xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_LastOpcodeSpill  // This must be last on the enum.
94 };
95 
96 // Pin the vtable to this file.
97 void PPCInstrInfo::anchor() {}
98 
99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
100     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
101                       /* CatchRetOpcode */ -1,
102                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
103       Subtarget(STI), RI(STI.getTargetMachine()) {}
104 
105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
106 /// this target when scheduling the DAG.
107 ScheduleHazardRecognizer *
108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109                                            const ScheduleDAG *DAG) const {
110   unsigned Directive =
111       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
112   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
113       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
114     const InstrItineraryData *II =
115         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
116     return new ScoreboardHazardRecognizer(II, DAG);
117   }
118 
119   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
120 }
121 
122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
123 /// to use for this target when scheduling the DAG.
124 ScheduleHazardRecognizer *
125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
126                                                  const ScheduleDAG *DAG) const {
127   unsigned Directive =
128       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
129 
130   // FIXME: Leaving this as-is until we have POWER9 scheduling info
131   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
132     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
133 
134   // Most subtargets use a PPC970 recognizer.
135   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
136       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
137     assert(DAG->TII && "No InstrInfo?");
138 
139     return new PPCHazardRecognizer970(*DAG);
140   }
141 
142   return new ScoreboardHazardRecognizer(II, DAG);
143 }
144 
145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
146                                        const MachineInstr &MI,
147                                        unsigned *PredCost) const {
148   if (!ItinData || UseOldLatencyCalc)
149     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
150 
151   // The default implementation of getInstrLatency calls getStageLatency, but
152   // getStageLatency does not do the right thing for us. While we have
153   // itinerary, most cores are fully pipelined, and so the itineraries only
154   // express the first part of the pipeline, not every stage. Instead, we need
155   // to use the listed output operand cycle number (using operand 0 here, which
156   // is an output).
157 
158   unsigned Latency = 1;
159   unsigned DefClass = MI.getDesc().getSchedClass();
160   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161     const MachineOperand &MO = MI.getOperand(i);
162     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
163       continue;
164 
165     int Cycle = ItinData->getOperandCycle(DefClass, i);
166     if (Cycle < 0)
167       continue;
168 
169     Latency = std::max(Latency, (unsigned) Cycle);
170   }
171 
172   return Latency;
173 }
174 
175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
176                                     const MachineInstr &DefMI, unsigned DefIdx,
177                                     const MachineInstr &UseMI,
178                                     unsigned UseIdx) const {
179   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
180                                                    UseMI, UseIdx);
181 
182   if (!DefMI.getParent())
183     return Latency;
184 
185   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
186   Register Reg = DefMO.getReg();
187 
188   bool IsRegCR;
189   if (Register::isVirtualRegister(Reg)) {
190     const MachineRegisterInfo *MRI =
191         &DefMI.getParent()->getParent()->getRegInfo();
192     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
193               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
194   } else {
195     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
196               PPC::CRBITRCRegClass.contains(Reg);
197   }
198 
199   if (UseMI.isBranch() && IsRegCR) {
200     if (Latency < 0)
201       Latency = getInstrLatency(ItinData, DefMI);
202 
203     // On some cores, there is an additional delay between writing to a condition
204     // register, and using it from a branch.
205     unsigned Directive = Subtarget.getCPUDirective();
206     switch (Directive) {
207     default: break;
208     case PPC::DIR_7400:
209     case PPC::DIR_750:
210     case PPC::DIR_970:
211     case PPC::DIR_E5500:
212     case PPC::DIR_PWR4:
213     case PPC::DIR_PWR5:
214     case PPC::DIR_PWR5X:
215     case PPC::DIR_PWR6:
216     case PPC::DIR_PWR6X:
217     case PPC::DIR_PWR7:
218     case PPC::DIR_PWR8:
219     // FIXME: Is this needed for POWER9?
220       Latency += 2;
221       break;
222     }
223   }
224 
225   return Latency;
226 }
227 
228 // This function does not list all associative and commutative operations, but
229 // only those worth feeding through the machine combiner in an attempt to
230 // reduce the critical path. Mostly, this means floating-point operations,
231 // because they have high latencies (compared to other operations, such and
232 // and/or, which are also associative and commutative, but have low latencies).
233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
234   switch (Inst.getOpcode()) {
235   // FP Add:
236   case PPC::FADD:
237   case PPC::FADDS:
238   // FP Multiply:
239   case PPC::FMUL:
240   case PPC::FMULS:
241   // Altivec Add:
242   case PPC::VADDFP:
243   // VSX Add:
244   case PPC::XSADDDP:
245   case PPC::XVADDDP:
246   case PPC::XVADDSP:
247   case PPC::XSADDSP:
248   // VSX Multiply:
249   case PPC::XSMULDP:
250   case PPC::XVMULDP:
251   case PPC::XVMULSP:
252   case PPC::XSMULSP:
253   // QPX Add:
254   case PPC::QVFADD:
255   case PPC::QVFADDS:
256   case PPC::QVFADDSs:
257   // QPX Multiply:
258   case PPC::QVFMUL:
259   case PPC::QVFMULS:
260   case PPC::QVFMULSs:
261     return true;
262   default:
263     return false;
264   }
265 }
266 
267 bool PPCInstrInfo::getMachineCombinerPatterns(
268     MachineInstr &Root,
269     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
270   // Using the machine combiner in this way is potentially expensive, so
271   // restrict to when aggressive optimizations are desired.
272   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
273     return false;
274 
275   // FP reassociation is only legal when we don't need strict IEEE semantics.
276   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
277     return false;
278 
279   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
280 }
281 
282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
284                                          unsigned &SrcReg, unsigned &DstReg,
285                                          unsigned &SubIdx) const {
286   switch (MI.getOpcode()) {
287   default: return false;
288   case PPC::EXTSW:
289   case PPC::EXTSW_32:
290   case PPC::EXTSW_32_64:
291     SrcReg = MI.getOperand(1).getReg();
292     DstReg = MI.getOperand(0).getReg();
293     SubIdx = PPC::sub_32;
294     return true;
295   }
296 }
297 
298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
299                                            int &FrameIndex) const {
300   unsigned Opcode = MI.getOpcode();
301   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
302   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
303 
304   if (End != std::find(OpcodesForSpill, End, Opcode)) {
305     // Check for the operands added by addFrameReference (the immediate is the
306     // offset which defaults to 0).
307     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
308         MI.getOperand(2).isFI()) {
309       FrameIndex = MI.getOperand(2).getIndex();
310       return MI.getOperand(0).getReg();
311     }
312   }
313   return 0;
314 }
315 
316 // For opcodes with the ReMaterializable flag set, this function is called to
317 // verify the instruction is really rematable.
318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
319                                                      AliasAnalysis *AA) const {
320   switch (MI.getOpcode()) {
321   default:
322     // This function should only be called for opcodes with the ReMaterializable
323     // flag set.
324     llvm_unreachable("Unknown rematerializable operation!");
325     break;
326   case PPC::LI:
327   case PPC::LI8:
328   case PPC::LIS:
329   case PPC::LIS8:
330   case PPC::QVGPCI:
331   case PPC::ADDIStocHA:
332   case PPC::ADDIStocHA8:
333   case PPC::ADDItocL:
334   case PPC::LOAD_STACK_GUARD:
335   case PPC::XXLXORz:
336   case PPC::XXLXORspz:
337   case PPC::XXLXORdpz:
338   case PPC::XXLEQVOnes:
339   case PPC::V_SET0B:
340   case PPC::V_SET0H:
341   case PPC::V_SET0:
342   case PPC::V_SETALLONESB:
343   case PPC::V_SETALLONESH:
344   case PPC::V_SETALLONES:
345   case PPC::CRSET:
346   case PPC::CRUNSET:
347     return true;
348   }
349   return false;
350 }
351 
352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353                                           int &FrameIndex) const {
354   unsigned Opcode = MI.getOpcode();
355   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
356   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
357 
358   if (End != std::find(OpcodesForSpill, End, Opcode)) {
359     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
360         MI.getOperand(2).isFI()) {
361       FrameIndex = MI.getOperand(2).getIndex();
362       return MI.getOperand(0).getReg();
363     }
364   }
365   return 0;
366 }
367 
368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
369                                                    unsigned OpIdx1,
370                                                    unsigned OpIdx2) const {
371   MachineFunction &MF = *MI.getParent()->getParent();
372 
373   // Normal instructions can be commuted the obvious way.
374   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
375     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
376   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
377   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
378   // changing the relative order of the mask operands might change what happens
379   // to the high-bits of the mask (and, thus, the result).
380 
381   // Cannot commute if it has a non-zero rotate count.
382   if (MI.getOperand(3).getImm() != 0)
383     return nullptr;
384 
385   // If we have a zero rotate count, we have:
386   //   M = mask(MB,ME)
387   //   Op0 = (Op1 & ~M) | (Op2 & M)
388   // Change this to:
389   //   M = mask((ME+1)&31, (MB-1)&31)
390   //   Op0 = (Op2 & ~M) | (Op1 & M)
391 
392   // Swap op1/op2
393   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
394          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
395   Register Reg0 = MI.getOperand(0).getReg();
396   Register Reg1 = MI.getOperand(1).getReg();
397   Register Reg2 = MI.getOperand(2).getReg();
398   unsigned SubReg1 = MI.getOperand(1).getSubReg();
399   unsigned SubReg2 = MI.getOperand(2).getSubReg();
400   bool Reg1IsKill = MI.getOperand(1).isKill();
401   bool Reg2IsKill = MI.getOperand(2).isKill();
402   bool ChangeReg0 = false;
403   // If machine instrs are no longer in two-address forms, update
404   // destination register as well.
405   if (Reg0 == Reg1) {
406     // Must be two address instruction!
407     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
408            "Expecting a two-address instruction!");
409     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
410     Reg2IsKill = false;
411     ChangeReg0 = true;
412   }
413 
414   // Masks.
415   unsigned MB = MI.getOperand(4).getImm();
416   unsigned ME = MI.getOperand(5).getImm();
417 
418   // We can't commute a trivial mask (there is no way to represent an all-zero
419   // mask).
420   if (MB == 0 && ME == 31)
421     return nullptr;
422 
423   if (NewMI) {
424     // Create a new instruction.
425     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
426     bool Reg0IsDead = MI.getOperand(0).isDead();
427     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
428         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
429         .addReg(Reg2, getKillRegState(Reg2IsKill))
430         .addReg(Reg1, getKillRegState(Reg1IsKill))
431         .addImm((ME + 1) & 31)
432         .addImm((MB - 1) & 31);
433   }
434 
435   if (ChangeReg0) {
436     MI.getOperand(0).setReg(Reg2);
437     MI.getOperand(0).setSubReg(SubReg2);
438   }
439   MI.getOperand(2).setReg(Reg1);
440   MI.getOperand(1).setReg(Reg2);
441   MI.getOperand(2).setSubReg(SubReg1);
442   MI.getOperand(1).setSubReg(SubReg2);
443   MI.getOperand(2).setIsKill(Reg1IsKill);
444   MI.getOperand(1).setIsKill(Reg2IsKill);
445 
446   // Swap the mask around.
447   MI.getOperand(4).setImm((ME + 1) & 31);
448   MI.getOperand(5).setImm((MB - 1) & 31);
449   return &MI;
450 }
451 
452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
453                                          unsigned &SrcOpIdx1,
454                                          unsigned &SrcOpIdx2) const {
455   // For VSX A-Type FMA instructions, it is the first two operands that can be
456   // commuted, however, because the non-encoded tied input operand is listed
457   // first, the operands to swap are actually the second and third.
458 
459   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
460   if (AltOpc == -1)
461     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
462 
463   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
464   // and SrcOpIdx2.
465   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
466 }
467 
468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
469                               MachineBasicBlock::iterator MI) const {
470   // This function is used for scheduling, and the nop wanted here is the type
471   // that terminates dispatch groups on the POWER cores.
472   unsigned Directive = Subtarget.getCPUDirective();
473   unsigned Opcode;
474   switch (Directive) {
475   default:            Opcode = PPC::NOP; break;
476   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
477   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
478   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
479   // FIXME: Update when POWER9 scheduling model is ready.
480   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
481   }
482 
483   DebugLoc DL;
484   BuildMI(MBB, MI, DL, get(Opcode));
485 }
486 
487 /// Return the noop instruction to use for a noop.
488 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
489   NopInst.setOpcode(PPC::NOP);
490 }
491 
492 // Branch analysis.
493 // Note: If the condition register is set to CTR or CTR8 then this is a
494 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
496                                  MachineBasicBlock *&TBB,
497                                  MachineBasicBlock *&FBB,
498                                  SmallVectorImpl<MachineOperand> &Cond,
499                                  bool AllowModify) const {
500   bool isPPC64 = Subtarget.isPPC64();
501 
502   // If the block has no terminators, it just falls into the block after it.
503   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
504   if (I == MBB.end())
505     return false;
506 
507   if (!isUnpredicatedTerminator(*I))
508     return false;
509 
510   if (AllowModify) {
511     // If the BB ends with an unconditional branch to the fallthrough BB,
512     // we eliminate the branch instruction.
513     if (I->getOpcode() == PPC::B &&
514         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
515       I->eraseFromParent();
516 
517       // We update iterator after deleting the last branch.
518       I = MBB.getLastNonDebugInstr();
519       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
520         return false;
521     }
522   }
523 
524   // Get the last instruction in the block.
525   MachineInstr &LastInst = *I;
526 
527   // If there is only one terminator instruction, process it.
528   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
529     if (LastInst.getOpcode() == PPC::B) {
530       if (!LastInst.getOperand(0).isMBB())
531         return true;
532       TBB = LastInst.getOperand(0).getMBB();
533       return false;
534     } else if (LastInst.getOpcode() == PPC::BCC) {
535       if (!LastInst.getOperand(2).isMBB())
536         return true;
537       // Block ends with fall-through condbranch.
538       TBB = LastInst.getOperand(2).getMBB();
539       Cond.push_back(LastInst.getOperand(0));
540       Cond.push_back(LastInst.getOperand(1));
541       return false;
542     } else if (LastInst.getOpcode() == PPC::BC) {
543       if (!LastInst.getOperand(1).isMBB())
544         return true;
545       // Block ends with fall-through condbranch.
546       TBB = LastInst.getOperand(1).getMBB();
547       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
548       Cond.push_back(LastInst.getOperand(0));
549       return false;
550     } else if (LastInst.getOpcode() == PPC::BCn) {
551       if (!LastInst.getOperand(1).isMBB())
552         return true;
553       // Block ends with fall-through condbranch.
554       TBB = LastInst.getOperand(1).getMBB();
555       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
556       Cond.push_back(LastInst.getOperand(0));
557       return false;
558     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
559                LastInst.getOpcode() == PPC::BDNZ) {
560       if (!LastInst.getOperand(0).isMBB())
561         return true;
562       if (DisableCTRLoopAnal)
563         return true;
564       TBB = LastInst.getOperand(0).getMBB();
565       Cond.push_back(MachineOperand::CreateImm(1));
566       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
567                                                true));
568       return false;
569     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
570                LastInst.getOpcode() == PPC::BDZ) {
571       if (!LastInst.getOperand(0).isMBB())
572         return true;
573       if (DisableCTRLoopAnal)
574         return true;
575       TBB = LastInst.getOperand(0).getMBB();
576       Cond.push_back(MachineOperand::CreateImm(0));
577       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
578                                                true));
579       return false;
580     }
581 
582     // Otherwise, don't know what this is.
583     return true;
584   }
585 
586   // Get the instruction before it if it's a terminator.
587   MachineInstr &SecondLastInst = *I;
588 
589   // If there are three terminators, we don't know what sort of block this is.
590   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
591     return true;
592 
593   // If the block ends with PPC::B and PPC:BCC, handle it.
