1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineCombinerPattern.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/PseudoSourceValue.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "ppc-instr-info" 49 50 #define GET_INSTRMAP_INFO 51 #define GET_INSTRINFO_CTOR_DTOR 52 #include "PPCGenInstrInfo.inc" 53 54 STATISTIC(NumStoreSPILLVSRRCAsVec, 55 "Number of spillvsrrc spilled to stack as vec"); 56 STATISTIC(NumStoreSPILLVSRRCAsGpr, 57 "Number of spillvsrrc spilled to stack as gpr"); 58 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 59 STATISTIC(CmpIselsConverted, 60 "Number of ISELs that depend on comparison of constants converted"); 61 STATISTIC(MissedConvertibleImmediateInstrs, 62 "Number of compare-immediate instructions fed by constants"); 63 STATISTIC(NumRcRotatesConvertedToRcAnd, 64 "Number of record-form rotates converted to record-form andi"); 65 66 static cl:: 67 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 68 cl::desc("Disable analysis for CTR loops")); 69 70 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 71 cl::desc("Disable compare instruction optimization"), cl::Hidden); 72 73 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 74 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 75 cl::Hidden); 76 77 static cl::opt<bool> 78 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 79 cl::desc("Use the old (incorrect) instruction latency calculation")); 80 81 static cl::opt<float> 82 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 83 cl::desc("register pressure factor for the transformations.")); 84 85 static cl::opt<bool> EnableFMARegPressureReduction( 86 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 87 cl::desc("enable register pressure reduce in machine combiner pass.")); 88 89 // Pin the vtable to this file. 90 void PPCInstrInfo::anchor() {} 91 92 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 93 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 94 /* CatchRetOpcode */ -1, 95 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 96 Subtarget(STI), RI(STI.getTargetMachine()) {} 97 98 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 99 /// this target when scheduling the DAG. 100 ScheduleHazardRecognizer * 101 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 102 const ScheduleDAG *DAG) const { 103 unsigned Directive = 104 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 105 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 106 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 107 const InstrItineraryData *II = 108 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 109 return new ScoreboardHazardRecognizer(II, DAG); 110 } 111 112 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 113 } 114 115 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 116 /// to use for this target when scheduling the DAG. 117 ScheduleHazardRecognizer * 118 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 119 const ScheduleDAG *DAG) const { 120 unsigned Directive = 121 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 122 123 // FIXME: Leaving this as-is until we have POWER9 scheduling info 124 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 125 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 126 127 // Most subtargets use a PPC970 recognizer. 128 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 129 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 130 assert(DAG->TII && "No InstrInfo?"); 131 132 return new PPCHazardRecognizer970(*DAG); 133 } 134 135 return new ScoreboardHazardRecognizer(II, DAG); 136 } 137 138 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 139 const MachineInstr &MI, 140 unsigned *PredCost) const { 141 if (!ItinData || UseOldLatencyCalc) 142 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 143 144 // The default implementation of getInstrLatency calls getStageLatency, but 145 // getStageLatency does not do the right thing for us. While we have 146 // itinerary, most cores are fully pipelined, and so the itineraries only 147 // express the first part of the pipeline, not every stage. Instead, we need 148 // to use the listed output operand cycle number (using operand 0 here, which 149 // is an output). 150 151 unsigned Latency = 1; 152 unsigned DefClass = MI.getDesc().getSchedClass(); 153 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 154 const MachineOperand &MO = MI.getOperand(i); 155 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 156 continue; 157 158 std::optional<unsigned> Cycle = ItinData->getOperandCycle(DefClass, i); 159 if (!Cycle) 160 continue; 161 162 Latency = std::max(Latency, *Cycle); 163 } 164 165 return Latency; 166 } 167 168 std::optional<unsigned> PPCInstrInfo::getOperandLatency( 169 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 170 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { 171 std::optional<unsigned> Latency = PPCGenInstrInfo::getOperandLatency( 172 ItinData, DefMI, DefIdx, UseMI, UseIdx); 173 174 if (!DefMI.getParent()) 175 return Latency; 176 177 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 178 Register Reg = DefMO.getReg(); 179 180 bool IsRegCR; 181 if (Reg.isVirtual()) { 182 const MachineRegisterInfo *MRI = 183 &DefMI.getParent()->getParent()->getRegInfo(); 184 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 185 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 186 } else { 187 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 188 PPC::CRBITRCRegClass.contains(Reg); 189 } 190 191 if (UseMI.isBranch() && IsRegCR) { 192 if (!Latency) 193 Latency = getInstrLatency(ItinData, DefMI); 194 195 // On some cores, there is an additional delay between writing to a condition 196 // register, and using it from a branch. 197 unsigned Directive = Subtarget.getCPUDirective(); 198 switch (Directive) { 199 default: break; 200 case PPC::DIR_7400: 201 case PPC::DIR_750: 202 case PPC::DIR_970: 203 case PPC::DIR_E5500: 204 case PPC::DIR_PWR4: 205 case PPC::DIR_PWR5: 206 case PPC::DIR_PWR5X: 207 case PPC::DIR_PWR6: 208 case PPC::DIR_PWR6X: 209 case PPC::DIR_PWR7: 210 case PPC::DIR_PWR8: 211 // FIXME: Is this needed for POWER9? 212 Latency = *Latency + 2; 213 break; 214 } 215 } 216 217 return Latency; 218 } 219 220 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 221 uint32_t Flags) const { 222 MI.setFlags(Flags); 223 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 MI.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies(>=5) (compared to other operations, such as 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, 234 bool Invert) const { 235 if (Invert) 236 return false; 237 switch (Inst.getOpcode()) { 238 // Floating point: 239 // FP Add: 240 case PPC::FADD: 241 case PPC::FADDS: 242 // FP Multiply: 243 case PPC::FMUL: 244 case PPC::FMULS: 245 // Altivec Add: 246 case PPC::VADDFP: 247 // VSX Add: 248 case PPC::XSADDDP: 249 case PPC::XVADDDP: 250 case PPC::XVADDSP: 251 case PPC::XSADDSP: 252 // VSX Multiply: 253 case PPC::XSMULDP: 254 case PPC::XVMULDP: 255 case PPC::XVMULSP: 256 case PPC::XSMULSP: 257 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 258 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 259 // Fixed point: 260 // Multiply: 261 case PPC::MULHD: 262 case PPC::MULLD: 263 case PPC::MULHW: 264 case PPC::MULLW: 265 return true; 266 default: 267 return false; 268 } 269 } 270 271 #define InfoArrayIdxFMAInst 0 272 #define InfoArrayIdxFAddInst 1 273 #define InfoArrayIdxFMULInst 2 274 #define InfoArrayIdxAddOpIdx 3 275 #define InfoArrayIdxMULOpIdx 4 276 #define InfoArrayIdxFSubInst 5 277 // Array keeps info for FMA instructions: 278 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 279 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 280 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 281 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 282 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 283 // second MUL operand index is plus 1; 284 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 285 static const uint16_t FMAOpIdxInfo[][6] = { 286 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 287 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 288 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 289 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 290 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 291 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 292 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 293 294 // Check if an opcode is a FMA instruction. If it is, return the index in array 295 // FMAOpIdxInfo. Otherwise, return -1. 296 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 297 for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++) 298 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 299 return I; 300 return -1; 301 } 302 303 // On PowerPC target, we have two kinds of patterns related to FMA: 304 // 1: Improve ILP. 305 // Try to reassociate FMA chains like below: 306 // 307 // Pattern 1: 308 // A = FADD X, Y (Leaf) 309 // B = FMA A, M21, M22 (Prev) 310 // C = FMA B, M31, M32 (Root) 311 // --> 312 // A = FMA X, M21, M22 313 // B = FMA Y, M31, M32 314 // C = FADD A, B 315 // 316 // Pattern 2: 317 // A = FMA X, M11, M12 (Leaf) 318 // B = FMA A, M21, M22 (Prev) 319 // C = FMA B, M31, M32 (Root) 320 // --> 321 // A = FMUL M11, M12 322 // B = FMA X, M21, M22 323 // D = FMA A, M31, M32 324 // C = FADD B, D 325 // 326 // breaking the dependency between A and B, allowing FMA to be executed in 327 // parallel (or back-to-back in a pipeline) instead of depending on each other. 328 // 329 // 2: Reduce register pressure. 330 // Try to reassociate FMA with FSUB and a constant like below: 331 // C is a floating point const. 332 // 333 // Pattern 1: 334 // A = FSUB X, Y (Leaf) 335 // D = FMA B, C, A (Root) 336 // --> 337 // A = FMA B, Y, -C 338 // D = FMA A, X, C 339 // 340 // Pattern 2: 341 // A = FSUB X, Y (Leaf) 342 // D = FMA B, A, C (Root) 343 // --> 344 // A = FMA B, Y, -C 345 // D = FMA A, X, C 346 // 347 // Before the transformation, A must be assigned with different hardware 348 // register with D. After the transformation, A and D must be assigned with 349 // same hardware register due to TIE attribute of FMA instructions. 350 // 351 bool PPCInstrInfo::getFMAPatterns(MachineInstr &Root, 352 SmallVectorImpl<unsigned> &Patterns, 353 bool DoRegPressureReduce) const { 354 MachineBasicBlock *MBB = Root.getParent(); 355 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 356 const TargetRegisterInfo *TRI = &getRegisterInfo(); 357 358 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 359 for (const auto &MO : Instr.explicit_operands()) 360 if (!(MO.isReg() && MO.getReg().isVirtual())) 361 return false; 362 return true; 363 }; 364 365 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 366 unsigned OpType) { 367 if (Instr.getOpcode() != 368 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 369 return false; 370 371 // Instruction can be reassociated. 372 // fast math flags may prohibit reassociation. 373 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 374 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 375 return false; 376 377 // Instruction operands are virtual registers for reassociation. 378 if (!IsAllOpsVirtualReg(Instr)) 379 return false; 380 381 // For register pressure reassociation, the FSub must have only one use as 382 // we want to delete the sub to save its def. 383 if (OpType == InfoArrayIdxFSubInst && 384 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 385 return false; 386 387 return true; 388 }; 389 390 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 391 int16_t &MulOpIdx, bool IsLeaf) { 392 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 393 if (Idx < 0) 394 return false; 395 396 // Instruction can be reassociated. 397 // fast math flags may prohibit reassociation. 398 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 399 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 400 return false; 401 402 // Instruction operands are virtual registers for reassociation. 403 if (!IsAllOpsVirtualReg(Instr)) 404 return false; 405 406 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 407 if (IsLeaf) 408 return true; 409 410 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 411 412 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 413 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 414 // If 'add' operand's def is not in current block, don't do ILP related opt. 415 if (!MIAdd || MIAdd->getParent() != MBB) 416 return false; 417 418 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 419 // as this fma will be changed later. 420 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 421 }; 422 423 int16_t AddOpIdx = -1; 424 int16_t MulOpIdx = -1; 425 426 bool IsUsedOnceL = false; 427 bool IsUsedOnceR = false; 428 MachineInstr *MULInstrL = nullptr; 429 MachineInstr *MULInstrR = nullptr; 430 431 auto IsRPReductionCandidate = [&]() { 432 // Currently, we only support float and double. 433 // FIXME: add support for other types. 434 unsigned Opcode = Root.getOpcode(); 435 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 436 return false; 437 438 // Root must be a valid FMA like instruction. 439 // Treat it as leaf as we don't care its add operand. 440 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 441 assert((MulOpIdx >= 0) && "mul operand index not right!"); 442 Register MULRegL = TRI->lookThruSingleUseCopyChain( 443 Root.getOperand(MulOpIdx).getReg(), MRI); 444 Register MULRegR = TRI->lookThruSingleUseCopyChain( 445 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 446 if (!MULRegL && !MULRegR) 447 return false; 448 449 if (MULRegL && !MULRegR) { 450 MULRegR = 451 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 452 IsUsedOnceL = true; 453 } else if (!MULRegL && MULRegR) { 454 MULRegL = 455 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 456 IsUsedOnceR = true; 457 } else { 458 IsUsedOnceL = true; 459 IsUsedOnceR = true; 460 } 461 462 if (!MULRegL.isVirtual() || !MULRegR.isVirtual()) 463 return false; 464 465 MULInstrL = MRI->getVRegDef(MULRegL); 466 MULInstrR = MRI->getVRegDef(MULRegR); 467 return true; 468 } 469 return false; 470 }; 471 472 // Register pressure fma reassociation patterns. 473 if (DoRegPressureReduce && IsRPReductionCandidate()) { 474 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 475 // Register pressure pattern 1 476 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 477 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 478 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 479 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BCA); 480 return true; 481 } 482 483 // Register pressure pattern 2 484 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 485 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 486 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 487 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BAC); 488 return true; 489 } 490 } 491 492 // ILP fma reassociation patterns. 493 // Root must be a valid FMA like instruction. 494 AddOpIdx = -1; 495 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 496 return false; 497 498 assert((AddOpIdx >= 0) && "add operand index not right!"); 499 500 Register RegB = Root.getOperand(AddOpIdx).getReg(); 501 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 502 503 // Prev must be a valid FMA like instruction. 504 AddOpIdx = -1; 505 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 506 return false; 507 508 assert((AddOpIdx >= 0) && "add operand index not right!"); 509 510 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 511 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 512 AddOpIdx = -1; 513 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 514 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM); 515 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 516 return true; 517 } 518 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 519 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM); 520 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 521 return true; 522 } 523 return false; 524 } 525 526 void PPCInstrInfo::finalizeInsInstrs( 527 MachineInstr &Root, unsigned &Pattern, 528 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 529 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 530 531 MachineFunction *MF = Root.getMF(); 532 MachineRegisterInfo *MRI = &MF->getRegInfo(); 533 const TargetRegisterInfo *TRI = &getRegisterInfo(); 534 MachineConstantPool *MCP = MF->getConstantPool(); 535 536 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 537 if (Idx < 0) 538 return; 539 540 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 541 542 // For now we only need to fix up placeholder for register pressure reduce 543 // patterns. 544 Register ConstReg = 0; 545 switch (Pattern) { 546 case PPCMachineCombinerPattern::REASSOC_XY_BCA: 547 ConstReg = 548 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 549 break; 550 case PPCMachineCombinerPattern::REASSOC_XY_BAC: 551 ConstReg = 552 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 553 break; 554 default: 555 // Not register pressure reduce patterns. 556 return; 557 } 558 559 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 560 // Get const value from const pool. 561 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 562 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 563 564 // Get negative fp const. 565 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 566 F1.changeSign(); 567 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 568 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 569 570 // Put negative fp const into constant pool. 571 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 572 573 MachineOperand *Placeholder = nullptr; 574 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 575 for (auto *Inst : InsInstrs) { 576 for (MachineOperand &Operand : Inst->explicit_operands()) { 577 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 578 if (Operand.getReg() == PPC::ZERO8) { 579 Placeholder = &Operand; 580 break; 581 } 582 } 583 } 584 585 assert(Placeholder && "Placeholder does not exist!"); 586 587 // Generate instructions to load the const fp from constant pool. 588 // We only support PPC64 and medium code model. 589 Register LoadNewConst = 590 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 591 592 // Fill the placeholder with the new load from constant pool. 593 Placeholder->setReg(LoadNewConst); 594 } 595 596 bool PPCInstrInfo::shouldReduceRegisterPressure( 597 const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const { 598 599 if (!EnableFMARegPressureReduction) 600 return false; 601 602 // Currently, we only enable register pressure reducing in machine combiner 603 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 604 // support. 605 // 606 // So we need following instructions to access a TOC entry: 607 // 608 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 609 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 610 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 611 // 612 // FIXME: add more supported targets, like Small and Large code model, PPC32, 613 // AIX. 614 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 615 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 616 return false; 617 618 const TargetRegisterInfo *TRI = &getRegisterInfo(); 619 const MachineFunction *MF = MBB->getParent(); 620 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 621 622 auto GetMBBPressure = 623 [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> { 624 RegionPressure Pressure; 625 RegPressureTracker RPTracker(Pressure); 626 627 // Initialize the register pressure tracker. 628 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 629 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 630 631 for (const auto &MI : reverse(*MBB)) { 632 if (MI.isDebugValue() || MI.isDebugLabel()) 633 continue; 634 RegisterOperands RegOpers; 635 RegOpers.collect(MI, *TRI, *MRI, false, false); 636 RPTracker.recedeSkipDebugValues(); 637 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 638 RPTracker.recede(RegOpers); 639 } 640 641 // Close the RPTracker to finalize live ins. 642 RPTracker.closeRegion(); 643 644 return RPTracker.getPressure().MaxSetPressure; 645 }; 646 647 // For now we only care about float and double type fma. 648 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 649 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 650 651 // Only reduce register pressure when pressure is high. 652 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 653 (float)VSSRCLimit * FMARPFactor; 654 } 655 656 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 657 // I has only one memory operand which is load from constant pool. 658 if (!I->hasOneMemOperand()) 659 return false; 660 661 MachineMemOperand *Op = I->memoperands()[0]; 662 return Op->isLoad() && Op->getPseudoValue() && 663 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 664 } 665 666 Register PPCInstrInfo::generateLoadForNewConst( 667 unsigned Idx, MachineInstr *MI, Type *Ty, 668 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 669 // Now we only support PPC64, Medium code model and P9 with vector. 670 // We have immutable pattern to access const pool. See function 671 // shouldReduceRegisterPressure. 672 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 673 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 674 "Target not supported!\n"); 675 676 MachineFunction *MF = MI->getMF(); 677 MachineRegisterInfo *MRI = &MF->getRegInfo(); 678 679 // Generate ADDIStocHA8 680 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 681 MachineInstrBuilder TOCOffset = 682 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 683 .addReg(PPC::X2) 684 .addConstantPoolIndex(Idx); 685 686 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 687 "Only float and double are supported!"); 688 689 unsigned LoadOpcode; 690 // Should be float type or double type. 691 if (Ty->isFloatTy()) 692 LoadOpcode = PPC::DFLOADf32; 693 else 694 LoadOpcode = PPC::DFLOADf64; 695 696 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 697 Register VReg2 = MRI->createVirtualRegister(RC); 698 MachineMemOperand *MMO = MF->getMachineMemOperand( 699 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 700 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 701 702 // Generate Load from constant pool. 703 MachineInstrBuilder Load = 704 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 705 .addConstantPoolIndex(Idx) 706 .addReg(VReg1, getKillRegState(true)) 707 .addMemOperand(MMO); 708 709 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 710 711 // Insert the toc load instructions into InsInstrs. 712 InsInstrs.insert(InsInstrs.begin(), Load); 713 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 714 return VReg2; 715 } 716 717 // This function returns the const value in constant pool if the \p I is a load 718 // from constant pool. 719 const Constant * 720 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 721 MachineFunction *MF = I->getMF(); 722 MachineRegisterInfo *MRI = &MF->getRegInfo(); 723 MachineConstantPool *MCP = MF->getConstantPool(); 724 assert(I->mayLoad() && "Should be a load instruction.\n"); 725 for (auto MO : I->uses()) { 726 if (!MO.isReg()) 727 continue; 728 Register Reg = MO.getReg(); 729 if (Reg == 0 || !Reg.isVirtual()) 730 continue; 731 // Find the toc address. 732 MachineInstr *DefMI = MRI->getVRegDef(Reg); 733 for (auto MO2 : DefMI->uses()) 734 if (MO2.isCPI()) 735 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 736 } 737 return nullptr; 738 } 739 740 CombinerObjective PPCInstrInfo::getCombinerObjective(unsigned Pattern) const { 741 switch (Pattern) { 742 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: 743 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: 744 return CombinerObjective::MustReduceDepth; 745 case PPCMachineCombinerPattern::REASSOC_XY_BCA: 746 case PPCMachineCombinerPattern::REASSOC_XY_BAC: 747 return CombinerObjective::MustReduceRegisterPressure; 748 default: 749 return TargetInstrInfo::getCombinerObjective(Pattern); 750 } 751 } 752 753 bool PPCInstrInfo::getMachineCombinerPatterns( 754 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns, 755 bool DoRegPressureReduce) const { 756 // Using the machine combiner in this way is potentially expensive, so 757 // restrict to when aggressive optimizations are desired. 758 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOptLevel::Aggressive) 759 return false; 760 761 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 762 return true; 763 764 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 765 DoRegPressureReduce); 766 } 767 768 void PPCInstrInfo::genAlternativeCodeSequence( 769 MachineInstr &Root, unsigned Pattern, 770 SmallVectorImpl<MachineInstr *> &InsInstrs, 771 SmallVectorImpl<MachineInstr *> &DelInstrs, 772 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 773 switch (Pattern) { 774 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: 775 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: 776 case PPCMachineCombinerPattern::REASSOC_XY_BCA: 777 case PPCMachineCombinerPattern::REASSOC_XY_BAC: 778 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 779 break; 780 default: 781 // Reassociate default patterns. 