xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.h (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/CodeGenTypes/MachineValueType.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Type.h"
32 #include <optional>
33 #include <utility>
34 
35 namespace llvm {
36 
37   namespace PPCISD {
38 
39     // When adding a NEW PPCISD node please add it to the correct position in
40     // the enum. The order of elements in this enum matters!
41     // Values that are added after this entry:
42     //     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
43     // are considered memory opcodes and are treated differently than entries
44     // that come before it. For example, ADD or MUL should be placed before
45     // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
46     // after it.
47   enum NodeType : unsigned {
48     // Start the numbering where the builtin ops and target ops leave off.
49     FIRST_NUMBER = ISD::BUILTIN_OP_END,
50 
51     /// FSEL - Traditional three-operand fsel node.
52     ///
53     FSEL,
54 
55     /// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
56     XSMAXC,
57     XSMINC,
58 
59     /// FCFID - The FCFID instruction, taking an f64 operand and producing
60     /// and f64 value containing the FP representation of the integer that
61     /// was temporarily in the f64 operand.
62     FCFID,
63 
64     /// Newer FCFID[US] integer-to-floating-point conversion instructions for
65     /// unsigned integers and single-precision outputs.
66     FCFIDU,
67     FCFIDS,
68     FCFIDUS,
69 
70     /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
71     /// operand, producing an f64 value containing the integer representation
72     /// of that FP value.
73     FCTIDZ,
74     FCTIWZ,
75 
76     /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
77     /// unsigned integers with round toward zero.
78     FCTIDUZ,
79     FCTIWUZ,
80 
81     /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
82     /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
83     VEXTS,
84 
85     /// Reciprocal estimate instructions (unary FP ops).
86     FRE,
87     FRSQRTE,
88 
89     /// Test instruction for software square root.
90     FTSQRT,
91 
92     /// Square root instruction.
93     FSQRT,
94 
95     /// VPERM - The PPC VPERM Instruction.
96     ///
97     VPERM,
98 
99     /// XXSPLT - The PPC VSX splat instructions
100     ///
101     XXSPLT,
102 
103     /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
104     /// converting immediate single precision numbers to double precision
105     /// vector or scalar.
106     XXSPLTI_SP_TO_DP,
107 
108     /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
109     ///
110     XXSPLTI32DX,
111 
112     /// VECINSERT - The PPC vector insert instruction
113     ///
114     VECINSERT,
115 
116     /// VECSHL - The PPC vector shift left instruction
117     ///
118     VECSHL,
119 
120     /// XXPERMDI - The PPC XXPERMDI instruction
121     ///
122     XXPERMDI,
123     XXPERM,
124 
125     /// The CMPB instruction (takes two operands of i32 or i64).
126     CMPB,
127 
128     /// Hi/Lo - These represent the high and low 16-bit parts of a global
129     /// address respectively.  These nodes have two operands, the first of
130     /// which must be a TargetGlobalAddress, and the second of which must be a
131     /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
132     /// though these are usually folded into other nodes.
133     Hi,
134     Lo,
135 
136     /// The following two target-specific nodes are used for calls through
137     /// function pointers in the 64-bit SVR4 ABI.
138 
139     /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
140     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
141     /// compute an allocation on the stack.
142     DYNALLOC,
143 
144     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
145     /// compute an offset from native SP to the address  of the most recent
146     /// dynamic alloca.
147     DYNAREAOFFSET,
148 
149     /// To avoid stack clash, allocation is performed by block and each block is
150     /// probed.
151     PROBED_ALLOCA,
152 
153     /// The result of the mflr at function entry, used for PIC code.
154     GlobalBaseReg,
155 
156     /// These nodes represent PPC shifts.
157     ///
158     /// For scalar types, only the last `n + 1` bits of the shift amounts
159     /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
160     /// for exact behaviors.
161     ///
162     /// For vector types, only the last n bits are used. See vsld.
163     SRL,
164     SRA,
165     SHL,
166 
167     /// FNMSUB - Negated multiply-subtract instruction.
168     FNMSUB,
169 
170     /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
171     /// word and shift left immediate.
172     EXTSWSLI,
173 
174     /// The combination of sra[wd]i and addze used to implemented signed
175     /// integer division by a power of 2. The first operand is the dividend,
176     /// and the second is the constant shift amount (representing the
177     /// divisor).
178     SRA_ADDZE,
179 
180     /// CALL - A direct function call.
181     /// CALL_NOP is a call with the special NOP which follows 64-bit
182     /// CALL_NOTOC the caller does not use the TOC.
183     /// SVR4 calls and 32-bit/64-bit AIX calls.
184     CALL,
185     CALL_NOP,
186     CALL_NOTOC,
187 
188     /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
189     /// MTCTR instruction.
190     MTCTR,
191 
192     /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
193     /// BCTRL instruction.
194     BCTRL,
195 
196     /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
197     /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
198     /// and 64-bit AIX.
199     BCTRL_LOAD_TOC,
200 
201     /// The variants that implicitly define rounding mode for calls with
202     /// strictfp semantics.
203     CALL_RM,
204     CALL_NOP_RM,
205     CALL_NOTOC_RM,
206     BCTRL_RM,
207     BCTRL_LOAD_TOC_RM,
208 
209     /// Return with a glue operand, matched by 'blr'
210     RET_GLUE,
211 
212     /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
213     /// This copies the bits corresponding to the specified CRREG into the
214     /// resultant GPR.  Bits corresponding to other CR regs are undefined.
215     MFOCRF,
216 
217     /// Direct move from a VSX register to a GPR
218     MFVSR,
219 
220     /// Direct move from a GPR to a VSX register (algebraic)
221     MTVSRA,
222 
223     /// Direct move from a GPR to a VSX register (zero)
224     MTVSRZ,
225 
226     /// Direct move of 2 consecutive GPR to a VSX register.
227     BUILD_FP128,
228 
229     /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
230     /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
231     /// unsupported for this target.
232     /// Merge 2 GPRs to a single SPE register.
233     BUILD_SPE64,
234 
235     /// Extract SPE register component, second argument is high or low.
236     EXTRACT_SPE,
237 
238     /// Extract a subvector from signed integer vector and convert to FP.