594   if (SecondLastInst.getOpcode() == PPC::BCC &&
595       LastInst.getOpcode() == PPC::B) {
596     if (!SecondLastInst.getOperand(2).isMBB() ||
597         !LastInst.getOperand(0).isMBB())
598       return true;
599     TBB = SecondLastInst.getOperand(2).getMBB();
600     Cond.push_back(SecondLastInst.getOperand(0));
601     Cond.push_back(SecondLastInst.getOperand(1));
602     FBB = LastInst.getOperand(0).getMBB();
603     return false;
604   } else if (SecondLastInst.getOpcode() == PPC::BC &&
605              LastInst.getOpcode() == PPC::B) {
606     if (!SecondLastInst.getOperand(1).isMBB() ||
607         !LastInst.getOperand(0).isMBB())
608       return true;
609     TBB = SecondLastInst.getOperand(1).getMBB();
610     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
611     Cond.push_back(SecondLastInst.getOperand(0));
612     FBB = LastInst.getOperand(0).getMBB();
613     return false;
614   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
615              LastInst.getOpcode() == PPC::B) {
616     if (!SecondLastInst.getOperand(1).isMBB() ||
617         !LastInst.getOperand(0).isMBB())
618       return true;
619     TBB = SecondLastInst.getOperand(1).getMBB();
620     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
621     Cond.push_back(SecondLastInst.getOperand(0));
622     FBB = LastInst.getOperand(0).getMBB();
623     return false;
624   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
625               SecondLastInst.getOpcode() == PPC::BDNZ) &&
626              LastInst.getOpcode() == PPC::B) {
627     if (!SecondLastInst.getOperand(0).isMBB() ||
628         !LastInst.getOperand(0).isMBB())
629       return true;
630     if (DisableCTRLoopAnal)
631       return true;
632     TBB = SecondLastInst.getOperand(0).getMBB();
633     Cond.push_back(MachineOperand::CreateImm(1));
634     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
635                                              true));
636     FBB = LastInst.getOperand(0).getMBB();
637     return false;
638   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
639               SecondLastInst.getOpcode() == PPC::BDZ) &&
640              LastInst.getOpcode() == PPC::B) {
641     if (!SecondLastInst.getOperand(0).isMBB() ||
642         !LastInst.getOperand(0).isMBB())
643       return true;
644     if (DisableCTRLoopAnal)
645       return true;
646     TBB = SecondLastInst.getOperand(0).getMBB();
647     Cond.push_back(MachineOperand::CreateImm(0));
648     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
649                                              true));
650     FBB = LastInst.getOperand(0).getMBB();
651     return false;
652   }
653 
654   // If the block ends with two PPC:Bs, handle it.  The second one is not
655   // executed, so remove it.
656   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
657     if (!SecondLastInst.getOperand(0).isMBB())
658       return true;
659     TBB = SecondLastInst.getOperand(0).getMBB();
660     I = LastInst;
661     if (AllowModify)
662       I->eraseFromParent();
663     return false;
664   }
665 
666   // Otherwise, can't handle this.
667   return true;
668 }
669 
670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
671                                     int *BytesRemoved) const {
672   assert(!BytesRemoved && "code size not handled");
673 
674   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
675   if (I == MBB.end())
676     return 0;
677 
678   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
679       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
680       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
681       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
682     return 0;
683 
684   // Remove the branch.
685   I->eraseFromParent();
686 
687   I = MBB.end();
688 
689   if (I == MBB.begin()) return 1;
690   --I;
691   if (I->getOpcode() != PPC::BCC &&
692       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
693       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
694       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
695     return 1;
696 
697   // Remove the branch.
698   I->eraseFromParent();
699   return 2;
700 }
701 
702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
703                                     MachineBasicBlock *TBB,
704                                     MachineBasicBlock *FBB,
705                                     ArrayRef<MachineOperand> Cond,
706                                     const DebugLoc &DL,
707                                     int *BytesAdded) const {
708   // Shouldn't be a fall through.
709   assert(TBB && "insertBranch must not be told to insert a fallthrough");
710   assert((Cond.size() == 2 || Cond.size() == 0) &&
711          "PPC branch conditions have two components!");
712   assert(!BytesAdded && "code size not handled");
713 
714   bool isPPC64 = Subtarget.isPPC64();
715 
716   // One-way branch.
717   if (!FBB) {
718     if (Cond.empty())   // Unconditional branch
719       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
720     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
721       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
722                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
723                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
724     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
725       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
726     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
727       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
728     else                // Conditional branch
729       BuildMI(&MBB, DL, get(PPC::BCC))
730           .addImm(Cond[0].getImm())
731           .add(Cond[1])
732           .addMBB(TBB);
733     return 1;
734   }
735 
736   // Two-way Conditional Branch.
737   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
738     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
739                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
740                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
741   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
742     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
743   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
744     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
745   else
746     BuildMI(&MBB, DL, get(PPC::BCC))
747         .addImm(Cond[0].getImm())
748         .add(Cond[1])
749         .addMBB(TBB);
750   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
751   return 2;
752 }
753 
754 // Select analysis.
755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
756                 ArrayRef<MachineOperand> Cond,
757                 unsigned TrueReg, unsigned FalseReg,
758                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
759   if (Cond.size() != 2)
760     return false;
761 
762   // If this is really a bdnz-like condition, then it cannot be turned into a
763   // select.
764   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
765     return false;
766 
767   // Check register classes.
768   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
769   const TargetRegisterClass *RC =
770     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
771   if (!RC)
772     return false;
773 
774   // isel is for regular integer GPRs only.
775   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
776       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
777       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
778       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
779     return false;
780 
781   // FIXME: These numbers are for the A2, how well they work for other cores is
782   // an open question. On the A2, the isel instruction has a 2-cycle latency
783   // but single-cycle throughput. These numbers are used in combination with
784   // the MispredictPenalty setting from the active SchedMachineModel.
785   CondCycles = 1;
786   TrueCycles = 1;
787   FalseCycles = 1;
788 
789   return true;
790 }
791 
792 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
793                                 MachineBasicBlock::iterator MI,
794                                 const DebugLoc &dl, unsigned DestReg,
795                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
796                                 unsigned FalseReg) const {
797   assert(Cond.size() == 2 &&
798          "PPC branch conditions have two components!");
799 
800   // Get the register classes.
801   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
802   const TargetRegisterClass *RC =
803     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
804   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
805 
806   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
807                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
808   assert((Is64Bit ||
809           PPC::GPRCRegClass.hasSubClassEq(RC) ||
810           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
811          "isel is for regular integer GPRs only");
812 
813   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
814   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
815 
816   unsigned SubIdx = 0;
817   bool SwapOps = false;
818   switch (SelectPred) {
819   case PPC::PRED_EQ:
820   case PPC::PRED_EQ_MINUS:
821   case PPC::PRED_EQ_PLUS:
822       SubIdx = PPC::sub_eq; SwapOps = false; break;
823   case PPC::PRED_NE:
824   case PPC::PRED_NE_MINUS:
825   case PPC::PRED_NE_PLUS:
826       SubIdx = PPC::sub_eq; SwapOps = true; break;
827   case PPC::PRED_LT:
828   case PPC::PRED_LT_MINUS:
829   case PPC::PRED_LT_PLUS:
830       SubIdx = PPC::sub_lt; SwapOps = false; break;
831   case PPC::PRED_GE:
832   case PPC::PRED_GE_MINUS:
833   case PPC::PRED_GE_PLUS:
834       SubIdx = PPC::sub_lt; SwapOps = true; break;
835   case PPC::PRED_GT:
836   case PPC::PRED_GT_MINUS:
837   case PPC::PRED_GT_PLUS:
838       SubIdx = PPC::sub_gt; SwapOps = false; break;
839   case PPC::PRED_LE:
840   case PPC::PRED_LE_MINUS:
841   case PPC::PRED_LE_PLUS:
842       SubIdx = PPC::sub_gt; SwapOps = true; break;
843   case PPC::PRED_UN:
844   case PPC::PRED_UN_MINUS:
845   case PPC::PRED_UN_PLUS:
846       SubIdx = PPC::sub_un; SwapOps = false; break;
847   case PPC::PRED_NU:
848   case PPC::PRED_NU_MINUS:
849   case PPC::PRED_NU_PLUS:
850       SubIdx = PPC::sub_un; SwapOps = true; break;
851   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
852   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
853   }
854 
855   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
856            SecondReg = SwapOps ? TrueReg  : FalseReg;
857 
858   // The first input register of isel cannot be r0. If it is a member
859   // of a register class that can be r0, then copy it first (the
860   // register allocator should eliminate the copy).
861   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
862       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
863     const TargetRegisterClass *FirstRC =
864       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
865         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
866     unsigned OldFirstReg = FirstReg;
867     FirstReg = MRI.createVirtualRegister(FirstRC);
868     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
869       .addReg(OldFirstReg);
870   }
871 
872   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
873     .addReg(FirstReg).addReg(SecondReg)
874     .addReg(Cond[1].getReg(), 0, SubIdx);
875 }
876 
877 static unsigned getCRBitValue(unsigned CRBit) {
878   unsigned Ret = 4;
879   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
880       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
881       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
882       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
883     Ret = 3;
884   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
885       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
886       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
887       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
888     Ret = 2;
889   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
890       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
891       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
892       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
893     Ret = 1;
894   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
895       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
896       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
897       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
898     Ret = 0;
899 
900   assert(Ret != 4 && "Invalid CR bit register");
901   return Ret;
902 }
903 
904 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
905                                MachineBasicBlock::iterator I,
906                                const DebugLoc &DL, MCRegister DestReg,
907                                MCRegister SrcReg, bool KillSrc) const {
908   // We can end up with self copies and similar things as a result of VSX copy
909   // legalization. Promote them here.
910   const TargetRegisterInfo *TRI = &getRegisterInfo();
911   if (PPC::F8RCRegClass.contains(DestReg) &&
912       PPC::VSRCRegClass.contains(SrcReg)) {
913     MCRegister SuperReg =
914         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
915 
916     if (VSXSelfCopyCrash && SrcReg == SuperReg)
917       llvm_unreachable("nop VSX copy");
918 
919     DestReg = SuperReg;
920   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
921              PPC::VSRCRegClass.contains(DestReg)) {
922     MCRegister SuperReg =
923         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
924 
925     if (VSXSelfCopyCrash && DestReg == SuperReg)
926       llvm_unreachable("nop VSX copy");
927 
928     SrcReg = SuperReg;
929   }
930 
931   // Different class register copy
932   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
933       PPC::GPRCRegClass.contains(DestReg)) {
934     MCRegister CRReg = getCRFromCRBit(SrcReg);
935     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
936     getKillRegState(KillSrc);
937     // Rotate the CR bit in the CR fields to be the least significant bit and
938     // then mask with 0x1 (MB = ME = 31).
939     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
940        .addReg(DestReg, RegState::Kill)
941        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
942        .addImm(31)
943        .addImm(31);
944     return;
945   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
946       PPC::G8RCRegClass.contains(DestReg)) {
947     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
948     getKillRegState(KillSrc);
949     return;
950   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
951       PPC::GPRCRegClass.contains(DestReg)) {
952     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
953     getKillRegState(KillSrc);
954     return;
955   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
956              PPC::VSFRCRegClass.contains(DestReg)) {
957     assert(Subtarget.hasDirectMove() &&
958            "Subtarget doesn't support directmove, don't know how to copy.");
959     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
960     NumGPRtoVSRSpill++;
961     getKillRegState(KillSrc);
962     return;
963   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
964              PPC::G8RCRegClass.contains(DestReg)) {
965     assert(Subtarget.hasDirectMove() &&
966            "Subtarget doesn't support directmove, don't know how to copy.");
967     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
968     getKillRegState(KillSrc);
969     return;
970   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
971              PPC::GPRCRegClass.contains(DestReg)) {
972     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
973     getKillRegState(KillSrc);
974     return;
975   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
976              PPC::SPERCRegClass.contains(DestReg)) {
977     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
978     getKillRegState(KillSrc);
979     return;
980   }
981 
982   unsigned Opc;
983   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
984     Opc = PPC::OR;
985   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
986     Opc = PPC::OR8;
987   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
988     Opc = PPC::FMR;
989   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
990     Opc = PPC::MCRF;
991   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
992     Opc = PPC::VOR;
993   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
994     // There are two different ways this can be done:
995     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
996     //      issue in VSU pipeline 0.
997     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
998     //      can go to either pipeline.
999     // We'll always use xxlor here, because in practically all cases where
1000     // copies are generated, they are close enough to some use that the
1001     // lower-latency form is preferable.
1002     Opc = PPC::XXLOR;
1003   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1004            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1005     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1006   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1007     Opc = PPC::QVFMR;
1008   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1009     Opc = PPC::QVFMRs;
1010   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1011     Opc = PPC::QVFMRb;
1012   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1013     Opc = PPC::CROR;
1014   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1015     Opc = PPC::EVOR;
1016   else
1017     llvm_unreachable("Impossible reg-to-reg copy");
1018 
1019   const MCInstrDesc &MCID = get(Opc);
1020   if (MCID.getNumOperands() == 3)
1021     BuildMI(MBB, I, DL, MCID, DestReg)
1022       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1023   else
1024     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1025 }
1026 
1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1028                                               const TargetRegisterClass *RC)
1029                                               const {
1030   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1031   int OpcodeIndex = 0;
1032 
1033   if (RC != nullptr) {
1034     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1035         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1036       OpcodeIndex = SOK_Int4Spill;
1037     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1038                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1039       OpcodeIndex = SOK_Int8Spill;
1040     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1041       OpcodeIndex = SOK_Float8Spill;
1042     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1043       OpcodeIndex = SOK_Float4Spill;
1044     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1045       OpcodeIndex = SOK_SPESpill;
1046     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1047       OpcodeIndex = SOK_CRSpill;
1048     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1049       OpcodeIndex = SOK_CRBitSpill;
1050     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1051       OpcodeIndex = SOK_VRVectorSpill;
1052     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1053       OpcodeIndex = SOK_VSXVectorSpill;
1054     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1055       OpcodeIndex = SOK_VectorFloat8Spill;
1056     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1057       OpcodeIndex = SOK_VectorFloat4Spill;
1058     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1059       OpcodeIndex = SOK_VRSaveSpill;
1060     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1061       OpcodeIndex = SOK_QuadFloat8Spill;
1062     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1063       OpcodeIndex = SOK_QuadFloat4Spill;
1064     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1065       OpcodeIndex = SOK_QuadBitSpill;
1066     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1067       OpcodeIndex = SOK_SpillToVSR;
1068     } else {
1069       llvm_unreachable("Unknown regclass!");
1070     }
1071   } else {
1072     if (PPC::GPRCRegClass.contains(Reg) ||
1073         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1074       OpcodeIndex = SOK_Int4Spill;
1075     } else if (PPC::G8RCRegClass.contains(Reg) ||
1076                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1077       OpcodeIndex = SOK_Int8Spill;
1078     } else if (PPC::F8RCRegClass.contains(Reg)) {
1079       OpcodeIndex = SOK_Float8Spill;
1080     } else if (PPC::F4RCRegClass.contains(Reg)) {
1081       OpcodeIndex = SOK_Float4Spill;
1082     } else if (PPC::SPERCRegClass.contains(Reg)) {
1083       OpcodeIndex = SOK_SPESpill;
1084     } else if (PPC::CRRCRegClass.contains(Reg)) {
1085       OpcodeIndex = SOK_CRSpill;
1086     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1087       OpcodeIndex = SOK_CRBitSpill;
1088     } else if (PPC::VRRCRegClass.contains(Reg)) {
1089       OpcodeIndex = SOK_VRVectorSpill;
1090     } else if (PPC::VSRCRegClass.contains(Reg)) {
1091       OpcodeIndex = SOK_VSXVectorSpill;
1092     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1093       OpcodeIndex = SOK_VectorFloat8Spill;
1094     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1095       OpcodeIndex = SOK_VectorFloat4Spill;
1096     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1097       OpcodeIndex = SOK_VRSaveSpill;
1098     } else if (PPC::QFRCRegClass.contains(Reg)) {
1099       OpcodeIndex = SOK_QuadFloat8Spill;
1100     } else if (PPC::QSRCRegClass.contains(Reg)) {
1101       OpcodeIndex = SOK_QuadFloat4Spill;
1102     } else if (PPC::QBRCRegClass.contains(Reg)) {
1103       OpcodeIndex = SOK_QuadBitSpill;
1104     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1105       OpcodeIndex = SOK_SpillToVSR;
1106     } else {
1107       llvm_unreachable("Unknown regclass!");
1108     }
1109   }
1110   return OpcodesForSpill[OpcodeIndex];
1111 }
1112 
1113 unsigned
1114 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1115                                     const TargetRegisterClass *RC) const {
1116   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1117   int OpcodeIndex = 0;
1118 
1119   if (RC != nullptr) {
1120     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1121         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1122       OpcodeIndex = SOK_Int4Spill;
1123     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1124                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1125       OpcodeIndex = SOK_Int8Spill;
1126     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1127       OpcodeIndex = SOK_Float8Spill;
1128     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1129       OpcodeIndex = SOK_Float4Spill;
1130     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1131       OpcodeIndex = SOK_SPESpill;
1132     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1133       OpcodeIndex = SOK_CRSpill;
1134     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1135       OpcodeIndex = SOK_CRBitSpill;
1136     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1137       OpcodeIndex = SOK_VRVectorSpill;
1138     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1139       OpcodeIndex = SOK_VSXVectorSpill;
1140     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1141       OpcodeIndex = SOK_VectorFloat8Spill;
1142     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1143       OpcodeIndex = SOK_VectorFloat4Spill;
1144     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1145       OpcodeIndex = SOK_VRSaveSpill;
1146     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1147       OpcodeIndex = SOK_QuadFloat8Spill;
1148     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1149       OpcodeIndex = SOK_QuadFloat4Spill;
1150     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1151       OpcodeIndex = SOK_QuadBitSpill;
1152     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1153       OpcodeIndex = SOK_SpillToVSR;
1154     } else {
1155       llvm_unreachable("Unknown regclass!");
1156     }
1157   } else {
1158     if (PPC::GPRCRegClass.contains(Reg) ||
1159         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1160       OpcodeIndex = SOK_Int4Spill;
1161     } else if (PPC::G8RCRegClass.contains(Reg) ||
1162                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1163       OpcodeIndex = SOK_Int8Spill;
1164     } else if (PPC::F8RCRegClass.contains(Reg)) {
1165       OpcodeIndex = SOK_Float8Spill;
1166     } else if (PPC::F4RCRegClass.contains(Reg)) {
1167       OpcodeIndex = SOK_Float4Spill;
1168     } else if (PPC::SPERCRegClass.contains(Reg)) {
1169       OpcodeIndex = SOK_SPESpill;
1170     } else if (PPC::CRRCRegClass.contains(Reg)) {
1171       OpcodeIndex = SOK_CRSpill;
1172     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1173       OpcodeIndex = SOK_CRBitSpill;
1174     } else if (PPC::VRRCRegClass.contains(Reg)) {
1175       OpcodeIndex = SOK_VRVectorSpill;
1176     } else if (PPC::VSRCRegClass.contains(Reg)) {
1177       OpcodeIndex = SOK_VSXVectorSpill;
1178     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1179       OpcodeIndex = SOK_VectorFloat8Spill;
1180     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1181       OpcodeIndex = SOK_VectorFloat4Spill;
1182     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1183       OpcodeIndex = SOK_VRSaveSpill;
1184     } else if (PPC::QFRCRegClass.contains(Reg)) {
1185       OpcodeIndex = SOK_QuadFloat8Spill;
1186     } else if (PPC::QSRCRegClass.contains(Reg)) {
1187       OpcodeIndex = SOK_QuadFloat4Spill;
1188     } else if (PPC::QBRCRegClass.contains(Reg)) {
1189       OpcodeIndex = SOK_QuadBitSpill;
1190     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1191       OpcodeIndex = SOK_SpillToVSR;
1192     } else {
1193       llvm_unreachable("Unknown regclass!");
1194     }
1195   }
1196   return OpcodesForSpill[OpcodeIndex];
1197 }
1198 
1199 void PPCInstrInfo::StoreRegToStackSlot(
1200     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1201     const TargetRegisterClass *RC,
1202     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1203   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1204   DebugLoc DL;
1205 
1206   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1207   FuncInfo->setHasSpills();
1208 
1209   NewMIs.push_back(addFrameReference(
1210       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1211       FrameIdx));
1212 
1213   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1214       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1215     FuncInfo->setSpillsCR();
1216 
1217   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1218     FuncInfo->setSpillsVRSAVE();
1219 
1220   if (isXFormMemOp(Opcode))
1221     FuncInfo->setHasNonRISpills();
1222 }
1223 
1224 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1225                                        MachineBasicBlock::iterator MI,
1226                                        unsigned SrcReg, bool isKill,
1227                                        int FrameIdx,
1228                                        const TargetRegisterClass *RC,
1229                                        const TargetRegisterInfo *TRI) const {
1230   MachineFunction &MF = *MBB.getParent();
1231   SmallVector<MachineInstr *, 4> NewMIs;
1232 
1233   // We need to avoid a situation in which the value from a VRRC register is
1234   // spilled using an Altivec instruction and reloaded into a VSRC register
1235   // using a VSX instruction. The issue with this is that the VSX
1236   // load/store instructions swap the doublewords in the vector and the Altivec
1237   // ones don't. The register classes on the spill/reload may be different if
1238   // the register is defined using an Altivec instruction and is then used by a
1239   // VSX instruction.
