xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/RegisterPressure.h"
33 #include "llvm/CodeGen/ScheduleDAG.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/MC/TargetRegistry.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "ppc-instr-info"
47 
48 #define GET_INSTRMAP_INFO
49 #define GET_INSTRINFO_CTOR_DTOR
50 #include "PPCGenInstrInfo.inc"
51 
52 STATISTIC(NumStoreSPILLVSRRCAsVec,
53           "Number of spillvsrrc spilled to stack as vec");
54 STATISTIC(NumStoreSPILLVSRRCAsGpr,
55           "Number of spillvsrrc spilled to stack as gpr");
56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
57 STATISTIC(CmpIselsConverted,
58           "Number of ISELs that depend on comparison of constants converted");
59 STATISTIC(MissedConvertibleImmediateInstrs,
60           "Number of compare-immediate instructions fed by constants");
61 STATISTIC(NumRcRotatesConvertedToRcAnd,
62           "Number of record-form rotates converted to record-form andi");
63 
64 static cl::
65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
66             cl::desc("Disable analysis for CTR loops"));
67 
68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
69 cl::desc("Disable compare instruction optimization"), cl::Hidden);
70 
71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
73 cl::Hidden);
74 
75 static cl::opt<bool>
76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
77   cl::desc("Use the old (incorrect) instruction latency calculation"));
78 
79 static cl::opt<float>
80     FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
81                 cl::desc("register pressure factor for the transformations."));
82 
83 static cl::opt<bool> EnableFMARegPressureReduction(
84     "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
85     cl::desc("enable register pressure reduce in machine combiner pass."));
86 
87 // Pin the vtable to this file.
88 void PPCInstrInfo::anchor() {}
89 
90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
91     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
92                       /* CatchRetOpcode */ -1,
93                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
94       Subtarget(STI), RI(STI.getTargetMachine()) {}
95 
96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
97 /// this target when scheduling the DAG.
98 ScheduleHazardRecognizer *
99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
100                                            const ScheduleDAG *DAG) const {
101   unsigned Directive =
102       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
103   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
104       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
105     const InstrItineraryData *II =
106         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
107     return new ScoreboardHazardRecognizer(II, DAG);
108   }
109 
110   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
111 }
112 
113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
114 /// to use for this target when scheduling the DAG.
115 ScheduleHazardRecognizer *
116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
117                                                  const ScheduleDAG *DAG) const {
118   unsigned Directive =
119       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
120 
121   // FIXME: Leaving this as-is until we have POWER9 scheduling info
122   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
123     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
124 
125   // Most subtargets use a PPC970 recognizer.
126   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
127       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
128     assert(DAG->TII && "No InstrInfo?");
129 
130     return new PPCHazardRecognizer970(*DAG);
131   }
132 
133   return new ScoreboardHazardRecognizer(II, DAG);
134 }
135 
136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
137                                        const MachineInstr &MI,
138                                        unsigned *PredCost) const {
139   if (!ItinData || UseOldLatencyCalc)
140     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
141 
142   // The default implementation of getInstrLatency calls getStageLatency, but
143   // getStageLatency does not do the right thing for us. While we have
144   // itinerary, most cores are fully pipelined, and so the itineraries only
145   // express the first part of the pipeline, not every stage. Instead, we need
146   // to use the listed output operand cycle number (using operand 0 here, which
147   // is an output).
148 
149   unsigned Latency = 1;
150   unsigned DefClass = MI.getDesc().getSchedClass();
151   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
152     const MachineOperand &MO = MI.getOperand(i);
153     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
154       continue;
155 
156     int Cycle = ItinData->getOperandCycle(DefClass, i);
157     if (Cycle < 0)
158       continue;
159 
160     Latency = std::max(Latency, (unsigned) Cycle);
161   }
162 
163   return Latency;
164 }
165 
166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
167                                     const MachineInstr &DefMI, unsigned DefIdx,
168                                     const MachineInstr &UseMI,
169                                     unsigned UseIdx) const {
170   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
171                                                    UseMI, UseIdx);
172 
173   if (!DefMI.getParent())
174     return Latency;
175 
176   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
177   Register Reg = DefMO.getReg();
178 
179   bool IsRegCR;
180   if (Register::isVirtualRegister(Reg)) {
181     const MachineRegisterInfo *MRI =
182         &DefMI.getParent()->getParent()->getRegInfo();
183     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
184               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
185   } else {
186     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
187               PPC::CRBITRCRegClass.contains(Reg);
188   }
189 
190   if (UseMI.isBranch() && IsRegCR) {
191     if (Latency < 0)
192       Latency = getInstrLatency(ItinData, DefMI);
193 
194     // On some cores, there is an additional delay between writing to a condition
195     // register, and using it from a branch.
196     unsigned Directive = Subtarget.getCPUDirective();
197     switch (Directive) {
198     default: break;
199     case PPC::DIR_7400:
200     case PPC::DIR_750:
201     case PPC::DIR_970:
202     case PPC::DIR_E5500:
203     case PPC::DIR_PWR4:
204     case PPC::DIR_PWR5:
205     case PPC::DIR_PWR5X:
206     case PPC::DIR_PWR6:
207     case PPC::DIR_PWR6X:
208     case PPC::DIR_PWR7:
209     case PPC::DIR_PWR8:
210     // FIXME: Is this needed for POWER9?
211       Latency += 2;
212       break;
213     }
214   }
215 
216   return Latency;
217 }
218 
219 /// This is an architecture-specific helper function of reassociateOps.
220 /// Set special operand attributes for new instructions after reassociation.
221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
222                                          MachineInstr &OldMI2,
223                                          MachineInstr &NewMI1,
224                                          MachineInstr &NewMI2) const {
225   // Propagate FP flags from the original instructions.
226   // But clear poison-generating flags because those may not be valid now.
227   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
228   NewMI1.setFlags(IntersectedFlags);
229   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
230   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
231   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
232 
233   NewMI2.setFlags(IntersectedFlags);
234   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
235   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
236   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
237 }
238 
239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
240                                          uint16_t Flags) const {
241   MI.setFlags(Flags);
242   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
243   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
244   MI.clearFlag(MachineInstr::MIFlag::IsExact);
245 }
246 
247 // This function does not list all associative and commutative operations, but
248 // only those worth feeding through the machine combiner in an attempt to
249 // reduce the critical path. Mostly, this means floating-point operations,
250 // because they have high latencies(>=5) (compared to other operations, such as
251 // and/or, which are also associative and commutative, but have low latencies).
252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
253   switch (Inst.getOpcode()) {
254   // Floating point:
255   // FP Add:
256   case PPC::FADD:
257   case PPC::FADDS:
258   // FP Multiply:
259   case PPC::FMUL:
260   case PPC::FMULS:
261   // Altivec Add:
262   case PPC::VADDFP:
263   // VSX Add:
264   case PPC::XSADDDP:
265   case PPC::XVADDDP:
266   case PPC::XVADDSP:
267   case PPC::XSADDSP:
268   // VSX Multiply:
269   case PPC::XSMULDP:
270   case PPC::XVMULDP:
271   case PPC::XVMULSP:
272   case PPC::XSMULSP:
273     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
274            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
275   // Fixed point:
276   // Multiply:
277   case PPC::MULHD:
278   case PPC::MULLD:
279   case PPC::MULHW:
280   case PPC::MULLW:
281     return true;
282   default:
283     return false;
284   }
285 }
286 
287 #define InfoArrayIdxFMAInst 0
288 #define InfoArrayIdxFAddInst 1
289 #define InfoArrayIdxFMULInst 2
290 #define InfoArrayIdxAddOpIdx 3
291 #define InfoArrayIdxMULOpIdx 4
292 #define InfoArrayIdxFSubInst 5
293 // Array keeps info for FMA instructions:
294 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
299 //                                second MUL operand index is plus 1;
300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
301 static const uint16_t FMAOpIdxInfo[][6] = {
302     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
303     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
304     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
305     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
306     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
307     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
308     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
309 
310 // Check if an opcode is a FMA instruction. If it is, return the index in array
311 // FMAOpIdxInfo. Otherwise, return -1.
312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
313   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
314     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
315       return I;
316   return -1;
317 }
318 
319 // On PowerPC target, we have two kinds of patterns related to FMA:
320 // 1: Improve ILP.
321 // Try to reassociate FMA chains like below:
322 //
323 // Pattern 1:
324 //   A =  FADD X,  Y          (Leaf)
325 //   B =  FMA  A,  M21,  M22  (Prev)
326 //   C =  FMA  B,  M31,  M32  (Root)
327 // -->
328 //   A =  FMA  X,  M21,  M22
329 //   B =  FMA  Y,  M31,  M32
330 //   C =  FADD A,  B
331 //
332 // Pattern 2:
333 //   A =  FMA  X,  M11,  M12  (Leaf)
334 //   B =  FMA  A,  M21,  M22  (Prev)
335 //   C =  FMA  B,  M31,  M32  (Root)
336 // -->
337 //   A =  FMUL M11,  M12
338 //   B =  FMA  X,  M21,  M22
339 //   D =  FMA  A,  M31,  M32
340 //   C =  FADD B,  D
341 //
342 // breaking the dependency between A and B, allowing FMA to be executed in
343 // parallel (or back-to-back in a pipeline) instead of depending on each other.
344 //
345 // 2: Reduce register pressure.
346 // Try to reassociate FMA with FSUB and a constant like below:
347 // C is a floating point const.
348 //
349 // Pattern 1:
350 //   A = FSUB  X,  Y      (Leaf)
351 //   D = FMA   B,  C,  A  (Root)
352 // -->
353 //   A = FMA   B,  Y,  -C
354 //   D = FMA   A,  X,  C
355 //
356 // Pattern 2:
357 //   A = FSUB  X,  Y      (Leaf)
358 //   D = FMA   B,  A,  C  (Root)
359 // -->
360 //   A = FMA   B,  Y,  -C
361 //   D = FMA   A,  X,  C
362 //
363 //  Before the transformation, A must be assigned with different hardware
364 //  register with D. After the transformation, A and D must be assigned with
365 //  same hardware register due to TIE attribute of FMA instructions.
366 //
367 bool PPCInstrInfo::getFMAPatterns(
368     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
369     bool DoRegPressureReduce) const {
370   MachineBasicBlock *MBB = Root.getParent();
371   const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
372   const TargetRegisterInfo *TRI = &getRegisterInfo();
373 
374   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
375     for (const auto &MO : Instr.explicit_operands())
376       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
377         return false;
378     return true;
379   };
380 
381   auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
382                                     unsigned OpType) {
383     if (Instr.getOpcode() !=
384         FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
385       return false;
386 
387     // Instruction can be reassociated.
388     // fast math flags may prohibit reassociation.
389     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
390           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
391       return false;
392 
393     // Instruction operands are virtual registers for reassociation.
394     if (!IsAllOpsVirtualReg(Instr))
395       return false;
396 
397     // For register pressure reassociation, the FSub must have only one use as
398     // we want to delete the sub to save its def.
399     if (OpType == InfoArrayIdxFSubInst &&
400         !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
401       return false;
402 
403     return true;
404   };
405 
406   auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
407                                int16_t &MulOpIdx, bool IsLeaf) {
408     int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
409     if (Idx < 0)
410       return false;
411 
412     // Instruction can be reassociated.
413     // fast math flags may prohibit reassociation.
414     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
415           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
416       return false;
417 
418     // Instruction operands are virtual registers for reassociation.
419     if (!IsAllOpsVirtualReg(Instr))
420       return false;
421 
422     MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
423     if (IsLeaf)
424       return true;
425 
426     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
427 
428     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
429     MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
430     // If 'add' operand's def is not in current block, don't do ILP related opt.
431     if (!MIAdd || MIAdd->getParent() != MBB)
432       return false;
433 
434     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
435     // as this fma will be changed later.
436     return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
437   };
438 
439   int16_t AddOpIdx = -1;
440   int16_t MulOpIdx = -1;
441 
442   bool IsUsedOnceL = false;
443   bool IsUsedOnceR = false;
444   MachineInstr *MULInstrL = nullptr;
445   MachineInstr *MULInstrR = nullptr;
446 
447   auto IsRPReductionCandidate = [&]() {
448     // Currently, we only support float and double.
449     // FIXME: add support for other types.
450     unsigned Opcode = Root.getOpcode();
451     if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
452       return false;
453 
454     // Root must be a valid FMA like instruction.
455     // Treat it as leaf as we don't care its add operand.
456     if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
457       assert((MulOpIdx >= 0) && "mul operand index not right!");
458       Register MULRegL = TRI->lookThruSingleUseCopyChain(
459           Root.getOperand(MulOpIdx).getReg(), MRI);
460       Register MULRegR = TRI->lookThruSingleUseCopyChain(
461           Root.getOperand(MulOpIdx + 1).getReg(), MRI);
462       if (!MULRegL && !MULRegR)
463         return false;
464 
465       if (MULRegL && !MULRegR) {
466         MULRegR =
467             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
468         IsUsedOnceL = true;
469       } else if (!MULRegL && MULRegR) {
470         MULRegL =
471             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
472         IsUsedOnceR = true;
473       } else {
474         IsUsedOnceL = true;
475         IsUsedOnceR = true;
476       }
477 
478       if (!Register::isVirtualRegister(MULRegL) ||
479           !Register::isVirtualRegister(MULRegR))
480         return false;
481 
482       MULInstrL = MRI->getVRegDef(MULRegL);
483       MULInstrR = MRI->getVRegDef(MULRegR);
484       return true;
485     }
486     return false;
487   };
488 
489   // Register pressure fma reassociation patterns.
490   if (DoRegPressureReduce && IsRPReductionCandidate()) {
491     assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
492     // Register pressure pattern 1
493     if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
494         IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
495       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
496       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
497       return true;
498     }
499 
500     // Register pressure pattern 2
501     if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
502          IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
503       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
504       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
505       return true;
506     }
507   }
508 
509   // ILP fma reassociation patterns.
510   // Root must be a valid FMA like instruction.
511   AddOpIdx = -1;
512   if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
513     return false;
514 
515   assert((AddOpIdx >= 0) && "add operand index not right!");
516 
517   Register RegB = Root.getOperand(AddOpIdx).getReg();
518   MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
519 
520   // Prev must be a valid FMA like instruction.
521   AddOpIdx = -1;
522   if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
523     return false;
524 
525   assert((AddOpIdx >= 0) && "add operand index not right!");
526 
527   Register RegA = Prev->getOperand(AddOpIdx).getReg();
528   MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
529   AddOpIdx = -1;
530   if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
531     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
532     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
533     return true;
534   }
535   if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
536     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
537     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
538     return true;
539   }
540   return false;
541 }
542 
543 void PPCInstrInfo::finalizeInsInstrs(
544     MachineInstr &Root, MachineCombinerPattern &P,
545     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
546   assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
547 
548   MachineFunction *MF = Root.getMF();
549   MachineRegisterInfo *MRI = &MF->getRegInfo();
550   const TargetRegisterInfo *TRI = &getRegisterInfo();
551   MachineConstantPool *MCP = MF->getConstantPool();
552 
553   int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
554   if (Idx < 0)
555     return;
556 
557   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
558 
559   // For now we only need to fix up placeholder for register pressure reduce
560   // patterns.
561   Register ConstReg = 0;
562   switch (P) {
563   case MachineCombinerPattern::REASSOC_XY_BCA:
564     ConstReg =
565         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
566     break;
567   case MachineCombinerPattern::REASSOC_XY_BAC:
568     ConstReg =
569         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
570     break;
571   default:
572     // Not register pressure reduce patterns.
573     return;
574   }
575 
576   MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
577   // Get const value from const pool.
578   const Constant *C = getConstantFromConstantPool(ConstDefInstr);
579   assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
580 
581   // Get negative fp const.
582   APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
583   F1.changeSign();
584   Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
585   Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
586 
587   // Put negative fp const into constant pool.
588   unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
589 
590   MachineOperand *Placeholder = nullptr;
591   // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
592   for (auto *Inst : InsInstrs) {
593     for (MachineOperand &Operand : Inst->explicit_operands()) {
594       assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
595       if (Operand.getReg() == PPC::ZERO8) {
596         Placeholder = &Operand;
597         break;
598       }
599     }
600   }
601 
602   assert(Placeholder && "Placeholder does not exist!");
603 
604   // Generate instructions to load the const fp from constant pool.
605   // We only support PPC64 and medium code model.
606   Register LoadNewConst =
607       generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
608 
609   // Fill the placeholder with the new load from constant pool.
610   Placeholder->setReg(LoadNewConst);
611 }
612 
613 bool PPCInstrInfo::shouldReduceRegisterPressure(
614     MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
615 
616   if (!EnableFMARegPressureReduction)
617     return false;
618 
619   // Currently, we only enable register pressure reducing in machine combiner
620   // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
621   // support.
622   //
623   // So we need following instructions to access a TOC entry:
624   //
625   // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
626   // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
627   //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
628   //
629   // FIXME: add more supported targets, like Small and Large code model, PPC32,
630   // AIX.
631   if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
632         Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
633     return false;
634 
635   const TargetRegisterInfo *TRI = &getRegisterInfo();
636   MachineFunction *MF = MBB->getParent();
637   MachineRegisterInfo *MRI = &MF->getRegInfo();
638 
639   auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
640     RegionPressure Pressure;
641     RegPressureTracker RPTracker(Pressure);
642 
643     // Initialize the register pressure tracker.
644     RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
645                    /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
646 
647     for (MachineBasicBlock::iterator MII = MBB->instr_end(),
648                                      MIE = MBB->instr_begin();
649          MII != MIE; --MII) {
650       MachineInstr &MI = *std::prev(MII);
651       if (MI.isDebugValue() || MI.isDebugLabel())
652         continue;
653       RegisterOperands RegOpers;
654       RegOpers.collect(MI, *TRI, *MRI, false, false);
655       RPTracker.recedeSkipDebugValues();
656       assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
657       RPTracker.recede(RegOpers);
658     }
659 
660     // Close the RPTracker to finalize live ins.
661     RPTracker.closeRegion();
662 
663     return RPTracker.getPressure().MaxSetPressure;
664   };
665 
666   // For now we only care about float and double type fma.
667   unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
668       *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
669 
670   // Only reduce register pressure when pressure is high.
671   return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
672          (float)VSSRCLimit * FMARPFactor;
673 }
674 
675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
676   // I has only one memory operand which is load from constant pool.
677   if (!I->hasOneMemOperand())
678     return false;
679 
680   MachineMemOperand *Op = I->memoperands()[0];
681   return Op->isLoad() && Op->getPseudoValue() &&
682          Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
683 }
684 
685 Register PPCInstrInfo::generateLoadForNewConst(
686     unsigned Idx, MachineInstr *MI, Type *Ty,
687     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
688   // Now we only support PPC64, Medium code model and P9 with vector.
689   // We have immutable pattern to access const pool. See function
690   // shouldReduceRegisterPressure.
691   assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
692           Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
693          "Target not supported!\n");
694 
695   MachineFunction *MF = MI->getMF();
696   MachineRegisterInfo *MRI = &MF->getRegInfo();
697 
698   // Generate ADDIStocHA8
699   Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
700   MachineInstrBuilder TOCOffset =
701       BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
702           .addReg(PPC::X2)
703           .addConstantPoolIndex(Idx);
704 
705   assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
706          "Only float and double are supported!");
707 
708   unsigned LoadOpcode;
709   // Should be float type or double type.
710   if (Ty->isFloatTy())
711     LoadOpcode = PPC::DFLOADf32;
712   else
713     LoadOpcode = PPC::DFLOADf64;
714 
715   const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
716   Register VReg2 = MRI->createVirtualRegister(RC);
717   MachineMemOperand *MMO = MF->getMachineMemOperand(
718       MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
719       Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
720 
721   // Generate Load from constant pool.
722   MachineInstrBuilder Load =
723       BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
724           .addConstantPoolIndex(Idx)
725           .addReg(VReg1, getKillRegState(true))
726           .addMemOperand(MMO);
727 
728   Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
729 
730   // Insert the toc load instructions into InsInstrs.
731   InsInstrs.insert(InsInstrs.begin(), Load);
732   InsInstrs.insert(InsInstrs.begin(), TOCOffset);
733   return VReg2;
734 }
735 
736 // This function returns the const value in constant pool if the \p I is a load
737 // from constant pool.
738 const Constant *
739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
740   MachineFunction *MF = I->getMF();
741   MachineRegisterInfo *MRI = &MF->getRegInfo();
742   MachineConstantPool *MCP = MF->getConstantPool();
743   assert(I->mayLoad() && "Should be a load instruction.\n");
744   for (auto MO : I->uses()) {
745     if (!MO.isReg())
746       continue;
747     Register Reg = MO.getReg();
748     if (Reg == 0 || !Register::isVirtualRegister(Reg))
749       continue;
750     // Find the toc address.
751     MachineInstr *DefMI = MRI->getVRegDef(Reg);
752     for (auto MO2 : DefMI->uses())
753       if (MO2.isCPI())
754         return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
755   }
756   return nullptr;
757 }
758 
759 bool PPCInstrInfo::getMachineCombinerPatterns(
760     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
761     bool DoRegPressureReduce) const {
762   // Using the machine combiner in this way is potentially expensive, so
763   // restrict to when aggressive optimizations are desired.
764   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
765     return false;
766 
767   if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
768     return true;
769 
770   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
771                                                      DoRegPressureReduce);
772 }
773 
774 void PPCInstrInfo::genAlternativeCodeSequence(
775     MachineInstr &Root, MachineCombinerPattern Pattern,
776     SmallVectorImpl<MachineInstr *> &InsInstrs,
777     SmallVectorImpl<MachineInstr *> &DelInstrs,
778     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
779   switch (Pattern) {
780   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
781   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
782   case MachineCombinerPattern::REASSOC_XY_BCA:
783   case MachineCombinerPattern::REASSOC_XY_BAC:
784     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
785     break;
786   default:
787     // Reassociate default patterns.