782 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 783 DelInstrs, InstrIdxForVirtReg); 784 break; 785 } 786 } 787 788 void PPCInstrInfo::reassociateFMA( 789 MachineInstr &Root, unsigned Pattern, 790 SmallVectorImpl<MachineInstr *> &InsInstrs, 791 SmallVectorImpl<MachineInstr *> &DelInstrs, 792 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 793 MachineFunction *MF = Root.getMF(); 794 MachineRegisterInfo &MRI = MF->getRegInfo(); 795 const TargetRegisterInfo *TRI = &getRegisterInfo(); 796 MachineOperand &OpC = Root.getOperand(0); 797 Register RegC = OpC.getReg(); 798 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 799 MRI.constrainRegClass(RegC, RC); 800 801 unsigned FmaOp = Root.getOpcode(); 802 int16_t Idx = getFMAOpIdxInfo(FmaOp); 803 assert(Idx >= 0 && "Root must be a FMA instruction"); 804 805 bool IsILPReassociate = 806 (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) || 807 (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM); 808 809 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 810 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 811 812 MachineInstr *Prev = nullptr; 813 MachineInstr *Leaf = nullptr; 814 switch (Pattern) { 815 default: 816 llvm_unreachable("not recognized pattern!"); 817 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: 818 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: 819 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 820 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 821 break; 822 case PPCMachineCombinerPattern::REASSOC_XY_BAC: { 823 Register MULReg = 824 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 825 Leaf = MRI.getVRegDef(MULReg); 826 break; 827 } 828 case PPCMachineCombinerPattern::REASSOC_XY_BCA: { 829 Register MULReg = TRI->lookThruCopyLike( 830 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 831 Leaf = MRI.getVRegDef(MULReg); 832 break; 833 } 834 } 835 836 uint32_t IntersectedFlags = 0; 837 if (IsILPReassociate) 838 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 839 else 840 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 841 842 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 843 bool &KillFlag) { 844 Reg = Operand.getReg(); 845 MRI.constrainRegClass(Reg, RC); 846 KillFlag = Operand.isKill(); 847 }; 848 849 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 850 Register &MulOp2, Register &AddOp, 851 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 852 bool &AddOpKillFlag) { 853 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 854 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 855 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 856 }; 857 858 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 859 RegA21, RegB; 860 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 861 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 862 KillA11 = false, KillA21 = false, KillB = false; 863 864 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 865 866 if (IsILPReassociate) 867 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 868 869 if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 870 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 871 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 872 } else if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) { 873 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 874 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 875 } else { 876 // Get FSUB instruction info. 877 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 878 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 879 } 880 881 // Create new virtual registers for the new results instead of 882 // recycling legacy ones because the MachineCombiner's computation of the 883 // critical path requires a new register definition rather than an existing 884 // one. 885 // For register pressure reassociation, we only need create one virtual 886 // register for the new fma. 887 Register NewVRA = MRI.createVirtualRegister(RC); 888 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 889 890 Register NewVRB = 0; 891 if (IsILPReassociate) { 892 NewVRB = MRI.createVirtualRegister(RC); 893 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 894 } 895 896 Register NewVRD = 0; 897 if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 898 NewVRD = MRI.createVirtualRegister(RC); 899 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 900 } 901 902 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 903 Register RegMul1, bool KillRegMul1, 904 Register RegMul2, bool KillRegMul2) { 905 MI->getOperand(AddOpIdx).setReg(RegAdd); 906 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 907 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 908 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 909 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 910 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 911 }; 912 913 MachineInstrBuilder NewARegPressure, NewCRegPressure; 914 switch (Pattern) { 915 default: 916 llvm_unreachable("not recognized pattern!"); 917 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: { 918 // Create new instructions for insertion. 919 MachineInstrBuilder MINewB = 920 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 921 .addReg(RegX, getKillRegState(KillX)) 922 .addReg(RegM21, getKillRegState(KillM21)) 923 .addReg(RegM22, getKillRegState(KillM22)); 924 MachineInstrBuilder MINewA = 925 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 926 .addReg(RegY, getKillRegState(KillY)) 927 .addReg(RegM31, getKillRegState(KillM31)) 928 .addReg(RegM32, getKillRegState(KillM32)); 929 // If AddOpIdx is not 1, adjust the order. 930 if (AddOpIdx != 1) { 931 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 932 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 933 } 934 935 MachineInstrBuilder MINewC = 936 BuildMI(*MF, Root.getDebugLoc(), 937 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 938 .addReg(NewVRB, getKillRegState(true)) 939 .addReg(NewVRA, getKillRegState(true)); 940 941 // Update flags for newly created instructions. 942 setSpecialOperandAttr(*MINewA, IntersectedFlags); 943 setSpecialOperandAttr(*MINewB, IntersectedFlags); 944 setSpecialOperandAttr(*MINewC, IntersectedFlags); 945 946 // Record new instructions for insertion. 947 InsInstrs.push_back(MINewA); 948 InsInstrs.push_back(MINewB); 949 InsInstrs.push_back(MINewC); 950 break; 951 } 952 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 953 assert(NewVRD && "new FMA register not created!"); 954 // Create new instructions for insertion. 955 MachineInstrBuilder MINewA = 956 BuildMI(*MF, Leaf->getDebugLoc(), 957 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 958 .addReg(RegM11, getKillRegState(KillM11)) 959 .addReg(RegM12, getKillRegState(KillM12)); 960 MachineInstrBuilder MINewB = 961 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 962 .addReg(RegX, getKillRegState(KillX)) 963 .addReg(RegM21, getKillRegState(KillM21)) 964 .addReg(RegM22, getKillRegState(KillM22)); 965 MachineInstrBuilder MINewD = 966 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 967 .addReg(NewVRA, getKillRegState(true)) 968 .addReg(RegM31, getKillRegState(KillM31)) 969 .addReg(RegM32, getKillRegState(KillM32)); 970 // If AddOpIdx is not 1, adjust the order. 971 if (AddOpIdx != 1) { 972 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 973 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 974 KillM32); 975 } 976 977 MachineInstrBuilder MINewC = 978 BuildMI(*MF, Root.getDebugLoc(), 979 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 980 .addReg(NewVRB, getKillRegState(true)) 981 .addReg(NewVRD, getKillRegState(true)); 982 983 // Update flags for newly created instructions. 984 setSpecialOperandAttr(*MINewA, IntersectedFlags); 985 setSpecialOperandAttr(*MINewB, IntersectedFlags); 986 setSpecialOperandAttr(*MINewD, IntersectedFlags); 987 setSpecialOperandAttr(*MINewC, IntersectedFlags); 988 989 // Record new instructions for insertion. 990 InsInstrs.push_back(MINewA); 991 InsInstrs.push_back(MINewB); 992 InsInstrs.push_back(MINewD); 993 InsInstrs.push_back(MINewC); 994 break; 995 } 996 case PPCMachineCombinerPattern::REASSOC_XY_BAC: 997 case PPCMachineCombinerPattern::REASSOC_XY_BCA: { 998 Register VarReg; 999 bool KillVarReg = false; 1000 if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_BCA) { 1001 VarReg = RegM31; 1002 KillVarReg = KillM31; 1003 } else { 1004 VarReg = RegM32; 1005 KillVarReg = KillM32; 1006 } 1007 // We don't want to get negative const from memory pool too early, as the 1008 // created entry will not be deleted even if it has no users. Since all 1009 // operand of Leaf and Root are virtual register, we use zero register 1010 // here as a placeholder. When the InsInstrs is selected in 1011 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1012 // with a virtual register which is a load from constant pool. 1013 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1014 .addReg(RegB, getKillRegState(RegB)) 1015 .addReg(RegY, getKillRegState(KillY)) 1016 .addReg(PPC::ZERO8); 1017 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1018 .addReg(NewVRA, getKillRegState(true)) 1019 .addReg(RegX, getKillRegState(KillX)) 1020 .addReg(VarReg, getKillRegState(KillVarReg)); 1021 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1022 // both at index 1, no need to adjust. 1023 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1024 // the operand index here. 1025 break; 1026 } 1027 } 1028 1029 if (!IsILPReassociate) { 1030 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1031 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1032 1033 InsInstrs.push_back(NewARegPressure); 1034 InsInstrs.push_back(NewCRegPressure); 1035 } 1036 1037 assert(!InsInstrs.empty() && 1038 "Insertion instructions set should not be empty!"); 1039 1040 // Record old instructions for deletion. 1041 DelInstrs.push_back(Leaf); 1042 if (IsILPReassociate) 1043 DelInstrs.push_back(Prev); 1044 DelInstrs.push_back(&Root); 1045 } 1046 1047 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1048 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1049 Register &SrcReg, Register &DstReg, 1050 unsigned &SubIdx) const { 1051 switch (MI.getOpcode()) { 1052 default: return false; 1053 case PPC::EXTSW: 1054 case PPC::EXTSW_32: 1055 case PPC::EXTSW_32_64: 1056 SrcReg = MI.getOperand(1).getReg(); 1057 DstReg = MI.getOperand(0).getReg(); 1058 SubIdx = PPC::sub_32; 1059 return true; 1060 } 1061 } 1062 1063 Register PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1064 int &FrameIndex) const { 1065 if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) { 1066 // Check for the operands added by addFrameReference (the immediate is the 1067 // offset which defaults to 0). 1068 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1069 MI.getOperand(2).isFI()) { 1070 FrameIndex = MI.getOperand(2).getIndex(); 1071 return MI.getOperand(0).getReg(); 1072 } 1073 } 1074 return 0; 1075 } 1076 1077 // For opcodes with the ReMaterializable flag set, this function is called to 1078 // verify the instruction is really rematable. 1079 bool PPCInstrInfo::isReallyTriviallyReMaterializable( 1080 const MachineInstr &MI) const { 1081 switch (MI.getOpcode()) { 1082 default: 1083 // Let base implementaion decide. 1084 break; 1085 case PPC::LI: 1086 case PPC::LI8: 1087 case PPC::PLI: 1088 case PPC::PLI8: 1089 case PPC::LIS: 1090 case PPC::LIS8: 1091 case PPC::ADDIStocHA: 1092 case PPC::ADDIStocHA8: 1093 case PPC::ADDItocL: 1094 case PPC::ADDItocL8: 1095 case PPC::LOAD_STACK_GUARD: 1096 case PPC::PPCLdFixedAddr: 1097 case PPC::XXLXORz: 1098 case PPC::XXLXORspz: 1099 case PPC::XXLXORdpz: 1100 case PPC::XXLEQVOnes: 1101 case PPC::XXSPLTI32DX: 1102 case PPC::XXSPLTIW: 1103 case PPC::XXSPLTIDP: 1104 case PPC::V_SET0B: 1105 case PPC::V_SET0H: 1106 case PPC::V_SET0: 1107 case PPC::V_SETALLONESB: 1108 case PPC::V_SETALLONESH: 1109 case PPC::V_SETALLONES: 1110 case PPC::CRSET: 1111 case PPC::CRUNSET: 1112 case PPC::XXSETACCZ: 1113 case PPC::XXSETACCZW: 1114 return true; 1115 } 1116 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 1117 } 1118 1119 Register PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1120 int &FrameIndex) const { 1121 if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) { 1122 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1123 MI.getOperand(2).isFI()) { 1124 FrameIndex = MI.getOperand(2).getIndex(); 1125 return MI.getOperand(0).getReg(); 1126 } 1127 } 1128 return 0; 1129 } 1130 1131 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1132 unsigned OpIdx1, 1133 unsigned OpIdx2) const { 1134 MachineFunction &MF = *MI.getParent()->getParent(); 1135 1136 // Normal instructions can be commuted the obvious way. 1137 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1138 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1139 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1140 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1141 // changing the relative order of the mask operands might change what happens 1142 // to the high-bits of the mask (and, thus, the result). 1143 1144 // Cannot commute if it has a non-zero rotate count. 1145 if (MI.getOperand(3).getImm() != 0) 1146 return nullptr; 1147 1148 // If we have a zero rotate count, we have: 1149 // M = mask(MB,ME) 1150 // Op0 = (Op1 & ~M) | (Op2 & M) 1151 // Change this to: 1152 // M = mask((ME+1)&31, (MB-1)&31) 1153 // Op0 = (Op2 & ~M) | (Op1 & M) 1154 1155 // Swap op1/op2 1156 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1157 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1158 Register Reg0 = MI.getOperand(0).getReg(); 1159 Register Reg1 = MI.getOperand(1).getReg(); 1160 Register Reg2 = MI.getOperand(2).getReg(); 1161 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1162 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1163 bool Reg1IsKill = MI.getOperand(1).isKill(); 1164 bool Reg2IsKill = MI.getOperand(2).isKill(); 1165 bool ChangeReg0 = false; 1166 // If machine instrs are no longer in two-address forms, update 1167 // destination register as well. 1168 if (Reg0 == Reg1) { 1169 // Must be two address instruction (i.e. op1 is tied to op0). 1170 assert(MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) == 0 && 1171 "Expecting a two-address instruction!"); 1172 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1173 Reg2IsKill = false; 1174 ChangeReg0 = true; 1175 } 1176 1177 // Masks. 1178 unsigned MB = MI.getOperand(4).getImm(); 1179 unsigned ME = MI.getOperand(5).getImm(); 1180 1181 // We can't commute a trivial mask (there is no way to represent an all-zero 1182 // mask). 1183 if (MB == 0 && ME == 31) 1184 return nullptr; 1185 1186 if (NewMI) { 1187 // Create a new instruction. 1188 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1189 bool Reg0IsDead = MI.getOperand(0).isDead(); 1190 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1191 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1192 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1193 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1194 .addImm((ME + 1) & 31) 1195 .addImm((MB - 1) & 31); 1196 } 1197 1198 if (ChangeReg0) { 1199 MI.getOperand(0).setReg(Reg2); 1200 MI.getOperand(0).setSubReg(SubReg2); 1201 } 1202 MI.getOperand(2).setReg(Reg1); 1203 MI.getOperand(1).setReg(Reg2); 1204 MI.getOperand(2).setSubReg(SubReg1); 1205 MI.getOperand(1).setSubReg(SubReg2); 1206 MI.getOperand(2).setIsKill(Reg1IsKill); 1207 MI.getOperand(1).setIsKill(Reg2IsKill); 1208 1209 // Swap the mask around. 1210 MI.getOperand(4).setImm((ME + 1) & 31); 1211 MI.getOperand(5).setImm((MB - 1) & 31); 1212 return &MI; 1213 } 1214 1215 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1216 unsigned &SrcOpIdx1, 1217 unsigned &SrcOpIdx2) const { 1218 // For VSX A-Type FMA instructions, it is the first two operands that can be 1219 // commuted, however, because the non-encoded tied input operand is listed 1220 // first, the operands to swap are actually the second and third. 1221 1222 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1223 if (AltOpc == -1) 1224 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1225 1226 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1227 // and SrcOpIdx2. 1228 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1229 } 1230 1231 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1232 MachineBasicBlock::iterator MI) const { 1233 // This function is used for scheduling, and the nop wanted here is the type 1234 // that terminates dispatch groups on the POWER cores. 1235 unsigned Directive = Subtarget.getCPUDirective(); 1236 unsigned Opcode; 1237 switch (Directive) { 1238 default: Opcode = PPC::NOP; break; 1239 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1240 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1241 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1242 // FIXME: Update when POWER9 scheduling model is ready. 1243 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1244 } 1245 1246 DebugLoc DL; 1247 BuildMI(MBB, MI, DL, get(Opcode)); 1248 } 1249 1250 /// Return the noop instruction to use for a noop. 1251 MCInst PPCInstrInfo::getNop() const { 1252 MCInst Nop; 1253 Nop.setOpcode(PPC::NOP); 1254 return Nop; 1255 } 1256 1257 // Branch analysis. 1258 // Note: If the condition register is set to CTR or CTR8 then this is a 1259 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1260 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1261 MachineBasicBlock *&TBB, 1262 MachineBasicBlock *&FBB, 1263 SmallVectorImpl<MachineOperand> &Cond, 1264 bool AllowModify) const { 1265 bool isPPC64 = Subtarget.isPPC64(); 1266 1267 // If the block has no terminators, it just falls into the block after it. 1268 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1269 if (I == MBB.end()) 1270 return false; 1271 1272 if (!isUnpredicatedTerminator(*I)) 1273 return false; 1274 1275 if (AllowModify) { 1276 // If the BB ends with an unconditional branch to the fallthrough BB, 1277 // we eliminate the branch instruction. 1278 if (I->getOpcode() == PPC::B && 1279 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1280 I->eraseFromParent(); 1281 1282 // We update iterator after deleting the last branch. 1283 I = MBB.getLastNonDebugInstr(); 1284 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1285 return false; 1286 } 1287 } 1288 1289 // Get the last instruction in the block. 1290 MachineInstr &LastInst = *I; 1291 1292 // If there is only one terminator instruction, process it. 1293 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1294 if (LastInst.getOpcode() == PPC::B) { 1295 if (!LastInst.getOperand(0).isMBB()) 1296 return true; 1297 TBB = LastInst.getOperand(0).getMBB(); 1298 return false; 1299 } else if (LastInst.getOpcode() == PPC::BCC) { 1300 if (!LastInst.getOperand(2).isMBB()) 1301 return true; 1302 // Block ends with fall-through condbranch. 1303 TBB = LastInst.getOperand(2).getMBB(); 1304 Cond.push_back(LastInst.getOperand(0)); 1305 Cond.push_back(LastInst.getOperand(1)); 1306 return false; 1307 } else if (LastInst.getOpcode() == PPC::BC) { 1308 if (!LastInst.getOperand(1).isMBB()) 1309 return true; 1310 // Block ends with fall-through condbranch. 1311 TBB = LastInst.getOperand(1).getMBB(); 1312 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1313 Cond.push_back(LastInst.getOperand(0)); 1314 return false; 1315 } else if (LastInst.getOpcode() == PPC::BCn) { 1316 if (!LastInst.getOperand(1).isMBB()) 1317 return true; 1318 // Block ends with fall-through condbranch. 1319 TBB = LastInst.getOperand(1).getMBB(); 1320 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1321 Cond.push_back(LastInst.getOperand(0)); 1322 return false; 1323 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1324 LastInst.getOpcode() == PPC::BDNZ) { 1325 if (!LastInst.getOperand(0).isMBB()) 1326 return true; 1327 if (DisableCTRLoopAnal) 1328 return true; 1329 TBB = LastInst.getOperand(0).getMBB(); 1330 Cond.push_back(MachineOperand::CreateImm(1)); 1331 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1332 true)); 1333 return false; 1334 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1335 LastInst.getOpcode() == PPC::BDZ) { 1336 if (!LastInst.getOperand(0).isMBB()) 1337 return true; 1338 if (DisableCTRLoopAnal) 1339 return true; 1340 TBB = LastInst.getOperand(0).getMBB(); 1341 Cond.push_back(MachineOperand::CreateImm(0)); 1342 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1343 true)); 1344 return false; 1345 } 1346 1347 // Otherwise, don't know what this is. 1348 return true; 1349 } 1350 1351 // Get the instruction before it if it's a terminator. 1352 MachineInstr &SecondLastInst = *I; 1353 1354 // If there are three terminators, we don't know what sort of block this is. 1355 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1356 return true; 1357 1358 // If the block ends with PPC::B and PPC:BCC, handle it. 1359 if (SecondLastInst.getOpcode() == PPC::BCC && 1360 LastInst.getOpcode() == PPC::B) { 1361 if (!SecondLastInst.getOperand(2).isMBB() || 1362 !LastInst.getOperand(0).isMBB()) 1363 return true; 1364 TBB = SecondLastInst.getOperand(2).getMBB(); 1365 Cond.push_back(SecondLastInst.getOperand(0)); 1366 Cond.push_back(SecondLastInst.getOperand(1)); 1367 FBB = LastInst.getOperand(0).getMBB(); 1368 return false; 1369 } else if (SecondLastInst.getOpcode() == PPC::BC && 1370 LastInst.getOpcode() == PPC::B) { 1371 if (!SecondLastInst.getOperand(1).isMBB() || 1372 !LastInst.getOperand(0).isMBB()) 1373 return true; 1374 TBB = SecondLastInst.getOperand(1).getMBB(); 1375 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1376 Cond.push_back(SecondLastInst.getOperand(0)); 1377 FBB = LastInst.getOperand(0).getMBB(); 1378 return false; 1379 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1380 LastInst.getOpcode() == PPC::B) { 1381 if (!SecondLastInst.getOperand(1).isMBB() || 1382 !LastInst.getOperand(0).isMBB()) 1383 return true; 1384 TBB = SecondLastInst.getOperand(1).getMBB(); 1385 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1386 Cond.push_back(SecondLastInst.getOperand(0)); 1387 FBB = LastInst.getOperand(0).getMBB(); 1388 return false; 1389 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1390 SecondLastInst.getOpcode() == PPC::BDNZ) && 1391 LastInst.getOpcode() == PPC::B) { 1392 if (!SecondLastInst.getOperand(0).isMBB() || 1393 !LastInst.getOperand(0).isMBB()) 1394 return true; 1395 if (DisableCTRLoopAnal) 1396 return true; 1397 TBB = SecondLastInst.getOperand(0).getMBB(); 1398 Cond.push_back(MachineOperand::CreateImm(1)); 1399 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1400 true)); 1401 FBB = LastInst.getOperand(0).getMBB(); 1402 return false; 1403 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1404 SecondLastInst.getOpcode() == PPC::BDZ) && 1405 LastInst.getOpcode() == PPC::B) { 1406 if (!SecondLastInst.getOperand(0).isMBB() || 1407 !LastInst.getOperand(0).isMBB()) 1408 return true; 1409 if (DisableCTRLoopAnal) 1410 return true; 1411 TBB = SecondLastInst.getOperand(0).getMBB(); 1412 Cond.push_back(MachineOperand::CreateImm(0)); 1413 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1414 true)); 1415 FBB = LastInst.getOperand(0).getMBB(); 1416 return false; 1417 } 1418 1419 // If the block ends with two PPC:Bs, handle it. The second one is not 1420 // executed, so remove it. 1421 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1422 if (!SecondLastInst.getOperand(0).isMBB()) 1423 return true; 1424 TBB = SecondLastInst.getOperand(0).getMBB(); 1425 I = LastInst; 1426 if (AllowModify) 1427 I->eraseFromParent(); 1428 return false; 1429 } 1430 1431 // Otherwise, can't handle this. 1432 return true; 1433 } 1434 1435 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1436 int *BytesRemoved) const { 1437 assert(!BytesRemoved && "code size not handled"); 1438 1439 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1440 if (I == MBB.end()) 1441 return 0; 1442 1443 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1444 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1445 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1446 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1447 return 0; 1448 1449 // Remove the branch. 1450 I->eraseFromParent(); 1451 1452 I = MBB.end(); 1453 1454 if (I == MBB.begin()) return 1; 1455 --I; 1456 if (I->getOpcode() != PPC::BCC && 1457 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1458 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1459 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1460 return 1; 1461 1462 // Remove the branch. 1463 I->eraseFromParent(); 1464 return 2; 1465 } 1466 1467 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1468 MachineBasicBlock *TBB, 1469 MachineBasicBlock *FBB, 1470 ArrayRef<MachineOperand> Cond, 1471 const DebugLoc &DL, 1472 int *BytesAdded) const { 1473 // Shouldn't be a fall through. 1474 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1475 assert((Cond.size() == 2 || Cond.size() == 0) && 1476 "PPC branch conditions have two components!"); 1477 assert(!BytesAdded && "code size not handled"); 1478 1479 bool isPPC64 = Subtarget.isPPC64(); 1480 1481 // One-way branch. 