1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSymbolXCOFF.h" 78 #include "llvm/Support/AtomicOrdering.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CodeGen.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetMachine.h" 92 #include "llvm/Target/TargetOptions.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <list> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "ppc-lowering" 104 105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisableSCO("disable-ppc-sco", 115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 116 117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 119 120 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 121 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 122 123 STATISTIC(NumTailCalls, "Number of tail calls"); 124 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 125 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 126 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 127 128 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 129 130 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 131 132 // FIXME: Remove this once the bug has been fixed! 133 extern cl::opt<bool> ANDIGlueBug; 134 135 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 136 const PPCSubtarget &STI) 137 : TargetLowering(TM), Subtarget(STI) { 138 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 139 // arguments are at least 4/8 bytes aligned. 140 bool isPPC64 = Subtarget.isPPC64(); 141 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 142 143 // Set up the register classes. 144 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 145 if (!useSoftFloat()) { 146 if (hasSPE()) { 147 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 148 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 149 } else { 150 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 151 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 152 } 153 } 154 155 // Match BITREVERSE to customized fast code sequence in the td file. 156 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 157 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 158 159 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 160 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 161 162 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 163 for (MVT VT : MVT::integer_valuetypes()) { 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 166 } 167 168 if (Subtarget.isISA3_0()) { 169 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 170 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 171 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 172 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 173 } else { 174 // No extending loads from f16 or HW conversions back and forth. 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 176 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 177 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 179 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 180 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 181 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 182 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 183 } 184 185 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 186 187 // PowerPC has pre-inc load and store's. 188 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 189 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 193 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 194 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 198 if (!Subtarget.hasSPE()) { 199 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 200 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 203 } 204 205 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 206 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 207 for (MVT VT : ScalarIntVTs) { 208 setOperationAction(ISD::ADDC, VT, Legal); 209 setOperationAction(ISD::ADDE, VT, Legal); 210 setOperationAction(ISD::SUBC, VT, Legal); 211 setOperationAction(ISD::SUBE, VT, Legal); 212 } 213 214 if (Subtarget.useCRBits()) { 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 216 217 if (isPPC64 || Subtarget.hasFPCVT()) { 218 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 219 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 220 isPPC64 ? MVT::i64 : MVT::i32); 221 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 222 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 223 isPPC64 ? MVT::i64 : MVT::i32); 224 } else { 225 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 226 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 227 } 228 229 // PowerPC does not support direct load/store of condition registers. 230 setOperationAction(ISD::LOAD, MVT::i1, Custom); 231 setOperationAction(ISD::STORE, MVT::i1, Custom); 232 233 // FIXME: Remove this once the ANDI glue bug is fixed: 234 if (ANDIGlueBug) 235 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 236 237 for (MVT VT : MVT::integer_valuetypes()) { 238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 240 setTruncStoreAction(VT, MVT::i1, Expand); 241 } 242 243 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 244 } 245 246 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 247 // PPC (the libcall is not available). 248 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 249 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 250 251 // We do not currently implement these libm ops for PowerPC. 252 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 253 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 254 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 258 259 // PowerPC has no SREM/UREM instructions unless we are on P9 260 // On P9 we may use a hardware instruction to compute the remainder. 261 // When the result of both the remainder and the division is required it is 262 // more efficient to compute the remainder from the result of the division 263 // rather than use the remainder instruction. The instructions are legalized 264 // directly because the DivRemPairsPass performs the transformation at the IR 265 // level. 266 if (Subtarget.isISA3_0()) { 267 setOperationAction(ISD::SREM, MVT::i32, Legal); 268 setOperationAction(ISD::UREM, MVT::i32, Legal); 269 setOperationAction(ISD::SREM, MVT::i64, Legal); 270 setOperationAction(ISD::UREM, MVT::i64, Legal); 271 } else { 272 setOperationAction(ISD::SREM, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::SREM, MVT::i64, Expand); 275 setOperationAction(ISD::UREM, MVT::i64, Expand); 276 } 277 278 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 279 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 280 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 282 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 284 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 286 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 287 288 // Handle constrained floating-point operations of scalar. 289 // TODO: Handle SPE specific operation. 290 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 291 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 295 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 296 297 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 298 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 300 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 301 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 302 if (Subtarget.hasVSX()) 303 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 304 305 if (Subtarget.hasFSQRT()) { 306 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 307 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 308 } 309 310 if (Subtarget.hasFPRND()) { 311 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 312 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 314 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 315 316 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 317 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 319 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 320 } 321 322 // We don't support sin/cos/sqrt/fmod/pow 323 setOperationAction(ISD::FSIN , MVT::f64, Expand); 324 setOperationAction(ISD::FCOS , MVT::f64, Expand); 325 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 326 setOperationAction(ISD::FREM , MVT::f64, Expand); 327 setOperationAction(ISD::FPOW , MVT::f64, Expand); 328 setOperationAction(ISD::FSIN , MVT::f32, Expand); 329 setOperationAction(ISD::FCOS , MVT::f32, Expand); 330 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 331 setOperationAction(ISD::FREM , MVT::f32, Expand); 332 setOperationAction(ISD::FPOW , MVT::f32, Expand); 333 if (Subtarget.hasSPE()) { 334 setOperationAction(ISD::FMA , MVT::f64, Expand); 335 setOperationAction(ISD::FMA , MVT::f32, Expand); 336 } else { 337 setOperationAction(ISD::FMA , MVT::f64, Legal); 338 setOperationAction(ISD::FMA , MVT::f32, Legal); 339 } 340 341 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 342 343 // If we're enabling GP optimizations, use hardware square root 344 if (!Subtarget.hasFSQRT() && 345 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 346 Subtarget.hasFRE())) 347 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 348 349 if (!Subtarget.hasFSQRT() && 350 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 351 Subtarget.hasFRES())) 352 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 353 354 if (Subtarget.hasFCPSGN()) { 355 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 356 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 357 } else { 358 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 359 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 360 } 361 362 if (Subtarget.hasFPRND()) { 363 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 364 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 365 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 366 setOperationAction(ISD::FROUND, MVT::f64, Legal); 367 368 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 369 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 370 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 371 setOperationAction(ISD::FROUND, MVT::f32, Legal); 372 } 373 374 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 375 // to speed up scalar BSWAP64. 376 // CTPOP or CTTZ were introduced in P8/P9 respectively 377 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 378 if (Subtarget.hasP9Vector()) 379 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 380 else 381 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 382 if (Subtarget.isISA3_0()) { 383 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 384 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 385 } else { 386 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 387 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 388 } 389 390 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 391 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 392 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 393 } else { 394 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 395 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 396 } 397 398 // PowerPC does not have ROTR 399 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 400 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 401 402 if (!Subtarget.useCRBits()) { 403 // PowerPC does not have Select 404 setOperationAction(ISD::SELECT, MVT::i32, Expand); 405 setOperationAction(ISD::SELECT, MVT::i64, Expand); 406 setOperationAction(ISD::SELECT, MVT::f32, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Expand); 408 } 409 410 // PowerPC wants to turn select_cc of FP into fsel when possible. 411 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 412 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 413 414 // PowerPC wants to optimize integer setcc a bit 415 if (!Subtarget.useCRBits()) 416 setOperationAction(ISD::SETCC, MVT::i32, Custom); 417 418 // PowerPC does not have BRCOND which requires SetCC 419 if (!Subtarget.useCRBits()) 420 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 421 422 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 423 424 if (Subtarget.hasSPE()) { 425 // SPE has built-in conversions 426 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 427 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 428 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 429 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 430 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 431 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 432 } else { 433 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 434 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 435 436 // PowerPC does not have [U|S]INT_TO_FP 437 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 438 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 439 } 440 441 if (Subtarget.hasDirectMove() && isPPC64) { 442 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 443 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 444 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 445 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 446 if (TM.Options.UnsafeFPMath) { 447 setOperationAction(ISD::LRINT, MVT::f64, Legal); 448 setOperationAction(ISD::LRINT, MVT::f32, Legal); 449 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 450 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 451 setOperationAction(ISD::LROUND, MVT::f64, Legal); 452 setOperationAction(ISD::LROUND, MVT::f32, Legal); 453 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 454 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 455 } 456 } else { 457 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 458 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 459 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 460 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 461 } 462 463 // We cannot sextinreg(i1). Expand to shifts. 464 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 465 466 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 467 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 468 // support continuation, user-level threading, and etc.. As a result, no 469 // other SjLj exception interfaces are implemented and please don't build 470 // your own exception handling based on them. 471 // LLVM/Clang supports zero-cost DWARF exception handling. 472 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 473 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 474 475 // We want to legalize GlobalAddress and ConstantPool nodes into the 476 // appropriate instructions to materialize the address. 477 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 478 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 479 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 480 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 481 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 482 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 483 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 484 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 485 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 486 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 487 488 // TRAP is legal. 489 setOperationAction(ISD::TRAP, MVT::Other, Legal); 490 491 // TRAMPOLINE is custom lowered. 492 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 493 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 494 495 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 496 setOperationAction(ISD::VASTART , MVT::Other, Custom); 497 498 if (Subtarget.is64BitELFABI()) { 499 // VAARG always uses double-word chunks, so promote anything smaller. 500 setOperationAction(ISD::VAARG, MVT::i1, Promote); 501 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 502 setOperationAction(ISD::VAARG, MVT::i8, Promote); 503 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 504 setOperationAction(ISD::VAARG, MVT::i16, Promote); 505 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 506 setOperationAction(ISD::VAARG, MVT::i32, Promote); 507 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 508 setOperationAction(ISD::VAARG, MVT::Other, Expand); 509 } else if (Subtarget.is32BitELFABI()) { 510 // VAARG is custom lowered with the 32-bit SVR4 ABI. 511 setOperationAction(ISD::VAARG, MVT::Other, Custom); 512 setOperationAction(ISD::VAARG, MVT::i64, Custom); 513 } else 514 setOperationAction(ISD::VAARG, MVT::Other, Expand); 515 516 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 517 if (Subtarget.is32BitELFABI()) 518 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 519 else 520 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 521 522 // Use the default implementation. 523 setOperationAction(ISD::VAEND , MVT::Other, Expand); 524 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 525 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 526 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 527 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 528 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 529 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 530 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 531 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 532 533 // We want to custom lower some of our intrinsics. 534 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 535 536 // To handle counter-based loop conditions. 537 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 538 539 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 540 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 541 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 542 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 543 544 // Comparisons that require checking two conditions. 545 if (Subtarget.hasSPE()) { 546 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 547 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 548 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 549 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 550 } 551 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 552 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 553 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 554 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 555 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 556 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 557 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 558 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 559 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 560 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 561 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 562 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 563 564 if (Subtarget.has64BitSupport()) { 565 // They also have instructions for converting between i64 and fp. 566 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 567 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 568 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 569 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 570 // This is just the low 32 bits of a (signed) fp->i64 conversion. 571 // We cannot do this with Promote because i64 is not a legal type. 572 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 573 574 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 575 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 576 } else { 577 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 578 if (Subtarget.hasSPE()) { 579 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 580 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 581 } else 582 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 583 } 584 585 // With the instructions enabled under FPCVT, we can do everything. 586 if (Subtarget.hasFPCVT()) { 587 if (Subtarget.has64BitSupport()) { 588 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 589 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 590 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 591 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 592 } 593 594 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 595 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 596 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 597 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 598 } 599 600 if (Subtarget.use64BitRegs()) { 601 // 64-bit PowerPC implementations can support i64 types directly 602 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 603 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 604 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 605 // 64-bit PowerPC wants to expand i128 shifts itself. 606 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 607 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 608 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 609 } else { 610 // 32-bit PowerPC wants to expand i64 shifts itself. 611 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 612 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 613 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 614 } 615 616 if (Subtarget.hasVSX()) { 617 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 618 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 619 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 620 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 621 } 622 623 if (Subtarget.hasAltivec()) { 624 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 625 setOperationAction(ISD::SADDSAT, VT, Legal); 626 setOperationAction(ISD::SSUBSAT, VT, Legal); 627 setOperationAction(ISD::UADDSAT, VT, Legal); 628 setOperationAction(ISD::USUBSAT, VT, Legal); 629 } 630 // First set operation action for all vector types to expand. Then we 631 // will selectively turn on ones that can be effectively codegen'd. 632 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 633 // add/sub are legal for all supported vector VT's. 634 setOperationAction(ISD::ADD, VT, Legal); 635 setOperationAction(ISD::SUB, VT, Legal); 636 637 // For v2i64, these are only valid with P8Vector. This is corrected after 638 // the loop. 639 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 640 setOperationAction(ISD::SMAX, VT, Legal); 641 setOperationAction(ISD::SMIN, VT, Legal); 642 setOperationAction(ISD::UMAX, VT, Legal); 643 setOperationAction(ISD::UMIN, VT, Legal); 644 } 645 else { 646 setOperationAction(ISD::SMAX, VT, Expand); 647 setOperationAction(ISD::SMIN, VT, Expand); 648 setOperationAction(ISD::UMAX, VT, Expand); 649 setOperationAction(ISD::UMIN, VT, Expand); 650 } 651 652 if (Subtarget.hasVSX()) { 653 setOperationAction(ISD::FMAXNUM, VT, Legal); 654 setOperationAction(ISD::FMINNUM, VT, Legal); 655 } 656 657 // Vector instructions introduced in P8 658 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 659 setOperationAction(ISD::CTPOP, VT, Legal); 660 setOperationAction(ISD::CTLZ, VT, Legal); 661 } 662 else { 663 setOperationAction(ISD::CTPOP, VT, Expand); 664 setOperationAction(ISD::CTLZ, VT, Expand); 665 } 666 667 // Vector instructions introduced in P9 668 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 669 setOperationAction(ISD::CTTZ, VT, Legal); 670 else 671 setOperationAction(ISD::CTTZ, VT, Expand); 672 673 // We promote all shuffles to v16i8. 674 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 675 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 676 677 // We promote all non-typed operations to v4i32. 678 setOperationAction(ISD::AND , VT, Promote); 679 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 680 setOperationAction(ISD::OR , VT, Promote); 681 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 682 setOperationAction(ISD::XOR , VT, Promote); 683 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 684 setOperationAction(ISD::LOAD , VT, Promote); 685 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 686 setOperationAction(ISD::SELECT, VT, Promote); 687 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 688 setOperationAction(ISD::VSELECT, VT, Legal); 689 setOperationAction(ISD::SELECT_CC, VT, Promote); 690 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 691 setOperationAction(ISD::STORE, VT, Promote); 692 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 693 694 // No other operations are legal. 695 setOperationAction(ISD::MUL , VT, Expand); 696 setOperationAction(ISD::SDIV, VT, Expand); 697 setOperationAction(ISD::SREM, VT, Expand); 698 setOperationAction(ISD::UDIV, VT, Expand); 699 setOperationAction(ISD::UREM, VT, Expand); 700 setOperationAction(ISD::FDIV, VT, Expand); 701 setOperationAction(ISD::FREM, VT, Expand); 702 setOperationAction(ISD::FNEG, VT, Expand); 703 setOperationAction(ISD::FSQRT, VT, Expand); 704 setOperationAction(ISD::FLOG, VT, Expand); 705 setOperationAction(ISD::FLOG10, VT, Expand); 706 setOperationAction(ISD::FLOG2, VT, Expand); 707 setOperationAction(ISD::FEXP, VT, Expand); 708 setOperationAction(ISD::FEXP2, VT, Expand); 709 setOperationAction(ISD::FSIN, VT, Expand); 710 setOperationAction(ISD::FCOS, VT, Expand); 711 setOperationAction(ISD::FABS, VT, Expand); 712 setOperationAction(ISD::FFLOOR, VT, Expand); 713 setOperationAction(ISD::FCEIL, VT, Expand); 714 setOperationAction(ISD::FTRUNC, VT, Expand); 715 setOperationAction(ISD::FRINT, VT, Expand); 716 setOperationAction(ISD::FNEARBYINT, VT, Expand); 717 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 718 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 719 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 720 setOperationAction(ISD::MULHU, VT, Expand); 721 setOperationAction(ISD::MULHS, VT, Expand); 722 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 723 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 724 setOperationAction(ISD::UDIVREM, VT, Expand); 725 setOperationAction(ISD::SDIVREM, VT, Expand); 726 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 727 setOperationAction(ISD::FPOW, VT, Expand); 728 setOperationAction(ISD::BSWAP, VT, Expand); 729 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 730 setOperationAction(ISD::ROTL, VT, Expand); 731 setOperationAction(ISD::ROTR, VT, Expand); 732 733 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 734 setTruncStoreAction(VT, InnerVT, Expand); 735 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 736 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 737 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 738 } 739 } 740 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 741 if (!Subtarget.hasP8Vector()) { 742 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 743 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 744 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 745 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 746 } 747 748 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 749 setOperationAction(ISD::ABS, VT, Custom); 750 751 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 752 // with merges, splats, etc. 753 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 754 755 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 756 // are cheap, so handle them before they get expanded to scalar. 