788     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
789                                                 DelInstrs, InstrIdxForVirtReg);
790     break;
791   }
792 }
793 
794 void PPCInstrInfo::reassociateFMA(
795     MachineInstr &Root, MachineCombinerPattern Pattern,
796     SmallVectorImpl<MachineInstr *> &InsInstrs,
797     SmallVectorImpl<MachineInstr *> &DelInstrs,
798     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
799   MachineFunction *MF = Root.getMF();
800   MachineRegisterInfo &MRI = MF->getRegInfo();
801   const TargetRegisterInfo *TRI = &getRegisterInfo();
802   MachineOperand &OpC = Root.getOperand(0);
803   Register RegC = OpC.getReg();
804   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
805   MRI.constrainRegClass(RegC, RC);
806 
807   unsigned FmaOp = Root.getOpcode();
808   int16_t Idx = getFMAOpIdxInfo(FmaOp);
809   assert(Idx >= 0 && "Root must be a FMA instruction");
810 
811   bool IsILPReassociate =
812       (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
813       (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
814 
815   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
816   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
817 
818   MachineInstr *Prev = nullptr;
819   MachineInstr *Leaf = nullptr;
820   switch (Pattern) {
821   default:
822     llvm_unreachable("not recognized pattern!");
823   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
824   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
825     Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
826     Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
827     break;
828   case MachineCombinerPattern::REASSOC_XY_BAC: {
829     Register MULReg =
830         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
831     Leaf = MRI.getVRegDef(MULReg);
832     break;
833   }
834   case MachineCombinerPattern::REASSOC_XY_BCA: {
835     Register MULReg = TRI->lookThruCopyLike(
836         Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
837     Leaf = MRI.getVRegDef(MULReg);
838     break;
839   }
840   }
841 
842   uint16_t IntersectedFlags = 0;
843   if (IsILPReassociate)
844     IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
845   else
846     IntersectedFlags = Root.getFlags() & Leaf->getFlags();
847 
848   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
849                             bool &KillFlag) {
850     Reg = Operand.getReg();
851     MRI.constrainRegClass(Reg, RC);
852     KillFlag = Operand.isKill();
853   };
854 
855   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
856                              Register &MulOp2, Register &AddOp,
857                              bool &MulOp1KillFlag, bool &MulOp2KillFlag,
858                              bool &AddOpKillFlag) {
859     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
860     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
861     GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
862   };
863 
864   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
865       RegA21, RegB;
866   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
867        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
868        KillA11 = false, KillA21 = false, KillB = false;
869 
870   GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
871 
872   if (IsILPReassociate)
873     GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
874 
875   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
876     GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
877     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
878   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
879     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
880     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
881   } else {
882     // Get FSUB instruction info.
883     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
884     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
885   }
886 
887   // Create new virtual registers for the new results instead of
888   // recycling legacy ones because the MachineCombiner's computation of the
889   // critical path requires a new register definition rather than an existing
890   // one.
891   // For register pressure reassociation, we only need create one virtual
892   // register for the new fma.
893   Register NewVRA = MRI.createVirtualRegister(RC);
894   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
895 
896   Register NewVRB = 0;
897   if (IsILPReassociate) {
898     NewVRB = MRI.createVirtualRegister(RC);
899     InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
900   }
901 
902   Register NewVRD = 0;
903   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
904     NewVRD = MRI.createVirtualRegister(RC);
905     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
906   }
907 
908   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
909                                 Register RegMul1, bool KillRegMul1,
910                                 Register RegMul2, bool KillRegMul2) {
911     MI->getOperand(AddOpIdx).setReg(RegAdd);
912     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
913     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
914     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
915     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
916     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
917   };
918 
919   MachineInstrBuilder NewARegPressure, NewCRegPressure;
920   switch (Pattern) {
921   default:
922     llvm_unreachable("not recognized pattern!");
923   case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
924     // Create new instructions for insertion.
925     MachineInstrBuilder MINewB =
926         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
927             .addReg(RegX, getKillRegState(KillX))
928             .addReg(RegM21, getKillRegState(KillM21))
929             .addReg(RegM22, getKillRegState(KillM22));
930     MachineInstrBuilder MINewA =
931         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
932             .addReg(RegY, getKillRegState(KillY))
933             .addReg(RegM31, getKillRegState(KillM31))
934             .addReg(RegM32, getKillRegState(KillM32));
935     // If AddOpIdx is not 1, adjust the order.
936     if (AddOpIdx != 1) {
937       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
938       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
939     }
940 
941     MachineInstrBuilder MINewC =
942         BuildMI(*MF, Root.getDebugLoc(),
943                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
944             .addReg(NewVRB, getKillRegState(true))
945             .addReg(NewVRA, getKillRegState(true));
946 
947     // Update flags for newly created instructions.
948     setSpecialOperandAttr(*MINewA, IntersectedFlags);
949     setSpecialOperandAttr(*MINewB, IntersectedFlags);
950     setSpecialOperandAttr(*MINewC, IntersectedFlags);
951 
952     // Record new instructions for insertion.
953     InsInstrs.push_back(MINewA);
954     InsInstrs.push_back(MINewB);
955     InsInstrs.push_back(MINewC);
956     break;
957   }
958   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
959     assert(NewVRD && "new FMA register not created!");
960     // Create new instructions for insertion.
961     MachineInstrBuilder MINewA =
962         BuildMI(*MF, Leaf->getDebugLoc(),
963                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
964             .addReg(RegM11, getKillRegState(KillM11))
965             .addReg(RegM12, getKillRegState(KillM12));
966     MachineInstrBuilder MINewB =
967         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
968             .addReg(RegX, getKillRegState(KillX))
969             .addReg(RegM21, getKillRegState(KillM21))
970             .addReg(RegM22, getKillRegState(KillM22));
971     MachineInstrBuilder MINewD =
972         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
973             .addReg(NewVRA, getKillRegState(true))
974             .addReg(RegM31, getKillRegState(KillM31))
975             .addReg(RegM32, getKillRegState(KillM32));
976     // If AddOpIdx is not 1, adjust the order.
977     if (AddOpIdx != 1) {
978       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
979       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
980                          KillM32);
981     }
982 
983     MachineInstrBuilder MINewC =
984         BuildMI(*MF, Root.getDebugLoc(),
985                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
986             .addReg(NewVRB, getKillRegState(true))
987             .addReg(NewVRD, getKillRegState(true));
988 
989     // Update flags for newly created instructions.
990     setSpecialOperandAttr(*MINewA, IntersectedFlags);
991     setSpecialOperandAttr(*MINewB, IntersectedFlags);
992     setSpecialOperandAttr(*MINewD, IntersectedFlags);
993     setSpecialOperandAttr(*MINewC, IntersectedFlags);
994 
995     // Record new instructions for insertion.
996     InsInstrs.push_back(MINewA);
997     InsInstrs.push_back(MINewB);
998     InsInstrs.push_back(MINewD);
999     InsInstrs.push_back(MINewC);
1000     break;
1001   }
1002   case MachineCombinerPattern::REASSOC_XY_BAC:
1003   case MachineCombinerPattern::REASSOC_XY_BCA: {
1004     Register VarReg;
1005     bool KillVarReg = false;
1006     if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
1007       VarReg = RegM31;
1008       KillVarReg = KillM31;
1009     } else {
1010       VarReg = RegM32;
1011       KillVarReg = KillM32;
1012     }
1013     // We don't want to get negative const from memory pool too early, as the
1014     // created entry will not be deleted even if it has no users. Since all
1015     // operand of Leaf and Root are virtual register, we use zero register
1016     // here as a placeholder. When the InsInstrs is selected in
1017     // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1018     // with a virtual register which is a load from constant pool.
1019     NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1020                           .addReg(RegB, getKillRegState(RegB))
1021                           .addReg(RegY, getKillRegState(KillY))
1022                           .addReg(PPC::ZERO8);
1023     NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1024                           .addReg(NewVRA, getKillRegState(true))
1025                           .addReg(RegX, getKillRegState(KillX))
1026                           .addReg(VarReg, getKillRegState(KillVarReg));
1027     // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1028     // both at index 1, no need to adjust.
1029     // FIXME: when add more fma instructions support, like fma/fmas, adjust
1030     // the operand index here.
1031     break;
1032   }
1033   }
1034 
1035   if (!IsILPReassociate) {
1036     setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1037     setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1038 
1039     InsInstrs.push_back(NewARegPressure);
1040     InsInstrs.push_back(NewCRegPressure);
1041   }
1042 
1043   assert(!InsInstrs.empty() &&
1044          "Insertion instructions set should not be empty!");
1045 
1046   // Record old instructions for deletion.
1047   DelInstrs.push_back(Leaf);
1048   if (IsILPReassociate)
1049     DelInstrs.push_back(Prev);
1050   DelInstrs.push_back(&Root);
1051 }
1052 
1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1055                                          Register &SrcReg, Register &DstReg,
1056                                          unsigned &SubIdx) const {
1057   switch (MI.getOpcode()) {
1058   default: return false;
1059   case PPC::EXTSW:
1060   case PPC::EXTSW_32:
1061   case PPC::EXTSW_32_64:
1062     SrcReg = MI.getOperand(1).getReg();
1063     DstReg = MI.getOperand(0).getReg();
1064     SubIdx = PPC::sub_32;
1065     return true;
1066   }
1067 }
1068 
1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1070                                            int &FrameIndex) const {
1071   unsigned Opcode = MI.getOpcode();
1072   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1073   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1074 
1075   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1076     // Check for the operands added by addFrameReference (the immediate is the
1077     // offset which defaults to 0).
1078     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1079         MI.getOperand(2).isFI()) {
1080       FrameIndex = MI.getOperand(2).getIndex();
1081       return MI.getOperand(0).getReg();
1082     }
1083   }
1084   return 0;
1085 }
1086 
1087 // For opcodes with the ReMaterializable flag set, this function is called to
1088 // verify the instruction is really rematable.
1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
1090                                                      AliasAnalysis *AA) const {
1091   switch (MI.getOpcode()) {
1092   default:
1093     // This function should only be called for opcodes with the ReMaterializable
1094     // flag set.
1095     llvm_unreachable("Unknown rematerializable operation!");
1096     break;
1097   case PPC::LI:
1098   case PPC::LI8:
1099   case PPC::PLI:
1100   case PPC::PLI8:
1101   case PPC::LIS:
1102   case PPC::LIS8:
1103   case PPC::ADDIStocHA:
1104   case PPC::ADDIStocHA8:
1105   case PPC::ADDItocL:
1106   case PPC::LOAD_STACK_GUARD:
1107   case PPC::XXLXORz:
1108   case PPC::XXLXORspz:
1109   case PPC::XXLXORdpz:
1110   case PPC::XXLEQVOnes:
1111   case PPC::XXSPLTI32DX:
1112   case PPC::XXSPLTIW:
1113   case PPC::XXSPLTIDP:
1114   case PPC::V_SET0B:
1115   case PPC::V_SET0H:
1116   case PPC::V_SET0:
1117   case PPC::V_SETALLONESB:
1118   case PPC::V_SETALLONESH:
1119   case PPC::V_SETALLONES:
1120   case PPC::CRSET:
1121   case PPC::CRUNSET:
1122   case PPC::XXSETACCZ:
1123     return true;
1124   }
1125   return false;
1126 }
1127 
1128 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1129                                           int &FrameIndex) const {
1130   unsigned Opcode = MI.getOpcode();
1131   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1132   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1133 
1134   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1135     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1136         MI.getOperand(2).isFI()) {
1137       FrameIndex = MI.getOperand(2).getIndex();
1138       return MI.getOperand(0).getReg();
1139     }
1140   }
1141   return 0;
1142 }
1143 
1144 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1145                                                    unsigned OpIdx1,
1146                                                    unsigned OpIdx2) const {
1147   MachineFunction &MF = *MI.getParent()->getParent();
1148 
1149   // Normal instructions can be commuted the obvious way.
1150   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1151     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1152   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1153   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1154   // changing the relative order of the mask operands might change what happens
1155   // to the high-bits of the mask (and, thus, the result).
1156 
1157   // Cannot commute if it has a non-zero rotate count.
1158   if (MI.getOperand(3).getImm() != 0)
1159     return nullptr;
1160 
1161   // If we have a zero rotate count, we have:
1162   //   M = mask(MB,ME)
1163   //   Op0 = (Op1 & ~M) | (Op2 & M)
1164   // Change this to:
1165   //   M = mask((ME+1)&31, (MB-1)&31)
1166   //   Op0 = (Op2 & ~M) | (Op1 & M)
1167 
1168   // Swap op1/op2
1169   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1170          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1171   Register Reg0 = MI.getOperand(0).getReg();
1172   Register Reg1 = MI.getOperand(1).getReg();
1173   Register Reg2 = MI.getOperand(2).getReg();
1174   unsigned SubReg1 = MI.getOperand(1).getSubReg();
1175   unsigned SubReg2 = MI.getOperand(2).getSubReg();
1176   bool Reg1IsKill = MI.getOperand(1).isKill();
1177   bool Reg2IsKill = MI.getOperand(2).isKill();
1178   bool ChangeReg0 = false;
1179   // If machine instrs are no longer in two-address forms, update
1180   // destination register as well.
1181   if (Reg0 == Reg1) {
1182     // Must be two address instruction!
1183     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
1184            "Expecting a two-address instruction!");
1185     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1186     Reg2IsKill = false;
1187     ChangeReg0 = true;
1188   }
1189 
1190   // Masks.
1191   unsigned MB = MI.getOperand(4).getImm();
1192   unsigned ME = MI.getOperand(5).getImm();
1193 
1194   // We can't commute a trivial mask (there is no way to represent an all-zero
1195   // mask).
1196   if (MB == 0 && ME == 31)
1197     return nullptr;
1198 
1199   if (NewMI) {
1200     // Create a new instruction.
1201     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1202     bool Reg0IsDead = MI.getOperand(0).isDead();
1203     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1204         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1205         .addReg(Reg2, getKillRegState(Reg2IsKill))
1206         .addReg(Reg1, getKillRegState(Reg1IsKill))
1207         .addImm((ME + 1) & 31)
1208         .addImm((MB - 1) & 31);
1209   }
1210 
1211   if (ChangeReg0) {
1212     MI.getOperand(0).setReg(Reg2);
1213     MI.getOperand(0).setSubReg(SubReg2);
1214   }
1215   MI.getOperand(2).setReg(Reg1);
1216   MI.getOperand(1).setReg(Reg2);
1217   MI.getOperand(2).setSubReg(SubReg1);
1218   MI.getOperand(1).setSubReg(SubReg2);
1219   MI.getOperand(2).setIsKill(Reg1IsKill);
1220   MI.getOperand(1).setIsKill(Reg2IsKill);
1221 
1222   // Swap the mask around.
1223   MI.getOperand(4).setImm((ME + 1) & 31);
1224   MI.getOperand(5).setImm((MB - 1) & 31);
1225   return &MI;
1226 }
1227 
1228 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1229                                          unsigned &SrcOpIdx1,
1230                                          unsigned &SrcOpIdx2) const {
1231   // For VSX A-Type FMA instructions, it is the first two operands that can be
1232   // commuted, however, because the non-encoded tied input operand is listed
1233   // first, the operands to swap are actually the second and third.
1234 
1235   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1236   if (AltOpc == -1)
1237     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1238 
1239   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1240   // and SrcOpIdx2.
1241   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1242 }
1243 
1244 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1245                               MachineBasicBlock::iterator MI) const {
1246   // This function is used for scheduling, and the nop wanted here is the type
1247   // that terminates dispatch groups on the POWER cores.
1248   unsigned Directive = Subtarget.getCPUDirective();
1249   unsigned Opcode;
1250   switch (Directive) {
1251   default:            Opcode = PPC::NOP; break;
1252   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1253   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1254   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1255   // FIXME: Update when POWER9 scheduling model is ready.
1256   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1257   }
1258 
1259   DebugLoc DL;
1260   BuildMI(MBB, MI, DL, get(Opcode));
1261 }
1262 
1263 /// Return the noop instruction to use for a noop.
1264 MCInst PPCInstrInfo::getNop() const {
1265   MCInst Nop;
1266   Nop.setOpcode(PPC::NOP);
1267   return Nop;
1268 }
1269 
1270 // Branch analysis.
1271 // Note: If the condition register is set to CTR or CTR8 then this is a
1272 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1273 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1274                                  MachineBasicBlock *&TBB,
1275                                  MachineBasicBlock *&FBB,
1276                                  SmallVectorImpl<MachineOperand> &Cond,
1277                                  bool AllowModify) const {
1278   bool isPPC64 = Subtarget.isPPC64();
1279 
1280   // If the block has no terminators, it just falls into the block after it.
1281   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1282   if (I == MBB.end())
1283     return false;
1284 
1285   if (!isUnpredicatedTerminator(*I))
1286     return false;
1287 
1288   if (AllowModify) {
1289     // If the BB ends with an unconditional branch to the fallthrough BB,
1290     // we eliminate the branch instruction.
1291     if (I->getOpcode() == PPC::B &&
1292         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1293       I->eraseFromParent();
1294 
1295       // We update iterator after deleting the last branch.
1296       I = MBB.getLastNonDebugInstr();
1297       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1298         return false;
1299     }
1300   }
1301 
1302   // Get the last instruction in the block.
1303   MachineInstr &LastInst = *I;
1304 
1305   // If there is only one terminator instruction, process it.
1306   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1307     if (LastInst.getOpcode() == PPC::B) {
1308       if (!LastInst.getOperand(0).isMBB())
1309         return true;
1310       TBB = LastInst.getOperand(0).getMBB();
1311       return false;
1312     } else if (LastInst.getOpcode() == PPC::BCC) {
1313       if (!LastInst.getOperand(2).isMBB())
1314         return true;
1315       // Block ends with fall-through condbranch.
1316       TBB = LastInst.getOperand(2).getMBB();
1317       Cond.push_back(LastInst.getOperand(0));
1318       Cond.push_back(LastInst.getOperand(1));
1319       return false;
1320     } else if (LastInst.getOpcode() == PPC::BC) {
1321       if (!LastInst.getOperand(1).isMBB())
1322         return true;
1323       // Block ends with fall-through condbranch.
1324       TBB = LastInst.getOperand(1).getMBB();
1325       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1326       Cond.push_back(LastInst.getOperand(0));
1327       return false;
1328     } else if (LastInst.getOpcode() == PPC::BCn) {
1329       if (!LastInst.getOperand(1).isMBB())
1330         return true;
1331       // Block ends with fall-through condbranch.
1332       TBB = LastInst.getOperand(1).getMBB();
1333       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1334       Cond.push_back(LastInst.getOperand(0));
1335       return false;
1336     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1337                LastInst.getOpcode() == PPC::BDNZ) {
1338       if (!LastInst.getOperand(0).isMBB())
1339         return true;
1340       if (DisableCTRLoopAnal)
1341         return true;
1342       TBB = LastInst.getOperand(0).getMBB();
1343       Cond.push_back(MachineOperand::CreateImm(1));
1344       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1345                                                true));
1346       return false;
1347     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1348                LastInst.getOpcode() == PPC::BDZ) {
1349       if (!LastInst.getOperand(0).isMBB())
1350         return true;
1351       if (DisableCTRLoopAnal)
1352         return true;
1353       TBB = LastInst.getOperand(0).getMBB();
1354       Cond.push_back(MachineOperand::CreateImm(0));
1355       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1356                                                true));
1357       return false;
1358     }
1359 
1360     // Otherwise, don't know what this is.
1361     return true;
1362   }
1363 
1364   // Get the instruction before it if it's a terminator.
1365   MachineInstr &SecondLastInst = *I;
1366 
1367   // If there are three terminators, we don't know what sort of block this is.
1368   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1369     return true;
1370 
1371   // If the block ends with PPC::B and PPC:BCC, handle it.
1372   if (SecondLastInst.getOpcode() == PPC::BCC &&
1373       LastInst.getOpcode() == PPC::B) {
1374     if (!SecondLastInst.getOperand(2).isMBB() ||
1375         !LastInst.getOperand(0).isMBB())
1376       return true;
1377     TBB = SecondLastInst.getOperand(2).getMBB();
1378     Cond.push_back(SecondLastInst.getOperand(0));
1379     Cond.push_back(SecondLastInst.getOperand(1));
1380     FBB = LastInst.getOperand(0).getMBB();
1381     return false;
1382   } else if (SecondLastInst.getOpcode() == PPC::BC &&
1383              LastInst.getOpcode() == PPC::B) {
1384     if (!SecondLastInst.getOperand(1).isMBB() ||
1385         !LastInst.getOperand(0).isMBB())
1386       return true;
1387     TBB = SecondLastInst.getOperand(1).getMBB();
1388     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1389     Cond.push_back(SecondLastInst.getOperand(0));
1390     FBB = LastInst.getOperand(0).getMBB();
1391     return false;
1392   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1393              LastInst.getOpcode() == PPC::B) {
1394     if (!SecondLastInst.getOperand(1).isMBB() ||
1395         !LastInst.getOperand(0).isMBB())
1396       return true;
1397     TBB = SecondLastInst.getOperand(1).getMBB();
1398     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1399     Cond.push_back(SecondLastInst.getOperand(0));
1400     FBB = LastInst.getOperand(0).getMBB();
1401     return false;
1402   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1403               SecondLastInst.getOpcode() == PPC::BDNZ) &&
1404              LastInst.getOpcode() == PPC::B) {
1405     if (!SecondLastInst.getOperand(0).isMBB() ||
1406         !LastInst.getOperand(0).isMBB())
1407       return true;
1408     if (DisableCTRLoopAnal)
1409       return true;
1410     TBB = SecondLastInst.getOperand(0).getMBB();
1411     Cond.push_back(MachineOperand::CreateImm(1));
1412     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1413                                              true));
1414     FBB = LastInst.getOperand(0).getMBB();
1415     return false;
1416   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1417               SecondLastInst.getOpcode() == PPC::BDZ) &&
1418              LastInst.getOpcode() == PPC::B) {
1419     if (!SecondLastInst.getOperand(0).isMBB() ||
1420         !LastInst.getOperand(0).isMBB())
1421       return true;
1422     if (DisableCTRLoopAnal)
1423       return true;
1424     TBB = SecondLastInst.getOperand(0).getMBB();
1425     Cond.push_back(MachineOperand::CreateImm(0));
1426     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1427                                              true));
1428     FBB = LastInst.getOperand(0).getMBB();
1429     return false;
1430   }
1431 
1432   // If the block ends with two PPC:Bs, handle it.  The second one is not
1433   // executed, so remove it.