1240   RC = updatedRC(RC);
1241 
1242   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1243 
1244   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1245     MBB.insert(MI, NewMIs[i]);
1246 
1247   const MachineFrameInfo &MFI = MF.getFrameInfo();
1248   MachineMemOperand *MMO = MF.getMachineMemOperand(
1249       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1250       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1251       MFI.getObjectAlignment(FrameIdx));
1252   NewMIs.back()->addMemOperand(MF, MMO);
1253 }
1254 
1255 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1256                                         unsigned DestReg, int FrameIdx,
1257                                         const TargetRegisterClass *RC,
1258                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1259                                         const {
1260   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1261   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1262                                      FrameIdx));
1263   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1264 
1265   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1266       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1267     FuncInfo->setSpillsCR();
1268 
1269   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1270     FuncInfo->setSpillsVRSAVE();
1271 
1272   if (isXFormMemOp(Opcode))
1273     FuncInfo->setHasNonRISpills();
1274 }
1275 
1276 void
1277 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1278                                    MachineBasicBlock::iterator MI,
1279                                    unsigned DestReg, int FrameIdx,
1280                                    const TargetRegisterClass *RC,
1281                                    const TargetRegisterInfo *TRI) const {
1282   MachineFunction &MF = *MBB.getParent();
1283   SmallVector<MachineInstr*, 4> NewMIs;
1284   DebugLoc DL;
1285   if (MI != MBB.end()) DL = MI->getDebugLoc();
1286 
1287   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1288   FuncInfo->setHasSpills();
1289 
1290   // We need to avoid a situation in which the value from a VRRC register is
1291   // spilled using an Altivec instruction and reloaded into a VSRC register
1292   // using a VSX instruction. The issue with this is that the VSX
1293   // load/store instructions swap the doublewords in the vector and the Altivec
1294   // ones don't. The register classes on the spill/reload may be different if
1295   // the register is defined using an Altivec instruction and is then used by a
1296   // VSX instruction.
1297   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1298     RC = &PPC::VSRCRegClass;
1299 
1300   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1301 
1302   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1303     MBB.insert(MI, NewMIs[i]);
1304 
1305   const MachineFrameInfo &MFI = MF.getFrameInfo();
1306   MachineMemOperand *MMO = MF.getMachineMemOperand(
1307       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1308       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1309       MFI.getObjectAlignment(FrameIdx));
1310   NewMIs.back()->addMemOperand(MF, MMO);
1311 }
1312 
1313 bool PPCInstrInfo::
1314 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1315   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1316   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1317     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1318   else
1319     // Leave the CR# the same, but invert the condition.
1320     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1321   return false;
1322 }
1323 
1324 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1325                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1326   // For some instructions, it is legal to fold ZERO into the RA register field.
1327   // A zero immediate should always be loaded with a single li.
1328   unsigned DefOpc = DefMI.getOpcode();
1329   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1330     return false;
1331   if (!DefMI.getOperand(1).isImm())
1332     return false;
1333   if (DefMI.getOperand(1).getImm() != 0)
1334     return false;
1335 
1336   // Note that we cannot here invert the arguments of an isel in order to fold
1337   // a ZERO into what is presented as the second argument. All we have here
1338   // is the condition bit, and that might come from a CR-logical bit operation.
1339 
1340   const MCInstrDesc &UseMCID = UseMI.getDesc();
1341 
1342   // Only fold into real machine instructions.
1343   if (UseMCID.isPseudo())
1344     return false;
1345 
1346   unsigned UseIdx;
1347   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1348     if (UseMI.getOperand(UseIdx).isReg() &&
1349         UseMI.getOperand(UseIdx).getReg() == Reg)
1350       break;
1351 
1352   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1353   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1354 
1355   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1356 
1357   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1358   // register (which might also be specified as a pointer class kind).
1359   if (UseInfo->isLookupPtrRegClass()) {
1360     if (UseInfo->RegClass /* Kind */ != 1)
1361       return false;
1362   } else {
1363     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1364         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1365       return false;
1366   }
1367 
1368   // Make sure this is not tied to an output register (or otherwise
1369   // constrained). This is true for ST?UX registers, for example, which
1370   // are tied to their output registers.
1371   if (UseInfo->Constraints != 0)
1372     return false;
1373 
1374   unsigned ZeroReg;
1375   if (UseInfo->isLookupPtrRegClass()) {
1376     bool isPPC64 = Subtarget.isPPC64();
1377     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1378   } else {
1379     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1380               PPC::ZERO8 : PPC::ZERO;
1381   }
1382 
1383   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1384   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1385 
1386   if (DeleteDef)
1387     DefMI.eraseFromParent();
1388 
1389   return true;
1390 }
1391 
1392 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1393   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1394        I != IE; ++I)
1395     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1396       return true;
1397   return false;
1398 }
1399 
1400 // We should make sure that, if we're going to predicate both sides of a
1401 // condition (a diamond), that both sides don't define the counter register. We
1402 // can predicate counter-decrement-based branches, but while that predicates
1403 // the branching, it does not predicate the counter decrement. If we tried to
1404 // merge the triangle into one predicated block, we'd decrement the counter
1405 // twice.
1406 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1407                      unsigned NumT, unsigned ExtraT,
1408                      MachineBasicBlock &FMBB,
1409                      unsigned NumF, unsigned ExtraF,
1410                      BranchProbability Probability) const {
1411   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1412 }
1413 
1414 
1415 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1416   // The predicated branches are identified by their type, not really by the
1417   // explicit presence of a predicate. Furthermore, some of them can be
1418   // predicated more than once. Because if conversion won't try to predicate
1419   // any instruction which already claims to be predicated (by returning true
1420   // here), always return false. In doing so, we let isPredicable() be the
1421   // final word on whether not the instruction can be (further) predicated.
1422 
1423   return false;
1424 }
1425 
1426 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1427   if (!MI.isTerminator())
1428     return false;
1429 
1430   // Conditional branch is a special case.
1431   if (MI.isBranch() && !MI.isBarrier())
1432     return true;
1433 
1434   return !isPredicated(MI);
1435 }
1436 
1437 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1438                                         ArrayRef<MachineOperand> Pred) const {
1439   unsigned OpC = MI.getOpcode();
1440   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1441     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1442       bool isPPC64 = Subtarget.isPPC64();
1443       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1444                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1445     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1446       MI.setDesc(get(PPC::BCLR));
1447       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1448     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1449       MI.setDesc(get(PPC::BCLRn));
1450       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1451     } else {
1452       MI.setDesc(get(PPC::BCCLR));
1453       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1454           .addImm(Pred[0].getImm())
1455           .add(Pred[1]);
1456     }
1457 
1458     return true;
1459   } else if (OpC == PPC::B) {
1460     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1461       bool isPPC64 = Subtarget.isPPC64();
1462       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1463                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1464     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1465       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1466       MI.RemoveOperand(0);
1467 
1468       MI.setDesc(get(PPC::BC));
1469       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1470           .add(Pred[1])
1471           .addMBB(MBB);
1472     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1473       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1474       MI.RemoveOperand(0);
1475 
1476       MI.setDesc(get(PPC::BCn));
1477       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1478           .add(Pred[1])
1479           .addMBB(MBB);
1480     } else {
1481       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1482       MI.RemoveOperand(0);
1483 
1484       MI.setDesc(get(PPC::BCC));
1485       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1486           .addImm(Pred[0].getImm())
1487           .add(Pred[1])
1488           .addMBB(MBB);
1489     }
1490 
1491     return true;
1492   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1493              OpC == PPC::BCTRL8) {
1494     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1495       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1496 
1497     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1498     bool isPPC64 = Subtarget.isPPC64();
1499 
1500     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1501       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1502                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1503       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1504       return true;
1505     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1506       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1507                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1508       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1509       return true;
1510     }
1511 
1512     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1513                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1514     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1515         .addImm(Pred[0].getImm())
1516         .add(Pred[1]);
1517     return true;
1518   }
1519 
1520   return false;
1521 }
1522 
1523 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1524                                      ArrayRef<MachineOperand> Pred2) const {
1525   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1526   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1527 
1528   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1529     return false;
1530   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1531     return false;
1532 
1533   // P1 can only subsume P2 if they test the same condition register.
1534   if (Pred1[1].getReg() != Pred2[1].getReg())
1535     return false;
1536 
1537   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1538   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1539 
1540   if (P1 == P2)
1541     return true;
1542 
1543   // Does P1 subsume P2, e.g. GE subsumes GT.
1544   if (P1 == PPC::PRED_LE &&
1545       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1546     return true;
1547   if (P1 == PPC::PRED_GE &&
1548       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1549     return true;
1550 
1551   return false;
1552 }
1553 
1554 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1555                                     std::vector<MachineOperand> &Pred) const {
1556   // Note: At the present time, the contents of Pred from this function is
1557   // unused by IfConversion. This implementation follows ARM by pushing the
1558   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1559   // predicate, instructions defining CTR or CTR8 are also included as
1560   // predicate-defining instructions.
1561 
1562   const TargetRegisterClass *RCs[] =
1563     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1564       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1565 
1566   bool Found = false;
1567   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1568     const MachineOperand &MO = MI.getOperand(i);
1569     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1570       const TargetRegisterClass *RC = RCs[c];
1571       if (MO.isReg()) {
1572         if (MO.isDef() && RC->contains(MO.getReg())) {
1573           Pred.push_back(MO);
1574           Found = true;
1575         }
1576       } else if (MO.isRegMask()) {
1577         for (TargetRegisterClass::iterator I = RC->begin(),
1578              IE = RC->end(); I != IE; ++I)
1579           if (MO.clobbersPhysReg(*I)) {
1580             Pred.push_back(MO);
1581             Found = true;
1582           }
1583       }
1584     }
1585   }
1586 
1587   return Found;
1588 }
1589 
1590 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1591                                   unsigned &SrcReg2, int &Mask,
1592                                   int &Value) const {
1593   unsigned Opc = MI.getOpcode();
1594 
1595   switch (Opc) {
1596   default: return false;
1597   case PPC::CMPWI:
1598   case PPC::CMPLWI:
1599   case PPC::CMPDI:
1600   case PPC::CMPLDI:
1601     SrcReg = MI.getOperand(1).getReg();
1602     SrcReg2 = 0;
1603     Value = MI.getOperand(2).getImm();
1604     Mask = 0xFFFF;
1605     return true;
1606   case PPC::CMPW:
1607   case PPC::CMPLW:
1608   case PPC::CMPD:
1609   case PPC::CMPLD:
1610   case PPC::FCMPUS:
1611   case PPC::FCMPUD:
1612     SrcReg = MI.getOperand(1).getReg();
1613     SrcReg2 = MI.getOperand(2).getReg();
1614     Value = 0;
1615     Mask = 0;
1616     return true;
1617   }
1618 }
1619 
1620 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1621                                         unsigned SrcReg2, int Mask, int Value,
1622                                         const MachineRegisterInfo *MRI) const {
1623   if (DisableCmpOpt)
1624     return false;
1625 
1626   int OpC = CmpInstr.getOpcode();
1627   Register CRReg = CmpInstr.getOperand(0).getReg();
1628 
1629   // FP record forms set CR1 based on the exception status bits, not a
1630   // comparison with zero.
1631   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1632     return false;
1633 
1634   const TargetRegisterInfo *TRI = &getRegisterInfo();
1635   // The record forms set the condition register based on a signed comparison
1636   // with zero (so says the ISA manual). This is not as straightforward as it
1637   // seems, however, because this is always a 64-bit comparison on PPC64, even
1638   // for instructions that are 32-bit in nature (like slw for example).
1639   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1640   // for equality checks (as those don't depend on the sign). On PPC64,
1641   // we are restricted to equality for unsigned 64-bit comparisons and for
1642   // signed 32-bit comparisons the applicability is more restricted.
1643   bool isPPC64 = Subtarget.isPPC64();
1644   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1645   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1646   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1647 
1648   // Look through copies unless that gets us to a physical register.
1649   unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1650   if (Register::isVirtualRegister(ActualSrc))
1651     SrcReg = ActualSrc;
1652 
1653   // Get the unique definition of SrcReg.
1654   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1655   if (!MI) return false;
1656 
1657   bool equalityOnly = false;
1658   bool noSub = false;
1659   if (isPPC64) {
1660     if (is32BitSignedCompare) {
1661       // We can perform this optimization only if MI is sign-extending.
1662       if (isSignExtended(*MI))
1663         noSub = true;
1664       else
1665         return false;
1666     } else if (is32BitUnsignedCompare) {
1667       // We can perform this optimization, equality only, if MI is
1668       // zero-extending.
1669       if (isZeroExtended(*MI)) {
1670         noSub = true;
1671         equalityOnly = true;
1672       } else
1673         return false;
1674     } else
1675       equalityOnly = is64BitUnsignedCompare;
1676   } else
1677     equalityOnly = is32BitUnsignedCompare;
1678 
1679   if (equalityOnly) {
1680     // We need to check the uses of the condition register in order to reject
1681     // non-equality comparisons.
1682     for (MachineRegisterInfo::use_instr_iterator
1683          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1684          I != IE; ++I) {
1685       MachineInstr *UseMI = &*I;
1686       if (UseMI->getOpcode() == PPC::BCC) {
1687         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1688         unsigned PredCond = PPC::getPredicateCondition(Pred);
1689         // We ignore hint bits when checking for non-equality comparisons.
1690         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1691           return false;
1692       } else if (UseMI->getOpcode() == PPC::ISEL ||
1693                  UseMI->getOpcode() == PPC::ISEL8) {
1694         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1695         if (SubIdx != PPC::sub_eq)
1696           return false;
1697       } else
1698         return false;
1699     }
1700   }
1701 
1702   MachineBasicBlock::iterator I = CmpInstr;
1703 
1704   // Scan forward to find the first use of the compare.
