpcode(); 2570 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2571 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2572 NewOpC = MIOpC; 2573 else { 2574 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2575 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2576 NewOpC = MIOpC; 2577 } 2578 2579 // FIXME: On the non-embedded POWER architectures, only some of the record 2580 // forms are fast, and we should use only the fast ones. 2581 2582 // The defining instruction has a record form (or is already a record 2583 // form). It is possible, however, that we'll need to reverse the condition 2584 // code of the users. 2585 if (NewOpC == -1) 2586 return false; 2587 2588 // This transformation should not be performed if `nsw` is missing and is not 2589 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2590 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2591 // CRReg can reflect if compared values are equal, this optz is still valid. 2592 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2593 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2594 return false; 2595 2596 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2597 // needs to be updated to be based on SUB. Push the condition code 2598 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2599 // condition code of these operands will be modified. 2600 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2601 // comparison against 0, which may modify predicate. 2602 bool ShouldSwap = false; 2603 if (Sub && Value == 0) { 2604 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2605 Sub->getOperand(2).getReg() == SrcReg; 2606 2607 // The operands to subf are the opposite of sub, so only in the fixed-point 2608 // case, invert the order. 2609 ShouldSwap = !ShouldSwap; 2610 } 2611 2612 if (ShouldSwap) 2613 for (MachineRegisterInfo::use_instr_iterator 2614 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2615 I != IE; ++I) { 2616 MachineInstr *UseMI = &*I; 2617 if (UseMI->getOpcode() == PPC::BCC) { 2618 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2619 unsigned PredCond = PPC::getPredicateCondition(Pred); 2620 assert((!equalityOnly || 2621 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2622 "Invalid predicate for equality-only optimization"); 2623 (void)PredCond; // To suppress warning in release build. 2624 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2625 PPC::getSwappedPredicate(Pred))); 2626 } else if (UseMI->getOpcode() == PPC::ISEL || 2627 UseMI->getOpcode() == PPC::ISEL8) { 2628 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2629 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2630 "Invalid CR bit for equality-only optimization"); 2631 2632 if (NewSubReg == PPC::sub_lt) 2633 NewSubReg = PPC::sub_gt; 2634 else if (NewSubReg == PPC::sub_gt) 2635 NewSubReg = PPC::sub_lt; 2636 2637 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2638 NewSubReg)); 2639 } else // We need to abort on a user we don't understand. 2640 return false; 2641 } 2642 assert(!(Value != 0 && ShouldSwap) && 2643 "Non-zero immediate support and ShouldSwap" 2644 "may conflict in updating predicate"); 2645 2646 // Create a new virtual register to hold the value of the CR set by the 2647 // record-form instruction. If the instruction was not previously in 2648 // record form, then set the kill flag on the CR. 2649 CmpInstr.eraseFromParent(); 2650 2651 MachineBasicBlock::iterator MII = MI; 2652 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2653 get(TargetOpcode::COPY), CRReg) 2654 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2655 2656 // Even if CR0 register were dead before, it is alive now since the 2657 // instruction we just built uses it. 2658 MI->clearRegisterDeads(PPC::CR0); 2659 2660 if (MIOpC != NewOpC) { 2661 // We need to be careful here: we're replacing one instruction with 2662 // another, and we need to make sure that we get all of the right 2663 // implicit uses and defs. On the other hand, the caller may be holding 2664 // an iterator to this instruction, and so we can't delete it (this is 2665 // specifically the case if this is the instruction directly after the 2666 // compare). 2667 2668 // Rotates are expensive instructions. If we're emitting a record-form 2669 // rotate that can just be an andi/andis, we should just emit that. 2670 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2671 Register GPRRes = MI->getOperand(0).getReg(); 2672 int64_t SH = MI->getOperand(2).getImm(); 2673 int64_t MB = MI->getOperand(3).getImm(); 2674 int64_t ME = MI->getOperand(4).getImm(); 2675 // We can only do this if both the start and end of the mask are in the 2676 // same halfword. 2677 bool MBInLoHWord = MB >= 16; 2678 bool MEInLoHWord = ME >= 16; 2679 uint64_t Mask = ~0LLU; 2680 2681 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2682 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2683 // The mask value needs to shift right 16 if we're emitting andis. 2684 Mask >>= MBInLoHWord ? 0 : 16; 2685 NewOpC = MIOpC == PPC::RLWINM 2686 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2687 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2688 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2689 (ME - MB + 1 == SH) && (MB >= 16)) { 2690 // If we are rotating by the exact number of bits as are in the mask 2691 // and the mask is in the least significant bits of the register, 2692 // that's just an andis. (as long as the GPR result has no uses). 2693 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2694 Mask >>= 16; 2695 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2696 } 2697 // If we've set the mask, we can transform. 2698 if (Mask != ~0LLU) { 2699 MI->removeOperand(4); 2700 MI->removeOperand(3); 2701 MI->getOperand(2).setImm(Mask); 2702 NumRcRotatesConvertedToRcAnd++; 2703 } 2704 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2705 int64_t MB = MI->getOperand(3).getImm(); 2706 if (MB >= 48) { 2707 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2708 NewOpC = PPC::ANDI8_rec; 2709 MI->removeOperand(3); 2710 MI->getOperand(2).setImm(Mask); 2711 NumRcRotatesConvertedToRcAnd++; 2712 } 2713 } 2714 2715 const MCInstrDesc &NewDesc = get(NewOpC); 2716 MI->setDesc(NewDesc); 2717 2718 for (MCPhysReg ImpDef : NewDesc.implicit_defs()) { 2719 if (!MI->definesRegister(ImpDef)) { 2720 MI->addOperand(*MI->getParent()->getParent(), 2721 MachineOperand::CreateReg(ImpDef, true, true)); 2722 } 2723 } 2724 for (MCPhysReg ImpUse : NewDesc.implicit_uses()) { 2725 if (!MI->readsRegister(ImpUse)) { 2726 MI->addOperand(*MI->getParent()->getParent(), 2727 MachineOperand::CreateReg(ImpUse, false, true)); 2728 } 2729 } 2730 } 2731 assert(MI->definesRegister(PPC::CR0) && 2732 "Record-form instruction does not define cr0?"); 2733 2734 // Modify the condition code of operands in OperandsToUpdate. 2735 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2736 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2737 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2738 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2739 2740 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2741 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2742 2743 return true; 2744 } 2745 2746 bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const { 2747 MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo(); 2748 if (MRI->isSSA()) 2749 return false; 2750 2751 Register SrcReg, SrcReg2; 2752 int64_t CmpMask, CmpValue; 2753 if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue)) 2754 return false; 2755 2756 // Try to optimize the comparison against 0. 2757 if (CmpValue || !CmpMask || SrcReg2) 2758 return false; 2759 2760 // The record forms set the condition register based on a signed comparison 2761 // with zero (see comments in optimizeCompareInstr). Since we can't do the 2762 // equality checks in post-RA, we are more restricted on a unsigned 2763 // comparison. 2764 unsigned Opc = CmpMI.getOpcode(); 2765 if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI) 2766 return false; 2767 2768 // The record forms are always based on a 64-bit comparison on PPC64 2769 // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit 2770 // comparison. Since we can't do the equality checks in post-RA, we bail out 2771 // the case. 2772 if (Subtarget.isPPC64() && Opc == PPC::CMPWI) 2773 return false; 2774 2775 // CmpMI can't be deleted if it has implicit def. 2776 if (CmpMI.hasImplicitDef()) 2777 return false; 2778 2779 bool SrcRegHasOtherUse = false; 2780 MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse); 2781 if (!SrcMI || !SrcMI->definesRegister(SrcReg)) 2782 return false; 2783 2784 MachineOperand RegMO = CmpMI.getOperand(0); 2785 Register CRReg = RegMO.getReg(); 2786 if (CRReg != PPC::CR0) 2787 return false; 2788 2789 // Make sure there is no def/use of CRReg between SrcMI and CmpMI. 2790 bool SeenUseOfCRReg = false; 2791 bool IsCRRegKilled = false; 2792 if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled, 2793 SeenUseOfCRReg) || 2794 SrcMI->definesRegister(CRReg) || SeenUseOfCRReg) 2795 return false; 2796 2797 int SrcMIOpc = SrcMI->getOpcode(); 2798 int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc); 2799 if (NewOpC == -1) 2800 return false; 2801 2802 LLVM_DEBUG(dbgs() << "Replace Instr: "); 2803 LLVM_DEBUG(SrcMI->dump()); 2804 2805 const MCInstrDesc &NewDesc = get(NewOpC); 2806 SrcMI->setDesc(NewDesc); 2807 MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI) 2808 .addReg(CRReg, RegState::ImplicitDefine); 2809 SrcMI->clearRegisterDeads(CRReg); 2810 2811 assert(SrcMI->definesRegister(PPC::CR0) && 2812 "Record-form instruction does not define cr0?"); 2813 2814 LLVM_DEBUG(dbgs() << "with: "); 2815 LLVM_DEBUG(SrcMI->dump()); 2816 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 2817 LLVM_DEBUG(CmpMI.dump()); 2818 return true; 2819 } 2820 2821 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2822 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2823 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2824 const TargetRegisterInfo *TRI) const { 2825 const MachineOperand *BaseOp; 2826 OffsetIsScalable = false; 2827 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2828 return false; 2829 BaseOps.push_back(BaseOp); 2830 return true; 2831 } 2832 2833 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2834 const TargetRegisterInfo *TRI) { 2835 // If this is a volatile load/store, don't mess with it. 2836 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2837 return false; 2838 2839 if (LdSt.getOperand(2).isFI()) 2840 return true; 2841 2842 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2843 // Can't cluster if the instruction modifies the base register 2844 // or it is update form. e.g. ld r2,3(r2) 2845 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2846 return false; 2847 2848 return true; 2849 } 2850 2851 // Only cluster instruction pair that have the same opcode, and they are 2852 // clusterable according to PowerPC specification. 2853 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2854 const PPCSubtarget &Subtarget) { 2855 switch (FirstOpc) { 2856 default: 2857 return false; 2858 case PPC::STD: 2859 case PPC::STFD: 2860 case PPC::STXSD: 2861 case PPC::DFSTOREf64: 2862 return FirstOpc == SecondOpc; 2863 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2864 // 32bit and 64bit instruction selection. They are clusterable pair though 2865 // they are different opcode. 2866 case PPC::STW: 2867 case PPC::STW8: 2868 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2869 } 2870 } 2871 2872 bool PPCInstrInfo::shouldClusterMemOps( 2873 ArrayRef<const MachineOperand *> BaseOps1, int64_t OpOffset1, 2874 bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2, 2875 int64_t OpOffset2, bool OffsetIsScalable2, unsigned ClusterSize, 2876 unsigned NumBytes) const { 2877 2878 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2879 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2880 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2881 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2882 "Only base registers and frame indices are supported."); 2883 2884 // ClusterSize means the number of memory operations that will have been 2885 // clustered if this hook returns true. 2886 // Don't cluster memory op if there are already two ops clustered at least. 2887 if (ClusterSize > 2) 2888 return false; 2889 2890 // Cluster the load/store only when they have the same base 2891 // register or FI. 2892 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2893 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2894 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2895 return false; 2896 2897 // Check if the load/store are clusterable according to the PowerPC 2898 // specification. 2899 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2900 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2901 unsigned FirstOpc = FirstLdSt.getOpcode(); 2902 unsigned SecondOpc = SecondLdSt.getOpcode(); 2903 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2904 // Cluster the load/store only when they have the same opcode, and they are 2905 // clusterable opcode according to PowerPC specification. 