1434   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1435     if (!SecondLastInst.getOperand(0).isMBB())
1436       return true;
1437     TBB = SecondLastInst.getOperand(0).getMBB();
1438     I = LastInst;
1439     if (AllowModify)
1440       I->eraseFromParent();
1441     return false;
1442   }
1443 
1444   // Otherwise, can't handle this.
1445   return true;
1446 }
1447 
1448 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1449                                     int *BytesRemoved) const {
1450   assert(!BytesRemoved && "code size not handled");
1451 
1452   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1453   if (I == MBB.end())
1454     return 0;
1455 
1456   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1457       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1458       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1459       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1460     return 0;
1461 
1462   // Remove the branch.
1463   I->eraseFromParent();
1464 
1465   I = MBB.end();
1466 
1467   if (I == MBB.begin()) return 1;
1468   --I;
1469   if (I->getOpcode() != PPC::BCC &&
1470       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1471       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1472       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1473     return 1;
1474 
1475   // Remove the branch.
1476   I->eraseFromParent();
1477   return 2;
1478 }
1479 
1480 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1481                                     MachineBasicBlock *TBB,
1482                                     MachineBasicBlock *FBB,
1483                                     ArrayRef<MachineOperand> Cond,
1484                                     const DebugLoc &DL,
1485                                     int *BytesAdded) const {
1486   // Shouldn't be a fall through.
1487   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1488   assert((Cond.size() == 2 || Cond.size() == 0) &&
1489          "PPC branch conditions have two components!");
1490   assert(!BytesAdded && "code size not handled");
1491 
1492   bool isPPC64 = Subtarget.isPPC64();
1493 
1494   // One-way branch.
1495   if (!FBB) {
1496     if (Cond.empty())   // Unconditional branch
1497       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1498     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1499       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1500                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1501                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1502     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1503       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1504     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1505       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1506     else                // Conditional branch
1507       BuildMI(&MBB, DL, get(PPC::BCC))
1508           .addImm(Cond[0].getImm())
1509           .add(Cond[1])
1510           .addMBB(TBB);
1511     return 1;
1512   }
1513 
1514   // Two-way Conditional Branch.
1515   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1516     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1517                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1518                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1519   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1520     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1521   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1522     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1523   else
1524     BuildMI(&MBB, DL, get(PPC::BCC))
1525         .addImm(Cond[0].getImm())
1526         .add(Cond[1])
1527         .addMBB(TBB);
1528   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1529   return 2;
1530 }
1531 
1532 // Select analysis.
1533 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1534                                    ArrayRef<MachineOperand> Cond,
1535                                    Register DstReg, Register TrueReg,
1536                                    Register FalseReg, int &CondCycles,
1537                                    int &TrueCycles, int &FalseCycles) const {
1538   if (Cond.size() != 2)
1539     return false;
1540 
1541   // If this is really a bdnz-like condition, then it cannot be turned into a
1542   // select.
1543   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1544     return false;
1545 
1546   // If the conditional branch uses a physical register, then it cannot be
1547   // turned into a select.
1548   if (Register::isPhysicalRegister(Cond[1].getReg()))
1549     return false;
1550 
1551   // Check register classes.
1552   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1553   const TargetRegisterClass *RC =
1554     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1555   if (!RC)
1556     return false;
1557 
1558   // isel is for regular integer GPRs only.
1559   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1560       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1561       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1562       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1563     return false;
1564 
1565   // FIXME: These numbers are for the A2, how well they work for other cores is
1566   // an open question. On the A2, the isel instruction has a 2-cycle latency
1567   // but single-cycle throughput. These numbers are used in combination with
1568   // the MispredictPenalty setting from the active SchedMachineModel.
1569   CondCycles = 1;
1570   TrueCycles = 1;
1571   FalseCycles = 1;
1572 
1573   return true;
1574 }
1575 
1576 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1577                                 MachineBasicBlock::iterator MI,
1578                                 const DebugLoc &dl, Register DestReg,
1579                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1580                                 Register FalseReg) const {
1581   assert(Cond.size() == 2 &&
1582          "PPC branch conditions have two components!");
1583 
1584   // Get the register classes.
1585   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1586   const TargetRegisterClass *RC =
1587     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1588   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1589 
1590   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1591                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1592   assert((Is64Bit ||
1593           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1594           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1595          "isel is for regular integer GPRs only");
1596 
1597   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1598   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1599 
1600   unsigned SubIdx = 0;
1601   bool SwapOps = false;
1602   switch (SelectPred) {
1603   case PPC::PRED_EQ:
1604   case PPC::PRED_EQ_MINUS:
1605   case PPC::PRED_EQ_PLUS:
1606       SubIdx = PPC::sub_eq; SwapOps = false; break;
1607   case PPC::PRED_NE:
1608   case PPC::PRED_NE_MINUS:
1609   case PPC::PRED_NE_PLUS:
1610       SubIdx = PPC::sub_eq; SwapOps = true; break;
1611   case PPC::PRED_LT:
1612   case PPC::PRED_LT_MINUS:
1613   case PPC::PRED_LT_PLUS:
1614       SubIdx = PPC::sub_lt; SwapOps = false; break;
1615   case PPC::PRED_GE:
1616   case PPC::PRED_GE_MINUS:
1617   case PPC::PRED_GE_PLUS:
1618       SubIdx = PPC::sub_lt; SwapOps = true; break;
1619   case PPC::PRED_GT:
1620   case PPC::PRED_GT_MINUS:
1621   case PPC::PRED_GT_PLUS:
1622       SubIdx = PPC::sub_gt; SwapOps = false; break;
1623   case PPC::PRED_LE:
1624   case PPC::PRED_LE_MINUS:
1625   case PPC::PRED_LE_PLUS:
1626       SubIdx = PPC::sub_gt; SwapOps = true; break;
1627   case PPC::PRED_UN:
1628   case PPC::PRED_UN_MINUS:
1629   case PPC::PRED_UN_PLUS:
1630       SubIdx = PPC::sub_un; SwapOps = false; break;
1631   case PPC::PRED_NU:
1632   case PPC::PRED_NU_MINUS:
1633   case PPC::PRED_NU_PLUS:
1634       SubIdx = PPC::sub_un; SwapOps = true; break;
1635   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1636   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1637   }
1638 
1639   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1640            SecondReg = SwapOps ? TrueReg  : FalseReg;
1641 
1642   // The first input register of isel cannot be r0. If it is a member
1643   // of a register class that can be r0, then copy it first (the
1644   // register allocator should eliminate the copy).
1645   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1646       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1647     const TargetRegisterClass *FirstRC =
1648       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1649         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1650     Register OldFirstReg = FirstReg;
1651     FirstReg = MRI.createVirtualRegister(FirstRC);
1652     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1653       .addReg(OldFirstReg);
1654   }
1655 
1656   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1657     .addReg(FirstReg).addReg(SecondReg)
1658     .addReg(Cond[1].getReg(), 0, SubIdx);
1659 }
1660 
1661 static unsigned getCRBitValue(unsigned CRBit) {
1662   unsigned Ret = 4;
1663   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1664       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1665       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1666       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1667     Ret = 3;
1668   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1669       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1670       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1671       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1672     Ret = 2;
1673   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1674       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1675       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1676       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1677     Ret = 1;
1678   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1679       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1680       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1681       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1682     Ret = 0;
1683 
1684   assert(Ret != 4 && "Invalid CR bit register");
1685   return Ret;
1686 }
1687 
1688 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1689                                MachineBasicBlock::iterator I,
1690                                const DebugLoc &DL, MCRegister DestReg,
1691                                MCRegister SrcReg, bool KillSrc) const {
1692   // We can end up with self copies and similar things as a result of VSX copy
1693   // legalization. Promote them here.
1694   const TargetRegisterInfo *TRI = &getRegisterInfo();
1695   if (PPC::F8RCRegClass.contains(DestReg) &&
1696       PPC::VSRCRegClass.contains(SrcReg)) {
1697     MCRegister SuperReg =
1698         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1699 
1700     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1701       llvm_unreachable("nop VSX copy");
1702 
1703     DestReg = SuperReg;
1704   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1705              PPC::VSRCRegClass.contains(DestReg)) {
1706     MCRegister SuperReg =
1707         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1708 
1709     if (VSXSelfCopyCrash && DestReg == SuperReg)
1710       llvm_unreachable("nop VSX copy");
1711 
1712     SrcReg = SuperReg;
1713   }
1714 
1715   // Different class register copy
1716   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1717       PPC::GPRCRegClass.contains(DestReg)) {
1718     MCRegister CRReg = getCRFromCRBit(SrcReg);
1719     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1720     getKillRegState(KillSrc);
1721     // Rotate the CR bit in the CR fields to be the least significant bit and
1722     // then mask with 0x1 (MB = ME = 31).
1723     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1724        .addReg(DestReg, RegState::Kill)
1725        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1726        .addImm(31)
1727        .addImm(31);
1728     return;
1729   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1730              (PPC::G8RCRegClass.contains(DestReg) ||
1731               PPC::GPRCRegClass.contains(DestReg))) {
1732     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1733     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1734     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1735     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1736     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1737     getKillRegState(KillSrc);
1738     if (CRNum == 7)
1739       return;
1740     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1741     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1742         .addReg(DestReg, RegState::Kill)
1743         .addImm(CRNum * 4 + 4)
1744         .addImm(28)
1745         .addImm(31);
1746     return;
1747   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1748              PPC::VSFRCRegClass.contains(DestReg)) {
1749     assert(Subtarget.hasDirectMove() &&
1750            "Subtarget doesn't support directmove, don't know how to copy.");
1751     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1752     NumGPRtoVSRSpill++;
1753     getKillRegState(KillSrc);
1754     return;
1755   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1756              PPC::G8RCRegClass.contains(DestReg)) {
1757     assert(Subtarget.hasDirectMove() &&
1758            "Subtarget doesn't support directmove, don't know how to copy.");
1759     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1760     getKillRegState(KillSrc);
1761     return;
1762   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1763              PPC::GPRCRegClass.contains(DestReg)) {
1764     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1765     getKillRegState(KillSrc);
1766     return;
1767   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1768              PPC::SPERCRegClass.contains(DestReg)) {
1769     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1770     getKillRegState(KillSrc);
1771     return;
1772   }
1773 
1774   unsigned Opc;
1775   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1776     Opc = PPC::OR;
1777   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1778     Opc = PPC::OR8;
1779   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1780     Opc = PPC::FMR;
1781   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1782     Opc = PPC::MCRF;
1783   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1784     Opc = PPC::VOR;
1785   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1786     // There are two different ways this can be done:
1787     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1788     //      issue in VSU pipeline 0.
1789     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1790     //      can go to either pipeline.
1791     // We'll always use xxlor here, because in practically all cases where
1792     // copies are generated, they are close enough to some use that the
1793     // lower-latency form is preferable.
1794     Opc = PPC::XXLOR;
1795   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1796            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1797     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1798   else if (Subtarget.pairedVectorMemops() &&
1799            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1800     if (SrcReg > PPC::VSRp15)
1801       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1802     else
1803       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1804     if (DestReg > PPC::VSRp15)
1805       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1806     else
1807       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1808     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1809       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1810     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1811       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1812     return;
1813   }
1814   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1815     Opc = PPC::CROR;
1816   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1817     Opc = PPC::EVOR;
1818   else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1819             PPC::UACCRCRegClass.contains(DestReg)) &&
1820            (PPC::ACCRCRegClass.contains(SrcReg) ||
1821             PPC::UACCRCRegClass.contains(SrcReg))) {
1822     // If primed, de-prime the source register, copy the individual registers
1823     // and prime the destination if needed. The vector subregisters are
1824     // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1825     // source is primed, we need to re-prime it after the copy as well.
1826     PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1827     bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1828     bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1829     MCRegister VSLSrcReg =
1830         PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1831     MCRegister VSLDestReg =
1832         PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1833     if (SrcPrimed)
1834       BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1835     for (unsigned Idx = 0; Idx < 4; Idx++)
1836       BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1837           .addReg(VSLSrcReg + Idx)
1838           .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1839     if (DestPrimed)
1840       BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1841     if (SrcPrimed && !KillSrc)
1842       BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1843     return;
1844   } else if (PPC::G8pRCRegClass.contains(DestReg) &&
1845              PPC::G8pRCRegClass.contains(SrcReg)) {
1846     // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1847     unsigned DestRegIdx = DestReg - PPC::G8p0;
1848     MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1849     MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1850     unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1851     MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1852     MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1853     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1854         .addReg(SrcRegSub0)
1855         .addReg(SrcRegSub0, getKillRegState(KillSrc));
1856     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1857         .addReg(SrcRegSub1)
1858         .addReg(SrcRegSub1, getKillRegState(KillSrc));
1859     return;
1860   } else
1861     llvm_unreachable("Impossible reg-to-reg copy");
1862 
1863   const MCInstrDesc &MCID = get(Opc);
1864   if (MCID.getNumOperands() == 3)
1865     BuildMI(MBB, I, DL, MCID, DestReg)
1866       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1867   else
1868     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1869 }
1870 
1871 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1872   int OpcodeIndex = 0;
1873 
1874   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1875       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1876     OpcodeIndex = SOK_Int4Spill;
1877   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1878              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1879     OpcodeIndex = SOK_Int8Spill;
1880   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1881     OpcodeIndex = SOK_Float8Spill;
1882   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1883     OpcodeIndex = SOK_Float4Spill;
1884   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1885     OpcodeIndex = SOK_SPESpill;
1886   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1887     OpcodeIndex = SOK_CRSpill;
1888   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1889     OpcodeIndex = SOK_CRBitSpill;
1890   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1891     OpcodeIndex = SOK_VRVectorSpill;
1892   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1893     OpcodeIndex = SOK_VSXVectorSpill;
1894   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1895     OpcodeIndex = SOK_VectorFloat8Spill;
1896   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1897     OpcodeIndex = SOK_VectorFloat4Spill;
1898   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1899     OpcodeIndex = SOK_SpillToVSR;
1900   } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1901     assert(Subtarget.pairedVectorMemops() &&
1902            "Register unexpected when paired memops are disabled.");
1903     OpcodeIndex = SOK_AccumulatorSpill;
1904   } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1905     assert(Subtarget.pairedVectorMemops() &&
1906            "Register unexpected when paired memops are disabled.");
1907     OpcodeIndex = SOK_UAccumulatorSpill;
1908   } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1909     assert(Subtarget.pairedVectorMemops() &&
1910            "Register unexpected when paired memops are disabled.");
1911     OpcodeIndex = SOK_PairedVecSpill;
1912   } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1913     OpcodeIndex = SOK_PairedG8Spill;
1914   } else {
1915     llvm_unreachable("Unknown regclass!");
1916   }
1917   return OpcodeIndex;
1918 }
1919 
1920 unsigned
1921 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1922   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1923   return OpcodesForSpill[getSpillIndex(RC)];
1924 }
1925 
1926 unsigned
1927 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1928   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1929   return OpcodesForSpill[getSpillIndex(RC)];
1930 }
1931 
1932 void PPCInstrInfo::StoreRegToStackSlot(
1933     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1934     const TargetRegisterClass *RC,
1935     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1936   unsigned Opcode = getStoreOpcodeForSpill(RC);
1937   DebugLoc DL;
1938 
1939   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1940   FuncInfo->setHasSpills();
1941 
1942   NewMIs.push_back(addFrameReference(
1943       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1944       FrameIdx));
1945 
1946   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1947       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1948     FuncInfo->setSpillsCR();
1949 
1950   if (isXFormMemOp(Opcode))
1951     FuncInfo->setHasNonRISpills();
1952 }
1953 
1954 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1955     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1956     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1957     const TargetRegisterInfo *TRI) const {
1958   MachineFunction &MF = *MBB.getParent();
1959   SmallVector<MachineInstr *, 4> NewMIs;
1960 
1961   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1962 
1963   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1964     MBB.insert(MI, NewMIs[i]);
1965 
1966   const MachineFrameInfo &MFI = MF.getFrameInfo();
1967   MachineMemOperand *MMO = MF.getMachineMemOperand(
1968       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1969       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1970       MFI.getObjectAlign(FrameIdx));
1971   NewMIs.back()->addMemOperand(MF, MMO);
1972 }
1973 
1974 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1975                                        MachineBasicBlock::iterator MI,
1976                                        Register SrcReg, bool isKill,
1977                                        int FrameIdx,
1978                                        const TargetRegisterClass *RC,
1979                                        const TargetRegisterInfo *TRI) const {
1980   // We need to avoid a situation in which the value from a VRRC register is
1981   // spilled using an Altivec instruction and reloaded into a VSRC register
1982   // using a VSX instruction. The issue with this is that the VSX
1983   // load/store instructions swap the doublewords in the vector and the Altivec
1984   // ones don't. The register classes on the spill/reload may be different if
1985   // the register is defined using an Altivec instruction and is then used by a
1986   // VSX instruction.
1987   RC = updatedRC(RC);
1988   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1989 }
1990 
1991 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1992                                         unsigned DestReg, int FrameIdx,
1993                                         const TargetRegisterClass *RC,
1994                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1995                                         const {
1996   unsigned Opcode = getLoadOpcodeForSpill(RC);
1997   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1998                                      FrameIdx));
1999   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2000 
2001   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
2002       PPC::CRBITRCRegClass.hasSubClassEq(RC))
2003     FuncInfo->setSpillsCR();
2004 
2005   if (isXFormMemOp(Opcode))
2006     FuncInfo->setHasNonRISpills();
2007 }
2008 
2009 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
2010     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
2011     int FrameIdx, const TargetRegisterClass *RC,
2012     const TargetRegisterInfo *TRI) const {
2013   MachineFunction &MF = *MBB.getParent();
2014   SmallVector<MachineInstr*, 4> NewMIs;
2015   DebugLoc DL;
2016   if (MI != MBB.end()) DL = MI->getDebugLoc();
2017 
2018   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2019   FuncInfo->setHasSpills();
2020 
2021   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2022 
2023   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
2024     MBB.insert(MI, NewMIs[i]);
2025 
2026   const MachineFrameInfo &MFI = MF.getFrameInfo();
2027   MachineMemOperand *MMO = MF.getMachineMemOperand(
2028       MachinePointerInfo::getFixedStack(MF, FrameIdx),
2029       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2030       MFI.getObjectAlign(FrameIdx));
2031   NewMIs.back()->addMemOperand(MF, MMO);
2032 }
2033 
2034 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2035                                         MachineBasicBlock::iterator MI,
2036                                         Register DestReg, int FrameIdx,
2037                                         const TargetRegisterClass *RC,
2038                                         const TargetRegisterInfo *TRI) const {
2039   // We need to avoid a situation in which the value from a VRRC register is
2040   // spilled using an Altivec instruction and reloaded into a VSRC register
2041   // using a VSX instruction. The issue with this is that the VSX
2042   // load/store instructions swap the doublewords in the vector and the Altivec
2043   // ones don't. The register classes on the spill/reload may be different if
2044   // the register is defined using an Altivec instruction and is then used by a
2045   // VSX instruction.
2046   RC = updatedRC(RC);
2047 
2048   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2049 }
2050 
2051 bool PPCInstrInfo::
2052 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2053   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2054   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2055     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2056   else
2057     // Leave the CR# the same, but invert the condition.
2058     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2059   return false;
2060 }
2061 
2062 // For some instructions, it is legal to fold ZERO into the RA register field.
2063 // This function performs that fold by replacing the operand with PPC::ZERO,
2064 // it does not consider whether the load immediate zero is no longer in use.
2065 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2066                                      Register Reg) const {
2067   // A zero immediate should always be loaded with a single li.
2068   unsigned DefOpc = DefMI.getOpcode();
2069   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2070     return false;
2071   if (!DefMI.getOperand(1).isImm())
2072     return false;
2073   if (DefMI.getOperand(1).getImm() != 0)
2074     return false;
2075 
2076   // Note that we cannot here invert the arguments of an isel in order to fold
2077   // a ZERO into what is presented as the second argument. All we have here
2078   // is the condition bit, and that might come from a CR-logical bit operation.
2079 
2080   const MCInstrDesc &UseMCID = UseMI.getDesc();
2081 
2082   // Only fold into real machine instructions.
2083   if (UseMCID.isPseudo())
2084     return false;
2085 
2086   // We need to find which of the User's operands is to be folded, that will be
2087   // the operand that matches the given register ID.
2088   unsigned UseIdx;
2089   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2090     if (UseMI.getOperand(UseIdx).isReg() &&
2091         UseMI.getOperand(UseIdx).getReg() == Reg)
2092       break;
2093 
2094   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2095   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2096 
2097   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
2098 
2099   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2100   // register (which might also be specified as a pointer class kind).
2101   if (UseInfo->isLookupPtrRegClass()) {
2102     if (UseInfo->RegClass /* Kind */ != 1)
2103       return false;
2104   } else {
2105     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2106         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2107       return false;
2108   }
2109 
2110   // Make sure this is not tied to an output register (or otherwise
2111   // constrained). This is true for ST?UX registers, for example, which
2112   // are tied to their output registers.
2113   if (UseInfo->Constraints != 0)
2114     return false;
2115 
2116   MCRegister ZeroReg;
2117   if (UseInfo->isLookupPtrRegClass()) {
2118     bool isPPC64 = Subtarget.isPPC64();
2119     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2120   } else {
2121     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2122               PPC::ZERO8 : PPC::ZERO;
2123   }
2124 
2125   UseMI.getOperand(UseIdx).setReg(ZeroReg);
2126   return true;
2127 }
2128 
2129 // Folds zero into instructions which have a load immediate zero as an operand
2130 // but also recognize zero as immediate zero. If the definition of the load
2131 // has no more users it is deleted.
2132 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2133                                  Register Reg, MachineRegisterInfo *MRI) const {
2134   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2135   if (MRI->use_nodbg_empty(Reg))
2136     DefMI.eraseFromParent();
2137   return Changed;
2138 }
2139 
2140 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2141   for (MachineInstr &MI : MBB)
2142     if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8))
2143       return true;
2144   return false;
2145 }
2146 
2147 // We should make sure that, if we're going to predicate both sides of a
2148 // condition (a diamond), that both sides don't define the counter register. We
2149 // can predicate counter-decrement-based branches, but while that predicates
2150 // the branching, it does not predicate the counter decrement. If we tried to
2151 // merge the triangle into one predicated block, we'd decrement the counter
2152 // twice.