1482 if (!FBB) { 1483 if (Cond.empty()) // Unconditional branch 1484 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1485 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1486 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1487 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1488 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1489 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1490 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1491 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1492 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1493 else // Conditional branch 1494 BuildMI(&MBB, DL, get(PPC::BCC)) 1495 .addImm(Cond[0].getImm()) 1496 .add(Cond[1]) 1497 .addMBB(TBB); 1498 return 1; 1499 } 1500 1501 // Two-way Conditional Branch. 1502 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1503 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1504 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1505 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1506 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1507 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1508 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1509 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1510 else 1511 BuildMI(&MBB, DL, get(PPC::BCC)) 1512 .addImm(Cond[0].getImm()) 1513 .add(Cond[1]) 1514 .addMBB(TBB); 1515 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1516 return 2; 1517 } 1518 1519 // Select analysis. 1520 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1521 ArrayRef<MachineOperand> Cond, 1522 Register DstReg, Register TrueReg, 1523 Register FalseReg, int &CondCycles, 1524 int &TrueCycles, int &FalseCycles) const { 1525 if (!Subtarget.hasISEL()) 1526 return false; 1527 1528 if (Cond.size() != 2) 1529 return false; 1530 1531 // If this is really a bdnz-like condition, then it cannot be turned into a 1532 // select. 1533 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1534 return false; 1535 1536 // If the conditional branch uses a physical register, then it cannot be 1537 // turned into a select. 1538 if (Cond[1].getReg().isPhysical()) 1539 return false; 1540 1541 // Check register classes. 1542 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1543 const TargetRegisterClass *RC = 1544 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1545 if (!RC) 1546 return false; 1547 1548 // isel is for regular integer GPRs only. 1549 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1550 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1551 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1552 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1553 return false; 1554 1555 // FIXME: These numbers are for the A2, how well they work for other cores is 1556 // an open question. On the A2, the isel instruction has a 2-cycle latency 1557 // but single-cycle throughput. These numbers are used in combination with 1558 // the MispredictPenalty setting from the active SchedMachineModel. 1559 CondCycles = 1; 1560 TrueCycles = 1; 1561 FalseCycles = 1; 1562 1563 return true; 1564 } 1565 1566 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1567 MachineBasicBlock::iterator MI, 1568 const DebugLoc &dl, Register DestReg, 1569 ArrayRef<MachineOperand> Cond, Register TrueReg, 1570 Register FalseReg) const { 1571 assert(Cond.size() == 2 && 1572 "PPC branch conditions have two components!"); 1573 1574 // Get the register classes. 1575 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1576 const TargetRegisterClass *RC = 1577 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1578 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1579 1580 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1581 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1582 assert((Is64Bit || 1583 PPC::GPRCRegClass.hasSubClassEq(RC) || 1584 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1585 "isel is for regular integer GPRs only"); 1586 1587 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1588 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1589 1590 unsigned SubIdx = 0; 1591 bool SwapOps = false; 1592 switch (SelectPred) { 1593 case PPC::PRED_EQ: 1594 case PPC::PRED_EQ_MINUS: 1595 case PPC::PRED_EQ_PLUS: 1596 SubIdx = PPC::sub_eq; SwapOps = false; break; 1597 case PPC::PRED_NE: 1598 case PPC::PRED_NE_MINUS: 1599 case PPC::PRED_NE_PLUS: 1600 SubIdx = PPC::sub_eq; SwapOps = true; break; 1601 case PPC::PRED_LT: 1602 case PPC::PRED_LT_MINUS: 1603 case PPC::PRED_LT_PLUS: 1604 SubIdx = PPC::sub_lt; SwapOps = false; break; 1605 case PPC::PRED_GE: 1606 case PPC::PRED_GE_MINUS: 1607 case PPC::PRED_GE_PLUS: 1608 SubIdx = PPC::sub_lt; SwapOps = true; break; 1609 case PPC::PRED_GT: 1610 case PPC::PRED_GT_MINUS: 1611 case PPC::PRED_GT_PLUS: 1612 SubIdx = PPC::sub_gt; SwapOps = false; break; 1613 case PPC::PRED_LE: 1614 case PPC::PRED_LE_MINUS: 1615 case PPC::PRED_LE_PLUS: 1616 SubIdx = PPC::sub_gt; SwapOps = true; break; 1617 case PPC::PRED_UN: 1618 case PPC::PRED_UN_MINUS: 1619 case PPC::PRED_UN_PLUS: 1620 SubIdx = PPC::sub_un; SwapOps = false; break; 1621 case PPC::PRED_NU: 1622 case PPC::PRED_NU_MINUS: 1623 case PPC::PRED_NU_PLUS: 1624 SubIdx = PPC::sub_un; SwapOps = true; break; 1625 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1626 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1627 } 1628 1629 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1630 SecondReg = SwapOps ? TrueReg : FalseReg; 1631 1632 // The first input register of isel cannot be r0. If it is a member 1633 // of a register class that can be r0, then copy it first (the 1634 // register allocator should eliminate the copy). 1635 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1636 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1637 const TargetRegisterClass *FirstRC = 1638 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1639 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1640 Register OldFirstReg = FirstReg; 1641 FirstReg = MRI.createVirtualRegister(FirstRC); 1642 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1643 .addReg(OldFirstReg); 1644 } 1645 1646 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1647 .addReg(FirstReg).addReg(SecondReg) 1648 .addReg(Cond[1].getReg(), 0, SubIdx); 1649 } 1650 1651 static unsigned getCRBitValue(unsigned CRBit) { 1652 unsigned Ret = 4; 1653 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1654 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1655 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1656 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1657 Ret = 3; 1658 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1659 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1660 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1661 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1662 Ret = 2; 1663 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1664 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1665 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1666 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1667 Ret = 1; 1668 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1669 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1670 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1671 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1672 Ret = 0; 1673 1674 assert(Ret != 4 && "Invalid CR bit register"); 1675 return Ret; 1676 } 1677 1678 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1679 MachineBasicBlock::iterator I, 1680 const DebugLoc &DL, MCRegister DestReg, 1681 MCRegister SrcReg, bool KillSrc) const { 1682 // We can end up with self copies and similar things as a result of VSX copy 1683 // legalization. Promote them here. 1684 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1685 if (PPC::F8RCRegClass.contains(DestReg) && 1686 PPC::VSRCRegClass.contains(SrcReg)) { 1687 MCRegister SuperReg = 1688 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1689 1690 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1691 llvm_unreachable("nop VSX copy"); 1692 1693 DestReg = SuperReg; 1694 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1695 PPC::VSRCRegClass.contains(DestReg)) { 1696 MCRegister SuperReg = 1697 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1698 1699 if (VSXSelfCopyCrash && DestReg == SuperReg) 1700 llvm_unreachable("nop VSX copy"); 1701 1702 SrcReg = SuperReg; 1703 } 1704 1705 // Different class register copy 1706 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1707 PPC::GPRCRegClass.contains(DestReg)) { 1708 MCRegister CRReg = getCRFromCRBit(SrcReg); 1709 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1710 getKillRegState(KillSrc); 1711 // Rotate the CR bit in the CR fields to be the least significant bit and 1712 // then mask with 0x1 (MB = ME = 31). 1713 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1714 .addReg(DestReg, RegState::Kill) 1715 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1716 .addImm(31) 1717 .addImm(31); 1718 return; 1719 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1720 (PPC::G8RCRegClass.contains(DestReg) || 1721 PPC::GPRCRegClass.contains(DestReg))) { 1722 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1723 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1724 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1725 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1726 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1727 getKillRegState(KillSrc); 1728 if (CRNum == 7) 1729 return; 1730 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1731 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1732 .addReg(DestReg, RegState::Kill) 1733 .addImm(CRNum * 4 + 4) 1734 .addImm(28) 1735 .addImm(31); 1736 return; 1737 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1738 PPC::VSFRCRegClass.contains(DestReg)) { 1739 assert(Subtarget.hasDirectMove() && 1740 "Subtarget doesn't support directmove, don't know how to copy."); 1741 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1742 NumGPRtoVSRSpill++; 1743 getKillRegState(KillSrc); 1744 return; 1745 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1746 PPC::G8RCRegClass.contains(DestReg)) { 1747 assert(Subtarget.hasDirectMove() && 1748 "Subtarget doesn't support directmove, don't know how to copy."); 1749 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1750 getKillRegState(KillSrc); 1751 return; 1752 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1753 PPC::GPRCRegClass.contains(DestReg)) { 1754 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1755 getKillRegState(KillSrc); 1756 return; 1757 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1758 PPC::SPERCRegClass.contains(DestReg)) { 1759 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1760 getKillRegState(KillSrc); 1761 return; 1762 } 1763 1764 unsigned Opc; 1765 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1766 Opc = PPC::OR; 1767 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1768 Opc = PPC::OR8; 1769 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1770 Opc = PPC::FMR; 1771 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1772 Opc = PPC::MCRF; 1773 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1774 Opc = PPC::VOR; 1775 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1776 // There are two different ways this can be done: 1777 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1778 // issue in VSU pipeline 0. 1779 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1780 // can go to either pipeline. 1781 // We'll always use xxlor here, because in practically all cases where 1782 // copies are generated, they are close enough to some use that the 1783 // lower-latency form is preferable. 1784 Opc = PPC::XXLOR; 1785 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1786 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1787 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1788 else if (Subtarget.pairedVectorMemops() && 1789 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1790 if (SrcReg > PPC::VSRp15) 1791 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1792 else 1793 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1794 if (DestReg > PPC::VSRp15) 1795 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1796 else 1797 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1798 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1799 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1800 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1801 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1802 return; 1803 } 1804 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1805 Opc = PPC::CROR; 1806 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1807 Opc = PPC::EVOR; 1808 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1809 PPC::UACCRCRegClass.contains(DestReg)) && 1810 (PPC::ACCRCRegClass.contains(SrcReg) || 1811 PPC::UACCRCRegClass.contains(SrcReg))) { 1812 // If primed, de-prime the source register, copy the individual registers 1813 // and prime the destination if needed. The vector subregisters are 1814 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1815 // source is primed, we need to re-prime it after the copy as well. 1816 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1817 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1818 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1819 MCRegister VSLSrcReg = 1820 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1821 MCRegister VSLDestReg = 1822 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1823 if (SrcPrimed) 1824 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1825 for (unsigned Idx = 0; Idx < 4; Idx++) 1826 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1827 .addReg(VSLSrcReg + Idx) 1828 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1829 if (DestPrimed) 1830 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1831 if (SrcPrimed && !KillSrc) 1832 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1833 return; 1834 } else if (PPC::G8pRCRegClass.contains(DestReg) && 1835 PPC::G8pRCRegClass.contains(SrcReg)) { 1836 // TODO: Handle G8RC to G8pRC (and vice versa) copy. 1837 unsigned DestRegIdx = DestReg - PPC::G8p0; 1838 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; 1839 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; 1840 unsigned SrcRegIdx = SrcReg - PPC::G8p0; 1841 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; 1842 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; 1843 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) 1844 .addReg(SrcRegSub0) 1845 .addReg(SrcRegSub0, getKillRegState(KillSrc)); 1846 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) 1847 .addReg(SrcRegSub1) 1848 .addReg(SrcRegSub1, getKillRegState(KillSrc)); 1849 return; 1850 } else 1851 llvm_unreachable("Impossible reg-to-reg copy"); 1852 1853 const MCInstrDesc &MCID = get(Opc); 1854 if (MCID.getNumOperands() == 3) 1855 BuildMI(MBB, I, DL, MCID, DestReg) 1856 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1857 else 1858 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1859 } 1860 1861 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1862 int OpcodeIndex = 0; 1863 1864 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1865 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1866 OpcodeIndex = SOK_Int4Spill; 1867 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1868 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1869 OpcodeIndex = SOK_Int8Spill; 1870 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1871 OpcodeIndex = SOK_Float8Spill; 1872 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1873 OpcodeIndex = SOK_Float4Spill; 1874 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1875 OpcodeIndex = SOK_SPESpill; 1876 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1877 OpcodeIndex = SOK_CRSpill; 1878 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1879 OpcodeIndex = SOK_CRBitSpill; 1880 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1881 OpcodeIndex = SOK_VRVectorSpill; 1882 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1883 OpcodeIndex = SOK_VSXVectorSpill; 1884 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1885 OpcodeIndex = SOK_VectorFloat8Spill; 1886 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1887 OpcodeIndex = SOK_VectorFloat4Spill; 1888 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1889 OpcodeIndex = SOK_SpillToVSR; 1890 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1891 assert(Subtarget.pairedVectorMemops() && 1892 "Register unexpected when paired memops are disabled."); 1893 OpcodeIndex = SOK_AccumulatorSpill; 1894 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1895 assert(Subtarget.pairedVectorMemops() && 1896 "Register unexpected when paired memops are disabled."); 1897 OpcodeIndex = SOK_UAccumulatorSpill; 1898 } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) { 1899 assert(Subtarget.pairedVectorMemops() && 1900 "Register unexpected when paired memops are disabled."); 1901 OpcodeIndex = SOK_WAccumulatorSpill; 1902 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1903 assert(Subtarget.pairedVectorMemops() && 1904 "Register unexpected when paired memops are disabled."); 1905 OpcodeIndex = SOK_PairedVecSpill; 1906 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { 1907 OpcodeIndex = SOK_PairedG8Spill; 1908 } else { 1909 llvm_unreachable("Unknown regclass!"); 1910 } 1911 return OpcodeIndex; 1912 } 1913 1914 unsigned 1915 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1916 ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray(); 1917 return OpcodesForSpill[getSpillIndex(RC)]; 1918 } 1919 1920 unsigned 1921 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1922 ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray(); 1923 return OpcodesForSpill[getSpillIndex(RC)]; 1924 } 1925 1926 void PPCInstrInfo::StoreRegToStackSlot( 1927 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1928 const TargetRegisterClass *RC, 1929 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1930 unsigned Opcode = getStoreOpcodeForSpill(RC); 1931 DebugLoc DL; 1932 1933 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1934 FuncInfo->setHasSpills(); 1935 1936 NewMIs.push_back(addFrameReference( 1937 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1938 FrameIdx)); 1939 1940 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1941 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1942 FuncInfo->setSpillsCR(); 1943 1944 if (isXFormMemOp(Opcode)) 1945 FuncInfo->setHasNonRISpills(); 1946 } 1947 1948 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1949 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1950 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1951 const TargetRegisterInfo *TRI) const { 1952 MachineFunction &MF = *MBB.getParent(); 1953 SmallVector<MachineInstr *, 4> NewMIs; 1954 1955 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1956 1957 for (MachineInstr *NewMI : NewMIs) 1958 MBB.insert(MI, NewMI); 1959 1960 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1961 MachineMemOperand *MMO = MF.getMachineMemOperand( 1962 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1963 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1964 MFI.getObjectAlign(FrameIdx)); 1965 NewMIs.back()->addMemOperand(MF, MMO); 1966 } 1967 1968 void PPCInstrInfo::storeRegToStackSlot( 1969 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 1970 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1971 const TargetRegisterInfo *TRI, Register VReg) const { 1972 // We need to avoid a situation in which the value from a VRRC register is 1973 // spilled using an Altivec instruction and reloaded into a VSRC register 1974 // using a VSX instruction. The issue with this is that the VSX 1975 // load/store instructions swap the doublewords in the vector and the Altivec 1976 // ones don't. The register classes on the spill/reload may be different if 1977 // the register is defined using an Altivec instruction and is then used by a 1978 // VSX instruction. 1979 RC = updatedRC(RC); 1980 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1981 } 1982 1983 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1984 unsigned DestReg, int FrameIdx, 1985 const TargetRegisterClass *RC, 1986 SmallVectorImpl<MachineInstr *> &NewMIs) 1987 const { 1988 unsigned Opcode = getLoadOpcodeForSpill(RC); 1989 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1990 FrameIdx)); 1991 } 1992 1993 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1994 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1995 int FrameIdx, const TargetRegisterClass *RC, 1996 const TargetRegisterInfo *TRI) const { 1997 MachineFunction &MF = *MBB.getParent(); 1998 SmallVector<MachineInstr*, 4> NewMIs; 1999 DebugLoc DL; 2000 if (MI != MBB.end()) DL = MI->getDebugLoc(); 2001 2002 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 2003 2004 for (MachineInstr *NewMI : NewMIs) 2005 MBB.insert(MI, NewMI); 2006 2007 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2008 MachineMemOperand *MMO = MF.getMachineMemOperand( 2009 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2010 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2011 MFI.getObjectAlign(FrameIdx)); 2012 NewMIs.back()->addMemOperand(MF, MMO); 2013 } 2014 2015 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2016 MachineBasicBlock::iterator MI, 2017 Register DestReg, int FrameIdx, 2018 const TargetRegisterClass *RC, 2019 const TargetRegisterInfo *TRI, 2020 Register VReg) const { 2021 // We need to avoid a situation in which the value from a VRRC register is 2022 // spilled using an Altivec instruction and reloaded into a VSRC register 2023 // using a VSX instruction. The issue with this is that the VSX 2024 // load/store instructions swap the doublewords in the vector and the Altivec 2025 // ones don't. The register classes on the spill/reload may be different if 2026 // the register is defined using an Altivec instruction and is then used by a 2027 // VSX instruction. 2028 RC = updatedRC(RC); 2029 2030 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2031 } 2032 2033 bool PPCInstrInfo:: 2034 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2035 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2036 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2037 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2038 else 2039 // Leave the CR# the same, but invert the condition. 2040 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2041 return false; 2042 } 2043 2044 // For some instructions, it is legal to fold ZERO into the RA register field. 2045 // This function performs that fold by replacing the operand with PPC::ZERO, 2046 // it does not consider whether the load immediate zero is no longer in use. 2047 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2048 Register Reg) const { 2049 // A zero immediate should always be loaded with a single li. 2050 unsigned DefOpc = DefMI.getOpcode(); 2051 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2052 return false; 2053 if (!DefMI.getOperand(1).isImm()) 2054 return false; 2055 if (DefMI.getOperand(1).getImm() != 0) 2056 return false; 2057 2058 // Note that we cannot here invert the arguments of an isel in order to fold 2059 // a ZERO into what is presented as the second argument. All we have here 2060 // is the condition bit, and that might come from a CR-logical bit operation. 2061 2062 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2063 2064 // Only fold into real machine instructions. 2065 if (UseMCID.isPseudo()) 2066 return false; 2067 2068 // We need to find which of the User's operands is to be folded, that will be 2069 // the operand that matches the given register ID. 2070 unsigned UseIdx; 2071 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2072 if (UseMI.getOperand(UseIdx).isReg() && 2073 UseMI.getOperand(UseIdx).getReg() == Reg) 2074 break; 2075 2076 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2077 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2078 2079 const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx]; 2080 2081 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2082 // register (which might also be specified as a pointer class kind). 2083 if (UseInfo->isLookupPtrRegClass()) { 2084 if (UseInfo->RegClass /* Kind */ != 1) 2085 return false; 2086 } else { 2087 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2088 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2089 return false; 2090 } 2091 2092 // Make sure this is not tied to an output register (or otherwise 2093 // constrained). This is true for ST?UX registers, for example, which 2094 // are tied to their output registers. 