2906 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2907 return false; 2908 2909 // Can't cluster load/store that have ordered or volatile memory reference. 2910 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2911 !isLdStSafeToCluster(SecondLdSt, TRI)) 2912 return false; 2913 2914 int64_t Offset1 = 0, Offset2 = 0; 2915 unsigned Width1 = 0, Width2 = 0; 2916 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2917 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2918 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2919 Width1 != Width2) 2920 return false; 2921 2922 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2923 "getMemOperandWithOffsetWidth return incorrect base op"); 2924 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2925 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2926 return Offset1 + Width1 == Offset2; 2927 } 2928 2929 /// GetInstSize - Return the number of bytes of code the specified 2930 /// instruction may be. This returns the maximum number of bytes. 2931 /// 2932 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2933 unsigned Opcode = MI.getOpcode(); 2934 2935 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2936 const MachineFunction *MF = MI.getParent()->getParent(); 2937 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2938 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2939 } else if (Opcode == TargetOpcode::STACKMAP) { 2940 StackMapOpers Opers(&MI); 2941 return Opers.getNumPatchBytes(); 2942 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2943 PatchPointOpers Opers(&MI); 2944 return Opers.getNumPatchBytes(); 2945 } else { 2946 return get(Opcode).getSize(); 2947 } 2948 } 2949 2950 std::pair<unsigned, unsigned> 2951 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2952 // PPC always uses a direct mask. 2953 return std::make_pair(TF, 0u); 2954 } 2955 2956 ArrayRef<std::pair<unsigned, const char *>> 2957 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2958 using namespace PPCII; 2959 static const std::pair<unsigned, const char *> TargetFlags[] = { 2960 {MO_PLT, "ppc-plt"}, 2961 {MO_PIC_FLAG, "ppc-pic"}, 2962 {MO_PCREL_FLAG, "ppc-pcrel"}, 2963 {MO_GOT_FLAG, "ppc-got"}, 2964 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2965 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2966 {MO_TPREL_FLAG, "ppc-tprel"}, 2967 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2968 {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, 2969 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2970 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2971 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}, 2972 {MO_LO, "ppc-lo"}, 2973 {MO_HA, "ppc-ha"}, 2974 {MO_TPREL_LO, "ppc-tprel-lo"}, 2975 {MO_TPREL_HA, "ppc-tprel-ha"}, 2976 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2977 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2978 {MO_TOC_LO, "ppc-toc-lo"}, 2979 {MO_TLS, "ppc-tls"}, 2980 {MO_PIC_HA_FLAG, "ppc-ha-pic"}, 2981 {MO_PIC_LO_FLAG, "ppc-lo-pic"}, 2982 {MO_TPREL_PCREL_FLAG, "ppc-tprel-pcrel"}, 2983 {MO_TLS_PCREL_FLAG, "ppc-tls-pcrel"}, 2984 {MO_GOT_PCREL_FLAG, "ppc-got-pcrel"}, 2985 }; 2986 return ArrayRef(TargetFlags); 2987 } 2988 2989 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2990 // The VSX versions have the advantage of a full 64-register target whereas 2991 // the FP ones have the advantage of lower latency and higher throughput. So 2992 // what we are after is using the faster instructions in low register pressure 2993 // situations and using the larger register file in high register pressure 2994 // situations. 2995 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2996 unsigned UpperOpcode, LowerOpcode; 2997 switch (MI.getOpcode()) { 2998 case PPC::DFLOADf32: 2999 UpperOpcode = PPC::LXSSP; 3000 LowerOpcode = PPC::LFS; 3001 break; 3002 case PPC::DFLOADf64: 3003 UpperOpcode = PPC::LXSD; 3004 LowerOpcode = PPC::LFD; 3005 break; 3006 case PPC::DFSTOREf32: 3007 UpperOpcode = PPC::STXSSP; 3008 LowerOpcode = PPC::STFS; 3009 break; 3010 case PPC::DFSTOREf64: 3011 UpperOpcode = PPC::STXSD; 3012 LowerOpcode = PPC::STFD; 3013 break; 3014 case PPC::XFLOADf32: 3015 UpperOpcode = PPC::LXSSPX; 3016 LowerOpcode = PPC::LFSX; 3017 break; 3018 case PPC::XFLOADf64: 3019 UpperOpcode = PPC::LXSDX; 3020 LowerOpcode = PPC::LFDX; 3021 break; 3022 case PPC::XFSTOREf32: 3023 UpperOpcode = PPC::STXSSPX; 3024 LowerOpcode = PPC::STFSX; 3025 break; 3026 case PPC::XFSTOREf64: 3027 UpperOpcode = PPC::STXSDX; 3028 LowerOpcode = PPC::STFDX; 3029 break; 3030 case PPC::LIWAX: 3031 UpperOpcode = PPC::LXSIWAX; 3032 LowerOpcode = PPC::LFIWAX; 3033 break; 3034 case PPC::LIWZX: 3035 UpperOpcode = PPC::LXSIWZX; 3036 LowerOpcode = PPC::LFIWZX; 3037 break; 3038 case PPC::STIWX: 3039 UpperOpcode = PPC::STXSIWX; 3040 LowerOpcode = PPC::STFIWX; 3041 break; 3042 default: 3043 llvm_unreachable("Unknown Operation!"); 3044 } 3045 3046 Register TargetReg = MI.getOperand(0).getReg(); 3047 unsigned Opcode; 3048 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 3049 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 3050 Opcode = LowerOpcode; 3051 else 3052 Opcode = UpperOpcode; 3053 MI.setDesc(get(Opcode)); 3054 return true; 3055 } 3056 3057 static bool isAnImmediateOperand(const MachineOperand &MO) { 3058 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 3059 } 3060 3061 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 3062 auto &MBB = *MI.getParent(); 3063 auto DL = MI.getDebugLoc(); 3064 3065 switch (MI.getOpcode()) { 3066 case PPC::BUILD_UACC: { 3067 MCRegister ACC = MI.getOperand(0).getReg(); 3068 MCRegister UACC = MI.getOperand(1).getReg(); 3069 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 3070 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 3071 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 3072 // FIXME: This can easily be improved to look up to the top of the MBB 3073 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 3074 // we can just re-target any such XXLOR's to DstVSR + offset. 3075 for (int VecNo = 0; VecNo < 4; VecNo++) 3076 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 3077 .addReg(SrcVSR + VecNo) 3078 .addReg(SrcVSR + VecNo); 3079 } 3080 // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. 3081 // So after building the 4 copies, we can replace the BUILD_UACC instruction 3082 // with a NOP. 3083 [[fallthrough]]; 3084 } 3085 case PPC::KILL_PAIR: { 3086 MI.setDesc(get(PPC::UNENCODED_NOP)); 3087 MI.removeOperand(1); 3088 MI.removeOperand(0); 3089 return true; 3090 } 3091 case TargetOpcode::LOAD_STACK_GUARD: { 3092 assert(Subtarget.isTargetLinux() && 3093 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3094 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3095 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3096 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3097 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3098 .addImm(Offset) 3099 .addReg(Reg); 3100 return true; 3101 } 3102 case PPC::DFLOADf32: 3103 case PPC::DFLOADf64: 3104 case PPC::DFSTOREf32: 3105 case PPC::DFSTOREf64: { 3106 assert(Subtarget.hasP9Vector() && 3107 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3108 assert(MI.getOperand(2).isReg() && 3109 isAnImmediateOperand(MI.getOperand(1)) && 3110 "D-form op must have register and immediate operands"); 3111 return expandVSXMemPseudo(MI); 3112 } 3113 case PPC::XFLOADf32: 3114 case PPC::XFSTOREf32: 3115 case PPC::LIWAX: 3116 case PPC::LIWZX: 3117 case PPC::STIWX: { 3118 assert(Subtarget.hasP8Vector() && 3119 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3120 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3121 "X-form op must have register and register operands"); 3122 return expandVSXMemPseudo(MI); 3123 } 3124 case PPC::XFLOADf64: 3125 case PPC::XFSTOREf64: { 3126 assert(Subtarget.hasVSX() && 3127 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3128 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3129 "X-form op must have register and register operands"); 3130 return expandVSXMemPseudo(MI); 3131 } 3132 case PPC::SPILLTOVSR_LD: { 3133 Register TargetReg = MI.getOperand(0).getReg(); 3134 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3135 MI.setDesc(get(PPC::DFLOADf64)); 3136 return expandPostRAPseudo(MI); 3137 } 3138 else 3139 MI.setDesc(get(PPC::LD)); 3140 return true; 3141 } 3142 case PPC::SPILLTOVSR_ST: { 3143 Register SrcReg = MI.getOperand(0).getReg(); 3144 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3145 NumStoreSPILLVSRRCAsVec++; 3146 MI.setDesc(get(PPC::DFSTOREf64)); 3147 return expandPostRAPseudo(MI); 3148 } else { 3149 NumStoreSPILLVSRRCAsGpr++; 3150 MI.setDesc(get(PPC::STD)); 3151 } 3152 return true; 3153 } 3154 case PPC::SPILLTOVSR_LDX: { 3155 Register TargetReg = MI.getOperand(0).getReg(); 3156 if (PPC::VSFRCRegClass.contains(TargetReg)) 3157 MI.setDesc(get(PPC::LXSDX)); 3158 else 3159 MI.setDesc(get(PPC::LDX)); 3160 return true; 3161 } 3162 case PPC::SPILLTOVSR_STX: { 3163 Register SrcReg = MI.getOperand(0).getReg(); 3164 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3165 NumStoreSPILLVSRRCAsVec++; 3166 MI.setDesc(get(PPC::STXSDX)); 3167 } else { 3168 NumStoreSPILLVSRRCAsGpr++; 3169 MI.setDesc(get(PPC::STDX)); 3170 } 3171 return true; 3172 } 3173 3174 // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. 3175 case PPC::CFENCE: 3176 case PPC::CFENCE8: { 3177 auto Val = MI.getOperand(0).getReg(); 3178 unsigned CmpOp = Subtarget.isPPC64() ? PPC::CMPD : PPC::CMPW; 3179 BuildMI(MBB, MI, DL, get(CmpOp), PPC::CR7).addReg(Val).addReg(Val); 3180 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3181 .addImm(PPC::PRED_NE_MINUS) 3182 .addReg(PPC::CR7) 3183 .addImm(1); 3184 MI.setDesc(get(PPC::ISYNC)); 3185 MI.removeOperand(0); 3186 return true; 3187 } 3188 } 3189 return false; 3190 } 3191 3192 // Essentially a compile-time implementation of a compare->isel sequence. 3193 // It takes two constants to compare, along with the true/false registers 3194 // and the comparison type (as a subreg to a CR field) and returns one 3195 // of the true/false registers, depending on the comparison results. 3196 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3197 unsigned TrueReg, unsigned FalseReg, 3198 unsigned CRSubReg) { 3199 // Signed comparisons. The immediates are assumed to be sign-extended. 3200 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3201 switch (CRSubReg) { 3202 default: llvm_unreachable("Unknown integer comparison type."); 3203 case PPC::sub_lt: 3204 return Imm1 < Imm2 ? TrueReg : FalseReg; 3205 case PPC::sub_gt: 3206 return Imm1 > Imm2 ? TrueReg : FalseReg; 3207 case PPC::sub_eq: 3208 return Imm1 == Imm2 ? TrueReg : FalseReg; 3209 } 3210 } 3211 // Unsigned comparisons. 3212 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3213 switch (CRSubReg) { 3214 default: llvm_unreachable("Unknown integer comparison type."); 3215 case PPC::sub_lt: 3216 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3217 case PPC::sub_gt: 3218 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3219 case PPC::sub_eq: 3220 return Imm1 == Imm2 ? TrueReg : FalseReg; 3221 } 3222 } 3223 return PPC::NoRegister; 3224 } 3225 3226 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3227 unsigned OpNo, 3228 int64_t Imm) const { 3229 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3230 // Replace the REG with the Immediate. 3231 Register InUseReg = MI.getOperand(OpNo).getReg(); 3232 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3233 3234 // We need to make sure that the MI didn't have any implicit use 3235 // of this REG any more. We don't call MI.implicit_operands().empty() to 3236 // return early, since MI's MCID might be changed in calling context, as a 3237 // result its number of explicit operands may be changed, thus the begin of 3238 // implicit operand is changed. 3239 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3240 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3241 if (UseOpIdx >= 0) { 3242 MachineOperand &MO = MI.getOperand(UseOpIdx); 3243 if (MO.isImplicit()) 3244 // The operands must always be in the following order: 3245 // - explicit reg defs, 3246 // - other explicit operands (reg uses, immediates, etc.), 3247 // - implicit reg defs 3248 // - implicit reg uses 3249 // Therefore, removing the implicit operand won't change the explicit 3250 // operands layout. 3251 MI.removeOperand(UseOpIdx); 3252 } 3253 } 3254 3255 // Replace an instruction with one that materializes a constant (and sets 3256 // CR0 if the original instruction was a record-form instruction). 3257 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3258 const LoadImmediateInfo &LII) const { 3259 // Remove existing operands. 3260 int OperandToKeep = LII.SetCR ? 1 : 0; 3261 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3262 MI.removeOperand(i); 3263 3264 // Replace the instruction. 3265 if (LII.SetCR) { 3266 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3267 // Set the immediate. 3268 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3269 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3270 return; 3271 } 3272 else 3273 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3274 3275 // Set the immediate. 