2153 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2154                      unsigned NumT, unsigned ExtraT,
2155                      MachineBasicBlock &FMBB,
2156                      unsigned NumF, unsigned ExtraF,
2157                      BranchProbability Probability) const {
2158   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2159 }
2160 
2161 
2162 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2163   // The predicated branches are identified by their type, not really by the
2164   // explicit presence of a predicate. Furthermore, some of them can be
2165   // predicated more than once. Because if conversion won't try to predicate
2166   // any instruction which already claims to be predicated (by returning true
2167   // here), always return false. In doing so, we let isPredicable() be the
2168   // final word on whether not the instruction can be (further) predicated.
2169 
2170   return false;
2171 }
2172 
2173 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2174                                         const MachineBasicBlock *MBB,
2175                                         const MachineFunction &MF) const {
2176   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2177   // across them, since some FP operations may change content of FPSCR.
2178   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2179   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
2180     return true;
2181   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2182 }
2183 
2184 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2185                                         ArrayRef<MachineOperand> Pred) const {
2186   unsigned OpC = MI.getOpcode();
2187   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2188     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2189       bool isPPC64 = Subtarget.isPPC64();
2190       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2191                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2192       // Need add Def and Use for CTR implicit operand.
2193       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2194           .addReg(Pred[1].getReg(), RegState::Implicit)
2195           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2196     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2197       MI.setDesc(get(PPC::BCLR));
2198       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2199     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2200       MI.setDesc(get(PPC::BCLRn));
2201       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2202     } else {
2203       MI.setDesc(get(PPC::BCCLR));
2204       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2205           .addImm(Pred[0].getImm())
2206           .add(Pred[1]);
2207     }
2208 
2209     return true;
2210   } else if (OpC == PPC::B) {
2211     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2212       bool isPPC64 = Subtarget.isPPC64();
2213       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2214                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2215       // Need add Def and Use for CTR implicit operand.
2216       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2217           .addReg(Pred[1].getReg(), RegState::Implicit)
2218           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2219     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2220       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2221       MI.RemoveOperand(0);
2222 
2223       MI.setDesc(get(PPC::BC));
2224       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2225           .add(Pred[1])
2226           .addMBB(MBB);
2227     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2228       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2229       MI.RemoveOperand(0);
2230 
2231       MI.setDesc(get(PPC::BCn));
2232       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2233           .add(Pred[1])
2234           .addMBB(MBB);
2235     } else {
2236       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2237       MI.RemoveOperand(0);
2238 
2239       MI.setDesc(get(PPC::BCC));
2240       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2241           .addImm(Pred[0].getImm())
2242           .add(Pred[1])
2243           .addMBB(MBB);
2244     }
2245 
2246     return true;
2247   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2248              OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM ||
2249              OpC == PPC::BCTRL8_RM) {
2250     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2251       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2252 
2253     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 ||
2254                  OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM;
2255     bool isPPC64 = Subtarget.isPPC64();
2256 
2257     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2258       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2259                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2260       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2261     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2262       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2263                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2264       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2265     } else {
2266       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2267                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2268       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2269           .addImm(Pred[0].getImm())
2270           .add(Pred[1]);
2271     }
2272 
2273     // Need add Def and Use for LR implicit operand.
2274     if (setLR)
2275       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2276           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2277           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2278     if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM)
2279       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2280           .addReg(PPC::RM, RegState::ImplicitDefine);
2281 
2282     return true;
2283   }
2284 
2285   return false;
2286 }
2287 
2288 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2289                                      ArrayRef<MachineOperand> Pred2) const {
2290   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2291   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2292 
2293   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2294     return false;
2295   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2296     return false;
2297 
2298   // P1 can only subsume P2 if they test the same condition register.
2299   if (Pred1[1].getReg() != Pred2[1].getReg())
2300     return false;
2301 
2302   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2303   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2304 
2305   if (P1 == P2)
2306     return true;
2307 
2308   // Does P1 subsume P2, e.g. GE subsumes GT.
2309   if (P1 == PPC::PRED_LE &&
2310       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2311     return true;
2312   if (P1 == PPC::PRED_GE &&
2313       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2314     return true;
2315 
2316   return false;
2317 }
2318 
2319 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2320                                      std::vector<MachineOperand> &Pred,
2321                                      bool SkipDead) const {
2322   // Note: At the present time, the contents of Pred from this function is
2323   // unused by IfConversion. This implementation follows ARM by pushing the
2324   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2325   // predicate, instructions defining CTR or CTR8 are also included as
2326   // predicate-defining instructions.
2327 
2328   const TargetRegisterClass *RCs[] =
2329     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2330       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2331 
2332   bool Found = false;
2333   for (const MachineOperand &MO : MI.operands()) {
2334     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
2335       const TargetRegisterClass *RC = RCs[c];
2336       if (MO.isReg()) {
2337         if (MO.isDef() && RC->contains(MO.getReg())) {
2338           Pred.push_back(MO);
2339           Found = true;
2340         }
2341       } else if (MO.isRegMask()) {
2342         for (TargetRegisterClass::iterator I = RC->begin(),
2343              IE = RC->end(); I != IE; ++I)
2344           if (MO.clobbersPhysReg(*I)) {
2345             Pred.push_back(MO);
2346             Found = true;
2347           }
2348       }
2349     }
2350   }
2351 
2352   return Found;
2353 }
2354 
2355 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2356                                   Register &SrcReg2, int64_t &Mask,
2357                                   int64_t &Value) const {
2358   unsigned Opc = MI.getOpcode();
2359 
2360   switch (Opc) {
2361   default: return false;
2362   case PPC::CMPWI:
2363   case PPC::CMPLWI:
2364   case PPC::CMPDI:
2365   case PPC::CMPLDI:
2366     SrcReg = MI.getOperand(1).getReg();
2367     SrcReg2 = 0;
2368     Value = MI.getOperand(2).getImm();
2369     Mask = 0xFFFF;
2370     return true;
2371   case PPC::CMPW:
2372   case PPC::CMPLW:
2373   case PPC::CMPD:
2374   case PPC::CMPLD:
2375   case PPC::FCMPUS:
2376   case PPC::FCMPUD:
2377     SrcReg = MI.getOperand(1).getReg();
2378     SrcReg2 = MI.getOperand(2).getReg();
2379     Value = 0;
2380     Mask = 0;
2381     return true;
2382   }
2383 }
2384 
2385 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2386                                         Register SrcReg2, int64_t Mask,
2387                                         int64_t Value,
2388                                         const MachineRegisterInfo *MRI) const {
2389   if (DisableCmpOpt)
2390     return false;
2391 
2392   int OpC = CmpInstr.getOpcode();
2393   Register CRReg = CmpInstr.getOperand(0).getReg();
2394 
2395   // FP record forms set CR1 based on the exception status bits, not a
2396   // comparison with zero.
2397   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2398     return false;
2399 
2400   const TargetRegisterInfo *TRI = &getRegisterInfo();
2401   // The record forms set the condition register based on a signed comparison
2402   // with zero (so says the ISA manual). This is not as straightforward as it
2403   // seems, however, because this is always a 64-bit comparison on PPC64, even
2404   // for instructions that are 32-bit in nature (like slw for example).
2405   // So, on PPC32, for unsigned comparisons, we can use the record forms only
2406   // for equality checks (as those don't depend on the sign). On PPC64,
2407   // we are restricted to equality for unsigned 64-bit comparisons and for
2408   // signed 32-bit comparisons the applicability is more restricted.
2409   bool isPPC64 = Subtarget.isPPC64();
2410   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
2411   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2412   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2413 
2414   // Look through copies unless that gets us to a physical register.
2415   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2416   if (ActualSrc.isVirtual())
2417     SrcReg = ActualSrc;
2418 
2419   // Get the unique definition of SrcReg.
2420   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2421   if (!MI) return false;
2422 
2423   bool equalityOnly = false;
2424   bool noSub = false;
2425   if (isPPC64) {
2426     if (is32BitSignedCompare) {
2427       // We can perform this optimization only if MI is sign-extending.
2428       if (isSignExtended(*MI))
2429         noSub = true;
2430       else
2431         return false;
2432     } else if (is32BitUnsignedCompare) {
2433       // We can perform this optimization, equality only, if MI is
2434       // zero-extending.
2435       if (isZeroExtended(*MI)) {
2436         noSub = true;
2437         equalityOnly = true;
2438       } else
2439         return false;
2440     } else
2441       equalityOnly = is64BitUnsignedCompare;
2442   } else
2443     equalityOnly = is32BitUnsignedCompare;
2444 
2445   if (equalityOnly) {
2446     // We need to check the uses of the condition register in order to reject
2447     // non-equality comparisons.
2448     for (MachineRegisterInfo::use_instr_iterator
2449          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2450          I != IE; ++I) {
2451       MachineInstr *UseMI = &*I;
2452       if (UseMI->getOpcode() == PPC::BCC) {
2453         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2454         unsigned PredCond = PPC::getPredicateCondition(Pred);
2455         // We ignore hint bits when checking for non-equality comparisons.
2456         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2457           return false;
2458       } else if (UseMI->getOpcode() == PPC::ISEL ||
2459                  UseMI->getOpcode() == PPC::ISEL8) {
2460         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2461         if (SubIdx != PPC::sub_eq)
2462           return false;
2463       } else
2464         return false;
2465     }
2466   }
2467 
2468   MachineBasicBlock::iterator I = CmpInstr;
2469 
2470   // Scan forward to find the first use of the compare.
2471   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2472        ++I) {
2473     bool FoundUse = false;
2474     for (MachineRegisterInfo::use_instr_iterator
2475          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2476          J != JE; ++J)
2477       if (&*J == &*I) {
2478         FoundUse = true;
2479         break;
2480       }
2481 
2482     if (FoundUse)
2483       break;
2484   }
2485 
2486   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2487   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2488 
2489   // There are two possible candidates which can be changed to set CR[01].
2490   // One is MI, the other is a SUB instruction.
2491   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2492   MachineInstr *Sub = nullptr;
2493   if (SrcReg2 != 0)
2494     // MI is not a candidate for CMPrr.
2495     MI = nullptr;
2496   // FIXME: Conservatively refuse to convert an instruction which isn't in the
2497   // same BB as the comparison. This is to allow the check below to avoid calls
2498   // (and other explicit clobbers); instead we should really check for these
2499   // more explicitly (in at least a few predecessors).
2500   else if (MI->getParent() != CmpInstr.getParent())
2501     return false;
2502   else if (Value != 0) {
2503     // The record-form instructions set CR bit based on signed comparison
2504     // against 0. We try to convert a compare against 1 or -1 into a compare
2505     // against 0 to exploit record-form instructions. For example, we change
2506     // the condition "greater than -1" into "greater than or equal to 0"
2507     // and "less than 1" into "less than or equal to 0".
2508 
2509     // Since we optimize comparison based on a specific branch condition,
2510     // we don't optimize if condition code is used by more than once.
2511     if (equalityOnly || !MRI->hasOneUse(CRReg))
2512       return false;
2513 
2514     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2515     if (UseMI->getOpcode() != PPC::BCC)
2516       return false;
2517 
2518     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2519     unsigned PredCond = PPC::getPredicateCondition(Pred);
2520     unsigned PredHint = PPC::getPredicateHint(Pred);
2521     int16_t Immed = (int16_t)Value;
2522 
2523     // When modifying the condition in the predicate, we propagate hint bits
2524     // from the original predicate to the new one.
2525     if (Immed == -1 && PredCond == PPC::PRED_GT)
2526       // We convert "greater than -1" into "greater than or equal to 0",
2527       // since we are assuming signed comparison by !equalityOnly
2528       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2529     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2530       // We convert "less than or equal to -1" into "less than 0".
2531       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2532     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2533       // We convert "less than 1" into "less than or equal to 0".
2534       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2535     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2536       // We convert "greater than or equal to 1" into "greater than 0".
2537       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2538     else
2539       return false;
2540 
2541     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2542   }
2543 
2544   // Search for Sub.
2545   --I;
2546 
2547   // Get ready to iterate backward from CmpInstr.
2548   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2549 
2550   for (; I != E && !noSub; --I) {
2551     const MachineInstr &Instr = *I;
2552     unsigned IOpC = Instr.getOpcode();
2553 
2554     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2555                              Instr.readsRegister(PPC::CR0, TRI)))
2556       // This instruction modifies or uses the record condition register after
2557       // the one we want to change. While we could do this transformation, it
2558       // would likely not be profitable. This transformation removes one
2559       // instruction, and so even forcing RA to generate one move probably
2560       // makes it unprofitable.
2561       return false;
2562 
2563     // Check whether CmpInstr can be made redundant by the current instruction.
2564     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2565          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2566         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2567         ((Instr.getOperand(1).getReg() == SrcReg &&
2568           Instr.getOperand(2).getReg() == SrcReg2) ||
2569         (Instr.getOperand(1).getReg() == SrcReg2 &&
2570          Instr.getOperand(2).getReg() == SrcReg))) {
2571       Sub = &*I;
2572       break;
2573     }
2574 
2575     if (I == B)
2576       // The 'and' is below the comparison instruction.
2577       return false;
2578   }
2579 
2580   // Return false if no candidates exist.
2581   if (!MI && !Sub)
2582     return false;
2583 
2584   // The single candidate is called MI.
2585   if (!MI) MI = Sub;
2586 
2587   int NewOpC = -1;
2588   int MIOpC = MI->getOpcode();
2589   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2590       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2591     NewOpC = MIOpC;
2592   else {
2593     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2594     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2595       NewOpC = MIOpC;
2596   }
2597 
2598   // FIXME: On the non-embedded POWER architectures, only some of the record
2599   // forms are fast, and we should use only the fast ones.
2600 
2601   // The defining instruction has a record form (or is already a record
2602   // form). It is possible, however, that we'll need to reverse the condition
2603   // code of the users.
2604   if (NewOpC == -1)
2605     return false;
2606 
2607   // This transformation should not be performed if `nsw` is missing and is not
2608   // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2609   // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2610   // CRReg can reflect if compared values are equal, this optz is still valid.
2611   if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2612       Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2613     return false;
2614 
2615   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2616   // needs to be updated to be based on SUB.  Push the condition code
2617   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2618   // condition code of these operands will be modified.
2619   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2620   // comparison against 0, which may modify predicate.
2621   bool ShouldSwap = false;
2622   if (Sub && Value == 0) {
2623     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2624       Sub->getOperand(2).getReg() == SrcReg;
2625 
2626     // The operands to subf are the opposite of sub, so only in the fixed-point
2627     // case, invert the order.
2628     ShouldSwap = !ShouldSwap;
2629   }
2630 
2631   if (ShouldSwap)
2632     for (MachineRegisterInfo::use_instr_iterator
2633          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2634          I != IE; ++I) {
2635       MachineInstr *UseMI = &*I;
2636       if (UseMI->getOpcode() == PPC::BCC) {
2637         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2638         unsigned PredCond = PPC::getPredicateCondition(Pred);
2639         assert((!equalityOnly ||
2640                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2641                "Invalid predicate for equality-only optimization");
2642         (void)PredCond; // To suppress warning in release build.
2643         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2644                                 PPC::getSwappedPredicate(Pred)));
2645       } else if (UseMI->getOpcode() == PPC::ISEL ||
2646                  UseMI->getOpcode() == PPC::ISEL8) {
2647         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2648         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2649                "Invalid CR bit for equality-only optimization");
2650 
2651         if (NewSubReg == PPC::sub_lt)
2652           NewSubReg = PPC::sub_gt;
2653         else if (NewSubReg == PPC::sub_gt)
2654           NewSubReg = PPC::sub_lt;
2655 
2656         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2657                                                  NewSubReg));
2658       } else // We need to abort on a user we don't understand.
2659         return false;
2660     }
2661   assert(!(Value != 0 && ShouldSwap) &&
2662          "Non-zero immediate support and ShouldSwap"
2663          "may conflict in updating predicate");
2664 
2665   // Create a new virtual register to hold the value of the CR set by the
2666   // record-form instruction. If the instruction was not previously in
2667   // record form, then set the kill flag on the CR.
2668   CmpInstr.eraseFromParent();
2669 
2670   MachineBasicBlock::iterator MII = MI;
2671   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2672           get(TargetOpcode::COPY), CRReg)
2673     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2674 
2675   // Even if CR0 register were dead before, it is alive now since the
2676   // instruction we just built uses it.
2677   MI->clearRegisterDeads(PPC::CR0);
2678 
2679   if (MIOpC != NewOpC) {
2680     // We need to be careful here: we're replacing one instruction with
2681     // another, and we need to make sure that we get all of the right
2682     // implicit uses and defs. On the other hand, the caller may be holding
2683     // an iterator to this instruction, and so we can't delete it (this is
2684     // specifically the case if this is the instruction directly after the
2685     // compare).
2686 
2687     // Rotates are expensive instructions. If we're emitting a record-form
2688     // rotate that can just be an andi/andis, we should just emit that.
2689     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2690       Register GPRRes = MI->getOperand(0).getReg();
2691       int64_t SH = MI->getOperand(2).getImm();
2692       int64_t MB = MI->getOperand(3).getImm();
2693       int64_t ME = MI->getOperand(4).getImm();
2694       // We can only do this if both the start and end of the mask are in the
2695       // same halfword.
2696       bool MBInLoHWord = MB >= 16;
2697       bool MEInLoHWord = ME >= 16;
2698       uint64_t Mask = ~0LLU;
2699 
2700       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2701         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2702         // The mask value needs to shift right 16 if we're emitting andis.
2703         Mask >>= MBInLoHWord ? 0 : 16;
2704         NewOpC = MIOpC == PPC::RLWINM
2705                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2706                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2707       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2708                  (ME - MB + 1 == SH) && (MB >= 16)) {
2709         // If we are rotating by the exact number of bits as are in the mask
2710         // and the mask is in the least significant bits of the register,
2711         // that's just an andis. (as long as the GPR result has no uses).
2712         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2713         Mask >>= 16;
2714         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2715       }
2716       // If we've set the mask, we can transform.
2717       if (Mask != ~0LLU) {
2718         MI->RemoveOperand(4);
2719         MI->RemoveOperand(3);
2720         MI->getOperand(2).setImm(Mask);
2721         NumRcRotatesConvertedToRcAnd++;
2722       }
2723     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2724       int64_t MB = MI->getOperand(3).getImm();
2725       if (MB >= 48) {
2726         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2727         NewOpC = PPC::ANDI8_rec;
2728         MI->RemoveOperand(3);
2729         MI->getOperand(2).setImm(Mask);
2730         NumRcRotatesConvertedToRcAnd++;
2731       }
2732     }
2733 
2734     const MCInstrDesc &NewDesc = get(NewOpC);
2735     MI->setDesc(NewDesc);
2736 
2737     if (NewDesc.ImplicitDefs)
2738       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2739            *ImpDefs; ++ImpDefs)
2740         if (!MI->definesRegister(*ImpDefs))
2741           MI->addOperand(*MI->getParent()->getParent(),
2742                          MachineOperand::CreateReg(*ImpDefs, true, true));
2743     if (NewDesc.ImplicitUses)
2744       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2745            *ImpUses; ++ImpUses)
2746         if (!MI->readsRegister(*ImpUses))
2747           MI->addOperand(*MI->getParent()->getParent(),
2748                          MachineOperand::CreateReg(*ImpUses, false, true));
2749   }
2750   assert(MI->definesRegister(PPC::CR0) &&
2751          "Record-form instruction does not define cr0?");
2752 
2753   // Modify the condition code of operands in OperandsToUpdate.
2754   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2755   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2756   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2757     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2758 
2759   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2760     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2761 
2762   return true;
2763 }
2764 
2765 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2766     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2767     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2768     const TargetRegisterInfo *TRI) const {
2769   const MachineOperand *BaseOp;
2770   OffsetIsScalable = false;
2771   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2772     return false;
2773   BaseOps.push_back(BaseOp);
2774   return true;
2775 }
2776 
2777 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2778                                 const TargetRegisterInfo *TRI) {
2779   // If this is a volatile load/store, don't mess with it.
2780   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2781     return false;
2782 
2783   if (LdSt.getOperand(2).isFI())
2784     return true;
2785 
2786   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2787   // Can't cluster if the instruction modifies the base register
2788   // or it is update form. e.g. ld r2,3(r2)
2789   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2790     return false;
2791 
2792   return true;
2793 }
2794 
2795 // Only cluster instruction pair that have the same opcode, and they are
2796 // clusterable according to PowerPC specification.
2797 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2798                                      const PPCSubtarget &Subtarget) {
2799   switch (FirstOpc) {
2800   default:
2801     return false;
2802   case PPC::STD:
2803   case PPC::STFD:
2804   case PPC::STXSD:
2805   case PPC::DFSTOREf64:
2806     return FirstOpc == SecondOpc;
2807   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2808   // 32bit and 64bit instruction selection. They are clusterable pair though
2809   // they are different opcode.
2810   case PPC::STW:
2811   case PPC::STW8:
2812     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2813   }
2814 }
2815 
2816 bool PPCInstrInfo::shouldClusterMemOps(
2817     ArrayRef<const MachineOperand *> BaseOps1,
2818     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2819     unsigned NumBytes) const {
2820 
2821   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2822   const MachineOperand &BaseOp1 = *BaseOps1.front();
2823   const MachineOperand &BaseOp2 = *BaseOps2.front();
2824   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2825          "Only base registers and frame indices are supported.");
2826 
2827   // The NumLoads means the number of loads that has been clustered.
2828   // Don't cluster memory op if there are already two ops clustered at least.
2829   if (NumLoads > 2)
2830     return false;
2831 
2832   // Cluster the load/store only when they have the same base
2833   // register or FI.
2834   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2835       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2836       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2837     return false;
2838 
2839   // Check if the load/store are clusterable according to the PowerPC
2840   // specification.
2841   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2842   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2843   unsigned FirstOpc = FirstLdSt.getOpcode();
2844   unsigned SecondOpc = SecondLdSt.getOpcode();
2845   const TargetRegisterInfo *TRI = &getRegisterInfo();
2846   // Cluster the load/store only when they have the same opcode, and they are
2847   // clusterable opcode according to PowerPC specification.