757 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 758 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 759 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 760 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 761 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 762 763 setOperationAction(ISD::AND , MVT::v4i32, Legal); 764 setOperationAction(ISD::OR , MVT::v4i32, Legal); 765 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 766 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 767 setOperationAction(ISD::SELECT, MVT::v4i32, 768 Subtarget.useCRBits() ? Legal : Expand); 769 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 770 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 771 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 772 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 773 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 774 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 775 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 776 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 777 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 778 779 // Without hasP8Altivec set, v2i64 SMAX isn't available. 780 // But ABS custom lowering requires SMAX support. 781 if (!Subtarget.hasP8Altivec()) 782 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 783 784 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 785 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 786 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 787 if (Subtarget.hasAltivec()) 788 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 789 setOperationAction(ISD::ROTL, VT, Legal); 790 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 791 if (Subtarget.hasP8Altivec()) 792 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 793 794 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 795 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 796 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 797 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 798 799 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 800 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 801 802 if (Subtarget.hasVSX()) { 803 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 804 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 805 } 806 807 if (Subtarget.hasP8Altivec()) 808 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 809 else 810 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 811 812 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 813 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 814 815 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 816 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 817 818 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 819 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 820 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 821 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 822 823 // Altivec does not contain unordered floating-point compare instructions 824 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 825 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 826 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 827 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 828 829 if (Subtarget.hasVSX()) { 830 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 831 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 832 if (Subtarget.hasP8Vector()) { 833 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 834 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 835 } 836 if (Subtarget.hasDirectMove() && isPPC64) { 837 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 838 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 839 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 840 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 841 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 842 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 844 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 845 } 846 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 847 848 // The nearbyint variants are not allowed to raise the inexact exception 849 // so we can only code-gen them with unsafe math. 850 if (TM.Options.UnsafeFPMath) { 851 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 852 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 853 } 854 855 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 856 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 857 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 858 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 859 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 860 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 861 setOperationAction(ISD::FROUND, MVT::f64, Legal); 862 setOperationAction(ISD::FRINT, MVT::f64, Legal); 863 864 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 865 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 866 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 867 setOperationAction(ISD::FROUND, MVT::f32, Legal); 868 setOperationAction(ISD::FRINT, MVT::f32, Legal); 869 870 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 871 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 872 873 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 874 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 875 876 // Share the Altivec comparison restrictions. 877 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 878 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 879 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 880 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 881 882 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 883 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 884 885 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 886 887 if (Subtarget.hasP8Vector()) 888 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 889 890 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 891 892 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 893 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 894 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 895 896 if (Subtarget.hasP8Altivec()) { 897 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 898 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 899 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 900 901 // 128 bit shifts can be accomplished via 3 instructions for SHL and 902 // SRL, but not for SRA because of the instructions available: 903 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 904 // doing 905 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 906 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 907 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 908 909 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 910 } 911 else { 912 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 913 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 914 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 915 916 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 917 918 // VSX v2i64 only supports non-arithmetic operations. 919 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 920 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 921 } 922 923 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 924 925 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 926 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 927 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 928 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 929 930 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 931 932 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 933 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 934 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 935 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 936 937 // Custom handling for partial vectors of integers converted to 938 // floating point. We already have optimal handling for v2i32 through 939 // the DAG combine, so those aren't necessary. 940 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 941 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 942 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 943 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 944 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 945 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 946 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 947 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 948 949 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 950 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 951 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 952 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 953 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 954 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 955 956 if (Subtarget.hasDirectMove()) 957 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 958 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 959 960 // Handle constrained floating-point operations of vector. 961 // The predictor is `hasVSX` because altivec instruction has 962 // no exception but VSX vector instruction has. 963 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 964 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 965 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 966 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 967 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 968 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 969 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 970 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 971 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 972 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 973 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 974 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 975 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 976 977 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 978 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 979 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 980 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 981 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 982 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 983 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 984 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 985 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 986 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 987 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 988 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 989 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 990 991 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 992 } 993 994 if (Subtarget.hasP8Altivec()) { 995 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 996 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 997 } 998 999 if (Subtarget.hasP9Vector()) { 1000 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1001 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1002 1003 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1004 // SRL, but not for SRA because of the instructions available: 1005 // VS{RL} and VS{RL}O. 1006 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1007 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1008 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1009 1010 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1011 setOperationAction(ISD::FADD, MVT::f128, Legal); 1012 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1013 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1014 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1015 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1016 // No extending loads to f128 on PPC. 1017 for (MVT FPT : MVT::fp_valuetypes()) 1018 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1019 setOperationAction(ISD::FMA, MVT::f128, Legal); 1020 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1021 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1022 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1023 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1024 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1025 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1026 1027 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1028 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1029 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1030 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1031 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1032 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1033 1034 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1035 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1036 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1037 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1038 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1039 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1040 // No implementation for these ops for PowerPC. 1041 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1042 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1043 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1044 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1045 setOperationAction(ISD::FREM, MVT::f128, Expand); 1046 1047 // Handle constrained floating-point operations of fp128 1048 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1049 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1050 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1051 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1052 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1053 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1054 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1055 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1056 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1057 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1058 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1059 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1060 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1061 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1062 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1063 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1064 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1065 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1066 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1067 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1068 } 1069 1070 if (Subtarget.hasP9Altivec()) { 1071 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1072 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1073 1074 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1075 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1076 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1077 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1078 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1079 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1080 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1081 } 1082 } 1083 1084 if (Subtarget.hasQPX()) { 1085 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1086 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1087 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1088 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1089 1090 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1091 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1092 1093 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1094 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1095 1096 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1097 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1098 1099 if (!Subtarget.useCRBits()) 1100 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1101 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1102 1103 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1104 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1105 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1106 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1107 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1108 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1109 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1110 1111 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1112 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1113 1114 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1115 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1116 1117 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1118 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1119 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1120 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1121 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1122 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1123 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1124 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1125 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1126 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1127 1128 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1129 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1130 1131 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1132 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1133 1134 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1135 1136 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1137 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1138 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1139 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1140 1141 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1142 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1143 1144 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1145 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1146 1147 if (!Subtarget.useCRBits()) 1148 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1149 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1150 1151 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1152 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1153 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1154 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1155 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1156 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1157 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1158 1159 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1160 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1161 1162 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1163 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1164 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1165 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1166 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1167 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1168 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1169 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1170 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1171 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1172 1173 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1174 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1175 1176 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1177 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1178 1179 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1180 1181 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1182 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1183 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1184 1185 if (!Subtarget.useCRBits()) 1186 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1187 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1188 1189 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1190 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1191 1192 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1193 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1194 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1195 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1196 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1197 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1198 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1199 1200 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1201 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1202 1203 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1204 1205 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1206 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1207 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1208 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1209 1210 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1211 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1212 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1213 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1214 1215 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1216 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1217 1218 // These need to set FE_INEXACT, and so cannot be vectorized here. 1219 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1220 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1221 1222 if (TM.Options.UnsafeFPMath) { 1223 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1224 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1225 1226 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1227 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1228 } else { 1229 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1230 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1231 1232 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1233 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1234 } 1235 1236 // TODO: Handle constrained floating-point operations of v4f64 1237 } 1238 1239 if (Subtarget.has64BitSupport()) 1240 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1241 1242 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1243 1244 if (!isPPC64) { 1245 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1246 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1247 } 1248 1249 setBooleanContents(ZeroOrOneBooleanContent); 1250 1251 if (Subtarget.hasAltivec()) { 1252 // Altivec instructions set fields to all zeros or all ones. 1253 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1254 } 1255 1256 if (!isPPC64) { 1257 // These libcalls are not available in 32-bit. 1258 setLibcallName(RTLIB::SHL_I128, nullptr); 1259 setLibcallName(RTLIB::SRL_I128, nullptr); 1260 setLibcallName(RTLIB::SRA_I128, nullptr); 1261 } 1262 1263 if (!isPPC64) 1264 setMaxAtomicSizeInBitsSupported(32); 1265 1266 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1267 1268 // We have target-specific dag combine patterns for the following nodes: 1269 setTargetDAGCombine(ISD::ADD); 1270 setTargetDAGCombine(ISD::SHL); 1271 setTargetDAGCombine(ISD::SRA); 1272 setTargetDAGCombine(ISD::SRL); 1273 setTargetDAGCombine(ISD::MUL); 1274 setTargetDAGCombine(ISD::FMA); 1275 setTargetDAGCombine(ISD::SINT_TO_FP); 1276 setTargetDAGCombine(ISD::BUILD_VECTOR); 1277 if (Subtarget.hasFPCVT()) 1278 setTargetDAGCombine(ISD::UINT_TO_FP); 1279 setTargetDAGCombine(ISD::LOAD); 1280 setTargetDAGCombine(ISD::STORE); 1281 setTargetDAGCombine(ISD::BR_CC); 1282 if (Subtarget.useCRBits()) 1283 setTargetDAGCombine(ISD::BRCOND); 1284 setTargetDAGCombine(ISD::BSWAP); 1285 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1286 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1287 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1288 1289 setTargetDAGCombine(ISD::SIGN_EXTEND); 1290 setTargetDAGCombine(ISD::ZERO_EXTEND); 1291 setTargetDAGCombine(ISD::ANY_EXTEND); 1292 1293 setTargetDAGCombine(ISD::TRUNCATE); 1294 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1295 1296 1297 if (Subtarget.useCRBits()) { 1298 setTargetDAGCombine(ISD::TRUNCATE); 1299 setTargetDAGCombine(ISD::SETCC); 1300 setTargetDAGCombine(ISD::SELECT_CC); 1301 } 1302 1303 if (Subtarget.hasP9Altivec()) { 1304 setTargetDAGCombine(ISD::ABS); 1305 setTargetDAGCombine(ISD::VSELECT); 1306 } 1307 1308 setLibcallName(RTLIB::LOG_F128, "logf128"); 1309 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1310 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1311 setLibcallName(RTLIB::EXP_F128, "expf128"); 1312 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1313 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1314 setLibcallName(RTLIB::COS_F128, "cosf128"); 1315 setLibcallName(RTLIB::POW_F128, "powf128"); 1316 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1317 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1318 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1319 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1320 1321 // With 32 condition bits, we don't need to sink (and duplicate) compares 1322 // aggressively in CodeGenPrep. 