3276 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3277 .addImm(LII.Imm); 3278 } 3279 3280 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3281 bool &SeenIntermediateUse) const { 3282 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3283 "Should be called after register allocation."); 3284 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3285 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3286 It++; 3287 SeenIntermediateUse = false; 3288 for (; It != E; ++It) { 3289 if (It->modifiesRegister(Reg, TRI)) 3290 return &*It; 3291 if (It->readsRegister(Reg, TRI)) 3292 SeenIntermediateUse = true; 3293 } 3294 return nullptr; 3295 } 3296 3297 void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB, 3298 MachineBasicBlock::iterator MBBI, 3299 const DebugLoc &DL, Register Reg, 3300 int64_t Imm) const { 3301 assert(!MBB.getParent()->getRegInfo().isSSA() && 3302 "Register should be in non-SSA form after RA"); 3303 bool isPPC64 = Subtarget.isPPC64(); 3304 // FIXME: Materialization here is not optimal. 3305 // For some special bit patterns we can use less instructions. 3306 // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp. 3307 if (isInt<16>(Imm)) { 3308 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm); 3309 } else if (isInt<32>(Imm)) { 3310 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg) 3311 .addImm(Imm >> 16); 3312 if (Imm & 0xFFFF) 3313 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg) 3314 .addReg(Reg, RegState::Kill) 3315 .addImm(Imm & 0xFFFF); 3316 } else { 3317 assert(isPPC64 && "Materializing 64-bit immediate to single register is " 3318 "only supported in PPC64"); 3319 BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48); 3320 if ((Imm >> 32) & 0xFFFF) 3321 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3322 .addReg(Reg, RegState::Kill) 3323 .addImm((Imm >> 32) & 0xFFFF); 3324 BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg) 3325 .addReg(Reg, RegState::Kill) 3326 .addImm(32) 3327 .addImm(31); 3328 BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg) 3329 .addReg(Reg, RegState::Kill) 3330 .addImm((Imm >> 16) & 0xFFFF); 3331 if (Imm & 0xFFFF) 3332 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3333 .addReg(Reg, RegState::Kill) 3334 .addImm(Imm & 0xFFFF); 3335 } 3336 } 3337 3338 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3339 MachineInstr &MI, 3340 unsigned &OpNoForForwarding, 3341 bool &SeenIntermediateUse) const { 3342 OpNoForForwarding = ~0U; 3343 MachineInstr *DefMI = nullptr; 3344 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3345 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3346 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3347 // within the basic block to see if the register is defined using an 3348 // LI/LI8/ADDI/ADDI8. 3349 if (MRI->isSSA()) { 3350 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3351 if (!MI.getOperand(i).isReg()) 3352 continue; 3353 Register Reg = MI.getOperand(i).getReg(); 3354 if (!Reg.isVirtual()) 3355 continue; 3356 Register TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3357 if (TrueReg.isVirtual()) { 3358 MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg); 3359 if (DefMIForTrueReg->getOpcode() == PPC::LI || 3360 DefMIForTrueReg->getOpcode() == PPC::LI8 || 3361 DefMIForTrueReg->getOpcode() == PPC::ADDI || 3362 DefMIForTrueReg->getOpcode() == PPC::ADDI8) { 3363 OpNoForForwarding = i; 3364 DefMI = DefMIForTrueReg; 3365 // The ADDI and LI operand maybe exist in one instruction at same 3366 // time. we prefer to fold LI operand as LI only has one Imm operand 3367 // and is more possible to be converted. So if current DefMI is 3368 // ADDI/ADDI8, we continue to find possible LI/LI8. 3369 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3370 break; 3371 } 3372 } 3373 } 3374 } else { 3375 // Looking back through the definition for each operand could be expensive, 3376 // so exit early if this isn't an instruction that either has an immediate 3377 // form or is already an immediate form that we can handle. 3378 ImmInstrInfo III; 3379 unsigned Opc = MI.getOpcode(); 3380 bool ConvertibleImmForm = 3381 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3382 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3383 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3384 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3385 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3386 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3387 Opc == PPC::RLWINM8_rec; 3388 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3389 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 3390 : false; 3391 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3392 return nullptr; 3393 3394 // Don't convert or %X, %Y, %Y since that's just a register move. 3395 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3396 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3397 return nullptr; 3398 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3399 MachineOperand &MO = MI.getOperand(i); 3400 SeenIntermediateUse = false; 3401 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3402 Register Reg = MI.getOperand(i).getReg(); 3403 // If we see another use of this reg between the def and the MI, 3404 // we want to flag it so the def isn't deleted. 3405 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3406 if (DefMI) { 3407 // Is this register defined by some form of add-immediate (including 3408 // load-immediate) within this basic block? 3409 switch (DefMI->getOpcode()) { 3410 default: 3411 break; 3412 case PPC::LI: 3413 case PPC::LI8: 3414 case PPC::ADDItocL: 3415 case PPC::ADDI: 3416 case PPC::ADDI8: 3417 OpNoForForwarding = i; 3418 return DefMI; 3419 } 3420 } 3421 } 3422 } 3423 } 3424 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3425 } 3426 3427 unsigned PPCInstrInfo::getSpillTarget() const { 3428 // With P10, we may need to spill paired vector registers or accumulator 3429 // registers. MMA implies paired vectors, so we can just check that. 3430 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3431 return Subtarget.isISAFuture() ? 3 : IsP10Variant ? 3432 2 : Subtarget.hasP9Vector() ? 3433 1 : 0; 3434 } 3435 3436 ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3437 return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3438 } 3439 3440 ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3441 return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3442 } 3443 3444 // This opt tries to convert the following imm form to an index form to save an 3445 // add for stack variables. 3446 // Return false if no such pattern found. 3447 // 3448 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3449 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3450 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3451 // 3452 // can be converted to: 3453 // 3454 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3455 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3456 // 3457 // In order to eliminate ADD instr, make sure that: 3458 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3459 // new ADDI instr and ADDI can only take int16 Imm. 3460 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3461 // between ADDI and ADD instr since its original def in ADDI will be changed 3462 // in new ADDI instr. And also there should be no new def for it between 3463 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3464 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3465 // between ADD and Imm instr since ADD instr will be eliminated. 3466 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3467 // moved to Index instr. 3468 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3469 MachineFunction *MF = MI.getParent()->getParent(); 3470 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3471 bool PostRA = !MRI->isSSA(); 3472 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3473 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3474 // frame base(OffsetAddi) are determined. 3475 if (!PostRA) 3476 return false; 3477 unsigned ToBeDeletedReg = 0; 3478 int64_t OffsetImm = 0; 3479 unsigned XFormOpcode = 0; 3480 ImmInstrInfo III; 3481 3482 // Check if Imm instr meets requirement. 3483 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3484 III)) 3485 return false; 3486 3487 bool OtherIntermediateUse = false; 3488 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3489 3490 // Exit if there is other use between ADD and Imm instr or no def found. 3491 if (OtherIntermediateUse || !ADDMI) 3492 return false; 3493 3494 // Check if ADD instr meets requirement. 3495 if (!isADDInstrEligibleForFolding(*ADDMI)) 3496 return false; 3497 3498 unsigned ScaleRegIdx = 0; 3499 int64_t OffsetAddi = 0; 3500 MachineInstr *ADDIMI = nullptr; 3501 3502 // Check if there is a valid ToBeChangedReg in ADDMI. 3503 // 1: It must be killed. 3504 // 2: Its definition must be a valid ADDIMI. 3505 // 3: It must satify int16 offset requirement. 3506 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3507 ScaleRegIdx = 2; 3508 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3509 ScaleRegIdx = 1; 3510 else 3511 return false; 3512 3513 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3514 Register ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3515 Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3516 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3517 MachineBasicBlock::iterator End) { 3518 for (auto It = ++Start; It != End; It++) 3519 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3520 return true; 3521 return false; 3522 }; 3523 3524 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3525 // treated as special zero when ScaleReg is R0/X0 register. 3526 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3527 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3528 return false; 3529 3530 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3531 // and Imm Instr. 3532 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3533 return false; 3534 3535 // Now start to do the transformation. 3536 LLVM_DEBUG(dbgs() << "Replace instruction: " 3537 << "\n"); 3538 LLVM_DEBUG(ADDIMI->dump()); 3539 LLVM_DEBUG(ADDMI->dump()); 3540 LLVM_DEBUG(MI.dump()); 3541 LLVM_DEBUG(dbgs() << "with: " 3542 << "\n"); 3543 3544 // Update ADDI instr. 3545 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3546 3547 // Update Imm instr. 3548 MI.setDesc(get(XFormOpcode)); 3549 MI.getOperand(III.ImmOpNo) 3550 .ChangeToRegister(ScaleReg, false, false, 3551 ADDMI->getOperand(ScaleRegIdx).isKill()); 3552 3553 MI.getOperand(III.OpNoForForwarding) 3554 .ChangeToRegister(ToBeChangedReg, false, false, true); 3555 3556 // Eliminate ADD instr. 3557 ADDMI->eraseFromParent(); 3558 3559 LLVM_DEBUG(ADDIMI->dump()); 3560 LLVM_DEBUG(MI.dump()); 3561 3562 return true; 3563 } 3564 3565 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3566 int64_t &Imm) const { 3567 unsigned Opc = ADDIMI.getOpcode(); 3568 3569 // Exit if the instruction is not ADDI. 3570 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3571 return false; 3572 3573 // The operand may not necessarily be an immediate - it could be a relocation. 3574 if (!ADDIMI.getOperand(2).isImm()) 3575 return false; 3576 3577 Imm = ADDIMI.getOperand(2).getImm(); 3578 3579 return true; 3580 } 3581 3582 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3583 unsigned Opc = ADDMI.getOpcode(); 3584 3585 // Exit if the instruction is not ADD. 3586 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3587 } 3588 3589 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3590 unsigned &ToBeDeletedReg, 3591 unsigned &XFormOpcode, 3592 int64_t &OffsetImm, 3593 ImmInstrInfo &III) const { 3594 // Only handle load/store. 3595 if (!MI.mayLoadOrStore()) 3596 return false; 3597 3598 unsigned Opc = MI.getOpcode(); 3599 3600 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3601 3602 // Exit if instruction has no index form. 3603 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3604 return false; 3605 3606 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3607 if (!instrHasImmForm(XFormOpcode, 3608 PPC::isVFRegister(MI.getOperand(0).getReg()), III, true)) 3609 return false; 3610 3611 if (!III.IsSummingOperands) 3612 return false; 3613 3614 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3615 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3616 // Only support imm operands, not relocation slots or others. 3617 if (!ImmOperand.isImm()) 3618 return false; 3619 3620 assert(RegOperand.isReg() && "Instruction format is not right"); 3621 3622 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3623 if (!RegOperand.isKill()) 3624 return false; 3625 3626 ToBeDeletedReg = RegOperand.getReg(); 3627 OffsetImm = ImmOperand.getImm(); 3628 3629 return true; 3630 } 3631 3632 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3633 MachineInstr *&ADDIMI, 3634 int64_t &OffsetAddi, 3635 int64_t OffsetImm) const { 3636 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3637 MachineOperand &MO = ADDMI->getOperand(Index); 3638 3639 if (!MO.isKill()) 3640 return false; 3641 3642 bool OtherIntermediateUse = false; 3643 3644 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3645 // Currently handle only one "add + Imminstr" pair case, exit if other 3646 // intermediate use for ToBeChangedReg found. 