2848   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2849     return false;
2850 
2851   // Can't cluster load/store that have ordered or volatile memory reference.
2852   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2853       !isLdStSafeToCluster(SecondLdSt, TRI))
2854     return false;
2855 
2856   int64_t Offset1 = 0, Offset2 = 0;
2857   unsigned Width1 = 0, Width2 = 0;
2858   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2859   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2860       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2861       Width1 != Width2)
2862     return false;
2863 
2864   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2865          "getMemOperandWithOffsetWidth return incorrect base op");
2866   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2867   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2868   return Offset1 + Width1 == Offset2;
2869 }
2870 
2871 /// GetInstSize - Return the number of bytes of code the specified
2872 /// instruction may be.  This returns the maximum number of bytes.
2873 ///
2874 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2875   unsigned Opcode = MI.getOpcode();
2876 
2877   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2878     const MachineFunction *MF = MI.getParent()->getParent();
2879     const char *AsmStr = MI.getOperand(0).getSymbolName();
2880     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2881   } else if (Opcode == TargetOpcode::STACKMAP) {
2882     StackMapOpers Opers(&MI);
2883     return Opers.getNumPatchBytes();
2884   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2885     PatchPointOpers Opers(&MI);
2886     return Opers.getNumPatchBytes();
2887   } else {
2888     return get(Opcode).getSize();
2889   }
2890 }
2891 
2892 std::pair<unsigned, unsigned>
2893 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2894   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2895   return std::make_pair(TF & Mask, TF & ~Mask);
2896 }
2897 
2898 ArrayRef<std::pair<unsigned, const char *>>
2899 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2900   using namespace PPCII;
2901   static const std::pair<unsigned, const char *> TargetFlags[] = {
2902       {MO_LO, "ppc-lo"},
2903       {MO_HA, "ppc-ha"},
2904       {MO_TPREL_LO, "ppc-tprel-lo"},
2905       {MO_TPREL_HA, "ppc-tprel-ha"},
2906       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2907       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2908       {MO_TOC_LO, "ppc-toc-lo"},
2909       {MO_TLS, "ppc-tls"}};
2910   return makeArrayRef(TargetFlags);
2911 }
2912 
2913 ArrayRef<std::pair<unsigned, const char *>>
2914 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2915   using namespace PPCII;
2916   static const std::pair<unsigned, const char *> TargetFlags[] = {
2917       {MO_PLT, "ppc-plt"},
2918       {MO_PIC_FLAG, "ppc-pic"},
2919       {MO_PCREL_FLAG, "ppc-pcrel"},
2920       {MO_GOT_FLAG, "ppc-got"},
2921       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2922       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2923       {MO_TLSLD_FLAG, "ppc-tlsld"},
2924       {MO_TPREL_FLAG, "ppc-tprel"},
2925       {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
2926       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2927       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2928       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2929   return makeArrayRef(TargetFlags);
2930 }
2931 
2932 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2933 // The VSX versions have the advantage of a full 64-register target whereas
2934 // the FP ones have the advantage of lower latency and higher throughput. So
2935 // what we are after is using the faster instructions in low register pressure
2936 // situations and using the larger register file in high register pressure
2937 // situations.
2938 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2939     unsigned UpperOpcode, LowerOpcode;
2940     switch (MI.getOpcode()) {
2941     case PPC::DFLOADf32:
2942       UpperOpcode = PPC::LXSSP;
2943       LowerOpcode = PPC::LFS;
2944       break;
2945     case PPC::DFLOADf64:
2946       UpperOpcode = PPC::LXSD;
2947       LowerOpcode = PPC::LFD;
2948       break;
2949     case PPC::DFSTOREf32:
2950       UpperOpcode = PPC::STXSSP;
2951       LowerOpcode = PPC::STFS;
2952       break;
2953     case PPC::DFSTOREf64:
2954       UpperOpcode = PPC::STXSD;
2955       LowerOpcode = PPC::STFD;
2956       break;
2957     case PPC::XFLOADf32:
2958       UpperOpcode = PPC::LXSSPX;
2959       LowerOpcode = PPC::LFSX;
2960       break;
2961     case PPC::XFLOADf64:
2962       UpperOpcode = PPC::LXSDX;
2963       LowerOpcode = PPC::LFDX;
2964       break;
2965     case PPC::XFSTOREf32:
2966       UpperOpcode = PPC::STXSSPX;
2967       LowerOpcode = PPC::STFSX;
2968       break;
2969     case PPC::XFSTOREf64:
2970       UpperOpcode = PPC::STXSDX;
2971       LowerOpcode = PPC::STFDX;
2972       break;
2973     case PPC::LIWAX:
2974       UpperOpcode = PPC::LXSIWAX;
2975       LowerOpcode = PPC::LFIWAX;
2976       break;
2977     case PPC::LIWZX:
2978       UpperOpcode = PPC::LXSIWZX;
2979       LowerOpcode = PPC::LFIWZX;
2980       break;
2981     case PPC::STIWX:
2982       UpperOpcode = PPC::STXSIWX;
2983       LowerOpcode = PPC::STFIWX;
2984       break;
2985     default:
2986       llvm_unreachable("Unknown Operation!");
2987     }
2988 
2989     Register TargetReg = MI.getOperand(0).getReg();
2990     unsigned Opcode;
2991     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2992         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2993       Opcode = LowerOpcode;
2994     else
2995       Opcode = UpperOpcode;
2996     MI.setDesc(get(Opcode));
2997     return true;
2998 }
2999 
3000 static bool isAnImmediateOperand(const MachineOperand &MO) {
3001   return MO.isCPI() || MO.isGlobal() || MO.isImm();
3002 }
3003 
3004 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3005   auto &MBB = *MI.getParent();
3006   auto DL = MI.getDebugLoc();
3007 
3008   switch (MI.getOpcode()) {
3009   case PPC::BUILD_UACC: {
3010     MCRegister ACC = MI.getOperand(0).getReg();
3011     MCRegister UACC = MI.getOperand(1).getReg();
3012     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3013       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3014       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3015       // FIXME: This can easily be improved to look up to the top of the MBB
3016       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3017       // we can just re-target any such XXLOR's to DstVSR + offset.
3018       for (int VecNo = 0; VecNo < 4; VecNo++)
3019         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3020             .addReg(SrcVSR + VecNo)
3021             .addReg(SrcVSR + VecNo);
3022     }
3023     // BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
3024     // So after building the 4 copies, we can replace the BUILD_UACC instruction
3025     // with a NOP.
3026     LLVM_FALLTHROUGH;
3027   }
3028   case PPC::KILL_PAIR: {
3029     MI.setDesc(get(PPC::UNENCODED_NOP));
3030     MI.RemoveOperand(1);
3031     MI.RemoveOperand(0);
3032     return true;
3033   }
3034   case TargetOpcode::LOAD_STACK_GUARD: {
3035     assert(Subtarget.isTargetLinux() &&
3036            "Only Linux target is expected to contain LOAD_STACK_GUARD");
3037     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3038     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3039     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3040     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3041         .addImm(Offset)
3042         .addReg(Reg);
3043     return true;
3044   }
3045   case PPC::DFLOADf32:
3046   case PPC::DFLOADf64:
3047   case PPC::DFSTOREf32:
3048   case PPC::DFSTOREf64: {
3049     assert(Subtarget.hasP9Vector() &&
3050            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3051     assert(MI.getOperand(2).isReg() &&
3052            isAnImmediateOperand(MI.getOperand(1)) &&
3053            "D-form op must have register and immediate operands");
3054     return expandVSXMemPseudo(MI);
3055   }
3056   case PPC::XFLOADf32:
3057   case PPC::XFSTOREf32:
3058   case PPC::LIWAX:
3059   case PPC::LIWZX:
3060   case PPC::STIWX: {
3061     assert(Subtarget.hasP8Vector() &&
3062            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3063     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3064            "X-form op must have register and register operands");
3065     return expandVSXMemPseudo(MI);
3066   }
3067   case PPC::XFLOADf64:
3068   case PPC::XFSTOREf64: {
3069     assert(Subtarget.hasVSX() &&
3070            "Invalid X-Form Pseudo-ops on target that has no VSX.");
3071     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3072            "X-form op must have register and register operands");
3073     return expandVSXMemPseudo(MI);
3074   }
3075   case PPC::SPILLTOVSR_LD: {
3076     Register TargetReg = MI.getOperand(0).getReg();
3077     if (PPC::VSFRCRegClass.contains(TargetReg)) {
3078       MI.setDesc(get(PPC::DFLOADf64));
3079       return expandPostRAPseudo(MI);
3080     }
3081     else
3082       MI.setDesc(get(PPC::LD));
3083     return true;
3084   }
3085   case PPC::SPILLTOVSR_ST: {
3086     Register SrcReg = MI.getOperand(0).getReg();
3087     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3088       NumStoreSPILLVSRRCAsVec++;
3089       MI.setDesc(get(PPC::DFSTOREf64));
3090       return expandPostRAPseudo(MI);
3091     } else {
3092       NumStoreSPILLVSRRCAsGpr++;
3093       MI.setDesc(get(PPC::STD));
3094     }
3095     return true;
3096   }
3097   case PPC::SPILLTOVSR_LDX: {
3098     Register TargetReg = MI.getOperand(0).getReg();
3099     if (PPC::VSFRCRegClass.contains(TargetReg))
3100       MI.setDesc(get(PPC::LXSDX));
3101     else
3102       MI.setDesc(get(PPC::LDX));
3103     return true;
3104   }
3105   case PPC::SPILLTOVSR_STX: {
3106     Register SrcReg = MI.getOperand(0).getReg();
3107     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3108       NumStoreSPILLVSRRCAsVec++;
3109       MI.setDesc(get(PPC::STXSDX));
3110     } else {
3111       NumStoreSPILLVSRRCAsGpr++;
3112       MI.setDesc(get(PPC::STDX));
3113     }
3114     return true;
3115   }
3116 
3117     // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
3118   case PPC::CFENCE8: {
3119     auto Val = MI.getOperand(0).getReg();
3120     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
3121     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3122         .addImm(PPC::PRED_NE_MINUS)
3123         .addReg(PPC::CR7)
3124         .addImm(1);
3125     MI.setDesc(get(PPC::ISYNC));
3126     MI.RemoveOperand(0);
3127     return true;
3128   }
3129   }
3130   return false;
3131 }
3132 
3133 // Essentially a compile-time implementation of a compare->isel sequence.
3134 // It takes two constants to compare, along with the true/false registers
3135 // and the comparison type (as a subreg to a CR field) and returns one
3136 // of the true/false registers, depending on the comparison results.
3137 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3138                           unsigned TrueReg, unsigned FalseReg,
3139                           unsigned CRSubReg) {
3140   // Signed comparisons. The immediates are assumed to be sign-extended.
3141   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3142     switch (CRSubReg) {
3143     default: llvm_unreachable("Unknown integer comparison type.");
3144     case PPC::sub_lt:
3145       return Imm1 < Imm2 ? TrueReg : FalseReg;
3146     case PPC::sub_gt:
3147       return Imm1 > Imm2 ? TrueReg : FalseReg;
3148     case PPC::sub_eq:
3149       return Imm1 == Imm2 ? TrueReg : FalseReg;
3150     }
3151   }
3152   // Unsigned comparisons.
3153   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3154     switch (CRSubReg) {
3155     default: llvm_unreachable("Unknown integer comparison type.");
3156     case PPC::sub_lt:
3157       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3158     case PPC::sub_gt:
3159       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3160     case PPC::sub_eq:
3161       return Imm1 == Imm2 ? TrueReg : FalseReg;
3162     }
3163   }
3164   return PPC::NoRegister;
3165 }
3166 
3167 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3168                                               unsigned OpNo,
3169                                               int64_t Imm) const {
3170   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3171   // Replace the REG with the Immediate.
3172   Register InUseReg = MI.getOperand(OpNo).getReg();
3173   MI.getOperand(OpNo).ChangeToImmediate(Imm);
3174 
3175   // We need to make sure that the MI didn't have any implicit use
3176   // of this REG any more. We don't call MI.implicit_operands().empty() to
3177   // return early, since MI's MCID might be changed in calling context, as a
3178   // result its number of explicit operands may be changed, thus the begin of
3179   // implicit operand is changed.
3180   const TargetRegisterInfo *TRI = &getRegisterInfo();
3181   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
3182   if (UseOpIdx >= 0) {
3183     MachineOperand &MO = MI.getOperand(UseOpIdx);
3184     if (MO.isImplicit())
3185       // The operands must always be in the following order:
3186       // - explicit reg defs,
3187       // - other explicit operands (reg uses, immediates, etc.),
3188       // - implicit reg defs
3189       // - implicit reg uses
3190       // Therefore, removing the implicit operand won't change the explicit
3191       // operands layout.
3192       MI.RemoveOperand(UseOpIdx);
3193   }
3194 }
3195 
3196 // Replace an instruction with one that materializes a constant (and sets
3197 // CR0 if the original instruction was a record-form instruction).
3198 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3199                                       const LoadImmediateInfo &LII) const {
3200   // Remove existing operands.
3201   int OperandToKeep = LII.SetCR ? 1 : 0;
3202   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3203     MI.RemoveOperand(i);
3204 
3205   // Replace the instruction.
3206   if (LII.SetCR) {
3207     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3208     // Set the immediate.
3209     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3210         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3211     return;
3212   }
3213   else
3214     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3215 
3216   // Set the immediate.
3217   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3218       .addImm(LII.Imm);
3219 }
3220 
3221 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3222                                            bool &SeenIntermediateUse) const {
3223   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3224          "Should be called after register allocation.");
3225   const TargetRegisterInfo *TRI = &getRegisterInfo();
3226   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3227   It++;
3228   SeenIntermediateUse = false;
3229   for (; It != E; ++It) {
3230     if (It->modifiesRegister(Reg, TRI))
3231       return &*It;
3232     if (It->readsRegister(Reg, TRI))
3233       SeenIntermediateUse = true;
3234   }
3235   return nullptr;
3236 }
3237 
3238 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3239   MachineInstr &MI,
3240   unsigned &OpNoForForwarding,
3241   bool &SeenIntermediateUse) const {
3242   OpNoForForwarding = ~0U;
3243   MachineInstr *DefMI = nullptr;
3244   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3245   const TargetRegisterInfo *TRI = &getRegisterInfo();
3246   // If we're in SSA, get the defs through the MRI. Otherwise, only look
3247   // within the basic block to see if the register is defined using an
3248   // LI/LI8/ADDI/ADDI8.
3249   if (MRI->isSSA()) {
3250     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3251       if (!MI.getOperand(i).isReg())
3252         continue;
3253       Register Reg = MI.getOperand(i).getReg();
3254       if (!Register::isVirtualRegister(Reg))
3255         continue;
3256       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3257       if (Register::isVirtualRegister(TrueReg)) {
3258         DefMI = MRI->getVRegDef(TrueReg);
3259         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
3260             DefMI->getOpcode() == PPC::ADDI ||
3261             DefMI->getOpcode() == PPC::ADDI8) {
3262           OpNoForForwarding = i;
3263           // The ADDI and LI operand maybe exist in one instruction at same
3264           // time. we prefer to fold LI operand as LI only has one Imm operand
3265           // and is more possible to be converted. So if current DefMI is
3266           // ADDI/ADDI8, we continue to find possible LI/LI8.
3267           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3268             break;
3269         }
3270       }
3271     }
3272   } else {
3273     // Looking back through the definition for each operand could be expensive,
3274     // so exit early if this isn't an instruction that either has an immediate
3275     // form or is already an immediate form that we can handle.
3276     ImmInstrInfo III;
3277     unsigned Opc = MI.getOpcode();
3278     bool ConvertibleImmForm =
3279         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3280         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3281         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3282         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3283         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3284         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3285         Opc == PPC::RLWINM8_rec;
3286     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3287                        ? isVFRegister(MI.getOperand(0).getReg())
3288                        : false;
3289     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3290       return nullptr;
3291 
3292     // Don't convert or %X, %Y, %Y since that's just a register move.
3293     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3294         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3295       return nullptr;
3296     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3297       MachineOperand &MO = MI.getOperand(i);
3298       SeenIntermediateUse = false;
3299       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3300         Register Reg = MI.getOperand(i).getReg();
3301         // If we see another use of this reg between the def and the MI,
3302         // we want to flat it so the def isn't deleted.
3303         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3304         if (DefMI) {
3305           // Is this register defined by some form of add-immediate (including
3306           // load-immediate) within this basic block?
3307           switch (DefMI->getOpcode()) {
3308           default:
3309             break;
3310           case PPC::LI:
3311           case PPC::LI8:
3312           case PPC::ADDItocL:
3313           case PPC::ADDI:
3314           case PPC::ADDI8:
3315             OpNoForForwarding = i;
3316             return DefMI;
3317           }
3318         }
3319       }
3320     }
3321   }
3322   return OpNoForForwarding == ~0U ? nullptr : DefMI;
3323 }
3324 
3325 unsigned PPCInstrInfo::getSpillTarget() const {
3326   // With P10, we may need to spill paired vector registers or accumulator
3327   // registers. MMA implies paired vectors, so we can just check that.
3328   bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3329   return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
3330 }
3331 
3332 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3333   return StoreSpillOpcodesArray[getSpillTarget()];
3334 }
3335 
3336 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3337   return LoadSpillOpcodesArray[getSpillTarget()];
3338 }
3339 
3340 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
3341                                      unsigned RegNo) const {
3342   // Conservatively clear kill flag for the register if the instructions are in
3343   // different basic blocks and in SSA form, because the kill flag may no longer
3344   // be right. There is no need to bother with dead flags since defs with no
3345   // uses will be handled by DCE.
3346   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
3347   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
3348     MRI.clearKillFlags(RegNo);
3349     return;
3350   }
3351 
3352   // Instructions between [StartMI, EndMI] should be in same basic block.
3353   assert((StartMI->getParent() == EndMI->getParent()) &&
3354          "Instructions are not in same basic block");
3355 
3356   // If before RA, StartMI may be def through COPY, we need to adjust it to the
3357   // real def. See function getForwardingDefMI.
3358   if (MRI.isSSA()) {
3359     bool Reads, Writes;
3360     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
3361     if (!Reads && !Writes) {
3362       assert(Register::isVirtualRegister(RegNo) &&
3363              "Must be a virtual register");
3364       // Get real def and ignore copies.
3365       StartMI = MRI.getVRegDef(RegNo);
3366     }
3367   }
3368 
3369   bool IsKillSet = false;
3370 
3371   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
3372     MachineOperand &MO = MI.getOperand(Index);
3373     if (MO.isReg() && MO.isUse() && MO.isKill() &&
3374         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
3375       MO.setIsKill(false);
3376   };
3377 
3378   // Set killed flag for EndMI.
3379   // No need to do anything if EndMI defines RegNo.
3380   int UseIndex =
3381       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
3382   if (UseIndex != -1) {
3383     EndMI->getOperand(UseIndex).setIsKill(true);
3384     IsKillSet = true;
3385     // Clear killed flag for other EndMI operands related to RegNo. In some
3386     // upexpected cases, killed may be set multiple times for same register
3387     // operand in same MI.
3388     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
3389       if (i != UseIndex)
3390         clearOperandKillInfo(*EndMI, i);
3391   }
3392 
3393   // Walking the inst in reverse order (EndMI -> StartMI].
3394   MachineBasicBlock::reverse_iterator It = *EndMI;
3395   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
3396   // EndMI has been handled above, skip it here.
3397   It++;
3398   MachineOperand *MO = nullptr;
3399   for (; It != E; ++It) {
3400     // Skip insturctions which could not be a def/use of RegNo.
3401     if (It->isDebugInstr() || It->isPosition())
3402       continue;
3403 
3404     // Clear killed flag for all It operands related to RegNo. In some
3405     // upexpected cases, killed may be set multiple times for same register
3406     // operand in same MI.
3407     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
3408         clearOperandKillInfo(*It, i);
3409 
3410     // If killed is not set, set killed for its last use or set dead for its def
3411     // if no use found.
3412     if (!IsKillSet) {
3413       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
3414         // Use found, set it killed.
3415         IsKillSet = true;
3416         MO->setIsKill(true);
3417         continue;
3418       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
3419                                                   &getRegisterInfo()))) {
3420         // No use found, set dead for its def.
3421         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
3422         MO->setIsDead(true);
3423         break;
3424       }
3425     }
3426 
3427     if ((&*It) == StartMI)
3428       break;
3429   }
3430   // Ensure RegMo liveness is killed after EndMI.
3431   assert((IsKillSet || (MO && MO->isDead())) &&
3432          "RegNo should be killed or dead");
3433 }
3434 
3435 // This opt tries to convert the following imm form to an index form to save an
3436 // add for stack variables.
3437 // Return false if no such pattern found.
3438 //
3439 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3440 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3441 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
3442 //
3443 // can be converted to:
3444 //
3445 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3446 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
3447 //
3448 // In order to eliminate ADD instr, make sure that:
3449 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3450 //    new ADDI instr and ADDI can only take int16 Imm.
3451 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3452 //    between ADDI and ADD instr since its original def in ADDI will be changed
3453 //    in new ADDI instr. And also there should be no new def for it between
3454 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3455 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3456 //    between ADD and Imm instr since ADD instr will be eliminated.
3457 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3458 //    moved to Index instr.
3459 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3460   MachineFunction *MF = MI.getParent()->getParent();
3461   MachineRegisterInfo *MRI = &MF->getRegInfo();
3462   bool PostRA = !MRI->isSSA();
3463   // Do this opt after PEI which is after RA. The reason is stack slot expansion
3464   // in PEI may expose such opportunities since in PEI, stack slot offsets to
3465   // frame base(OffsetAddi) are determined.
3466   if (!PostRA)
3467     return false;
3468   unsigned ToBeDeletedReg = 0;
3469   int64_t OffsetImm = 0;
3470   unsigned XFormOpcode = 0;
3471   ImmInstrInfo III;
3472 
3473   // Check if Imm instr meets requirement.