1323 if (Subtarget.useCRBits()) { 1324 setHasMultipleConditionRegisters(); 1325 setJumpIsExpensive(); 1326 } 1327 1328 setMinFunctionAlignment(Align(4)); 1329 1330 switch (Subtarget.getCPUDirective()) { 1331 default: break; 1332 case PPC::DIR_970: 1333 case PPC::DIR_A2: 1334 case PPC::DIR_E500: 1335 case PPC::DIR_E500mc: 1336 case PPC::DIR_E5500: 1337 case PPC::DIR_PWR4: 1338 case PPC::DIR_PWR5: 1339 case PPC::DIR_PWR5X: 1340 case PPC::DIR_PWR6: 1341 case PPC::DIR_PWR6X: 1342 case PPC::DIR_PWR7: 1343 case PPC::DIR_PWR8: 1344 case PPC::DIR_PWR9: 1345 case PPC::DIR_PWR10: 1346 case PPC::DIR_PWR_FUTURE: 1347 setPrefLoopAlignment(Align(16)); 1348 setPrefFunctionAlignment(Align(16)); 1349 break; 1350 } 1351 1352 if (Subtarget.enableMachineScheduler()) 1353 setSchedulingPreference(Sched::Source); 1354 else 1355 setSchedulingPreference(Sched::Hybrid); 1356 1357 computeRegisterProperties(STI.getRegisterInfo()); 1358 1359 // The Freescale cores do better with aggressive inlining of memcpy and 1360 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1361 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1362 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1363 MaxStoresPerMemset = 32; 1364 MaxStoresPerMemsetOptSize = 16; 1365 MaxStoresPerMemcpy = 32; 1366 MaxStoresPerMemcpyOptSize = 8; 1367 MaxStoresPerMemmove = 32; 1368 MaxStoresPerMemmoveOptSize = 8; 1369 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1370 // The A2 also benefits from (very) aggressive inlining of memcpy and 1371 // friends. The overhead of a the function call, even when warm, can be 1372 // over one hundred cycles. 1373 MaxStoresPerMemset = 128; 1374 MaxStoresPerMemcpy = 128; 1375 MaxStoresPerMemmove = 128; 1376 MaxLoadsPerMemcmp = 128; 1377 } else { 1378 MaxLoadsPerMemcmp = 8; 1379 MaxLoadsPerMemcmpOptSize = 4; 1380 } 1381 1382 // Let the subtarget (CPU) decide if a predictable select is more expensive 1383 // than the corresponding branch. This information is used in CGP to decide 1384 // when to convert selects into branches. 1385 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1386 } 1387 1388 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1389 /// the desired ByVal argument alignment. 1390 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1391 if (MaxAlign == MaxMaxAlign) 1392 return; 1393 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1394 if (MaxMaxAlign >= 32 && 1395 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1396 MaxAlign = Align(32); 1397 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1398 MaxAlign < 16) 1399 MaxAlign = Align(16); 1400 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1401 Align EltAlign; 1402 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1403 if (EltAlign > MaxAlign) 1404 MaxAlign = EltAlign; 1405 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1406 for (auto *EltTy : STy->elements()) { 1407 Align EltAlign; 1408 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1409 if (EltAlign > MaxAlign) 1410 MaxAlign = EltAlign; 1411 if (MaxAlign == MaxMaxAlign) 1412 break; 1413 } 1414 } 1415 } 1416 1417 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1418 /// function arguments in the caller parameter area. 1419 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1420 const DataLayout &DL) const { 1421 // 16byte and wider vectors are passed on 16byte boundary. 1422 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1423 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1424 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1425 getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16)); 1426 return Alignment.value(); 1427 } 1428 1429 bool PPCTargetLowering::useSoftFloat() const { 1430 return Subtarget.useSoftFloat(); 1431 } 1432 1433 bool PPCTargetLowering::hasSPE() const { 1434 return Subtarget.hasSPE(); 1435 } 1436 1437 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1438 return VT.isScalarInteger(); 1439 } 1440 1441 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1442 /// type is cheaper than a multiply followed by a shift. 1443 /// This is true for words and doublewords on 64-bit PowerPC. 1444 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1445 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1446 isOperationLegal(ISD::MULHU, Type))) 1447 return true; 1448 return TargetLowering::isMulhCheaperThanMulShift(Type); 1449 } 1450 1451 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1452 switch ((PPCISD::NodeType)Opcode) { 1453 case PPCISD::FIRST_NUMBER: break; 1454 case PPCISD::FSEL: return "PPCISD::FSEL"; 1455 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1456 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1457 case PPCISD::FCFID: return "PPCISD::FCFID"; 1458 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1459 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1460 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1461 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1462 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1463 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1464 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1465 case PPCISD::FP_TO_UINT_IN_VSR: 1466 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1467 case PPCISD::FP_TO_SINT_IN_VSR: 1468 return "PPCISD::FP_TO_SINT_IN_VSR"; 1469 case PPCISD::FRE: return "PPCISD::FRE"; 1470 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1471 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1472 case PPCISD::VPERM: return "PPCISD::VPERM"; 1473 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1474 case PPCISD::XXSPLTI_SP_TO_DP: 1475 return "PPCISD::XXSPLTI_SP_TO_DP"; 1476 case PPCISD::XXSPLTI32DX: 1477 return "PPCISD::XXSPLTI32DX"; 1478 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1479 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1480 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1481 case PPCISD::CMPB: return "PPCISD::CMPB"; 1482 case PPCISD::Hi: return "PPCISD::Hi"; 1483 case PPCISD::Lo: return "PPCISD::Lo"; 1484 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1485 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1486 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1487 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1488 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1489 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1490 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1491 case PPCISD::SRL: return "PPCISD::SRL"; 1492 case PPCISD::SRA: return "PPCISD::SRA"; 1493 case PPCISD::SHL: return "PPCISD::SHL"; 1494 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1495 case PPCISD::CALL: return "PPCISD::CALL"; 1496 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1497 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1498 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1499 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1500 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1501 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1502 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1503 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1504 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1505 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1506 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1507 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1508 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1509 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1510 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1511 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1512 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1513 case PPCISD::ANDI_rec_1_EQ_BIT: 1514 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1515 case PPCISD::ANDI_rec_1_GT_BIT: 1516 return "PPCISD::ANDI_rec_1_GT_BIT"; 1517 case PPCISD::VCMP: return "PPCISD::VCMP"; 1518 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1519 case PPCISD::LBRX: return "PPCISD::LBRX"; 1520 case PPCISD::STBRX: return "PPCISD::STBRX"; 1521 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1522 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1523 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1524 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1525 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1526 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1527 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1528 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1529 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1530 case PPCISD::ST_VSR_SCAL_INT: 1531 return "PPCISD::ST_VSR_SCAL_INT"; 1532 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1533 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1534 case PPCISD::BDZ: return "PPCISD::BDZ"; 1535 case PPCISD::MFFS: return "PPCISD::MFFS"; 1536 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1537 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1538 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1539 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1540 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1541 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1542 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1543 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1544 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1545 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1546 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1547 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1548 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1549 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1550 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1551 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1552 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1553 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1554 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1555 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1556 case PPCISD::SC: return "PPCISD::SC"; 1557 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1558 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1559 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1560 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1561 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1562 case PPCISD::VABSD: return "PPCISD::VABSD"; 1563 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1564 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1565 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1566 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1567 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1568 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1569 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1570 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1571 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1572 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1573 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1574 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1575 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1576 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1577 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1578 } 1579 return nullptr; 1580 } 1581 1582 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1583 EVT VT) const { 1584 if (!VT.isVector()) 1585 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1586 1587 if (Subtarget.hasQPX()) 1588 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1589 1590 return VT.changeVectorElementTypeToInteger(); 1591 } 1592 1593 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1594 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1595 return true; 1596 } 1597 1598 //===----------------------------------------------------------------------===// 1599 // Node matching predicates, for use by the tblgen matching code. 1600 //===----------------------------------------------------------------------===// 1601 1602 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1603 static bool isFloatingPointZero(SDValue Op) { 1604 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1605 return CFP->getValueAPF().isZero(); 1606 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1607 // Maybe this has already been legalized into the constant pool? 1608 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1609 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1610 return CFP->getValueAPF().isZero(); 1611 } 1612 return false; 1613 } 1614 1615 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1616 /// true if Op is undef or if it matches the specified value. 1617 static bool isConstantOrUndef(int Op, int Val) { 1618 return Op < 0 || Op == Val; 1619 } 1620 1621 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1622 /// VPKUHUM instruction. 1623 /// The ShuffleKind distinguishes between big-endian operations with 1624 /// two different inputs (0), either-endian operations with two identical 1625 /// inputs (1), and little-endian operations with two different inputs (2). 1626 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1627 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1628 SelectionDAG &DAG) { 1629 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1630 if (ShuffleKind == 0) { 1631 if (IsLE) 1632 return false; 1633 for (unsigned i = 0; i != 16; ++i) 1634 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1635 return false; 1636 } else if (ShuffleKind == 2) { 1637 if (!IsLE) 1638 return false; 1639 for (unsigned i = 0; i != 16; ++i) 1640 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1641 return false; 1642 } else if (ShuffleKind == 1) { 1643 unsigned j = IsLE ? 0 : 1; 1644 for (unsigned i = 0; i != 8; ++i) 1645 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1646 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1647 return false; 1648 } 1649 return true; 1650 } 1651 1652 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1653 /// VPKUWUM instruction. 1654 /// The ShuffleKind distinguishes between big-endian operations with 1655 /// two different inputs (0), either-endian operations with two identical 1656 /// inputs (1), and little-endian operations with two different inputs (2). 1657 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1658 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1659 SelectionDAG &DAG) { 1660 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1661 if (ShuffleKind == 0) { 1662 if (IsLE) 1663 return false; 1664 for (unsigned i = 0; i != 16; i += 2) 1665 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1666 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1667 return false; 1668 } else if (ShuffleKind == 2) { 1669 if (!IsLE) 1670 return false; 1671 for (unsigned i = 0; i != 16; i += 2) 1672 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1673 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1674 return false; 1675 } else if (ShuffleKind == 1) { 1676 unsigned j = IsLE ? 0 : 2; 1677 for (unsigned i = 0; i != 8; i += 2) 1678 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1679 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1680 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1681 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1682 return false; 1683 } 1684 return true; 1685 } 1686 1687 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1688 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1689 /// current subtarget. 1690 /// 1691 /// The ShuffleKind distinguishes between big-endian operations with 1692 /// two different inputs (0), either-endian operations with two identical 1693 /// inputs (1), and little-endian operations with two different inputs (2). 1694 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1695 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1696 SelectionDAG &DAG) { 1697 const PPCSubtarget& Subtarget = 1698 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1699 if (!Subtarget.hasP8Vector()) 1700 return false; 1701 1702 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1703 if (ShuffleKind == 0) { 1704 if (IsLE) 1705 return false; 1706 for (unsigned i = 0; i != 16; i += 4) 1707 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1708 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1709 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1710 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1711 return false; 1712 } else if (ShuffleKind == 2) { 1713 if (!IsLE) 1714 return false; 1715 for (unsigned i = 0; i != 16; i += 4) 1716 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1717 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1718 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1719 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1720 return false; 1721 } else if (ShuffleKind == 1) { 1722 unsigned j = IsLE ? 0 : 4; 1723 for (unsigned i = 0; i != 8; i += 4) 1724 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1725 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1726 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1727 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1728 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1729 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1730 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1731 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 /// isVMerge - Common function, used to match vmrg* shuffles. 1738 /// 1739 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1740 unsigned LHSStart, unsigned RHSStart) { 1741 if (N->getValueType(0) != MVT::v16i8) 1742 return false; 1743 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1744 "Unsupported merge size!"); 1745 1746 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1747 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1748 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1749 LHSStart+j+i*UnitSize) || 1750 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1751 RHSStart+j+i*UnitSize)) 1752 return false; 1753 } 1754 return true; 1755 } 1756 1757 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1758 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1759 /// The ShuffleKind distinguishes between big-endian merges with two 1760 /// different inputs (0), either-endian merges with two identical inputs (1), 1761 /// and little-endian merges with two different inputs (2). For the latter, 1762 /// the input operands are swapped (see PPCInstrAltivec.td). 1763 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1764 unsigned ShuffleKind, SelectionDAG &DAG) { 1765 if (DAG.getDataLayout().isLittleEndian()) { 1766 if (ShuffleKind == 1) // unary 1767 return isVMerge(N, UnitSize, 0, 0); 1768 else if (ShuffleKind == 2) // swapped 1769 return isVMerge(N, UnitSize, 0, 16); 1770 else 1771 return false; 1772 } else { 1773 if (ShuffleKind == 1) // unary 1774 return isVMerge(N, UnitSize, 8, 8); 1775 else if (ShuffleKind == 0) // normal 1776 return isVMerge(N, UnitSize, 8, 24); 1777 else 1778 return false; 1779 } 1780 } 1781 1782 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1783 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1784 /// The ShuffleKind distinguishes between big-endian merges with two 1785 /// different inputs (0), either-endian merges with two identical inputs (1), 1786 /// and little-endian merges with two different inputs (2). For the latter, 1787 /// the input operands are swapped (see PPCInstrAltivec.td). 1788 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1789 unsigned ShuffleKind, SelectionDAG &DAG) { 1790 if (DAG.getDataLayout().isLittleEndian()) { 1791 if (ShuffleKind == 1) // unary 1792 return isVMerge(N, UnitSize, 8, 8); 1793 else if (ShuffleKind == 2) // swapped 1794 return isVMerge(N, UnitSize, 8, 24); 1795 else 1796 return false; 1797 } else { 1798 if (ShuffleKind == 1) // unary 1799 return isVMerge(N, UnitSize, 0, 0); 1800 else if (ShuffleKind == 0) // normal 1801 return isVMerge(N, UnitSize, 0, 16); 1802 else 1803 return false; 1804 } 1805 } 1806 1807 /** 1808 * Common function used to match vmrgew and vmrgow shuffles 1809 * 1810 * The indexOffset determines whether to look for even or odd words in 1811 * the shuffle mask. This is based on the of the endianness of the target 1812 * machine. 1813 * - Little Endian: 1814 * - Use offset of 0 to check for odd elements 1815 * - Use offset of 4 to check for even elements 1816 * - Big Endian: 1817 * - Use offset of 0 to check for even elements 1818 * - Use offset of 4 to check for odd elements 1819 * A detailed description of the vector element ordering for little endian and 1820 * big endian can be found at 1821 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1822 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1823 * compiler differences mean to you 1824 * 1825 * The mask to the shuffle vector instruction specifies the indices of the 1826 * elements from the two input vectors to place in the result. The elements are 1827 * numbered in array-access order, starting with the first vector. These vectors 1828 * are always of type v16i8, thus each vector will contain 16 elements of size 1829 * 8. More info on the shuffle vector can be found in the 1830 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1831 * Language Reference. 1832 * 1833 * The RHSStartValue indicates whether the same input vectors are used (unary) 1834 * or two different input vectors are used, based on the following: 1835 * - If the instruction uses the same vector for both inputs, the range of the 1836 * indices will be 0 to 15. In this case, the RHSStart value passed should 1837 * be 0. 1838 * - If the instruction has two different vectors then the range of the 1839 * indices will be 0 to 31. In this case, the RHSStart value passed should 1840 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1841 * to 31 specify elements in the second vector). 1842 * 1843 * \param[in] N The shuffle vector SD Node to analyze 1844 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1845 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1846 * vector to the shuffle_vector instruction 1847 * \return true iff this shuffle vector represents an even or odd word merge 1848 */ 1849 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1850 unsigned RHSStartValue) { 1851 if (N->getValueType(0) != MVT::v16i8) 1852 return false; 1853 1854 for (unsigned i = 0; i < 2; ++i) 1855 for (unsigned j = 0; j < 4; ++j) 1856 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1857 i*RHSStartValue+j+IndexOffset) || 1858 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1859 i*RHSStartValue+j+IndexOffset+8)) 1860 return false; 1861 return true; 1862 } 1863 1864 /** 1865 * Determine if the specified shuffle mask is suitable for the vmrgew or 1866 * vmrgow instructions. 1867 * 1868 * \param[in] N The shuffle vector SD Node to analyze 1869 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1870 * \param[in] ShuffleKind Identify the type of merge: 1871 * - 0 = big-endian merge with two different inputs; 1872 * - 1 = either-endian merge with two identical inputs; 1873 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1874 * little-endian merges). 1875 * \param[in] DAG The current SelectionDAG 1876 * \return true iff this shuffle mask 1877 */ 1878 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1879 unsigned ShuffleKind, SelectionDAG &DAG) { 1880 if (DAG.getDataLayout().isLittleEndian()) { 1881 unsigned indexOffset = CheckEven ? 4 : 0; 1882 if (ShuffleKind == 1) // Unary 1883 return isVMerge(N, indexOffset, 0); 1884 else if (ShuffleKind == 2) // swapped 1885 return isVMerge(N, indexOffset, 16); 1886 else 1887 return false; 1888 } 1889 else { 1890 unsigned indexOffset = CheckEven ? 0 : 4; 1891 if (ShuffleKind == 1) // Unary 1892 return isVMerge(N, indexOffset, 0); 1893 else if (ShuffleKind == 0) // Normal 1894 return isVMerge(N, indexOffset, 16); 1895 else 1896 return false; 1897 } 1898 return false; 1899 } 1900 1901 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1902 /// amount, otherwise return -1. 1903 /// The ShuffleKind distinguishes between big-endian operations with two 1904 /// different inputs (0), either-endian operations with two identical inputs 1905 /// (1), and little-endian operations with two different inputs (2). For the 1906 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1907 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1908 SelectionDAG &DAG) { 1909 if (N->getValueType(0) != MVT::v16i8) 1910 return -1; 1911 1912 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1913 1914 // Find the first non-undef value in the shuffle mask. 1915 unsigned i; 1916 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1917 /*search*/; 1918 1919 if (i == 16) return -1; // all undef. 1920 1921 // Otherwise, check to see if the rest of the elements are consecutively 1922 // numbered from this value. 1923 unsigned ShiftAmt = SVOp->getMaskElt(i); 1924 if (ShiftAmt < i) return -1; 1925 1926 ShiftAmt -= i; 1927 bool isLE = DAG.getDataLayout().isLittleEndian(); 1928 1929 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1930 // Check the rest of the elements to see if they are consecutive. 