2095 if (UseInfo->Constraints != 0) 2096 return false; 2097 2098 MCRegister ZeroReg; 2099 if (UseInfo->isLookupPtrRegClass()) { 2100 bool isPPC64 = Subtarget.isPPC64(); 2101 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2102 } else { 2103 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2104 PPC::ZERO8 : PPC::ZERO; 2105 } 2106 2107 LLVM_DEBUG(dbgs() << "Folded immediate zero for: "); 2108 LLVM_DEBUG(UseMI.dump()); 2109 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2110 LLVM_DEBUG(dbgs() << "Into: "); 2111 LLVM_DEBUG(UseMI.dump()); 2112 return true; 2113 } 2114 2115 // Folds zero into instructions which have a load immediate zero as an operand 2116 // but also recognize zero as immediate zero. If the definition of the load 2117 // has no more users it is deleted. 2118 bool PPCInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2119 Register Reg, MachineRegisterInfo *MRI) const { 2120 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2121 if (MRI->use_nodbg_empty(Reg)) 2122 DefMI.eraseFromParent(); 2123 return Changed; 2124 } 2125 2126 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2127 for (MachineInstr &MI : MBB) 2128 if (MI.definesRegister(PPC::CTR, /*TRI=*/nullptr) || 2129 MI.definesRegister(PPC::CTR8, /*TRI=*/nullptr)) 2130 return true; 2131 return false; 2132 } 2133 2134 // We should make sure that, if we're going to predicate both sides of a 2135 // condition (a diamond), that both sides don't define the counter register. We 2136 // can predicate counter-decrement-based branches, but while that predicates 2137 // the branching, it does not predicate the counter decrement. If we tried to 2138 // merge the triangle into one predicated block, we'd decrement the counter 2139 // twice. 2140 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2141 unsigned NumT, unsigned ExtraT, 2142 MachineBasicBlock &FMBB, 2143 unsigned NumF, unsigned ExtraF, 2144 BranchProbability Probability) const { 2145 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2146 } 2147 2148 2149 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2150 // The predicated branches are identified by their type, not really by the 2151 // explicit presence of a predicate. Furthermore, some of them can be 2152 // predicated more than once. Because if conversion won't try to predicate 2153 // any instruction which already claims to be predicated (by returning true 2154 // here), always return false. In doing so, we let isPredicable() be the 2155 // final word on whether not the instruction can be (further) predicated. 2156 2157 return false; 2158 } 2159 2160 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2161 const MachineBasicBlock *MBB, 2162 const MachineFunction &MF) const { 2163 switch (MI.getOpcode()) { 2164 default: 2165 break; 2166 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2167 // across them, since some FP operations may change content of FPSCR. 2168 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2169 case PPC::MFFS: 2170 case PPC::MTFSF: 2171 case PPC::FENCE: 2172 return true; 2173 } 2174 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2175 } 2176 2177 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2178 ArrayRef<MachineOperand> Pred) const { 2179 unsigned OpC = MI.getOpcode(); 2180 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2181 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2182 bool isPPC64 = Subtarget.isPPC64(); 2183 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2184 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2185 // Need add Def and Use for CTR implicit operand. 2186 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2187 .addReg(Pred[1].getReg(), RegState::Implicit) 2188 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2189 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2190 MI.setDesc(get(PPC::BCLR)); 2191 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2192 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2193 MI.setDesc(get(PPC::BCLRn)); 2194 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2195 } else { 2196 MI.setDesc(get(PPC::BCCLR)); 2197 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2198 .addImm(Pred[0].getImm()) 2199 .add(Pred[1]); 2200 } 2201 2202 return true; 2203 } else if (OpC == PPC::B) { 2204 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2205 bool isPPC64 = Subtarget.isPPC64(); 2206 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2207 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2208 // Need add Def and Use for CTR implicit operand. 2209 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2210 .addReg(Pred[1].getReg(), RegState::Implicit) 2211 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2212 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2213 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2214 MI.removeOperand(0); 2215 2216 MI.setDesc(get(PPC::BC)); 2217 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2218 .add(Pred[1]) 2219 .addMBB(MBB); 2220 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2221 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2222 MI.removeOperand(0); 2223 2224 MI.setDesc(get(PPC::BCn)); 2225 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2226 .add(Pred[1]) 2227 .addMBB(MBB); 2228 } else { 2229 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2230 MI.removeOperand(0); 2231 2232 MI.setDesc(get(PPC::BCC)); 2233 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2234 .addImm(Pred[0].getImm()) 2235 .add(Pred[1]) 2236 .addMBB(MBB); 2237 } 2238 2239 return true; 2240 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2241 OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || 2242 OpC == PPC::BCTRL8_RM) { 2243 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2244 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2245 2246 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || 2247 OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; 2248 bool isPPC64 = Subtarget.isPPC64(); 2249 2250 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2251 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2252 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2253 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2254 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2255 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2256 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2257 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2258 } else { 2259 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2260 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2261 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2262 .addImm(Pred[0].getImm()) 2263 .add(Pred[1]); 2264 } 2265 2266 // Need add Def and Use for LR implicit operand. 2267 if (setLR) 2268 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2269 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2270 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2271 if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) 2272 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2273 .addReg(PPC::RM, RegState::ImplicitDefine); 2274 2275 return true; 2276 } 2277 2278 return false; 2279 } 2280 2281 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2282 ArrayRef<MachineOperand> Pred2) const { 2283 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2284 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2285 2286 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2287 return false; 2288 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2289 return false; 2290 2291 // P1 can only subsume P2 if they test the same condition register. 2292 if (Pred1[1].getReg() != Pred2[1].getReg()) 2293 return false; 2294 2295 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2296 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2297 2298 if (P1 == P2) 2299 return true; 2300 2301 // Does P1 subsume P2, e.g. GE subsumes GT. 2302 if (P1 == PPC::PRED_LE && 2303 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2304 return true; 2305 if (P1 == PPC::PRED_GE && 2306 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2307 return true; 2308 2309 return false; 2310 } 2311 2312 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2313 std::vector<MachineOperand> &Pred, 2314 bool SkipDead) const { 2315 // Note: At the present time, the contents of Pred from this function is 2316 // unused by IfConversion. This implementation follows ARM by pushing the 2317 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2318 // predicate, instructions defining CTR or CTR8 are also included as 2319 // predicate-defining instructions. 2320 2321 const TargetRegisterClass *RCs[] = 2322 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2323 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2324 2325 bool Found = false; 2326 for (const MachineOperand &MO : MI.operands()) { 2327 for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) { 2328 const TargetRegisterClass *RC = RCs[c]; 2329 if (MO.isReg()) { 2330 if (MO.isDef() && RC->contains(MO.getReg())) { 2331 Pred.push_back(MO); 2332 Found = true; 2333 } 2334 } else if (MO.isRegMask()) { 2335 for (MCPhysReg R : *RC) 2336 if (MO.clobbersPhysReg(R)) { 2337 Pred.push_back(MO); 2338 Found = true; 2339 } 2340 } 2341 } 2342 } 2343 2344 return Found; 2345 } 2346 2347 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2348 Register &SrcReg2, int64_t &Mask, 2349 int64_t &Value) const { 2350 unsigned Opc = MI.getOpcode(); 2351 2352 switch (Opc) { 2353 default: return false; 2354 case PPC::CMPWI: 2355 case PPC::CMPLWI: 2356 case PPC::CMPDI: 2357 case PPC::CMPLDI: 2358 SrcReg = MI.getOperand(1).getReg(); 2359 SrcReg2 = 0; 2360 Value = MI.getOperand(2).getImm(); 2361 Mask = 0xFFFF; 2362 return true; 2363 case PPC::CMPW: 2364 case PPC::CMPLW: 2365 case PPC::CMPD: 2366 case PPC::CMPLD: 2367 case PPC::FCMPUS: 2368 case PPC::FCMPUD: 2369 SrcReg = MI.getOperand(1).getReg(); 2370 SrcReg2 = MI.getOperand(2).getReg(); 2371 Value = 0; 2372 Mask = 0; 2373 return true; 2374 } 2375 } 2376 2377 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2378 Register SrcReg2, int64_t Mask, 2379 int64_t Value, 2380 const MachineRegisterInfo *MRI) const { 2381 if (DisableCmpOpt) 2382 return false; 2383 2384 int OpC = CmpInstr.getOpcode(); 2385 Register CRReg = CmpInstr.getOperand(0).getReg(); 2386 2387 // FP record forms set CR1 based on the exception status bits, not a 2388 // comparison with zero. 2389 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2390 return false; 2391 2392 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2393 // The record forms set the condition register based on a signed comparison 2394 // with zero (so says the ISA manual). This is not as straightforward as it 2395 // seems, however, because this is always a 64-bit comparison on PPC64, even 2396 // for instructions that are 32-bit in nature (like slw for example). 2397 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2398 // for equality checks (as those don't depend on the sign). On PPC64, 2399 // we are restricted to equality for unsigned 64-bit comparisons and for 2400 // signed 32-bit comparisons the applicability is more restricted. 2401 bool isPPC64 = Subtarget.isPPC64(); 2402 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2403 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2404 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2405 2406 // Look through copies unless that gets us to a physical register. 2407 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2408 if (ActualSrc.isVirtual()) 2409 SrcReg = ActualSrc; 2410 2411 // Get the unique definition of SrcReg. 2412 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2413 if (!MI) return false; 2414 2415 bool equalityOnly = false; 2416 bool noSub = false; 2417 if (isPPC64) { 2418 if (is32BitSignedCompare) { 2419 // We can perform this optimization only if SrcReg is sign-extending. 2420 if (isSignExtended(SrcReg, MRI)) 2421 noSub = true; 2422 else 2423 return false; 2424 } else if (is32BitUnsignedCompare) { 2425 // We can perform this optimization, equality only, if SrcReg is 2426 // zero-extending. 2427 if (isZeroExtended(SrcReg, MRI)) { 2428 noSub = true; 2429 equalityOnly = true; 2430 } else 2431 return false; 2432 } else 2433 equalityOnly = is64BitUnsignedCompare; 2434 } else 2435 equalityOnly = is32BitUnsignedCompare; 2436 2437 if (equalityOnly) { 2438 // We need to check the uses of the condition register in order to reject 2439 // non-equality comparisons. 2440 for (MachineRegisterInfo::use_instr_iterator 2441 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2442 I != IE; ++I) { 2443 MachineInstr *UseMI = &*I; 2444 if (UseMI->getOpcode() == PPC::BCC) { 2445 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2446 unsigned PredCond = PPC::getPredicateCondition(Pred); 2447 // We ignore hint bits when checking for non-equality comparisons. 2448 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2449 return false; 2450 } else if (UseMI->getOpcode() == PPC::ISEL || 2451 UseMI->getOpcode() == PPC::ISEL8) { 2452 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2453 if (SubIdx != PPC::sub_eq) 2454 return false; 2455 } else 2456 return false; 2457 } 2458 } 2459 2460 MachineBasicBlock::iterator I = CmpInstr; 2461 2462 // Scan forward to find the first use of the compare. 2463 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2464 ++I) { 2465 bool FoundUse = false; 2466 for (MachineRegisterInfo::use_instr_iterator 2467 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2468 J != JE; ++J) 2469 if (&*J == &*I) { 2470 FoundUse = true; 2471 break; 2472 } 2473 2474 if (FoundUse) 2475 break; 2476 } 2477 2478 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2479 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2480 2481 // There are two possible candidates which can be changed to set CR[01]. 2482 // One is MI, the other is a SUB instruction. 2483 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2484 MachineInstr *Sub = nullptr; 2485 if (SrcReg2 != 0) 2486 // MI is not a candidate for CMPrr. 2487 MI = nullptr; 2488 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2489 // same BB as the comparison. This is to allow the check below to avoid calls 2490 // (and other explicit clobbers); instead we should really check for these 2491 // more explicitly (in at least a few predecessors). 2492 else if (MI->getParent() != CmpInstr.getParent()) 2493 return false; 2494 else if (Value != 0) { 2495 // The record-form instructions set CR bit based on signed comparison 2496 // against 0. We try to convert a compare against 1 or -1 into a compare 2497 // against 0 to exploit record-form instructions. For example, we change 2498 // the condition "greater than -1" into "greater than or equal to 0" 2499 // and "less than 1" into "less than or equal to 0". 2500 2501 // Since we optimize comparison based on a specific branch condition, 2502 // we don't optimize if condition code is used by more than once. 2503 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2504 return false; 2505 2506 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2507 if (UseMI->getOpcode() != PPC::BCC) 2508 return false; 2509 2510 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2511 unsigned PredCond = PPC::getPredicateCondition(Pred); 2512 unsigned PredHint = PPC::getPredicateHint(Pred); 2513 int16_t Immed = (int16_t)Value; 2514 2515 // When modifying the condition in the predicate, we propagate hint bits 2516 // from the original predicate to the new one. 2517 if (Immed == -1 && PredCond == PPC::PRED_GT) 2518 // We convert "greater than -1" into "greater than or equal to 0", 2519 // since we are assuming signed comparison by !equalityOnly 2520 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2521 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2522 // We convert "less than or equal to -1" into "less than 0". 2523 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2524 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2525 // We convert "less than 1" into "less than or equal to 0". 2526 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2527 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2528 // We convert "greater than or equal to 1" into "greater than 0". 2529 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2530 else 2531 return false; 2532 2533 // Convert the comparison and its user to a compare against zero with the 2534 // appropriate predicate on the branch. Zero comparison might provide 2535 // optimization opportunities post-RA (see optimization in 2536 // PPCPreEmitPeephole.cpp). 2537 UseMI->getOperand(0).setImm(Pred); 2538 CmpInstr.getOperand(2).setImm(0); 2539 } 2540 2541 // Search for Sub. 2542 --I; 2543 2544 // Get ready to iterate backward from CmpInstr. 2545 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2546 2547 for (; I != E && !noSub; --I) { 2548 const MachineInstr &Instr = *I; 2549 unsigned IOpC = Instr.getOpcode(); 2550 2551 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2552 Instr.readsRegister(PPC::CR0, TRI))) 2553 // This instruction modifies or uses the record condition register after 2554 // the one we want to change. While we could do this transformation, it 2555 // would likely not be profitable. This transformation removes one 2556 // instruction, and so even forcing RA to generate one move probably 2557 // makes it unprofitable. 2558 return false; 2559 2560 // Check whether CmpInstr can be made redundant by the current instruction. 2561 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2562 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2563 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2564 ((Instr.getOperand(1).getReg() == SrcReg && 2565 Instr.getOperand(2).getReg() == SrcReg2) || 2566 (Instr.getOperand(1).getReg() == SrcReg2 && 2567 Instr.getOperand(2).getReg() == SrcReg))) { 2568 Sub = &*I; 2569 break; 2570 } 2571 2572 if (I == B) 2573 // The 'and' is below the comparison instruction. 2574 return false; 2575 } 2576 2577 // Return false if no candidates exist. 2578 if (!MI && !Sub) 2579 return false; 2580 2581 // The single candidate is called MI. 2582 if (!MI) MI = Sub; 2583 2584 int NewOpC = -1; 2585 int MIOpC = MI->getOpcode(); 2586 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2587 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2588 NewOpC = MIOpC; 2589 else { 2590 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2591 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2592 NewOpC = MIOpC; 2593 } 2594 2595 // FIXME: On the non-embedded POWER architectures, only some of the record 2596 // forms are fast, and we should use only the fast ones. 2597 2598 // The defining instruction has a record form (or is already a record 2599 // form). It is possible, however, that we'll need to reverse the condition 2600 // code of the users. 2601 if (NewOpC == -1) 2602 return false; 2603 2604 // This transformation should not be performed if `nsw` is missing and is not 2605 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2606 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2607 // CRReg can reflect if compared values are equal, this optz is still valid. 2608 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2609 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2610 return false; 2611 2612 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2613 // needs to be updated to be based on SUB. Push the condition code 2614 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2615 // condition code of these operands will be modified. 2616 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2617 // comparison against 0, which may modify predicate. 2618 bool ShouldSwap = false; 2619 if (Sub && Value == 0) { 2620 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2621 Sub->getOperand(2).getReg() == SrcReg; 2622 2623 // The operands to subf are the opposite of sub, so only in the fixed-point 2624 // case, invert the order. 2625 ShouldSwap = !ShouldSwap; 2626 } 2627 2628 if (ShouldSwap) 2629 for (MachineRegisterInfo::use_instr_iterator 2630 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2631 I != IE; ++I) { 2632 MachineInstr *UseMI = &*I; 2633 if (UseMI->getOpcode() == PPC::BCC) { 2634 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2635 unsigned PredCond = PPC::getPredicateCondition(Pred); 2636 assert((!equalityOnly || 2637 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2638 "Invalid predicate for equality-only optimization"); 2639 (void)PredCond; // To suppress warning in release build. 2640 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2641 PPC::getSwappedPredicate(Pred))); 2642 } else if (UseMI->getOpcode() == PPC::ISEL || 2643 UseMI->getOpcode() == PPC::ISEL8) { 2644 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2645 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2646 "Invalid CR bit for equality-only optimization"); 2647 2648 if (NewSubReg == PPC::sub_lt) 2649 NewSubReg = PPC::sub_gt; 2650 else if (NewSubReg == PPC::sub_gt) 2651 NewSubReg = PPC::sub_lt; 2652 2653 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2654 NewSubReg)); 2655 } else // We need to abort on a user we don't understand. 2656 return false; 2657 } 2658 assert(!(Value != 0 && ShouldSwap) && 2659 "Non-zero immediate support and ShouldSwap" 2660 "may conflict in updating predicate"); 2661 2662 // Create a new virtual register to hold the value of the CR set by the 2663 // record-form instruction. If the instruction was not previously in 2664 // record form, then set the kill flag on the CR. 2665 CmpInstr.eraseFromParent(); 2666 2667 MachineBasicBlock::iterator MII = MI; 2668 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2669 get(TargetOpcode::COPY), CRReg) 2670 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2671 2672 // Even if CR0 register were dead before, it is alive now since the 2673 // instruction we just built uses it. 2674 MI->clearRegisterDeads(PPC::CR0); 2675 2676 if (MIOpC != NewOpC) { 2677 // We need to be careful here: we're replacing one instruction with 2678 // another, and we need to make sure that we get all of the right 2679 // implicit uses and defs. On the other hand, the caller may be holding 2680 // an iterator to this instruction, and so we can't delete it (this is 2681 // specifically the case if this is the instruction directly after the 2682 // compare). 2683 2684 // Rotates are expensive instructions. If we're emitting a record-form 2685 // rotate that can just be an andi/andis, we should just emit that. 2686 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2687 Register GPRRes = MI->getOperand(0).getReg(); 2688 int64_t SH = MI->getOperand(2).getImm(); 2689 int64_t MB = MI->getOperand(3).getImm(); 2690 int64_t ME = MI->getOperand(4).getImm(); 2691 // We can only do this if both the start and end of the mask are in the 2692 // same halfword. 2693 bool MBInLoHWord = MB >= 16; 2694 bool MEInLoHWord = ME >= 16; 2695 uint64_t Mask = ~0LLU; 2696 2697 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2698 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2699 // The mask value needs to shift right 16 if we're emitting andis. 2700 Mask >>= MBInLoHWord ? 0 : 16; 2701 NewOpC = MIOpC == PPC::RLWINM 2702 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2703 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2704 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2705 (ME - MB + 1 == SH) && (MB >= 16)) { 2706 // If we are rotating by the exact number of bits as are in the mask 2707 // and the mask is in the least significant bits of the register, 2708 // that's just an andis. (as long as the GPR result has no uses). 2709 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2710 Mask >>= 16; 2711 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2712 } 2713 // If we've set the mask, we can transform. 2714 if (Mask != ~0LLU) { 2715 MI->removeOperand(4); 2716 MI->removeOperand(3); 2717 MI->getOperand(2).setImm(Mask); 2718 NumRcRotatesConvertedToRcAnd++; 2719 } 2720 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2721 int64_t MB = MI->getOperand(3).getImm(); 2722 if (MB >= 48) { 2723 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2724 NewOpC = PPC::ANDI8_rec; 2725 MI->removeOperand(3); 2726 MI->getOperand(2).setImm(Mask); 2727 NumRcRotatesConvertedToRcAnd++; 2728 } 2729 } 2730 2731 const MCInstrDesc &NewDesc = get(NewOpC); 2732 MI->setDesc(NewDesc); 2733 2734 for (MCPhysReg ImpDef : NewDesc.implicit_defs()) { 2735 if (!MI->definesRegister(ImpDef, /*TRI=*/nullptr)) { 2736 MI->addOperand(*MI->getParent()->getParent(), 2737 MachineOperand::CreateReg(ImpDef, true, true)); 2738 } 2739 } 2740 for (MCPhysReg ImpUse : NewDesc.implicit_uses()) { 2741 if (!MI->readsRegister(ImpUse, /*TRI=*/nullptr)) { 2742 MI->addOperand(*MI->getParent()->getParent(), 2743 MachineOperand::CreateReg(ImpUse, false, true)); 2744 } 2745 } 2746 } 2747 assert(MI->definesRegister(PPC::CR0, /*TRI=*/nullptr) && 2748 "Record-form instruction does not define cr0?"); 2749 2750 // Modify the condition code of operands in OperandsToUpdate. 2751 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2752 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2753 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2754 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2755 2756 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2757 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2758 2759 return true; 2760 } 2761 2762 bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const { 2763 MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo(); 2764 if (MRI->isSSA()) 2765 return false; 2766 2767 Register SrcReg, SrcReg2; 2768 int64_t CmpMask, CmpValue; 2769 if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue)) 2770 return false; 2771 2772 // Try to optimize the comparison against 0. 