3474   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3475                                     III))
3476     return false;
3477 
3478   bool OtherIntermediateUse = false;
3479   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3480 
3481   // Exit if there is other use between ADD and Imm instr or no def found.
3482   if (OtherIntermediateUse || !ADDMI)
3483     return false;
3484 
3485   // Check if ADD instr meets requirement.
3486   if (!isADDInstrEligibleForFolding(*ADDMI))
3487     return false;
3488 
3489   unsigned ScaleRegIdx = 0;
3490   int64_t OffsetAddi = 0;
3491   MachineInstr *ADDIMI = nullptr;
3492 
3493   // Check if there is a valid ToBeChangedReg in ADDMI.
3494   // 1: It must be killed.
3495   // 2: Its definition must be a valid ADDIMI.
3496   // 3: It must satify int16 offset requirement.
3497   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3498     ScaleRegIdx = 2;
3499   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3500     ScaleRegIdx = 1;
3501   else
3502     return false;
3503 
3504   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3505   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3506   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3507   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3508                        MachineBasicBlock::iterator End) {
3509     for (auto It = ++Start; It != End; It++)
3510       if (It->modifiesRegister(Reg, &getRegisterInfo()))
3511         return true;
3512     return false;
3513   };
3514 
3515   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3516   // treated as special zero when ScaleReg is R0/X0 register.
3517   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3518       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3519     return false;
3520 
3521   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3522   // and Imm Instr.
3523   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3524     return false;
3525 
3526   // Now start to do the transformation.
3527   LLVM_DEBUG(dbgs() << "Replace instruction: "
3528                     << "\n");
3529   LLVM_DEBUG(ADDIMI->dump());
3530   LLVM_DEBUG(ADDMI->dump());
3531   LLVM_DEBUG(MI.dump());
3532   LLVM_DEBUG(dbgs() << "with: "
3533                     << "\n");
3534 
3535   // Update ADDI instr.
3536   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3537 
3538   // Update Imm instr.
3539   MI.setDesc(get(XFormOpcode));
3540   MI.getOperand(III.ImmOpNo)
3541       .ChangeToRegister(ScaleReg, false, false,
3542                         ADDMI->getOperand(ScaleRegIdx).isKill());
3543 
3544   MI.getOperand(III.OpNoForForwarding)
3545       .ChangeToRegister(ToBeChangedReg, false, false, true);
3546 
3547   // Eliminate ADD instr.
3548   ADDMI->eraseFromParent();
3549 
3550   LLVM_DEBUG(ADDIMI->dump());
3551   LLVM_DEBUG(MI.dump());
3552 
3553   return true;
3554 }
3555 
3556 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3557                                                  int64_t &Imm) const {
3558   unsigned Opc = ADDIMI.getOpcode();
3559 
3560   // Exit if the instruction is not ADDI.
3561   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3562     return false;
3563 
3564   // The operand may not necessarily be an immediate - it could be a relocation.
3565   if (!ADDIMI.getOperand(2).isImm())
3566     return false;
3567 
3568   Imm = ADDIMI.getOperand(2).getImm();
3569 
3570   return true;
3571 }
3572 
3573 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3574   unsigned Opc = ADDMI.getOpcode();
3575 
3576   // Exit if the instruction is not ADD.
3577   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3578 }
3579 
3580 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3581                                                 unsigned &ToBeDeletedReg,
3582                                                 unsigned &XFormOpcode,
3583                                                 int64_t &OffsetImm,
3584                                                 ImmInstrInfo &III) const {
3585   // Only handle load/store.
3586   if (!MI.mayLoadOrStore())
3587     return false;
3588 
3589   unsigned Opc = MI.getOpcode();
3590 
3591   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3592 
3593   // Exit if instruction has no index form.
3594   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3595     return false;
3596 
3597   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3598   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3599                        III, true))
3600     return false;
3601 
3602   if (!III.IsSummingOperands)
3603     return false;
3604 
3605   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3606   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3607   // Only support imm operands, not relocation slots or others.
3608   if (!ImmOperand.isImm())
3609     return false;
3610 
3611   assert(RegOperand.isReg() && "Instruction format is not right");
3612 
3613   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3614   if (!RegOperand.isKill())
3615     return false;
3616 
3617   ToBeDeletedReg = RegOperand.getReg();
3618   OffsetImm = ImmOperand.getImm();
3619 
3620   return true;
3621 }
3622 
3623 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3624                                          MachineInstr *&ADDIMI,
3625                                          int64_t &OffsetAddi,
3626                                          int64_t OffsetImm) const {
3627   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3628   MachineOperand &MO = ADDMI->getOperand(Index);
3629 
3630   if (!MO.isKill())
3631     return false;
3632 
3633   bool OtherIntermediateUse = false;
3634 
3635   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3636   // Currently handle only one "add + Imminstr" pair case, exit if other
3637   // intermediate use for ToBeChangedReg found.
3638   // TODO: handle the cases where there are other "add + Imminstr" pairs
3639   // with same offset in Imminstr which is like:
3640   //
3641   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3642   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3643   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3644   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3645   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3646   //
3647   // can be converted to:
3648   //
3649   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3650   //                                       (OffsetAddi + OffsetImm)
3651   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3652   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3653 
3654   if (OtherIntermediateUse || !ADDIMI)
3655     return false;
3656   // Check if ADDI instr meets requirement.
3657   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3658     return false;
3659 
3660   if (isInt<16>(OffsetAddi + OffsetImm))
3661     return true;
3662   return false;
3663 }
3664 
3665 // If this instruction has an immediate form and one of its operands is a
3666 // result of a load-immediate or an add-immediate, convert it to
3667 // the immediate form if the constant is in range.
3668 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3669                                           MachineInstr **KilledDef) const {
3670   MachineFunction *MF = MI.getParent()->getParent();
3671   MachineRegisterInfo *MRI = &MF->getRegInfo();
3672   bool PostRA = !MRI->isSSA();
3673   bool SeenIntermediateUse = true;
3674   unsigned ForwardingOperand = ~0U;
3675   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3676                                            SeenIntermediateUse);
3677   if (!DefMI)
3678     return false;
3679   assert(ForwardingOperand < MI.getNumOperands() &&
3680          "The forwarding operand needs to be valid at this point");
3681   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3682   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3683   if (KilledDef && KillFwdDefMI)
3684     *KilledDef = DefMI;
3685 
3686   // If this is a imm instruction and its register operands is produced by ADDI,
3687   // put the imm into imm inst directly.
3688   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3689           PPC::INSTRUCTION_LIST_END &&
3690       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3691     return true;
3692 
3693   ImmInstrInfo III;
3694   bool IsVFReg = MI.getOperand(0).isReg()
3695                      ? isVFRegister(MI.getOperand(0).getReg())
3696                      : false;
3697   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3698   // If this is a reg+reg instruction that has a reg+imm form,
3699   // and one of the operands is produced by an add-immediate,
3700   // try to convert it.
3701   if (HasImmForm &&
3702       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3703                                  KillFwdDefMI))
3704     return true;
3705 
3706   // If this is a reg+reg instruction that has a reg+imm form,
3707   // and one of the operands is produced by LI, convert it now.
3708   if (HasImmForm &&
3709       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3710     return true;
3711 
3712   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3713   // can be simpified to LI.
3714   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3715     return true;
3716 
3717   return false;
3718 }
3719 
3720 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3721                                  MachineInstr **ToErase) const {
3722   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3723   unsigned FoldingReg = MI.getOperand(1).getReg();
3724   if (!Register::isVirtualRegister(FoldingReg))
3725     return false;
3726   MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3727   if (SrcMI->getOpcode() != PPC::RLWINM &&
3728       SrcMI->getOpcode() != PPC::RLWINM_rec &&
3729       SrcMI->getOpcode() != PPC::RLWINM8 &&
3730       SrcMI->getOpcode() != PPC::RLWINM8_rec)
3731     return false;
3732   assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3733           MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3734           SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3735          "Invalid PPC::RLWINM Instruction!");
3736   uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3737   uint64_t SHMI = MI.getOperand(2).getImm();
3738   uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3739   uint64_t MBMI = MI.getOperand(3).getImm();
3740   uint64_t MESrc = SrcMI->getOperand(4).getImm();
3741   uint64_t MEMI = MI.getOperand(4).getImm();
3742 
3743   assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3744          "Invalid PPC::RLWINM Instruction!");
3745   // If MBMI is bigger than MEMI, we always can not get run of ones.
3746   // RotatedSrcMask non-wrap:
3747   //                 0........31|32........63
3748   // RotatedSrcMask:   B---E        B---E
3749   // MaskMI:         -----------|--E  B------
3750   // Result:           -----          ---      (Bad candidate)
3751   //
3752   // RotatedSrcMask wrap:
3753   //                 0........31|32........63
3754   // RotatedSrcMask: --E   B----|--E    B----
3755   // MaskMI:         -----------|--E  B------
3756   // Result:         ---   -----|---    -----  (Bad candidate)
3757   //
3758   // One special case is RotatedSrcMask is a full set mask.
3759   // RotatedSrcMask full:
3760   //                 0........31|32........63
3761   // RotatedSrcMask: ------EB---|-------EB---
3762   // MaskMI:         -----------|--E  B------
3763   // Result:         -----------|---  -------  (Good candidate)
3764 
3765   // Mark special case.
3766   bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3767 
3768   // For other MBMI > MEMI cases, just return.
3769   if ((MBMI > MEMI) && !SrcMaskFull)
3770     return false;
3771 
3772   // Handle MBMI <= MEMI cases.
3773   APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3774   // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3775   // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3776   // while in PowerPC ISA, lowerest bit is at index 63.
3777   APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3778 
3779   APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3780   APInt FinalMask = RotatedSrcMask & MaskMI;
3781   uint32_t NewMB, NewME;
3782   bool Simplified = false;
3783 
3784   // If final mask is 0, MI result should be 0 too.
3785   if (FinalMask.isZero()) {
3786     bool Is64Bit =
3787         (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3788     Simplified = true;
3789     LLVM_DEBUG(dbgs() << "Replace Instr: ");
3790     LLVM_DEBUG(MI.dump());
3791 
3792     if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3793       // Replace MI with "LI 0"
3794       MI.RemoveOperand(4);
3795       MI.RemoveOperand(3);
3796       MI.RemoveOperand(2);
3797       MI.getOperand(1).ChangeToImmediate(0);
3798       MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3799     } else {
3800       // Replace MI with "ANDI_rec reg, 0"
3801       MI.RemoveOperand(4);
3802       MI.RemoveOperand(3);
3803       MI.getOperand(2).setImm(0);
3804       MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3805       MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3806       if (SrcMI->getOperand(1).isKill()) {
3807         MI.getOperand(1).setIsKill(true);
3808         SrcMI->getOperand(1).setIsKill(false);
3809       } else
3810         // About to replace MI.getOperand(1), clear its kill flag.
3811         MI.getOperand(1).setIsKill(false);
3812     }
3813 
3814     LLVM_DEBUG(dbgs() << "With: ");
3815     LLVM_DEBUG(MI.dump());
3816 
3817   } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3818               NewMB <= NewME) ||
3819              SrcMaskFull) {
3820     // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3821     // than NewME. Otherwise we get a 64 bit value after folding, but MI
3822     // return a 32 bit value.
3823     Simplified = true;
3824     LLVM_DEBUG(dbgs() << "Converting Instr: ");
3825     LLVM_DEBUG(MI.dump());
3826 
3827     uint16_t NewSH = (SHSrc + SHMI) % 32;
3828     MI.getOperand(2).setImm(NewSH);
3829     // If SrcMI mask is full, no need to update MBMI and MEMI.
3830     if (!SrcMaskFull) {
3831       MI.getOperand(3).setImm(NewMB);
3832       MI.getOperand(4).setImm(NewME);
3833     }
3834     MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3835     if (SrcMI->getOperand(1).isKill()) {
3836       MI.getOperand(1).setIsKill(true);
3837       SrcMI->getOperand(1).setIsKill(false);
3838     } else
3839       // About to replace MI.getOperand(1), clear its kill flag.
3840       MI.getOperand(1).setIsKill(false);
3841 
3842     LLVM_DEBUG(dbgs() << "To: ");
3843     LLVM_DEBUG(MI.dump());
3844   }
3845   if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3846       !SrcMI->hasImplicitDef()) {
3847     // If FoldingReg has no non-debug use and it has no implicit def (it
3848     // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3849     // Otherwise keep it.
3850     *ToErase = SrcMI;
3851     LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3852     LLVM_DEBUG(SrcMI->dump());
3853   }
3854   return Simplified;
3855 }
3856 
3857 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3858                                    ImmInstrInfo &III, bool PostRA) const {
3859   // The vast majority of the instructions would need their operand 2 replaced
3860   // with an immediate when switching to the reg+imm form. A marked exception
3861   // are the update form loads/stores for which a constant operand 2 would need
3862   // to turn into a displacement and move operand 1 to the operand 2 position.
3863   III.ImmOpNo = 2;
3864   III.OpNoForForwarding = 2;
3865   III.ImmWidth = 16;
3866   III.ImmMustBeMultipleOf = 1;
3867   III.TruncateImmTo = 0;
3868   III.IsSummingOperands = false;
3869   switch (Opc) {
3870   default: return false;
3871   case PPC::ADD4:
3872   case PPC::ADD8:
3873     III.SignedImm = true;
3874     III.ZeroIsSpecialOrig = 0;
3875     III.ZeroIsSpecialNew = 1;
3876     III.IsCommutative = true;
3877     III.IsSummingOperands = true;
3878     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3879     break;
3880   case PPC::ADDC:
3881   case PPC::ADDC8:
3882     III.SignedImm = true;
3883     III.ZeroIsSpecialOrig = 0;
3884     III.ZeroIsSpecialNew = 0;
3885     III.IsCommutative = true;
3886     III.IsSummingOperands = true;
3887     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3888     break;
3889   case PPC::ADDC_rec:
3890     III.SignedImm = true;
3891     III.ZeroIsSpecialOrig = 0;
3892     III.ZeroIsSpecialNew = 0;
3893     III.IsCommutative = true;
3894     III.IsSummingOperands = true;
3895     III.ImmOpcode = PPC::ADDIC_rec;
3896     break;
3897   case PPC::SUBFC:
3898   case PPC::SUBFC8:
3899     III.SignedImm = true;
3900     III.ZeroIsSpecialOrig = 0;
3901     III.ZeroIsSpecialNew = 0;
3902     III.IsCommutative = false;
3903     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3904     break;
3905   case PPC::CMPW:
3906   case PPC::CMPD:
3907     III.SignedImm = true;
3908     III.ZeroIsSpecialOrig = 0;
3909     III.ZeroIsSpecialNew = 0;
3910     III.IsCommutative = false;
3911     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3912     break;
3913   case PPC::CMPLW:
3914   case PPC::CMPLD:
3915     III.SignedImm = false;
3916     III.ZeroIsSpecialOrig = 0;
3917     III.ZeroIsSpecialNew = 0;
3918     III.IsCommutative = false;
3919     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3920     break;
3921   case PPC::AND_rec:
3922   case PPC::AND8_rec:
3923   case PPC::OR:
3924   case PPC::OR8:
3925   case PPC::XOR:
3926   case PPC::XOR8:
3927     III.SignedImm = false;
3928     III.ZeroIsSpecialOrig = 0;
3929     III.ZeroIsSpecialNew = 0;
3930     III.IsCommutative = true;
3931     switch(Opc) {
3932     default: llvm_unreachable("Unknown opcode");
3933     case PPC::AND_rec:
3934       III.ImmOpcode = PPC::ANDI_rec;
3935       break;
3936     case PPC::AND8_rec:
3937       III.ImmOpcode = PPC::ANDI8_rec;
3938       break;
3939     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3940     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3941     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3942     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3943     }
3944     break;
3945   case PPC::RLWNM:
3946   case PPC::RLWNM8:
3947   case PPC::RLWNM_rec:
3948   case PPC::RLWNM8_rec:
3949   case PPC::SLW:
3950   case PPC::SLW8:
3951   case PPC::SLW_rec:
3952   case PPC::SLW8_rec:
3953   case PPC::SRW:
3954   case PPC::SRW8:
3955   case PPC::SRW_rec:
3956   case PPC::SRW8_rec:
3957   case PPC::SRAW:
3958   case PPC::SRAW_rec:
3959     III.SignedImm = false;
3960     III.ZeroIsSpecialOrig = 0;
3961     III.ZeroIsSpecialNew = 0;
3962     III.IsCommutative = false;
3963     // This isn't actually true, but the instructions ignore any of the
3964     // upper bits, so any immediate loaded with an LI is acceptable.
3965     // This does not apply to shift right algebraic because a value
3966     // out of range will produce a -1/0.
3967     III.ImmWidth = 16;
3968     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3969         Opc == PPC::RLWNM8_rec)
3970       III.TruncateImmTo = 5;
3971     else
3972       III.TruncateImmTo = 6;
3973     switch(Opc) {
3974     default: llvm_unreachable("Unknown opcode");
3975     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3976     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3977     case PPC::RLWNM_rec:
3978       III.ImmOpcode = PPC::RLWINM_rec;
3979       break;
3980     case PPC::RLWNM8_rec:
3981       III.ImmOpcode = PPC::RLWINM8_rec;
3982       break;
3983     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3984     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3985     case PPC::SLW_rec:
3986       III.ImmOpcode = PPC::RLWINM_rec;
3987       break;
3988     case PPC::SLW8_rec:
3989       III.ImmOpcode = PPC::RLWINM8_rec;
3990       break;
3991     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3992     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3993     case PPC::SRW_rec:
3994       III.ImmOpcode = PPC::RLWINM_rec;
3995       break;
3996     case PPC::SRW8_rec:
3997       III.ImmOpcode = PPC::RLWINM8_rec;
3998       break;
3999     case PPC::SRAW:
4000       III.ImmWidth = 5;
4001       III.TruncateImmTo = 0;
4002       III.ImmOpcode = PPC::SRAWI;
4003       break;
4004     case PPC::SRAW_rec:
4005       III.ImmWidth = 5;
4006       III.TruncateImmTo = 0;
4007       III.ImmOpcode = PPC::SRAWI_rec;
4008       break;
4009     }
4010     break;
4011   case PPC::RLDCL:
4012   case PPC::RLDCL_rec:
4013   case PPC::RLDCR:
4014   case PPC::RLDCR_rec:
4015   case PPC::SLD:
4016   case PPC::SLD_rec:
4017   case PPC::SRD:
4018   case PPC::SRD_rec:
4019   case PPC::SRAD:
4020   case PPC::SRAD_rec:
4021     III.SignedImm = false;
4022     III.ZeroIsSpecialOrig = 0;
4023     III.ZeroIsSpecialNew = 0;
4024     III.IsCommutative = false;
4025     // This isn't actually true, but the instructions ignore any of the
4026     // upper bits, so any immediate loaded with an LI is acceptable.
4027     // This does not apply to shift right algebraic because a value
4028     // out of range will produce a -1/0.
4029     III.ImmWidth = 16;
4030     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4031         Opc == PPC::RLDCR_rec)
4032       III.TruncateImmTo = 6;
4033     else
4034       III.TruncateImmTo = 7;
4035     switch(Opc) {
4036     default: llvm_unreachable("Unknown opcode");
4037     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4038     case PPC::RLDCL_rec:
4039       III.ImmOpcode = PPC::RLDICL_rec;
4040       break;
4041     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4042     case PPC::RLDCR_rec:
4043       III.ImmOpcode = PPC::RLDICR_rec;
4044       break;
4045     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4046     case PPC::SLD_rec:
4047       III.ImmOpcode = PPC::RLDICR_rec;
4048       break;
4049     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4050     case PPC::SRD_rec:
4051       III.ImmOpcode = PPC::RLDICL_rec;
4052       break;
4053     case PPC::SRAD:
4054       III.ImmWidth = 6;
4055       III.TruncateImmTo = 0;
4056       III.ImmOpcode = PPC::SRADI;
4057        break;
4058     case PPC::SRAD_rec:
4059       III.ImmWidth = 6;
4060       III.TruncateImmTo = 0;
4061       III.ImmOpcode = PPC::SRADI_rec;
4062       break;
4063     }
4064     break;
4065   // Loads and stores:
4066   case PPC::LBZX:
4067   case PPC::LBZX8:
4068   case PPC::LHZX:
4069   case PPC::LHZX8:
4070   case PPC::LHAX:
4071   case PPC::LHAX8:
4072   case PPC::LWZX:
4073   case PPC::LWZX8:
4074   case PPC::LWAX:
4075   case PPC::LDX:
4076   case PPC::LFSX:
4077   case PPC::LFDX:
4078   case PPC::STBX:
4079   case PPC::STBX8:
4080   case PPC::STHX:
4081   case PPC::STHX8:
4082   case PPC::STWX:
4083   case PPC::STWX8:
4084   case PPC::STDX:
4085   case PPC::STFSX:
4086   case PPC::STFDX:
4087     III.SignedImm = true;
4088     III.ZeroIsSpecialOrig = 1;
4089     III.ZeroIsSpecialNew = 2;
4090     III.IsCommutative = true;
4091     III.IsSummingOperands = true;
4092     III.ImmOpNo = 1;
4093     III.OpNoForForwarding = 2;
4094     switch(Opc) {
4095     default: llvm_unreachable("Unknown opcode");
4096     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4097     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4098     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4099     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4100     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4101     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4102     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4103     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4104     case PPC::LWAX:
4105       III.ImmOpcode = PPC::LWA;
4106       III.ImmMustBeMultipleOf = 4;
4107       break;
4108     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4109     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4110     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4111     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4112     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4113     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4114     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4115     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4116     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4117     case PPC::STDX:
4118       III.ImmOpcode = PPC::STD;
4119       III.ImmMustBeMultipleOf = 4;
4120       break;
4121     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4122     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4123     }
4124     break;
4125   case PPC::LBZUX:
4126   case PPC::LBZUX8:
4127   case PPC::LHZUX:
4128   case PPC::LHZUX8:
4129   case PPC::LHAUX:
4130   case PPC::LHAUX8:
4131   case PPC::LWZUX:
4132   case PPC::LWZUX8:
4133   case PPC::LDUX:
4134   case PPC::LFSUX:
4135   case PPC::LFDUX:
4136   case PPC::STBUX:
4137   case PPC::STBUX8:
4138   case PPC::STHUX:
4139   case PPC::STHUX8:
4140   case PPC::STWUX:
4141   case PPC::STWUX8:
4142   case PPC::STDUX:
4143   case PPC::STFSUX:
4144   case PPC::STFDUX:
4145     III.SignedImm = true;
4146     III.ZeroIsSpecialOrig = 2;
4147     III.ZeroIsSpecialNew = 3;
4148     III.IsCommutative = false;
4149     III.IsSummingOperands = true;
4150     III.ImmOpNo = 2;
4151     III.OpNoForForwarding = 3;
4152     switch(Opc) {
4153     default: llvm_unreachable("Unknown opcode");
4154     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4155     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4156     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4157     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4158     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4159     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4160     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4161     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4162     case PPC::LDUX:
4163       III.ImmOpcode = PPC::LDU;
4164       III.ImmMustBeMultipleOf = 4;
4165       break;
4166     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4167     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4168     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4169     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4170     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4171     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4172     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4173     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4174     case PPC::STDUX:
4175       III.ImmOpcode = PPC::STDU;
4176       III.ImmMustBeMultipleOf = 4;
4177       break;
4178     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4179     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4180     }
4181     break;
4182   // Power9 and up only. For some of these, the X-Form version has access to all
4183   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4184   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4185   // into or stored from is one of the VR registers.