3647 // TODO: handle the cases where there are other "add + Imminstr" pairs 3648 // with same offset in Imminstr which is like: 3649 // 3650 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3651 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3652 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3653 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3654 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3655 // 3656 // can be converted to: 3657 // 3658 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3659 // (OffsetAddi + OffsetImm) 3660 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3661 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3662 3663 if (OtherIntermediateUse || !ADDIMI) 3664 return false; 3665 // Check if ADDI instr meets requirement. 3666 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3667 return false; 3668 3669 if (isInt<16>(OffsetAddi + OffsetImm)) 3670 return true; 3671 return false; 3672 } 3673 3674 // If this instruction has an immediate form and one of its operands is a 3675 // result of a load-immediate or an add-immediate, convert it to 3676 // the immediate form if the constant is in range. 3677 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3678 SmallSet<Register, 4> &RegsToUpdate, 3679 MachineInstr **KilledDef) const { 3680 MachineFunction *MF = MI.getParent()->getParent(); 3681 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3682 bool PostRA = !MRI->isSSA(); 3683 bool SeenIntermediateUse = true; 3684 unsigned ForwardingOperand = ~0U; 3685 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3686 SeenIntermediateUse); 3687 if (!DefMI) 3688 return false; 3689 assert(ForwardingOperand < MI.getNumOperands() && 3690 "The forwarding operand needs to be valid at this point"); 3691 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3692 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3693 if (KilledDef && KillFwdDefMI) 3694 *KilledDef = DefMI; 3695 3696 // Conservatively add defs from DefMI and defs/uses from MI to the set of 3697 // registers that need their kill flags updated. 3698 for (const MachineOperand &MO : DefMI->operands()) 3699 if (MO.isReg() && MO.isDef()) 3700 RegsToUpdate.insert(MO.getReg()); 3701 for (const MachineOperand &MO : MI.operands()) 3702 if (MO.isReg()) 3703 RegsToUpdate.insert(MO.getReg()); 3704 3705 // If this is a imm instruction and its register operands is produced by ADDI, 3706 // put the imm into imm inst directly. 3707 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3708 PPC::INSTRUCTION_LIST_END && 3709 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3710 return true; 3711 3712 ImmInstrInfo III; 3713 bool IsVFReg = MI.getOperand(0).isReg() 3714 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 3715 : false; 3716 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3717 // If this is a reg+reg instruction that has a reg+imm form, 3718 // and one of the operands is produced by an add-immediate, 3719 // try to convert it. 3720 if (HasImmForm && 3721 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3722 KillFwdDefMI)) 3723 return true; 3724 3725 // If this is a reg+reg instruction that has a reg+imm form, 3726 // and one of the operands is produced by LI, convert it now. 3727 if (HasImmForm && 3728 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3729 return true; 3730 3731 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3732 // can be simpified to LI. 3733 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3734 return true; 3735 3736 return false; 3737 } 3738 3739 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3740 MachineInstr **ToErase) const { 3741 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3742 Register FoldingReg = MI.getOperand(1).getReg(); 3743 if (!FoldingReg.isVirtual()) 3744 return false; 3745 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3746 if (SrcMI->getOpcode() != PPC::RLWINM && 3747 SrcMI->getOpcode() != PPC::RLWINM_rec && 3748 SrcMI->getOpcode() != PPC::RLWINM8 && 3749 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3750 return false; 3751 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3752 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3753 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3754 "Invalid PPC::RLWINM Instruction!"); 3755 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3756 uint64_t SHMI = MI.getOperand(2).getImm(); 3757 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3758 uint64_t MBMI = MI.getOperand(3).getImm(); 3759 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3760 uint64_t MEMI = MI.getOperand(4).getImm(); 3761 3762 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3763 "Invalid PPC::RLWINM Instruction!"); 3764 // If MBMI is bigger than MEMI, we always can not get run of ones. 3765 // RotatedSrcMask non-wrap: 3766 // 0........31|32........63 3767 // RotatedSrcMask: B---E B---E 3768 // MaskMI: -----------|--E B------ 3769 // Result: ----- --- (Bad candidate) 3770 // 3771 // RotatedSrcMask wrap: 3772 // 0........31|32........63 3773 // RotatedSrcMask: --E B----|--E B---- 3774 // MaskMI: -----------|--E B------ 3775 // Result: --- -----|--- ----- (Bad candidate) 3776 // 3777 // One special case is RotatedSrcMask is a full set mask. 3778 // RotatedSrcMask full: 3779 // 0........31|32........63 3780 // RotatedSrcMask: ------EB---|-------EB--- 3781 // MaskMI: -----------|--E B------ 3782 // Result: -----------|--- ------- (Good candidate) 3783 3784 // Mark special case. 3785 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3786 3787 // For other MBMI > MEMI cases, just return. 3788 if ((MBMI > MEMI) && !SrcMaskFull) 3789 return false; 3790 3791 // Handle MBMI <= MEMI cases. 3792 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3793 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3794 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3795 // while in PowerPC ISA, lowerest bit is at index 63. 3796 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3797 3798 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3799 APInt FinalMask = RotatedSrcMask & MaskMI; 3800 uint32_t NewMB, NewME; 3801 bool Simplified = false; 3802 3803 // If final mask is 0, MI result should be 0 too. 3804 if (FinalMask.isZero()) { 3805 bool Is64Bit = 3806 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3807 Simplified = true; 3808 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3809 LLVM_DEBUG(MI.dump()); 3810 3811 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3812 // Replace MI with "LI 0" 3813 MI.removeOperand(4); 3814 MI.removeOperand(3); 3815 MI.removeOperand(2); 3816 MI.getOperand(1).ChangeToImmediate(0); 3817 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3818 } else { 3819 // Replace MI with "ANDI_rec reg, 0" 3820 MI.removeOperand(4); 3821 MI.removeOperand(3); 3822 MI.getOperand(2).setImm(0); 3823 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3824 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3825 if (SrcMI->getOperand(1).isKill()) { 3826 MI.getOperand(1).setIsKill(true); 3827 SrcMI->getOperand(1).setIsKill(false); 3828 } else 3829 // About to replace MI.getOperand(1), clear its kill flag. 3830 MI.getOperand(1).setIsKill(false); 3831 } 3832 3833 LLVM_DEBUG(dbgs() << "With: "); 3834 LLVM_DEBUG(MI.dump()); 3835 3836 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3837 NewMB <= NewME) || 3838 SrcMaskFull) { 3839 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3840 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3841 // return a 32 bit value. 3842 Simplified = true; 3843 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3844 LLVM_DEBUG(MI.dump()); 3845 3846 uint16_t NewSH = (SHSrc + SHMI) % 32; 3847 MI.getOperand(2).setImm(NewSH); 3848 // If SrcMI mask is full, no need to update MBMI and MEMI. 3849 if (!SrcMaskFull) { 3850 MI.getOperand(3).setImm(NewMB); 3851 MI.getOperand(4).setImm(NewME); 3852 } 3853 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3854 if (SrcMI->getOperand(1).isKill()) { 3855 MI.getOperand(1).setIsKill(true); 3856 SrcMI->getOperand(1).setIsKill(false); 3857 } else 3858 // About to replace MI.getOperand(1), clear its kill flag. 3859 MI.getOperand(1).setIsKill(false); 3860 3861 LLVM_DEBUG(dbgs() << "To: "); 3862 LLVM_DEBUG(MI.dump()); 3863 } 3864 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3865 !SrcMI->hasImplicitDef()) { 3866 // If FoldingReg has no non-debug use and it has no implicit def (it 3867 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3868 // Otherwise keep it. 3869 *ToErase = SrcMI; 3870 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3871 LLVM_DEBUG(SrcMI->dump()); 3872 } 3873 return Simplified; 3874 } 3875 3876 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3877 ImmInstrInfo &III, bool PostRA) const { 3878 // The vast majority of the instructions would need their operand 2 replaced 3879 // with an immediate when switching to the reg+imm form. A marked exception 3880 // are the update form loads/stores for which a constant operand 2 would need 3881 // to turn into a displacement and move operand 1 to the operand 2 position. 3882 III.ImmOpNo = 2; 3883 III.OpNoForForwarding = 2; 3884 III.ImmWidth = 16; 3885 III.ImmMustBeMultipleOf = 1; 3886 III.TruncateImmTo = 0; 3887 III.IsSummingOperands = false; 3888 switch (Opc) { 3889 default: return false; 3890 case PPC::ADD4: 3891 case PPC::ADD8: 3892 III.SignedImm = true; 3893 III.ZeroIsSpecialOrig = 0; 3894 III.ZeroIsSpecialNew = 1; 3895 III.IsCommutative = true; 3896 III.IsSummingOperands = true; 3897 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3898 break; 3899 case PPC::ADDC: 3900 case PPC::ADDC8: 3901 III.SignedImm = true; 3902 III.ZeroIsSpecialOrig = 0; 3903 III.ZeroIsSpecialNew = 0; 3904 III.IsCommutative = true; 3905 III.IsSummingOperands = true; 3906 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3907 break; 3908 case PPC::ADDC_rec: 3909 III.SignedImm = true; 3910 III.ZeroIsSpecialOrig = 0; 3911 III.ZeroIsSpecialNew = 0; 3912 III.IsCommutative = true; 3913 III.IsSummingOperands = true; 3914 III.ImmOpcode = PPC::ADDIC_rec; 3915 break; 3916 case PPC::SUBFC: 3917 case PPC::SUBFC8: 3918 III.SignedImm = true; 3919 III.ZeroIsSpecialOrig = 0; 3920 III.ZeroIsSpecialNew = 0; 3921 III.IsCommutative = false; 3922 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3923 break; 3924 case PPC::CMPW: 3925 case PPC::CMPD: 3926 III.SignedImm = true; 3927 III.ZeroIsSpecialOrig = 0; 3928 III.ZeroIsSpecialNew = 0; 3929 III.IsCommutative = false; 3930 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3931 break; 3932 case PPC::CMPLW: 3933 case PPC::CMPLD: 3934 III.SignedImm = false; 3935 III.ZeroIsSpecialOrig = 0; 3936 III.ZeroIsSpecialNew = 0; 3937 III.IsCommutative = false; 3938 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3939 break; 3940 case PPC::AND_rec: 3941 case PPC::AND8_rec: 3942 case PPC::OR: 3943 case PPC::OR8: 3944 case PPC::XOR: 3945 case PPC::XOR8: 3946 III.SignedImm = false; 3947 III.ZeroIsSpecialOrig = 0; 3948 III.ZeroIsSpecialNew = 0; 3949 III.IsCommutative = true; 3950 switch(Opc) { 3951 default: llvm_unreachable("Unknown opcode"); 3952 case PPC::AND_rec: 3953 III.ImmOpcode = PPC::ANDI_rec; 3954 break; 3955 case PPC::AND8_rec: 3956 III.ImmOpcode = PPC::ANDI8_rec; 3957 break; 3958 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3959 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3960 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3961 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3962 } 3963 break; 3964 case PPC::RLWNM: 3965 case PPC::RLWNM8: 3966 case PPC::RLWNM_rec: 3967 case PPC::RLWNM8_rec: 3968 case PPC::SLW: 3969 case PPC::SLW8: 3970 case PPC::SLW_rec: 3971 case PPC::SLW8_rec: 3972 case PPC::SRW: 3973 case PPC::SRW8: 3974 case PPC::SRW_rec: 3975 case PPC::SRW8_rec: 3976 case PPC::SRAW: 3977 case PPC::SRAW_rec: 3978 III.SignedImm = false; 3979 III.ZeroIsSpecialOrig = 0; 3980 III.ZeroIsSpecialNew = 0; 3981 III.IsCommutative = false; 3982 // This isn't actually true, but the instructions ignore any of the 3983 // upper bits, so any immediate loaded with an LI is acceptable. 3984 // This does not apply to shift right algebraic because a value 3985 // out of range will produce a -1/0. 3986 III.ImmWidth = 16; 3987 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3988 Opc == PPC::RLWNM8_rec) 3989 III.TruncateImmTo = 5; 3990 else 3991 III.TruncateImmTo = 6; 3992 switch(Opc) { 3993 default: llvm_unreachable("Unknown opcode"); 3994 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3995 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3996 case PPC::RLWNM_rec: 3997 III.ImmOpcode = PPC::RLWINM_rec; 3998 break; 3999 case PPC::RLWNM8_rec: 4000 III.ImmOpcode = PPC::RLWINM8_rec; 4001 break; 4002 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 4003 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 4004 case PPC::SLW_rec: 4005 III.ImmOpcode = PPC::RLWINM_rec; 4006 break; 4007 case PPC::SLW8_rec: 4008 III.ImmOpcode = PPC::RLWINM8_rec; 4009 break; 4010 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 4011 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 4012 case PPC::SRW_rec: 4013 III.ImmOpcode = PPC::RLWINM_rec; 4014 break; 4015 case PPC::SRW8_rec: 4016 III.ImmOpcode = PPC::RLWINM8_rec; 4017 break; 4018 case PPC::SRAW: 4019 III.ImmWidth = 5; 4020 III.TruncateImmTo = 0; 4021 III.ImmOpcode = PPC::SRAWI; 4022 break; 4023 case PPC::SRAW_rec: 4024 III.ImmWidth = 5; 4025 III.TruncateImmTo = 0; 4026 III.ImmOpcode = PPC::SRAWI_rec; 4027 break; 4028 } 4029 break; 4030 case PPC::RLDCL: 4031 case PPC::RLDCL_rec: 4032 case PPC::RLDCR: 4033 case PPC::RLDCR_rec: 4034 case PPC::SLD: 4035 case PPC::SLD_rec: 4036 case PPC::SRD: 4037 case PPC::SRD_rec: 4038 case PPC::SRAD: 4039 case PPC::SRAD_rec: 4040 III.SignedImm = false; 4041 III.ZeroIsSpecialOrig = 0; 4042 III.ZeroIsSpecialNew = 0; 4043 III.IsCommutative = false; 4044 // This isn't actually true, but the instructions ignore any of the 4045 // upper bits, so any immediate loaded with an LI is acceptable. 