239     /// It is primarily used to convert a (widened) illegal integer vector
240     /// type to a legal floating point vector type.
241     /// For example v2i32 -> widened to v4i32 -> v2f64
242     SINT_VEC_TO_FP,
243 
244     /// Extract a subvector from unsigned integer vector and convert to FP.
245     /// As with SINT_VEC_TO_FP, used for converting illegal types.
246     UINT_VEC_TO_FP,
247 
248     /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
249     /// place the value into the least significant element of the most
250     /// significant doubleword in the vector. This is not element zero for
251     /// anything smaller than a doubleword on either endianness. This node has
252     /// the same semantics as SCALAR_TO_VECTOR except that the value remains in
253     /// the aforementioned location in the vector register.
254     SCALAR_TO_VECTOR_PERMUTED,
255 
256     // FIXME: Remove these once the ANDI glue bug is fixed:
257     /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
258     /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
259     /// implement truncation of i32 or i64 to i1.
260     ANDI_rec_1_EQ_BIT,
261     ANDI_rec_1_GT_BIT,
262 
263     // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
264     // target (returns (Lo, Hi)). It takes a chain operand.
265     READ_TIME_BASE,
266 
267     // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
268     EH_SJLJ_SETJMP,
269 
270     // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
271     EH_SJLJ_LONGJMP,
272 
273     /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
274     /// instructions.  For lack of better number, we use the opcode number
275     /// encoding for the OPC field to identify the compare.  For example, 838
276     /// is VCMPGTSH.
277     VCMP,
278 
279     /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the
280     /// altivec VCMP*_rec instructions.  For lack of better number, we use the
281     /// opcode number encoding for the OPC field to identify the compare.  For
282     /// example, 838 is VCMPGTSH.
283     VCMP_rec,
284 
285     /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
286     /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
287     /// condition register to branch on, OPC is the branch opcode to use (e.g.
288     /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
289     /// an optional input flag argument.
290     COND_BRANCH,
291 
292     /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
293     /// loops.
294     BDNZ,
295     BDZ,
296 
297     /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
298     /// towards zero.  Used only as part of the long double-to-int
299     /// conversion sequence.
300     FADDRTZ,
301 
302     /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
303     MFFS,
304 
305     /// TC_RETURN - A tail call return.
306     ///   operand #0 chain
307     ///   operand #1 callee (register or absolute)
308     ///   operand #2 stack adjustment
309     ///   operand #3 optional in flag
310     TC_RETURN,
311 
312     /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
313     CR6SET,
314     CR6UNSET,
315 
316     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
317     /// for non-position independent code on PPC32.
318     PPC32_GOT,
319 
320     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
321     /// local dynamic TLS and position indendepent code on PPC32.
322     PPC32_PICGOT,
323 
324     /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
325     /// TLS model, produces an ADDIS8 instruction that adds the GOT
326     /// base to sym\@got\@tprel\@ha.
327     ADDIS_GOT_TPREL_HA,
328 
329     /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
330     /// TLS model, produces a LD instruction with base register G8RReg
331     /// and offset sym\@got\@tprel\@l.  This completes the addition that
332     /// finds the offset of "sym" relative to the thread pointer.
333     LD_GOT_TPREL_L,
334 
335     /// G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec
336     /// and local-exec TLS models, produces an ADD instruction that adds
337     /// the contents of G8RReg to the thread pointer.  Symbol contains a
338     /// relocation sym\@tls which is to be replaced by the thread pointer
339     /// and identifies to the linker that the instruction is part of a
340     /// TLS sequence.
341     ADD_TLS,
342 
343     /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
344     /// model, produces an ADDIS8 instruction that adds the GOT base
345     /// register to sym\@got\@tlsgd\@ha.
346     ADDIS_TLSGD_HA,
347 
348     /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
349     /// model, produces an ADDI8 instruction that adds G8RReg to
350     /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
351     /// ADDIS_TLSGD_L_ADDR until after register assignment.
352     ADDI_TLSGD_L,
353 
354     /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
355     /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
356     /// ADDIS_TLSGD_L_ADDR until after register assignment.
357     GET_TLS_ADDR,
358 
359     /// %x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on
360     /// 32-bit AIX, produces a call to .__get_tpointer to retrieve the thread
361     /// pointer. At the end of the call, the thread pointer is found in R3.
362     GET_TPOINTER,
363 
364     /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
365     /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
366     /// register assignment.
367     ADDI_TLSGD_L_ADDR,
368 
369     /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
370     /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
371     /// Op that combines two register copies of TOC entries
372     /// (region handle into R3 and variable offset into R4) followed by a
373     /// GET_TLS_ADDR node which will be expanded to a call to .__tls_get_addr.
374     /// This node is used in 64-bit mode as well (in which case the result is
375     /// G8RC and inputs are X3/X4).
376     TLSGD_AIX,
377 
378     /// %x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model,
379     /// produces a call to .__tls_get_mod(_$TLSML\@ml).
380     GET_TLS_MOD_AIX,
381 
382     /// [GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle)
383     /// Op that requires a single input of the module handle TOC entry in R3,
384     /// and generates a GET_TLS_MOD_AIX node which will be expanded into a call
385     /// to .__tls_get_mod. This node is used in both 32-bit and 64-bit modes.
386     /// The only difference is the register class.
387     TLSLD_AIX,
388 
389     /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
390     /// model, produces an ADDIS8 instruction that adds the GOT base
391     /// register to sym\@got\@tlsld\@ha.
392     ADDIS_TLSLD_HA,
393 
394     /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
395     /// model, produces an ADDI8 instruction that adds G8RReg to
396     /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
397     /// ADDIS_TLSLD_L_ADDR until after register assignment.
398     ADDI_TLSLD_L,
399 
400     /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
401     /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
402     /// ADDIS_TLSLD_L_ADDR until after register assignment.
403     GET_TLSLD_ADDR,
404 
405     /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
406     /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
407     /// following register assignment.
408     ADDI_TLSLD_L_ADDR,
409 
410     /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
411     /// model, produces an ADDIS8 instruction that adds X3 to
412     /// sym\@dtprel\@ha.