1931 for (++i; i != 16; ++i) 1932 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1933 return -1; 1934 } else if (ShuffleKind == 1) { 1935 // Check the rest of the elements to see if they are consecutive. 1936 for (++i; i != 16; ++i) 1937 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1938 return -1; 1939 } else 1940 return -1; 1941 1942 if (isLE) 1943 ShiftAmt = 16 - ShiftAmt; 1944 1945 return ShiftAmt; 1946 } 1947 1948 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1949 /// specifies a splat of a single element that is suitable for input to 1950 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1951 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1952 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1953 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1954 1955 // The consecutive indices need to specify an element, not part of two 1956 // different elements. So abandon ship early if this isn't the case. 1957 if (N->getMaskElt(0) % EltSize != 0) 1958 return false; 1959 1960 // This is a splat operation if each element of the permute is the same, and 1961 // if the value doesn't reference the second vector. 1962 unsigned ElementBase = N->getMaskElt(0); 1963 1964 // FIXME: Handle UNDEF elements too! 1965 if (ElementBase >= 16) 1966 return false; 1967 1968 // Check that the indices are consecutive, in the case of a multi-byte element 1969 // splatted with a v16i8 mask. 1970 for (unsigned i = 1; i != EltSize; ++i) 1971 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1972 return false; 1973 1974 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1975 if (N->getMaskElt(i) < 0) continue; 1976 for (unsigned j = 0; j != EltSize; ++j) 1977 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1978 return false; 1979 } 1980 return true; 1981 } 1982 1983 /// Check that the mask is shuffling N byte elements. Within each N byte 1984 /// element of the mask, the indices could be either in increasing or 1985 /// decreasing order as long as they are consecutive. 1986 /// \param[in] N the shuffle vector SD Node to analyze 1987 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1988 /// Word/DoubleWord/QuadWord). 1989 /// \param[in] StepLen the delta indices number among the N byte element, if 1990 /// the mask is in increasing/decreasing order then it is 1/-1. 1991 /// \return true iff the mask is shuffling N byte elements. 1992 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1993 int StepLen) { 1994 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1995 "Unexpected element width."); 1996 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1997 1998 unsigned NumOfElem = 16 / Width; 1999 unsigned MaskVal[16]; // Width is never greater than 16 2000 for (unsigned i = 0; i < NumOfElem; ++i) { 2001 MaskVal[0] = N->getMaskElt(i * Width); 2002 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2003 return false; 2004 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2005 return false; 2006 } 2007 2008 for (unsigned int j = 1; j < Width; ++j) { 2009 MaskVal[j] = N->getMaskElt(i * Width + j); 2010 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2011 return false; 2012 } 2013 } 2014 } 2015 2016 return true; 2017 } 2018 2019 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2020 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2021 if (!isNByteElemShuffleMask(N, 4, 1)) 2022 return false; 2023 2024 // Now we look at mask elements 0,4,8,12 2025 unsigned M0 = N->getMaskElt(0) / 4; 2026 unsigned M1 = N->getMaskElt(4) / 4; 2027 unsigned M2 = N->getMaskElt(8) / 4; 2028 unsigned M3 = N->getMaskElt(12) / 4; 2029 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2030 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2031 2032 // Below, let H and L be arbitrary elements of the shuffle mask 2033 // where H is in the range [4,7] and L is in the range [0,3]. 2034 // H, 1, 2, 3 or L, 5, 6, 7 2035 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2036 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2037 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2038 InsertAtByte = IsLE ? 12 : 0; 2039 Swap = M0 < 4; 2040 return true; 2041 } 2042 // 0, H, 2, 3 or 4, L, 6, 7 2043 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2044 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2045 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2046 InsertAtByte = IsLE ? 8 : 4; 2047 Swap = M1 < 4; 2048 return true; 2049 } 2050 // 0, 1, H, 3 or 4, 5, L, 7 2051 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2052 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2053 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2054 InsertAtByte = IsLE ? 4 : 8; 2055 Swap = M2 < 4; 2056 return true; 2057 } 2058 // 0, 1, 2, H or 4, 5, 6, L 2059 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2060 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2061 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2062 InsertAtByte = IsLE ? 0 : 12; 2063 Swap = M3 < 4; 2064 return true; 2065 } 2066 2067 // If both vector operands for the shuffle are the same vector, the mask will 2068 // contain only elements from the first one and the second one will be undef. 2069 if (N->getOperand(1).isUndef()) { 2070 ShiftElts = 0; 2071 Swap = true; 2072 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2073 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2074 InsertAtByte = IsLE ? 12 : 0; 2075 return true; 2076 } 2077 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2078 InsertAtByte = IsLE ? 8 : 4; 2079 return true; 2080 } 2081 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2082 InsertAtByte = IsLE ? 4 : 8; 2083 return true; 2084 } 2085 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2086 InsertAtByte = IsLE ? 0 : 12; 2087 return true; 2088 } 2089 } 2090 2091 return false; 2092 } 2093 2094 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2095 bool &Swap, bool IsLE) { 2096 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2097 // Ensure each byte index of the word is consecutive. 2098 if (!isNByteElemShuffleMask(N, 4, 1)) 2099 return false; 2100 2101 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2102 unsigned M0 = N->getMaskElt(0) / 4; 2103 unsigned M1 = N->getMaskElt(4) / 4; 2104 unsigned M2 = N->getMaskElt(8) / 4; 2105 unsigned M3 = N->getMaskElt(12) / 4; 2106 2107 // If both vector operands for the shuffle are the same vector, the mask will 2108 // contain only elements from the first one and the second one will be undef. 2109 if (N->getOperand(1).isUndef()) { 2110 assert(M0 < 4 && "Indexing into an undef vector?"); 2111 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2112 return false; 2113 2114 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2115 Swap = false; 2116 return true; 2117 } 2118 2119 // Ensure each word index of the ShuffleVector Mask is consecutive. 2120 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2121 return false; 2122 2123 if (IsLE) { 2124 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2125 // Input vectors don't need to be swapped if the leading element 2126 // of the result is one of the 3 left elements of the second vector 2127 // (or if there is no shift to be done at all). 2128 Swap = false; 2129 ShiftElts = (8 - M0) % 8; 2130 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2131 // Input vectors need to be swapped if the leading element 2132 // of the result is one of the 3 left elements of the first vector 2133 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2134 Swap = true; 2135 ShiftElts = (4 - M0) % 4; 2136 } 2137 2138 return true; 2139 } else { // BE 2140 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2141 // Input vectors don't need to be swapped if the leading element 2142 // of the result is one of the 4 elements of the first vector. 2143 Swap = false; 2144 ShiftElts = M0; 2145 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2146 // Input vectors need to be swapped if the leading element 2147 // of the result is one of the 4 elements of the right vector. 2148 Swap = true; 2149 ShiftElts = M0 - 4; 2150 } 2151 2152 return true; 2153 } 2154 } 2155 2156 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2157 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2158 2159 if (!isNByteElemShuffleMask(N, Width, -1)) 2160 return false; 2161 2162 for (int i = 0; i < 16; i += Width) 2163 if (N->getMaskElt(i) != i + Width - 1) 2164 return false; 2165 2166 return true; 2167 } 2168 2169 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2170 return isXXBRShuffleMaskHelper(N, 2); 2171 } 2172 2173 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2174 return isXXBRShuffleMaskHelper(N, 4); 2175 } 2176 2177 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2178 return isXXBRShuffleMaskHelper(N, 8); 2179 } 2180 2181 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2182 return isXXBRShuffleMaskHelper(N, 16); 2183 } 2184 2185 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2186 /// if the inputs to the instruction should be swapped and set \p DM to the 2187 /// value for the immediate. 2188 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2189 /// AND element 0 of the result comes from the first input (LE) or second input 2190 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2191 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2192 /// mask. 2193 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2194 bool &Swap, bool IsLE) { 2195 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2196 2197 // Ensure each byte index of the double word is consecutive. 2198 if (!isNByteElemShuffleMask(N, 8, 1)) 2199 return false; 2200 2201 unsigned M0 = N->getMaskElt(0) / 8; 2202 unsigned M1 = N->getMaskElt(8) / 8; 2203 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2204 2205 // If both vector operands for the shuffle are the same vector, the mask will 2206 // contain only elements from the first one and the second one will be undef. 2207 if (N->getOperand(1).isUndef()) { 2208 if ((M0 | M1) < 2) { 2209 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2210 Swap = false; 2211 return true; 2212 } else 2213 return false; 2214 } 2215 2216 if (IsLE) { 2217 if (M0 > 1 && M1 < 2) { 2218 Swap = false; 2219 } else if (M0 < 2 && M1 > 1) { 2220 M0 = (M0 + 2) % 4; 2221 M1 = (M1 + 2) % 4; 2222 Swap = true; 2223 } else 2224 return false; 2225 2226 // Note: if control flow comes here that means Swap is already set above 2227 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2228 return true; 2229 } else { // BE 2230 if (M0 < 2 && M1 > 1) { 2231 Swap = false; 2232 } else if (M0 > 1 && M1 < 2) { 2233 M0 = (M0 + 2) % 4; 2234 M1 = (M1 + 2) % 4; 2235 Swap = true; 2236 } else 2237 return false; 2238 2239 // Note: if control flow comes here that means Swap is already set above 2240 DM = (M0 << 1) + (M1 & 1); 2241 return true; 2242 } 2243 } 2244 2245 2246 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2247 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2248 /// elements are counted from the left of the vector register). 2249 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2250 SelectionDAG &DAG) { 2251 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2252 assert(isSplatShuffleMask(SVOp, EltSize)); 2253 if (DAG.getDataLayout().isLittleEndian()) 2254 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2255 else 2256 return SVOp->getMaskElt(0) / EltSize; 2257 } 2258 2259 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2260 /// by using a vspltis[bhw] instruction of the specified element size, return 2261 /// the constant being splatted. The ByteSize field indicates the number of 2262 /// bytes of each element [124] -> [bhw]. 2263 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2264 SDValue OpVal(nullptr, 0); 2265 2266 // If ByteSize of the splat is bigger than the element size of the 2267 // build_vector, then we have a case where we are checking for a splat where 2268 // multiple elements of the buildvector are folded together into a single 2269 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2270 unsigned EltSize = 16/N->getNumOperands(); 2271 if (EltSize < ByteSize) { 2272 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2273 SDValue UniquedVals[4]; 2274 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2275 2276 // See if all of the elements in the buildvector agree across. 2277 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2278 if (N->getOperand(i).isUndef()) continue; 2279 // If the element isn't a constant, bail fully out. 2280 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2281 2282 if (!UniquedVals[i&(Multiple-1)].getNode()) 2283 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2284 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2285 return SDValue(); // no match. 2286 } 2287 2288 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2289 // either constant or undef values that are identical for each chunk. See 2290 // if these chunks can form into a larger vspltis*. 2291 2292 // Check to see if all of the leading entries are either 0 or -1. If 2293 // neither, then this won't fit into the immediate field. 2294 bool LeadingZero = true; 2295 bool LeadingOnes = true; 2296 for (unsigned i = 0; i != Multiple-1; ++i) { 2297 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2298 2299 LeadingZero &= isNullConstant(UniquedVals[i]); 2300 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2301 } 2302 // Finally, check the least significant entry. 2303 if (LeadingZero) { 2304 if (!UniquedVals[Multiple-1].getNode()) 2305 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2306 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2307 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2308 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2309 } 2310 if (LeadingOnes) { 2311 if (!UniquedVals[Multiple-1].getNode()) 2312 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2313 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2314 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2315 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2316 } 2317 2318 return SDValue(); 2319 } 2320 2321 // Check to see if this buildvec has a single non-undef value in its elements. 2322 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2323 if (N->getOperand(i).isUndef()) continue; 2324 if (!OpVal.getNode()) 2325 OpVal = N->getOperand(i); 2326 else if (OpVal != N->getOperand(i)) 2327 return SDValue(); 2328 } 2329 2330 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2331 2332 unsigned ValSizeInBytes = EltSize; 2333 uint64_t Value = 0; 2334 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2335 Value = CN->getZExtValue(); 2336 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2337 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2338 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2339 } 2340 2341 // If the splat value is larger than the element value, then we can never do 2342 // this splat. The only case that we could fit the replicated bits into our 2343 // immediate field for would be zero, and we prefer to use vxor for it. 2344 if (ValSizeInBytes < ByteSize) return SDValue(); 2345 2346 // If the element value is larger than the splat value, check if it consists 2347 // of a repeated bit pattern of size ByteSize. 2348 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2349 return SDValue(); 2350 2351 // Properly sign extend the value. 2352 int MaskVal = SignExtend32(Value, ByteSize * 8); 2353 2354 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2355 if (MaskVal == 0) return SDValue(); 2356 2357 // Finally, if this value fits in a 5 bit sext field, return it 2358 if (SignExtend32<5>(MaskVal) == MaskVal) 2359 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2360 return SDValue(); 2361 } 2362 2363 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2364 /// amount, otherwise return -1. 2365 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2366 EVT VT = N->getValueType(0); 2367 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2368 return -1; 2369 2370 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2371 2372 // Find the first non-undef value in the shuffle mask. 2373 unsigned i; 2374 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2375 /*search*/; 2376 2377 if (i == 4) return -1; // all undef. 2378 2379 // Otherwise, check to see if the rest of the elements are consecutively 2380 // numbered from this value. 2381 unsigned ShiftAmt = SVOp->getMaskElt(i); 2382 if (ShiftAmt < i) return -1; 2383 ShiftAmt -= i; 2384 2385 // Check the rest of the elements to see if they are consecutive. 2386 for (++i; i != 4; ++i) 2387 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2388 return -1; 2389 2390 return ShiftAmt; 2391 } 2392 2393 //===----------------------------------------------------------------------===// 2394 // Addressing Mode Selection 2395 //===----------------------------------------------------------------------===// 2396 2397 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2398 /// or 64-bit immediate, and if the value can be accurately represented as a 2399 /// sign extension from a 16-bit value. If so, this returns true and the 2400 /// immediate. 2401 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2402 if (!isa<ConstantSDNode>(N)) 2403 return false; 2404 2405 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2406 if (N->getValueType(0) == MVT::i32) 2407 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2408 else 2409 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2410 } 2411 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2412 return isIntS16Immediate(Op.getNode(), Imm); 2413 } 2414 2415 2416 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2417 /// be represented as an indexed [r+r] operation. 2418 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2419 SDValue &Index, 2420 SelectionDAG &DAG) const { 2421 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2422 UI != E; ++UI) { 2423 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2424 if (Memop->getMemoryVT() == MVT::f64) { 2425 Base = N.getOperand(0); 2426 Index = N.getOperand(1); 2427 return true; 2428 } 2429 } 2430 } 2431 return false; 2432 } 2433 2434 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2435 /// can be represented as an indexed [r+r] operation. Returns false if it 2436 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2437 /// non-zero and N can be represented by a base register plus a signed 16-bit 2438 /// displacement, make a more precise judgement by checking (displacement % \p 2439 /// EncodingAlignment). 2440 bool PPCTargetLowering::SelectAddressRegReg( 2441 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2442 MaybeAlign EncodingAlignment) const { 2443 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2444 // a [pc+imm]. 2445 if (SelectAddressPCRel(N, Base)) 2446 return false; 2447 2448 int16_t Imm = 0; 2449 if (N.getOpcode() == ISD::ADD) { 2450 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2451 // SPE load/store can only handle 8-bit offsets. 2452 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2453 return true; 2454 if (isIntS16Immediate(N.getOperand(1), Imm) && 2455 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2456 return false; // r+i 2457 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2458 return false; // r+i 2459 2460 Base = N.getOperand(0); 2461 Index = N.getOperand(1); 2462 return true; 2463 } else if (N.getOpcode() == ISD::OR) { 2464 if (isIntS16Immediate(N.getOperand(1), Imm) && 2465 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2466 return false; // r+i can fold it if we can. 2467 2468 // If this is an or of disjoint bitfields, we can codegen this as an add 2469 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2470 // disjoint. 2471 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2472 2473 if (LHSKnown.Zero.getBoolValue()) { 2474 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2475 // If all of the bits are known zero on the LHS or RHS, the add won't 2476 // carry. 2477 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2478 Base = N.getOperand(0); 2479 Index = N.getOperand(1); 2480 return true; 2481 } 2482 } 2483 } 2484 2485 return false; 2486 } 2487 2488 // If we happen to be doing an i64 load or store into a stack slot that has 2489 // less than a 4-byte alignment, then the frame-index elimination may need to 2490 // use an indexed load or store instruction (because the offset may not be a 2491 // multiple of 4). The extra register needed to hold the offset comes from the 2492 // register scavenger, and it is possible that the scavenger will need to use 2493 // an emergency spill slot. As a result, we need to make sure that a spill slot 2494 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2495 // stack slot. 2496 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2497 // FIXME: This does not handle the LWA case. 2498 if (VT != MVT::i64) 2499 return; 2500 2501 // NOTE: We'll exclude negative FIs here, which come from argument 2502 // lowering, because there are no known test cases triggering this problem 2503 // using packed structures (or similar). We can remove this exclusion if 2504 // we find such a test case. The reason why this is so test-case driven is 2505 // because this entire 'fixup' is only to prevent crashes (from the 2506 // register scavenger) on not-really-valid inputs. For example, if we have: 2507 // %a = alloca i1 2508 // %b = bitcast i1* %a to i64* 2509 // store i64* a, i64 b 2510 // then the store should really be marked as 'align 1', but is not. If it 2511 // were marked as 'align 1' then the indexed form would have been 2512 // instruction-selected initially, and the problem this 'fixup' is preventing 2513 // won't happen regardless. 2514 if (FrameIdx < 0) 2515 return; 2516 2517 MachineFunction &MF = DAG.getMachineFunction(); 2518 MachineFrameInfo &MFI = MF.getFrameInfo(); 2519 2520 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2521 return; 2522 2523 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2524 FuncInfo->setHasNonRISpills(); 2525 } 2526 2527 /// Returns true if the address N can be represented by a base register plus 2528 /// a signed 16-bit displacement [r+imm], and if it is not better 2529 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2530 /// displacements that are multiples of that value. 2531 bool PPCTargetLowering::SelectAddressRegImm( 2532 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2533 MaybeAlign EncodingAlignment) const { 2534 // FIXME dl should come from parent load or store, not from address 2535 SDLoc dl(N); 2536 2537 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2538 // a [pc+imm]. 2539 if (SelectAddressPCRel(N, Base)) 2540 return false; 2541 2542 // If this can be more profitably realized as r+r, fail. 2543 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2544 return false; 2545 2546 if (N.getOpcode() == ISD::ADD) { 2547 int16_t imm = 0; 2548 if (isIntS16Immediate(N.getOperand(1), imm) && 2549 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2550 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2551 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2552 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2553 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2554 } else { 2555 Base = N.getOperand(0); 2556 } 2557 return true; // [r+i] 2558 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2559 // Match LOAD (ADD (X, Lo(G))). 2560 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2561 && "Cannot handle constant offsets yet!"); 2562 Disp = N.getOperand(1).getOperand(0); // The global address. 2563 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2564 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2565 Disp.getOpcode() == ISD::TargetConstantPool || 2566 Disp.getOpcode() == ISD::TargetJumpTable); 2567 Base = N.getOperand(0); 2568 return true; // [&g+r] 2569 } 2570 } else if (N.getOpcode() == ISD::OR) { 2571 int16_t imm = 0; 2572 if (isIntS16Immediate(N.getOperand(1), imm) && 2573 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2574 // If this is an or of disjoint bitfields, we can codegen this as an add 2575 // (for better address arithmetic) if the LHS and RHS of the OR are 2576 // provably disjoint. 2577 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2578 2579 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2580 // If all of the bits are known zero on the LHS or RHS, the add won't 2581 // carry. 2582 if (FrameIndexSDNode *FI = 2583 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2584 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2585 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2586 } else { 2587 Base = N.getOperand(0); 2588 } 2589 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2590 return true; 2591 } 2592 } 2593 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2594 // Loading from a constant address. 2595 2596 // If this address fits entirely in a 16-bit sext immediate field, codegen 2597 // this as "d, 0" 2598 int16_t Imm; 2599 if (isIntS16Immediate(CN, Imm) && 2600 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2601 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2602 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2603 CN->getValueType(0)); 2604 return true; 2605 } 2606 2607 // Handle 32-bit sext immediates with LIS + addr mode. 2608 if ((CN->getValueType(0) == MVT::i32 || 2609 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2610 (!EncodingAlignment || 2611 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2612 int Addr = (int)CN->getZExtValue(); 2613 2614 // Otherwise, break this down into an LIS + disp. 2615 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2616 2617 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2618 MVT::i32); 2619 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2620 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2621 return true; 2622 } 2623 } 2624 2625 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2626 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2627 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2628 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2629 } else 2630 Base = N; 2631 return true; // [r+0] 2632 } 2633 2634 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2635 /// represented as an indexed [r+r] operation. 