4186   case PPC::LXVX:
4187   case PPC::LXSSPX:
4188   case PPC::LXSDX:
4189   case PPC::STXVX:
4190   case PPC::STXSSPX:
4191   case PPC::STXSDX:
4192   case PPC::XFLOADf32:
4193   case PPC::XFLOADf64:
4194   case PPC::XFSTOREf32:
4195   case PPC::XFSTOREf64:
4196     if (!Subtarget.hasP9Vector())
4197       return false;
4198     III.SignedImm = true;
4199     III.ZeroIsSpecialOrig = 1;
4200     III.ZeroIsSpecialNew = 2;
4201     III.IsCommutative = true;
4202     III.IsSummingOperands = true;
4203     III.ImmOpNo = 1;
4204     III.OpNoForForwarding = 2;
4205     III.ImmMustBeMultipleOf = 4;
4206     switch(Opc) {
4207     default: llvm_unreachable("Unknown opcode");
4208     case PPC::LXVX:
4209       III.ImmOpcode = PPC::LXV;
4210       III.ImmMustBeMultipleOf = 16;
4211       break;
4212     case PPC::LXSSPX:
4213       if (PostRA) {
4214         if (IsVFReg)
4215           III.ImmOpcode = PPC::LXSSP;
4216         else {
4217           III.ImmOpcode = PPC::LFS;
4218           III.ImmMustBeMultipleOf = 1;
4219         }
4220         break;
4221       }
4222       LLVM_FALLTHROUGH;
4223     case PPC::XFLOADf32:
4224       III.ImmOpcode = PPC::DFLOADf32;
4225       break;
4226     case PPC::LXSDX:
4227       if (PostRA) {
4228         if (IsVFReg)
4229           III.ImmOpcode = PPC::LXSD;
4230         else {
4231           III.ImmOpcode = PPC::LFD;
4232           III.ImmMustBeMultipleOf = 1;
4233         }
4234         break;
4235       }
4236       LLVM_FALLTHROUGH;
4237     case PPC::XFLOADf64:
4238       III.ImmOpcode = PPC::DFLOADf64;
4239       break;
4240     case PPC::STXVX:
4241       III.ImmOpcode = PPC::STXV;
4242       III.ImmMustBeMultipleOf = 16;
4243       break;
4244     case PPC::STXSSPX:
4245       if (PostRA) {
4246         if (IsVFReg)
4247           III.ImmOpcode = PPC::STXSSP;
4248         else {
4249           III.ImmOpcode = PPC::STFS;
4250           III.ImmMustBeMultipleOf = 1;
4251         }
4252         break;
4253       }
4254       LLVM_FALLTHROUGH;
4255     case PPC::XFSTOREf32:
4256       III.ImmOpcode = PPC::DFSTOREf32;
4257       break;
4258     case PPC::STXSDX:
4259       if (PostRA) {
4260         if (IsVFReg)
4261           III.ImmOpcode = PPC::STXSD;
4262         else {
4263           III.ImmOpcode = PPC::STFD;
4264           III.ImmMustBeMultipleOf = 1;
4265         }
4266         break;
4267       }
4268       LLVM_FALLTHROUGH;
4269     case PPC::XFSTOREf64:
4270       III.ImmOpcode = PPC::DFSTOREf64;
4271       break;
4272     }
4273     break;
4274   }
4275   return true;
4276 }
4277 
4278 // Utility function for swaping two arbitrary operands of an instruction.
4279 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4280   assert(Op1 != Op2 && "Cannot swap operand with itself.");
4281 
4282   unsigned MaxOp = std::max(Op1, Op2);
4283   unsigned MinOp = std::min(Op1, Op2);
4284   MachineOperand MOp1 = MI.getOperand(MinOp);
4285   MachineOperand MOp2 = MI.getOperand(MaxOp);
4286   MI.RemoveOperand(std::max(Op1, Op2));
4287   MI.RemoveOperand(std::min(Op1, Op2));
4288 
4289   // If the operands we are swapping are the two at the end (the common case)
4290   // we can just remove both and add them in the opposite order.
4291   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4292     MI.addOperand(MOp2);
4293     MI.addOperand(MOp1);
4294   } else {
4295     // Store all operands in a temporary vector, remove them and re-add in the
4296     // right order.
4297     SmallVector<MachineOperand, 2> MOps;
4298     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4299     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4300       MOps.push_back(MI.getOperand(i));
4301       MI.RemoveOperand(i);
4302     }
4303     // MOp2 needs to be added next.
4304     MI.addOperand(MOp2);
4305     // Now add the rest.
4306     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4307       if (i == MaxOp)
4308         MI.addOperand(MOp1);
4309       else {
4310         MI.addOperand(MOps.back());
4311         MOps.pop_back();
4312       }
4313     }
4314   }
4315 }
4316 
4317 // Check if the 'MI' that has the index OpNoForForwarding
4318 // meets the requirement described in the ImmInstrInfo.
4319 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4320                                                const ImmInstrInfo &III,
4321                                                unsigned OpNoForForwarding
4322                                                ) const {
4323   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4324   // would not work pre-RA, we can only do the check post RA.
4325   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4326   if (MRI.isSSA())
4327     return false;
4328 
4329   // Cannot do the transform if MI isn't summing the operands.
4330   if (!III.IsSummingOperands)
4331     return false;
4332 
4333   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4334   if (!III.ZeroIsSpecialOrig)
4335     return false;
4336 
4337   // We cannot do the transform if the operand we are trying to replace
4338   // isn't the same as the operand the instruction allows.
4339   if (OpNoForForwarding != III.OpNoForForwarding)
4340     return false;
4341 
4342   // Check if the instruction we are trying to transform really has
4343   // the special zero register as its operand.
4344   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4345       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4346     return false;
4347 
4348   // This machine instruction is convertible if it is,
4349   // 1. summing the operands.
4350   // 2. one of the operands is special zero register.
4351   // 3. the operand we are trying to replace is allowed by the MI.
4352   return true;
4353 }
4354 
4355 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4356 // accordingly.
4357 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4358                                                const ImmInstrInfo &III,
4359                                                MachineOperand *&ImmMO,
4360                                                MachineOperand *&RegMO) const {
4361   unsigned Opc = DefMI.getOpcode();
4362   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4363     return false;
4364 
4365   assert(DefMI.getNumOperands() >= 3 &&
4366          "Add inst must have at least three operands");
4367   RegMO = &DefMI.getOperand(1);
4368   ImmMO = &DefMI.getOperand(2);
4369 
4370   // Before RA, ADDI first operand could be a frame index.
4371   if (!RegMO->isReg())
4372     return false;
4373 
4374   // This DefMI is elgible for forwarding if it is:
4375   // 1. add inst
4376   // 2. one of the operands is Imm/CPI/Global.
4377   return isAnImmediateOperand(*ImmMO);
4378 }
4379 
4380 bool PPCInstrInfo::isRegElgibleForForwarding(
4381     const MachineOperand &RegMO, const MachineInstr &DefMI,
4382     const MachineInstr &MI, bool KillDefMI,
4383     bool &IsFwdFeederRegKilled) const {
4384   // x = addi y, imm
4385   // ...
4386   // z = lfdx 0, x   -> z = lfd imm(y)
4387   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4388   // of "y" between the DEF of "x" and "z".
4389   // The query is only valid post RA.
4390   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4391   if (MRI.isSSA())
4392     return false;
4393 
4394   Register Reg = RegMO.getReg();
4395 
4396   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4397   MachineBasicBlock::const_reverse_iterator It = MI;
4398   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4399   It++;
4400   for (; It != E; ++It) {
4401     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4402       return false;
4403     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4404       IsFwdFeederRegKilled = true;
4405     // Made it to DefMI without encountering a clobber.
4406     if ((&*It) == &DefMI)
4407       break;
4408   }
4409   assert((&*It) == &DefMI && "DefMI is missing");
4410 
4411   // If DefMI also defines the register to be forwarded, we can only forward it
4412   // if DefMI is being erased.
4413   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4414     return KillDefMI;
4415 
4416   return true;
4417 }
4418 
4419 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4420                                              const MachineInstr &DefMI,
4421                                              const ImmInstrInfo &III,
4422                                              int64_t &Imm,
4423                                              int64_t BaseImm) const {
4424   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4425   if (DefMI.getOpcode() == PPC::ADDItocL) {
4426     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
4427     // However, we know that, it is 16-bit width, and has the alignment of 4.
4428     // Check if the instruction met the requirement.
4429     if (III.ImmMustBeMultipleOf > 4 ||
4430        III.TruncateImmTo || III.ImmWidth != 16)
4431       return false;
4432 
4433     // Going from XForm to DForm loads means that the displacement needs to be
4434     // not just an immediate but also a multiple of 4, or 16 depending on the
4435     // load. A DForm load cannot be represented if it is a multiple of say 2.
4436     // XForm loads do not have this restriction.
4437     if (ImmMO.isGlobal()) {
4438       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
4439       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4440         return false;
4441     }
4442 
4443     return true;
4444   }
4445 
4446   if (ImmMO.isImm()) {
4447     // It is Imm, we need to check if the Imm fit the range.
4448     // Sign-extend to 64-bits.
4449     // DefMI may be folded with another imm form instruction, the result Imm is
4450     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4451     APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4452     if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4453       return false;
4454     if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4455       return false;
4456     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4457 
4458     if (Imm % III.ImmMustBeMultipleOf)
4459       return false;
4460     if (III.TruncateImmTo)
4461       Imm &= ((1 << III.TruncateImmTo) - 1);
4462   }
4463   else
4464     return false;
4465 
4466   // This ImmMO is forwarded if it meets the requriement describle
4467   // in ImmInstrInfo
4468   return true;
4469 }
4470 
4471 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4472                                 unsigned OpNoForForwarding,
4473                                 MachineInstr **KilledDef) const {
4474   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4475       !DefMI.getOperand(1).isImm())
4476     return false;
4477 
4478   MachineFunction *MF = MI.getParent()->getParent();
4479   MachineRegisterInfo *MRI = &MF->getRegInfo();
4480   bool PostRA = !MRI->isSSA();
4481 
4482   int64_t Immediate = DefMI.getOperand(1).getImm();
4483   // Sign-extend to 64-bits.
4484   int64_t SExtImm = SignExtend64<16>(Immediate);
4485 
4486   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
4487   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4488 
4489   bool ReplaceWithLI = false;
4490   bool Is64BitLI = false;
4491   int64_t NewImm = 0;
4492   bool SetCR = false;
4493   unsigned Opc = MI.getOpcode();
4494   switch (Opc) {
4495   default:
4496     return false;
4497 
4498   // FIXME: Any branches conditional on such a comparison can be made
4499   // unconditional. At this time, this happens too infrequently to be worth
4500   // the implementation effort, but if that ever changes, we could convert
4501   // such a pattern here.
4502   case PPC::CMPWI:
4503   case PPC::CMPLWI:
4504   case PPC::CMPDI:
4505   case PPC::CMPLDI: {
4506     // Doing this post-RA would require dataflow analysis to reliably find uses
4507     // of the CR register set by the compare.
4508     // No need to fixup killed/dead flag since this transformation is only valid
4509     // before RA.
4510     if (PostRA)
4511       return false;
4512     // If a compare-immediate is fed by an immediate and is itself an input of
4513     // an ISEL (the most common case) into a COPY of the correct register.
4514     bool Changed = false;
4515     Register DefReg = MI.getOperand(0).getReg();
4516     int64_t Comparand = MI.getOperand(2).getImm();
4517     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4518                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
4519                                 : Comparand;
4520 
4521     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4522       unsigned UseOpc = CompareUseMI.getOpcode();
4523       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4524         continue;
4525       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4526       Register TrueReg = CompareUseMI.getOperand(1).getReg();
4527       Register FalseReg = CompareUseMI.getOperand(2).getReg();
4528       unsigned RegToCopy =
4529           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4530       if (RegToCopy == PPC::NoRegister)
4531         continue;
4532       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4533       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4534         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4535         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4536         CompareUseMI.RemoveOperand(3);
4537         CompareUseMI.RemoveOperand(2);
4538         continue;
4539       }
4540       LLVM_DEBUG(
4541           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4542       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4543       LLVM_DEBUG(dbgs() << "Is converted to:\n");
4544       // Convert to copy and remove unneeded operands.
4545       CompareUseMI.setDesc(get(PPC::COPY));
4546       CompareUseMI.RemoveOperand(3);
4547       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
4548       CmpIselsConverted++;
4549       Changed = true;
4550       LLVM_DEBUG(CompareUseMI.dump());
4551     }
4552     if (Changed)
4553       return true;
4554     // This may end up incremented multiple times since this function is called
4555     // during a fixed-point transformation, but it is only meant to indicate the
4556     // presence of this opportunity.
4557     MissedConvertibleImmediateInstrs++;
4558     return false;
4559   }
4560 
4561   // Immediate forms - may simply be convertable to an LI.
4562   case PPC::ADDI:
4563   case PPC::ADDI8: {
4564     // Does the sum fit in a 16-bit signed field?
4565     int64_t Addend = MI.getOperand(2).getImm();
4566     if (isInt<16>(Addend + SExtImm)) {
4567       ReplaceWithLI = true;
4568       Is64BitLI = Opc == PPC::ADDI8;
4569       NewImm = Addend + SExtImm;
4570       break;
4571     }
4572     return false;
4573   }
4574   case PPC::SUBFIC:
4575   case PPC::SUBFIC8: {
4576     // Only transform this if the CARRY implicit operand is dead.
4577     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4578       return false;
4579     int64_t Minuend = MI.getOperand(2).getImm();
4580     if (isInt<16>(Minuend - SExtImm)) {
4581       ReplaceWithLI = true;
4582       Is64BitLI = Opc == PPC::SUBFIC8;
4583       NewImm = Minuend - SExtImm;
4584       break;
4585     }
4586     return false;
4587   }
4588   case PPC::RLDICL:
4589   case PPC::RLDICL_rec:
4590   case PPC::RLDICL_32:
4591   case PPC::RLDICL_32_64: {
4592     // Use APInt's rotate function.
4593     int64_t SH = MI.getOperand(2).getImm();
4594     int64_t MB = MI.getOperand(3).getImm();
4595     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4596                 SExtImm, true);
4597     InVal = InVal.rotl(SH);
4598     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4599     InVal &= Mask;
4600     // Can't replace negative values with an LI as that will sign-extend
4601     // and not clear the left bits. If we're setting the CR bit, we will use
4602     // ANDI_rec which won't sign extend, so that's safe.
4603     if (isUInt<15>(InVal.getSExtValue()) ||
4604         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4605       ReplaceWithLI = true;
4606       Is64BitLI = Opc != PPC::RLDICL_32;
4607       NewImm = InVal.getSExtValue();
4608       SetCR = Opc == PPC::RLDICL_rec;
4609       break;
4610     }
4611     return false;
4612   }
4613   case PPC::RLWINM:
4614   case PPC::RLWINM8:
4615   case PPC::RLWINM_rec:
4616   case PPC::RLWINM8_rec: {
4617     int64_t SH = MI.getOperand(2).getImm();
4618     int64_t MB = MI.getOperand(3).getImm();
4619     int64_t ME = MI.getOperand(4).getImm();
4620     APInt InVal(32, SExtImm, true);
4621     InVal = InVal.rotl(SH);
4622     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4623     InVal &= Mask;
4624     // Can't replace negative values with an LI as that will sign-extend
4625     // and not clear the left bits. If we're setting the CR bit, we will use
4626     // ANDI_rec which won't sign extend, so that's safe.
4627     bool ValueFits = isUInt<15>(InVal.getSExtValue());
4628     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4629                   isUInt<16>(InVal.getSExtValue()));
4630     if (ValueFits) {
4631       ReplaceWithLI = true;
4632       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4633       NewImm = InVal.getSExtValue();
4634       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4635       break;
4636     }
4637     return false;
4638   }
4639   case PPC::ORI:
4640   case PPC::ORI8:
4641   case PPC::XORI:
4642   case PPC::XORI8: {
4643     int64_t LogicalImm = MI.getOperand(2).getImm();
4644     int64_t Result = 0;
4645     if (Opc == PPC::ORI || Opc == PPC::ORI8)
4646       Result = LogicalImm | SExtImm;
4647     else
4648       Result = LogicalImm ^ SExtImm;
4649     if (isInt<16>(Result)) {
4650       ReplaceWithLI = true;
4651       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4652       NewImm = Result;
4653       break;
4654     }
4655     return false;
4656   }
4657   }
4658 
4659   if (ReplaceWithLI) {
4660     // We need to be careful with CR-setting instructions we're replacing.
4661     if (SetCR) {
4662       // We don't know anything about uses when we're out of SSA, so only
4663       // replace if the new immediate will be reproduced.
4664       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4665       if (PostRA && ImmChanged)
4666         return false;
4667 
4668       if (!PostRA) {
4669         // If the defining load-immediate has no other uses, we can just replace
4670         // the immediate with the new immediate.
4671         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4672           DefMI.getOperand(1).setImm(NewImm);
4673 
4674         // If we're not using the GPR result of the CR-setting instruction, we
4675         // just need to and with zero/non-zero depending on the new immediate.
4676         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4677           if (NewImm) {
4678             assert(Immediate && "Transformation converted zero to non-zero?");
4679             NewImm = Immediate;
4680           }
4681         } else if (ImmChanged)
4682           return false;
4683       }
4684     }
4685 
4686     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4687     LLVM_DEBUG(MI.dump());
4688     LLVM_DEBUG(dbgs() << "Fed by:\n");
4689     LLVM_DEBUG(DefMI.dump());
4690     LoadImmediateInfo LII;
4691     LII.Imm = NewImm;
4692     LII.Is64Bit = Is64BitLI;
4693     LII.SetCR = SetCR;
4694     // If we're setting the CR, the original load-immediate must be kept (as an
4695     // operand to ANDI_rec/ANDI8_rec).
4696     if (KilledDef && SetCR)
4697       *KilledDef = nullptr;
4698     replaceInstrWithLI(MI, LII);
4699 
4700     // Fixup killed/dead flag after transformation.
4701     // Pattern:
4702     // ForwardingOperandReg = LI imm1
4703     // y = op2 imm2, ForwardingOperandReg(killed)
4704     if (IsForwardingOperandKilled)
4705       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4706 
4707     LLVM_DEBUG(dbgs() << "With:\n");
4708     LLVM_DEBUG(MI.dump());
4709     return true;
4710   }
4711   return false;
4712 }
4713 
4714 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4715     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4716   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4717   bool PostRA = !MRI->isSSA();
4718   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4719   // for post-ra.
4720   if (PostRA)
4721     return false;
4722 
4723   // Only handle load/store.
4724   if (!MI.mayLoadOrStore())
4725     return false;
4726 
4727   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4728 
4729   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4730          "MI must have x-form opcode");
4731 
4732   // get Imm Form info.
4733   ImmInstrInfo III;
4734   bool IsVFReg = MI.getOperand(0).isReg()
4735                      ? isVFRegister(MI.getOperand(0).getReg())
4736                      : false;
4737 
4738   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4739     return false;
4740 
4741   if (!III.IsSummingOperands)
4742     return false;
4743 
4744   if (OpNoForForwarding != III.OpNoForForwarding)
4745     return false;
4746 
4747   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4748   if (!ImmOperandMI.isImm())
4749     return false;
4750 
4751   // Check DefMI.
4752   MachineOperand *ImmMO = nullptr;
4753   MachineOperand *RegMO = nullptr;
4754   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4755     return false;
4756   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4757 
4758   // Check Imm.
4759   // Set ImmBase from imm instruction as base and get new Imm inside
4760   // isImmElgibleForForwarding.
4761   int64_t ImmBase = ImmOperandMI.getImm();
4762   int64_t Imm = 0;
4763   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4764     return false;
4765 
4766   // Get killed info in case fixup needed after transformation.
4767   unsigned ForwardKilledOperandReg = ~0U;
4768   if (MI.getOperand(III.OpNoForForwarding).isKill())
4769     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4770 
4771   // Do the transform
4772   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4773   LLVM_DEBUG(MI.dump());
4774   LLVM_DEBUG(dbgs() << "Fed by:\n");
4775   LLVM_DEBUG(DefMI.dump());
4776 
4777   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4778   if (RegMO->isKill()) {
4779     MI.getOperand(III.OpNoForForwarding).setIsKill(true);
4780     // Clear the killed flag in RegMO. Doing this here can handle some cases
4781     // that DefMI and MI are not in same basic block.
4782     RegMO->setIsKill(false);
4783   }
4784   MI.getOperand(III.ImmOpNo).setImm(Imm);
4785 
4786   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4787   if (DefMI.getParent() == MI.getParent()) {
4788     // Check if reg is killed between MI and DefMI.