1705   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1706        ++I) {
1707     bool FoundUse = false;
1708     for (MachineRegisterInfo::use_instr_iterator
1709          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1710          J != JE; ++J)
1711       if (&*J == &*I) {
1712         FoundUse = true;
1713         break;
1714       }
1715 
1716     if (FoundUse)
1717       break;
1718   }
1719 
1720   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1721   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1722 
1723   // There are two possible candidates which can be changed to set CR[01].
1724   // One is MI, the other is a SUB instruction.
1725   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1726   MachineInstr *Sub = nullptr;
1727   if (SrcReg2 != 0)
1728     // MI is not a candidate for CMPrr.
1729     MI = nullptr;
1730   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1731   // same BB as the comparison. This is to allow the check below to avoid calls
1732   // (and other explicit clobbers); instead we should really check for these
1733   // more explicitly (in at least a few predecessors).
1734   else if (MI->getParent() != CmpInstr.getParent())
1735     return false;
1736   else if (Value != 0) {
1737     // The record-form instructions set CR bit based on signed comparison
1738     // against 0. We try to convert a compare against 1 or -1 into a compare
1739     // against 0 to exploit record-form instructions. For example, we change
1740     // the condition "greater than -1" into "greater than or equal to 0"
1741     // and "less than 1" into "less than or equal to 0".
1742 
1743     // Since we optimize comparison based on a specific branch condition,
1744     // we don't optimize if condition code is used by more than once.
1745     if (equalityOnly || !MRI->hasOneUse(CRReg))
1746       return false;
1747 
1748     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1749     if (UseMI->getOpcode() != PPC::BCC)
1750       return false;
1751 
1752     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1753     unsigned PredCond = PPC::getPredicateCondition(Pred);
1754     unsigned PredHint = PPC::getPredicateHint(Pred);
1755     int16_t Immed = (int16_t)Value;
1756 
1757     // When modifying the condition in the predicate, we propagate hint bits
1758     // from the original predicate to the new one.
1759     if (Immed == -1 && PredCond == PPC::PRED_GT)
1760       // We convert "greater than -1" into "greater than or equal to 0",
1761       // since we are assuming signed comparison by !equalityOnly
1762       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1763     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1764       // We convert "less than or equal to -1" into "less than 0".
1765       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1766     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1767       // We convert "less than 1" into "less than or equal to 0".
1768       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1769     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1770       // We convert "greater than or equal to 1" into "greater than 0".
1771       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1772     else
1773       return false;
1774 
1775     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1776   }
1777 
1778   // Search for Sub.
1779   --I;
1780 
1781   // Get ready to iterate backward from CmpInstr.
1782   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1783 
1784   for (; I != E && !noSub; --I) {
1785     const MachineInstr &Instr = *I;
1786     unsigned IOpC = Instr.getOpcode();
1787 
1788     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1789                              Instr.readsRegister(PPC::CR0, TRI)))
1790       // This instruction modifies or uses the record condition register after
1791       // the one we want to change. While we could do this transformation, it
1792       // would likely not be profitable. This transformation removes one
1793       // instruction, and so even forcing RA to generate one move probably
1794       // makes it unprofitable.
1795       return false;
1796 
1797     // Check whether CmpInstr can be made redundant by the current instruction.
1798     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1799          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1800         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1801         ((Instr.getOperand(1).getReg() == SrcReg &&
1802           Instr.getOperand(2).getReg() == SrcReg2) ||
1803         (Instr.getOperand(1).getReg() == SrcReg2 &&
1804          Instr.getOperand(2).getReg() == SrcReg))) {
1805       Sub = &*I;
1806       break;
1807     }
1808 
1809     if (I == B)
1810       // The 'and' is below the comparison instruction.
1811       return false;
1812   }
1813 
1814   // Return false if no candidates exist.
1815   if (!MI && !Sub)
1816     return false;
1817 
1818   // The single candidate is called MI.
1819   if (!MI) MI = Sub;
1820 
1821   int NewOpC = -1;
1822   int MIOpC = MI->getOpcode();
1823   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
1824       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
1825     NewOpC = MIOpC;
1826   else {
1827     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1828     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1829       NewOpC = MIOpC;
1830   }
1831 
1832   // FIXME: On the non-embedded POWER architectures, only some of the record
1833   // forms are fast, and we should use only the fast ones.
1834 
1835   // The defining instruction has a record form (or is already a record
1836   // form). It is possible, however, that we'll need to reverse the condition
1837   // code of the users.
1838   if (NewOpC == -1)
1839     return false;
1840 
1841   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1842   // needs to be updated to be based on SUB.  Push the condition code
1843   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1844   // condition code of these operands will be modified.
1845   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1846   // comparison against 0, which may modify predicate.
1847   bool ShouldSwap = false;
1848   if (Sub && Value == 0) {
1849     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1850       Sub->getOperand(2).getReg() == SrcReg;
1851 
1852     // The operands to subf are the opposite of sub, so only in the fixed-point
1853     // case, invert the order.
1854     ShouldSwap = !ShouldSwap;
1855   }
1856 
1857   if (ShouldSwap)
1858     for (MachineRegisterInfo::use_instr_iterator
1859          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1860          I != IE; ++I) {
1861       MachineInstr *UseMI = &*I;
1862       if (UseMI->getOpcode() == PPC::BCC) {
1863         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1864         unsigned PredCond = PPC::getPredicateCondition(Pred);
1865         assert((!equalityOnly ||
1866                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1867                "Invalid predicate for equality-only optimization");
1868         (void)PredCond; // To suppress warning in release build.
1869         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1870                                 PPC::getSwappedPredicate(Pred)));
1871       } else if (UseMI->getOpcode() == PPC::ISEL ||
1872                  UseMI->getOpcode() == PPC::ISEL8) {
1873         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1874         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1875                "Invalid CR bit for equality-only optimization");
1876 
1877         if (NewSubReg == PPC::sub_lt)
1878           NewSubReg = PPC::sub_gt;
1879         else if (NewSubReg == PPC::sub_gt)
1880           NewSubReg = PPC::sub_lt;
1881 
1882         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1883                                                  NewSubReg));
1884       } else // We need to abort on a user we don't understand.
1885         return false;
1886     }
1887   assert(!(Value != 0 && ShouldSwap) &&
1888          "Non-zero immediate support and ShouldSwap"
1889          "may conflict in updating predicate");
1890 
1891   // Create a new virtual register to hold the value of the CR set by the
1892   // record-form instruction. If the instruction was not previously in
1893   // record form, then set the kill flag on the CR.
1894   CmpInstr.eraseFromParent();
1895 
1896   MachineBasicBlock::iterator MII = MI;
1897   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1898           get(TargetOpcode::COPY), CRReg)
1899     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1900 
1901   // Even if CR0 register were dead before, it is alive now since the
1902   // instruction we just built uses it.
1903   MI->clearRegisterDeads(PPC::CR0);
1904 
1905   if (MIOpC != NewOpC) {
1906     // We need to be careful here: we're replacing one instruction with
1907     // another, and we need to make sure that we get all of the right
1908     // implicit uses and defs. On the other hand, the caller may be holding
1909     // an iterator to this instruction, and so we can't delete it (this is
1910     // specifically the case if this is the instruction directly after the
1911     // compare).
1912 
1913     // Rotates are expensive instructions. If we're emitting a record-form
1914     // rotate that can just be an andi/andis, we should just emit that.
1915     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1916       Register GPRRes = MI->getOperand(0).getReg();
1917       int64_t SH = MI->getOperand(2).getImm();
1918       int64_t MB = MI->getOperand(3).getImm();
1919       int64_t ME = MI->getOperand(4).getImm();
1920       // We can only do this if both the start and end of the mask are in the
1921       // same halfword.
1922       bool MBInLoHWord = MB >= 16;
1923       bool MEInLoHWord = ME >= 16;
1924       uint64_t Mask = ~0LLU;
1925 
1926       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1927         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1928         // The mask value needs to shift right 16 if we're emitting andis.
1929         Mask >>= MBInLoHWord ? 0 : 16;
1930         NewOpC = MIOpC == PPC::RLWINM
1931                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
1932                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
1933       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1934                  (ME - MB + 1 == SH) && (MB >= 16)) {
1935         // If we are rotating by the exact number of bits as are in the mask
1936         // and the mask is in the least significant bits of the register,
1937         // that's just an andis. (as long as the GPR result has no uses).
1938         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1939         Mask >>= 16;
1940         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
1941       }
1942       // If we've set the mask, we can transform.
1943       if (Mask != ~0LLU) {
1944         MI->RemoveOperand(4);
1945         MI->RemoveOperand(3);
1946         MI->getOperand(2).setImm(Mask);
1947         NumRcRotatesConvertedToRcAnd++;
1948       }
1949     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1950       int64_t MB = MI->getOperand(3).getImm();
1951       if (MB >= 48) {
1952         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1953         NewOpC = PPC::ANDI8_rec;
1954         MI->RemoveOperand(3);
1955         MI->getOperand(2).setImm(Mask);
1956         NumRcRotatesConvertedToRcAnd++;
1957       }
1958     }
1959 
1960     const MCInstrDesc &NewDesc = get(NewOpC);
1961     MI->setDesc(NewDesc);
1962 
1963     if (NewDesc.ImplicitDefs)
1964       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1965            *ImpDefs; ++ImpDefs)
1966         if (!MI->definesRegister(*ImpDefs))
1967           MI->addOperand(*MI->getParent()->getParent(),
1968                          MachineOperand::CreateReg(*ImpDefs, true, true));
1969     if (NewDesc.ImplicitUses)
1970       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1971            *ImpUses; ++ImpUses)
1972         if (!MI->readsRegister(*ImpUses))
1973           MI->addOperand(*MI->getParent()->getParent(),
1974                          MachineOperand::CreateReg(*ImpUses, false, true));
1975   }
1976   assert(MI->definesRegister(PPC::CR0) &&
1977          "Record-form instruction does not define cr0?");
1978 
1979   // Modify the condition code of operands in OperandsToUpdate.
1980   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1981   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1982   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1983     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1984 
1985   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1986     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1987 
1988   return true;
1989 }
1990 
1991 /// GetInstSize - Return the number of bytes of code the specified
1992 /// instruction may be.  This returns the maximum number of bytes.
1993 ///
1994 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1995   unsigned Opcode = MI.getOpcode();
1996 
1997   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
1998     const MachineFunction *MF = MI.getParent()->getParent();
1999     const char *AsmStr = MI.getOperand(0).getSymbolName();
2000     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2001   } else if (Opcode == TargetOpcode::STACKMAP) {
2002     StackMapOpers Opers(&MI);
2003     return Opers.getNumPatchBytes();
2004   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2005     PatchPointOpers Opers(&MI);
2006     return Opers.getNumPatchBytes();
2007   } else {
2008     return get(Opcode).getSize();
2009   }
2010 }
2011 
2012 std::pair<unsigned, unsigned>
2013 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2014   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2015   return std::make_pair(TF & Mask, TF & ~Mask);
2016 }
2017 
2018 ArrayRef<std::pair<unsigned, const char *>>
2019 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2020   using namespace PPCII;
2021   static const std::pair<unsigned, const char *> TargetFlags[] = {
2022       {MO_LO, "ppc-lo"},
2023       {MO_HA, "ppc-ha"},
2024       {MO_TPREL_LO, "ppc-tprel-lo"},
2025       {MO_TPREL_HA, "ppc-tprel-ha"},
2026       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2027       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2028       {MO_TOC_LO, "ppc-toc-lo"},
2029       {MO_TLS, "ppc-tls"}};
2030   return makeArrayRef(TargetFlags);
2031 }
2032 
2033 ArrayRef<std::pair<unsigned, const char *>>
2034 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2035   using namespace PPCII;
2036   static const std::pair<unsigned, const char *> TargetFlags[] = {
2037       {MO_PLT, "ppc-plt"},
2038       {MO_PIC_FLAG, "ppc-pic"},
2039       {MO_NLP_FLAG, "ppc-nlp"},
2040       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2041   return makeArrayRef(TargetFlags);
2042 }
2043 
2044 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2045 // The VSX versions have the advantage of a full 64-register target whereas
2046 // the FP ones have the advantage of lower latency and higher throughput. So
2047 // what we are after is using the faster instructions in low register pressure
2048 // situations and using the larger register file in high register pressure
2049 // situations.
2050 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2051     unsigned UpperOpcode, LowerOpcode;
2052     switch (MI.getOpcode()) {
2053     case PPC::DFLOADf32:
2054       UpperOpcode = PPC::LXSSP;
2055       LowerOpcode = PPC::LFS;
2056       break;
2057     case PPC::DFLOADf64:
2058       UpperOpcode = PPC::LXSD;
2059       LowerOpcode = PPC::LFD;
2060       break;
2061     case PPC::DFSTOREf32:
2062       UpperOpcode = PPC::STXSSP;
2063       LowerOpcode = PPC::STFS;
2064       break;
2065     case PPC::DFSTOREf64:
2066       UpperOpcode = PPC::STXSD;
2067       LowerOpcode = PPC::STFD;
2068       break;
2069     case PPC::XFLOADf32:
2070       UpperOpcode = PPC::LXSSPX;
2071       LowerOpcode = PPC::LFSX;
2072       break;
2073     case PPC::XFLOADf64:
2074       UpperOpcode = PPC::LXSDX;
2075       LowerOpcode = PPC::LFDX;
2076       break;
2077     case PPC::XFSTOREf32:
2078       UpperOpcode = PPC::STXSSPX;
2079       LowerOpcode = PPC::STFSX;
2080       break;
2081     case PPC::XFSTOREf64:
2082       UpperOpcode = PPC::STXSDX;
2083       LowerOpcode = PPC::STFDX;
2084       break;
2085     case PPC::LIWAX:
2086       UpperOpcode = PPC::LXSIWAX;
2087       LowerOpcode = PPC::LFIWAX;
2088       break;
2089     case PPC::LIWZX:
2090       UpperOpcode = PPC::LXSIWZX;
2091       LowerOpcode = PPC::LFIWZX;
2092       break;
2093     case PPC::STIWX:
2094       UpperOpcode = PPC::STXSIWX;
2095       LowerOpcode = PPC::STFIWX;
2096       break;
2097     default:
2098       llvm_unreachable("Unknown Operation!");
2099     }
2100 
2101     Register TargetReg = MI.getOperand(0).getReg();
2102     unsigned Opcode;
2103     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2104         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2105       Opcode = LowerOpcode;
2106     else
2107       Opcode = UpperOpcode;
2108     MI.setDesc(get(Opcode));
2109     return true;
2110 }
2111 
2112 static bool isAnImmediateOperand(const MachineOperand &MO) {
2113   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2114 }
2115 
2116 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2117   auto &MBB = *MI.getParent();
2118   auto DL = MI.getDebugLoc();
2119 
2120   switch (MI.getOpcode()) {
2121   case TargetOpcode::LOAD_STACK_GUARD: {
2122     assert(Subtarget.isTargetLinux() &&
2123            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2124     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2125     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2126     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2127     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2128         .addImm(Offset)
2129         .addReg(Reg);
2130     return true;
2131   }
2132   case PPC::DFLOADf32:
2133   case PPC::DFLOADf64:
2134   case PPC::DFSTOREf32:
2135   case PPC::DFSTOREf64: {
2136     assert(Subtarget.hasP9Vector() &&
2137            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2138     assert(MI.getOperand(2).isReg() &&
2139            isAnImmediateOperand(MI.getOperand(1)) &&
2140            "D-form op must have register and immediate operands");
2141     return expandVSXMemPseudo(MI);
2142   }
2143   case PPC::XFLOADf32:
2144   case PPC::XFSTOREf32:
2145   case PPC::LIWAX:
2146   case PPC::LIWZX:
2147   case PPC::STIWX: {
2148     assert(Subtarget.hasP8Vector() &&
2149            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2150     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2151            "X-form op must have register and register operands");
2152     return expandVSXMemPseudo(MI);
2153   }
2154   case PPC::XFLOADf64:
2155   case PPC::XFSTOREf64: {
2156     assert(Subtarget.hasVSX() &&
2157            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2158     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2159            "X-form op must have register and register operands");
2160     return expandVSXMemPseudo(MI);
2161   }
2162   case PPC::SPILLTOVSR_LD: {
2163     Register TargetReg = MI.getOperand(0).getReg();
2164     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2165       MI.setDesc(get(PPC::DFLOADf64));
2166       return expandPostRAPseudo(MI);
2167     }
2168     else
2169       MI.setDesc(get(PPC::LD));
2170     return true;
2171   }
2172   case PPC::SPILLTOVSR_ST: {
2173     Register SrcReg = MI.getOperand(0).getReg();
2174     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2175       NumStoreSPILLVSRRCAsVec++;
2176       MI.setDesc(get(PPC::DFSTOREf64));
2177       return expandPostRAPseudo(MI);
2178     } else {
2179       NumStoreSPILLVSRRCAsGpr++;
2180       MI.setDesc(get(PPC::STD));
2181     }
2182     return true;
2183   }
2184   case PPC::SPILLTOVSR_LDX: {
2185     Register TargetReg = MI.getOperand(0).getReg();
2186     if (PPC::VSFRCRegClass.contains(TargetReg))
2187       MI.setDesc(get(PPC::LXSDX));
2188     else
2189       MI.setDesc(get(PPC::LDX));
2190     return true;
2191   }
2192   case PPC::SPILLTOVSR_STX: {
2193     Register SrcReg = MI.getOperand(0).getReg();
2194     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2195       NumStoreSPILLVSRRCAsVec++;
2196       MI.setDesc(get(PPC::STXSDX));
2197     } else {
2198       NumStoreSPILLVSRRCAsGpr++;
2199       MI.setDesc(get(PPC::STDX));
2200     }
2201     return true;
2202   }
2203 
2204   case PPC::CFENCE8: {
2205     auto Val = MI.getOperand(0).getReg();
2206     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2207     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2208         .addImm(PPC::PRED_NE_MINUS)
2209         .addReg(PPC::CR7)
2210         .addImm(1);
2211     MI.setDesc(get(PPC::ISYNC));
2212     MI.RemoveOperand(0);
2213     return true;
2214   }
2215   }
2216   return false;
2217 }
2218 
2219 // Essentially a compile-time implementation of a compare->isel sequence.