413     ADDIS_DTPREL_HA,
414 
415     /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
416     /// model, produces an ADDI8 instruction that adds G8RReg to
417     /// sym\@got\@dtprel\@l.
418     ADDI_DTPREL_L,
419 
420     /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS
421     /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel.
422     PADDI_DTPREL,
423 
424     /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
425     /// during instruction selection to optimize a BUILD_VECTOR into
426     /// operations on splats.  This is necessary to avoid losing these
427     /// optimizations due to constant folding.
428     VADD_SPLAT,
429 
430     /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
431     /// operand identifies the operating system entry point.
432     SC,
433 
434     /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
435     CLRBHRB,
436 
437     /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
438     /// history rolling buffer entry.
439     MFBHRBE,
440 
441     /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
442     RFEBB,
443 
444     /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
445     /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
446     /// or stxvd2x instruction.  The chain is necessary because the
447     /// sequence replaces a load and needs to provide the same number
448     /// of outputs.
449     XXSWAPD,
450 
451     /// An SDNode for swaps that are not associated with any loads/stores
452     /// and thereby have no chain.
453     SWAP_NO_CHAIN,
454 
455     /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
456     /// lower (IDX=1) half of v4f32 to v2f64.
457     FP_EXTEND_HALF,
458 
459     /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
460     /// either through an add like PADDI or through a PC Relative load like
461     /// PLD.
462     MAT_PCREL_ADDR,
463 
464     /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for
465     /// TLS global address when using dynamic access models. This can be done
466     /// through an add like PADDI.
467     TLS_DYNAMIC_MAT_PCREL_ADDR,
468 
469     /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address
470     /// when using local exec access models, and when prefixed instructions are
471     /// available. This is used with ADD_TLS to produce an add like PADDI.
472     TLS_LOCAL_EXEC_MAT_ADDR,
473 
474     /// ACC_BUILD = Build an accumulator register from 4 VSX registers.
475     ACC_BUILD,
476 
477     /// PAIR_BUILD = Build a vector pair register from 2 VSX registers.
478     PAIR_BUILD,
479 
480     /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of
481     /// an accumulator or pair register. This node is needed because
482     /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same
483     /// element type.
484     EXTRACT_VSX_REG,
485 
486     /// XXMFACC = This corresponds to the xxmfacc instruction.
487     XXMFACC,
488 
489     // Constrained conversion from floating point to int
490     STRICT_FCTIDZ = ISD::FIRST_TARGET_STRICTFP_OPCODE,
491     STRICT_FCTIWZ,
492     STRICT_FCTIDUZ,
493     STRICT_FCTIWUZ,
494 
495     /// Constrained integer-to-floating-point conversion instructions.
496     STRICT_FCFID,
497     STRICT_FCFIDU,
498     STRICT_FCFIDS,
499     STRICT_FCFIDUS,
500 
501     /// Constrained floating point add in round-to-zero mode.
502     STRICT_FADDRTZ,
503 
504     // NOTE: The nodes below may require PC-Rel specific patterns if the
505     // address could be PC-Relative. When adding new nodes below, consider
506     // whether or not the address can be PC-Relative and add the corresponding
507     // PC-relative patterns and tests.
508 
509     /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
510     /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
511     /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
512     /// i32.
513     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
514 
515     /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
516     /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
517     /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
518     /// or i32.
519     LBRX,
520 
521     /// STFIWX - The STFIWX instruction.  The first operand is an input token
522     /// chain, then an f64 value to store, then an address to store it to.
523     STFIWX,
524 
525     /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
526     /// load which sign-extends from a 32-bit integer value into the
527     /// destination 64-bit register.
528     LFIWAX,
529 
530     /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
531     /// load which zero-extends from a 32-bit integer value into the
532     /// destination 64-bit register.
533     LFIWZX,
534 
535     /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
536     /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
537     /// This can be used for converting loaded integers to floating point.
538     LXSIZX,
539 
540     /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
541     /// chain, then an f64 value to store, then an address to store it to,
542     /// followed by a byte-width for the store.
543     STXSIX,
544 
545     /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
546     /// Maps directly to an lxvd2x instruction that will be followed by
547     /// an xxswapd.
548     LXVD2X,
549 
550     /// LXVRZX - Load VSX Vector Rightmost and Zero Extend
551     /// This node represents v1i128 BUILD_VECTOR of a zero extending load
552     /// instruction from <byte, halfword, word, or doubleword> to i128.
553     /// Allows utilization of the Load VSX Vector Rightmost Instructions.
554     LXVRZX,
555 
556     /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
557     /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
558     /// the vector type to load vector in big-endian element order.
559     LOAD_VEC_BE,
560 
561     /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
562     /// v2f32 value into the lower half of a VSR register.
563     LD_VSX_LH,
564 
565     /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
566     /// instructions such as LXVDSX, LXVWSX.
567     LD_SPLAT,
568 
569     /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
570     /// that zero-extends.
571     ZEXT_LD_SPLAT,
572 
573     /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
574     /// that sign-extends.
575     SEXT_LD_SPLAT,
576 
577     /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
578     /// Maps directly to an stxvd2x instruction that will be preceded by
579     /// an xxswapd.
580     STXVD2X,
581 
582     /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
583     /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
584     /// the vector type to store vector in big-endian element order.
585     STORE_VEC_BE,
586 
587     /// Store scalar integers from VSR.
588     ST_VSR_SCAL_INT,
589 
590     /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
591     /// except they ensure that the compare input is zero-extended for
592     /// sub-word versions because the atomic loads zero-extend.
593     ATOMIC_CMP_SWAP_8,
594     ATOMIC_CMP_SWAP_16,
595 
596     /// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr
597     /// The store conditional instruction ST[BHWD]ARX that produces a glue
598     /// result to attach it to a conditional branch.
599     STORE_COND,
600 
601     /// GPRC = TOC_ENTRY GA, TOC
602     /// Loads the entry for GA from the TOC, where the TOC base is given by
603     /// the last operand.
604     TOC_ENTRY
605   };
606 
607   } // end namespace PPCISD
608 
609   /// Define some predicates that are used for node matching.
610   namespace PPC {
611 
612     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
613     /// VPKUHUM instruction.