4789     auto IsKilledFor = [&](unsigned Reg) {
4790       MachineBasicBlock::const_reverse_iterator It = MI;
4791       MachineBasicBlock::const_reverse_iterator E = DefMI;
4792       It++;
4793       for (; It != E; ++It) {
4794         if (It->killsRegister(Reg))
4795           return true;
4796       }
4797       return false;
4798     };
4799 
4800     // Update kill flag
4801     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4802       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4803     if (ForwardKilledOperandReg != ~0U)
4804       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4805   }
4806 
4807   LLVM_DEBUG(dbgs() << "With:\n");
4808   LLVM_DEBUG(MI.dump());
4809   return true;
4810 }
4811 
4812 // If an X-Form instruction is fed by an add-immediate and one of its operands
4813 // is the literal zero, attempt to forward the source of the add-immediate to
4814 // the corresponding D-Form instruction with the displacement coming from
4815 // the immediate being added.
4816 bool PPCInstrInfo::transformToImmFormFedByAdd(
4817     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4818     MachineInstr &DefMI, bool KillDefMI) const {
4819   //         RegMO ImmMO
4820   //           |    |
4821   // x = addi reg, imm  <----- DefMI
4822   // y = op    0 ,  x   <----- MI
4823   //                |
4824   //         OpNoForForwarding
4825   // Check if the MI meet the requirement described in the III.
4826   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4827     return false;
4828 
4829   // Check if the DefMI meet the requirement
4830   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4831   MachineOperand *ImmMO = nullptr;
4832   MachineOperand *RegMO = nullptr;
4833   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4834     return false;
4835   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4836 
4837   // As we get the Imm operand now, we need to check if the ImmMO meet
4838   // the requirement described in the III. If yes set the Imm.
4839   int64_t Imm = 0;
4840   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4841     return false;
4842 
4843   bool IsFwdFeederRegKilled = false;
4844   // Check if the RegMO can be forwarded to MI.
4845   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4846                                  IsFwdFeederRegKilled))
4847     return false;
4848 
4849   // Get killed info in case fixup needed after transformation.
4850   unsigned ForwardKilledOperandReg = ~0U;
4851   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4852   bool PostRA = !MRI.isSSA();
4853   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4854     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4855 
4856   // We know that, the MI and DefMI both meet the pattern, and
4857   // the Imm also meet the requirement with the new Imm-form.
4858   // It is safe to do the transformation now.
4859   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4860   LLVM_DEBUG(MI.dump());
4861   LLVM_DEBUG(dbgs() << "Fed by:\n");
4862   LLVM_DEBUG(DefMI.dump());
4863 
4864   // Update the base reg first.
4865   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4866                                                         false, false,
4867                                                         RegMO->isKill());
4868 
4869   // Then, update the imm.
4870   if (ImmMO->isImm()) {
4871     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4872     // directly.
4873     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4874   }
4875   else {
4876     // Otherwise, it is Constant Pool Index(CPI) or Global,
4877     // which is relocation in fact. We need to replace the special zero
4878     // register with ImmMO.
4879     // Before that, we need to fixup the target flags for imm.
4880     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4881     if (DefMI.getOpcode() == PPC::ADDItocL)
4882       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4883 
4884     // MI didn't have the interface such as MI.setOperand(i) though
4885     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4886     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4887     // and, add the ImmMO, then, move back all the operands behind ZERO.
4888     SmallVector<MachineOperand, 2> MOps;
4889     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4890       MOps.push_back(MI.getOperand(i));
4891       MI.RemoveOperand(i);
4892     }
4893 
4894     // Remove the last MO in the list, which is ZERO operand in fact.
4895     MOps.pop_back();
4896     // Add the imm operand.
4897     MI.addOperand(*ImmMO);
4898     // Now add the rest back.
4899     for (auto &MO : MOps)
4900       MI.addOperand(MO);
4901   }
4902 
4903   // Update the opcode.
4904   MI.setDesc(get(III.ImmOpcode));
4905 
4906   // Fix up killed/dead flag after transformation.
4907   // Pattern 1:
4908   // x = ADD KilledFwdFeederReg, imm
4909   // n = opn KilledFwdFeederReg(killed), regn
4910   // y = XOP 0, x
4911   // Pattern 2:
4912   // x = ADD reg(killed), imm
4913   // y = XOP 0, x
4914   if (IsFwdFeederRegKilled || RegMO->isKill())
4915     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4916   // Pattern 3:
4917   // ForwardKilledOperandReg = ADD reg, imm
4918   // y = XOP 0, ForwardKilledOperandReg(killed)
4919   if (ForwardKilledOperandReg != ~0U)
4920     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4921 
4922   LLVM_DEBUG(dbgs() << "With:\n");
4923   LLVM_DEBUG(MI.dump());
4924 
4925   return true;
4926 }
4927 
4928 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4929                                              const ImmInstrInfo &III,
4930                                              unsigned ConstantOpNo,
4931                                              MachineInstr &DefMI) const {
4932   // DefMI must be LI or LI8.
4933   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4934       !DefMI.getOperand(1).isImm())
4935     return false;
4936 
4937   // Get Imm operand and Sign-extend to 64-bits.
4938   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4939 
4940   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4941   bool PostRA = !MRI.isSSA();
4942   // Exit early if we can't convert this.
4943   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4944     return false;
4945   if (Imm % III.ImmMustBeMultipleOf)
4946     return false;
4947   if (III.TruncateImmTo)
4948     Imm &= ((1 << III.TruncateImmTo) - 1);
4949   if (III.SignedImm) {
4950     APInt ActualValue(64, Imm, true);
4951     if (!ActualValue.isSignedIntN(III.ImmWidth))
4952       return false;
4953   } else {
4954     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4955     if ((uint64_t)Imm > UnsignedMax)
4956       return false;
4957   }
4958 
4959   // If we're post-RA, the instructions don't agree on whether register zero is
4960   // special, we can transform this as long as the register operand that will
4961   // end up in the location where zero is special isn't R0.
4962   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4963     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4964       III.ZeroIsSpecialNew + 1;
4965     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4966     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4967     // If R0 is in the operand where zero is special for the new instruction,
4968     // it is unsafe to transform if the constant operand isn't that operand.
4969     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4970         ConstantOpNo != III.ZeroIsSpecialNew)
4971       return false;
4972     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4973         ConstantOpNo != PosForOrigZero)
4974       return false;
4975   }
4976 
4977   // Get killed info in case fixup needed after transformation.
4978   unsigned ForwardKilledOperandReg = ~0U;
4979   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4980     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4981 
4982   unsigned Opc = MI.getOpcode();
4983   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4984                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4985                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4986                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4987   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4988                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4989   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4990                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4991   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4992                     Opc == PPC::SRD_rec;
4993 
4994   MI.setDesc(get(III.ImmOpcode));
4995   if (ConstantOpNo == III.OpNoForForwarding) {
4996     // Converting shifts to immediate form is a bit tricky since they may do
4997     // one of three things:
4998     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4999     // 2. If the shift amount is zero, the result is unchanged (save for maybe
5000     //    setting CR0)
5001     // 3. If the shift amount is in [1, OpSize), it's just a shift
5002     if (SpecialShift32 || SpecialShift64) {
5003       LoadImmediateInfo LII;
5004       LII.Imm = 0;
5005       LII.SetCR = SetCR;
5006       LII.Is64Bit = SpecialShift64;
5007       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
5008       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
5009         replaceInstrWithLI(MI, LII);
5010       // Shifts by zero don't change the value. If we don't need to set CR0,
5011       // just convert this to a COPY. Can't do this post-RA since we've already
5012       // cleaned up the copies.
5013       else if (!SetCR && ShAmt == 0 && !PostRA) {
5014         MI.RemoveOperand(2);
5015         MI.setDesc(get(PPC::COPY));
5016       } else {
5017         // The 32 bit and 64 bit instructions are quite different.
5018         if (SpecialShift32) {
5019           // Left shifts use (N, 0, 31-N).
5020           // Right shifts use (32-N, N, 31) if 0 < N < 32.
5021           //              use (0, 0, 31)    if N == 0.
5022           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5023           uint64_t MB = RightShift ? ShAmt : 0;
5024           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5025           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5026           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5027             .addImm(ME);
5028         } else {
5029           // Left shifts use (N, 63-N).
5030           // Right shifts use (64-N, N) if 0 < N < 64.
5031           //              use (0, 0)    if N == 0.
5032           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5033           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5034           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5035           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5036         }
5037       }
5038     } else
5039       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5040   }
5041   // Convert commutative instructions (switch the operands and convert the
5042   // desired one to an immediate.
5043   else if (III.IsCommutative) {
5044     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5045     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5046   } else
5047     llvm_unreachable("Should have exited early!");
5048 
5049   // For instructions for which the constant register replaces a different
5050   // operand than where the immediate goes, we need to swap them.
5051   if (III.OpNoForForwarding != III.ImmOpNo)
5052     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5053 
5054   // If the special R0/X0 register index are different for original instruction
5055   // and new instruction, we need to fix up the register class in new
5056   // instruction.
5057   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5058     if (III.ZeroIsSpecialNew) {
5059       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5060       // need to fix up register class.
5061       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5062       if (Register::isVirtualRegister(RegToModify)) {
5063         const TargetRegisterClass *NewRC =
5064           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5065           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5066         MRI.setRegClass(RegToModify, NewRC);
5067       }
5068     }
5069   }
5070 
5071   // Fix up killed/dead flag after transformation.
5072   // Pattern:
5073   // ForwardKilledOperandReg = LI imm
5074   // y = XOP reg, ForwardKilledOperandReg(killed)
5075   if (ForwardKilledOperandReg != ~0U)
5076     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
5077   return true;
5078 }
5079 
5080 const TargetRegisterClass *
5081 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5082   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5083     return &PPC::VSRCRegClass;
5084   return RC;
5085 }
5086 
5087 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5088   return PPC::getRecordFormOpcode(Opcode);
5089 }
5090 
5091 // This function returns true if the machine instruction
5092 // always outputs a value by sign-extending a 32 bit value,
5093 // i.e. 0 to 31-th bits are same as 32-th bit.
5094 static bool isSignExtendingOp(const MachineInstr &MI) {
5095   int Opcode = MI.getOpcode();
5096   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
5097       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
5098       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
5099       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
5100       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
5101       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
5102       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
5103       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5104       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
5105       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
5106       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
5107       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
5108       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
5109       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
5110       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
5111       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
5112       Opcode == PPC::EXTSB8_32_64)
5113     return true;
5114 
5115   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
5116     return true;
5117 
5118   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5119        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5120       MI.getOperand(3).getImm() > 0 &&
5121       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5122     return true;
5123 
5124   return false;
5125 }
5126 
5127 // This function returns true if the machine instruction
5128 // always outputs zeros in higher 32 bits.
5129 static bool isZeroExtendingOp(const MachineInstr &MI) {
5130   int Opcode = MI.getOpcode();
5131   // The 16-bit immediate is sign-extended in li/lis.
5132   // If the most significant bit is zero, all higher bits are zero.
5133   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
5134       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5135     int64_t Imm = MI.getOperand(1).getImm();
5136     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5137       return true;
5138   }
5139 
5140   // We have some variations of rotate-and-mask instructions
5141   // that clear higher 32-bits.
5142   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5143        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5144        Opcode == PPC::RLDICL_32_64) &&
5145       MI.getOperand(3).getImm() >= 32)
5146     return true;
5147 
5148   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5149       MI.getOperand(3).getImm() >= 32 &&
5150       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
5151     return true;
5152 
5153   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5154        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5155        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5156       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5157     return true;
5158 
5159   // There are other instructions that clear higher 32-bits.
5160   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
5161       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
5162       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
5163       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
5164       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
5165       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
5166       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
5167       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
5168       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
5169       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
5170       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
5171       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
5172       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
5173       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
5174       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
5175       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
5176       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
5177       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
5178       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5179       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
5180       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
5181       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
5182       Opcode == PPC::MFVSRWZ)
5183     return true;
5184 
5185   return false;
5186 }
5187 
5188 // This function returns true if the input MachineInstr is a TOC save
5189 // instruction.
5190 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5191   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5192     return false;
5193   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5194   unsigned StackOffset = MI.getOperand(1).getImm();
5195   Register StackReg = MI.getOperand(2).getReg();
5196   Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5197   if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5198     return true;
5199 
5200   return false;
5201 }
5202 
5203 // We limit the max depth to track incoming values of PHIs or binary ops
5204 // (e.g. AND) to avoid excessive cost.
5205 const unsigned MAX_DEPTH = 1;
5206 
5207 bool
5208 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
5209                                    const unsigned Depth) const {
5210   const MachineFunction *MF = MI.getParent()->getParent();
5211   const MachineRegisterInfo *MRI = &MF->getRegInfo();
5212 
5213   // If we know this instruction returns sign- or zero-extended result,
5214   // return true.
5215   if (SignExt ? isSignExtendingOp(MI):
5216                 isZeroExtendingOp(MI))
5217     return true;
5218 
5219   switch (MI.getOpcode()) {
5220   case PPC::COPY: {
5221     Register SrcReg = MI.getOperand(1).getReg();
5222 
5223     // In both ELFv1 and v2 ABI, method parameters and the return value
5224     // are sign- or zero-extended.
5225     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5226       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5227       // We check the ZExt/SExt flags for a method parameter.
5228       if (MI.getParent()->getBasicBlock() ==
5229           &MF->getFunction().getEntryBlock()) {
5230         Register VReg = MI.getOperand(0).getReg();
5231         if (MF->getRegInfo().isLiveIn(VReg))
5232           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
5233                            FuncInfo->isLiveInZExt(VReg);
5234       }
5235 
5236       // For a method return value, we check the ZExt/SExt flags in attribute.
5237       // We assume the following code sequence for method call.
5238       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5239       //   BL8_NOP @func,...
5240       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5241       //   %5 = COPY %x3; G8RC:%5
5242       if (SrcReg == PPC::X3) {
5243         const MachineBasicBlock *MBB = MI.getParent();
5244         MachineBasicBlock::const_instr_iterator II =
5245           MachineBasicBlock::const_instr_iterator(&MI);
5246         if (II != MBB->instr_begin() &&
5247             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
5248           const MachineInstr &CallMI = *(--II);
5249           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
5250             const Function *CalleeFn =
5251               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
5252             if (!CalleeFn)
5253               return false;
5254             const IntegerType *IntTy =
5255               dyn_cast<IntegerType>(CalleeFn->getReturnType());
5256             const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
5257             if (IntTy && IntTy->getBitWidth() <= 32)
5258               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
5259                                                   Attribute::ZExt);
5260           }
5261         }
5262       }
5263     }
5264 
5265     // If this is a copy from another register, we recursively check source.
5266     if (!Register::isVirtualRegister(SrcReg))
5267       return false;
5268     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5269     if (SrcMI != NULL)
5270       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5271 
5272     return false;
5273   }
5274 
5275   case PPC::ANDI_rec:
5276   case PPC::ANDIS_rec:
5277   case PPC::ORI:
5278   case PPC::ORIS:
5279   case PPC::XORI:
5280   case PPC::XORIS:
5281   case PPC::ANDI8_rec:
5282   case PPC::ANDIS8_rec:
5283   case PPC::ORI8:
5284   case PPC::ORIS8:
5285   case PPC::XORI8:
5286   case PPC::XORIS8: {
5287     // logical operation with 16-bit immediate does not change the upper bits.
5288     // So, we track the operand register as we do for register copy.
5289     Register SrcReg = MI.getOperand(1).getReg();
5290     if (!Register::isVirtualRegister(SrcReg))
5291       return false;
5292     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5293     if (SrcMI != NULL)
5294       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5295 
5296     return false;
5297   }
5298 
5299   // If all incoming values are sign-/zero-extended,
5300   // the output of OR, ISEL or PHI is also sign-/zero-extended.
5301   case PPC::OR:
5302   case PPC::OR8:
5303   case PPC::ISEL:
5304   case PPC::PHI: {
5305     if (Depth >= MAX_DEPTH)
5306       return false;
5307 
5308     // The input registers for PHI are operand 1, 3, ...
5309     // The input registers for others are operand 1 and 2.
5310     unsigned E = 3, D = 1;
5311     if (MI.getOpcode() == PPC::PHI) {
5312       E = MI.getNumOperands();
5313       D = 2;
5314     }
5315 
5316     for (unsigned I = 1; I != E; I += D) {
5317       if (MI.getOperand(I).isReg()) {
5318         Register SrcReg = MI.getOperand(I).getReg();
5319         if (!Register::isVirtualRegister(SrcReg))
5320           return false;
5321         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5322         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
5323           return false;
5324       }
5325       else
5326         return false;
5327     }
5328     return true;
5329   }
5330 
5331   // If at least one of the incoming values of an AND is zero extended
5332   // then the output is also zero-extended. If both of the incoming values
5333   // are sign-extended then the output is also sign extended.
5334   case PPC::AND:
5335   case PPC::AND8: {
5336     if (Depth >= MAX_DEPTH)
5337        return false;
5338 
5339     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
5340 
5341     Register SrcReg1 = MI.getOperand(1).getReg();
5342     Register SrcReg2 = MI.getOperand(2).getReg();
5343 
5344     if (!Register::isVirtualRegister(SrcReg1) ||
5345         !Register::isVirtualRegister(SrcReg2))
5346       return false;
5347 
5348     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
5349     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
5350     if (!MISrc1 || !MISrc2)
5351         return false;
5352 
5353     if(SignExt)
5354         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
5355                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5356     else
5357         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
5358                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5359   }
5360 
5361   default:
5362     break;
5363   }
5364   return false;
5365 }
5366 
5367 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5368   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5369 }
5370 
5371 namespace {
5372 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5373   MachineInstr *Loop, *EndLoop, *LoopCount;
5374   MachineFunction *MF;
5375   const TargetInstrInfo *TII;
5376   int64_t TripCount;
5377 
5378 public:
5379   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5380                        MachineInstr *LoopCount)
5381       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5382         MF(Loop->getParent()->getParent()),
5383         TII(MF->getSubtarget().getInstrInfo()) {
5384     // Inspect the Loop instruction up-front, as it may be deleted when we call
5385     // createTripCountGreaterCondition.
5386     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5387       TripCount = LoopCount->getOperand(1).getImm();
5388     else
5389       TripCount = -1;
5390   }
5391 
5392   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5393     // Only ignore the terminator.
5394     return MI == EndLoop;
5395   }
5396 
5397   Optional<bool>
5398   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
5399                                   SmallVectorImpl<MachineOperand> &Cond) override {
5400     if (TripCount == -1) {
5401       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5402       // so we don't need to generate any thing here.
5403       Cond.push_back(MachineOperand::CreateImm(0));
5404       Cond.push_back(MachineOperand::CreateReg(
5405           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5406           true));
5407       return {};
5408     }
5409 
5410     return TripCount > TC;
5411   }
5412 
5413   void setPreheader(MachineBasicBlock *NewPreheader) override {
5414     // Do nothing. We want the LOOP setup instruction to stay in the *old*
5415     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5416   }
5417 
5418   void adjustTripCount(int TripCountAdjust) override {
5419     // If the loop trip count is a compile-time value, then just change the
5420     // value.
5421     if (LoopCount->getOpcode() == PPC::LI8 ||
5422         LoopCount->getOpcode() == PPC::LI) {
5423       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5424       LoopCount->getOperand(1).setImm(TripCount);
5425       return;
5426     }
5427 
5428     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5429     // so we don't need to generate any thing here.
5430   }
5431 
5432   void disposed() override {
5433     Loop->eraseFromParent();
5434     // Ensure the loop setup instruction is deleted too.
5435     LoopCount->eraseFromParent();
5436   }
5437 };
5438 } // namespace
5439 
5440 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5441 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5442   // We really "analyze" only hardware loops right now.
5443   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5444   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5445   if (Preheader == LoopBB)
5446     Preheader = *std::next(LoopBB->pred_begin());
5447   MachineFunction *MF = Preheader->getParent();
5448 
5449   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5450     SmallPtrSet<MachineBasicBlock *, 8> Visited;
5451     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5452       Register LoopCountReg = LoopInst->getOperand(0).getReg();
5453       MachineRegisterInfo &MRI = MF->getRegInfo();
5454       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5455       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5456     }
5457   }
5458   return nullptr;
5459 }
5460 
5461 MachineInstr *PPCInstrInfo::findLoopInstr(
5462     MachineBasicBlock &PreHeader,
5463     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5464 
5465   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5466 
5467   // The loop set-up instruction should be in preheader
5468   for (auto &I : PreHeader.instrs())
5469     if (I.getOpcode() == LOOPi)
5470       return &I;
5471   return nullptr;
5472 }
5473 
5474 // Return true if get the base operand, byte offset of an instruction and the
5475 // memory width. Width is the size of memory that is being loaded/stored.
5476 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5477     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5478     unsigned &Width, const TargetRegisterInfo *TRI) const {
5479   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5480     return false;
5481 
5482   // Handle only loads/stores with base register followed by immediate offset.
5483   if (!LdSt.getOperand(1).isImm() ||
5484       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5485     return false;
5486   if (!LdSt.getOperand(1).isImm() ||
5487       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5488     return false;
5489 
5490   if (!LdSt.hasOneMemOperand())
5491     return false;
5492 
5493   Width = (*LdSt.memoperands_begin())->getSize();
5494   Offset = LdSt.getOperand(1).getImm();
5495   BaseReg = &LdSt.getOperand(2);
5496   return true;
5497 }
5498 
5499 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5500     const MachineInstr &MIa, const MachineInstr &MIb) const {
5501   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5502   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5503 
5504   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5505       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5506     return false;
5507 
5508   // Retrieve the base register, offset from the base register and width. Width
5509   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
5510   // base registers are identical, and the offset of a lower memory access +
5511   // the width doesn't overlap the offset of a higher memory access,
5512   // then the memory accesses are different.
5513   const TargetRegisterInfo *TRI = &getRegisterInfo();
5514   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5515   int64_t OffsetA = 0, OffsetB = 0;
5516   unsigned int WidthA = 0, WidthB = 0;
5517   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5518       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5519     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5520       int LowOffset = std::min(OffsetA, OffsetB);
5521       int HighOffset = std::max(OffsetA, OffsetB);
5522       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5523       if (LowOffset + LowWidth <= HighOffset)
5524         return true;
5525     }
5526   }
5527   return false;
5528 }
5529