2773 if (CmpValue || !CmpMask || SrcReg2) 2774 return false; 2775 2776 // The record forms set the condition register based on a signed comparison 2777 // with zero (see comments in optimizeCompareInstr). Since we can't do the 2778 // equality checks in post-RA, we are more restricted on a unsigned 2779 // comparison. 2780 unsigned Opc = CmpMI.getOpcode(); 2781 if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI) 2782 return false; 2783 2784 // The record forms are always based on a 64-bit comparison on PPC64 2785 // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit 2786 // comparison. Since we can't do the equality checks in post-RA, we bail out 2787 // the case. 2788 if (Subtarget.isPPC64() && Opc == PPC::CMPWI) 2789 return false; 2790 2791 // CmpMI can't be deleted if it has implicit def. 2792 if (CmpMI.hasImplicitDef()) 2793 return false; 2794 2795 bool SrcRegHasOtherUse = false; 2796 MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse); 2797 if (!SrcMI || !SrcMI->definesRegister(SrcReg, /*TRI=*/nullptr)) 2798 return false; 2799 2800 MachineOperand RegMO = CmpMI.getOperand(0); 2801 Register CRReg = RegMO.getReg(); 2802 if (CRReg != PPC::CR0) 2803 return false; 2804 2805 // Make sure there is no def/use of CRReg between SrcMI and CmpMI. 2806 bool SeenUseOfCRReg = false; 2807 bool IsCRRegKilled = false; 2808 if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled, 2809 SeenUseOfCRReg) || 2810 SrcMI->definesRegister(CRReg, /*TRI=*/nullptr) || SeenUseOfCRReg) 2811 return false; 2812 2813 int SrcMIOpc = SrcMI->getOpcode(); 2814 int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc); 2815 if (NewOpC == -1) 2816 return false; 2817 2818 LLVM_DEBUG(dbgs() << "Replace Instr: "); 2819 LLVM_DEBUG(SrcMI->dump()); 2820 2821 const MCInstrDesc &NewDesc = get(NewOpC); 2822 SrcMI->setDesc(NewDesc); 2823 MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI) 2824 .addReg(CRReg, RegState::ImplicitDefine); 2825 SrcMI->clearRegisterDeads(CRReg); 2826 2827 assert(SrcMI->definesRegister(PPC::CR0, /*TRI=*/nullptr) && 2828 "Record-form instruction does not define cr0?"); 2829 2830 LLVM_DEBUG(dbgs() << "with: "); 2831 LLVM_DEBUG(SrcMI->dump()); 2832 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 2833 LLVM_DEBUG(CmpMI.dump()); 2834 return true; 2835 } 2836 2837 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2838 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2839 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, 2840 const TargetRegisterInfo *TRI) const { 2841 const MachineOperand *BaseOp; 2842 OffsetIsScalable = false; 2843 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2844 return false; 2845 BaseOps.push_back(BaseOp); 2846 return true; 2847 } 2848 2849 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2850 const TargetRegisterInfo *TRI) { 2851 // If this is a volatile load/store, don't mess with it. 2852 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2853 return false; 2854 2855 if (LdSt.getOperand(2).isFI()) 2856 return true; 2857 2858 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2859 // Can't cluster if the instruction modifies the base register 2860 // or it is update form. e.g. ld r2,3(r2) 2861 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2862 return false; 2863 2864 return true; 2865 } 2866 2867 // Only cluster instruction pair that have the same opcode, and they are 2868 // clusterable according to PowerPC specification. 2869 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2870 const PPCSubtarget &Subtarget) { 2871 switch (FirstOpc) { 2872 default: 2873 return false; 2874 case PPC::STD: 2875 case PPC::STFD: 2876 case PPC::STXSD: 2877 case PPC::DFSTOREf64: 2878 return FirstOpc == SecondOpc; 2879 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2880 // 32bit and 64bit instruction selection. They are clusterable pair though 2881 // they are different opcode. 2882 case PPC::STW: 2883 case PPC::STW8: 2884 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2885 } 2886 } 2887 2888 bool PPCInstrInfo::shouldClusterMemOps( 2889 ArrayRef<const MachineOperand *> BaseOps1, int64_t OpOffset1, 2890 bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2, 2891 int64_t OpOffset2, bool OffsetIsScalable2, unsigned ClusterSize, 2892 unsigned NumBytes) const { 2893 2894 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2895 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2896 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2897 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2898 "Only base registers and frame indices are supported."); 2899 2900 // ClusterSize means the number of memory operations that will have been 2901 // clustered if this hook returns true. 2902 // Don't cluster memory op if there are already two ops clustered at least. 2903 if (ClusterSize > 2) 2904 return false; 2905 2906 // Cluster the load/store only when they have the same base 2907 // register or FI. 2908 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2909 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2910 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2911 return false; 2912 2913 // Check if the load/store are clusterable according to the PowerPC 2914 // specification. 2915 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2916 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2917 unsigned FirstOpc = FirstLdSt.getOpcode(); 2918 unsigned SecondOpc = SecondLdSt.getOpcode(); 2919 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2920 // Cluster the load/store only when they have the same opcode, and they are 2921 // clusterable opcode according to PowerPC specification. 2922 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2923 return false; 2924 2925 // Can't cluster load/store that have ordered or volatile memory reference. 2926 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2927 !isLdStSafeToCluster(SecondLdSt, TRI)) 2928 return false; 2929 2930 int64_t Offset1 = 0, Offset2 = 0; 2931 LocationSize Width1 = 0, Width2 = 0; 2932 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2933 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2934 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2935 Width1 != Width2) 2936 return false; 2937 2938 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2939 "getMemOperandWithOffsetWidth return incorrect base op"); 2940 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2941 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2942 return Offset1 + (int64_t)Width1.getValue() == Offset2; 2943 } 2944 2945 /// GetInstSize - Return the number of bytes of code the specified 2946 /// instruction may be. This returns the maximum number of bytes. 2947 /// 2948 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2949 unsigned Opcode = MI.getOpcode(); 2950 2951 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2952 const MachineFunction *MF = MI.getParent()->getParent(); 2953 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2954 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2955 } else if (Opcode == TargetOpcode::STACKMAP) { 2956 StackMapOpers Opers(&MI); 2957 return Opers.getNumPatchBytes(); 2958 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2959 PatchPointOpers Opers(&MI); 2960 return Opers.getNumPatchBytes(); 2961 } else { 2962 return get(Opcode).getSize(); 2963 } 2964 } 2965 2966 std::pair<unsigned, unsigned> 2967 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2968 // PPC always uses a direct mask. 2969 return std::make_pair(TF, 0u); 2970 } 2971 2972 ArrayRef<std::pair<unsigned, const char *>> 2973 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2974 using namespace PPCII; 2975 static const std::pair<unsigned, const char *> TargetFlags[] = { 2976 {MO_PLT, "ppc-plt"}, 2977 {MO_PIC_FLAG, "ppc-pic"}, 2978 {MO_PCREL_FLAG, "ppc-pcrel"}, 2979 {MO_GOT_FLAG, "ppc-got"}, 2980 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2981 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2982 {MO_TPREL_FLAG, "ppc-tprel"}, 2983 {MO_TLSLDM_FLAG, "ppc-tlsldm"}, 2984 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2985 {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, 2986 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2987 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2988 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}, 2989 {MO_LO, "ppc-lo"}, 2990 {MO_HA, "ppc-ha"}, 2991 {MO_TPREL_LO, "ppc-tprel-lo"}, 2992 {MO_TPREL_HA, "ppc-tprel-ha"}, 2993 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2994 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2995 {MO_TOC_LO, "ppc-toc-lo"}, 2996 {MO_TLS, "ppc-tls"}, 2997 {MO_PIC_HA_FLAG, "ppc-ha-pic"}, 2998 {MO_PIC_LO_FLAG, "ppc-lo-pic"}, 2999 {MO_TPREL_PCREL_FLAG, "ppc-tprel-pcrel"}, 3000 {MO_TLS_PCREL_FLAG, "ppc-tls-pcrel"}, 3001 {MO_GOT_PCREL_FLAG, "ppc-got-pcrel"}, 3002 }; 3003 return ArrayRef(TargetFlags); 3004 } 3005 3006 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 3007 // The VSX versions have the advantage of a full 64-register target whereas 3008 // the FP ones have the advantage of lower latency and higher throughput. So 3009 // what we are after is using the faster instructions in low register pressure 3010 // situations and using the larger register file in high register pressure 3011 // situations. 3012 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 3013 unsigned UpperOpcode, LowerOpcode; 3014 switch (MI.getOpcode()) { 3015 case PPC::DFLOADf32: 3016 UpperOpcode = PPC::LXSSP; 3017 LowerOpcode = PPC::LFS; 3018 break; 3019 case PPC::DFLOADf64: 3020 UpperOpcode = PPC::LXSD; 3021 LowerOpcode = PPC::LFD; 3022 break; 3023 case PPC::DFSTOREf32: 3024 UpperOpcode = PPC::STXSSP; 3025 LowerOpcode = PPC::STFS; 3026 break; 3027 case PPC::DFSTOREf64: 3028 UpperOpcode = PPC::STXSD; 3029 LowerOpcode = PPC::STFD; 3030 break; 3031 case PPC::XFLOADf32: 3032 UpperOpcode = PPC::LXSSPX; 3033 LowerOpcode = PPC::LFSX; 3034 break; 3035 case PPC::XFLOADf64: 3036 UpperOpcode = PPC::LXSDX; 3037 LowerOpcode = PPC::LFDX; 3038 break; 3039 case PPC::XFSTOREf32: 3040 UpperOpcode = PPC::STXSSPX; 3041 LowerOpcode = PPC::STFSX; 3042 break; 3043 case PPC::XFSTOREf64: 3044 UpperOpcode = PPC::STXSDX; 3045 LowerOpcode = PPC::STFDX; 3046 break; 3047 case PPC::LIWAX: 3048 UpperOpcode = PPC::LXSIWAX; 3049 LowerOpcode = PPC::LFIWAX; 3050 break; 3051 case PPC::LIWZX: 3052 UpperOpcode = PPC::LXSIWZX; 3053 LowerOpcode = PPC::LFIWZX; 3054 break; 3055 case PPC::STIWX: 3056 UpperOpcode = PPC::STXSIWX; 3057 LowerOpcode = PPC::STFIWX; 3058 break; 3059 default: 3060 llvm_unreachable("Unknown Operation!"); 3061 } 3062 3063 Register TargetReg = MI.getOperand(0).getReg(); 3064 unsigned Opcode; 3065 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 3066 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 3067 Opcode = LowerOpcode; 3068 else 3069 Opcode = UpperOpcode; 3070 MI.setDesc(get(Opcode)); 3071 return true; 3072 } 3073 3074 static bool isAnImmediateOperand(const MachineOperand &MO) { 3075 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 3076 } 3077 3078 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 3079 auto &MBB = *MI.getParent(); 3080 auto DL = MI.getDebugLoc(); 3081 3082 switch (MI.getOpcode()) { 3083 case PPC::BUILD_UACC: { 3084 MCRegister ACC = MI.getOperand(0).getReg(); 3085 MCRegister UACC = MI.getOperand(1).getReg(); 3086 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 3087 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 3088 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 3089 // FIXME: This can easily be improved to look up to the top of the MBB 3090 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 3091 // we can just re-target any such XXLOR's to DstVSR + offset. 3092 for (int VecNo = 0; VecNo < 4; VecNo++) 3093 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 3094 .addReg(SrcVSR + VecNo) 3095 .addReg(SrcVSR + VecNo); 3096 } 3097 // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. 3098 // So after building the 4 copies, we can replace the BUILD_UACC instruction 3099 // with a NOP. 3100 [[fallthrough]]; 3101 } 3102 case PPC::KILL_PAIR: { 3103 MI.setDesc(get(PPC::UNENCODED_NOP)); 3104 MI.removeOperand(1); 3105 MI.removeOperand(0); 3106 return true; 3107 } 3108 case TargetOpcode::LOAD_STACK_GUARD: { 3109 assert(Subtarget.isTargetLinux() && 3110 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3111 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3112 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3113 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3114 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3115 .addImm(Offset) 3116 .addReg(Reg); 3117 return true; 3118 } 3119 case PPC::PPCLdFixedAddr: { 3120 assert(Subtarget.getTargetTriple().isOSGlibc() && 3121 "Only targets with Glibc expected to contain PPCLdFixedAddr"); 3122 int64_t Offset = 0; 3123 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3124 MI.setDesc(get(PPC::LWZ)); 3125 uint64_t FAType = MI.getOperand(1).getImm(); 3126 #undef PPC_LNX_FEATURE 3127 #undef PPC_CPU 3128 #define PPC_LNX_DEFINE_OFFSETS 3129 #include "llvm/TargetParser/PPCTargetParser.def" 3130 bool IsLE = Subtarget.isLittleEndian(); 3131 bool Is64 = Subtarget.isPPC64(); 3132 if (FAType == PPC_FAWORD_HWCAP) { 3133 if (IsLE) 3134 Offset = Is64 ? PPC_HWCAP_OFFSET_LE64 : PPC_HWCAP_OFFSET_LE32; 3135 else 3136 Offset = Is64 ? PPC_HWCAP_OFFSET_BE64 : PPC_HWCAP_OFFSET_BE32; 3137 } else if (FAType == PPC_FAWORD_HWCAP2) { 3138 if (IsLE) 3139 Offset = Is64 ? PPC_HWCAP2_OFFSET_LE64 : PPC_HWCAP2_OFFSET_LE32; 3140 else 3141 Offset = Is64 ? PPC_HWCAP2_OFFSET_BE64 : PPC_HWCAP2_OFFSET_BE32; 3142 } else if (FAType == PPC_FAWORD_CPUID) { 3143 if (IsLE) 3144 Offset = Is64 ? PPC_CPUID_OFFSET_LE64 : PPC_CPUID_OFFSET_LE32; 3145 else 3146 Offset = Is64 ? PPC_CPUID_OFFSET_BE64 : PPC_CPUID_OFFSET_BE32; 3147 } 3148 assert(Offset && "Do not know the offset for this fixed addr load"); 3149 MI.removeOperand(1); 3150 Subtarget.getTargetMachine().setGlibcHWCAPAccess(); 3151 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3152 .addImm(Offset) 3153 .addReg(Reg); 3154 return true; 3155 #define PPC_TGT_PARSER_UNDEF_MACROS 3156 #include "llvm/TargetParser/PPCTargetParser.def" 3157 #undef PPC_TGT_PARSER_UNDEF_MACROS 3158 } 3159 case PPC::DFLOADf32: 3160 case PPC::DFLOADf64: 3161 case PPC::DFSTOREf32: 3162 case PPC::DFSTOREf64: { 3163 assert(Subtarget.hasP9Vector() && 3164 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3165 assert(MI.getOperand(2).isReg() && 3166 isAnImmediateOperand(MI.getOperand(1)) && 3167 "D-form op must have register and immediate operands"); 3168 return expandVSXMemPseudo(MI); 3169 } 3170 case PPC::XFLOADf32: 3171 case PPC::XFSTOREf32: 3172 case PPC::LIWAX: 3173 case PPC::LIWZX: 3174 case PPC::STIWX: { 3175 assert(Subtarget.hasP8Vector() && 3176 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3177 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3178 "X-form op must have register and register operands"); 3179 return expandVSXMemPseudo(MI); 3180 } 3181 case PPC::XFLOADf64: 3182 case PPC::XFSTOREf64: { 3183 assert(Subtarget.hasVSX() && 3184 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3185 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3186 "X-form op must have register and register operands"); 3187 return expandVSXMemPseudo(MI); 3188 } 3189 case PPC::SPILLTOVSR_LD: { 3190 Register TargetReg = MI.getOperand(0).getReg(); 3191 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3192 MI.setDesc(get(PPC::DFLOADf64)); 3193 return expandPostRAPseudo(MI); 3194 } 3195 else 3196 MI.setDesc(get(PPC::LD)); 3197 return true; 3198 } 3199 case PPC::SPILLTOVSR_ST: { 3200 Register SrcReg = MI.getOperand(0).getReg(); 3201 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3202 NumStoreSPILLVSRRCAsVec++; 3203 MI.setDesc(get(PPC::DFSTOREf64)); 3204 return expandPostRAPseudo(MI); 3205 } else { 3206 NumStoreSPILLVSRRCAsGpr++; 3207 MI.setDesc(get(PPC::STD)); 3208 } 3209 return true; 3210 } 3211 case PPC::SPILLTOVSR_LDX: { 3212 Register TargetReg = MI.getOperand(0).getReg(); 3213 if (PPC::VSFRCRegClass.contains(TargetReg)) 3214 MI.setDesc(get(PPC::LXSDX)); 3215 else 3216 MI.setDesc(get(PPC::LDX)); 3217 return true; 3218 } 3219 case PPC::SPILLTOVSR_STX: { 3220 Register SrcReg = MI.getOperand(0).getReg(); 3221 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3222 NumStoreSPILLVSRRCAsVec++; 3223 MI.setDesc(get(PPC::STXSDX)); 3224 } else { 3225 NumStoreSPILLVSRRCAsGpr++; 3226 MI.setDesc(get(PPC::STDX)); 3227 } 3228 return true; 3229 } 3230 3231 // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. 3232 case PPC::CFENCE: 3233 case PPC::CFENCE8: { 3234 auto Val = MI.getOperand(0).getReg(); 3235 unsigned CmpOp = Subtarget.isPPC64() ? PPC::CMPD : PPC::CMPW; 3236 BuildMI(MBB, MI, DL, get(CmpOp), PPC::CR7).addReg(Val).addReg(Val); 3237 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3238 .addImm(PPC::PRED_NE_MINUS) 3239 .addReg(PPC::CR7) 3240 .addImm(1); 3241 MI.setDesc(get(PPC::ISYNC)); 3242 MI.removeOperand(0); 3243 return true; 3244 } 3245 } 3246 return false; 3247 } 3248 3249 // Essentially a compile-time implementation of a compare->isel sequence. 3250 // It takes two constants to compare, along with the true/false registers 3251 // and the comparison type (as a subreg to a CR field) and returns one 3252 // of the true/false registers, depending on the comparison results. 3253 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3254 unsigned TrueReg, unsigned FalseReg, 3255 unsigned CRSubReg) { 3256 // Signed comparisons. The immediates are assumed to be sign-extended. 3257 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3258 switch (CRSubReg) { 3259 default: llvm_unreachable("Unknown integer comparison type."); 3260 case PPC::sub_lt: 3261 return Imm1 < Imm2 ? TrueReg : FalseReg; 3262 case PPC::sub_gt: 3263 return Imm1 > Imm2 ? TrueReg : FalseReg; 3264 case PPC::sub_eq: 3265 return Imm1 == Imm2 ? TrueReg : FalseReg; 3266 } 3267 } 3268 // Unsigned comparisons. 3269 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3270 switch (CRSubReg) { 3271 default: llvm_unreachable("Unknown integer comparison type."); 3272 case PPC::sub_lt: 3273 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3274 case PPC::sub_gt: 3275 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3276 case PPC::sub_eq: 3277 return Imm1 == Imm2 ? TrueReg : FalseReg; 3278 } 3279 } 3280 return PPC::NoRegister; 3281 } 3282 3283 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3284 unsigned OpNo, 3285 int64_t Imm) const { 3286 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3287 // Replace the REG with the Immediate. 3288 Register InUseReg = MI.getOperand(OpNo).getReg(); 3289 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3290 3291 // We need to make sure that the MI didn't have any implicit use 3292 // of this REG any more. We don't call MI.implicit_operands().empty() to 3293 // return early, since MI's MCID might be changed in calling context, as a 3294 // result its number of explicit operands may be changed, thus the begin of 3295 // implicit operand is changed. 3296 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3297 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, TRI, false); 3298 if (UseOpIdx >= 0) { 3299 MachineOperand &MO = MI.getOperand(UseOpIdx); 3300 if (MO.isImplicit()) 3301 // The operands must always be in the following order: 3302 // - explicit reg defs, 3303 // - other explicit operands (reg uses, immediates, etc.), 3304 // - implicit reg defs 3305 // - implicit reg uses 3306 // Therefore, removing the implicit operand won't change the explicit 3307 // operands layout. 3308 MI.removeOperand(UseOpIdx); 3309 } 3310 } 3311 3312 // Replace an instruction with one that materializes a constant (and sets 3313 // CR0 if the original instruction was a record-form instruction). 3314 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3315 const LoadImmediateInfo &LII) const { 3316 // Remove existing operands. 3317 int OperandToKeep = LII.SetCR ? 1 : 0; 3318 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3319 MI.removeOperand(i); 3320 3321 // Replace the instruction. 3322 if (LII.SetCR) { 3323 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3324 // Set the immediate. 3325 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3326 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3327 return; 3328 } 3329 else 3330 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3331 3332 // Set the immediate. 3333 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3334 .addImm(LII.Imm); 3335 } 3336 3337 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3338 bool &SeenIntermediateUse) const { 3339 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3340 "Should be called after register allocation."); 3341 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3342 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3343 It++; 3344 SeenIntermediateUse = false; 3345 for (; It != E; ++It) { 3346 if (It->modifiesRegister(Reg, TRI)) 3347 return &*It; 3348 if (It->readsRegister(Reg, TRI)) 3349 SeenIntermediateUse = true; 3350 } 3351 return nullptr; 3352 } 3353 3354 void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB, 3355 MachineBasicBlock::iterator MBBI, 3356 const DebugLoc &DL, Register Reg, 3357 int64_t Imm) const { 3358 assert(!MBB.getParent()->getRegInfo().isSSA() && 3359 "Register should be in non-SSA form after RA"); 3360 bool isPPC64 = Subtarget.isPPC64(); 3361 // FIXME: Materialization here is not optimal. 3362 // For some special bit patterns we can use less instructions. 3363 // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp. 3364 if (isInt<16>(Imm)) { 3365 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm); 3366 } else if (isInt<32>(Imm)) { 3367 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg) 3368 .addImm(Imm >> 16); 3369 if (Imm & 0xFFFF) 3370 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg) 3371 .addReg(Reg, RegState::Kill) 3372 .addImm(Imm & 0xFFFF); 3373 } else { 3374 assert(isPPC64 && "Materializing 64-bit immediate to single register is " 3375 "only supported in PPC64"); 3376 BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48); 3377 if ((Imm >> 32) & 0xFFFF) 3378 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3379 .addReg(Reg, RegState::Kill) 3380 .addImm((Imm >> 32) & 0xFFFF); 3381 BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg) 3382 .addReg(Reg, RegState::Kill) 3383 .addImm(32) 3384 .addImm(31); 3385 BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg) 3386 .addReg(Reg, RegState::Kill) 3387 .addImm((Imm >> 16) & 0xFFFF); 3388 if (Imm & 0xFFFF) 3389 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) 3390 .addReg(Reg, RegState::Kill) 3391 .addImm(Imm & 0xFFFF); 3392 } 3393 } 3394 3395 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3396 MachineInstr &MI, 3397 unsigned &OpNoForForwarding, 3398 bool &SeenIntermediateUse) const { 3399 OpNoForForwarding = ~0U; 3400 MachineInstr *DefMI = nullptr; 3401 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3402 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3403 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3404 // within the basic block to see if the register is defined using an 3405 // LI/LI8/ADDI/ADDI8. 3406 if (MRI->isSSA()) { 3407 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3408 if (!MI.getOperand(i).isReg()) 3409 continue; 3410 Register Reg = MI.getOperand(i).getReg(); 3411 if (!Reg.isVirtual()) 3412 continue; 3413 Register TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3414 if (TrueReg.isVirtual()) { 3415 MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg); 3416 if (DefMIForTrueReg->getOpcode() == PPC::LI || 3417 DefMIForTrueReg->getOpcode() == PPC::LI8 || 3418 DefMIForTrueReg->getOpcode() == PPC::ADDI || 3419 DefMIForTrueReg->getOpcode() == PPC::ADDI8) { 3420 OpNoForForwarding = i; 3421 DefMI = DefMIForTrueReg; 3422 // The ADDI and LI operand maybe exist in one instruction at same 3423 // time. we prefer to fold LI operand as LI only has one Imm operand 3424 // and is more possible to be converted. So if current DefMI is 3425 // ADDI/ADDI8, we continue to find possible LI/LI8. 3426 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3427 break; 3428 } 3429 } 3430 } 3431 } else { 3432 // Looking back through the definition for each operand could be expensive, 3433 // so exit early if this isn't an instruction that either has an immediate 3434 // form or is already an immediate form that we can handle. 