2636 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2637 SDValue &Index, 2638 SelectionDAG &DAG) const { 2639 // Check to see if we can easily represent this as an [r+r] address. This 2640 // will fail if it thinks that the address is more profitably represented as 2641 // reg+imm, e.g. where imm = 0. 2642 if (SelectAddressRegReg(N, Base, Index, DAG)) 2643 return true; 2644 2645 // If the address is the result of an add, we will utilize the fact that the 2646 // address calculation includes an implicit add. However, we can reduce 2647 // register pressure if we do not materialize a constant just for use as the 2648 // index register. We only get rid of the add if it is not an add of a 2649 // value and a 16-bit signed constant and both have a single use. 2650 int16_t imm = 0; 2651 if (N.getOpcode() == ISD::ADD && 2652 (!isIntS16Immediate(N.getOperand(1), imm) || 2653 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2654 Base = N.getOperand(0); 2655 Index = N.getOperand(1); 2656 return true; 2657 } 2658 2659 // Otherwise, do it the hard way, using R0 as the base register. 2660 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2661 N.getValueType()); 2662 Index = N; 2663 return true; 2664 } 2665 2666 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2667 Ty *PCRelCand = dyn_cast<Ty>(N); 2668 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2669 } 2670 2671 /// Returns true if this address is a PC Relative address. 2672 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2673 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2674 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2675 // This is a materialize PC Relative node. Always select this as PC Relative. 2676 Base = N; 2677 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2678 return true; 2679 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2680 isValidPCRelNode<GlobalAddressSDNode>(N) || 2681 isValidPCRelNode<JumpTableSDNode>(N) || 2682 isValidPCRelNode<BlockAddressSDNode>(N)) 2683 return true; 2684 return false; 2685 } 2686 2687 /// Returns true if we should use a direct load into vector instruction 2688 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2689 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2690 2691 // If there are any other uses other than scalar to vector, then we should 2692 // keep it as a scalar load -> direct move pattern to prevent multiple 2693 // loads. 2694 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2695 if (!LD) 2696 return false; 2697 2698 EVT MemVT = LD->getMemoryVT(); 2699 if (!MemVT.isSimple()) 2700 return false; 2701 switch(MemVT.getSimpleVT().SimpleTy) { 2702 case MVT::i64: 2703 break; 2704 case MVT::i32: 2705 if (!ST.hasP8Vector()) 2706 return false; 2707 break; 2708 case MVT::i16: 2709 case MVT::i8: 2710 if (!ST.hasP9Vector()) 2711 return false; 2712 break; 2713 default: 2714 return false; 2715 } 2716 2717 SDValue LoadedVal(N, 0); 2718 if (!LoadedVal.hasOneUse()) 2719 return false; 2720 2721 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2722 UI != UE; ++UI) 2723 if (UI.getUse().get().getResNo() == 0 && 2724 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2725 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2726 return false; 2727 2728 return true; 2729 } 2730 2731 /// getPreIndexedAddressParts - returns true by value, base pointer and 2732 /// offset pointer and addressing mode by reference if the node's address 2733 /// can be legally represented as pre-indexed load / store address. 2734 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2735 SDValue &Offset, 2736 ISD::MemIndexedMode &AM, 2737 SelectionDAG &DAG) const { 2738 if (DisablePPCPreinc) return false; 2739 2740 bool isLoad = true; 2741 SDValue Ptr; 2742 EVT VT; 2743 unsigned Alignment; 2744 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2745 Ptr = LD->getBasePtr(); 2746 VT = LD->getMemoryVT(); 2747 Alignment = LD->getAlignment(); 2748 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2749 Ptr = ST->getBasePtr(); 2750 VT = ST->getMemoryVT(); 2751 Alignment = ST->getAlignment(); 2752 isLoad = false; 2753 } else 2754 return false; 2755 2756 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2757 // instructions because we can fold these into a more efficient instruction 2758 // instead, (such as LXSD). 2759 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2760 return false; 2761 } 2762 2763 // PowerPC doesn't have preinc load/store instructions for vectors (except 2764 // for QPX, which does have preinc r+r forms). 2765 if (VT.isVector()) { 2766 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2767 return false; 2768 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2769 AM = ISD::PRE_INC; 2770 return true; 2771 } 2772 } 2773 2774 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2775 // Common code will reject creating a pre-inc form if the base pointer 2776 // is a frame index, or if N is a store and the base pointer is either 2777 // the same as or a predecessor of the value being stored. Check for 2778 // those situations here, and try with swapped Base/Offset instead. 2779 bool Swap = false; 2780 2781 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2782 Swap = true; 2783 else if (!isLoad) { 2784 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2785 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2786 Swap = true; 2787 } 2788 2789 if (Swap) 2790 std::swap(Base, Offset); 2791 2792 AM = ISD::PRE_INC; 2793 return true; 2794 } 2795 2796 // LDU/STU can only handle immediates that are a multiple of 4. 2797 if (VT != MVT::i64) { 2798 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2799 return false; 2800 } else { 2801 // LDU/STU need an address with at least 4-byte alignment. 2802 if (Alignment < 4) 2803 return false; 2804 2805 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2806 return false; 2807 } 2808 2809 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2810 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2811 // sext i32 to i64 when addr mode is r+i. 2812 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2813 LD->getExtensionType() == ISD::SEXTLOAD && 2814 isa<ConstantSDNode>(Offset)) 2815 return false; 2816 } 2817 2818 AM = ISD::PRE_INC; 2819 return true; 2820 } 2821 2822 //===----------------------------------------------------------------------===// 2823 // LowerOperation implementation 2824 //===----------------------------------------------------------------------===// 2825 2826 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2827 /// and LoOpFlags to the target MO flags. 2828 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2829 unsigned &HiOpFlags, unsigned &LoOpFlags, 2830 const GlobalValue *GV = nullptr) { 2831 HiOpFlags = PPCII::MO_HA; 2832 LoOpFlags = PPCII::MO_LO; 2833 2834 // Don't use the pic base if not in PIC relocation model. 2835 if (IsPIC) { 2836 HiOpFlags |= PPCII::MO_PIC_FLAG; 2837 LoOpFlags |= PPCII::MO_PIC_FLAG; 2838 } 2839 } 2840 2841 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2842 SelectionDAG &DAG) { 2843 SDLoc DL(HiPart); 2844 EVT PtrVT = HiPart.getValueType(); 2845 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2846 2847 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2848 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2849 2850 // With PIC, the first instruction is actually "GR+hi(&G)". 2851 if (isPIC) 2852 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2853 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2854 2855 // Generate non-pic code that has direct accesses to the constant pool. 2856 // The address of the global is just (hi(&g)+lo(&g)). 2857 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2858 } 2859 2860 static void setUsesTOCBasePtr(MachineFunction &MF) { 2861 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2862 FuncInfo->setUsesTOCBasePtr(); 2863 } 2864 2865 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2866 setUsesTOCBasePtr(DAG.getMachineFunction()); 2867 } 2868 2869 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2870 SDValue GA) const { 2871 const bool Is64Bit = Subtarget.isPPC64(); 2872 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2873 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2874 : Subtarget.isAIXABI() 2875 ? DAG.getRegister(PPC::R2, VT) 2876 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2877 SDValue Ops[] = { GA, Reg }; 2878 return DAG.getMemIntrinsicNode( 2879 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2880 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2881 MachineMemOperand::MOLoad); 2882 } 2883 2884 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2885 SelectionDAG &DAG) const { 2886 EVT PtrVT = Op.getValueType(); 2887 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2888 const Constant *C = CP->getConstVal(); 2889 2890 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2891 // The actual address of the GlobalValue is stored in the TOC. 2892 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2893 if (Subtarget.isUsingPCRelativeCalls()) { 2894 SDLoc DL(CP); 2895 EVT Ty = getPointerTy(DAG.getDataLayout()); 2896 SDValue ConstPool = DAG.getTargetConstantPool( 2897 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2898 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2899 } 2900 setUsesTOCBasePtr(DAG); 2901 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2902 return getTOCEntry(DAG, SDLoc(CP), GA); 2903 } 2904 2905 unsigned MOHiFlag, MOLoFlag; 2906 bool IsPIC = isPositionIndependent(); 2907 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2908 2909 if (IsPIC && Subtarget.isSVR4ABI()) { 2910 SDValue GA = 2911 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2912 return getTOCEntry(DAG, SDLoc(CP), GA); 2913 } 2914 2915 SDValue CPIHi = 2916 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2917 SDValue CPILo = 2918 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2919 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2920 } 2921 2922 // For 64-bit PowerPC, prefer the more compact relative encodings. 2923 // This trades 32 bits per jump table entry for one or two instructions 2924 // on the jump site. 2925 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2926 if (isJumpTableRelative()) 2927 return MachineJumpTableInfo::EK_LabelDifference32; 2928 2929 return TargetLowering::getJumpTableEncoding(); 2930 } 2931 2932 bool PPCTargetLowering::isJumpTableRelative() const { 2933 if (UseAbsoluteJumpTables) 2934 return false; 2935 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2936 return true; 2937 return TargetLowering::isJumpTableRelative(); 2938 } 2939 2940 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2941 SelectionDAG &DAG) const { 2942 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2943 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2944 2945 switch (getTargetMachine().getCodeModel()) { 2946 case CodeModel::Small: 2947 case CodeModel::Medium: 2948 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2949 default: 2950 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2951 getPointerTy(DAG.getDataLayout())); 2952 } 2953 } 2954 2955 const MCExpr * 2956 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2957 unsigned JTI, 2958 MCContext &Ctx) const { 2959 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2960 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2961 2962 switch (getTargetMachine().getCodeModel()) { 2963 case CodeModel::Small: 2964 case CodeModel::Medium: 2965 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2966 default: 2967 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2968 } 2969 } 2970 2971 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2972 EVT PtrVT = Op.getValueType(); 2973 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2974 2975 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2976 if (Subtarget.isUsingPCRelativeCalls()) { 2977 SDLoc DL(JT); 2978 EVT Ty = getPointerTy(DAG.getDataLayout()); 2979 SDValue GA = 2980 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2981 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2982 return MatAddr; 2983 } 2984 2985 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2986 // The actual address of the GlobalValue is stored in the TOC. 2987 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2988 setUsesTOCBasePtr(DAG); 2989 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2990 return getTOCEntry(DAG, SDLoc(JT), GA); 2991 } 2992 2993 unsigned MOHiFlag, MOLoFlag; 2994 bool IsPIC = isPositionIndependent(); 2995 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2996 2997 if (IsPIC && Subtarget.isSVR4ABI()) { 2998 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2999 PPCII::MO_PIC_FLAG); 3000 return getTOCEntry(DAG, SDLoc(GA), GA); 3001 } 3002 3003 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3004 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3005 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3006 } 3007 3008 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3009 SelectionDAG &DAG) const { 3010 EVT PtrVT = Op.getValueType(); 3011 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3012 const BlockAddress *BA = BASDN->getBlockAddress(); 3013 3014 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3015 if (Subtarget.isUsingPCRelativeCalls()) { 3016 SDLoc DL(BASDN); 3017 EVT Ty = getPointerTy(DAG.getDataLayout()); 3018 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3019 PPCII::MO_PCREL_FLAG); 3020 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3021 return MatAddr; 3022 } 3023 3024 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3025 // The actual BlockAddress is stored in the TOC. 3026 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3027 setUsesTOCBasePtr(DAG); 3028 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3029 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3030 } 3031 3032 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3033 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3034 return getTOCEntry( 3035 DAG, SDLoc(BASDN), 3036 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3037 3038 unsigned MOHiFlag, MOLoFlag; 3039 bool IsPIC = isPositionIndependent(); 3040 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3041 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3042 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3043 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3044 } 3045 3046 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3047 SelectionDAG &DAG) const { 3048 // FIXME: TLS addresses currently use medium model code sequences, 3049 // which is the most useful form. Eventually support for small and 3050 // large models could be added if users need it, at the cost of 3051 // additional complexity. 3052 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3053 if (DAG.getTarget().useEmulatedTLS()) 3054 return LowerToTLSEmulatedModel(GA, DAG); 3055 3056 SDLoc dl(GA); 3057 const GlobalValue *GV = GA->getGlobal(); 3058 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3059 bool is64bit = Subtarget.isPPC64(); 3060 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3061 PICLevel::Level picLevel = M->getPICLevel(); 3062 3063 const TargetMachine &TM = getTargetMachine(); 3064 TLSModel::Model Model = TM.getTLSModel(GV); 3065 3066 if (Model == TLSModel::LocalExec) { 3067 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3068 PPCII::MO_TPREL_HA); 3069 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3070 PPCII::MO_TPREL_LO); 3071 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3072 : DAG.getRegister(PPC::R2, MVT::i32); 3073 3074 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3075 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3076 } 3077 3078 if (Model == TLSModel::InitialExec) { 3079 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3080 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3081 PPCII::MO_TLS); 3082 SDValue GOTPtr; 3083 if (is64bit) { 3084 setUsesTOCBasePtr(DAG); 3085 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3086 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 3087 PtrVT, GOTReg, TGA); 3088 } else { 3089 if (!TM.isPositionIndependent()) 3090 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3091 else if (picLevel == PICLevel::SmallPIC) 3092 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3093 else 3094 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3095 } 3096 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 3097 PtrVT, TGA, GOTPtr); 3098 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3099 } 3100 3101 if (Model == TLSModel::GeneralDynamic) { 3102 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3103 SDValue GOTPtr; 3104 if (is64bit) { 3105 setUsesTOCBasePtr(DAG); 3106 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3107 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3108 GOTReg, TGA); 3109 } else { 3110 if (picLevel == PICLevel::SmallPIC) 3111 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3112 else 3113 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3114 } 3115 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3116 GOTPtr, TGA, TGA); 3117 } 3118 3119 if (Model == TLSModel::LocalDynamic) { 3120 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3121 SDValue GOTPtr; 3122 if (is64bit) { 3123 setUsesTOCBasePtr(DAG); 3124 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3125 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3126 GOTReg, TGA); 3127 } else { 3128 if (picLevel == PICLevel::SmallPIC) 3129 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3130 else 3131 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3132 } 3133 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3134 PtrVT, GOTPtr, TGA, TGA); 3135 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3136 PtrVT, TLSAddr, TGA); 3137 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3138 } 3139 3140 llvm_unreachable("Unknown TLS model!"); 3141 } 3142 3143 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3144 SelectionDAG &DAG) const { 3145 EVT PtrVT = Op.getValueType(); 3146 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3147 SDLoc DL(GSDN); 3148 const GlobalValue *GV = GSDN->getGlobal(); 3149 3150 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3151 // The actual address of the GlobalValue is stored in the TOC. 3152 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3153 if (Subtarget.isUsingPCRelativeCalls()) { 3154 EVT Ty = getPointerTy(DAG.getDataLayout()); 3155 if (isAccessedAsGotIndirect(Op)) { 3156 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3157 PPCII::MO_PCREL_FLAG | 3158 PPCII::MO_GOT_FLAG); 3159 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3160 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3161 MachinePointerInfo()); 3162 return Load; 3163 } else { 3164 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3165 PPCII::MO_PCREL_FLAG); 3166 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3167 } 3168 } 3169 setUsesTOCBasePtr(DAG); 3170 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3171 return getTOCEntry(DAG, DL, GA); 3172 } 3173 3174 unsigned MOHiFlag, MOLoFlag; 3175 bool IsPIC = isPositionIndependent(); 3176 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3177 3178 if (IsPIC && Subtarget.isSVR4ABI()) { 3179 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3180 GSDN->getOffset(), 3181 PPCII::MO_PIC_FLAG); 3182 return getTOCEntry(DAG, DL, GA); 3183 } 3184 3185 SDValue GAHi = 3186 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3187 SDValue GALo = 3188 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3189 3190 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3191 } 3192 3193 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3194 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3195 SDLoc dl(Op); 3196 3197 if (Op.getValueType() == MVT::v2i64) { 3198 // When the operands themselves are v2i64 values, we need to do something 3199 // special because VSX has no underlying comparison operations for these. 3200 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3201 // Equality can be handled by casting to the legal type for Altivec 3202 // comparisons, everything else needs to be expanded. 3203 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3204 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3205 DAG.getSetCC(dl, MVT::v4i32, 3206 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3207 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3208 CC)); 3209 } 3210 3211 return SDValue(); 3212 } 3213 3214 // We handle most of these in the usual way. 3215 return Op; 3216 } 3217 3218 // If we're comparing for equality to zero, expose the fact that this is 3219 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3220 // fold the new nodes. 3221 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3222 return V; 3223 3224 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3225 // Leave comparisons against 0 and -1 alone for now, since they're usually 3226 // optimized. FIXME: revisit this when we can custom lower all setcc 3227 // optimizations. 3228 if (C->isAllOnesValue() || C->isNullValue()) 3229 return SDValue(); 3230 } 3231 3232 // If we have an integer seteq/setne, turn it into a compare against zero 3233 // by xor'ing the rhs with the lhs, which is faster than setting a 3234 // condition register, reading it back out, and masking the correct bit. The 3235 // normal approach here uses sub to do this instead of xor. Using xor exposes 3236 // the result to other bit-twiddling opportunities. 3237 EVT LHSVT = Op.getOperand(0).getValueType(); 3238 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3239 EVT VT = Op.getValueType(); 3240 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3241 Op.getOperand(1)); 3242 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3243 } 3244 return SDValue(); 3245 } 3246 3247 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3248 SDNode *Node = Op.getNode(); 3249 EVT VT = Node->getValueType(0); 3250 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3251 SDValue InChain = Node->getOperand(0); 3252 SDValue VAListPtr = Node->getOperand(1); 3253 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3254 SDLoc dl(Node); 3255 3256 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3257 3258 // gpr_index 3259 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3260 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3261 InChain = GprIndex.getValue(1); 3262 3263 if (VT == MVT::i64) { 3264 // Check if GprIndex is even 3265 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3266 DAG.getConstant(1, dl, MVT::i32)); 3267 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3268 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3269 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3270 DAG.getConstant(1, dl, MVT::i32)); 3271 // Align GprIndex to be even if it isn't 3272 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3273 GprIndex); 3274 } 3275 3276 // fpr index is 1 byte after gpr 3277 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3278 DAG.getConstant(1, dl, MVT::i32)); 3279 3280 // fpr 3281 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3282 FprPtr, MachinePointerInfo(SV), MVT::i8); 3283 InChain = FprIndex.getValue(1); 3284 3285 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3286 DAG.getConstant(8, dl, MVT::i32)); 3287 3288 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3289 DAG.getConstant(4, dl, MVT::i32)); 3290 3291 // areas 3292 SDValue OverflowArea = 3293 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3294 InChain = OverflowArea.getValue(1); 3295 3296 SDValue RegSaveArea = 3297 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3298 InChain = RegSaveArea.getValue(1); 3299 3300 // select overflow_area if index > 8 3301 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3302 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3303 3304 // adjustment constant gpr_index * 4/8 3305 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3306 VT.isInteger() ? GprIndex : FprIndex, 3307 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3308 MVT::i32)); 3309 3310 // OurReg = RegSaveArea + RegConstant 3311 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3312 RegConstant); 3313 3314 // Floating types are 32 bytes into RegSaveArea 3315 if (VT.isFloatingPoint()) 3316 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3317 DAG.getConstant(32, dl, MVT::i32)); 3318 3319 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3320 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3321 VT.isInteger() ? GprIndex : FprIndex, 3322 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3323 MVT::i32)); 3324 3325 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3326 VT.isInteger() ? VAListPtr : FprPtr, 3327 MachinePointerInfo(SV), MVT::i8); 3328 3329 // determine if we should load from reg_save_area or overflow_area 3330 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3331 3332 // increase overflow_area by 4/8 if gpr/fpr > 8 3333 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3334 DAG.getConstant(VT.isInteger() ? 