614     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
615                               SelectionDAG &DAG);
616 
617     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
618     /// VPKUWUM instruction.
619     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
620                               SelectionDAG &DAG);
621 
622     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
623     /// VPKUDUM instruction.
624     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
625                               SelectionDAG &DAG);
626 
627     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
628     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
629     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
630                             unsigned ShuffleKind, SelectionDAG &DAG);
631 
632     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
633     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
634     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
635                             unsigned ShuffleKind, SelectionDAG &DAG);
636 
637     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
638     /// a VMRGEW or VMRGOW instruction
639     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
640                              unsigned ShuffleKind, SelectionDAG &DAG);
641     /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
642     /// for a XXSLDWI instruction.
643     bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
644                               bool &Swap, bool IsLE);
645 
646     /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
647     /// for a XXBRH instruction.
648     bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
649 
650     /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
651     /// for a XXBRW instruction.
652     bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
653 
654     /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
655     /// for a XXBRD instruction.
656     bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
657 
658     /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
659     /// for a XXBRQ instruction.
660     bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
661 
662     /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
663     /// for a XXPERMDI instruction.
664     bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
665                               bool &Swap, bool IsLE);
666 
667     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
668     /// shift amount, otherwise return -1.
669     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
670                             SelectionDAG &DAG);
671 
672     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
673     /// specifies a splat of a single element that is suitable for input to
674     /// VSPLTB/VSPLTH/VSPLTW.
675     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
676 
677     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
678     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
679     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
680     /// vector into the other. This function will also set a couple of
681     /// output parameters for how much the source vector needs to be shifted and
682     /// what byte number needs to be specified for the instruction to put the
683     /// element in the desired location of the target vector.
684     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
685                          unsigned &InsertAtByte, bool &Swap, bool IsLE);
686 
687     /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
688     /// appropriate for PPC mnemonics (which have a big endian bias - namely
689     /// elements are counted from the left of the vector register).
690     unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
691                                         SelectionDAG &DAG);
692 
693     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
694     /// formed by using a vspltis[bhw] instruction of the specified element
695     /// size, return the constant being splatted.  The ByteSize field indicates
696     /// the number of bytes of each element [124] -> [bhw].
697     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
698 
699     // Flags for computing the optimal addressing mode for loads and stores.
700     enum MemOpFlags {
701       MOF_None = 0,
702 
703       // Extension mode for integer loads.
704       MOF_SExt = 1,
705       MOF_ZExt = 1 << 1,
706       MOF_NoExt = 1 << 2,
707 
708       // Address computation flags.
709       MOF_NotAddNorCst = 1 << 5,      // Not const. or sum of ptr and scalar.
710       MOF_RPlusSImm16 = 1 << 6,       // Reg plus signed 16-bit constant.
711       MOF_RPlusLo = 1 << 7,           // Reg plus signed 16-bit relocation
712       MOF_RPlusSImm16Mult4 = 1 << 8,  // Reg plus 16-bit signed multiple of 4.
713       MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16.
714       MOF_RPlusSImm34 = 1 << 10,      // Reg plus 34-bit signed constant.
715       MOF_RPlusR = 1 << 11,           // Sum of two variables.
716       MOF_PCRel = 1 << 12,            // PC-Relative relocation.
717       MOF_AddrIsSImm32 = 1 << 13,     // A simple 32-bit constant.
718 
719       // The in-memory type.
720       MOF_SubWordInt = 1 << 15,
721       MOF_WordInt = 1 << 16,
722       MOF_DoubleWordInt = 1 << 17,
723       MOF_ScalarFloat = 1 << 18, // Scalar single or double precision.
724       MOF_Vector = 1 << 19,      // Vector types and quad precision scalars.
725       MOF_Vector256 = 1 << 20,
726 
727       // Subtarget features.
728       MOF_SubtargetBeforeP9 = 1 << 22,
729       MOF_SubtargetP9 = 1 << 23,
730       MOF_SubtargetP10 = 1 << 24,
731       MOF_SubtargetSPE = 1 << 25
732     };
733 
734     // The addressing modes for loads and stores.
735     enum AddrMode {
736       AM_None,
737       AM_DForm,
738       AM_DSForm,
739       AM_DQForm,
740       AM_PrefixDForm,
741       AM_XForm,
742       AM_PCRel
743     };
744   } // end namespace PPC
745 
746   class PPCTargetLowering : public TargetLowering {
747     const PPCSubtarget &Subtarget;
748 
749   public:
750     explicit PPCTargetLowering(const PPCTargetMachine &TM,
751                                const PPCSubtarget &STI);
752 
753     /// getTargetNodeName() - This method returns the name of a target specific
754     /// DAG node.
755     const char *getTargetNodeName(unsigned Opcode) const override;
756 
757     bool isSelectSupported(SelectSupportKind Kind) const override {
758       // PowerPC does not support scalar condition selects on vectors.
759       return (Kind != SelectSupportKind::ScalarCondVectorVal);
760     }
761 
762     /// getPreferredVectorAction - The code we generate when vector types are
763     /// legalized by promoting the integer element type is often much worse
764     /// than code we generate if we widen the type for applicable vector types.
765     /// The issue with promoting is that the vector is scalaraized, individual
766     /// elements promoted and then the vector is rebuilt. So say we load a pair
767     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
768     /// loads, moves back into VSR's (or memory ops if we don't have moves) and
769     /// then the VPERM for the shuffle. All in all a very slow sequence.
770     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
771       const override {
772       // Default handling for scalable and single-element vectors.
773       if (VT.isScalableVector() || VT.getVectorNumElements() == 1)
774         return TargetLoweringBase::getPreferredVectorAction(VT);
775 
776       // Split and promote vNi1 vectors so we don't produce v256i1/v512i1
777       // types as those are only for MMA instructions.
778       if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16)
779         return TypeSplitVector;
780       if (VT.getScalarSizeInBits() == 1)
781         return TypePromoteInteger;
782 
783       // Widen vectors that have reasonably sized elements.