3435 ImmInstrInfo III; 3436 unsigned Opc = MI.getOpcode(); 3437 bool ConvertibleImmForm = 3438 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3439 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3440 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3441 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3442 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3443 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3444 Opc == PPC::RLWINM8_rec; 3445 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3446 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 3447 : false; 3448 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3449 return nullptr; 3450 3451 // Don't convert or %X, %Y, %Y since that's just a register move. 3452 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3453 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3454 return nullptr; 3455 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3456 MachineOperand &MO = MI.getOperand(i); 3457 SeenIntermediateUse = false; 3458 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3459 Register Reg = MI.getOperand(i).getReg(); 3460 // If we see another use of this reg between the def and the MI, 3461 // we want to flag it so the def isn't deleted. 3462 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3463 if (DefMI) { 3464 // Is this register defined by some form of add-immediate (including 3465 // load-immediate) within this basic block? 3466 switch (DefMI->getOpcode()) { 3467 default: 3468 break; 3469 case PPC::LI: 3470 case PPC::LI8: 3471 case PPC::ADDItocL8: 3472 case PPC::ADDI: 3473 case PPC::ADDI8: 3474 OpNoForForwarding = i; 3475 return DefMI; 3476 } 3477 } 3478 } 3479 } 3480 } 3481 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3482 } 3483 3484 unsigned PPCInstrInfo::getSpillTarget() const { 3485 // With P10, we may need to spill paired vector registers or accumulator 3486 // registers. MMA implies paired vectors, so we can just check that. 3487 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3488 // P11 uses the P10 target. 3489 return Subtarget.isISAFuture() ? 3 : IsP10Variant ? 3490 2 : Subtarget.hasP9Vector() ? 3491 1 : 0; 3492 } 3493 3494 ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3495 return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3496 } 3497 3498 ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3499 return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; 3500 } 3501 3502 // This opt tries to convert the following imm form to an index form to save an 3503 // add for stack variables. 3504 // Return false if no such pattern found. 3505 // 3506 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3507 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3508 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3509 // 3510 // can be converted to: 3511 // 3512 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3513 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3514 // 3515 // In order to eliminate ADD instr, make sure that: 3516 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3517 // new ADDI instr and ADDI can only take int16 Imm. 3518 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3519 // between ADDI and ADD instr since its original def in ADDI will be changed 3520 // in new ADDI instr. And also there should be no new def for it between 3521 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3522 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3523 // between ADD and Imm instr since ADD instr will be eliminated. 3524 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3525 // moved to Index instr. 3526 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3527 MachineFunction *MF = MI.getParent()->getParent(); 3528 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3529 bool PostRA = !MRI->isSSA(); 3530 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3531 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3532 // frame base(OffsetAddi) are determined. 3533 if (!PostRA) 3534 return false; 3535 unsigned ToBeDeletedReg = 0; 3536 int64_t OffsetImm = 0; 3537 unsigned XFormOpcode = 0; 3538 ImmInstrInfo III; 3539 3540 // Check if Imm instr meets requirement. 3541 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3542 III)) 3543 return false; 3544 3545 bool OtherIntermediateUse = false; 3546 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3547 3548 // Exit if there is other use between ADD and Imm instr or no def found. 3549 if (OtherIntermediateUse || !ADDMI) 3550 return false; 3551 3552 // Check if ADD instr meets requirement. 3553 if (!isADDInstrEligibleForFolding(*ADDMI)) 3554 return false; 3555 3556 unsigned ScaleRegIdx = 0; 3557 int64_t OffsetAddi = 0; 3558 MachineInstr *ADDIMI = nullptr; 3559 3560 // Check if there is a valid ToBeChangedReg in ADDMI. 3561 // 1: It must be killed. 3562 // 2: Its definition must be a valid ADDIMI. 3563 // 3: It must satify int16 offset requirement. 3564 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3565 ScaleRegIdx = 2; 3566 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3567 ScaleRegIdx = 1; 3568 else 3569 return false; 3570 3571 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3572 Register ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3573 Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3574 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3575 MachineBasicBlock::iterator End) { 3576 for (auto It = ++Start; It != End; It++) 3577 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3578 return true; 3579 return false; 3580 }; 3581 3582 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3583 // treated as special zero when ScaleReg is R0/X0 register. 3584 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3585 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3586 return false; 3587 3588 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3589 // and Imm Instr. 3590 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3591 return false; 3592 3593 // Now start to do the transformation. 3594 LLVM_DEBUG(dbgs() << "Replace instruction: " 3595 << "\n"); 3596 LLVM_DEBUG(ADDIMI->dump()); 3597 LLVM_DEBUG(ADDMI->dump()); 3598 LLVM_DEBUG(MI.dump()); 3599 LLVM_DEBUG(dbgs() << "with: " 3600 << "\n"); 3601 3602 // Update ADDI instr. 3603 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3604 3605 // Update Imm instr. 3606 MI.setDesc(get(XFormOpcode)); 3607 MI.getOperand(III.ImmOpNo) 3608 .ChangeToRegister(ScaleReg, false, false, 3609 ADDMI->getOperand(ScaleRegIdx).isKill()); 3610 3611 MI.getOperand(III.OpNoForForwarding) 3612 .ChangeToRegister(ToBeChangedReg, false, false, true); 3613 3614 // Eliminate ADD instr. 3615 ADDMI->eraseFromParent(); 3616 3617 LLVM_DEBUG(ADDIMI->dump()); 3618 LLVM_DEBUG(MI.dump()); 3619 3620 return true; 3621 } 3622 3623 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3624 int64_t &Imm) const { 3625 unsigned Opc = ADDIMI.getOpcode(); 3626 3627 // Exit if the instruction is not ADDI. 3628 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3629 return false; 3630 3631 // The operand may not necessarily be an immediate - it could be a relocation. 3632 if (!ADDIMI.getOperand(2).isImm()) 3633 return false; 3634 3635 Imm = ADDIMI.getOperand(2).getImm(); 3636 3637 return true; 3638 } 3639 3640 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3641 unsigned Opc = ADDMI.getOpcode(); 3642 3643 // Exit if the instruction is not ADD. 3644 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3645 } 3646 3647 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3648 unsigned &ToBeDeletedReg, 3649 unsigned &XFormOpcode, 3650 int64_t &OffsetImm, 3651 ImmInstrInfo &III) const { 3652 // Only handle load/store. 3653 if (!MI.mayLoadOrStore()) 3654 return false; 3655 3656 unsigned Opc = MI.getOpcode(); 3657 3658 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3659 3660 // Exit if instruction has no index form. 3661 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3662 return false; 3663 3664 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3665 if (!instrHasImmForm(XFormOpcode, 3666 PPC::isVFRegister(MI.getOperand(0).getReg()), III, true)) 3667 return false; 3668 3669 if (!III.IsSummingOperands) 3670 return false; 3671 3672 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3673 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3674 // Only support imm operands, not relocation slots or others. 3675 if (!ImmOperand.isImm()) 3676 return false; 3677 3678 assert(RegOperand.isReg() && "Instruction format is not right"); 3679 3680 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3681 if (!RegOperand.isKill()) 3682 return false; 3683 3684 ToBeDeletedReg = RegOperand.getReg(); 3685 OffsetImm = ImmOperand.getImm(); 3686 3687 return true; 3688 } 3689 3690 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3691 MachineInstr *&ADDIMI, 3692 int64_t &OffsetAddi, 3693 int64_t OffsetImm) const { 3694 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3695 MachineOperand &MO = ADDMI->getOperand(Index); 3696 3697 if (!MO.isKill()) 3698 return false; 3699 3700 bool OtherIntermediateUse = false; 3701 3702 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3703 // Currently handle only one "add + Imminstr" pair case, exit if other 3704 // intermediate use for ToBeChangedReg found. 3705 // TODO: handle the cases where there are other "add + Imminstr" pairs 3706 // with same offset in Imminstr which is like: 3707 // 3708 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3709 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3710 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3711 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3712 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3713 // 3714 // can be converted to: 3715 // 3716 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3717 // (OffsetAddi + OffsetImm) 3718 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3719 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3720 3721 if (OtherIntermediateUse || !ADDIMI) 3722 return false; 3723 // Check if ADDI instr meets requirement. 3724 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3725 return false; 3726 3727 if (isInt<16>(OffsetAddi + OffsetImm)) 3728 return true; 3729 return false; 3730 } 3731 3732 // If this instruction has an immediate form and one of its operands is a 3733 // result of a load-immediate or an add-immediate, convert it to 3734 // the immediate form if the constant is in range. 3735 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3736 SmallSet<Register, 4> &RegsToUpdate, 3737 MachineInstr **KilledDef) const { 3738 MachineFunction *MF = MI.getParent()->getParent(); 3739 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3740 bool PostRA = !MRI->isSSA(); 3741 bool SeenIntermediateUse = true; 3742 unsigned ForwardingOperand = ~0U; 3743 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3744 SeenIntermediateUse); 3745 if (!DefMI) 3746 return false; 3747 assert(ForwardingOperand < MI.getNumOperands() && 3748 "The forwarding operand needs to be valid at this point"); 3749 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3750 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3751 if (KilledDef && KillFwdDefMI) 3752 *KilledDef = DefMI; 3753 3754 // Conservatively add defs from DefMI and defs/uses from MI to the set of 3755 // registers that need their kill flags updated. 3756 for (const MachineOperand &MO : DefMI->operands()) 3757 if (MO.isReg() && MO.isDef()) 3758 RegsToUpdate.insert(MO.getReg()); 3759 for (const MachineOperand &MO : MI.operands()) 3760 if (MO.isReg()) 3761 RegsToUpdate.insert(MO.getReg()); 3762 3763 // If this is a imm instruction and its register operands is produced by ADDI, 3764 // put the imm into imm inst directly. 3765 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3766 PPC::INSTRUCTION_LIST_END && 3767 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3768 return true; 3769 3770 ImmInstrInfo III; 3771 bool IsVFReg = MI.getOperand(0).isReg() 3772 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 3773 : false; 3774 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3775 // If this is a reg+reg instruction that has a reg+imm form, 3776 // and one of the operands is produced by an add-immediate, 3777 // try to convert it. 3778 if (HasImmForm && 3779 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3780 KillFwdDefMI)) 3781 return true; 3782 3783 // If this is a reg+reg instruction that has a reg+imm form, 3784 // and one of the operands is produced by LI, convert it now. 3785 if (HasImmForm && 3786 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3787 return true; 3788 3789 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3790 // can be simpified to LI. 3791 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3792 return true; 3793 3794 return false; 3795 } 3796 3797 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3798 MachineInstr **ToErase) const { 3799 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3800 Register FoldingReg = MI.getOperand(1).getReg(); 3801 if (!FoldingReg.isVirtual()) 3802 return false; 3803 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3804 if (SrcMI->getOpcode() != PPC::RLWINM && 3805 SrcMI->getOpcode() != PPC::RLWINM_rec && 3806 SrcMI->getOpcode() != PPC::RLWINM8 && 3807 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3808 return false; 3809 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3810 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3811 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3812 "Invalid PPC::RLWINM Instruction!"); 3813 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3814 uint64_t SHMI = MI.getOperand(2).getImm(); 3815 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3816 uint64_t MBMI = MI.getOperand(3).getImm(); 3817 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3818 uint64_t MEMI = MI.getOperand(4).getImm(); 3819 3820 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3821 "Invalid PPC::RLWINM Instruction!"); 3822 // If MBMI is bigger than MEMI, we always can not get run of ones. 3823 // RotatedSrcMask non-wrap: 3824 // 0........31|32........63 3825 // RotatedSrcMask: B---E B---E 3826 // MaskMI: -----------|--E B------ 3827 // Result: ----- --- (Bad candidate) 3828 // 3829 // RotatedSrcMask wrap: 3830 // 0........31|32........63 3831 // RotatedSrcMask: --E B----|--E B---- 3832 // MaskMI: -----------|--E B------ 3833 // Result: --- -----|--- ----- (Bad candidate) 3834 // 3835 // One special case is RotatedSrcMask is a full set mask. 3836 // RotatedSrcMask full: 3837 // 0........31|32........63 3838 // RotatedSrcMask: ------EB---|-------EB--- 3839 // MaskMI: -----------|--E B------ 3840 // Result: -----------|--- ------- (Good candidate) 3841 3842 // Mark special case. 3843 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3844 3845 // For other MBMI > MEMI cases, just return. 3846 if ((MBMI > MEMI) && !SrcMaskFull) 3847 return false; 3848 3849 // Handle MBMI <= MEMI cases. 3850 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3851 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3852 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3853 // while in PowerPC ISA, lowerest bit is at index 63. 3854 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3855 3856 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3857 APInt FinalMask = RotatedSrcMask & MaskMI; 3858 uint32_t NewMB, NewME; 3859 bool Simplified = false; 3860 3861 // If final mask is 0, MI result should be 0 too. 3862 if (FinalMask.isZero()) { 3863 bool Is64Bit = 3864 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3865 Simplified = true; 3866 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3867 LLVM_DEBUG(MI.dump()); 3868 3869 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3870 // Replace MI with "LI 0" 3871 MI.removeOperand(4); 3872 MI.removeOperand(3); 3873 MI.removeOperand(2); 3874 MI.getOperand(1).ChangeToImmediate(0); 3875 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3876 } else { 3877 // Replace MI with "ANDI_rec reg, 0" 3878 MI.removeOperand(4); 3879 MI.removeOperand(3); 3880 MI.getOperand(2).setImm(0); 3881 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3882 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3883 if (SrcMI->getOperand(1).isKill()) { 3884 MI.getOperand(1).setIsKill(true); 3885 SrcMI->getOperand(1).setIsKill(false); 3886 } else 3887 // About to replace MI.getOperand(1), clear its kill flag. 3888 MI.getOperand(1).setIsKill(false); 3889 } 3890 3891 LLVM_DEBUG(dbgs() << "With: "); 3892 LLVM_DEBUG(MI.dump()); 3893 3894 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3895 NewMB <= NewME) || 3896 SrcMaskFull) { 3897 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3898 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3899 // return a 32 bit value. 3900 Simplified = true; 3901 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3902 LLVM_DEBUG(MI.dump()); 3903 3904 uint16_t NewSH = (SHSrc + SHMI) % 32; 3905 MI.getOperand(2).setImm(NewSH); 3906 // If SrcMI mask is full, no need to update MBMI and MEMI. 3907 if (!SrcMaskFull) { 3908 MI.getOperand(3).setImm(NewMB); 3909 MI.getOperand(4).setImm(NewME); 3910 } 3911 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3912 if (SrcMI->getOperand(1).isKill()) { 3913 MI.getOperand(1).setIsKill(true); 3914 SrcMI->getOperand(1).setIsKill(false); 3915 } else 3916 // About to replace MI.getOperand(1), clear its kill flag. 3917 MI.getOperand(1).setIsKill(false); 3918 3919 LLVM_DEBUG(dbgs() << "To: "); 3920 LLVM_DEBUG(MI.dump()); 3921 } 3922 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3923 !SrcMI->hasImplicitDef()) { 3924 // If FoldingReg has no non-debug use and it has no implicit def (it 3925 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3926 // Otherwise keep it. 3927 *ToErase = SrcMI; 3928 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3929 LLVM_DEBUG(SrcMI->dump()); 3930 } 3931 return Simplified; 3932 } 3933 3934 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3935 ImmInstrInfo &III, bool PostRA) const { 3936 // The vast majority of the instructions would need their operand 2 replaced 3937 // with an immediate when switching to the reg+imm form. A marked exception 3938 // are the update form loads/stores for which a constant operand 2 would need 3939 // to turn into a displacement and move operand 1 to the operand 2 position. 3940 III.ImmOpNo = 2; 3941 III.OpNoForForwarding = 2; 3942 III.ImmWidth = 16; 3943 III.ImmMustBeMultipleOf = 1; 3944 III.TruncateImmTo = 0; 3945 III.IsSummingOperands = false; 3946 switch (Opc) { 3947 default: return false; 3948 case PPC::ADD4: 3949 case PPC::ADD8: 3950 III.SignedImm = true; 3951 III.ZeroIsSpecialOrig = 0; 3952 III.ZeroIsSpecialNew = 1; 3953 III.IsCommutative = true; 3954 III.IsSummingOperands = true; 3955 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3956 break; 3957 case PPC::ADDC: 3958 case PPC::ADDC8: 3959 III.SignedImm = true; 3960 III.ZeroIsSpecialOrig = 0; 3961 III.ZeroIsSpecialNew = 0; 3962 III.IsCommutative = true; 3963 III.IsSummingOperands = true; 3964 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3965 break; 3966 case PPC::ADDC_rec: 3967 III.SignedImm = true; 3968 III.ZeroIsSpecialOrig = 0; 3969 III.ZeroIsSpecialNew = 0; 3970 III.IsCommutative = true; 3971 III.IsSummingOperands = true; 3972 III.ImmOpcode = PPC::ADDIC_rec; 3973 break; 3974 case PPC::SUBFC: 3975 case PPC::SUBFC8: 3976 III.SignedImm = true; 3977 III.ZeroIsSpecialOrig = 0; 3978 III.ZeroIsSpecialNew = 0; 3979 III.IsCommutative = false; 3980 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3981 break; 3982 case PPC::CMPW: 3983 case PPC::CMPD: 3984 III.SignedImm = true; 3985 III.ZeroIsSpecialOrig = 0; 3986 III.ZeroIsSpecialNew = 0; 3987 III.IsCommutative = false; 3988 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3989 break; 3990 case PPC::CMPLW: 3991 case PPC::CMPLD: 3992 III.SignedImm = false; 3993 III.ZeroIsSpecialOrig = 0; 3994 III.ZeroIsSpecialNew = 0; 3995 III.IsCommutative = false; 3996 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3997 break; 3998 case PPC::AND_rec: 3999 case PPC::AND8_rec: 4000 case PPC::OR: 4001 case PPC::OR8: 4002 case PPC::XOR: 4003 case PPC::XOR8: 4004 III.SignedImm = false; 4005 III.ZeroIsSpecialOrig = 0; 4006 III.ZeroIsSpecialNew = 0; 4007 III.IsCommutative = true; 4008 switch(Opc) { 4009 default: llvm_unreachable("Unknown opcode"); 4010 case PPC::AND_rec: 4011 III.ImmOpcode = PPC::ANDI_rec; 4012 break; 4013 case PPC::AND8_rec: 4014 III.ImmOpcode = PPC::ANDI8_rec; 4015 break; 4016 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 4017 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 4018 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 4019 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 4020 } 4021 break; 4022 case PPC::RLWNM: 4023 case PPC::RLWNM8: 4024 case PPC::RLWNM_rec: 4025 case PPC::RLWNM8_rec: 4026 case PPC::SLW: 4027 case PPC::SLW8: 4028 case PPC::SLW_rec: 4029 case PPC::SLW8_rec: 4030 case PPC::SRW: 4031 case PPC::SRW8: 4032 case PPC::SRW_rec: 4033 case PPC::SRW8_rec: 4034 case PPC::SRAW: 4035 case PPC::SRAW_rec: 4036 III.SignedImm = false; 4037 III.ZeroIsSpecialOrig = 0; 4038 III.ZeroIsSpecialNew = 0; 4039 III.IsCommutative = false; 4040 // This isn't actually true, but the instructions ignore any of the 4041 // upper bits, so any immediate loaded with an LI is acceptable. 4042 // This does not apply to shift right algebraic because a value 4043 // out of range will produce a -1/0. 4044 III.ImmWidth = 16; 4045 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 4046 Opc == PPC::RLWNM8_rec) 4047 III.TruncateImmTo = 5; 4048 else 4049 III.TruncateImmTo = 6; 4050 switch(Opc) { 4051 default: llvm_unreachable("Unknown opcode"); 4052 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 4053 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 4054 case PPC::RLWNM_rec: 4055 III.ImmOpcode = PPC::RLWINM_rec; 4056 break; 4057 case PPC::RLWNM8_rec: 4058 III.ImmOpcode = PPC::RLWINM8_rec; 4059 break; 4060 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 4061 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 4062 case PPC::SLW_rec: 4063 III.ImmOpcode = PPC::RLWINM_rec; 4064 break; 4065 case PPC::SLW8_rec: 4066 III.ImmOpcode = PPC::RLWINM8_rec; 4067 break; 4068 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 4069 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 4070 case PPC::SRW_rec: 4071 III.ImmOpcode = PPC::RLWINM_rec; 4072 break; 4073 case PPC::SRW8_rec: 4074 III.ImmOpcode = PPC::RLWINM8_rec; 4075 break; 4076 case PPC::SRAW: 4077 III.ImmWidth = 5; 4078 III.TruncateImmTo = 0; 4079 III.ImmOpcode = PPC::SRAWI; 4080 break; 4081 case PPC::SRAW_rec: 4082 III.ImmWidth = 5; 4083 III.TruncateImmTo = 0; 4084 III.ImmOpcode = PPC::SRAWI_rec; 4085 break; 4086 } 4087 break; 4088 case PPC::RLDCL: 4089 case PPC::RLDCL_rec: 4090 case PPC::RLDCR: 4091 case PPC::RLDCR_rec: 4092 case PPC::SLD: 4093 case PPC::SLD_rec: 4094 case PPC::SRD: 4095 case PPC::SRD_rec: 4096 case PPC::SRAD: 4097 case PPC::SRAD_rec: 4098 III.SignedImm = false; 4099 III.ZeroIsSpecialOrig = 0; 4100 III.ZeroIsSpecialNew = 0; 4101 III.IsCommutative = false; 4102 // This isn't actually true, but the instructions ignore any of the 4103 // upper bits, so any immediate loaded with an LI is acceptable. 4104 // This does not apply to shift right algebraic because a value 4105 // out of range will produce a -1/0. 