2220 // It takes two constants to compare, along with the true/false registers
2221 // and the comparison type (as a subreg to a CR field) and returns one
2222 // of the true/false registers, depending on the comparison results.
2223 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2224                           unsigned TrueReg, unsigned FalseReg,
2225                           unsigned CRSubReg) {
2226   // Signed comparisons. The immediates are assumed to be sign-extended.
2227   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2228     switch (CRSubReg) {
2229     default: llvm_unreachable("Unknown integer comparison type.");
2230     case PPC::sub_lt:
2231       return Imm1 < Imm2 ? TrueReg : FalseReg;
2232     case PPC::sub_gt:
2233       return Imm1 > Imm2 ? TrueReg : FalseReg;
2234     case PPC::sub_eq:
2235       return Imm1 == Imm2 ? TrueReg : FalseReg;
2236     }
2237   }
2238   // Unsigned comparisons.
2239   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2240     switch (CRSubReg) {
2241     default: llvm_unreachable("Unknown integer comparison type.");
2242     case PPC::sub_lt:
2243       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2244     case PPC::sub_gt:
2245       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2246     case PPC::sub_eq:
2247       return Imm1 == Imm2 ? TrueReg : FalseReg;
2248     }
2249   }
2250   return PPC::NoRegister;
2251 }
2252 
2253 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2254                                               unsigned OpNo,
2255                                               int64_t Imm) const {
2256   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2257   // Replace the REG with the Immediate.
2258   Register InUseReg = MI.getOperand(OpNo).getReg();
2259   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2260 
2261   if (MI.implicit_operands().empty())
2262     return;
2263 
2264   // We need to make sure that the MI didn't have any implicit use
2265   // of this REG any more.
2266   const TargetRegisterInfo *TRI = &getRegisterInfo();
2267   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2268   if (UseOpIdx >= 0) {
2269     MachineOperand &MO = MI.getOperand(UseOpIdx);
2270     if (MO.isImplicit())
2271       // The operands must always be in the following order:
2272       // - explicit reg defs,
2273       // - other explicit operands (reg uses, immediates, etc.),
2274       // - implicit reg defs
2275       // - implicit reg uses
2276       // Therefore, removing the implicit operand won't change the explicit
2277       // operands layout.
2278       MI.RemoveOperand(UseOpIdx);
2279   }
2280 }
2281 
2282 // Replace an instruction with one that materializes a constant (and sets
2283 // CR0 if the original instruction was a record-form instruction).
2284 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2285                                       const LoadImmediateInfo &LII) const {
2286   // Remove existing operands.
2287   int OperandToKeep = LII.SetCR ? 1 : 0;
2288   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2289     MI.RemoveOperand(i);
2290 
2291   // Replace the instruction.
2292   if (LII.SetCR) {
2293     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2294     // Set the immediate.
2295     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2296         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2297     return;
2298   }
2299   else
2300     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2301 
2302   // Set the immediate.
2303   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2304       .addImm(LII.Imm);
2305 }
2306 
2307 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2308                                            bool &SeenIntermediateUse) const {
2309   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2310          "Should be called after register allocation.");
2311   const TargetRegisterInfo *TRI = &getRegisterInfo();
2312   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2313   It++;
2314   SeenIntermediateUse = false;
2315   for (; It != E; ++It) {
2316     if (It->modifiesRegister(Reg, TRI))
2317       return &*It;
2318     if (It->readsRegister(Reg, TRI))
2319       SeenIntermediateUse = true;
2320   }
2321   return nullptr;
2322 }
2323 
2324 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2325   MachineInstr &MI,
2326   unsigned &OpNoForForwarding,
2327   bool &SeenIntermediateUse) const {
2328   OpNoForForwarding = ~0U;
2329   MachineInstr *DefMI = nullptr;
2330   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2331   const TargetRegisterInfo *TRI = &getRegisterInfo();
2332   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2333   // within the basic block to see if the register is defined using an LI/LI8.
2334   if (MRI->isSSA()) {
2335     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2336       if (!MI.getOperand(i).isReg())
2337         continue;
2338       Register Reg = MI.getOperand(i).getReg();
2339       if (!Register::isVirtualRegister(Reg))
2340         continue;
2341       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2342       if (Register::isVirtualRegister(TrueReg)) {
2343         DefMI = MRI->getVRegDef(TrueReg);
2344         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2345           OpNoForForwarding = i;
2346           break;
2347         }
2348       }
2349     }
2350   } else {
2351     // Looking back through the definition for each operand could be expensive,
2352     // so exit early if this isn't an instruction that either has an immediate
2353     // form or is already an immediate form that we can handle.
2354     ImmInstrInfo III;
2355     unsigned Opc = MI.getOpcode();
2356     bool ConvertibleImmForm =
2357         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2358         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2359         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2360         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2361         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2362         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2363         Opc == PPC::RLWINM8_rec;
2364     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2365                        ? isVFRegister(MI.getOperand(0).getReg())
2366                        : false;
2367     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2368       return nullptr;
2369 
2370     // Don't convert or %X, %Y, %Y since that's just a register move.
2371     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2372         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2373       return nullptr;
2374     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2375       MachineOperand &MO = MI.getOperand(i);
2376       SeenIntermediateUse = false;
2377       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2378         Register Reg = MI.getOperand(i).getReg();
2379         // If we see another use of this reg between the def and the MI,
2380         // we want to flat it so the def isn't deleted.
2381         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2382         if (DefMI) {
2383           // Is this register defined by some form of add-immediate (including
2384           // load-immediate) within this basic block?
2385           switch (DefMI->getOpcode()) {
2386           default:
2387             break;
2388           case PPC::LI:
2389           case PPC::LI8:
2390           case PPC::ADDItocL:
2391           case PPC::ADDI:
2392           case PPC::ADDI8:
2393             OpNoForForwarding = i;
2394             return DefMI;
2395           }
2396         }
2397       }
2398     }
2399   }
2400   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2401 }
2402 
2403 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2404   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2405       // Power 8
2406       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2407        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2408        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2409        PPC::SPILLTOVSR_ST, PPC::EVSTDD},
2410       // Power 9
2411       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2412        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2413        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2414        PPC::SPILLTOVSR_ST}};
2415 
2416   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2417 }
2418 
2419 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2420   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2421       // Power 8
2422       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2423        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2424        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2425        PPC::SPILLTOVSR_LD, PPC::EVLDD},
2426       // Power 9
2427       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2428        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2429        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2430        PPC::SPILLTOVSR_LD}};
2431 
2432   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2433 }
2434 
2435 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2436                                      unsigned RegNo) const {
2437   const MachineRegisterInfo &MRI =
2438       StartMI.getParent()->getParent()->getRegInfo();
2439   if (MRI.isSSA())
2440     return;
2441 
2442   // Instructions between [StartMI, EndMI] should be in same basic block.
2443   assert((StartMI.getParent() == EndMI.getParent()) &&
2444          "Instructions are not in same basic block");
2445 
2446   bool IsKillSet = false;
2447 
2448   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2449     MachineOperand &MO = MI.getOperand(Index);
2450     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2451         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2452       MO.setIsKill(false);
2453   };
2454 
2455   // Set killed flag for EndMI.
2456   // No need to do anything if EndMI defines RegNo.
2457   int UseIndex =
2458       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2459   if (UseIndex != -1) {
2460     EndMI.getOperand(UseIndex).setIsKill(true);
2461     IsKillSet = true;
2462     // Clear killed flag for other EndMI operands related to RegNo. In some
2463     // upexpected cases, killed may be set multiple times for same register
2464     // operand in same MI.
2465     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2466       if (i != UseIndex)
2467         clearOperandKillInfo(EndMI, i);
2468   }
2469 
2470   // Walking the inst in reverse order (EndMI -> StartMI].
2471   MachineBasicBlock::reverse_iterator It = EndMI;
2472   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2473   // EndMI has been handled above, skip it here.
2474   It++;
2475   MachineOperand *MO = nullptr;
2476   for (; It != E; ++It) {
2477     // Skip insturctions which could not be a def/use of RegNo.
2478     if (It->isDebugInstr() || It->isPosition())
2479       continue;
2480 
2481     // Clear killed flag for all It operands related to RegNo. In some
2482     // upexpected cases, killed may be set multiple times for same register
2483     // operand in same MI.
2484     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2485         clearOperandKillInfo(*It, i);
2486 
2487     // If killed is not set, set killed for its last use or set dead for its def
2488     // if no use found.
2489     if (!IsKillSet) {
2490       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2491         // Use found, set it killed.
2492         IsKillSet = true;
2493         MO->setIsKill(true);
2494         continue;
2495       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2496                                                   &getRegisterInfo()))) {
2497         // No use found, set dead for its def.
2498         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2499         MO->setIsDead(true);
2500         break;
2501       }
2502     }
2503 
2504     if ((&*It) == &StartMI)
2505       break;
2506   }
2507   // Ensure RegMo liveness is killed after EndMI.
2508   assert((IsKillSet || (MO && MO->isDead())) &&
2509          "RegNo should be killed or dead");
2510 }
2511 
2512 // This opt tries to convert the following imm form to an index form to save an
2513 // add for stack variables.
2514 // Return false if no such pattern found.
2515 //
2516 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2517 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2518 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2519 //
2520 // can be converted to:
2521 //
2522 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2523 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2524 //
2525 // In order to eliminate ADD instr, make sure that:
2526 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2527 //    new ADDI instr and ADDI can only take int16 Imm.
2528 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2529 //    between ADDI and ADD instr since its original def in ADDI will be changed
2530 //    in new ADDI instr. And also there should be no new def for it between
2531 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2532 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2533 //    between ADD and Imm instr since ADD instr will be eliminated.
2534 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2535 //    moved to Index instr.
2536 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2537   MachineFunction *MF = MI.getParent()->getParent();
2538   MachineRegisterInfo *MRI = &MF->getRegInfo();
2539   bool PostRA = !MRI->isSSA();
2540   // Do this opt after PEI which is after RA. The reason is stack slot expansion
2541   // in PEI may expose such opportunities since in PEI, stack slot offsets to
2542   // frame base(OffsetAddi) are determined.
2543   if (!PostRA)
2544     return false;
2545   unsigned ToBeDeletedReg = 0;
2546   int64_t OffsetImm = 0;
2547   unsigned XFormOpcode = 0;
2548   ImmInstrInfo III;
2549 
2550   // Check if Imm instr meets requirement.
2551   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
2552                                     III))
2553     return false;
2554 
2555   bool OtherIntermediateUse = false;
2556   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
2557 
2558   // Exit if there is other use between ADD and Imm instr or no def found.
2559   if (OtherIntermediateUse || !ADDMI)
2560     return false;
2561 
2562   // Check if ADD instr meets requirement.
2563   if (!isADDInstrEligibleForFolding(*ADDMI))
2564     return false;
2565 
2566   unsigned ScaleRegIdx = 0;
2567   int64_t OffsetAddi = 0;
2568   MachineInstr *ADDIMI = nullptr;
2569 
2570   // Check if there is a valid ToBeChangedReg in ADDMI.
2571   // 1: It must be killed.
2572   // 2: Its definition must be a valid ADDIMI.
2573   // 3: It must satify int16 offset requirement.
2574   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
2575     ScaleRegIdx = 2;
2576   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
2577     ScaleRegIdx = 1;
2578   else
2579     return false;
2580 
2581   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
2582   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
2583   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
2584   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
2585                        MachineBasicBlock::iterator End) {
2586     for (auto It = ++Start; It != End; It++)
2587       if (It->modifiesRegister(Reg, &getRegisterInfo()))
2588         return true;
2589     return false;
2590   };
2591   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
2592   // and Imm Instr.
2593   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
2594     return false;
2595 
2596   // Now start to do the transformation.
2597   LLVM_DEBUG(dbgs() << "Replace instruction: "
2598                     << "\n");
2599   LLVM_DEBUG(ADDIMI->dump());
2600   LLVM_DEBUG(ADDMI->dump());
2601   LLVM_DEBUG(MI.dump());
2602   LLVM_DEBUG(dbgs() << "with: "
2603                     << "\n");
2604 
2605   // Update ADDI instr.
2606   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
2607 
2608   // Update Imm instr.
2609   MI.setDesc(get(XFormOpcode));
2610   MI.getOperand(III.ImmOpNo)
2611       .ChangeToRegister(ScaleReg, false, false,
2612                         ADDMI->getOperand(ScaleRegIdx).isKill());
2613 
2614   MI.getOperand(III.OpNoForForwarding)
2615       .ChangeToRegister(ToBeChangedReg, false, false, true);
2616 
2617   // Eliminate ADD instr.
2618   ADDMI->eraseFromParent();
2619 
2620   LLVM_DEBUG(ADDIMI->dump());
2621   LLVM_DEBUG(MI.dump());
2622 
2623   return true;
2624 }
2625 
2626 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
2627                                                  int64_t &Imm) const {
2628   unsigned Opc = ADDIMI.getOpcode();
2629 
2630   // Exit if the instruction is not ADDI.
2631   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
2632     return false;
2633 
2634   // The operand may not necessarily be an immediate - it could be a relocation.
2635   if (!ADDIMI.getOperand(2).isImm())
2636     return false;
2637 
2638   Imm = ADDIMI.getOperand(2).getImm();
2639 
2640   return true;
2641 }
2642 
2643 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
2644   unsigned Opc = ADDMI.getOpcode();
2645 
2646   // Exit if the instruction is not ADD.
2647   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
2648 }
2649 
2650 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
2651                                                 unsigned &ToBeDeletedReg,
2652                                                 unsigned &XFormOpcode,
2653                                                 int64_t &OffsetImm,
2654                                                 ImmInstrInfo &III) const {
2655   // Only handle load/store.
2656   if (!MI.mayLoadOrStore())
2657     return false;
2658 
2659   unsigned Opc = MI.getOpcode();
2660 
2661   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
2662 
2663   // Exit if instruction has no index form.
2664   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
2665     return false;
2666 
2667   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
2668   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
2669                        III, true))
2670     return false;
2671 
2672   if (!III.IsSummingOperands)
2673     return false;
2674 
2675   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
2676   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
2677   // Only support imm operands, not relocation slots or others.
2678   if (!ImmOperand.isImm())
2679     return false;
2680 
2681   assert(RegOperand.isReg() && "Instruction format is not right");
2682 
2683   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
2684   if (!RegOperand.isKill())
2685     return false;
2686 
2687   ToBeDeletedReg = RegOperand.getReg();
2688   OffsetImm = ImmOperand.getImm();
2689 
2690   return true;
2691 }
2692 
2693 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
2694                                          MachineInstr *&ADDIMI,
2695                                          int64_t &OffsetAddi,
2696                                          int64_t OffsetImm) const {
2697   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
2698   MachineOperand &MO = ADDMI->getOperand(Index);
2699 
2700   if (!MO.isKill())
2701     return false;
2702 
2703   bool OtherIntermediateUse = false;
2704 
2705   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
2706   // Currently handle only one "add + Imminstr" pair case, exit if other
2707   // intermediate use for ToBeChangedReg found.
2708   // TODO: handle the cases where there are other "add + Imminstr" pairs
2709   // with same offset in Imminstr which is like:
2710   //
2711   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
2712   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
2713   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
2714   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
2715   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
2716   //
2717   // can be converted to:
2718   //
2719   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
2720   //                                       (OffsetAddi + OffsetImm)
2721   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
2722   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
2723 
2724   if (OtherIntermediateUse || !ADDIMI)
2725     return false;
2726   // Check if ADDI instr meets requirement.
2727   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
2728     return false;
2729 
2730   if (isInt<16>(OffsetAddi + OffsetImm))
2731     return true;
2732   return false;
2733 }
2734 
2735 // If this instruction has an immediate form and one of its operands is a
2736 // result of a load-immediate or an add-immediate, convert it to
2737 // the immediate form if the constant is in range.