784       if (VT.getScalarSizeInBits() % 8 == 0)
785         return TypeWidenVector;
786       return TargetLoweringBase::getPreferredVectorAction(VT);
787     }
788 
789     bool useSoftFloat() const override;
790 
791     bool hasSPE() const;
792 
793     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
794       return MVT::i32;
795     }
796 
797     bool isCheapToSpeculateCttz(Type *Ty) const override {
798       return true;
799     }
800 
801     bool isCheapToSpeculateCtlz(Type *Ty) const override {
802       return true;
803     }
804 
805     bool
806     shallExtractConstSplatVectorElementToStore(Type *VectorTy,
807                                                unsigned ElemSizeInBits,
808                                                unsigned &Index) const override;
809 
810     bool isCtlzFast() const override {
811       return true;
812     }
813 
814     bool isEqualityCmpFoldedWithSignedCmp() const override {
815       return false;
816     }
817 
818     bool hasAndNotCompare(SDValue) const override {
819       return true;
820     }
821 
822     bool preferIncOfAddToSubOfNot(EVT VT) const override;
823 
824     bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
825       return VT.isScalarInteger();
826     }
827 
828     SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
829                                  bool OptForSize, NegatibleCost &Cost,
830                                  unsigned Depth = 0) const override;
831 
832     /// getSetCCResultType - Return the ISD::SETCC ValueType
833     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
834                            EVT VT) const override;
835 
836     /// Return true if target always benefits from combining into FMA for a
837     /// given value type. This must typically return false on targets where FMA
838     /// takes more cycles to execute than FADD.
839     bool enableAggressiveFMAFusion(EVT VT) const override;
840 
841     /// getPreIndexedAddressParts - returns true by value, base pointer and
842     /// offset pointer and addressing mode by reference if the node's address
843     /// can be legally represented as pre-indexed load / store address.
844     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
845                                    SDValue &Offset,
846                                    ISD::MemIndexedMode &AM,
847                                    SelectionDAG &DAG) const override;
848 
849     /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
850     /// it can be more efficiently represented as [r+imm].
851     bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
852                                 SelectionDAG &DAG) const;
853 
854     /// SelectAddressRegReg - Given the specified addressed, check to see if it
855     /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
856     /// is non-zero, only accept displacement which is not suitable for [r+imm].
857     /// Returns false if it can be represented by [r+imm], which are preferred.
858     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
859                              SelectionDAG &DAG,
860                              MaybeAlign EncodingAlignment = std::nullopt) const;
861 
862     /// SelectAddressRegImm - Returns true if the address N can be represented
863     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
864     /// is not better represented as reg+reg. If \p EncodingAlignment is
865     /// non-zero, only accept displacements suitable for instruction encoding
866     /// requirement, i.e. multiples of 4 for DS form.
867     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
868                              SelectionDAG &DAG,
869                              MaybeAlign EncodingAlignment) const;
870     bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base,
871                                SelectionDAG &DAG) const;
872 
873     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
874     /// represented as an indexed [r+r] operation.
875     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
876                                  SelectionDAG &DAG) const;
877 
878     /// SelectAddressPCRel - Represent the specified address as pc relative to
879     /// be represented as [pc+imm]
880     bool SelectAddressPCRel(SDValue N, SDValue &Base) const;
881 
882     Sched::Preference getSchedulingPreference(SDNode *N) const override;
883 
884     /// LowerOperation - Provide custom lowering hooks for some operations.
885     ///
886     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
887 
888     /// ReplaceNodeResults - Replace the results of node with an illegal result
889     /// type with new values built out of custom code.
890     ///
891     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
892                             SelectionDAG &DAG) const override;
893 
894     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
895     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
896 
897     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
898 
899     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
900                           SmallVectorImpl<SDNode *> &Created) const override;
901 
902     Register getRegisterByName(const char* RegName, LLT VT,
903                                const MachineFunction &MF) const override;
904 
905     void computeKnownBitsForTargetNode(const SDValue Op,
906                                        KnownBits &Known,
907                                        const APInt &DemandedElts,
908                                        const SelectionDAG &DAG,
909                                        unsigned Depth = 0) const override;
910 
911     Align getPrefLoopAlignment(MachineLoop *ML) const override;
912 
913     bool shouldInsertFencesForAtomic(const Instruction *I) const override {
914       return true;
915     }
916 
917     Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst,
918                                   AtomicOrdering Ord) const override;
919     Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst,
920                                    AtomicOrdering Ord) const override;
921 
922     bool shouldInlineQuadwordAtomics() const;
923 
924     TargetLowering::AtomicExpansionKind
925     shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
926 
927     TargetLowering::AtomicExpansionKind
928     shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
929 
930     Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
931                                         AtomicRMWInst *AI, Value *AlignedAddr,
932                                         Value *Incr, Value *Mask,
933                                         Value *ShiftAmt,
934                                         AtomicOrdering Ord) const override;
935     Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder,
936                                             AtomicCmpXchgInst *CI,
937                                             Value *AlignedAddr, Value *CmpVal,
938                                             Value *NewVal, Value *Mask,
939                                             AtomicOrdering Ord) const override;
940 
941     MachineBasicBlock *
942     EmitInstrWithCustomInserter(MachineInstr &MI,
943                                 MachineBasicBlock *MBB) const override;
944     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
945                                         MachineBasicBlock *MBB,
946                                         unsigned AtomicSize,
947                                         unsigned BinOpcode,
948                                         unsigned CmpOpcode = 0,
949                                         unsigned CmpPred = 0) const;
950     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
951                                                 MachineBasicBlock *MBB,
952                                                 bool is8bit,
953                                                 unsigned Opcode,
954                                                 unsigned CmpOpcode = 0,
955                                                 unsigned CmpPred = 0) const;
956 
957     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
958                                         MachineBasicBlock *MBB) const;
959 
960     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
961                                          MachineBasicBlock *MBB) const;
962 
963     MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
964                                         MachineBasicBlock *MBB) const;
965 
966     bool hasInlineStackProbe(const MachineFunction &MF) const override;
967 
968     unsigned getStackProbeSize(const MachineFunction &MF) const;
969 
970     ConstraintType getConstraintType(StringRef Constraint) const override;
971 
972     /// Examine constraint string and operand type and determine a weight value.
973     /// The operand object must already have been set up with the operand type.