4046 // This does not apply to shift right algebraic because a value 4047 // out of range will produce a -1/0. 4048 III.ImmWidth = 16; 4049 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 4050 Opc == PPC::RLDCR_rec) 4051 III.TruncateImmTo = 6; 4052 else 4053 III.TruncateImmTo = 7; 4054 switch(Opc) { 4055 default: llvm_unreachable("Unknown opcode"); 4056 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4057 case PPC::RLDCL_rec: 4058 III.ImmOpcode = PPC::RLDICL_rec; 4059 break; 4060 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4061 case PPC::RLDCR_rec: 4062 III.ImmOpcode = PPC::RLDICR_rec; 4063 break; 4064 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4065 case PPC::SLD_rec: 4066 III.ImmOpcode = PPC::RLDICR_rec; 4067 break; 4068 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4069 case PPC::SRD_rec: 4070 III.ImmOpcode = PPC::RLDICL_rec; 4071 break; 4072 case PPC::SRAD: 4073 III.ImmWidth = 6; 4074 III.TruncateImmTo = 0; 4075 III.ImmOpcode = PPC::SRADI; 4076 break; 4077 case PPC::SRAD_rec: 4078 III.ImmWidth = 6; 4079 III.TruncateImmTo = 0; 4080 III.ImmOpcode = PPC::SRADI_rec; 4081 break; 4082 } 4083 break; 4084 // Loads and stores: 4085 case PPC::LBZX: 4086 case PPC::LBZX8: 4087 case PPC::LHZX: 4088 case PPC::LHZX8: 4089 case PPC::LHAX: 4090 case PPC::LHAX8: 4091 case PPC::LWZX: 4092 case PPC::LWZX8: 4093 case PPC::LWAX: 4094 case PPC::LDX: 4095 case PPC::LFSX: 4096 case PPC::LFDX: 4097 case PPC::STBX: 4098 case PPC::STBX8: 4099 case PPC::STHX: 4100 case PPC::STHX8: 4101 case PPC::STWX: 4102 case PPC::STWX8: 4103 case PPC::STDX: 4104 case PPC::STFSX: 4105 case PPC::STFDX: 4106 III.SignedImm = true; 4107 III.ZeroIsSpecialOrig = 1; 4108 III.ZeroIsSpecialNew = 2; 4109 III.IsCommutative = true; 4110 III.IsSummingOperands = true; 4111 III.ImmOpNo = 1; 4112 III.OpNoForForwarding = 2; 4113 switch(Opc) { 4114 default: llvm_unreachable("Unknown opcode"); 4115 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4116 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4117 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4118 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4119 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4120 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4121 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4122 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4123 case PPC::LWAX: 4124 III.ImmOpcode = PPC::LWA; 4125 III.ImmMustBeMultipleOf = 4; 4126 break; 4127 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4128 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4129 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4130 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4131 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4132 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4133 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4134 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4135 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4136 case PPC::STDX: 4137 III.ImmOpcode = PPC::STD; 4138 III.ImmMustBeMultipleOf = 4; 4139 break; 4140 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4141 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4142 } 4143 break; 4144 case PPC::LBZUX: 4145 case PPC::LBZUX8: 4146 case PPC::LHZUX: 4147 case PPC::LHZUX8: 4148 case PPC::LHAUX: 4149 case PPC::LHAUX8: 4150 case PPC::LWZUX: 4151 case PPC::LWZUX8: 4152 case PPC::LDUX: 4153 case PPC::LFSUX: 4154 case PPC::LFDUX: 4155 case PPC::STBUX: 4156 case PPC::STBUX8: 4157 case PPC::STHUX: 4158 case PPC::STHUX8: 4159 case PPC::STWUX: 4160 case PPC::STWUX8: 4161 case PPC::STDUX: 4162 case PPC::STFSUX: 4163 case PPC::STFDUX: 4164 III.SignedImm = true; 4165 III.ZeroIsSpecialOrig = 2; 4166 III.ZeroIsSpecialNew = 3; 4167 III.IsCommutative = false; 4168 III.IsSummingOperands = true; 4169 III.ImmOpNo = 2; 4170 III.OpNoForForwarding = 3; 4171 switch(Opc) { 4172 default: llvm_unreachable("Unknown opcode"); 4173 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4174 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4175 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4176 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4177 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4178 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4179 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4180 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4181 case PPC::LDUX: 4182 III.ImmOpcode = PPC::LDU; 4183 III.ImmMustBeMultipleOf = 4; 4184 break; 4185 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4186 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4187 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4188 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4189 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4190 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4191 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4192 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4193 case PPC::STDUX: 4194 III.ImmOpcode = PPC::STDU; 4195 III.ImmMustBeMultipleOf = 4; 4196 break; 4197 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4198 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4199 } 4200 break; 4201 // Power9 and up only. For some of these, the X-Form version has access to all 4202 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4203 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4204 // into or stored from is one of the VR registers. 4205 case PPC::LXVX: 4206 case PPC::LXSSPX: 4207 case PPC::LXSDX: 4208 case PPC::STXVX: 4209 case PPC::STXSSPX: 4210 case PPC::STXSDX: 4211 case PPC::XFLOADf32: 4212 case PPC::XFLOADf64: 4213 case PPC::XFSTOREf32: 4214 case PPC::XFSTOREf64: 4215 if (!Subtarget.hasP9Vector()) 4216 return false; 4217 III.SignedImm = true; 4218 III.ZeroIsSpecialOrig = 1; 4219 III.ZeroIsSpecialNew = 2; 4220 III.IsCommutative = true; 4221 III.IsSummingOperands = true; 4222 III.ImmOpNo = 1; 4223 III.OpNoForForwarding = 2; 4224 III.ImmMustBeMultipleOf = 4; 4225 switch(Opc) { 4226 default: llvm_unreachable("Unknown opcode"); 4227 case PPC::LXVX: 4228 III.ImmOpcode = PPC::LXV; 4229 III.ImmMustBeMultipleOf = 16; 4230 break; 4231 case PPC::LXSSPX: 4232 if (PostRA) { 4233 if (IsVFReg) 4234 III.ImmOpcode = PPC::LXSSP; 4235 else { 4236 III.ImmOpcode = PPC::LFS; 4237 III.ImmMustBeMultipleOf = 1; 4238 } 4239 break; 4240 } 4241 [[fallthrough]]; 4242 case PPC::XFLOADf32: 4243 III.ImmOpcode = PPC::DFLOADf32; 4244 break; 4245 case PPC::LXSDX: 4246 if (PostRA) { 4247 if (IsVFReg) 4248 III.ImmOpcode = PPC::LXSD; 4249 else { 4250 III.ImmOpcode = PPC::LFD; 4251 III.ImmMustBeMultipleOf = 1; 4252 } 4253 break; 4254 } 4255 [[fallthrough]]; 4256 case PPC::XFLOADf64: 4257 III.ImmOpcode = PPC::DFLOADf64; 4258 break; 4259 case PPC::STXVX: 4260 III.ImmOpcode = PPC::STXV; 4261 III.ImmMustBeMultipleOf = 16; 4262 break; 4263 case PPC::STXSSPX: 4264 if (PostRA) { 4265 if (IsVFReg) 4266 III.ImmOpcode = PPC::STXSSP; 4267 else { 4268 III.ImmOpcode = PPC::STFS; 4269 III.ImmMustBeMultipleOf = 1; 4270 } 4271 break; 4272 } 4273 [[fallthrough]]; 4274 case PPC::XFSTOREf32: 4275 III.ImmOpcode = PPC::DFSTOREf32; 4276 break; 4277 case PPC::STXSDX: 4278 if (PostRA) { 4279 if (IsVFReg) 4280 III.ImmOpcode = PPC::STXSD; 4281 else { 4282 III.ImmOpcode = PPC::STFD; 4283 III.ImmMustBeMultipleOf = 1; 4284 } 4285 break; 4286 } 4287 [[fallthrough]]; 4288 case PPC::XFSTOREf64: 4289 III.ImmOpcode = PPC::DFSTOREf64; 4290 break; 4291 } 4292 break; 4293 } 4294 return true; 4295 } 4296 4297 // Utility function for swaping two arbitrary operands of an instruction. 4298 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4299 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4300 4301 unsigned MaxOp = std::max(Op1, Op2); 4302 unsigned MinOp = std::min(Op1, Op2); 4303 MachineOperand MOp1 = MI.getOperand(MinOp); 4304 MachineOperand MOp2 = MI.getOperand(MaxOp); 4305 MI.removeOperand(std::max(Op1, Op2)); 4306 MI.removeOperand(std::min(Op1, Op2)); 4307 4308 // If the operands we are swapping are the two at the end (the common case) 4309 // we can just remove both and add them in the opposite order. 4310 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4311 MI.addOperand(MOp2); 4312 MI.addOperand(MOp1); 4313 } else { 4314 // Store all operands in a temporary vector, remove them and re-add in the 4315 // right order. 4316 SmallVector<MachineOperand, 2> MOps; 4317 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4318 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4319 MOps.push_back(MI.getOperand(i)); 4320 MI.removeOperand(i); 4321 } 4322 // MOp2 needs to be added next. 4323 MI.addOperand(MOp2); 4324 // Now add the rest. 4325 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4326 if (i == MaxOp) 4327 MI.addOperand(MOp1); 4328 else { 4329 MI.addOperand(MOps.back()); 4330 MOps.pop_back(); 4331 } 4332 } 4333 } 4334 } 4335 4336 // Check if the 'MI' that has the index OpNoForForwarding 4337 // meets the requirement described in the ImmInstrInfo. 4338 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4339 const ImmInstrInfo &III, 4340 unsigned OpNoForForwarding 4341 ) const { 4342 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4343 // would not work pre-RA, we can only do the check post RA. 4344 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4345 if (MRI.isSSA()) 4346 return false; 4347 4348 // Cannot do the transform if MI isn't summing the operands. 4349 if (!III.IsSummingOperands) 4350 return false; 4351 4352 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4353 if (!III.ZeroIsSpecialOrig) 4354 return false; 4355 4356 // We cannot do the transform if the operand we are trying to replace 4357 // isn't the same as the operand the instruction allows. 4358 if (OpNoForForwarding != III.OpNoForForwarding) 4359 return false; 4360 4361 // Check if the instruction we are trying to transform really has 4362 // the special zero register as its operand. 4363 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4364 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4365 return false; 4366 4367 // This machine instruction is convertible if it is, 4368 // 1. summing the operands. 4369 // 2. one of the operands is special zero register. 4370 // 3. the operand we are trying to replace is allowed by the MI. 4371 return true; 4372 } 4373 4374 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4375 // accordingly. 4376 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4377 const ImmInstrInfo &III, 4378 MachineOperand *&ImmMO, 4379 MachineOperand *&RegMO) const { 4380 unsigned Opc = DefMI.getOpcode(); 4381 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4382 return false; 4383 4384 assert(DefMI.getNumOperands() >= 3 && 4385 "Add inst must have at least three operands"); 4386 RegMO = &DefMI.getOperand(1); 4387 ImmMO = &DefMI.getOperand(2); 4388 4389 // Before RA, ADDI first operand could be a frame index. 4390 if (!RegMO->isReg()) 4391 return false; 4392 4393 // This DefMI is elgible for forwarding if it is: 4394 // 1. add inst 4395 // 2. one of the operands is Imm/CPI/Global. 4396 return isAnImmediateOperand(*ImmMO); 4397 } 4398 4399 bool PPCInstrInfo::isRegElgibleForForwarding( 4400 const MachineOperand &RegMO, const MachineInstr &DefMI, 4401 const MachineInstr &MI, bool KillDefMI, 4402 bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const { 4403 // x = addi y, imm 4404 // ... 4405 // z = lfdx 0, x -> z = lfd imm(y) 4406 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4407 // of "y" between the DEF of "x" and "z". 4408 // The query is only valid post RA. 4409 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4410 if (MRI.isSSA()) 4411 return false; 4412 4413 Register Reg = RegMO.getReg(); 4414 4415 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4416 MachineBasicBlock::const_reverse_iterator It = MI; 4417 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4418 It++; 4419 for (; It != E; ++It) { 4420 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4421 return false; 4422 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4423 IsFwdFeederRegKilled = true; 4424 if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4425 SeenIntermediateUse = true; 4426 // Made it to DefMI without encountering a clobber. 4427 if ((&*It) == &DefMI) 4428 break; 4429 } 4430 assert((&*It) == &DefMI && "DefMI is missing"); 4431 4432 // If DefMI also defines the register to be forwarded, we can only forward it 4433 // if DefMI is being erased. 