2738 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2739                                           MachineInstr **KilledDef) const {
2740   MachineFunction *MF = MI.getParent()->getParent();
2741   MachineRegisterInfo *MRI = &MF->getRegInfo();
2742   bool PostRA = !MRI->isSSA();
2743   bool SeenIntermediateUse = true;
2744   unsigned ForwardingOperand = ~0U;
2745   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2746                                            SeenIntermediateUse);
2747   if (!DefMI)
2748     return false;
2749   assert(ForwardingOperand < MI.getNumOperands() &&
2750          "The forwarding operand needs to be valid at this point");
2751   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2752   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2753   Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2754   if (KilledDef && KillFwdDefMI)
2755     *KilledDef = DefMI;
2756 
2757   ImmInstrInfo III;
2758   bool IsVFReg = MI.getOperand(0).isReg()
2759                      ? isVFRegister(MI.getOperand(0).getReg())
2760                      : false;
2761   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2762   // If this is a reg+reg instruction that has a reg+imm form,
2763   // and one of the operands is produced by an add-immediate,
2764   // try to convert it.
2765   if (HasImmForm &&
2766       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2767                                  KillFwdDefMI))
2768     return true;
2769 
2770   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2771       !DefMI->getOperand(1).isImm())
2772     return false;
2773 
2774   int64_t Immediate = DefMI->getOperand(1).getImm();
2775   // Sign-extend to 64-bits.
2776   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2777     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2778 
2779   // If this is a reg+reg instruction that has a reg+imm form,
2780   // and one of the operands is produced by LI, convert it now.
2781   if (HasImmForm)
2782     return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2783 
2784   bool ReplaceWithLI = false;
2785   bool Is64BitLI = false;
2786   int64_t NewImm = 0;
2787   bool SetCR = false;
2788   unsigned Opc = MI.getOpcode();
2789   switch (Opc) {
2790   default: return false;
2791 
2792   // FIXME: Any branches conditional on such a comparison can be made
2793   // unconditional. At this time, this happens too infrequently to be worth
2794   // the implementation effort, but if that ever changes, we could convert
2795   // such a pattern here.
2796   case PPC::CMPWI:
2797   case PPC::CMPLWI:
2798   case PPC::CMPDI:
2799   case PPC::CMPLDI: {
2800     // Doing this post-RA would require dataflow analysis to reliably find uses
2801     // of the CR register set by the compare.
2802     // No need to fixup killed/dead flag since this transformation is only valid
2803     // before RA.
2804     if (PostRA)
2805       return false;
2806     // If a compare-immediate is fed by an immediate and is itself an input of
2807     // an ISEL (the most common case) into a COPY of the correct register.
2808     bool Changed = false;
2809     Register DefReg = MI.getOperand(0).getReg();
2810     int64_t Comparand = MI.getOperand(2).getImm();
2811     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2812       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2813 
2814     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2815       unsigned UseOpc = CompareUseMI.getOpcode();
2816       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2817         continue;
2818       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2819       Register TrueReg = CompareUseMI.getOperand(1).getReg();
2820       Register FalseReg = CompareUseMI.getOperand(2).getReg();
2821       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2822                                      FalseReg, CRSubReg);
2823       if (RegToCopy == PPC::NoRegister)
2824         continue;
2825       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2826       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2827         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2828         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2829         CompareUseMI.RemoveOperand(3);
2830         CompareUseMI.RemoveOperand(2);
2831         continue;
2832       }
2833       LLVM_DEBUG(
2834           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2835       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2836       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2837       // Convert to copy and remove unneeded operands.
2838       CompareUseMI.setDesc(get(PPC::COPY));
2839       CompareUseMI.RemoveOperand(3);
2840       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2841       CmpIselsConverted++;
2842       Changed = true;
2843       LLVM_DEBUG(CompareUseMI.dump());
2844     }
2845     if (Changed)
2846       return true;
2847     // This may end up incremented multiple times since this function is called
2848     // during a fixed-point transformation, but it is only meant to indicate the
2849     // presence of this opportunity.
2850     MissedConvertibleImmediateInstrs++;
2851     return false;
2852   }
2853 
2854   // Immediate forms - may simply be convertable to an LI.
2855   case PPC::ADDI:
2856   case PPC::ADDI8: {
2857     // Does the sum fit in a 16-bit signed field?
2858     int64_t Addend = MI.getOperand(2).getImm();
2859     if (isInt<16>(Addend + SExtImm)) {
2860       ReplaceWithLI = true;
2861       Is64BitLI = Opc == PPC::ADDI8;
2862       NewImm = Addend + SExtImm;
2863       break;
2864     }
2865     return false;
2866   }
2867   case PPC::RLDICL:
2868   case PPC::RLDICL_rec:
2869   case PPC::RLDICL_32:
2870   case PPC::RLDICL_32_64: {
2871     // Use APInt's rotate function.
2872     int64_t SH = MI.getOperand(2).getImm();
2873     int64_t MB = MI.getOperand(3).getImm();
2874     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
2875                 SExtImm, true);
2876     InVal = InVal.rotl(SH);
2877     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2878     InVal &= Mask;
2879     // Can't replace negative values with an LI as that will sign-extend
2880     // and not clear the left bits. If we're setting the CR bit, we will use
2881     // ANDI_rec which won't sign extend, so that's safe.
2882     if (isUInt<15>(InVal.getSExtValue()) ||
2883         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
2884       ReplaceWithLI = true;
2885       Is64BitLI = Opc != PPC::RLDICL_32;
2886       NewImm = InVal.getSExtValue();
2887       SetCR = Opc == PPC::RLDICL_rec;
2888       break;
2889     }
2890     return false;
2891   }
2892   case PPC::RLWINM:
2893   case PPC::RLWINM8:
2894   case PPC::RLWINM_rec:
2895   case PPC::RLWINM8_rec: {
2896     int64_t SH = MI.getOperand(2).getImm();
2897     int64_t MB = MI.getOperand(3).getImm();
2898     int64_t ME = MI.getOperand(4).getImm();
2899     APInt InVal(32, SExtImm, true);
2900     InVal = InVal.rotl(SH);
2901     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2902     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2903     InVal &= Mask;
2904     // Can't replace negative values with an LI as that will sign-extend
2905     // and not clear the left bits. If we're setting the CR bit, we will use
2906     // ANDI_rec which won't sign extend, so that's safe.
2907     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2908     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
2909                   isUInt<16>(InVal.getSExtValue()));
2910     if (ValueFits) {
2911       ReplaceWithLI = true;
2912       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
2913       NewImm = InVal.getSExtValue();
2914       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
2915       break;
2916     }
2917     return false;
2918   }
2919   case PPC::ORI:
2920   case PPC::ORI8:
2921   case PPC::XORI:
2922   case PPC::XORI8: {
2923     int64_t LogicalImm = MI.getOperand(2).getImm();
2924     int64_t Result = 0;
2925     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2926       Result = LogicalImm | SExtImm;
2927     else
2928       Result = LogicalImm ^ SExtImm;
2929     if (isInt<16>(Result)) {
2930       ReplaceWithLI = true;
2931       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2932       NewImm = Result;
2933       break;
2934     }
2935     return false;
2936   }
2937   }
2938 
2939   if (ReplaceWithLI) {
2940     // We need to be careful with CR-setting instructions we're replacing.
2941     if (SetCR) {
2942       // We don't know anything about uses when we're out of SSA, so only
2943       // replace if the new immediate will be reproduced.
2944       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2945       if (PostRA && ImmChanged)
2946         return false;
2947 
2948       if (!PostRA) {
2949         // If the defining load-immediate has no other uses, we can just replace
2950         // the immediate with the new immediate.
2951         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2952           DefMI->getOperand(1).setImm(NewImm);
2953 
2954         // If we're not using the GPR result of the CR-setting instruction, we
2955         // just need to and with zero/non-zero depending on the new immediate.
2956         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2957           if (NewImm) {
2958             assert(Immediate && "Transformation converted zero to non-zero?");
2959             NewImm = Immediate;
2960           }
2961         }
2962         else if (ImmChanged)
2963           return false;
2964       }
2965     }
2966 
2967     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2968     LLVM_DEBUG(MI.dump());
2969     LLVM_DEBUG(dbgs() << "Fed by:\n");
2970     LLVM_DEBUG(DefMI->dump());
2971     LoadImmediateInfo LII;
2972     LII.Imm = NewImm;
2973     LII.Is64Bit = Is64BitLI;
2974     LII.SetCR = SetCR;
2975     // If we're setting the CR, the original load-immediate must be kept (as an
2976     // operand to ANDI_rec/ANDI8_rec).
2977     if (KilledDef && SetCR)
2978       *KilledDef = nullptr;
2979     replaceInstrWithLI(MI, LII);
2980 
2981     // Fixup killed/dead flag after transformation.
2982     // Pattern:
2983     // ForwardingOperandReg = LI imm1
2984     // y = op2 imm2, ForwardingOperandReg(killed)
2985     if (IsForwardingOperandKilled)
2986       fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2987 
2988     LLVM_DEBUG(dbgs() << "With:\n");
2989     LLVM_DEBUG(MI.dump());
2990     return true;
2991   }
2992   return false;
2993 }
2994 
2995 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2996                                    ImmInstrInfo &III, bool PostRA) const {
2997   // The vast majority of the instructions would need their operand 2 replaced
2998   // with an immediate when switching to the reg+imm form. A marked exception
2999   // are the update form loads/stores for which a constant operand 2 would need
3000   // to turn into a displacement and move operand 1 to the operand 2 position.
3001   III.ImmOpNo = 2;
3002   III.OpNoForForwarding = 2;
3003   III.ImmWidth = 16;
3004   III.ImmMustBeMultipleOf = 1;
3005   III.TruncateImmTo = 0;
3006   III.IsSummingOperands = false;
3007   switch (Opc) {
3008   default: return false;
3009   case PPC::ADD4:
3010   case PPC::ADD8:
3011     III.SignedImm = true;
3012     III.ZeroIsSpecialOrig = 0;
3013     III.ZeroIsSpecialNew = 1;
3014     III.IsCommutative = true;
3015     III.IsSummingOperands = true;
3016     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3017     break;
3018   case PPC::ADDC:
3019   case PPC::ADDC8:
3020     III.SignedImm = true;
3021     III.ZeroIsSpecialOrig = 0;
3022     III.ZeroIsSpecialNew = 0;
3023     III.IsCommutative = true;
3024     III.IsSummingOperands = true;
3025     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3026     break;
3027   case PPC::ADDC_rec:
3028     III.SignedImm = true;
3029     III.ZeroIsSpecialOrig = 0;
3030     III.ZeroIsSpecialNew = 0;
3031     III.IsCommutative = true;
3032     III.IsSummingOperands = true;
3033     III.ImmOpcode = PPC::ADDIC_rec;
3034     break;
3035   case PPC::SUBFC:
3036   case PPC::SUBFC8:
3037     III.SignedImm = true;
3038     III.ZeroIsSpecialOrig = 0;
3039     III.ZeroIsSpecialNew = 0;
3040     III.IsCommutative = false;
3041     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3042     break;
3043   case PPC::CMPW:
3044   case PPC::CMPD:
3045     III.SignedImm = true;
3046     III.ZeroIsSpecialOrig = 0;
3047     III.ZeroIsSpecialNew = 0;
3048     III.IsCommutative = false;
3049     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3050     break;
3051   case PPC::CMPLW:
3052   case PPC::CMPLD:
3053     III.SignedImm = false;
3054     III.ZeroIsSpecialOrig = 0;
3055     III.ZeroIsSpecialNew = 0;
3056     III.IsCommutative = false;
3057     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3058     break;
3059   case PPC::AND_rec:
3060   case PPC::AND8_rec:
3061   case PPC::OR:
3062   case PPC::OR8:
3063   case PPC::XOR:
3064   case PPC::XOR8:
3065     III.SignedImm = false;
3066     III.ZeroIsSpecialOrig = 0;
3067     III.ZeroIsSpecialNew = 0;
3068     III.IsCommutative = true;
3069     switch(Opc) {
3070     default: llvm_unreachable("Unknown opcode");
3071     case PPC::AND_rec:
3072       III.ImmOpcode = PPC::ANDI_rec;
3073       break;
3074     case PPC::AND8_rec:
3075       III.ImmOpcode = PPC::ANDI8_rec;
3076       break;
3077     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3078     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3079     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3080     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3081     }
3082     break;
3083   case PPC::RLWNM:
3084   case PPC::RLWNM8:
3085   case PPC::RLWNM_rec:
3086   case PPC::RLWNM8_rec:
3087   case PPC::SLW:
3088   case PPC::SLW8:
3089   case PPC::SLW_rec:
3090   case PPC::SLW8_rec:
3091   case PPC::SRW:
3092   case PPC::SRW8:
3093   case PPC::SRW_rec:
3094   case PPC::SRW8_rec:
3095   case PPC::SRAW:
3096   case PPC::SRAW_rec:
3097     III.SignedImm = false;
3098     III.ZeroIsSpecialOrig = 0;
3099     III.ZeroIsSpecialNew = 0;
3100     III.IsCommutative = false;
3101     // This isn't actually true, but the instructions ignore any of the
3102     // upper bits, so any immediate loaded with an LI is acceptable.
3103     // This does not apply to shift right algebraic because a value
3104     // out of range will produce a -1/0.
3105     III.ImmWidth = 16;
3106     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3107         Opc == PPC::RLWNM8_rec)
3108       III.TruncateImmTo = 5;
3109     else
3110       III.TruncateImmTo = 6;
3111     switch(Opc) {
3112     default: llvm_unreachable("Unknown opcode");
3113     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3114     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3115     case PPC::RLWNM_rec:
3116       III.ImmOpcode = PPC::RLWINM_rec;
3117       break;
3118     case PPC::RLWNM8_rec:
3119       III.ImmOpcode = PPC::RLWINM8_rec;
3120       break;
3121     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3122     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3123     case PPC::SLW_rec:
3124       III.ImmOpcode = PPC::RLWINM_rec;
3125       break;
3126     case PPC::SLW8_rec:
3127       III.ImmOpcode = PPC::RLWINM8_rec;
3128       break;
3129     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3130     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3131     case PPC::SRW_rec:
3132       III.ImmOpcode = PPC::RLWINM_rec;
3133       break;
3134     case PPC::SRW8_rec:
3135       III.ImmOpcode = PPC::RLWINM8_rec;
3136       break;
3137     case PPC::SRAW:
3138       III.ImmWidth = 5;
3139       III.TruncateImmTo = 0;
3140       III.ImmOpcode = PPC::SRAWI;
3141       break;
3142     case PPC::SRAW_rec:
3143       III.ImmWidth = 5;
3144       III.TruncateImmTo = 0;
3145       III.ImmOpcode = PPC::SRAWI_rec;
3146       break;
3147     }
3148     break;
3149   case PPC::RLDCL:
3150   case PPC::RLDCL_rec:
3151   case PPC::RLDCR:
3152   case PPC::RLDCR_rec:
3153   case PPC::SLD:
3154   case PPC::SLD_rec:
3155   case PPC::SRD:
3156   case PPC::SRD_rec:
3157   case PPC::SRAD:
3158   case PPC::SRAD_rec:
3159     III.SignedImm = false;
3160     III.ZeroIsSpecialOrig = 0;
3161     III.ZeroIsSpecialNew = 0;
3162     III.IsCommutative = false;
3163     // This isn't actually true, but the instructions ignore any of the
3164     // upper bits, so any immediate loaded with an LI is acceptable.
3165     // This does not apply to shift right algebraic because a value
3166     // out of range will produce a -1/0.