974     ConstraintWeight getSingleConstraintMatchWeight(
975       AsmOperandInfo &info, const char *constraint) const override;
976 
977     std::pair<unsigned, const TargetRegisterClass *>
978     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
979                                  StringRef Constraint, MVT VT) const override;
980 
981     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
982     /// function arguments in the caller parameter area.  This is the actual
983     /// alignment, not its logarithm.
984     uint64_t getByValTypeAlignment(Type *Ty,
985                                    const DataLayout &DL) const override;
986 
987     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
988     /// vector.  If it is invalid, don't add anything to Ops.
989     void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
990                                       std::vector<SDValue> &Ops,
991                                       SelectionDAG &DAG) const override;
992 
993     InlineAsm::ConstraintCode
994     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
995       if (ConstraintCode == "es")
996         return InlineAsm::ConstraintCode::es;
997       else if (ConstraintCode == "Q")
998         return InlineAsm::ConstraintCode::Q;
999       else if (ConstraintCode == "Z")
1000         return InlineAsm::ConstraintCode::Z;
1001       else if (ConstraintCode == "Zy")
1002         return InlineAsm::ConstraintCode::Zy;
1003       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1004     }
1005 
1006     void CollectTargetIntrinsicOperands(const CallInst &I,
1007                                  SmallVectorImpl<SDValue> &Ops,
1008                                  SelectionDAG &DAG) const override;
1009 
1010     /// isLegalAddressingMode - Return true if the addressing mode represented
1011     /// by AM is legal for this target, for a load/store of the specified type.
1012     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1013                                Type *Ty, unsigned AS,
1014                                Instruction *I = nullptr) const override;
1015 
1016     /// isLegalICmpImmediate - Return true if the specified immediate is legal
1017     /// icmp immediate, that is the target has icmp instructions which can
1018     /// compare a register against the immediate without having to materialize
1019     /// the immediate into a register.
1020     bool isLegalICmpImmediate(int64_t Imm) const override;
1021 
1022     /// isLegalAddImmediate - Return true if the specified immediate is legal
1023     /// add immediate, that is the target has add instructions which can
1024     /// add a register and the immediate without having to materialize
1025     /// the immediate into a register.
1026     bool isLegalAddImmediate(int64_t Imm) const override;
1027 
1028     /// isTruncateFree - Return true if it's free to truncate a value of
1029     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
1030     /// register X1 to i32 by referencing its sub-register R1.
1031     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1032     bool isTruncateFree(EVT VT1, EVT VT2) const override;
1033 
1034     bool isZExtFree(SDValue Val, EVT VT2) const override;
1035 
1036     bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
1037 
1038     /// Returns true if it is beneficial to convert a load of a constant
1039     /// to just the constant itself.
1040     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1041                                            Type *Ty) const override;
1042 
1043     bool convertSelectOfConstantsToMath(EVT VT) const override {
1044       return true;
1045     }
1046 
1047     bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1048                                 SDValue C) const override;
1049 
1050     bool isDesirableToTransformToIntegerOp(unsigned Opc,
1051                                            EVT VT) const override {
1052       // Only handle float load/store pair because float(fpr) load/store
1053       // instruction has more cycles than integer(gpr) load/store in PPC.
1054       if (Opc != ISD::LOAD && Opc != ISD::STORE)
1055         return false;
1056       if (VT != MVT::f32 && VT != MVT::f64)
1057         return false;
1058 
1059       return true;
1060     }
1061 
1062     // Returns true if the address of the global is stored in TOC entry.
1063     bool isAccessedAsGotIndirect(SDValue N) const;
1064 
1065     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
1066 
1067     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
1068                             const CallInst &I,
1069                             MachineFunction &MF,
1070                             unsigned Intrinsic) const override;
1071 
1072     /// It returns EVT::Other if the type should be determined using generic
1073     /// target-independent logic.
1074     EVT getOptimalMemOpType(const MemOp &Op,
1075                             const AttributeList &FuncAttributes) const override;
1076 
1077     /// Is unaligned memory access allowed for the given type, and is it fast
1078     /// relative to software emulation.
1079     bool allowsMisalignedMemoryAccesses(
1080         EVT VT, unsigned AddrSpace, Align Alignment = Align(1),
1081         MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1082         unsigned *Fast = nullptr) const override;
1083 
1084     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
1085     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
1086     /// expanded to FMAs when this method returns true, otherwise fmuladd is
1087     /// expanded to fmul + fadd.
1088     bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
1089                                     EVT VT) const override;
1090 
1091     bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
1092 
1093     /// isProfitableToHoist - Check if it is profitable to hoist instruction
1094     /// \p I to its dominator block.
1095     /// For example, it is not profitable if \p I and it's only user can form a
1096     /// FMA instruction, because Powerpc prefers FMADD.
1097     bool isProfitableToHoist(Instruction *I) const override;
1098 
1099     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1100 
1101     // Should we expand the build vector with shuffles?
1102     bool
1103     shouldExpandBuildVectorWithShuffles(EVT VT,
1104                                         unsigned DefinedValues) const override;
1105 
1106     // Keep the zero-extensions for arguments to libcalls.
1107     bool shouldKeepZExtForFP16Conv() const override { return true; }
1108 
1109     /// createFastISel - This method returns a target-specific FastISel object,
1110     /// or null if the target does not support "fast" instruction selection.
1111     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1112                              const TargetLibraryInfo *LibInfo) const override;
1113 
1114     /// Returns true if an argument of type Ty needs to be passed in a
1115     /// contiguous block of registers in calling convention CallConv.
1116     bool functionArgumentNeedsConsecutiveRegisters(
1117         Type *Ty, CallingConv::ID CallConv, bool isVarArg,
1118         const DataLayout &DL) const override {
1119       // We support any array type as "consecutive" block in the parameter
1120       // save area.  The element type defines the alignment requirement and
1121       // whether the argument should go in GPRs, FPRs, or VRs if available.
1122       //
1123       // Note that clang uses this capability both to implement the ELFv2
1124       // homogeneous float/vector aggregate ABI, and to avoid having to use
1125       // "byval" when passing aggregates that might fully fit in registers.
1126       return Ty->isArrayTy();
1127     }
1128 
1129     /// If a physical register, this returns the register that receives the
1130     /// exception address on entry to an EH pad.