4 : 8, 3335 dl, MVT::i32)); 3336 3337 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3338 OverflowAreaPlusN); 3339 3340 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3341 MachinePointerInfo(), MVT::i32); 3342 3343 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3344 } 3345 3346 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3347 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3348 3349 // We have to copy the entire va_list struct: 3350 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3351 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3352 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3353 false, true, false, MachinePointerInfo(), 3354 MachinePointerInfo()); 3355 } 3356 3357 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3358 SelectionDAG &DAG) const { 3359 if (Subtarget.isAIXABI()) 3360 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3361 3362 return Op.getOperand(0); 3363 } 3364 3365 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3366 SelectionDAG &DAG) const { 3367 if (Subtarget.isAIXABI()) 3368 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3369 3370 SDValue Chain = Op.getOperand(0); 3371 SDValue Trmp = Op.getOperand(1); // trampoline 3372 SDValue FPtr = Op.getOperand(2); // nested function 3373 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3374 SDLoc dl(Op); 3375 3376 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3377 bool isPPC64 = (PtrVT == MVT::i64); 3378 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3379 3380 TargetLowering::ArgListTy Args; 3381 TargetLowering::ArgListEntry Entry; 3382 3383 Entry.Ty = IntPtrTy; 3384 Entry.Node = Trmp; Args.push_back(Entry); 3385 3386 // TrampSize == (isPPC64 ? 48 : 40); 3387 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3388 isPPC64 ? MVT::i64 : MVT::i32); 3389 Args.push_back(Entry); 3390 3391 Entry.Node = FPtr; Args.push_back(Entry); 3392 Entry.Node = Nest; Args.push_back(Entry); 3393 3394 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3395 TargetLowering::CallLoweringInfo CLI(DAG); 3396 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3397 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3398 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3399 3400 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3401 return CallResult.second; 3402 } 3403 3404 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3405 MachineFunction &MF = DAG.getMachineFunction(); 3406 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3407 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3408 3409 SDLoc dl(Op); 3410 3411 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3412 // vastart just stores the address of the VarArgsFrameIndex slot into the 3413 // memory location argument. 3414 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3415 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3416 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3417 MachinePointerInfo(SV)); 3418 } 3419 3420 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3421 // We suppose the given va_list is already allocated. 3422 // 3423 // typedef struct { 3424 // char gpr; /* index into the array of 8 GPRs 3425 // * stored in the register save area 3426 // * gpr=0 corresponds to r3, 3427 // * gpr=1 to r4, etc. 3428 // */ 3429 // char fpr; /* index into the array of 8 FPRs 3430 // * stored in the register save area 3431 // * fpr=0 corresponds to f1, 3432 // * fpr=1 to f2, etc. 3433 // */ 3434 // char *overflow_arg_area; 3435 // /* location on stack that holds 3436 // * the next overflow argument 3437 // */ 3438 // char *reg_save_area; 3439 // /* where r3:r10 and f1:f8 (if saved) 3440 // * are stored 3441 // */ 3442 // } va_list[1]; 3443 3444 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3445 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3446 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3447 PtrVT); 3448 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3449 PtrVT); 3450 3451 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3452 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3453 3454 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3455 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3456 3457 uint64_t FPROffset = 1; 3458 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3459 3460 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3461 3462 // Store first byte : number of int regs 3463 SDValue firstStore = 3464 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3465 MachinePointerInfo(SV), MVT::i8); 3466 uint64_t nextOffset = FPROffset; 3467 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3468 ConstFPROffset); 3469 3470 // Store second byte : number of float regs 3471 SDValue secondStore = 3472 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3473 MachinePointerInfo(SV, nextOffset), MVT::i8); 3474 nextOffset += StackOffset; 3475 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3476 3477 // Store second word : arguments given on stack 3478 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3479 MachinePointerInfo(SV, nextOffset)); 3480 nextOffset += FrameOffset; 3481 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3482 3483 // Store third word : arguments given in registers 3484 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3485 MachinePointerInfo(SV, nextOffset)); 3486 } 3487 3488 /// FPR - The set of FP registers that should be allocated for arguments 3489 /// on Darwin and AIX. 3490 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3491 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3492 PPC::F11, PPC::F12, PPC::F13}; 3493 3494 /// QFPR - The set of QPX registers that should be allocated for arguments. 3495 static const MCPhysReg QFPR[] = { 3496 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3497 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3498 3499 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3500 /// the stack. 3501 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3502 unsigned PtrByteSize) { 3503 unsigned ArgSize = ArgVT.getStoreSize(); 3504 if (Flags.isByVal()) 3505 ArgSize = Flags.getByValSize(); 3506 3507 // Round up to multiples of the pointer size, except for array members, 3508 // which are always packed. 3509 if (!Flags.isInConsecutiveRegs()) 3510 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3511 3512 return ArgSize; 3513 } 3514 3515 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3516 /// on the stack. 3517 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3518 ISD::ArgFlagsTy Flags, 3519 unsigned PtrByteSize) { 3520 Align Alignment(PtrByteSize); 3521 3522 // Altivec parameters are padded to a 16 byte boundary. 3523 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3524 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3525 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3526 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3527 Alignment = Align(16); 3528 // QPX vector types stored in double-precision are padded to a 32 byte 3529 // boundary. 3530 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3531 Alignment = Align(32); 3532 3533 // ByVal parameters are aligned as requested. 3534 if (Flags.isByVal()) { 3535 auto BVAlign = Flags.getNonZeroByValAlign(); 3536 if (BVAlign > PtrByteSize) { 3537 if (BVAlign.value() % PtrByteSize != 0) 3538 llvm_unreachable( 3539 "ByVal alignment is not a multiple of the pointer size"); 3540 3541 Alignment = BVAlign; 3542 } 3543 } 3544 3545 // Array members are always packed to their original alignment. 3546 if (Flags.isInConsecutiveRegs()) { 3547 // If the array member was split into multiple registers, the first 3548 // needs to be aligned to the size of the full type. (Except for 3549 // ppcf128, which is only aligned as its f64 components.) 3550 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3551 Alignment = Align(OrigVT.getStoreSize()); 3552 else 3553 Alignment = Align(ArgVT.getStoreSize()); 3554 } 3555 3556 return Alignment; 3557 } 3558 3559 /// CalculateStackSlotUsed - Return whether this argument will use its 3560 /// stack slot (instead of being passed in registers). ArgOffset, 3561 /// AvailableFPRs, and AvailableVRs must hold the current argument 3562 /// position, and will be updated to account for this argument. 3563 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3564 ISD::ArgFlagsTy Flags, 3565 unsigned PtrByteSize, 3566 unsigned LinkageSize, 3567 unsigned ParamAreaSize, 3568 unsigned &ArgOffset, 3569 unsigned &AvailableFPRs, 3570 unsigned &AvailableVRs, bool HasQPX) { 3571 bool UseMemory = false; 3572 3573 // Respect alignment of argument on the stack. 3574 Align Alignment = 3575 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3576 ArgOffset = alignTo(ArgOffset, Alignment); 3577 // If there's no space left in the argument save area, we must 3578 // use memory (this check also catches zero-sized arguments). 3579 if (ArgOffset >= LinkageSize + ParamAreaSize) 3580 UseMemory = true; 3581 3582 // Allocate argument on the stack. 3583 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3584 if (Flags.isInConsecutiveRegsLast()) 3585 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3586 // If we overran the argument save area, we must use memory 3587 // (this check catches arguments passed partially in memory) 3588 if (ArgOffset > LinkageSize + ParamAreaSize) 3589 UseMemory = true; 3590 3591 // However, if the argument is actually passed in an FPR or a VR, 3592 // we don't use memory after all. 3593 if (!Flags.isByVal()) { 3594 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3595 // QPX registers overlap with the scalar FP registers. 3596 (HasQPX && (ArgVT == MVT::v4f32 || 3597 ArgVT == MVT::v4f64 || 3598 ArgVT == MVT::v4i1))) 3599 if (AvailableFPRs > 0) { 3600 --AvailableFPRs; 3601 return false; 3602 } 3603 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3604 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3605 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3606 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3607 if (AvailableVRs > 0) { 3608 --AvailableVRs; 3609 return false; 3610 } 3611 } 3612 3613 return UseMemory; 3614 } 3615 3616 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3617 /// ensure minimum alignment required for target. 3618 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3619 unsigned NumBytes) { 3620 return alignTo(NumBytes, Lowering->getStackAlign()); 3621 } 3622 3623 SDValue PPCTargetLowering::LowerFormalArguments( 3624 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3625 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3626 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3627 if (Subtarget.isAIXABI()) 3628 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3629 InVals); 3630 if (Subtarget.is64BitELFABI()) 3631 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3632 InVals); 3633 if (Subtarget.is32BitELFABI()) 3634 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3635 InVals); 3636 3637 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3638 InVals); 3639 } 3640 3641 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3642 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3643 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3644 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3645 3646 // 32-bit SVR4 ABI Stack Frame Layout: 3647 // +-----------------------------------+ 3648 // +--> | Back chain | 3649 // | +-----------------------------------+ 3650 // | | Floating-point register save area | 3651 // | +-----------------------------------+ 3652 // | | General register save area | 3653 // | +-----------------------------------+ 3654 // | | CR save word | 3655 // | +-----------------------------------+ 3656 // | | VRSAVE save word | 3657 // | +-----------------------------------+ 3658 // | | Alignment padding | 3659 // | +-----------------------------------+ 3660 // | | Vector register save area | 3661 // | +-----------------------------------+ 3662 // | | Local variable space | 3663 // | +-----------------------------------+ 3664 // | | Parameter list area | 3665 // | +-----------------------------------+ 3666 // | | LR save word | 3667 // | +-----------------------------------+ 3668 // SP--> +--- | Back chain | 3669 // +-----------------------------------+ 3670 // 3671 // Specifications: 3672 // System V Application Binary Interface PowerPC Processor Supplement 3673 // AltiVec Technology Programming Interface Manual 3674 3675 MachineFunction &MF = DAG.getMachineFunction(); 3676 MachineFrameInfo &MFI = MF.getFrameInfo(); 3677 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3678 3679 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3680 // Potential tail calls could cause overwriting of argument stack slots. 3681 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3682 (CallConv == CallingConv::Fast)); 3683 const Align PtrAlign(4); 3684 3685 // Assign locations to all of the incoming arguments. 3686 SmallVector<CCValAssign, 16> ArgLocs; 3687 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3688 *DAG.getContext()); 3689 3690 // Reserve space for the linkage area on the stack. 3691 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3692 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3693 if (useSoftFloat()) 3694 CCInfo.PreAnalyzeFormalArguments(Ins); 3695 3696 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3697 CCInfo.clearWasPPCF128(); 3698 3699 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3700 CCValAssign &VA = ArgLocs[i]; 3701 3702 // Arguments stored in registers. 3703 if (VA.isRegLoc()) { 3704 const TargetRegisterClass *RC; 3705 EVT ValVT = VA.getValVT(); 3706 3707 switch (ValVT.getSimpleVT().SimpleTy) { 3708 default: 3709 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3710 case MVT::i1: 3711 case MVT::i32: 3712 RC = &PPC::GPRCRegClass; 3713 break; 3714 case MVT::f32: 3715 if (Subtarget.hasP8Vector()) 3716 RC = &PPC::VSSRCRegClass; 3717 else if (Subtarget.hasSPE()) 3718 RC = &PPC::GPRCRegClass; 3719 else 3720 RC = &PPC::F4RCRegClass; 3721 break; 3722 case MVT::f64: 3723 if (Subtarget.hasVSX()) 3724 RC = &PPC::VSFRCRegClass; 3725 else if (Subtarget.hasSPE()) 3726 // SPE passes doubles in GPR pairs. 3727 RC = &PPC::GPRCRegClass; 3728 else 3729 RC = &PPC::F8RCRegClass; 3730 break; 3731 case MVT::v16i8: 3732 case MVT::v8i16: 3733 case MVT::v4i32: 3734 RC = &PPC::VRRCRegClass; 3735 break; 3736 case MVT::v4f32: 3737 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3738 break; 3739 case MVT::v2f64: 3740 case MVT::v2i64: 3741 RC = &PPC::VRRCRegClass; 3742 break; 3743 case MVT::v4f64: 3744 RC = &PPC::QFRCRegClass; 3745 break; 3746 case MVT::v4i1: 3747 RC = &PPC::QBRCRegClass; 3748 break; 3749 } 3750 3751 SDValue ArgValue; 3752 // Transform the arguments stored in physical registers into 3753 // virtual ones. 3754 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3755 assert(i + 1 < e && "No second half of double precision argument"); 3756 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3757 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3758 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3759 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3760 if (!Subtarget.isLittleEndian()) 3761 std::swap (ArgValueLo, ArgValueHi); 3762 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3763 ArgValueHi); 3764 } else { 3765 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3766 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3767 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3768 if (ValVT == MVT::i1) 3769 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3770 } 3771 3772 InVals.push_back(ArgValue); 3773 } else { 3774 // Argument stored in memory. 3775 assert(VA.isMemLoc()); 3776 3777 // Get the extended size of the argument type in stack 3778 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3779 // Get the actual size of the argument type 3780 unsigned ObjSize = VA.getValVT().getStoreSize(); 3781 unsigned ArgOffset = VA.getLocMemOffset(); 3782 // Stack objects in PPC32 are right justified. 3783 ArgOffset += ArgSize - ObjSize; 3784 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3785 3786 // Create load nodes to retrieve arguments from the stack. 3787 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3788 InVals.push_back( 3789 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3790 } 3791 } 3792 3793 // Assign locations to all of the incoming aggregate by value arguments. 3794 // Aggregates passed by value are stored in the local variable space of the 3795 // caller's stack frame, right above the parameter list area. 3796 SmallVector<CCValAssign, 16> ByValArgLocs; 3797 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3798 ByValArgLocs, *DAG.getContext()); 3799 3800 // Reserve stack space for the allocations in CCInfo. 3801 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3802 3803 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3804 3805 // Area that is at least reserved in the caller of this function. 3806 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3807 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3808 3809 // Set the size that is at least reserved in caller of this function. Tail 3810 // call optimized function's reserved stack space needs to be aligned so that 3811 // taking the difference between two stack areas will result in an aligned 3812 // stack. 3813 MinReservedArea = 3814 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3815 FuncInfo->setMinReservedArea(MinReservedArea); 3816 3817 SmallVector<SDValue, 8> MemOps; 3818 3819 // If the function takes variable number of arguments, make a frame index for 3820 // the start of the first vararg value... for expansion of llvm.va_start. 3821 if (isVarArg) { 3822 static const MCPhysReg GPArgRegs[] = { 3823 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3824 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3825 }; 3826 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3827 3828 static const MCPhysReg FPArgRegs[] = { 3829 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3830 PPC::F8 3831 }; 3832 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3833 3834 if (useSoftFloat() || hasSPE()) 3835 NumFPArgRegs = 0; 3836 3837 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3838 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3839 3840 // Make room for NumGPArgRegs and NumFPArgRegs. 3841 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3842 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3843 3844 FuncInfo->setVarArgsStackOffset( 3845 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3846 CCInfo.getNextStackOffset(), true)); 3847 3848 FuncInfo->setVarArgsFrameIndex( 3849 MFI.CreateStackObject(Depth, Align(8), false)); 3850 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3851 3852 // The fixed integer arguments of a variadic function are stored to the 3853 // VarArgsFrameIndex on the stack so that they may be loaded by 3854 // dereferencing the result of va_next. 3855 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3856 // Get an existing live-in vreg, or add a new one. 3857 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3858 if (!VReg) 3859 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3860 3861 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3862 SDValue Store = 3863 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3864 MemOps.push_back(Store); 3865 // Increment the address by four for the next argument to store 3866 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3867 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3868 } 3869 3870 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3871 // is set. 3872 // The double arguments are stored to the VarArgsFrameIndex 3873 // on the stack. 3874 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3875 // Get an existing live-in vreg, or add a new one. 3876 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3877 if (!VReg) 3878 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3879 3880 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3881 SDValue Store = 3882 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3883 MemOps.push_back(Store); 3884 // Increment the address by eight for the next argument to store 3885 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3886 PtrVT); 3887 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3888 } 3889 } 3890 3891 if (!MemOps.empty()) 3892 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3893 3894 return Chain; 3895 } 3896 3897 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3898 // value to MVT::i64 and then truncate to the correct register size. 3899 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3900 EVT ObjectVT, SelectionDAG &DAG, 3901 SDValue ArgVal, 3902 const SDLoc &dl) const { 3903 if (Flags.isSExt()) 3904 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3905 DAG.getValueType(ObjectVT)); 3906 else if (Flags.isZExt()) 3907 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3908 DAG.getValueType(ObjectVT)); 3909 3910 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3911 } 3912 3913 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3914 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3915 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3916 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3917 // TODO: add description of PPC stack frame format, or at least some docs. 3918 // 3919 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3920 bool isLittleEndian = Subtarget.isLittleEndian(); 3921 MachineFunction &MF = DAG.getMachineFunction(); 3922 MachineFrameInfo &MFI = MF.getFrameInfo(); 3923 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3924 3925 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3926 "fastcc not supported on varargs functions"); 3927 3928 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3929 // Potential tail calls could cause overwriting of argument stack slots. 3930 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3931 (CallConv == CallingConv::Fast)); 3932 unsigned PtrByteSize = 8; 3933 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3934 3935 static const MCPhysReg GPR[] = { 3936 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3937 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3938 }; 3939 static const MCPhysReg VR[] = { 3940 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3941 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3942 }; 3943 3944 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3945 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3946 const unsigned Num_VR_Regs = array_lengthof(VR); 3947 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3948 3949 // Do a first pass over the arguments to determine whether the ABI 3950 // guarantees that our caller has allocated the parameter save area 3951 // on its stack frame. In the ELFv1 ABI, this is always the case; 3952 // in the ELFv2 ABI, it is true if this is a vararg function or if 3953 // any parameter is located in a stack slot. 3954 3955 bool HasParameterArea = !isELFv2ABI || isVarArg; 3956 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3957 unsigned NumBytes = LinkageSize; 3958 unsigned AvailableFPRs = Num_FPR_Regs; 3959 unsigned AvailableVRs = Num_VR_Regs; 3960 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3961 if (Ins[i].Flags.isNest()) 3962 continue; 3963 3964 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3965 PtrByteSize, LinkageSize, ParamAreaSize, 3966 NumBytes, AvailableFPRs, AvailableVRs, 3967 Subtarget.hasQPX())) 3968 HasParameterArea = true; 3969 } 3970 3971 // Add DAG nodes to load the arguments or copy them out of registers. On 3972 // entry to a function on PPC, the arguments start after the linkage area, 3973 // although the first ones are often in registers. 3974 3975 unsigned ArgOffset = LinkageSize; 3976 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3977 unsigned &QFPR_idx = FPR_idx; 3978 SmallVector<SDValue, 8> MemOps; 3979 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3980 unsigned CurArgIdx = 0; 3981 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3982 SDValue ArgVal; 3983 bool needsLoad = false; 3984 EVT ObjectVT = Ins[ArgNo].VT; 3985 EVT OrigVT = Ins[ArgNo].ArgVT; 3986 unsigned ObjSize = ObjectVT.getStoreSize(); 3987 unsigned ArgSize = ObjSize; 3988 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3989 if (Ins[ArgNo].isOrigArg()) { 3990 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3991 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3992 } 3993 // We re-align the argument offset for each argument, except when using the 3994 // fast calling convention, when we need to make sure we do that only when 3995 // we'll actually use a stack slot. 3996 unsigned CurArgOffset; 3997 Align Alignment; 3998 auto ComputeArgOffset = [&]() { 3999 /* Respect alignment of argument on the stack. */ 4000 Alignment = 4001 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4002 ArgOffset = alignTo(ArgOffset, Alignment); 4003 CurArgOffset = ArgOffset; 4004 }; 4005 4006 if (CallConv != CallingConv::Fast) { 4007 ComputeArgOffset(); 4008 4009 /* Compute GPR index associated with argument offset. */ 4010 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4011 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4012 } 4013 4014 // FIXME the codegen can be much improved in some cases. 4015 // We do not have to keep everything in memory. 