4106 III.ImmWidth = 16; 4107 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 4108 Opc == PPC::RLDCR_rec) 4109 III.TruncateImmTo = 6; 4110 else 4111 III.TruncateImmTo = 7; 4112 switch(Opc) { 4113 default: llvm_unreachable("Unknown opcode"); 4114 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4115 case PPC::RLDCL_rec: 4116 III.ImmOpcode = PPC::RLDICL_rec; 4117 break; 4118 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4119 case PPC::RLDCR_rec: 4120 III.ImmOpcode = PPC::RLDICR_rec; 4121 break; 4122 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4123 case PPC::SLD_rec: 4124 III.ImmOpcode = PPC::RLDICR_rec; 4125 break; 4126 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4127 case PPC::SRD_rec: 4128 III.ImmOpcode = PPC::RLDICL_rec; 4129 break; 4130 case PPC::SRAD: 4131 III.ImmWidth = 6; 4132 III.TruncateImmTo = 0; 4133 III.ImmOpcode = PPC::SRADI; 4134 break; 4135 case PPC::SRAD_rec: 4136 III.ImmWidth = 6; 4137 III.TruncateImmTo = 0; 4138 III.ImmOpcode = PPC::SRADI_rec; 4139 break; 4140 } 4141 break; 4142 // Loads and stores: 4143 case PPC::LBZX: 4144 case PPC::LBZX8: 4145 case PPC::LHZX: 4146 case PPC::LHZX8: 4147 case PPC::LHAX: 4148 case PPC::LHAX8: 4149 case PPC::LWZX: 4150 case PPC::LWZX8: 4151 case PPC::LWAX: 4152 case PPC::LDX: 4153 case PPC::LFSX: 4154 case PPC::LFDX: 4155 case PPC::STBX: 4156 case PPC::STBX8: 4157 case PPC::STHX: 4158 case PPC::STHX8: 4159 case PPC::STWX: 4160 case PPC::STWX8: 4161 case PPC::STDX: 4162 case PPC::STFSX: 4163 case PPC::STFDX: 4164 III.SignedImm = true; 4165 III.ZeroIsSpecialOrig = 1; 4166 III.ZeroIsSpecialNew = 2; 4167 III.IsCommutative = true; 4168 III.IsSummingOperands = true; 4169 III.ImmOpNo = 1; 4170 III.OpNoForForwarding = 2; 4171 switch(Opc) { 4172 default: llvm_unreachable("Unknown opcode"); 4173 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4174 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4175 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4176 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4177 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4178 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4179 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4180 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4181 case PPC::LWAX: 4182 III.ImmOpcode = PPC::LWA; 4183 III.ImmMustBeMultipleOf = 4; 4184 break; 4185 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4186 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4187 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4188 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4189 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4190 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4191 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4192 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4193 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4194 case PPC::STDX: 4195 III.ImmOpcode = PPC::STD; 4196 III.ImmMustBeMultipleOf = 4; 4197 break; 4198 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4199 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4200 } 4201 break; 4202 case PPC::LBZUX: 4203 case PPC::LBZUX8: 4204 case PPC::LHZUX: 4205 case PPC::LHZUX8: 4206 case PPC::LHAUX: 4207 case PPC::LHAUX8: 4208 case PPC::LWZUX: 4209 case PPC::LWZUX8: 4210 case PPC::LDUX: 4211 case PPC::LFSUX: 4212 case PPC::LFDUX: 4213 case PPC::STBUX: 4214 case PPC::STBUX8: 4215 case PPC::STHUX: 4216 case PPC::STHUX8: 4217 case PPC::STWUX: 4218 case PPC::STWUX8: 4219 case PPC::STDUX: 4220 case PPC::STFSUX: 4221 case PPC::STFDUX: 4222 III.SignedImm = true; 4223 III.ZeroIsSpecialOrig = 2; 4224 III.ZeroIsSpecialNew = 3; 4225 III.IsCommutative = false; 4226 III.IsSummingOperands = true; 4227 III.ImmOpNo = 2; 4228 III.OpNoForForwarding = 3; 4229 switch(Opc) { 4230 default: llvm_unreachable("Unknown opcode"); 4231 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4232 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4233 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4234 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4235 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4236 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4237 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4238 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4239 case PPC::LDUX: 4240 III.ImmOpcode = PPC::LDU; 4241 III.ImmMustBeMultipleOf = 4; 4242 break; 4243 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4244 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4245 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4246 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4247 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4248 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4249 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4250 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4251 case PPC::STDUX: 4252 III.ImmOpcode = PPC::STDU; 4253 III.ImmMustBeMultipleOf = 4; 4254 break; 4255 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4256 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4257 } 4258 break; 4259 // Power9 and up only. For some of these, the X-Form version has access to all 4260 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4261 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4262 // into or stored from is one of the VR registers. 4263 case PPC::LXVX: 4264 case PPC::LXSSPX: 4265 case PPC::LXSDX: 4266 case PPC::STXVX: 4267 case PPC::STXSSPX: 4268 case PPC::STXSDX: 4269 case PPC::XFLOADf32: 4270 case PPC::XFLOADf64: 4271 case PPC::XFSTOREf32: 4272 case PPC::XFSTOREf64: 4273 if (!Subtarget.hasP9Vector()) 4274 return false; 4275 III.SignedImm = true; 4276 III.ZeroIsSpecialOrig = 1; 4277 III.ZeroIsSpecialNew = 2; 4278 III.IsCommutative = true; 4279 III.IsSummingOperands = true; 4280 III.ImmOpNo = 1; 4281 III.OpNoForForwarding = 2; 4282 III.ImmMustBeMultipleOf = 4; 4283 switch(Opc) { 4284 default: llvm_unreachable("Unknown opcode"); 4285 case PPC::LXVX: 4286 III.ImmOpcode = PPC::LXV; 4287 III.ImmMustBeMultipleOf = 16; 4288 break; 4289 case PPC::LXSSPX: 4290 if (PostRA) { 4291 if (IsVFReg) 4292 III.ImmOpcode = PPC::LXSSP; 4293 else { 4294 III.ImmOpcode = PPC::LFS; 4295 III.ImmMustBeMultipleOf = 1; 4296 } 4297 break; 4298 } 4299 [[fallthrough]]; 4300 case PPC::XFLOADf32: 4301 III.ImmOpcode = PPC::DFLOADf32; 4302 break; 4303 case PPC::LXSDX: 4304 if (PostRA) { 4305 if (IsVFReg) 4306 III.ImmOpcode = PPC::LXSD; 4307 else { 4308 III.ImmOpcode = PPC::LFD; 4309 III.ImmMustBeMultipleOf = 1; 4310 } 4311 break; 4312 } 4313 [[fallthrough]]; 4314 case PPC::XFLOADf64: 4315 III.ImmOpcode = PPC::DFLOADf64; 4316 break; 4317 case PPC::STXVX: 4318 III.ImmOpcode = PPC::STXV; 4319 III.ImmMustBeMultipleOf = 16; 4320 break; 4321 case PPC::STXSSPX: 4322 if (PostRA) { 4323 if (IsVFReg) 4324 III.ImmOpcode = PPC::STXSSP; 4325 else { 4326 III.ImmOpcode = PPC::STFS; 4327 III.ImmMustBeMultipleOf = 1; 4328 } 4329 break; 4330 } 4331 [[fallthrough]]; 4332 case PPC::XFSTOREf32: 4333 III.ImmOpcode = PPC::DFSTOREf32; 4334 break; 4335 case PPC::STXSDX: 4336 if (PostRA) { 4337 if (IsVFReg) 4338 III.ImmOpcode = PPC::STXSD; 4339 else { 4340 III.ImmOpcode = PPC::STFD; 4341 III.ImmMustBeMultipleOf = 1; 4342 } 4343 break; 4344 } 4345 [[fallthrough]]; 4346 case PPC::XFSTOREf64: 4347 III.ImmOpcode = PPC::DFSTOREf64; 4348 break; 4349 } 4350 break; 4351 } 4352 return true; 4353 } 4354 4355 // Utility function for swaping two arbitrary operands of an instruction. 4356 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4357 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4358 4359 unsigned MaxOp = std::max(Op1, Op2); 4360 unsigned MinOp = std::min(Op1, Op2); 4361 MachineOperand MOp1 = MI.getOperand(MinOp); 4362 MachineOperand MOp2 = MI.getOperand(MaxOp); 4363 MI.removeOperand(std::max(Op1, Op2)); 4364 MI.removeOperand(std::min(Op1, Op2)); 4365 4366 // If the operands we are swapping are the two at the end (the common case) 4367 // we can just remove both and add them in the opposite order. 4368 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4369 MI.addOperand(MOp2); 4370 MI.addOperand(MOp1); 4371 } else { 4372 // Store all operands in a temporary vector, remove them and re-add in the 4373 // right order. 4374 SmallVector<MachineOperand, 2> MOps; 4375 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4376 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4377 MOps.push_back(MI.getOperand(i)); 4378 MI.removeOperand(i); 4379 } 4380 // MOp2 needs to be added next. 4381 MI.addOperand(MOp2); 4382 // Now add the rest. 4383 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4384 if (i == MaxOp) 4385 MI.addOperand(MOp1); 4386 else { 4387 MI.addOperand(MOps.back()); 4388 MOps.pop_back(); 4389 } 4390 } 4391 } 4392 } 4393 4394 // Check if the 'MI' that has the index OpNoForForwarding 4395 // meets the requirement described in the ImmInstrInfo. 4396 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4397 const ImmInstrInfo &III, 4398 unsigned OpNoForForwarding 4399 ) const { 4400 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4401 // would not work pre-RA, we can only do the check post RA. 4402 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4403 if (MRI.isSSA()) 4404 return false; 4405 4406 // Cannot do the transform if MI isn't summing the operands. 4407 if (!III.IsSummingOperands) 4408 return false; 4409 4410 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4411 if (!III.ZeroIsSpecialOrig) 4412 return false; 4413 4414 // We cannot do the transform if the operand we are trying to replace 4415 // isn't the same as the operand the instruction allows. 4416 if (OpNoForForwarding != III.OpNoForForwarding) 4417 return false; 4418 4419 // Check if the instruction we are trying to transform really has 4420 // the special zero register as its operand. 4421 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4422 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4423 return false; 4424 4425 // This machine instruction is convertible if it is, 4426 // 1. summing the operands. 4427 // 2. one of the operands is special zero register. 4428 // 3. the operand we are trying to replace is allowed by the MI. 4429 return true; 4430 } 4431 4432 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4433 // accordingly. 4434 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4435 const ImmInstrInfo &III, 4436 MachineOperand *&ImmMO, 4437 MachineOperand *&RegMO) const { 4438 unsigned Opc = DefMI.getOpcode(); 4439 if (Opc != PPC::ADDItocL8 && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4440 return false; 4441 4442 // Skip the optimization of transformTo[NewImm|Imm]FormFedByAdd for ADDItocL8 4443 // on AIX which is used for toc-data access. TODO: Follow up to see if it can 4444 // apply for AIX toc-data as well. 4445 if (Opc == PPC::ADDItocL8 && Subtarget.isAIX()) 4446 return false; 4447 4448 assert(DefMI.getNumOperands() >= 3 && 4449 "Add inst must have at least three operands"); 4450 RegMO = &DefMI.getOperand(1); 4451 ImmMO = &DefMI.getOperand(2); 4452 4453 // Before RA, ADDI first operand could be a frame index. 4454 if (!RegMO->isReg()) 4455 return false; 4456 4457 // This DefMI is elgible for forwarding if it is: 4458 // 1. add inst 4459 // 2. one of the operands is Imm/CPI/Global. 4460 return isAnImmediateOperand(*ImmMO); 4461 } 4462 4463 bool PPCInstrInfo::isRegElgibleForForwarding( 4464 const MachineOperand &RegMO, const MachineInstr &DefMI, 4465 const MachineInstr &MI, bool KillDefMI, 4466 bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const { 4467 // x = addi y, imm 4468 // ... 4469 // z = lfdx 0, x -> z = lfd imm(y) 4470 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4471 // of "y" between the DEF of "x" and "z". 4472 // The query is only valid post RA. 4473 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4474 if (MRI.isSSA()) 4475 return false; 4476 4477 Register Reg = RegMO.getReg(); 4478 4479 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4480 MachineBasicBlock::const_reverse_iterator It = MI; 4481 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4482 It++; 4483 for (; It != E; ++It) { 4484 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4485 return false; 4486 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4487 IsFwdFeederRegKilled = true; 4488 if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4489 SeenIntermediateUse = true; 4490 // Made it to DefMI without encountering a clobber. 4491 if ((&*It) == &DefMI) 4492 break; 4493 } 4494 assert((&*It) == &DefMI && "DefMI is missing"); 4495 4496 // If DefMI also defines the register to be forwarded, we can only forward it 4497 // if DefMI is being erased. 4498 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4499 return KillDefMI; 4500 4501 return true; 4502 } 4503 4504 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4505 const MachineInstr &DefMI, 4506 const ImmInstrInfo &III, 4507 int64_t &Imm, 4508 int64_t BaseImm) const { 4509 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4510 if (DefMI.getOpcode() == PPC::ADDItocL8) { 4511 // The operand for ADDItocL8 is CPI, which isn't imm at compiling time, 4512 // However, we know that, it is 16-bit width, and has the alignment of 4. 4513 // Check if the instruction met the requirement. 4514 if (III.ImmMustBeMultipleOf > 4 || 4515 III.TruncateImmTo || III.ImmWidth != 16) 4516 return false; 4517 4518 // Going from XForm to DForm loads means that the displacement needs to be 4519 // not just an immediate but also a multiple of 4, or 16 depending on the 4520 // load. A DForm load cannot be represented if it is a multiple of say 2. 4521 // XForm loads do not have this restriction. 4522 if (ImmMO.isGlobal()) { 4523 const DataLayout &DL = ImmMO.getGlobal()->getDataLayout(); 4524 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4525 return false; 4526 } 4527 4528 return true; 4529 } 4530 4531 if (ImmMO.isImm()) { 4532 // It is Imm, we need to check if the Imm fit the range. 4533 // Sign-extend to 64-bits. 4534 // DefMI may be folded with another imm form instruction, the result Imm is 4535 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4536 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4537 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4538 return false; 4539 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4540 return false; 4541 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4542 4543 if (Imm % III.ImmMustBeMultipleOf) 4544 return false; 4545 if (III.TruncateImmTo) 4546 Imm &= ((1 << III.TruncateImmTo) - 1); 4547 } 4548 else 4549 return false; 4550 4551 // This ImmMO is forwarded if it meets the requriement describle 4552 // in ImmInstrInfo 4553 return true; 4554 } 4555 4556 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4557 unsigned OpNoForForwarding, 4558 MachineInstr **KilledDef) const { 4559 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4560 !DefMI.getOperand(1).isImm()) 4561 return false; 4562 4563 MachineFunction *MF = MI.getParent()->getParent(); 4564 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4565 bool PostRA = !MRI->isSSA(); 4566 4567 int64_t Immediate = DefMI.getOperand(1).getImm(); 4568 // Sign-extend to 64-bits. 4569 int64_t SExtImm = SignExtend64<16>(Immediate); 4570 4571 bool ReplaceWithLI = false; 4572 bool Is64BitLI = false; 4573 int64_t NewImm = 0; 4574 bool SetCR = false; 4575 unsigned Opc = MI.getOpcode(); 4576 switch (Opc) { 4577 default: 4578 return false; 4579 4580 // FIXME: Any branches conditional on such a comparison can be made 4581 // unconditional. At this time, this happens too infrequently to be worth 4582 // the implementation effort, but if that ever changes, we could convert 4583 // such a pattern here. 4584 case PPC::CMPWI: 4585 case PPC::CMPLWI: 4586 case PPC::CMPDI: 4587 case PPC::CMPLDI: { 4588 // Doing this post-RA would require dataflow analysis to reliably find uses 4589 // of the CR register set by the compare. 4590 // No need to fixup killed/dead flag since this transformation is only valid 4591 // before RA. 4592 if (PostRA) 4593 return false; 4594 // If a compare-immediate is fed by an immediate and is itself an input of 4595 // an ISEL (the most common case) into a COPY of the correct register. 4596 bool Changed = false; 4597 Register DefReg = MI.getOperand(0).getReg(); 4598 int64_t Comparand = MI.getOperand(2).getImm(); 4599 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4600 ? (Comparand | 0xFFFFFFFFFFFF0000) 4601 : Comparand; 4602 4603 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4604 unsigned UseOpc = CompareUseMI.getOpcode(); 4605 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4606 continue; 4607 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4608 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4609 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4610 unsigned RegToCopy = 4611 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4612 if (RegToCopy == PPC::NoRegister) 4613 continue; 4614 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4615 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4616 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4617 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4618 CompareUseMI.removeOperand(3); 4619 CompareUseMI.removeOperand(2); 4620 continue; 4621 } 4622 LLVM_DEBUG( 4623 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4624 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4625 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4626 // Convert to copy and remove unneeded operands. 4627 CompareUseMI.setDesc(get(PPC::COPY)); 4628 CompareUseMI.removeOperand(3); 4629 CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1); 4630 CmpIselsConverted++; 4631 Changed = true; 4632 LLVM_DEBUG(CompareUseMI.dump()); 4633 } 4634 if (Changed) 4635 return true; 4636 // This may end up incremented multiple times since this function is called 4637 // during a fixed-point transformation, but it is only meant to indicate the 4638 // presence of this opportunity. 4639 MissedConvertibleImmediateInstrs++; 4640 return false; 4641 } 4642 4643 // Immediate forms - may simply be convertable to an LI. 4644 case PPC::ADDI: 4645 case PPC::ADDI8: { 4646 // Does the sum fit in a 16-bit signed field? 4647 int64_t Addend = MI.getOperand(2).getImm(); 4648 if (isInt<16>(Addend + SExtImm)) { 4649 ReplaceWithLI = true; 4650 Is64BitLI = Opc == PPC::ADDI8; 4651 NewImm = Addend + SExtImm; 4652 break; 4653 } 4654 return false; 4655 } 4656 case PPC::SUBFIC: 4657 case PPC::SUBFIC8: { 4658 // Only transform this if the CARRY implicit operand is dead. 4659 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4660 return false; 4661 int64_t Minuend = MI.getOperand(2).getImm(); 4662 if (isInt<16>(Minuend - SExtImm)) { 4663 ReplaceWithLI = true; 4664 Is64BitLI = Opc == PPC::SUBFIC8; 4665 NewImm = Minuend - SExtImm; 4666 break; 4667 } 4668 return false; 4669 } 4670 case PPC::RLDICL: 4671 case PPC::RLDICL_rec: 4672 case PPC::RLDICL_32: 4673 case PPC::RLDICL_32_64: { 4674 // Use APInt's rotate function. 4675 int64_t SH = MI.getOperand(2).getImm(); 4676 int64_t MB = MI.getOperand(3).getImm(); 4677 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4678 SExtImm, true); 4679 InVal = InVal.rotl(SH); 4680 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4681 InVal &= Mask; 4682 // Can't replace negative values with an LI as that will sign-extend 4683 // and not clear the left bits. If we're setting the CR bit, we will use 4684 // ANDI_rec which won't sign extend, so that's safe. 4685 if (isUInt<15>(InVal.getSExtValue()) || 4686 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4687 ReplaceWithLI = true; 4688 Is64BitLI = Opc != PPC::RLDICL_32; 4689 NewImm = InVal.getSExtValue(); 4690 SetCR = Opc == PPC::RLDICL_rec; 4691 break; 4692 } 4693 return false; 4694 } 4695 case PPC::RLWINM: 4696 case PPC::RLWINM8: 4697 case PPC::RLWINM_rec: 4698 case PPC::RLWINM8_rec: { 4699 int64_t SH = MI.getOperand(2).getImm(); 4700 int64_t MB = MI.getOperand(3).getImm(); 4701 int64_t ME = MI.getOperand(4).getImm(); 4702 APInt InVal(32, SExtImm, true); 4703 InVal = InVal.rotl(SH); 4704 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4705 InVal &= Mask; 4706 // Can't replace negative values with an LI as that will sign-extend 4707 // and not clear the left bits. If we're setting the CR bit, we will use 4708 // ANDI_rec which won't sign extend, so that's safe. 4709 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4710 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4711 isUInt<16>(InVal.getSExtValue())); 4712 if (ValueFits) { 4713 ReplaceWithLI = true; 4714 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4715 NewImm = InVal.getSExtValue(); 4716 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4717 break; 4718 } 4719 return false; 4720 } 4721 case PPC::ORI: 4722 case PPC::ORI8: 4723 case PPC::XORI: 4724 case PPC::XORI8: { 4725 int64_t LogicalImm = MI.getOperand(2).getImm(); 4726 int64_t Result = 0; 4727 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4728 Result = LogicalImm | SExtImm; 4729 else 4730 Result = LogicalImm ^ SExtImm; 4731 if (isInt<16>(Result)) { 4732 ReplaceWithLI = true; 4733 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4734 NewImm = Result; 4735 break; 4736 } 4737 return false; 4738 } 4739 } 4740 4741 if (ReplaceWithLI) { 4742 // We need to be careful with CR-setting instructions we're replacing. 4743 if (SetCR) { 4744 // We don't know anything about uses when we're out of SSA, so only 4745 // replace if the new immediate will be reproduced. 4746 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4747 if (PostRA && ImmChanged) 4748 return false; 4749 4750 if (!PostRA) { 4751 // If the defining load-immediate has no other uses, we can just replace 4752 // the immediate with the new immediate. 4753 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4754 DefMI.getOperand(1).setImm(NewImm); 4755 4756 // If we're not using the GPR result of the CR-setting instruction, we 4757 // just need to and with zero/non-zero depending on the new immediate. 4758 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4759 if (NewImm) { 4760 assert(Immediate && "Transformation converted zero to non-zero?"); 4761 NewImm = Immediate; 4762 } 4763 } else if (ImmChanged) 4764 return false; 4765 } 4766 } 4767 4768 LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n"); 4769 LLVM_DEBUG(MI.dump()); 4770 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4771 LLVM_DEBUG(DefMI.dump()); 4772 LoadImmediateInfo LII; 4773 LII.Imm = NewImm; 4774 LII.Is64Bit = Is64BitLI; 4775 LII.SetCR = SetCR; 4776 // If we're setting the CR, the original load-immediate must be kept (as an 4777 // operand to ANDI_rec/ANDI8_rec). 4778 if (KilledDef && SetCR) 4779 *KilledDef = nullptr; 4780 replaceInstrWithLI(MI, LII); 4781 4782 if (PostRA) 4783 recomputeLivenessFlags(*MI.getParent()); 4784 4785 LLVM_DEBUG(dbgs() << "With:\n"); 4786 LLVM_DEBUG(MI.dump()); 4787 return true; 4788 } 4789 return false; 4790 } 4791 4792 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4793 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4794 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4795 bool PostRA = !MRI->isSSA(); 4796 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4797 // for post-ra. 4798 if (PostRA) 4799 return false; 4800 4801 // Only handle load/store. 4802 if (!MI.mayLoadOrStore()) 4803 return false; 4804 4805 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4806 4807 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4808 "MI must have x-form opcode"); 4809 4810 // get Imm Form info. 4811 ImmInstrInfo III; 4812 bool IsVFReg = MI.getOperand(0).isReg() 4813 ? PPC::isVFRegister(MI.getOperand(0).getReg()) 4814 : false; 4815 4816 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4817 return false; 4818 4819 if (!III.IsSummingOperands) 4820 return false; 4821 4822 if (OpNoForForwarding != III.OpNoForForwarding) 4823 return false; 4824 4825 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4826 if (!ImmOperandMI.isImm()) 4827 return false; 4828 4829 // Check DefMI. 4830 MachineOperand *ImmMO = nullptr; 4831 MachineOperand *RegMO = nullptr; 4832 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4833 return false; 4834 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4835 4836 // Check Imm. 4837 // Set ImmBase from imm instruction as base and get new Imm inside 4838 // isImmElgibleForForwarding. 4839 int64_t ImmBase = ImmOperandMI.getImm(); 4840 int64_t Imm = 0; 4841 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4842 return false; 4843 4844 // Do the transform 4845 LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n"); 4846 LLVM_DEBUG(MI.dump()); 4847 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4848 LLVM_DEBUG(DefMI.dump()); 4849 4850 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4851 MI.getOperand(III.ImmOpNo).setImm(Imm); 4852 4853 LLVM_DEBUG(dbgs() << "With:\n"); 4854 LLVM_DEBUG(MI.dump()); 4855 return true; 4856 } 4857 4858 // If an X-Form instruction is fed by an add-immediate and one of its operands 4859 // is the literal zero, attempt to forward the source of the add-immediate to 4860 // the corresponding D-Form instruction with the displacement coming from 4861 // the immediate being added. 4862 bool PPCInstrInfo::transformToImmFormFedByAdd( 4863 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4864 MachineInstr &DefMI, bool KillDefMI) const { 4865 // RegMO ImmMO 4866 // | | 4867 // x = addi reg, imm <----- DefMI 4868 // y = op 0 , x <----- MI 4869 // | 4870 // OpNoForForwarding 4871 // Check if the MI meet the requirement described in the III. 4872 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4873 return false; 4874 4875 // Check if the DefMI meet the requirement 4876 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4877 MachineOperand *ImmMO = nullptr; 4878 MachineOperand *RegMO = nullptr; 4879 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4880 return false; 4881 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4882 4883 // As we get the Imm operand now, we need to check if the ImmMO meet 4884 // the requirement described in the III. If yes set the Imm. 4885 int64_t Imm = 0; 4886 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4887 return false; 4888 4889 bool IsFwdFeederRegKilled = false; 4890 bool SeenIntermediateUse = false; 4891 // Check if the RegMO can be forwarded to MI. 4892 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4893 IsFwdFeederRegKilled, SeenIntermediateUse)) 4894 return false; 4895 4896 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4897 bool PostRA = !MRI.isSSA(); 4898 4899 // We know that, the MI and DefMI both meet the pattern, and 4900 // the Imm also meet the requirement with the new Imm-form. 4901 // It is safe to do the transformation now. 4902 LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n"); 4903 LLVM_DEBUG(MI.dump()); 4904 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4905 LLVM_DEBUG(DefMI.dump()); 4906 4907 // Update the base reg first. 4908 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4909 false, false, 4910 RegMO->isKill()); 4911 4912 // Then, update the imm. 4913 if (ImmMO->isImm()) { 4914 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4915 // directly. 