4434 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4435 return KillDefMI; 4436 4437 return true; 4438 } 4439 4440 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4441 const MachineInstr &DefMI, 4442 const ImmInstrInfo &III, 4443 int64_t &Imm, 4444 int64_t BaseImm) const { 4445 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4446 if (DefMI.getOpcode() == PPC::ADDItocL) { 4447 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4448 // However, we know that, it is 16-bit width, and has the alignment of 4. 4449 // Check if the instruction met the requirement. 4450 if (III.ImmMustBeMultipleOf > 4 || 4451 III.TruncateImmTo || III.ImmWidth != 16) 4452 return false; 4453 4454 // Going from XForm to DForm loads means that the displacement needs to be 4455 // not just an immediate but also a multiple of 4, or 16 depending on the 4456 // load. A DForm load cannot be represented if it is a multiple of say 2. 4457 // XForm loads do not have this restriction. 4458 if (ImmMO.isGlobal()) { 4459 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4460 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4461 return false; 4462 } 4463 4464 return true; 4465 } 4466 4467 if (ImmMO.isImm()) { 4468 // It is Imm, we need to check if the Imm fit the range. 4469 // Sign-extend to 64-bits. 4470 // DefMI may be folded with another imm form instruction, the result Imm is 4471 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4472 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4473 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4474 return false; 4475 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4476 return false; 4477 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4478 4479 if (Imm % III.ImmMustBeMultipleOf) 4480 return false; 4481 if (III.TruncateImmTo) 4482 Imm &= ((1 << III.TruncateImmTo) - 1); 4483 } 4484 else 4485 return false; 4486 4487 // This ImmMO is forwarded if it meets the requriement describle 4488 // in ImmInstrInfo 4489 return true; 4490 } 4491 4492 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4493 unsigned OpNoForForwarding, 4494 MachineInstr **KilledDef) const { 4495 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4496 !DefMI.getOperand(1).isImm()) 4497 return false; 4498 4499 MachineFunction *MF = MI.getParent()->getParent(); 4500 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4501 bool PostRA = !MRI->isSSA(); 4502 4503 int64_t Immediate = DefMI.getOperand(1).getImm(); 4504 // Sign-extend to 64-bits. 4505 int64_t SExtImm = SignExtend64<16>(Immediate); 4506 4507 bool ReplaceWithLI = false; 4508 bool Is64BitLI = false; 4509 int64_t NewImm = 0; 4510 bool SetCR = false; 4511 unsigned Opc = MI.getOpcode(); 4512 switch (Opc) { 4513 default: 4514 return false; 4515 4516 // FIXME: Any branches conditional on such a comparison can be made 4517 // unconditional. At this time, this happens too infrequently to be worth 4518 // the implementation effort, but if that ever changes, we could convert 4519 // such a pattern here. 4520 case PPC::CMPWI: 4521 case PPC::CMPLWI: 4522 case PPC::CMPDI: 4523 case PPC::CMPLDI: { 4524 // Doing this post-RA would require dataflow analysis to reliably find uses 4525 // of the CR register set by the compare. 4526 // No need to fixup killed/dead flag since this transformation is only valid 4527 // before RA. 4528 if (PostRA) 4529 return false; 4530 // If a compare-immediate is fed by an immediate and is itself an input of 4531 // an ISEL (the most common case) into a COPY of the correct register. 4532 bool Changed = false; 4533 Register DefReg = MI.getOperand(0).getReg(); 4534 int64_t Comparand = MI.getOperand(2).getImm(); 4535 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4536 ? (Comparand | 0xFFFFFFFFFFFF0000) 4537 : Comparand; 4538 4539 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4540 unsigned UseOpc = CompareUseMI.getOpcode(); 4541 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4542 continue; 4543 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4544 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4545 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4546 unsigned RegToCopy = 4547 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4548 if (RegToCopy == PPC::NoRegister) 4549 continue; 4550 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4551 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4552 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4553 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4554 CompareUseMI.removeOperand(3); 4555 CompareUseMI.removeOperand(2); 4556 continue; 4557 } 4558 LLVM_DEBUG( 4559 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4560 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4561 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4562 // Convert to copy and remove unneeded operands. 4563 CompareUseMI.setDesc(get(PPC::COPY)); 4564 CompareUseMI.removeOperand(3); 4565 CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1); 4566 CmpIselsConverted++; 4567 Changed = true; 4568 LLVM_DEBUG(CompareUseMI.dump()); 4569 } 4570 if (Changed) 4571 return true; 4572 // This may end up incremented multiple times since this function is called 4573 // during a fixed-point transformation, but it is only meant to indicate the 4574 // presence of this opportunity. 4575 MissedConvertibleImmediateInstrs++; 4576 return false; 4577 } 4578 4579 // Immediate forms - may simply be convertable to an LI. 4580 case PPC::ADDI: 4581 case PPC::ADDI8: { 4582 // Does the sum fit in a 16-bit signed field? 4583 int64_t Addend = MI.getOperand(2).getImm(); 4584 if (isInt<16>(Addend + SExtImm)) { 4585 ReplaceWithLI = true; 4586 Is64BitLI = Opc == PPC::ADDI8; 4587 NewImm = Addend + SExtImm; 4588 break; 4589 } 4590 return false; 4591 } 4592 case PPC::SUBFIC: 4593 case PPC::SUBFIC8: { 4594 // Only transform this if the CARRY implicit operand is dead. 4595 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4596 return false; 4597 int64_t Minuend = MI.getOperand(2).getImm(); 4598 if (isInt<16>(Minuend - SExtImm)) { 4599 ReplaceWithLI = true; 4600 Is64BitLI = Opc == PPC::SUBFIC8; 4601 NewImm = Minuend - SExtImm; 4602 break; 4603 } 4604 return false; 4605 } 4606 case PPC::RLDICL: 4607 case PPC::RLDICL_rec: 4608 case PPC::RLDICL_32: 4609 case PPC::RLDICL_32_64: { 4610 // Use APInt's rotate function. 4611 int64_t SH = MI.getOperand(2).getImm(); 4612 int64_t MB = MI.getOperand(3).getImm(); 4613 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4614 SExtImm, true); 4615 InVal = InVal.rotl(SH); 4616 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4617 InVal &= Mask; 4618 // Can't replace negative values with an LI as that will sign-extend 4619 // and not clear the left bits. If we're setting the CR bit, we will use 4620 // ANDI_rec which won't sign extend, so that's safe. 4621 if (isUInt<15>(InVal.getSExtValue()) || 4622 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4623 ReplaceWithLI = true; 4624 Is64BitLI = Opc != PPC::RLDICL_32; 4625 NewImm = InVal.getSExtValue(); 4626 SetCR = Opc == PPC::RLDICL_rec; 4627 break; 4628 } 4629 return false; 4630 } 4631 case PPC::RLWINM: 4632 case PPC::RLWINM8: 4633 case PPC::RLWINM_rec: 4634 case PPC::RLWINM8_rec: { 4635 int64_t SH = MI.getOperand(2).getImm(); 4636 int64_t MB = MI.getOperand(3).getImm(); 4637 int64_t ME = MI.getOperand(4).getImm(); 4638 APInt InVal(32, SExtImm, true); 4639 InVal = InVal.rotl(SH); 4640 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4641 InVal &= Mask; 4642 // Can't replace negative values with an LI as that will sign-extend 4643 // and not clear the left bits. If we're setting the CR bit, we will use 4644 // ANDI_rec which won't sign extend, so that's safe. 4645 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4646 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4647 isUInt<16>(InVal.getSExtValue())); 4648 if (ValueFits) { 4649 ReplaceWithLI = true; 4650 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4651 NewImm = InVal.getSExtValue(); 4652 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4653 break; 4654 } 4655 return false; 4656 } 4657 case PPC::ORI: 4658 case PPC::ORI8: 4659 case PPC::XORI: 4660 case PPC::XORI8: { 4661 int64_t LogicalImm = MI.getOperand(2).getImm(); 4662 int64_t Result = 0; 4663 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4664 Result = LogicalImm | SExtImm; 4665 else 4666 Result = LogicalImm ^ SExtImm; 4667 if (isInt<16>(Result)) { 4668 ReplaceWithLI = true; 4669 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4670 NewImm = Result; 4671 break; 4672 } 4673 return false; 4674 } 4675 } 4676 4677 if (ReplaceWithLI) { 4678 // We need to be careful with CR-setting instructions we're replacing. 4679 if (SetCR) { 4680 // We don't know anything about uses when we're out of SSA, so only 4681 // replace if the new immediate will be reproduced. 4682 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4683 if (PostRA && ImmChanged) 4684 return false; 4685 4686 if (!PostRA) { 4687 // If the defining load-immediate has no other uses, we can just replace 4688 // the immediate with the new immediate. 4689 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4690 DefMI.getOperand(1).setImm(NewImm); 4691 4692 // If we're not using the GPR result of the CR-setting instruction, we 4693 // just need to and with zero/non-zero depending on the new immediate. 4694 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4695 if (NewImm) { 4696 assert(Immediate && "Transformation converted zero to non-zero?"); 4697 NewImm = Immediate; 4698 } 4699 } else if (ImmChanged) 4700 return false; 4701 } 4702 } 4703 4704 LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n"); 4705 LLVM_DEBUG(MI.dump()); 4706 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4707 LLVM_DEBUG(DefMI.dump()); 4708 LoadImmediateInfo LII; 4709 LII.Imm = NewImm; 4710 LII.Is64Bit = Is64BitLI; 4711 LII.SetCR = SetCR; 4712 // If we're setting the CR, the original load-immediate must be kept (as an 4713 // operand to ANDI_rec/ANDI8_rec). 4714 if (KilledDef && SetCR) 4715 *KilledDef = nullptr; 4716 replaceInstrWithLI(MI, LII); 4717 4718 if (PostRA) 4719 recomputeLivenessFlags(*MI.getParent()); 4720 4721 LLVM_DEBUG(dbgs() << "With:\n"); 4722 LLVM_DEBUG(MI.dump()); 4723 return true; 4724 } 4725 return false; 4726 } 4727 4728 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4729 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4730 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4731 bool PostRA = !MRI->isSSA(); 4732 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4733 // for post-ra. 4734 if (PostRA) 4735 return false; 4736 4737 // Only handle load/store. 4738 if (!MI.mayLoadOrStore()) 4739 return false; 4740 4741 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4742 4743 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4744 "MI must have x-form opcode"); 4745 4746 // get Imm Form info. 4747 ImmInstrInfo III; 4748 bool IsVFReg = MI.getOperand(0).isReg() 4749 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 4750 : false; 4751 4752 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4753 return false; 4754 4755 if (!III.IsSummingOperands) 4756 return false; 4757 4758 if (OpNoForForwarding != III.OpNoForForwarding) 4759 return false; 4760 4761 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4762 if (!ImmOperandMI.isImm()) 4763 return false; 4764 4765 // Check DefMI. 4766 MachineOperand *ImmMO = nullptr; 4767 MachineOperand *RegMO = nullptr; 4768 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4769 return false; 4770 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4771 4772 // Check Imm. 4773 // Set ImmBase from imm instruction as base and get new Imm inside 4774 // isImmElgibleForForwarding. 4775 int64_t ImmBase = ImmOperandMI.getImm(); 4776 int64_t Imm = 0; 4777 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4778 return false; 4779 4780 // Do the transform 4781 LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n"); 4782 LLVM_DEBUG(MI.dump()); 4783 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4784 LLVM_DEBUG(DefMI.dump()); 4785 4786 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4787 MI.getOperand(III.ImmOpNo).setImm(Imm); 4788 4789 LLVM_DEBUG(dbgs() << "With:\n"); 4790 LLVM_DEBUG(MI.dump()); 4791 return true; 4792 } 4793 4794 // If an X-Form instruction is fed by an add-immediate and one of its operands 4795 // is the literal zero, attempt to forward the source of the add-immediate to 4796 // the corresponding D-Form instruction with the displacement coming from 4797 // the immediate being added. 