3167     III.ImmWidth = 16;
3168     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3169         Opc == PPC::RLDCR_rec)
3170       III.TruncateImmTo = 6;
3171     else
3172       III.TruncateImmTo = 7;
3173     switch(Opc) {
3174     default: llvm_unreachable("Unknown opcode");
3175     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3176     case PPC::RLDCL_rec:
3177       III.ImmOpcode = PPC::RLDICL_rec;
3178       break;
3179     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3180     case PPC::RLDCR_rec:
3181       III.ImmOpcode = PPC::RLDICR_rec;
3182       break;
3183     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3184     case PPC::SLD_rec:
3185       III.ImmOpcode = PPC::RLDICR_rec;
3186       break;
3187     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3188     case PPC::SRD_rec:
3189       III.ImmOpcode = PPC::RLDICL_rec;
3190       break;
3191     case PPC::SRAD:
3192       III.ImmWidth = 6;
3193       III.TruncateImmTo = 0;
3194       III.ImmOpcode = PPC::SRADI;
3195        break;
3196     case PPC::SRAD_rec:
3197       III.ImmWidth = 6;
3198       III.TruncateImmTo = 0;
3199       III.ImmOpcode = PPC::SRADI_rec;
3200       break;
3201     }
3202     break;
3203   // Loads and stores:
3204   case PPC::LBZX:
3205   case PPC::LBZX8:
3206   case PPC::LHZX:
3207   case PPC::LHZX8:
3208   case PPC::LHAX:
3209   case PPC::LHAX8:
3210   case PPC::LWZX:
3211   case PPC::LWZX8:
3212   case PPC::LWAX:
3213   case PPC::LDX:
3214   case PPC::LFSX:
3215   case PPC::LFDX:
3216   case PPC::STBX:
3217   case PPC::STBX8:
3218   case PPC::STHX:
3219   case PPC::STHX8:
3220   case PPC::STWX:
3221   case PPC::STWX8:
3222   case PPC::STDX:
3223   case PPC::STFSX:
3224   case PPC::STFDX:
3225     III.SignedImm = true;
3226     III.ZeroIsSpecialOrig = 1;
3227     III.ZeroIsSpecialNew = 2;
3228     III.IsCommutative = true;
3229     III.IsSummingOperands = true;
3230     III.ImmOpNo = 1;
3231     III.OpNoForForwarding = 2;
3232     switch(Opc) {
3233     default: llvm_unreachable("Unknown opcode");
3234     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3235     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3236     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3237     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3238     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3239     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3240     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3241     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3242     case PPC::LWAX:
3243       III.ImmOpcode = PPC::LWA;
3244       III.ImmMustBeMultipleOf = 4;
3245       break;
3246     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3247     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3248     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3249     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3250     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3251     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3252     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3253     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3254     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3255     case PPC::STDX:
3256       III.ImmOpcode = PPC::STD;
3257       III.ImmMustBeMultipleOf = 4;
3258       break;
3259     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3260     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3261     }
3262     break;
3263   case PPC::LBZUX:
3264   case PPC::LBZUX8:
3265   case PPC::LHZUX:
3266   case PPC::LHZUX8:
3267   case PPC::LHAUX:
3268   case PPC::LHAUX8:
3269   case PPC::LWZUX:
3270   case PPC::LWZUX8:
3271   case PPC::LDUX:
3272   case PPC::LFSUX:
3273   case PPC::LFDUX:
3274   case PPC::STBUX:
3275   case PPC::STBUX8:
3276   case PPC::STHUX:
3277   case PPC::STHUX8:
3278   case PPC::STWUX:
3279   case PPC::STWUX8:
3280   case PPC::STDUX:
3281   case PPC::STFSUX:
3282   case PPC::STFDUX:
3283     III.SignedImm = true;
3284     III.ZeroIsSpecialOrig = 2;
3285     III.ZeroIsSpecialNew = 3;
3286     III.IsCommutative = false;
3287     III.IsSummingOperands = true;
3288     III.ImmOpNo = 2;
3289     III.OpNoForForwarding = 3;
3290     switch(Opc) {
3291     default: llvm_unreachable("Unknown opcode");
3292     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3293     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3294     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3295     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3296     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3297     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3298     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3299     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3300     case PPC::LDUX:
3301       III.ImmOpcode = PPC::LDU;
3302       III.ImmMustBeMultipleOf = 4;
3303       break;
3304     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3305     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3306     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3307     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3308     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3309     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3310     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3311     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3312     case PPC::STDUX:
3313       III.ImmOpcode = PPC::STDU;
3314       III.ImmMustBeMultipleOf = 4;
3315       break;
3316     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3317     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3318     }
3319     break;
3320   // Power9 and up only. For some of these, the X-Form version has access to all
3321   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3322   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3323   // into or stored from is one of the VR registers.
3324   case PPC::LXVX:
3325   case PPC::LXSSPX:
3326   case PPC::LXSDX:
3327   case PPC::STXVX:
3328   case PPC::STXSSPX:
3329   case PPC::STXSDX:
3330   case PPC::XFLOADf32:
3331   case PPC::XFLOADf64:
3332   case PPC::XFSTOREf32:
3333   case PPC::XFSTOREf64:
3334     if (!Subtarget.hasP9Vector())
3335       return false;
3336     III.SignedImm = true;
3337     III.ZeroIsSpecialOrig = 1;
3338     III.ZeroIsSpecialNew = 2;
3339     III.IsCommutative = true;
3340     III.IsSummingOperands = true;
3341     III.ImmOpNo = 1;
3342     III.OpNoForForwarding = 2;
3343     III.ImmMustBeMultipleOf = 4;
3344     switch(Opc) {
3345     default: llvm_unreachable("Unknown opcode");
3346     case PPC::LXVX:
3347       III.ImmOpcode = PPC::LXV;
3348       III.ImmMustBeMultipleOf = 16;
3349       break;
3350     case PPC::LXSSPX:
3351       if (PostRA) {
3352         if (IsVFReg)
3353           III.ImmOpcode = PPC::LXSSP;
3354         else {
3355           III.ImmOpcode = PPC::LFS;
3356           III.ImmMustBeMultipleOf = 1;
3357         }
3358         break;
3359       }
3360       LLVM_FALLTHROUGH;
3361     case PPC::XFLOADf32:
3362       III.ImmOpcode = PPC::DFLOADf32;
3363       break;
3364     case PPC::LXSDX:
3365       if (PostRA) {
3366         if (IsVFReg)
3367           III.ImmOpcode = PPC::LXSD;
3368         else {
3369           III.ImmOpcode = PPC::LFD;
3370           III.ImmMustBeMultipleOf = 1;
3371         }
3372         break;
3373       }
3374       LLVM_FALLTHROUGH;
3375     case PPC::XFLOADf64:
3376       III.ImmOpcode = PPC::DFLOADf64;
3377       break;
3378     case PPC::STXVX:
3379       III.ImmOpcode = PPC::STXV;
3380       III.ImmMustBeMultipleOf = 16;
3381       break;
3382     case PPC::STXSSPX:
3383       if (PostRA) {
3384         if (IsVFReg)
3385           III.ImmOpcode = PPC::STXSSP;
3386         else {
3387           III.ImmOpcode = PPC::STFS;
3388           III.ImmMustBeMultipleOf = 1;
3389         }
3390         break;
3391       }
3392       LLVM_FALLTHROUGH;
3393     case PPC::XFSTOREf32:
3394       III.ImmOpcode = PPC::DFSTOREf32;
3395       break;
3396     case PPC::STXSDX:
3397       if (PostRA) {
3398         if (IsVFReg)
3399           III.ImmOpcode = PPC::STXSD;
3400         else {
3401           III.ImmOpcode = PPC::STFD;
3402           III.ImmMustBeMultipleOf = 1;
3403         }
3404         break;
3405       }
3406       LLVM_FALLTHROUGH;
3407     case PPC::XFSTOREf64:
3408       III.ImmOpcode = PPC::DFSTOREf64;
3409       break;
3410     }
3411     break;
3412   }
3413   return true;
3414 }
3415 
3416 // Utility function for swaping two arbitrary operands of an instruction.
3417 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3418   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3419 
3420   unsigned MaxOp = std::max(Op1, Op2);
3421   unsigned MinOp = std::min(Op1, Op2);
3422   MachineOperand MOp1 = MI.getOperand(MinOp);
3423   MachineOperand MOp2 = MI.getOperand(MaxOp);
3424   MI.RemoveOperand(std::max(Op1, Op2));
3425   MI.RemoveOperand(std::min(Op1, Op2));
3426 
3427   // If the operands we are swapping are the two at the end (the common case)
3428   // we can just remove both and add them in the opposite order.
3429   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3430     MI.addOperand(MOp2);
3431     MI.addOperand(MOp1);
3432   } else {
3433     // Store all operands in a temporary vector, remove them and re-add in the
3434     // right order.
3435     SmallVector<MachineOperand, 2> MOps;
3436     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3437     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3438       MOps.push_back(MI.getOperand(i));
3439       MI.RemoveOperand(i);
3440     }
3441     // MOp2 needs to be added next.
3442     MI.addOperand(MOp2);
3443     // Now add the rest.
3444     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3445       if (i == MaxOp)
3446         MI.addOperand(MOp1);
3447       else {
3448         MI.addOperand(MOps.back());
3449         MOps.pop_back();
3450       }
3451     }
3452   }
3453 }
3454 
3455 // Check if the 'MI' that has the index OpNoForForwarding
3456 // meets the requirement described in the ImmInstrInfo.
3457 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3458                                                const ImmInstrInfo &III,
3459                                                unsigned OpNoForForwarding
3460                                                ) const {
3461   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3462   // would not work pre-RA, we can only do the check post RA.
3463   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3464   if (MRI.isSSA())
3465     return false;
3466 
3467   // Cannot do the transform if MI isn't summing the operands.
3468   if (!III.IsSummingOperands)
3469     return false;
3470 
3471   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3472   if (!III.ZeroIsSpecialOrig)
3473     return false;
3474 
3475   // We cannot do the transform if the operand we are trying to replace
3476   // isn't the same as the operand the instruction allows.
3477   if (OpNoForForwarding != III.OpNoForForwarding)
3478     return false;
3479 
3480   // Check if the instruction we are trying to transform really has
3481   // the special zero register as its operand.
3482   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3483       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3484     return false;
3485 
3486   // This machine instruction is convertible if it is,
3487   // 1. summing the operands.
3488   // 2. one of the operands is special zero register.
3489   // 3. the operand we are trying to replace is allowed by the MI.
3490   return true;
3491 }
3492 
3493 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3494 // accordingly.
3495 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3496                                                const ImmInstrInfo &III,
3497                                                MachineOperand *&ImmMO,
3498                                                MachineOperand *&RegMO) const {
3499   unsigned Opc = DefMI.getOpcode();
3500   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3501     return false;
3502 
3503   assert(DefMI.getNumOperands() >= 3 &&
3504          "Add inst must have at least three operands");
3505   RegMO = &DefMI.getOperand(1);
3506   ImmMO = &DefMI.getOperand(2);
3507 
3508   // This DefMI is elgible for forwarding if it is:
3509   // 1. add inst
3510   // 2. one of the operands is Imm/CPI/Global.
3511   return isAnImmediateOperand(*ImmMO);
3512 }
3513 
3514 bool PPCInstrInfo::isRegElgibleForForwarding(
3515     const MachineOperand &RegMO, const MachineInstr &DefMI,
3516     const MachineInstr &MI, bool KillDefMI,
3517     bool &IsFwdFeederRegKilled) const {
3518   // x = addi y, imm
3519   // ...
3520   // z = lfdx 0, x   -> z = lfd imm(y)
3521   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3522   // of "y" between the DEF of "x" and "z".
3523   // The query is only valid post RA.
3524   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3525   if (MRI.isSSA())
3526     return false;
3527 
3528   Register Reg = RegMO.getReg();
3529 
3530   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3531   MachineBasicBlock::const_reverse_iterator It = MI;
3532   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3533   It++;
3534   for (; It != E; ++It) {
3535     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3536       return false;
3537     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3538       IsFwdFeederRegKilled = true;
3539     // Made it to DefMI without encountering a clobber.
3540     if ((&*It) == &DefMI)
3541       break;
3542   }
3543   assert((&*It) == &DefMI && "DefMI is missing");
3544 
3545   // If DefMI also defines the register to be forwarded, we can only forward it
3546   // if DefMI is being erased.
3547   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3548     return KillDefMI;
3549 
3550   return true;
3551 }
3552 
3553 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3554                                              const MachineInstr &DefMI,
3555                                              const ImmInstrInfo &III,
3556                                              int64_t &Imm) const {
3557   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3558   if (DefMI.getOpcode() == PPC::ADDItocL) {
3559     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3560     // However, we know that, it is 16-bit width, and has the alignment of 4.
3561     // Check if the instruction met the requirement.
3562     if (III.ImmMustBeMultipleOf > 4 ||
3563        III.TruncateImmTo || III.ImmWidth != 16)
3564       return false;
3565 
3566     // Going from XForm to DForm loads means that the displacement needs to be
3567     // not just an immediate but also a multiple of 4, or 16 depending on the
3568     // load. A DForm load cannot be represented if it is a multiple of say 2.
3569     // XForm loads do not have this restriction.
3570     if (ImmMO.isGlobal() &&
3571         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3572       return false;
3573 
3574     return true;
3575   }
3576 
3577   if (ImmMO.isImm()) {
3578     // It is Imm, we need to check if the Imm fit the range.
3579     int64_t Immediate = ImmMO.getImm();
3580     // Sign-extend to 64-bits.
3581     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3582       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3583 
3584     if (Imm % III.ImmMustBeMultipleOf)
3585       return false;
3586     if (III.TruncateImmTo)
3587       Imm &= ((1 << III.TruncateImmTo) - 1);
3588     if (III.SignedImm) {
3589       APInt ActualValue(64, Imm, true);
3590       if (!ActualValue.isSignedIntN(III.ImmWidth))
3591         return false;
3592     } else {
3593       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3594       if ((uint64_t)Imm > UnsignedMax)
3595         return false;
3596     }
3597   }
3598   else
3599     return false;
3600 
3601   // This ImmMO is forwarded if it meets the requriement describle
3602   // in ImmInstrInfo
3603   return true;
3604 }
3605 
3606 // If an X-Form instruction is fed by an add-immediate and one of its operands
3607 // is the literal zero, attempt to forward the source of the add-immediate to
3608 // the corresponding D-Form instruction with the displacement coming from
3609 // the immediate being added.
3610 bool PPCInstrInfo::transformToImmFormFedByAdd(
3611     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3612     MachineInstr &DefMI, bool KillDefMI) const {
3613   //         RegMO ImmMO
3614   //           |    |
3615   // x = addi reg, imm  <----- DefMI
3616   // y = op    0 ,  x   <----- MI
3617   //                |
3618   //         OpNoForForwarding
3619   // Check if the MI meet the requirement described in the III.
3620   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3621     return false;
3622 
3623   // Check if the DefMI meet the requirement
3624   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3625   MachineOperand *ImmMO = nullptr;
3626   MachineOperand *RegMO = nullptr;
3627   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3628     return false;
3629   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3630 
3631   // As we get the Imm operand now, we need to check if the ImmMO meet
3632   // the requirement described in the III. If yes set the Imm.
3633   int64_t Imm = 0;
3634   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3635     return false;
3636 
3637   bool IsFwdFeederRegKilled = false;
3638   // Check if the RegMO can be forwarded to MI.
3639   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3640                                  IsFwdFeederRegKilled))
3641     return false;
3642 
3643   // Get killed info in case fixup needed after transformation.
3644   unsigned ForwardKilledOperandReg = ~0U;
3645   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3646   bool PostRA = !MRI.isSSA();
3647   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3648     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3649 
3650   // We know that, the MI and DefMI both meet the pattern, and
3651   // the Imm also meet the requirement with the new Imm-form.
3652   // It is safe to do the transformation now.
3653   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3654   LLVM_DEBUG(MI.dump());
3655   LLVM_DEBUG(dbgs() << "Fed by:\n");
3656   LLVM_DEBUG(DefMI.dump());
3657 
3658   // Update the base reg first.
3659   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3660                                                         false, false,
3661                                                         RegMO->isKill());
3662 
3663   // Then, update the imm.
3664   if (ImmMO->isImm()) {
3665     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3666     // directly.
3667     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3668   }
3669   else {
3670     // Otherwise, it is Constant Pool Index(CPI) or Global,
3671     // which is relocation in fact. We need to replace the special zero
3672     // register with ImmMO.
3673     // Before that, we need to fixup the target flags for imm.
3674     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3675     if (DefMI.getOpcode() == PPC::ADDItocL)
3676       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3677 
3678     // MI didn't have the interface such as MI.setOperand(i) though
3679     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3680     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3681     // and, add the ImmMO, then, move back all the operands behind ZERO.
3682     SmallVector<MachineOperand, 2> MOps;
3683     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3684       MOps.push_back(MI.getOperand(i));
3685       MI.RemoveOperand(i);
3686     }
3687 
3688     // Remove the last MO in the list, which is ZERO operand in fact.
3689     MOps.pop_back();
3690     // Add the imm operand.
3691     MI.addOperand(*ImmMO);
3692     // Now add the rest back.
3693     for (auto &MO : MOps)
3694       MI.addOperand(MO);
3695   }
3696 
3697   // Update the opcode.
3698   MI.setDesc(get(III.ImmOpcode));
3699 
3700   // Fix up killed/dead flag after transformation.
3701   // Pattern 1:
3702   // x = ADD KilledFwdFeederReg, imm
3703   // n = opn KilledFwdFeederReg(killed), regn
3704   // y = XOP 0, x
3705   // Pattern 2:
3706   // x = ADD reg(killed), imm
3707   // y = XOP 0, x
3708   if (IsFwdFeederRegKilled || RegMO->isKill())
3709     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3710   // Pattern 3:
3711   // ForwardKilledOperandReg = ADD reg, imm
3712   // y = XOP 0, ForwardKilledOperandReg(killed)
3713   if (ForwardKilledOperandReg != ~0U)
3714     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3715 
3716   LLVM_DEBUG(dbgs() << "With:\n");
3717   LLVM_DEBUG(MI.dump());
3718 
3719   return true;
3720 }
3721 
3722 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3723                                              const ImmInstrInfo &III,
3724                                              unsigned ConstantOpNo,
3725                                              MachineInstr &DefMI,
3726                                              int64_t Imm) const {
3727   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3728   bool PostRA = !MRI.isSSA();
3729   // Exit early if we can't convert this.