4916 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4917 } 4918 else { 4919 // Otherwise, it is Constant Pool Index(CPI) or Global, 4920 // which is relocation in fact. We need to replace the special zero 4921 // register with ImmMO. 4922 // Before that, we need to fixup the target flags for imm. 4923 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4924 if (DefMI.getOpcode() == PPC::ADDItocL8) 4925 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4926 4927 // MI didn't have the interface such as MI.setOperand(i) though 4928 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4929 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4930 // and, add the ImmMO, then, move back all the operands behind ZERO. 4931 SmallVector<MachineOperand, 2> MOps; 4932 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4933 MOps.push_back(MI.getOperand(i)); 4934 MI.removeOperand(i); 4935 } 4936 4937 // Remove the last MO in the list, which is ZERO operand in fact. 4938 MOps.pop_back(); 4939 // Add the imm operand. 4940 MI.addOperand(*ImmMO); 4941 // Now add the rest back. 4942 for (auto &MO : MOps) 4943 MI.addOperand(MO); 4944 } 4945 4946 // Update the opcode. 4947 MI.setDesc(get(III.ImmOpcode)); 4948 4949 if (PostRA) 4950 recomputeLivenessFlags(*MI.getParent()); 4951 LLVM_DEBUG(dbgs() << "With:\n"); 4952 LLVM_DEBUG(MI.dump()); 4953 4954 return true; 4955 } 4956 4957 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4958 const ImmInstrInfo &III, 4959 unsigned ConstantOpNo, 4960 MachineInstr &DefMI) const { 4961 // DefMI must be LI or LI8. 4962 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4963 !DefMI.getOperand(1).isImm()) 4964 return false; 4965 4966 // Get Imm operand and Sign-extend to 64-bits. 4967 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4968 4969 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4970 bool PostRA = !MRI.isSSA(); 4971 // Exit early if we can't convert this. 4972 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4973 return false; 4974 if (Imm % III.ImmMustBeMultipleOf) 4975 return false; 4976 if (III.TruncateImmTo) 4977 Imm &= ((1 << III.TruncateImmTo) - 1); 4978 if (III.SignedImm) { 4979 APInt ActualValue(64, Imm, true); 4980 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4981 return false; 4982 } else { 4983 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4984 if ((uint64_t)Imm > UnsignedMax) 4985 return false; 4986 } 4987 4988 // If we're post-RA, the instructions don't agree on whether register zero is 4989 // special, we can transform this as long as the register operand that will 4990 // end up in the location where zero is special isn't R0. 4991 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4992 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4993 III.ZeroIsSpecialNew + 1; 4994 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4995 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4996 // If R0 is in the operand where zero is special for the new instruction, 4997 // it is unsafe to transform if the constant operand isn't that operand. 4998 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4999 ConstantOpNo != III.ZeroIsSpecialNew) 5000 return false; 5001 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 5002 ConstantOpNo != PosForOrigZero) 5003 return false; 5004 } 5005 5006 unsigned Opc = MI.getOpcode(); 5007 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 5008 Opc == PPC::SRW || Opc == PPC::SRW_rec || 5009 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 5010 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 5011 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 5012 Opc == PPC::SRD || Opc == PPC::SRD_rec; 5013 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 5014 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 5015 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 5016 Opc == PPC::SRD_rec; 5017 5018 LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: "); 5019 LLVM_DEBUG(MI.dump()); 5020 LLVM_DEBUG(dbgs() << "Fed by load-immediate: "); 5021 LLVM_DEBUG(DefMI.dump()); 5022 MI.setDesc(get(III.ImmOpcode)); 5023 if (ConstantOpNo == III.OpNoForForwarding) { 5024 // Converting shifts to immediate form is a bit tricky since they may do 5025 // one of three things: 5026 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 5027 // 2. If the shift amount is zero, the result is unchanged (save for maybe 5028 // setting CR0) 5029 // 3. If the shift amount is in [1, OpSize), it's just a shift 5030 if (SpecialShift32 || SpecialShift64) { 5031 LoadImmediateInfo LII; 5032 LII.Imm = 0; 5033 LII.SetCR = SetCR; 5034 LII.Is64Bit = SpecialShift64; 5035 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 5036 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 5037 replaceInstrWithLI(MI, LII); 5038 // Shifts by zero don't change the value. If we don't need to set CR0, 5039 // just convert this to a COPY. Can't do this post-RA since we've already 5040 // cleaned up the copies. 5041 else if (!SetCR && ShAmt == 0 && !PostRA) { 5042 MI.removeOperand(2); 5043 MI.setDesc(get(PPC::COPY)); 5044 } else { 5045 // The 32 bit and 64 bit instructions are quite different. 5046 if (SpecialShift32) { 5047 // Left shifts use (N, 0, 31-N). 5048 // Right shifts use (32-N, N, 31) if 0 < N < 32. 5049 // use (0, 0, 31) if N == 0. 5050 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 5051 uint64_t MB = RightShift ? ShAmt : 0; 5052 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 5053 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5054 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 5055 .addImm(ME); 5056 } else { 5057 // Left shifts use (N, 63-N). 5058 // Right shifts use (64-N, N) if 0 < N < 64. 5059 // use (0, 0) if N == 0. 5060 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 5061 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 5062 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5063 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5064 } 5065 } 5066 } else 5067 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5068 } 5069 // Convert commutative instructions (switch the operands and convert the 5070 // desired one to an immediate. 5071 else if (III.IsCommutative) { 5072 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5073 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5074 } else 5075 llvm_unreachable("Should have exited early!"); 5076 5077 // For instructions for which the constant register replaces a different 5078 // operand than where the immediate goes, we need to swap them. 5079 if (III.OpNoForForwarding != III.ImmOpNo) 5080 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5081 5082 // If the special R0/X0 register index are different for original instruction 5083 // and new instruction, we need to fix up the register class in new 5084 // instruction. 5085 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5086 if (III.ZeroIsSpecialNew) { 5087 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5088 // need to fix up register class. 5089 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5090 if (RegToModify.isVirtual()) { 5091 const TargetRegisterClass *NewRC = 5092 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5093 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5094 MRI.setRegClass(RegToModify, NewRC); 5095 } 5096 } 5097 } 5098 5099 if (PostRA) 5100 recomputeLivenessFlags(*MI.getParent()); 5101 5102 LLVM_DEBUG(dbgs() << "With: "); 5103 LLVM_DEBUG(MI.dump()); 5104 LLVM_DEBUG(dbgs() << "\n"); 5105 return true; 5106 } 5107 5108 const TargetRegisterClass * 5109 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5110 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5111 return &PPC::VSRCRegClass; 5112 return RC; 5113 } 5114 5115 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5116 return PPC::getRecordFormOpcode(Opcode); 5117 } 5118 5119 static bool isOpZeroOfSubwordPreincLoad(int Opcode) { 5120 return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || 5121 Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU || 5122 Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 || 5123 Opcode == PPC::LHZUX8); 5124 } 5125 5126 // This function checks for sign extension from 32 bits to 64 bits. 5127 static bool definedBySignExtendingOp(const unsigned Reg, 5128 const MachineRegisterInfo *MRI) { 5129 if (!Register::isVirtualRegister(Reg)) 5130 return false; 5131 5132 MachineInstr *MI = MRI->getVRegDef(Reg); 5133 if (!MI) 5134 return false; 5135 5136 int Opcode = MI->getOpcode(); 5137 const PPCInstrInfo *TII = 5138 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5139 if (TII->isSExt32To64(Opcode)) 5140 return true; 5141 5142 // The first def of LBZU/LHZU is sign extended. 5143 if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg) 5144 return true; 5145 5146 // RLDICL generates sign-extended output if it clears at least 5147 // 33 bits from the left (MSB). 5148 if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33) 5149 return true; 5150 5151 // If at least one bit from left in a lower word is masked out, 5152 // all of 0 to 32-th bits of the output are cleared. 5153 // Hence the output is already sign extended. 5154 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5155 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5156 MI->getOperand(3).getImm() > 0 && 5157 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5158 return true; 5159 5160 // If the most significant bit of immediate in ANDIS is zero, 5161 // all of 0 to 32-th bits are cleared. 5162 if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) { 5163 uint16_t Imm = MI->getOperand(2).getImm(); 5164 if ((Imm & 0x8000) == 0) 5165 return true; 5166 } 5167 5168 return false; 5169 } 5170 5171 // This function checks the machine instruction that defines the input register 5172 // Reg. If that machine instruction always outputs a value that has only zeros 5173 // in the higher 32 bits then this function will return true. 5174 static bool definedByZeroExtendingOp(const unsigned Reg, 5175 const MachineRegisterInfo *MRI) { 5176 if (!Register::isVirtualRegister(Reg)) 5177 return false; 5178 5179 MachineInstr *MI = MRI->getVRegDef(Reg); 5180 if (!MI) 5181 return false; 5182 5183 int Opcode = MI->getOpcode(); 5184 const PPCInstrInfo *TII = 5185 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); 5186 if (TII->isZExt32To64(Opcode)) 5187 return true; 5188 5189 // The first def of LBZU/LHZU/LWZU are zero extended. 5190 if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU || 5191 Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) && 5192 MI->getOperand(0).getReg() == Reg) 5193 return true; 5194 5195 // The 16-bit immediate is sign-extended in li/lis. 5196 // If the most significant bit is zero, all higher bits are zero. 5197 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5198 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5199 int64_t Imm = MI->getOperand(1).getImm(); 5200 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5201 return true; 5202 } 5203 5204 // We have some variations of rotate-and-mask instructions 5205 // that clear higher 32-bits. 5206 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5207 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5208 Opcode == PPC::RLDICL_32_64) && 5209 MI->getOperand(3).getImm() >= 32) 5210 return true; 5211 5212 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5213 MI->getOperand(3).getImm() >= 32 && 5214 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) 5215 return true; 5216 5217 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5218 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5219 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5220 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 5221 return true; 5222 5223 return false; 5224 } 5225 5226 // This function returns true if the input MachineInstr is a TOC save 5227 // instruction. 5228 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5229 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5230 return false; 5231 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5232 unsigned StackOffset = MI.getOperand(1).getImm(); 5233 Register StackReg = MI.getOperand(2).getReg(); 5234 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5235 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5236 return true; 5237 5238 return false; 5239 } 5240 5241 // We limit the max depth to track incoming values of PHIs or binary ops 5242 // (e.g. AND) to avoid excessive cost. 5243 const unsigned MAX_BINOP_DEPTH = 1; 5244 // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth 5245 // does not count all of the recursions. The parameter BinOpDepth is incremented 5246 // only when isSignOrZeroExtended calls itself more than once. This is done to 5247 // prevent expontential recursion. There is no parameter to track linear 5248 // recursion. 5249 std::pair<bool, bool> 5250 PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg, 5251 const unsigned BinOpDepth, 5252 const MachineRegisterInfo *MRI) const { 5253 if (!Register::isVirtualRegister(Reg)) 5254 return std::pair<bool, bool>(false, false); 5255 5256 MachineInstr *MI = MRI->getVRegDef(Reg); 5257 if (!MI) 5258 return std::pair<bool, bool>(false, false); 5259 5260 bool IsSExt = definedBySignExtendingOp(Reg, MRI); 5261 bool IsZExt = definedByZeroExtendingOp(Reg, MRI); 5262 5263 // If we know the instruction always returns sign- and zero-extended result, 5264 // return here. 5265 if (IsSExt && IsZExt) 5266 return std::pair<bool, bool>(IsSExt, IsZExt); 5267 5268 switch (MI->getOpcode()) { 5269 case PPC::COPY: { 5270 Register SrcReg = MI->getOperand(1).getReg(); 5271 5272 // In both ELFv1 and v2 ABI, method parameters and the return value 5273 // are sign- or zero-extended. 5274 const MachineFunction *MF = MI->getMF(); 5275 5276 if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5277 // If this is a copy from another register, we recursively check source. 5278 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5279 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5280 SrcExt.second || IsZExt); 5281 } 5282 5283 // From here on everything is SVR4ABI 5284 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5285 // We check the ZExt/SExt flags for a method parameter. 5286 if (MI->getParent()->getBasicBlock() == 5287 &MF->getFunction().getEntryBlock()) { 5288 Register VReg = MI->getOperand(0).getReg(); 5289 if (MF->getRegInfo().isLiveIn(VReg)) { 5290 IsSExt |= FuncInfo->isLiveInSExt(VReg); 5291 IsZExt |= FuncInfo->isLiveInZExt(VReg); 5292 return std::pair<bool, bool>(IsSExt, IsZExt); 5293 } 5294 } 5295 5296 if (SrcReg != PPC::X3) { 5297 // If this is a copy from another register, we recursively check source. 5298 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5299 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5300 SrcExt.second || IsZExt); 5301 } 5302 5303 // For a method return value, we check the ZExt/SExt flags in attribute. 5304 // We assume the following code sequence for method call. 5305 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5306 // BL8_NOP @func,... 5307 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5308 // %5 = COPY %x3; G8RC:%5 5309 const MachineBasicBlock *MBB = MI->getParent(); 5310 std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt); 5311 MachineBasicBlock::const_instr_iterator II = 5312 MachineBasicBlock::const_instr_iterator(MI); 5313 if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP) 5314 return IsExtendPair; 5315 5316 const MachineInstr &CallMI = *(--II); 5317 if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal()) 5318 return IsExtendPair; 5319 5320 const Function *CalleeFn = 5321 dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal()); 5322 if (!CalleeFn) 5323 return IsExtendPair; 5324 const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5325 if (IntTy && IntTy->getBitWidth() <= 32) { 5326 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); 5327 IsSExt |= Attrs.hasAttribute(Attribute::SExt); 5328 IsZExt |= Attrs.hasAttribute(Attribute::ZExt); 5329 return std::pair<bool, bool>(IsSExt, IsZExt); 5330 } 5331 5332 return IsExtendPair; 5333 } 5334 5335 // OR, XOR with 16-bit immediate does not change the upper 48 bits. 5336 // So, we track the operand register as we do for register copy. 5337 case PPC::ORI: 5338 case PPC::XORI: 5339 case PPC::ORI8: 5340 case PPC::XORI8: { 5341 Register SrcReg = MI->getOperand(1).getReg(); 5342 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5343 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5344 SrcExt.second || IsZExt); 5345 } 5346 5347 // OR, XOR with shifted 16-bit immediate does not change the upper 5348 // 32 bits. So, we track the operand register for zero extension. 5349 // For sign extension when the MSB of the immediate is zero, we also 5350 // track the operand register since the upper 33 bits are unchanged. 5351 case PPC::ORIS: 5352 case PPC::XORIS: 5353 case PPC::ORIS8: 5354 case PPC::XORIS8: { 5355 Register SrcReg = MI->getOperand(1).getReg(); 5356 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); 5357 uint16_t Imm = MI->getOperand(2).getImm(); 5358 if (Imm & 0x8000) 5359 return std::pair<bool, bool>(false, SrcExt.second || IsZExt); 5360 else 5361 return std::pair<bool, bool>(SrcExt.first || IsSExt, 5362 SrcExt.second || IsZExt); 5363 } 5364 5365 // If all incoming values are sign-/zero-extended, 5366 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5367 case PPC::OR: 5368 case PPC::OR8: 5369 case PPC::ISEL: 5370 case PPC::PHI: { 5371 if (BinOpDepth >= MAX_BINOP_DEPTH) 5372 return std::pair<bool, bool>(false, false); 5373 5374 // The input registers for PHI are operand 1, 3, ... 5375 // The input registers for others are operand 1 and 2. 5376 unsigned OperandEnd = 3, OperandStride = 1; 5377 if (MI->getOpcode() == PPC::PHI) { 5378 OperandEnd = MI->getNumOperands(); 5379 OperandStride = 2; 5380 } 5381 5382 IsSExt = true; 5383 IsZExt = true; 5384 for (unsigned I = 1; I != OperandEnd; I += OperandStride) { 5385 if (!MI->getOperand(I).isReg()) 5386 return std::pair<bool, bool>(false, false); 5387 5388 Register SrcReg = MI->getOperand(I).getReg(); 5389 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI); 5390 IsSExt &= SrcExt.first; 5391 IsZExt &= SrcExt.second; 5392 } 5393 return std::pair<bool, bool>(IsSExt, IsZExt); 5394 } 5395 5396 // If at least one of the incoming values of an AND is zero extended 5397 // then the output is also zero-extended. If both of the incoming values 5398 // are sign-extended then the output is also sign extended. 5399 case PPC::AND: 5400 case PPC::AND8: { 5401 if (BinOpDepth >= MAX_BINOP_DEPTH) 5402 return std::pair<bool, bool>(false, false); 5403 5404 Register SrcReg1 = MI->getOperand(1).getReg(); 5405 Register SrcReg2 = MI->getOperand(2).getReg(); 5406 auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI); 5407 auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI); 5408 return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first, 5409 Src1Ext.second || Src2Ext.second); 5410 } 5411 5412 default: 5413 break; 5414 } 5415 return std::pair<bool, bool>(IsSExt, IsZExt); 5416 } 5417 5418 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5419 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5420 } 5421 5422 namespace { 5423 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5424 MachineInstr *Loop, *EndLoop, *LoopCount; 5425 MachineFunction *MF; 5426 const TargetInstrInfo *TII; 5427 int64_t TripCount; 5428 5429 public: 5430 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5431 MachineInstr *LoopCount) 5432 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5433 MF(Loop->getParent()->getParent()), 5434 TII(MF->getSubtarget().getInstrInfo()) { 5435 // Inspect the Loop instruction up-front, as it may be deleted when we call 5436 // createTripCountGreaterCondition. 5437 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5438 TripCount = LoopCount->getOperand(1).getImm(); 5439 else 5440 TripCount = -1; 5441 } 5442 5443 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5444 // Only ignore the terminator. 5445 return MI == EndLoop; 5446 } 5447 5448 std::optional<bool> createTripCountGreaterCondition( 5449 int TC, MachineBasicBlock &MBB, 5450 SmallVectorImpl<MachineOperand> &Cond) override { 5451 if (TripCount == -1) { 5452 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5453 // so we don't need to generate any thing here. 5454 Cond.push_back(MachineOperand::CreateImm(0)); 5455 Cond.push_back(MachineOperand::CreateReg( 5456 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5457 true)); 5458 return {}; 5459 } 5460 5461 return TripCount > TC; 5462 } 5463 5464 void setPreheader(MachineBasicBlock *NewPreheader) override { 5465 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5466 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5467 } 5468 5469 void adjustTripCount(int TripCountAdjust) override { 5470 // If the loop trip count is a compile-time value, then just change the 5471 // value. 5472 if (LoopCount->getOpcode() == PPC::LI8 || 5473 LoopCount->getOpcode() == PPC::LI) { 5474 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5475 LoopCount->getOperand(1).setImm(TripCount); 5476 return; 5477 } 5478 5479 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5480 // so we don't need to generate any thing here. 5481 } 5482 5483 void disposed() override { 5484 Loop->eraseFromParent(); 5485 // Ensure the loop setup instruction is deleted too. 5486 LoopCount->eraseFromParent(); 5487 } 5488 }; 5489 } // namespace 5490 5491 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5492 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5493 // We really "analyze" only hardware loops right now. 5494 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5495 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5496 if (Preheader == LoopBB) 5497 Preheader = *std::next(LoopBB->pred_begin()); 5498 MachineFunction *MF = Preheader->getParent(); 5499 5500 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5501 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5502 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5503 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5504 MachineRegisterInfo &MRI = MF->getRegInfo(); 5505 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5506 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5507 } 5508 } 5509 return nullptr; 5510 } 5511 5512 MachineInstr *PPCInstrInfo::findLoopInstr( 5513 MachineBasicBlock &PreHeader, 5514 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5515 5516 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5517 5518 // The loop set-up instruction should be in preheader 5519 for (auto &I : PreHeader.instrs()) 5520 if (I.getOpcode() == LOOPi) 5521 return &I; 5522 return nullptr; 5523 } 5524 5525 // Return true if get the base operand, byte offset of an instruction and the 5526 // memory width. Width is the size of memory that is being loaded/stored. 5527 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5528 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5529 LocationSize &Width, const TargetRegisterInfo *TRI) const { 5530 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5531 return false; 5532 5533 // Handle only loads/stores with base register followed by immediate offset. 5534 if (!LdSt.getOperand(1).isImm() || 5535 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5536 return false; 5537 if (!LdSt.getOperand(1).isImm() || 5538 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5539 return false; 5540 5541 if (!LdSt.hasOneMemOperand()) 5542 return false; 5543 5544 Width = (*LdSt.memoperands_begin())->getSize(); 5545 Offset = LdSt.getOperand(1).getImm(); 5546 BaseReg = &LdSt.getOperand(2); 5547 return true; 5548 } 5549 5550 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5551 const MachineInstr &MIa, const MachineInstr &MIb) const { 5552 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5553 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5554 5555 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5556 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5557 return false; 5558 5559 // Retrieve the base register, offset from the base register and width. Width 5560 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5561 // base registers are identical, and the offset of a lower memory access + 5562 // the width doesn't overlap the offset of a higher memory access, 5563 // then the memory accesses are different. 5564 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5565 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5566 int64_t OffsetA = 0, OffsetB = 0; 5567 LocationSize WidthA = 0, WidthB = 0; 5568 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5569 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5570 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5571 int LowOffset = std::min(OffsetA, OffsetB); 5572 int HighOffset = std::max(OffsetA, OffsetB); 5573 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5574 if (LowWidth.hasValue() && 5575 LowOffset + (int)LowWidth.getValue() <= HighOffset) 5576 return true; 5577 } 5578 } 5579 return false; 5580 } 5581