4798 bool PPCInstrInfo::transformToImmFormFedByAdd( 4799 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4800 MachineInstr &DefMI, bool KillDefMI) const { 4801 // RegMO ImmMO 4802 // | | 4803 // x = addi reg, imm <----- DefMI 4804 // y = op 0 , x <----- MI 4805 // | 4806 // OpNoForForwarding 4807 // Check if the MI meet the requirement described in the III. 4808 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4809 return false; 4810 4811 // Check if the DefMI meet the requirement 4812 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4813 MachineOperand *ImmMO = nullptr; 4814 MachineOperand *RegMO = nullptr; 4815 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4816 return false; 4817 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4818 4819 // As we get the Imm operand now, we need to check if the ImmMO meet 4820 // the requirement described in the III. If yes set the Imm. 4821 int64_t Imm = 0; 4822 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4823 return false; 4824 4825 bool IsFwdFeederRegKilled = false; 4826 bool SeenIntermediateUse = false; 4827 // Check if the RegMO can be forwarded to MI. 4828 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4829 IsFwdFeederRegKilled, SeenIntermediateUse)) 4830 return false; 4831 4832 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4833 bool PostRA = !MRI.isSSA(); 4834 4835 // We know that, the MI and DefMI both meet the pattern, and 4836 // the Imm also meet the requirement with the new Imm-form. 4837 // It is safe to do the transformation now. 4838 LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n"); 4839 LLVM_DEBUG(MI.dump()); 4840 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4841 LLVM_DEBUG(DefMI.dump()); 4842 4843 // Update the base reg first. 4844 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4845 false, false, 4846 RegMO->isKill()); 4847 4848 // Then, update the imm. 4849 if (ImmMO->isImm()) { 4850 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4851 // directly. 4852 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4853 } 4854 else { 4855 // Otherwise, it is Constant Pool Index(CPI) or Global, 4856 // which is relocation in fact. We need to replace the special zero 4857 // register with ImmMO. 4858 // Before that, we need to fixup the target flags for imm. 4859 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4860 if (DefMI.getOpcode() == PPC::ADDItocL) 4861 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4862 4863 // MI didn't have the interface such as MI.setOperand(i) though 4864 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4865 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4866 // and, add the ImmMO, then, move back all the operands behind ZERO. 4867 SmallVector<MachineOperand, 2> MOps; 4868 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4869 MOps.push_back(MI.getOperand(i)); 4870 MI.removeOperand(i); 4871 } 4872 4873 // Remove the last MO in the list, which is ZERO operand in fact. 4874 MOps.pop_back(); 4875 // Add the imm operand. 4876 MI.addOperand(*ImmMO); 4877 // Now add the rest back. 4878 for (auto &MO : MOps) 4879 MI.addOperand(MO); 4880 } 4881 4882 // Update the opcode. 4883 MI.setDesc(get(III.ImmOpcode)); 4884 4885 if (PostRA) 4886 recomputeLivenessFlags(*MI.getParent()); 4887 LLVM_DEBUG(dbgs() << "With:\n"); 4888 LLVM_DEBUG(MI.dump()); 4889 4890 return true; 4891 } 4892 4893 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4894 const ImmInstrInfo &III, 4895 unsigned ConstantOpNo, 4896 MachineInstr &DefMI) const { 4897 // DefMI must be LI or LI8. 4898 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4899 !DefMI.getOperand(1).isImm()) 4900 return false; 4901 4902 // Get Imm operand and Sign-extend to 64-bits. 4903 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4904 4905 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4906 bool PostRA = !MRI.isSSA(); 4907 // Exit early if we can't convert this. 4908 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4909 return false; 4910 if (Imm % III.ImmMustBeMultipleOf) 4911 return false; 4912 if (III.TruncateImmTo) 4913 Imm &= ((1 << III.TruncateImmTo) - 1); 4914 if (III.SignedImm) { 4915 APInt ActualValue(64, Imm, true); 4916 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4917 return false; 4918 } else { 4919 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4920 if ((uint64_t)Imm > UnsignedMax) 4921 return false; 4922 } 4923 4924 // If we're post-RA, the instructions don't agree on whether register zero is 4925 // special, we can transform this as long as the register operand that will 4926 // end up in the location where zero is special isn't R0. 4927 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4928 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4929 III.ZeroIsSpecialNew + 1; 4930 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4931 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4932 // If R0 is in the operand where zero is special for the new instruction, 4933 // it is unsafe to transform if the constant operand isn't that operand. 4934 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4935 ConstantOpNo != III.ZeroIsSpecialNew) 4936 return false; 4937 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4938 ConstantOpNo != PosForOrigZero) 4939 return false; 4940 } 4941 4942 unsigned Opc = MI.getOpcode(); 4943 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4944 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4945 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4946 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4947 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4948 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4949 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4950 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4951 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4952 Opc == PPC::SRD_rec; 4953 4954 LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: "); 4955 LLVM_DEBUG(MI.dump()); 4956 LLVM_DEBUG(dbgs() << "Fed by load-immediate: "); 4957 LLVM_DEBUG(DefMI.dump()); 4958 MI.setDesc(get(III.ImmOpcode)); 4959 if (ConstantOpNo == III.OpNoForForwarding) { 4960 // Converting shifts to immediate form is a bit tricky since they may do 4961 // one of three things: 4962 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4963 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4964 // setting CR0) 4965 // 3. If the shift amount is in [1, OpSize), it's just a shift 4966 if (SpecialShift32 || SpecialShift64) { 4967 LoadImmediateInfo LII; 4968 LII.Imm = 0; 4969 LII.SetCR = SetCR; 4970 LII.Is64Bit = SpecialShift64; 4971 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4972 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4973 replaceInstrWithLI(MI, LII); 4974 // Shifts by zero don't change the value. If we don't need to set CR0, 4975 // just convert this to a COPY. Can't do this post-RA since we've already 4976 // cleaned up the copies. 4977 else if (!SetCR && ShAmt == 0 && !PostRA) { 4978 MI.removeOperand(2); 4979 MI.setDesc(get(PPC::COPY)); 4980 } else { 4981 // The 32 bit and 64 bit instructions are quite different. 4982 if (SpecialShift32) { 4983 // Left shifts use (N, 0, 31-N). 4984 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4985 // use (0, 0, 31) if N == 0. 4986 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4987 uint64_t MB = RightShift ? ShAmt : 0; 4988 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4989 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4990 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4991 .addImm(ME); 4992 } else { 4993 // Left shifts use (N, 63-N). 4994 // Right shifts use (64-N, N) if 0 < N < 64. 4995 // use (0, 0) if N == 0. 4996 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4997 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4998 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4999 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5000 } 5001 } 5002 } else 5003 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5004 } 5005 // Convert commutative instructions (switch the operands and convert the 5006 // desired one to an immediate. 5007 else if (III.IsCommutative) { 5008 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5009 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5010 } else 5011 llvm_unreachable("Should have exited early!"); 5012 5013 // For instructions for which the constant register replaces a different 5014 // operand than where the immediate goes, we need to swap them. 5015 if (III.OpNoForForwarding != III.ImmOpNo) 5016 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5017 5018 // If the special R0/X0 register index are different for original instruction 5019 // and new instruction, we need to fix up the register class in new 5020 // instruction. 5021 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5022 if (III.ZeroIsSpecialNew) { 5023 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5024 // need to fix up register class. 5025 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5026 if (RegToModify.isVirtual()) { 5027 const TargetRegisterClass *NewRC = 5028 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5029 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5030 MRI.setRegClass(RegToModify, NewRC); 5031 } 5032 } 5033 } 5034 5035 if (PostRA) 5036 recomputeLivenessFlags(*MI.getParent()); 5037 5038 LLVM_DEBUG(dbgs() << "With: "); 5039 LLVM_DEBUG(MI.dump()); 5040 LLVM_DEBUG(dbgs() << "\n"); 5041 return true; 5042 } 5043 5044 const TargetRegisterClass * 5045 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5046 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5047 return &PPC::VSRCRegClass; 5048 return RC; 5049 } 5050 5051 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5052 return PPC::getRecordFormOpcode(Opcode); 5053 } 5054 5055 static bool isOpZeroOfSubwordPreincLoad(int Opcode) { 5056 return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || 5057 Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU || 5058 Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 || 5059 Opcode == PPC::LHZUX8); 5060 } 5061 5062 // This function checks for sign extension from 32 bits to 64 bits. 5063 static bool definedBySignExtendingOp(const unsigned Reg, 5064 const MachineRegisterInfo *MRI) { 5065 if (!Register::isVirtualRegister(Reg)) 5066 return false; 5067 5068 MachineInstr *MI = MRI->getVRegDef(Reg); 5069 if (!MI) 5070 return false; 5071 5072 int Opcode = MI->getOpcode(); 5073 const PPCInstrInfo *TII = 5074 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5075 if (TII->isSExt32To64(Opcode)) 5076 return true; 5077 5078 // The first def of LBZU/LHZU is sign extended. 5079 if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg) 5080 return true; 5081 5082 // RLDICL generates sign-extended output if it clears at least 5083 // 33 bits from the left (MSB). 5084 if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33) 5085 return true; 5086 5087 // If at least one bit from left in a lower word is masked out, 5088 // all of 0 to 32-th bits of the output are cleared. 5089 // Hence the output is already sign extended. 5090 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5091 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5092 MI->getOperand(3).getImm() > 0 && 5093 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5094 return true; 5095 5096 // If the most significant bit of immediate in ANDIS is zero, 5097 // all of 0 to 32-th bits are cleared. 5098 if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) { 5099 uint16_t Imm = MI->getOperand(2).getImm(); 5100 if ((Imm & 0x8000) == 0) 5101 return true; 5102 } 5103 5104 return false; 5105 } 5106 5107 // This function checks the machine instruction that defines the input register 5108 // Reg. If that machine instruction always outputs a value that has only zeros 5109 // in the higher 32 bits then this function will return true. 5110 static bool definedByZeroExtendingOp(const unsigned Reg, 5111 const MachineRegisterInfo *MRI) { 5112 if (!Register::isVirtualRegister(Reg)) 5113 return false; 5114 5115 MachineInstr *MI = MRI->getVRegDef(Reg); 5116 if (!MI) 5117 return false; 5118 5119 int Opcode = MI->getOpcode(); 5120 const PPCInstrInfo *TII = 5121 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5122 if (TII->isZExt32To64(Opcode)) 5123 return true; 5124 5125 // The first def of LBZU/LHZU/LWZU are zero extended. 5126 if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU || 5127 Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) && 5128 MI->getOperand(0).getReg() == Reg) 5129 return true; 5130 5131 // The 16-bit immediate is sign-extended in li/lis. 5132 // If the most significant bit is zero, all higher bits are zero. 5133 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5134 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5135 int64_t Imm = MI->getOperand(1).getImm(); 5136 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5137 return true; 5138 } 5139 5140 // We have some variations of rotate-and-mask instructions 5141 // that clear higher 32-bits. 5142 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5143 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5144 Opcode == PPC::RLDICL_32_64) && 5145 MI->getOperand(3).getImm() >= 32) 5146 return true; 5147 5148 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5149 MI->getOperand(3).getImm() >= 32 && 5150 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) 5151 return true; 5152 5153 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5154 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5155 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5156 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5157 return true; 5158 5159 return false; 5160 } 5161 5162 // This function returns true if the input MachineInstr is a TOC save 5163 // instruction. 