4016 if (Flags.isByVal()) { 4017 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4018 4019 if (CallConv == CallingConv::Fast) 4020 ComputeArgOffset(); 4021 4022 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4023 ObjSize = Flags.getByValSize(); 4024 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4025 // Empty aggregate parameters do not take up registers. Examples: 4026 // struct { } a; 4027 // union { } b; 4028 // int c[0]; 4029 // etc. However, we have to provide a place-holder in InVals, so 4030 // pretend we have an 8-byte item at the current address for that 4031 // purpose. 4032 if (!ObjSize) { 4033 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4034 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4035 InVals.push_back(FIN); 4036 continue; 4037 } 4038 4039 // Create a stack object covering all stack doublewords occupied 4040 // by the argument. If the argument is (fully or partially) on 4041 // the stack, or if the argument is fully in registers but the 4042 // caller has allocated the parameter save anyway, we can refer 4043 // directly to the caller's stack frame. Otherwise, create a 4044 // local copy in our own frame. 4045 int FI; 4046 if (HasParameterArea || 4047 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4048 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4049 else 4050 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4051 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4052 4053 // Handle aggregates smaller than 8 bytes. 4054 if (ObjSize < PtrByteSize) { 4055 // The value of the object is its address, which differs from the 4056 // address of the enclosing doubleword on big-endian systems. 4057 SDValue Arg = FIN; 4058 if (!isLittleEndian) { 4059 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4060 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4061 } 4062 InVals.push_back(Arg); 4063 4064 if (GPR_idx != Num_GPR_Regs) { 4065 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4066 FuncInfo->addLiveInAttr(VReg, Flags); 4067 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4068 SDValue Store; 4069 4070 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4071 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4072 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4073 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4074 MachinePointerInfo(&*FuncArg), ObjType); 4075 } else { 4076 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4077 // store the whole register as-is to the parameter save area 4078 // slot. 4079 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4080 MachinePointerInfo(&*FuncArg)); 4081 } 4082 4083 MemOps.push_back(Store); 4084 } 4085 // Whether we copied from a register or not, advance the offset 4086 // into the parameter save area by a full doubleword. 4087 ArgOffset += PtrByteSize; 4088 continue; 4089 } 4090 4091 // The value of the object is its address, which is the address of 4092 // its first stack doubleword. 4093 InVals.push_back(FIN); 4094 4095 // Store whatever pieces of the object are in registers to memory. 4096 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4097 if (GPR_idx == Num_GPR_Regs) 4098 break; 4099 4100 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4101 FuncInfo->addLiveInAttr(VReg, Flags); 4102 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4103 SDValue Addr = FIN; 4104 if (j) { 4105 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4106 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4107 } 4108 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4109 MachinePointerInfo(&*FuncArg, j)); 4110 MemOps.push_back(Store); 4111 ++GPR_idx; 4112 } 4113 ArgOffset += ArgSize; 4114 continue; 4115 } 4116 4117 switch (ObjectVT.getSimpleVT().SimpleTy) { 4118 default: llvm_unreachable("Unhandled argument type!"); 4119 case MVT::i1: 4120 case MVT::i32: 4121 case MVT::i64: 4122 if (Flags.isNest()) { 4123 // The 'nest' parameter, if any, is passed in R11. 4124 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4125 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4126 4127 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4128 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4129 4130 break; 4131 } 4132 4133 // These can be scalar arguments or elements of an integer array type 4134 // passed directly. Clang may use those instead of "byval" aggregate 4135 // types to avoid forcing arguments to memory unnecessarily. 4136 if (GPR_idx != Num_GPR_Regs) { 4137 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4138 FuncInfo->addLiveInAttr(VReg, Flags); 4139 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4140 4141 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4142 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4143 // value to MVT::i64 and then truncate to the correct register size. 4144 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4145 } else { 4146 if (CallConv == CallingConv::Fast) 4147 ComputeArgOffset(); 4148 4149 needsLoad = true; 4150 ArgSize = PtrByteSize; 4151 } 4152 if (CallConv != CallingConv::Fast || needsLoad) 4153 ArgOffset += 8; 4154 break; 4155 4156 case MVT::f32: 4157 case MVT::f64: 4158 // These can be scalar arguments or elements of a float array type 4159 // passed directly. The latter are used to implement ELFv2 homogenous 4160 // float aggregates. 4161 if (FPR_idx != Num_FPR_Regs) { 4162 unsigned VReg; 4163 4164 if (ObjectVT == MVT::f32) 4165 VReg = MF.addLiveIn(FPR[FPR_idx], 4166 Subtarget.hasP8Vector() 4167 ? &PPC::VSSRCRegClass 4168 : &PPC::F4RCRegClass); 4169 else 4170 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4171 ? &PPC::VSFRCRegClass 4172 : &PPC::F8RCRegClass); 4173 4174 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4175 ++FPR_idx; 4176 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4177 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4178 // once we support fp <-> gpr moves. 4179 4180 // This can only ever happen in the presence of f32 array types, 4181 // since otherwise we never run out of FPRs before running out 4182 // of GPRs. 4183 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4184 FuncInfo->addLiveInAttr(VReg, Flags); 4185 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4186 4187 if (ObjectVT == MVT::f32) { 4188 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4189 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4190 DAG.getConstant(32, dl, MVT::i32)); 4191 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4192 } 4193 4194 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4195 } else { 4196 if (CallConv == CallingConv::Fast) 4197 ComputeArgOffset(); 4198 4199 needsLoad = true; 4200 } 4201 4202 // When passing an array of floats, the array occupies consecutive 4203 // space in the argument area; only round up to the next doubleword 4204 // at the end of the array. Otherwise, each float takes 8 bytes. 4205 if (CallConv != CallingConv::Fast || needsLoad) { 4206 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4207 ArgOffset += ArgSize; 4208 if (Flags.isInConsecutiveRegsLast()) 4209 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4210 } 4211 break; 4212 case MVT::v4f32: 4213 case MVT::v4i32: 4214 case MVT::v8i16: 4215 case MVT::v16i8: 4216 case MVT::v2f64: 4217 case MVT::v2i64: 4218 case MVT::v1i128: 4219 case MVT::f128: 4220 if (!Subtarget.hasQPX()) { 4221 // These can be scalar arguments or elements of a vector array type 4222 // passed directly. The latter are used to implement ELFv2 homogenous 4223 // vector aggregates. 4224 if (VR_idx != Num_VR_Regs) { 4225 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4226 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4227 ++VR_idx; 4228 } else { 4229 if (CallConv == CallingConv::Fast) 4230 ComputeArgOffset(); 4231 needsLoad = true; 4232 } 4233 if (CallConv != CallingConv::Fast || needsLoad) 4234 ArgOffset += 16; 4235 break; 4236 } // not QPX 4237 4238 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4239 "Invalid QPX parameter type"); 4240 LLVM_FALLTHROUGH; 4241 4242 case MVT::v4f64: 4243 case MVT::v4i1: 4244 // QPX vectors are treated like their scalar floating-point subregisters 4245 // (except that they're larger). 4246 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4247 if (QFPR_idx != Num_QFPR_Regs) { 4248 const TargetRegisterClass *RC; 4249 switch (ObjectVT.getSimpleVT().SimpleTy) { 4250 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4251 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4252 default: RC = &PPC::QBRCRegClass; break; 4253 } 4254 4255 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4256 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4257 ++QFPR_idx; 4258 } else { 4259 if (CallConv == CallingConv::Fast) 4260 ComputeArgOffset(); 4261 needsLoad = true; 4262 } 4263 if (CallConv != CallingConv::Fast || needsLoad) 4264 ArgOffset += Sz; 4265 break; 4266 } 4267 4268 // We need to load the argument to a virtual register if we determined 4269 // above that we ran out of physical registers of the appropriate type. 4270 if (needsLoad) { 4271 if (ObjSize < ArgSize && !isLittleEndian) 4272 CurArgOffset += ArgSize - ObjSize; 4273 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4274 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4275 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4276 } 4277 4278 InVals.push_back(ArgVal); 4279 } 4280 4281 // Area that is at least reserved in the caller of this function. 4282 unsigned MinReservedArea; 4283 if (HasParameterArea) 4284 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4285 else 4286 MinReservedArea = LinkageSize; 4287 4288 // Set the size that is at least reserved in caller of this function. Tail 4289 // call optimized functions' reserved stack space needs to be aligned so that 4290 // taking the difference between two stack areas will result in an aligned 4291 // stack. 4292 MinReservedArea = 4293 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4294 FuncInfo->setMinReservedArea(MinReservedArea); 4295 4296 // If the function takes variable number of arguments, make a frame index for 4297 // the start of the first vararg value... for expansion of llvm.va_start. 4298 // On ELFv2ABI spec, it writes: 4299 // C programs that are intended to be *portable* across different compilers 4300 // and architectures must use the header file <stdarg.h> to deal with variable 4301 // argument lists. 4302 if (isVarArg && MFI.hasVAStart()) { 4303 int Depth = ArgOffset; 4304 4305 FuncInfo->setVarArgsFrameIndex( 4306 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4307 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4308 4309 // If this function is vararg, store any remaining integer argument regs 4310 // to their spots on the stack so that they may be loaded by dereferencing 4311 // the result of va_next. 4312 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4313 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4314 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4315 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4316 SDValue Store = 4317 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4318 MemOps.push_back(Store); 4319 // Increment the address by four for the next argument to store 4320 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4321 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4322 } 4323 } 4324 4325 if (!MemOps.empty()) 4326 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4327 4328 return Chain; 4329 } 4330 4331 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4332 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4333 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4334 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4335 // TODO: add description of PPC stack frame format, or at least some docs. 4336 // 4337 MachineFunction &MF = DAG.getMachineFunction(); 4338 MachineFrameInfo &MFI = MF.getFrameInfo(); 4339 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4340 4341 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4342 bool isPPC64 = PtrVT == MVT::i64; 4343 // Potential tail calls could cause overwriting of argument stack slots. 4344 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4345 (CallConv == CallingConv::Fast)); 4346 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4347 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4348 unsigned ArgOffset = LinkageSize; 4349 // Area that is at least reserved in caller of this function. 4350 unsigned MinReservedArea = ArgOffset; 4351 4352 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4353 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4354 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4355 }; 4356 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4357 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4358 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4359 }; 4360 static const MCPhysReg VR[] = { 4361 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4362 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4363 }; 4364 4365 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4366 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4367 const unsigned Num_VR_Regs = array_lengthof( VR); 4368 4369 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4370 4371 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4372 4373 // In 32-bit non-varargs functions, the stack space for vectors is after the 4374 // stack space for non-vectors. We do not use this space unless we have 4375 // too many vectors to fit in registers, something that only occurs in 4376 // constructed examples:), but we have to walk the arglist to figure 4377 // that out...for the pathological case, compute VecArgOffset as the 4378 // start of the vector parameter area. Computing VecArgOffset is the 4379 // entire point of the following loop. 4380 unsigned VecArgOffset = ArgOffset; 4381 if (!isVarArg && !isPPC64) { 4382 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4383 ++ArgNo) { 4384 EVT ObjectVT = Ins[ArgNo].VT; 4385 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4386 4387 if (Flags.isByVal()) { 4388 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4389 unsigned ObjSize = Flags.getByValSize(); 4390 unsigned ArgSize = 4391 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4392 VecArgOffset += ArgSize; 4393 continue; 4394 } 4395 4396 switch(ObjectVT.getSimpleVT().SimpleTy) { 4397 default: llvm_unreachable("Unhandled argument type!"); 4398 case MVT::i1: 4399 case MVT::i32: 4400 case MVT::f32: 4401 VecArgOffset += 4; 4402 break; 4403 case MVT::i64: // PPC64 4404 case MVT::f64: 4405 // FIXME: We are guaranteed to be !isPPC64 at this point. 4406 // Does MVT::i64 apply? 4407 VecArgOffset += 8; 4408 break; 4409 case MVT::v4f32: 4410 case MVT::v4i32: 4411 case MVT::v8i16: 4412 case MVT::v16i8: 4413 // Nothing to do, we're only looking at Nonvector args here. 4414 break; 4415 } 4416 } 4417 } 4418 // We've found where the vector parameter area in memory is. Skip the 4419 // first 12 parameters; these don't use that memory. 4420 VecArgOffset = ((VecArgOffset+15)/16)*16; 4421 VecArgOffset += 12*16; 4422 4423 // Add DAG nodes to load the arguments or copy them out of registers. On 4424 // entry to a function on PPC, the arguments start after the linkage area, 4425 // although the first ones are often in registers. 4426 4427 SmallVector<SDValue, 8> MemOps; 4428 unsigned nAltivecParamsAtEnd = 0; 4429 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4430 unsigned CurArgIdx = 0; 4431 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4432 SDValue ArgVal; 4433 bool needsLoad = false; 4434 EVT ObjectVT = Ins[ArgNo].VT; 4435 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4436 unsigned ArgSize = ObjSize; 4437 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4438 if (Ins[ArgNo].isOrigArg()) { 4439 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4440 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4441 } 4442 unsigned CurArgOffset = ArgOffset; 4443 4444 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4445 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4446 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4447 if (isVarArg || isPPC64) { 4448 MinReservedArea = ((MinReservedArea+15)/16)*16; 4449 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4450 Flags, 4451 PtrByteSize); 4452 } else nAltivecParamsAtEnd++; 4453 } else 4454 // Calculate min reserved area. 4455 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4456 Flags, 4457 PtrByteSize); 4458 4459 // FIXME the codegen can be much improved in some cases. 4460 // We do not have to keep everything in memory. 4461 if (Flags.isByVal()) { 4462 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4463 4464 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4465 ObjSize = Flags.getByValSize(); 4466 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4467 // Objects of size 1 and 2 are right justified, everything else is 4468 // left justified. This means the memory address is adjusted forwards. 4469 if (ObjSize==1 || ObjSize==2) { 4470 CurArgOffset = CurArgOffset + (4 - ObjSize); 4471 } 4472 // The value of the object is its address. 4473 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4474 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4475 InVals.push_back(FIN); 4476 if (ObjSize==1 || ObjSize==2) { 4477 if (GPR_idx != Num_GPR_Regs) { 4478 unsigned VReg; 4479 if (isPPC64) 4480 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4481 else 4482 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4483 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4484 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4485 SDValue Store = 4486 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4487 MachinePointerInfo(&*FuncArg), ObjType); 4488 MemOps.push_back(Store); 4489 ++GPR_idx; 4490 } 4491 4492 ArgOffset += PtrByteSize; 4493 4494 continue; 4495 } 4496 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4497 // Store whatever pieces of the object are in registers 4498 // to memory. ArgOffset will be the address of the beginning 4499 // of the object. 4500 if (GPR_idx != Num_GPR_Regs) { 4501 unsigned VReg; 4502 if (isPPC64) 4503 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4504 else 4505 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4506 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4507 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4508 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4509 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4510 MachinePointerInfo(&*FuncArg, j)); 4511 MemOps.push_back(Store); 4512 ++GPR_idx; 4513 ArgOffset += PtrByteSize; 4514 } else { 4515 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4516 break; 4517 } 4518 } 4519 continue; 4520 } 4521 4522 switch (ObjectVT.getSimpleVT().SimpleTy) { 4523 default: llvm_unreachable("Unhandled argument type!"); 4524 case MVT::i1: 4525 case MVT::i32: 4526 if (!isPPC64) { 4527 if (GPR_idx != Num_GPR_Regs) { 4528 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4529 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4530 4531 if (ObjectVT == MVT::i1) 4532 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4533 4534 ++GPR_idx; 4535 } else { 4536 needsLoad = true; 4537 ArgSize = PtrByteSize; 4538 } 4539 // All int arguments reserve stack space in the Darwin ABI. 4540 ArgOffset += PtrByteSize; 4541 break; 4542 } 4543 LLVM_FALLTHROUGH; 4544 case MVT::i64: // PPC64 4545 if (GPR_idx != Num_GPR_Regs) { 4546 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4547 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4548 4549 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4550 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4551 // value to MVT::i64 and then truncate to the correct register size. 4552 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4553 4554 ++GPR_idx; 4555 } else { 4556 needsLoad = true; 4557 ArgSize = PtrByteSize; 4558 } 4559 // All int arguments reserve stack space in the Darwin ABI. 4560 ArgOffset += 8; 4561 break; 4562 4563 case MVT::f32: 4564 case MVT::f64: 4565 // Every 4 bytes of argument space consumes one of the GPRs available for 4566 // argument passing. 4567 if (GPR_idx != Num_GPR_Regs) { 4568 ++GPR_idx; 4569 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4570 ++GPR_idx; 4571 } 4572 if (FPR_idx != Num_FPR_Regs) { 4573 unsigned VReg; 4574 4575 if (ObjectVT == MVT::f32) 4576 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4577 else 4578 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4579 4580 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4581 ++FPR_idx; 4582 } else { 4583 needsLoad = true; 4584 } 4585 4586 // All FP arguments reserve stack space in the Darwin ABI. 4587 ArgOffset += isPPC64 ? 8 : ObjSize; 4588 break; 4589 case MVT::v4f32: 4590 case MVT::v4i32: 4591 case MVT::v8i16: 4592 case MVT::v16i8: 4593 // Note that vector arguments in registers don't reserve stack space, 4594 // except in varargs functions. 4595 if (VR_idx != Num_VR_Regs) { 4596 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4597 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4598 if (isVarArg) { 4599 while ((ArgOffset % 16) != 0) { 4600 ArgOffset += PtrByteSize; 4601 if (GPR_idx != Num_GPR_Regs) 4602 GPR_idx++; 4603 } 4604 ArgOffset += 16; 4605 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4606 } 4607 ++VR_idx; 4608 } else { 4609 if (!isVarArg && !isPPC64) { 4610 // Vectors go after all the nonvectors. 4611 CurArgOffset = VecArgOffset; 4612 VecArgOffset += 16; 4613 } else { 4614 // Vectors are aligned. 4615 ArgOffset = ((ArgOffset+15)/16)*16; 4616 CurArgOffset = ArgOffset; 4617 ArgOffset += 16; 4618 } 4619 needsLoad = true; 4620 } 4621 break; 4622 } 4623 4624 // We need to load the argument to a virtual register if we determined above 4625 // that we ran out of physical registers of the appropriate type. 4626 if (needsLoad) { 4627 int FI = MFI.CreateFixedObject(ObjSize, 4628 CurArgOffset + (ArgSize - ObjSize), 4629 isImmutable); 4630 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4631 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4632 } 4633 4634 InVals.push_back(ArgVal); 4635 } 4636 4637 // Allow for Altivec parameters at the end, if needed. 4638 if (nAltivecParamsAtEnd) { 4639 MinReservedArea = ((MinReservedArea+15)/16)*16; 4640 MinReservedArea += 16*nAltivecParamsAtEnd; 4641 } 4642 4643 // Area that is at least reserved in the caller of this function. 4644 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4645 4646 // Set the size that is at least reserved in caller of this function. Tail 4647 // call optimized functions' reserved stack space needs to be aligned so that 4648 // taking the difference between two stack areas will result in an aligned 4649 // stack. 4650 MinReservedArea = 4651 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4652 FuncInfo->setMinReservedArea(MinReservedArea); 4653 4654 // If the function takes variable number of arguments, make a frame index for 4655 // the start of the first vararg value... for expansion of llvm.va_start. 4656 if (isVarArg) { 4657 int Depth = ArgOffset; 4658 4659 FuncInfo->setVarArgsFrameIndex( 4660 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4661 Depth, true)); 4662 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4663 4664 // If this function is vararg, store any remaining integer argument regs 4665 // to their spots on the stack so that they may be loaded by dereferencing 4666 // the result of va_next. 4667 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4668 unsigned VReg; 4669 4670 if (isPPC64) 4671 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4672 else 4673 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4674 4675 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4676 SDValue Store = 4677 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4678 MemOps.push_back(Store); 4679 // Increment the address by four for the next argument to store 4680 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4681 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4682 } 4683 } 4684 4685 if (!MemOps.empty()) 4686 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4687 4688 return Chain; 4689 } 4690 4691 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4692 /// adjusted to accommodate the arguments for the tailcall. 4693 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4694 unsigned ParamSize) { 4695 4696 if (!isTailCall) return 0; 4697 4698 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4699 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4700 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4701 // Remember only if the new adjustment is bigger. 4702 if (SPDiff < FI->getTailCallSPDelta()) 4703 FI->setTailCallSPDelta(SPDiff); 4704 4705 return SPDiff; 4706 } 4707 4708 static bool isFunctionGlobalAddress(SDValue Callee); 4709 4710 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4711 const TargetMachine &TM) { 4712 // It does not make sense to call callsShareTOCBase() with a caller that 4713 // is PC Relative since PC Relative callers do not have a TOC. 4714 #ifndef NDEBUG 4715 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4716 assert(!STICaller->isUsingPCRelativeCalls() && 4717 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4718 #endif 4719 4720 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4721 // don't have enough information to determine if the caller and callee share 4722 // the same TOC base, so we have to pessimistically assume they don't for 4723 // correctness. 4724 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4725 if (!G) 4726 return false; 4727 4728 const GlobalValue *GV = G->getGlobal(); 4729 4730 // If the callee is preemptable, then the static linker will use a plt-stub 4731 // which saves the toc to the stack, and needs a nop after the call 4732 // instruction to convert to a toc-restore. 