3730   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3731     return false;
3732   if (Imm % III.ImmMustBeMultipleOf)
3733     return false;
3734   if (III.TruncateImmTo)
3735     Imm &= ((1 << III.TruncateImmTo) - 1);
3736   if (III.SignedImm) {
3737     APInt ActualValue(64, Imm, true);
3738     if (!ActualValue.isSignedIntN(III.ImmWidth))
3739       return false;
3740   } else {
3741     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3742     if ((uint64_t)Imm > UnsignedMax)
3743       return false;
3744   }
3745 
3746   // If we're post-RA, the instructions don't agree on whether register zero is
3747   // special, we can transform this as long as the register operand that will
3748   // end up in the location where zero is special isn't R0.
3749   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3750     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3751       III.ZeroIsSpecialNew + 1;
3752     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3753     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3754     // If R0 is in the operand where zero is special for the new instruction,
3755     // it is unsafe to transform if the constant operand isn't that operand.
3756     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3757         ConstantOpNo != III.ZeroIsSpecialNew)
3758       return false;
3759     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3760         ConstantOpNo != PosForOrigZero)
3761       return false;
3762   }
3763 
3764   // Get killed info in case fixup needed after transformation.
3765   unsigned ForwardKilledOperandReg = ~0U;
3766   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3767     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3768 
3769   unsigned Opc = MI.getOpcode();
3770   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
3771                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
3772                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
3773                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
3774   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
3775                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
3776   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
3777                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
3778   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
3779                     Opc == PPC::SRD_rec;
3780 
3781   MI.setDesc(get(III.ImmOpcode));
3782   if (ConstantOpNo == III.OpNoForForwarding) {
3783     // Converting shifts to immediate form is a bit tricky since they may do
3784     // one of three things:
3785     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3786     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3787     //    setting CR0)
3788     // 3. If the shift amount is in [1, OpSize), it's just a shift
3789     if (SpecialShift32 || SpecialShift64) {
3790       LoadImmediateInfo LII;
3791       LII.Imm = 0;
3792       LII.SetCR = SetCR;
3793       LII.Is64Bit = SpecialShift64;
3794       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3795       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3796         replaceInstrWithLI(MI, LII);
3797       // Shifts by zero don't change the value. If we don't need to set CR0,
3798       // just convert this to a COPY. Can't do this post-RA since we've already
3799       // cleaned up the copies.
3800       else if (!SetCR && ShAmt == 0 && !PostRA) {
3801         MI.RemoveOperand(2);
3802         MI.setDesc(get(PPC::COPY));
3803       } else {
3804         // The 32 bit and 64 bit instructions are quite different.
3805         if (SpecialShift32) {
3806           // Left shifts use (N, 0, 31-N).
3807           // Right shifts use (32-N, N, 31) if 0 < N < 32.
3808           //              use (0, 0, 31)    if N == 0.
3809           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
3810           uint64_t MB = RightShift ? ShAmt : 0;
3811           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3812           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3813           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3814             .addImm(ME);
3815         } else {
3816           // Left shifts use (N, 63-N).
3817           // Right shifts use (64-N, N) if 0 < N < 64.
3818           //              use (0, 0)    if N == 0.
3819           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
3820           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3821           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3822           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3823         }
3824       }
3825     } else
3826       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3827   }
3828   // Convert commutative instructions (switch the operands and convert the
3829   // desired one to an immediate.
3830   else if (III.IsCommutative) {
3831     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3832     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3833   } else
3834     llvm_unreachable("Should have exited early!");
3835 
3836   // For instructions for which the constant register replaces a different
3837   // operand than where the immediate goes, we need to swap them.
3838   if (III.OpNoForForwarding != III.ImmOpNo)
3839     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3840 
3841   // If the special R0/X0 register index are different for original instruction
3842   // and new instruction, we need to fix up the register class in new
3843   // instruction.
3844   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3845     if (III.ZeroIsSpecialNew) {
3846       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3847       // need to fix up register class.
3848       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3849       if (Register::isVirtualRegister(RegToModify)) {
3850         const TargetRegisterClass *NewRC =
3851           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3852           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3853         MRI.setRegClass(RegToModify, NewRC);
3854       }
3855     }
3856   }
3857 
3858   // Fix up killed/dead flag after transformation.
3859   // Pattern:
3860   // ForwardKilledOperandReg = LI imm
3861   // y = XOP reg, ForwardKilledOperandReg(killed)
3862   if (ForwardKilledOperandReg != ~0U)
3863     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3864   return true;
3865 }
3866 
3867 const TargetRegisterClass *
3868 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3869   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3870     return &PPC::VSRCRegClass;
3871   return RC;
3872 }
3873 
3874 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3875   return PPC::getRecordFormOpcode(Opcode);
3876 }
3877 
3878 // This function returns true if the machine instruction
3879 // always outputs a value by sign-extending a 32 bit value,
3880 // i.e. 0 to 31-th bits are same as 32-th bit.
3881 static bool isSignExtendingOp(const MachineInstr &MI) {
3882   int Opcode = MI.getOpcode();
3883   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
3884       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
3885       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
3886       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3887       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
3888       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3889       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
3890       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3891       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
3892       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3893       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
3894       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
3895       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
3896       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
3897       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3898       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3899       Opcode == PPC::EXTSB8_32_64)
3900     return true;
3901 
3902   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3903     return true;
3904 
3905   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
3906        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
3907       MI.getOperand(3).getImm() > 0 &&
3908       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3909     return true;
3910 
3911   return false;
3912 }
3913 
3914 // This function returns true if the machine instruction
3915 // always outputs zeros in higher 32 bits.
3916 static bool isZeroExtendingOp(const MachineInstr &MI) {
3917   int Opcode = MI.getOpcode();
3918   // The 16-bit immediate is sign-extended in li/lis.
3919   // If the most significant bit is zero, all higher bits are zero.
3920   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3921       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3922     int64_t Imm = MI.getOperand(1).getImm();
3923     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3924       return true;
3925   }
3926 
3927   // We have some variations of rotate-and-mask instructions
3928   // that clear higher 32-bits.
3929   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
3930        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
3931        Opcode == PPC::RLDICL_32_64) &&
3932       MI.getOperand(3).getImm() >= 32)
3933     return true;
3934 
3935   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
3936       MI.getOperand(3).getImm() >= 32 &&
3937       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3938     return true;
3939 
3940   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
3941        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
3942        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3943       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3944     return true;
3945 
3946   // There are other instructions that clear higher 32-bits.
3947   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
3948       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
3949       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3950       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
3951       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
3952       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
3953       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
3954       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
3955       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
3956       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3957       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
3958       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3959       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
3960       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3961       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
3962       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3963       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
3964       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3965       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3966       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
3967       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
3968       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
3969       Opcode == PPC::MFVSRWZ)
3970     return true;
3971 
3972   return false;
3973 }
3974 
3975 // This function returns true if the input MachineInstr is a TOC save
3976 // instruction.
3977 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3978   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3979     return false;
3980   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3981   unsigned StackOffset = MI.getOperand(1).getImm();
3982   Register StackReg = MI.getOperand(2).getReg();
3983   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3984     return true;
3985 
3986   return false;
3987 }
3988 
3989 // We limit the max depth to track incoming values of PHIs or binary ops
3990 // (e.g. AND) to avoid excessive cost.
3991 const unsigned MAX_DEPTH = 1;
3992 
3993 bool
3994 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3995                                    const unsigned Depth) const {
3996   const MachineFunction *MF = MI.getParent()->getParent();
3997   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3998 
3999   // If we know this instruction returns sign- or zero-extended result,
4000   // return true.
4001   if (SignExt ? isSignExtendingOp(MI):
4002                 isZeroExtendingOp(MI))
4003     return true;
4004 
4005   switch (MI.getOpcode()) {
4006   case PPC::COPY: {
4007     Register SrcReg = MI.getOperand(1).getReg();
4008 
4009     // In both ELFv1 and v2 ABI, method parameters and the return value
4010     // are sign- or zero-extended.
4011     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4012       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4013       // We check the ZExt/SExt flags for a method parameter.
4014       if (MI.getParent()->getBasicBlock() ==
4015           &MF->getFunction().getEntryBlock()) {
4016         Register VReg = MI.getOperand(0).getReg();
4017         if (MF->getRegInfo().isLiveIn(VReg))
4018           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4019                            FuncInfo->isLiveInZExt(VReg);
4020       }
4021 
4022       // For a method return value, we check the ZExt/SExt flags in attribute.
4023       // We assume the following code sequence for method call.
4024       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4025       //   BL8_NOP @func,...
4026       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4027       //   %5 = COPY %x3; G8RC:%5
4028       if (SrcReg == PPC::X3) {
4029         const MachineBasicBlock *MBB = MI.getParent();
4030         MachineBasicBlock::const_instr_iterator II =
4031           MachineBasicBlock::const_instr_iterator(&MI);
4032         if (II != MBB->instr_begin() &&
4033             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4034           const MachineInstr &CallMI = *(--II);
4035           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4036             const Function *CalleeFn =
4037               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4038             if (!CalleeFn)
4039               return false;
4040             const IntegerType *IntTy =
4041               dyn_cast<IntegerType>(CalleeFn->getReturnType());
4042             const AttributeSet &Attrs =
4043               CalleeFn->getAttributes().getRetAttributes();
4044             if (IntTy && IntTy->getBitWidth() <= 32)
4045               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4046                                                   Attribute::ZExt);
4047           }
4048         }
4049       }
4050     }
4051 
4052     // If this is a copy from another register, we recursively check source.
4053     if (!Register::isVirtualRegister(SrcReg))
4054       return false;
4055     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4056     if (SrcMI != NULL)
4057       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4058 
4059     return false;
4060   }
4061 
4062   case PPC::ANDI_rec:
4063   case PPC::ANDIS_rec:
4064   case PPC::ORI:
4065   case PPC::ORIS:
4066   case PPC::XORI:
4067   case PPC::XORIS:
4068   case PPC::ANDI8_rec:
4069   case PPC::ANDIS8_rec:
4070   case PPC::ORI8:
4071   case PPC::ORIS8:
4072   case PPC::XORI8:
4073   case PPC::XORIS8: {
4074     // logical operation with 16-bit immediate does not change the upper bits.
4075     // So, we track the operand register as we do for register copy.
4076     Register SrcReg = MI.getOperand(1).getReg();
4077     if (!Register::isVirtualRegister(SrcReg))
4078       return false;
4079     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4080     if (SrcMI != NULL)
4081       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4082 
4083     return false;
4084   }
4085 
4086   // If all incoming values are sign-/zero-extended,
4087   // the output of OR, ISEL or PHI is also sign-/zero-extended.
4088   case PPC::OR:
4089   case PPC::OR8:
4090   case PPC::ISEL:
4091   case PPC::PHI: {
4092     if (Depth >= MAX_DEPTH)
4093       return false;
4094 
4095     // The input registers for PHI are operand 1, 3, ...
4096     // The input registers for others are operand 1 and 2.
4097     unsigned E = 3, D = 1;
4098     if (MI.getOpcode() == PPC::PHI) {
4099       E = MI.getNumOperands();
4100       D = 2;
4101     }
4102 
4103     for (unsigned I = 1; I != E; I += D) {
4104       if (MI.getOperand(I).isReg()) {
4105         Register SrcReg = MI.getOperand(I).getReg();
4106         if (!Register::isVirtualRegister(SrcReg))
4107           return false;
4108         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4109         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4110           return false;
4111       }
4112       else
4113         return false;
4114     }
4115     return true;
4116   }
4117 
4118   // If at least one of the incoming values of an AND is zero extended
4119   // then the output is also zero-extended. If both of the incoming values
4120   // are sign-extended then the output is also sign extended.
4121   case PPC::AND:
4122   case PPC::AND8: {
4123     if (Depth >= MAX_DEPTH)
4124        return false;
4125 
4126     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4127 
4128     Register SrcReg1 = MI.getOperand(1).getReg();
4129     Register SrcReg2 = MI.getOperand(2).getReg();
4130 
4131     if (!Register::isVirtualRegister(SrcReg1) ||
4132         !Register::isVirtualRegister(SrcReg2))
4133       return false;
4134 
4135     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4136     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4137     if (!MISrc1 || !MISrc2)
4138         return false;
4139 
4140     if(SignExt)
4141         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4142                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4143     else
4144         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4145                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4146   }
4147 
4148   default:
4149     break;
4150   }
4151   return false;
4152 }
4153 
4154 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4155   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4156 }
4157 
4158 namespace {
4159 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4160   MachineInstr *Loop, *EndLoop, *LoopCount;
4161   MachineFunction *MF;
4162   const TargetInstrInfo *TII;
4163   int64_t TripCount;
4164 
4165 public:
4166   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4167                        MachineInstr *LoopCount)
4168       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4169         MF(Loop->getParent()->getParent()),
4170         TII(MF->getSubtarget().getInstrInfo()) {
4171     // Inspect the Loop instruction up-front, as it may be deleted when we call
4172     // createTripCountGreaterCondition.
4173     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4174       TripCount = LoopCount->getOperand(1).getImm();
4175     else
4176       TripCount = -1;
4177   }
4178 
4179   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4180     // Only ignore the terminator.
4181     return MI == EndLoop;
4182   }
4183 
4184   Optional<bool>
4185   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4186                                   SmallVectorImpl<MachineOperand> &Cond) override {
4187     if (TripCount == -1) {
4188       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4189       // so we don't need to generate any thing here.
4190       Cond.push_back(MachineOperand::CreateImm(0));
4191       Cond.push_back(MachineOperand::CreateReg(
4192           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4193           true));
4194       return {};
4195     }
4196 
4197     return TripCount > TC;
4198   }
4199 
4200   void setPreheader(MachineBasicBlock *NewPreheader) override {
4201     // Do nothing. We want the LOOP setup instruction to stay in the *old*
4202     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4203   }
4204 
4205   void adjustTripCount(int TripCountAdjust) override {
4206     // If the loop trip count is a compile-time value, then just change the
4207     // value.
4208     if (LoopCount->getOpcode() == PPC::LI8 ||
4209         LoopCount->getOpcode() == PPC::LI) {
4210       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4211       LoopCount->getOperand(1).setImm(TripCount);
4212       return;
4213     }
4214 
4215     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4216     // so we don't need to generate any thing here.
4217   }
4218 
4219   void disposed() override {
4220     Loop->eraseFromParent();
4221     // Ensure the loop setup instruction is deleted too.
4222     LoopCount->eraseFromParent();
4223   }
4224 };
4225 } // namespace
4226 
4227 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4228 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4229   // We really "analyze" only hardware loops right now.
4230   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4231   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4232   if (Preheader == LoopBB)
4233     Preheader = *std::next(LoopBB->pred_begin());
4234   MachineFunction *MF = Preheader->getParent();
4235 
4236   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4237     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4238     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4239       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4240       MachineRegisterInfo &MRI = MF->getRegInfo();
4241       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4242       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4243     }
4244   }
4245   return nullptr;
4246 }
4247 
4248 MachineInstr *PPCInstrInfo::findLoopInstr(
4249     MachineBasicBlock &PreHeader,
4250     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4251 
4252   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4253 
4254   // The loop set-up instruction should be in preheader
4255   for (auto &I : PreHeader.instrs())
4256     if (I.getOpcode() == LOOPi)
4257       return &I;
4258   return nullptr;
4259 }
4260 
4261 // Return true if get the base operand, byte offset of an instruction and the
4262 // memory width. Width is the size of memory that is being loaded/stored.
4263 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4264     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
4265     unsigned &Width, const TargetRegisterInfo *TRI) const {
4266   if (!LdSt.mayLoadOrStore())
4267     return false;
4268 
4269   // Handle only loads/stores with base register followed by immediate offset.
4270   if (LdSt.getNumExplicitOperands() != 3)
4271     return false;
4272   if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4273     return false;
4274 
4275   if (!LdSt.hasOneMemOperand())
4276     return false;
4277 
4278   Width = (*LdSt.memoperands_begin())->getSize();
4279   Offset = LdSt.getOperand(1).getImm();
4280   BaseReg = &LdSt.getOperand(2);
4281   return true;
4282 }
4283 
4284 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4285     const MachineInstr &MIa, const MachineInstr &MIb) const {
4286   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4287   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4288 
4289   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4290       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4291     return false;
4292 
4293   // Retrieve the base register, offset from the base register and width. Width
4294   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4295   // base registers are identical, and the offset of a lower memory access +
4296   // the width doesn't overlap the offset of a higher memory access,
4297   // then the memory accesses are different.
4298   const TargetRegisterInfo *TRI = &getRegisterInfo();
4299   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4300   int64_t OffsetA = 0, OffsetB = 0;
4301   unsigned int WidthA = 0, WidthB = 0;
4302   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4303       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4304     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4305       int LowOffset = std::min(OffsetA, OffsetB);
4306       int HighOffset = std::max(OffsetA, OffsetB);
4307       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4308       if (LowOffset + LowWidth <= HighOffset)
4309         return true;
4310     }
4311   }
4312   return false;
4313 }
4314