5164 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5165 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5166 return false; 5167 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5168 unsigned StackOffset = MI.getOperand(1).getImm(); 5169 Register StackReg = MI.getOperand(2).getReg(); 5170 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5171 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5172 return true; 5173 5174 return false; 5175 } 5176 5177 // We limit the max depth to track incoming values of PHIs or binary ops 5178 // (e.g. AND) to avoid excessive cost. 5179 const unsigned MAX_BINOP_DEPTH = 1; 5180 // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth 5181 // does not count all of the recursions. The parameter BinOpDepth is incremented 5182 // only when isSignOrZeroExtended calls itself more than once. This is done to 5183 // prevent expontential recursion. There is no parameter to track linear 5184 // recursion. 5185 std::pair<bool, bool> 5186 PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg, 5187 const unsigned BinOpDepth, 5188 const MachineRegisterInfo *MRI) const { 5189 if (!Register::isVirtualRegister(Reg)) 5190 return std::pair<bool, bool>(false, false); 5191 5192 MachineInstr *MI = MRI->getVRegDef(Reg); 5193 if (!MI) 5194 return std::pair<bool, bool>(false, false); 5195 5196 bool IsSExt = definedBySignExtendingOp(Reg, MRI); 5197 bool IsZExt = definedByZeroExtendingOp(Reg, MRI); 5198 5199 // If we know the instruction always returns sign- and zero-extended result, 5200 // return here. 5201 if (IsSExt && IsZExt) 5202 return std::pair<bool, bool>(IsSExt, IsZExt); 5203 5204 switch (MI->getOpcode()) { 5205 case PPC::COPY: { 5206 Register SrcReg = MI->getOperand(1).getReg(); 5207 5208 // In both ELFv1 and v2 ABI, method parameters and the return value 5209 // are sign- or zero-extended. 5210 const MachineFunction *MF = MI->getMF(); 5211 5212 if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5213 // If this is a copy from another register, we recursively check source. 5214 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5215 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5216 SrcExt.second || IsZExt); 5217 } 5218 5219 // From here on everything is SVR4ABI 5220 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5221 // We check the ZExt/SExt flags for a method parameter. 5222 if (MI->getParent()->getBasicBlock() == 5223 &MF->getFunction().getEntryBlock()) { 5224 Register VReg = MI->getOperand(0).getReg(); 5225 if (MF->getRegInfo().isLiveIn(VReg)) { 5226 IsSExt |= FuncInfo->isLiveInSExt(VReg); 5227 IsZExt |= FuncInfo->isLiveInZExt(VReg); 5228 return std::pair<bool, bool>(IsSExt, IsZExt); 5229 } 5230 } 5231 5232 if (SrcReg != PPC::X3) { 5233 // If this is a copy from another register, we recursively check source. 5234 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5235 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5236 SrcExt.second || IsZExt); 5237 } 5238 5239 // For a method return value, we check the ZExt/SExt flags in attribute. 5240 // We assume the following code sequence for method call. 5241 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5242 // BL8_NOP @func,... 5243 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5244 // %5 = COPY %x3; G8RC:%5 5245 const MachineBasicBlock *MBB = MI->getParent(); 5246 std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt); 5247 MachineBasicBlock::const_instr_iterator II = 5248 MachineBasicBlock::const_instr_iterator(MI); 5249 if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP) 5250 return IsExtendPair; 5251 5252 const MachineInstr &CallMI = *(--II); 5253 if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal()) 5254 return IsExtendPair; 5255 5256 const Function *CalleeFn = 5257 dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal()); 5258 if (!CalleeFn) 5259 return IsExtendPair; 5260 const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5261 if (IntTy && IntTy->getBitWidth() <= 32) { 5262 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); 5263 IsSExt |= Attrs.hasAttribute(Attribute::SExt); 5264 IsZExt |= Attrs.hasAttribute(Attribute::ZExt); 5265 return std::pair<bool, bool>(IsSExt, IsZExt); 5266 } 5267 5268 return IsExtendPair; 5269 } 5270 5271 // OR, XOR with 16-bit immediate does not change the upper 48 bits. 5272 // So, we track the operand register as we do for register copy. 5273 case PPC::ORI: 5274 case PPC::XORI: 5275 case PPC::ORI8: 5276 case PPC::XORI8: { 5277 Register SrcReg = MI->getOperand(1).getReg(); 5278 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5279 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5280 SrcExt.second || IsZExt); 5281 } 5282 5283 // OR, XOR with shifted 16-bit immediate does not change the upper 5284 // 32 bits. So, we track the operand register for zero extension. 5285 // For sign extension when the MSB of the immediate is zero, we also 5286 // track the operand register since the upper 33 bits are unchanged. 5287 case PPC::ORIS: 5288 case PPC::XORIS: 5289 case PPC::ORIS8: 5290 case PPC::XORIS8: { 5291 Register SrcReg = MI->getOperand(1).getReg(); 5292 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5293 uint16_t Imm = MI->getOperand(2).getImm(); 5294 if (Imm & 0x8000) 5295 return std::pair<bool, bool>(false, SrcExt.second || IsZExt); 5296 else 5297 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5298 SrcExt.second || IsZExt); 5299 } 5300 5301 // If all incoming values are sign-/zero-extended, 5302 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5303 case PPC::OR: 5304 case PPC::OR8: 5305 case PPC::ISEL: 5306 case PPC::PHI: { 5307 if (BinOpDepth >= MAX_BINOP_DEPTH) 5308 return std::pair<bool, bool>(false, false); 5309 5310 // The input registers for PHI are operand 1, 3, ... 5311 // The input registers for others are operand 1 and 2. 5312 unsigned OperandEnd = 3, OperandStride = 1; 5313 if (MI->getOpcode() == PPC::PHI) { 5314 OperandEnd = MI->getNumOperands(); 5315 OperandStride = 2; 5316 } 5317 5318 IsSExt = true; 5319 IsZExt = true; 5320 for (unsigned I = 1; I != OperandEnd; I += OperandStride) { 5321 if (!MI->getOperand(I).isReg()) 5322 return std::pair<bool, bool>(false, false); 5323 5324 Register SrcReg = MI->getOperand(I).getReg(); 5325 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI); 5326 IsSExt &= SrcExt.first; 5327 IsZExt &= SrcExt.second; 5328 } 5329 return std::pair<bool, bool>(IsSExt, IsZExt); 5330 } 5331 5332 // If at least one of the incoming values of an AND is zero extended 5333 // then the output is also zero-extended. If both of the incoming values 5334 // are sign-extended then the output is also sign extended. 5335 case PPC::AND: 5336 case PPC::AND8: { 5337 if (BinOpDepth >= MAX_BINOP_DEPTH) 5338 return std::pair<bool, bool>(false, false); 5339 5340 Register SrcReg1 = MI->getOperand(1).getReg(); 5341 Register SrcReg2 = MI->getOperand(2).getReg(); 5342 auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI); 5343 auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI); 5344 return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first, 5345 Src1Ext.second || Src2Ext.second); 5346 } 5347 5348 default: 5349 break; 5350 } 5351 return std::pair<bool, bool>(IsSExt, IsZExt); 5352 } 5353 5354 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5355 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5356 } 5357 5358 namespace { 5359 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5360 MachineInstr *Loop, *EndLoop, *LoopCount; 5361 MachineFunction *MF; 5362 const TargetInstrInfo *TII; 5363 int64_t TripCount; 5364 5365 public: 5366 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5367 MachineInstr *LoopCount) 5368 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5369 MF(Loop->getParent()->getParent()), 5370 TII(MF->getSubtarget().getInstrInfo()) { 5371 // Inspect the Loop instruction up-front, as it may be deleted when we call 5372 // createTripCountGreaterCondition. 5373 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5374 TripCount = LoopCount->getOperand(1).getImm(); 5375 else 5376 TripCount = -1; 5377 } 5378 5379 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5380 // Only ignore the terminator. 5381 return MI == EndLoop; 5382 } 5383 5384 std::optional<bool> createTripCountGreaterCondition( 5385 int TC, MachineBasicBlock &MBB, 5386 SmallVectorImpl<MachineOperand> &Cond) override { 5387 if (TripCount == -1) { 5388 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5389 // so we don't need to generate any thing here. 5390 Cond.push_back(MachineOperand::CreateImm(0)); 5391 Cond.push_back(MachineOperand::CreateReg( 5392 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5393 true)); 5394 return {}; 5395 } 5396 5397 return TripCount > TC; 5398 } 5399 5400 void setPreheader(MachineBasicBlock *NewPreheader) override { 5401 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5402 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5403 } 5404 5405 void adjustTripCount(int TripCountAdjust) override { 5406 // If the loop trip count is a compile-time value, then just change the 5407 // value. 5408 if (LoopCount->getOpcode() == PPC::LI8 || 5409 LoopCount->getOpcode() == PPC::LI) { 5410 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5411 LoopCount->getOperand(1).setImm(TripCount); 5412 return; 5413 } 5414 5415 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5416 // so we don't need to generate any thing here. 5417 } 5418 5419 void disposed() override { 5420 Loop->eraseFromParent(); 5421 // Ensure the loop setup instruction is deleted too. 5422 LoopCount->eraseFromParent(); 5423 } 5424 }; 5425 } // namespace 5426 5427 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5428 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5429 // We really "analyze" only hardware loops right now. 5430 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5431 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5432 if (Preheader == LoopBB) 5433 Preheader = *std::next(LoopBB->pred_begin()); 5434 MachineFunction *MF = Preheader->getParent(); 5435 5436 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5437 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5438 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5439 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5440 MachineRegisterInfo &MRI = MF->getRegInfo(); 5441 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5442 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5443 } 5444 } 5445 return nullptr; 5446 } 5447 5448 MachineInstr *PPCInstrInfo::findLoopInstr( 5449 MachineBasicBlock &PreHeader, 5450 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5451 5452 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5453 5454 // The loop set-up instruction should be in preheader 5455 for (auto &I : PreHeader.instrs()) 5456 if (I.getOpcode() == LOOPi) 5457 return &I; 5458 return nullptr; 5459 } 5460 5461 // Return true if get the base operand, byte offset of an instruction and the 5462 // memory width. Width is the size of memory that is being loaded/stored. 5463 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5464 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5465 unsigned &Width, const TargetRegisterInfo *TRI) const { 5466 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5467 return false; 5468 5469 // Handle only loads/stores with base register followed by immediate offset. 5470 if (!LdSt.getOperand(1).isImm() || 5471 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5472 return false; 5473 if (!LdSt.getOperand(1).isImm() || 5474 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5475 return false; 5476 5477 if (!LdSt.hasOneMemOperand()) 5478 return false; 5479 5480 Width = (*LdSt.memoperands_begin())->getSize(); 5481 Offset = LdSt.getOperand(1).getImm(); 5482 BaseReg = &LdSt.getOperand(2); 5483 return true; 5484 } 5485 5486 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5487 const MachineInstr &MIa, const MachineInstr &MIb) const { 5488 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5489 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5490 5491 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5492 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5493 return false; 5494 5495 // Retrieve the base register, offset from the base register and width. Width 5496 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5497 // base registers are identical, and the offset of a lower memory access + 5498 // the width doesn't overlap the offset of a higher memory access, 5499 // then the memory accesses are different. 5500 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5501 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5502 int64_t OffsetA = 0, OffsetB = 0; 5503 unsigned int WidthA = 0, WidthB = 0; 5504 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5505 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5506 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5507 int LowOffset = std::min(OffsetA, OffsetB); 5508 int HighOffset = std::max(OffsetA, OffsetB); 5509 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5510 if (LowOffset + LowWidth <= HighOffset) 5511 return true; 5512 } 5513 } 5514 return false; 5515 } 5516