1131     Register
1132     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1133 
1134     /// If a physical register, this returns the register that receives the
1135     /// exception typeid on entry to a landing pad.
1136     Register
1137     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1138 
1139     /// Override to support customized stack guard loading.
1140     bool useLoadStackGuardNode() const override;
1141     void insertSSPDeclarations(Module &M) const override;
1142     Value *getSDagStackGuard(const Module &M) const override;
1143 
1144     bool isFPImmLegal(const APFloat &Imm, EVT VT,
1145                       bool ForCodeSize) const override;
1146 
1147     unsigned getJumpTableEncoding() const override;
1148     bool isJumpTableRelative() const override;
1149     SDValue getPICJumpTableRelocBase(SDValue Table,
1150                                      SelectionDAG &DAG) const override;
1151     const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1152                                                unsigned JTI,
1153                                                MCContext &Ctx) const override;
1154 
1155     /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
1156     /// compute the address flags of the node, get the optimal address mode
1157     /// based on the flags, and set the Base and Disp based on the address mode.
1158     PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N,
1159                                         SDValue &Disp, SDValue &Base,
1160                                         SelectionDAG &DAG,
1161                                         MaybeAlign Align) const;
1162     /// SelectForceXFormMode - Given the specified address, force it to be
1163     /// represented as an indexed [r+r] operation (an XForm instruction).
1164     PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base,
1165                                        SelectionDAG &DAG) const;
1166 
1167     bool splitValueIntoRegisterParts(
1168         SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1169         unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
1170         const override;
1171     /// Structure that collects some common arguments that get passed around
1172     /// between the functions for call lowering.
1173     struct CallFlags {
1174       const CallingConv::ID CallConv;
1175       const bool IsTailCall : 1;
1176       const bool IsVarArg : 1;
1177       const bool IsPatchPoint : 1;
1178       const bool IsIndirect : 1;
1179       const bool HasNest : 1;
1180       const bool NoMerge : 1;
1181 
1182       CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg,
1183                 bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
1184           : CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg),
1185             IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect),
1186             HasNest(HasNest), NoMerge(NoMerge) {}
1187     };
1188 
1189     CCAssignFn *ccAssignFnForCall(CallingConv::ID CC, bool Return,
1190                                   bool IsVarArg) const;
1191     bool supportsTailCallFor(const CallBase *CB) const;
1192 
1193   private:
1194     struct ReuseLoadInfo {
1195       SDValue Ptr;
1196       SDValue Chain;
1197       SDValue ResChain;
1198       MachinePointerInfo MPI;
1199       bool IsDereferenceable = false;
1200       bool IsInvariant = false;
1201       Align Alignment;
1202       AAMDNodes AAInfo;
1203       const MDNode *Ranges = nullptr;
1204 
1205       ReuseLoadInfo() = default;
1206 
1207       MachineMemOperand::Flags MMOFlags() const {
1208         MachineMemOperand::Flags F = MachineMemOperand::MONone;
1209         if (IsDereferenceable)
1210           F |= MachineMemOperand::MODereferenceable;
1211         if (IsInvariant)
1212           F |= MachineMemOperand::MOInvariant;
1213         return F;
1214       }
1215     };
1216 
1217     // Map that relates a set of common address flags to PPC addressing modes.
1218     std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap;
1219     void initializeAddrModeMap();
1220 
1221     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1222                              SelectionDAG &DAG,
1223                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
1224     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
1225                          SelectionDAG &DAG) const;
1226 
1227     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1228                                 SelectionDAG &DAG, const SDLoc &dl) const;
1229     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1230                                      const SDLoc &dl) const;
1231 
1232     bool directMoveIsProfitable(const SDValue &Op) const;
1233     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1234                                      const SDLoc &dl) const;
1235 
1236     SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1237                                  const SDLoc &dl) const;
1238 
1239     SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1240 
1241     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1242     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1243 
1244     bool IsEligibleForTailCallOptimization(
1245         const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1246         CallingConv::ID CallerCC, bool isVarArg,
1247         const SmallVectorImpl<ISD::InputArg> &Ins) const;
1248 
1249     bool IsEligibleForTailCallOptimization_64SVR4(
1250         const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1251         CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg,
1252         const SmallVectorImpl<ISD::OutputArg> &Outs,
1253         const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc,
1254         bool isCalleeExternalSymbol) const;
1255 
1256     bool isEligibleForTCO(const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1257                           CallingConv::ID CallerCC, const CallBase *CB,
1258                           bool isVarArg,
1259                           const SmallVectorImpl<ISD::OutputArg> &Outs,
1260                           const SmallVectorImpl<ISD::InputArg> &Ins,
1261                           const Function *CallerFunc,
1262                           bool isCalleeExternalSymbol) const;
1263 
1264     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1265                                          SDValue Chain, SDValue &LROpOut,
1266                                          SDValue &FPOpOut,
1267                                          const SDLoc &dl) const;
1268 
1269     SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1270 
1271     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1272     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1273     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1274     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1275     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1276     SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const;
1277     SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const;
1278     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1279     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1280     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1281     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1282     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1283     SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
1284     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1285     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1286     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1287     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1288     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1289     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1290     SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1291     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1292     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1293     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1294     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1295     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1296                            const SDLoc &dl) const;
1297     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1298     SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1299     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1300     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1301     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1302     SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const;
1303     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1304     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1305     SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask,
1306                        EVT VT, SDValue V1, SDValue V2) const;
1307     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1308     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1309     SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1310     SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1311     SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1312     SDValue LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
1313     SDValue lowerToLibCall(const char *LibCallName, SDValue Op,
1314                            SelectionDAG &DAG) const;
1315     SDValue lowerLibCallBasedOnType(const char *LibCallFloatName,
1316                                     const char *LibCallDoubleName, SDValue Op,
1317                                     SelectionDAG &DAG) const;
1318     bool isLowringToMASSFiniteSafe(SDValue Op) const;
1319     bool isLowringToMASSSafe(SDValue Op) const;
1320     bool isScalarMASSConversionEnabled() const;
1321     SDValue lowerLibCallBase(const char *LibCallDoubleName,
1322                              const char *LibCallFloatName,
1323                              const char *LibCallDoubleNameFinite,
1324                              const char *LibCallFloatNameFinite, SDValue Op,
1325                              SelectionDAG &DAG) const;
1326     SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const;
1327     SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const;
1328     SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const;
1329     SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const;
1330     SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const;
1331     SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const;
1332     SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const;
1333     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1334     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1335     SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1336     SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1337     SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
1338 
1339     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1340     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1341 
1342     SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
1343                             CallingConv::ID CallConv, bool isVarArg,
1344                             const SmallVectorImpl<ISD::InputArg> &Ins,
1345                             const SDLoc &dl, SelectionDAG &DAG,
1346                             SmallVectorImpl<SDValue> &InVals) const;
1347 
1348     SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
1349                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1350                        SDValue InGlue, SDValue Chain, SDValue CallSeqStart,
1351                        SDValue &Callee, int SPDiff, unsigned NumBytes,
1352                        const SmallVectorImpl<ISD::InputArg> &Ins,
1353                        SmallVectorImpl<SDValue> &InVals,
1354                        const CallBase *CB) const;
1355 
1356     SDValue
1357     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1358                          const SmallVectorImpl<ISD::InputArg> &Ins,
1359                          const SDLoc &dl, SelectionDAG &DAG,
1360                          SmallVectorImpl<SDValue> &InVals) const override;
1361 
1362     SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1363                       SmallVectorImpl<SDValue> &InVals) const override;
1364 
1365     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1366                         bool isVarArg,
1367                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1368                         LLVMContext &Context) const override;
1369 
1370     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1371                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1372                         const SmallVectorImpl<SDValue> &OutVals,
1373                         const SDLoc &dl, SelectionDAG &DAG) const override;
1374 
1375     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1376                               SelectionDAG &DAG, SDValue ArgVal,
1377                               const SDLoc &dl) const;
1378 
1379     SDValue LowerFormalArguments_AIX(
1380         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1381         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1382         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1383     SDValue LowerFormalArguments_64SVR4(
1384         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1385         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1386         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1387     SDValue LowerFormalArguments_32SVR4(
1388         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1389         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1390         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1391 
1392     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1393                                        SDValue CallSeqStart,
1394                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1395                                        const SDLoc &dl) const;
1396 
1397     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1398                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1399                              const SmallVectorImpl<SDValue> &OutVals,
1400                              const SmallVectorImpl<ISD::InputArg> &Ins,
1401                              const SDLoc &dl, SelectionDAG &DAG,
1402                              SmallVectorImpl<SDValue> &InVals,
1403                              const CallBase *CB) const;
1404     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1405                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1406                              const SmallVectorImpl<SDValue> &OutVals,
1407                              const SmallVectorImpl<ISD::InputArg> &Ins,
1408                              const SDLoc &dl, SelectionDAG &DAG,
1409                              SmallVectorImpl<SDValue> &InVals,
1410                              const CallBase *CB) const;
1411     SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
1412                           const SmallVectorImpl<ISD::OutputArg> &Outs,
1413                           const SmallVectorImpl<SDValue> &OutVals,
1414                           const SmallVectorImpl<ISD::InputArg> &Ins,
1415                           const SDLoc &dl, SelectionDAG &DAG,
1416                           SmallVectorImpl<SDValue> &InVals,
1417                           const CallBase *CB) const;
1418 
1419     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1420     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1421     SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1422 
1423     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1424     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1425     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1426     SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1427     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1428     SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1429     SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1430     SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1431     SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1432     SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1433     SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
1434     SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1435     SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1436     SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
1437                                  SelectionDAG &DAG) const;
1438     SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1439                                  DAGCombinerInfo &DCI) const;
1440 
1441     /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1442     /// SETCC with integer subtraction when (1) there is a legal way of doing it
1443     /// (2) keeping the result of comparison in GPR has performance benefit.
1444     SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1445 
1446     SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1447                             int &RefinementSteps, bool &UseOneConstNR,
1448                             bool Reciprocal) const override;
1449     SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1450                              int &RefinementSteps) const override;
1451     SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
1452                              const DenormalMode &Mode) const override;
1453     SDValue getSqrtResultForDenormInput(SDValue Operand,
1454                                         SelectionDAG &DAG) const override;
1455     unsigned combineRepeatedFPDivisors() const override;
1456 
1457     SDValue
1458     combineElementTruncationToVectorTruncation(SDNode *N,
1459                                                DAGCombinerInfo &DCI) const;
1460 
1461     /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1462     /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1463     /// essentially any shuffle of v8i16 vectors that just inserts one element
1464     /// from one vector into the other.
1465     SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1466 
1467     /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1468     /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1469     /// essentially v16i8 vector version of VINSERTH.
1470     SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1471 
1472     /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
1473     /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
1474     SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1475 
1476     // Return whether the call instruction can potentially be optimized to a
1477     // tail call. This will cause the optimizers to attempt to move, or
1478     // duplicate return instructions to help enable tail call optimizations.
1479     bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1480     bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1481 
1482     /// getAddrModeForFlags - Based on the set of address flags, select the most
1483     /// optimal instruction format to match by.
1484     PPC::AddrMode getAddrModeForFlags(unsigned Flags) const;
1485 
1486     /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
1487     /// the address flags of the load/store instruction that is to be matched.
1488     /// The address flags are stored in a map, which is then searched
1489     /// through to determine the optimal load/store instruction format.
1490     unsigned computeMOFlags(const SDNode *Parent, SDValue N,
1491                             SelectionDAG &DAG) const;
1492   }; // end class PPCTargetLowering
1493 
1494   namespace PPC {
1495 
1496     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1497                              const TargetLibraryInfo *LibInfo);
1498 
1499   } // end namespace PPC
1500 
1501   bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1502   bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1503   bool isIntS34Immediate(SDNode *N, int64_t &Imm);
1504   bool isIntS34Immediate(SDValue Op, int64_t &Imm);
1505 
1506   bool convertToNonDenormSingle(APInt &ArgAPInt);
1507   bool convertToNonDenormSingle(APFloat &ArgAPFloat);
1508   bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat);
1509 
1510 } // end namespace llvm
1511 
1512 #endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
1513