4733 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4734 return false; 4735 4736 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4737 // We may need a TOC restore in the situation where the caller requires a 4738 // valid TOC but the callee is PC Relative and does not. 4739 const Function *F = dyn_cast<Function>(GV); 4740 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4741 4742 // If we have an Alias we can try to get the function from there. 4743 if (Alias) { 4744 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4745 F = dyn_cast<Function>(GlobalObj); 4746 } 4747 4748 // If we still have no valid function pointer we do not have enough 4749 // information to determine if the callee uses PC Relative calls so we must 4750 // assume that it does. 4751 if (!F) 4752 return false; 4753 4754 // If the callee uses PC Relative we cannot guarantee that the callee won't 4755 // clobber the TOC of the caller and so we must assume that the two 4756 // functions do not share a TOC base. 4757 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4758 if (STICallee->isUsingPCRelativeCalls()) 4759 return false; 4760 4761 // The medium and large code models are expected to provide a sufficiently 4762 // large TOC to provide all data addressing needs of a module with a 4763 // single TOC. 4764 if (CodeModel::Medium == TM.getCodeModel() || 4765 CodeModel::Large == TM.getCodeModel()) 4766 return true; 4767 4768 // Otherwise we need to ensure callee and caller are in the same section, 4769 // since the linker may allocate multiple TOCs, and we don't know which 4770 // sections will belong to the same TOC base. 4771 if (!GV->isStrongDefinitionForLinker()) 4772 return false; 4773 4774 // Any explicitly-specified sections and section prefixes must also match. 4775 // Also, if we're using -ffunction-sections, then each function is always in 4776 // a different section (the same is true for COMDAT functions). 4777 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4778 GV->getSection() != Caller->getSection()) 4779 return false; 4780 if (const auto *F = dyn_cast<Function>(GV)) { 4781 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4782 return false; 4783 } 4784 4785 return true; 4786 } 4787 4788 static bool 4789 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4790 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4791 assert(Subtarget.is64BitELFABI()); 4792 4793 const unsigned PtrByteSize = 8; 4794 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4795 4796 static const MCPhysReg GPR[] = { 4797 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4798 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4799 }; 4800 static const MCPhysReg VR[] = { 4801 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4802 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4803 }; 4804 4805 const unsigned NumGPRs = array_lengthof(GPR); 4806 const unsigned NumFPRs = 13; 4807 const unsigned NumVRs = array_lengthof(VR); 4808 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4809 4810 unsigned NumBytes = LinkageSize; 4811 unsigned AvailableFPRs = NumFPRs; 4812 unsigned AvailableVRs = NumVRs; 4813 4814 for (const ISD::OutputArg& Param : Outs) { 4815 if (Param.Flags.isNest()) continue; 4816 4817 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4818 PtrByteSize, LinkageSize, ParamAreaSize, 4819 NumBytes, AvailableFPRs, AvailableVRs, 4820 Subtarget.hasQPX())) 4821 return true; 4822 } 4823 return false; 4824 } 4825 4826 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4827 if (CB.arg_size() != CallerFn->arg_size()) 4828 return false; 4829 4830 auto CalleeArgIter = CB.arg_begin(); 4831 auto CalleeArgEnd = CB.arg_end(); 4832 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4833 4834 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4835 const Value* CalleeArg = *CalleeArgIter; 4836 const Value* CallerArg = &(*CallerArgIter); 4837 if (CalleeArg == CallerArg) 4838 continue; 4839 4840 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4841 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4842 // } 4843 // 1st argument of callee is undef and has the same type as caller. 4844 if (CalleeArg->getType() == CallerArg->getType() && 4845 isa<UndefValue>(CalleeArg)) 4846 continue; 4847 4848 return false; 4849 } 4850 4851 return true; 4852 } 4853 4854 // Returns true if TCO is possible between the callers and callees 4855 // calling conventions. 4856 static bool 4857 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4858 CallingConv::ID CalleeCC) { 4859 // Tail calls are possible with fastcc and ccc. 4860 auto isTailCallableCC = [] (CallingConv::ID CC){ 4861 return CC == CallingConv::C || CC == CallingConv::Fast; 4862 }; 4863 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4864 return false; 4865 4866 // We can safely tail call both fastcc and ccc callees from a c calling 4867 // convention caller. If the caller is fastcc, we may have less stack space 4868 // than a non-fastcc caller with the same signature so disable tail-calls in 4869 // that case. 4870 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4871 } 4872 4873 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4874 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4875 const SmallVectorImpl<ISD::OutputArg> &Outs, 4876 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4877 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4878 4879 if (DisableSCO && !TailCallOpt) return false; 4880 4881 // Variadic argument functions are not supported. 4882 if (isVarArg) return false; 4883 4884 auto &Caller = DAG.getMachineFunction().getFunction(); 4885 // Check that the calling conventions are compatible for tco. 4886 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4887 return false; 4888 4889 // Caller contains any byval parameter is not supported. 4890 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4891 return false; 4892 4893 // Callee contains any byval parameter is not supported, too. 4894 // Note: This is a quick work around, because in some cases, e.g. 4895 // caller's stack size > callee's stack size, we are still able to apply 4896 // sibling call optimization. For example, gcc is able to do SCO for caller1 4897 // in the following example, but not for caller2. 4898 // struct test { 4899 // long int a; 4900 // char ary[56]; 4901 // } gTest; 4902 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4903 // b->a = v.a; 4904 // return 0; 4905 // } 4906 // void caller1(struct test a, struct test c, struct test *b) { 4907 // callee(gTest, b); } 4908 // void caller2(struct test *b) { callee(gTest, b); } 4909 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4910 return false; 4911 4912 // If callee and caller use different calling conventions, we cannot pass 4913 // parameters on stack since offsets for the parameter area may be different. 4914 if (Caller.getCallingConv() != CalleeCC && 4915 needStackSlotPassParameters(Subtarget, Outs)) 4916 return false; 4917 4918 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4919 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4920 // callee potentially have different TOC bases then we cannot tail call since 4921 // we need to restore the TOC pointer after the call. 4922 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4923 // We cannot guarantee this for indirect calls or calls to external functions. 4924 // When PC-Relative addressing is used, the concept of the TOC is no longer 4925 // applicable so this check is not required. 4926 // Check first for indirect calls. 4927 if (!Subtarget.isUsingPCRelativeCalls() && 4928 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4929 return false; 4930 4931 // Check if we share the TOC base. 4932 if (!Subtarget.isUsingPCRelativeCalls() && 4933 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4934 return false; 4935 4936 // TCO allows altering callee ABI, so we don't have to check further. 4937 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4938 return true; 4939 4940 if (DisableSCO) return false; 4941 4942 // If callee use the same argument list that caller is using, then we can 4943 // apply SCO on this case. If it is not, then we need to check if callee needs 4944 // stack for passing arguments. 4945 // PC Relative tail calls may not have a CallBase. 4946 // If there is no CallBase we cannot verify if we have the same argument 4947 // list so assume that we don't have the same argument list. 4948 if (CB && !hasSameArgumentList(&Caller, *CB) && 4949 needStackSlotPassParameters(Subtarget, Outs)) 4950 return false; 4951 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4952 return false; 4953 4954 return true; 4955 } 4956 4957 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4958 /// for tail call optimization. Targets which want to do tail call 4959 /// optimization should implement this function. 4960 bool 4961 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4962 CallingConv::ID CalleeCC, 4963 bool isVarArg, 4964 const SmallVectorImpl<ISD::InputArg> &Ins, 4965 SelectionDAG& DAG) const { 4966 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4967 return false; 4968 4969 // Variable argument functions are not supported. 4970 if (isVarArg) 4971 return false; 4972 4973 MachineFunction &MF = DAG.getMachineFunction(); 4974 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4975 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4976 // Functions containing by val parameters are not supported. 4977 for (unsigned i = 0; i != Ins.size(); i++) { 4978 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4979 if (Flags.isByVal()) return false; 4980 } 4981 4982 // Non-PIC/GOT tail calls are supported. 4983 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4984 return true; 4985 4986 // At the moment we can only do local tail calls (in same module, hidden 4987 // or protected) if we are generating PIC. 4988 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4989 return G->getGlobal()->hasHiddenVisibility() 4990 || G->getGlobal()->hasProtectedVisibility(); 4991 } 4992 4993 return false; 4994 } 4995 4996 /// isCallCompatibleAddress - Return the immediate to use if the specified 4997 /// 32-bit value is representable in the immediate field of a BxA instruction. 4998 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4999 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 5000 if (!C) return nullptr; 5001 5002 int Addr = C->getZExtValue(); 5003 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5004 SignExtend32<26>(Addr) != Addr) 5005 return nullptr; // Top 6 bits have to be sext of immediate. 5006 5007 return DAG 5008 .getConstant( 5009 (int)C->getZExtValue() >> 2, SDLoc(Op), 5010 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5011 .getNode(); 5012 } 5013 5014 namespace { 5015 5016 struct TailCallArgumentInfo { 5017 SDValue Arg; 5018 SDValue FrameIdxOp; 5019 int FrameIdx = 0; 5020 5021 TailCallArgumentInfo() = default; 5022 }; 5023 5024 } // end anonymous namespace 5025 5026 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5027 static void StoreTailCallArgumentsToStackSlot( 5028 SelectionDAG &DAG, SDValue Chain, 5029 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5030 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5031 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5032 SDValue Arg = TailCallArgs[i].Arg; 5033 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5034 int FI = TailCallArgs[i].FrameIdx; 5035 // Store relative to framepointer. 5036 MemOpChains.push_back(DAG.getStore( 5037 Chain, dl, Arg, FIN, 5038 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5039 } 5040 } 5041 5042 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5043 /// the appropriate stack slot for the tail call optimized function call. 5044 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5045 SDValue OldRetAddr, SDValue OldFP, 5046 int SPDiff, const SDLoc &dl) { 5047 if (SPDiff) { 5048 // Calculate the new stack slot for the return address. 5049 MachineFunction &MF = DAG.getMachineFunction(); 5050 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5051 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5052 bool isPPC64 = Subtarget.isPPC64(); 5053 int SlotSize = isPPC64 ? 8 : 4; 5054 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5055 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5056 NewRetAddrLoc, true); 5057 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5058 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5059 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5060 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5061 } 5062 return Chain; 5063 } 5064 5065 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5066 /// the position of the argument. 5067 static void 5068 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5069 SDValue Arg, int SPDiff, unsigned ArgOffset, 5070 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5071 int Offset = ArgOffset + SPDiff; 5072 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5073 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5074 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5075 SDValue FIN = DAG.getFrameIndex(FI, VT); 5076 TailCallArgumentInfo Info; 5077 Info.Arg = Arg; 5078 Info.FrameIdxOp = FIN; 5079 Info.FrameIdx = FI; 5080 TailCallArguments.push_back(Info); 5081 } 5082 5083 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5084 /// stack slot. Returns the chain as result and the loaded frame pointers in 5085 /// LROpOut/FPOpout. Used when tail calling. 5086 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5087 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5088 SDValue &FPOpOut, const SDLoc &dl) const { 5089 if (SPDiff) { 5090 // Load the LR and FP stack slot for later adjusting. 5091 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5092 LROpOut = getReturnAddrFrameIndex(DAG); 5093 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5094 Chain = SDValue(LROpOut.getNode(), 1); 5095 } 5096 return Chain; 5097 } 5098 5099 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5100 /// by "Src" to address "Dst" of size "Size". Alignment information is 5101 /// specified by the specific parameter attribute. The copy will be passed as 5102 /// a byval function parameter. 5103 /// Sometimes what we are copying is the end of a larger object, the part that 5104 /// does not fit in registers. 5105 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5106 SDValue Chain, ISD::ArgFlagsTy Flags, 5107 SelectionDAG &DAG, const SDLoc &dl) { 5108 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5109 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5110 Flags.getNonZeroByValAlign(), false, false, false, 5111 MachinePointerInfo(), MachinePointerInfo()); 5112 } 5113 5114 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5115 /// tail calls. 5116 static void LowerMemOpCallTo( 5117 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5118 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5119 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5120 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5121 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5122 if (!isTailCall) { 5123 if (isVector) { 5124 SDValue StackPtr; 5125 if (isPPC64) 5126 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5127 else 5128 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5129 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5130 DAG.getConstant(ArgOffset, dl, PtrVT)); 5131 } 5132 MemOpChains.push_back( 5133 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5134 // Calculate and remember argument location. 5135 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5136 TailCallArguments); 5137 } 5138 5139 static void 5140 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5141 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5142 SDValue FPOp, 5143 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5144 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5145 // might overwrite each other in case of tail call optimization. 5146 SmallVector<SDValue, 8> MemOpChains2; 5147 // Do not flag preceding copytoreg stuff together with the following stuff. 5148 InFlag = SDValue(); 5149 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5150 MemOpChains2, dl); 5151 if (!MemOpChains2.empty()) 5152 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5153 5154 // Store the return address to the appropriate stack slot. 5155 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5156 5157 // Emit callseq_end just before tailcall node. 5158 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5159 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5160 InFlag = Chain.getValue(1); 5161 } 5162 5163 // Is this global address that of a function that can be called by name? (as 5164 // opposed to something that must hold a descriptor for an indirect call). 5165 static bool isFunctionGlobalAddress(SDValue Callee) { 5166 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5167 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5168 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5169 return false; 5170 5171 return G->getGlobal()->getValueType()->isFunctionTy(); 5172 } 5173 5174 return false; 5175 } 5176 5177 SDValue PPCTargetLowering::LowerCallResult( 5178 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5179 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5180 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5181 SmallVector<CCValAssign, 16> RVLocs; 5182 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5183 *DAG.getContext()); 5184 5185 CCRetInfo.AnalyzeCallResult( 5186 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5187 ? RetCC_PPC_Cold 5188 : RetCC_PPC); 5189 5190 // Copy all of the result registers out of their specified physreg. 5191 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5192 CCValAssign &VA = RVLocs[i]; 5193 assert(VA.isRegLoc() && "Can only return in registers!"); 5194 5195 SDValue Val; 5196 5197 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5198 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5199 InFlag); 5200 Chain = Lo.getValue(1); 5201 InFlag = Lo.getValue(2); 5202 VA = RVLocs[++i]; // skip ahead to next loc 5203 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5204 InFlag); 5205 Chain = Hi.getValue(1); 5206 InFlag = Hi.getValue(2); 5207 if (!Subtarget.isLittleEndian()) 5208 std::swap (Lo, Hi); 5209 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5210 } else { 5211 Val = DAG.getCopyFromReg(Chain, dl, 5212 VA.getLocReg(), VA.getLocVT(), InFlag); 5213 Chain = Val.getValue(1); 5214 InFlag = Val.getValue(2); 5215 } 5216 5217 switch (VA.getLocInfo()) { 5218 default: llvm_unreachable("Unknown loc info!"); 5219 case CCValAssign::Full: break; 5220 case CCValAssign::AExt: 5221 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5222 break; 5223 case CCValAssign::ZExt: 5224 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5225 DAG.getValueType(VA.getValVT())); 5226 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5227 break; 5228 case CCValAssign::SExt: 5229 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5230 DAG.getValueType(VA.getValVT())); 5231 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5232 break; 5233 } 5234 5235 InVals.push_back(Val); 5236 } 5237 5238 return Chain; 5239 } 5240 5241 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5242 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5243 // PatchPoint calls are not indirect. 5244 if (isPatchPoint) 5245 return false; 5246 5247 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5248 return false; 5249 5250 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5251 // becuase the immediate function pointer points to a descriptor instead of 5252 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5253 // pointer immediate points to the global entry point, while the BLA would 5254 // need to jump to the local entry point (see rL211174). 5255 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5256 isBLACompatibleAddress(Callee, DAG)) 5257 return false; 5258 5259 return true; 5260 } 5261 5262 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5263 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5264 return Subtarget.isAIXABI() || 5265 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5266 } 5267 5268 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5269 const Function &Caller, 5270 const SDValue &Callee, 5271 const PPCSubtarget &Subtarget, 5272 const TargetMachine &TM) { 5273 if (CFlags.IsTailCall) 5274 return PPCISD::TC_RETURN; 5275 5276 // This is a call through a function pointer. 5277 if (CFlags.IsIndirect) { 5278 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5279 // indirect calls. The save of the caller's TOC pointer to the stack will be 5280 // inserted into the DAG as part of call lowering. The restore of the TOC 5281 // pointer is modeled by using a pseudo instruction for the call opcode that 5282 // represents the 2 instruction sequence of an indirect branch and link, 5283 // immediately followed by a load of the TOC pointer from the the stack save 5284 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5285 // as it is not saved or used. 5286 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5287 : PPCISD::BCTRL; 5288 } 5289 5290 if (Subtarget.isUsingPCRelativeCalls()) { 5291 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5292 return PPCISD::CALL_NOTOC; 5293 } 5294 5295 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5296 // immediately following the call instruction if the caller and callee may 5297 // have different TOC bases. At link time if the linker determines the calls 5298 // may not share a TOC base, the call is redirected to a trampoline inserted 5299 // by the linker. The trampoline will (among other things) save the callers 5300 // TOC pointer at an ABI designated offset in the linkage area and the linker 5301 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5302 // into gpr2. 5303 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5304 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5305 : PPCISD::CALL_NOP; 5306 5307 return PPCISD::CALL; 5308 } 5309 5310 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5311 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5312 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5313 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5314 return SDValue(Dest, 0); 5315 5316 // Returns true if the callee is local, and false otherwise. 5317 auto isLocalCallee = [&]() { 5318 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5319 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5320 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5321 5322 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5323 !dyn_cast_or_null<GlobalIFunc>(GV); 5324 }; 5325 5326 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5327 // a static relocation model causes some versions of GNU LD (2.17.50, at 5328 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5329 // built with secure-PLT. 5330 bool UsePlt = 5331 Subtarget.is32BitELFABI() && !isLocalCallee() && 5332 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5333 5334 // On AIX, direct function calls reference the symbol for the function's 5335 // entry point, which is named by prepending a "." before the function's 5336 // C-linkage name. 5337 const auto getAIXFuncEntryPointSymbolSDNode = 5338 [&](StringRef FuncName, bool IsDeclaration, 5339 const XCOFF::StorageClass &SC) { 5340 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5341 5342 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5343 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5344 5345 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5346 // On AIX, an undefined symbol needs to be associated with a 5347 // MCSectionXCOFF to get the correct storage mapping class. 5348 // In this case, XCOFF::XMC_PR. 5349 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5350 S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5351 SectionKind::getMetadata()); 5352 S->setRepresentedCsect(Sec); 5353 } 5354 5355 MVT PtrVT = 5356 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5357 return DAG.getMCSymbol(S, PtrVT); 5358 }; 5359 5360 if (isFunctionGlobalAddress(Callee)) { 5361 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5362 const GlobalValue *GV = G->getGlobal(); 5363 5364 if (!Subtarget.isAIXABI()) 5365 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5366 UsePlt ? PPCII::MO_PLT : 0); 5367 5368 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5369 const GlobalObject *GO = cast<GlobalObject>(GV); 5370 const XCOFF::StorageClass SC = 5371 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5372 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5373 SC); 5374 } 5375 5376 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5377 const char *SymName = S->getSymbol(); 5378 if (!Subtarget.isAIXABI()) 5379 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5380 UsePlt ? PPCII::MO_PLT : 0); 5381 5382 // If there exists a user-declared function whose name is the same as the 5383 // ExternalSymbol's, then we pick up the user-declared version. 5384 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5385 if (const Function *F = 5386 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5387 const XCOFF::StorageClass SC = 5388 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5389 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5390 SC); 5391 } 5392 5393 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5394 } 5395 5396 // No transformation needed. 5397 assert(Callee.getNode() && "What no callee?"); 5398 return Callee; 5399 } 5400 5401 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5402 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5403 "Expected a CALLSEQ_STARTSDNode."); 5404 5405 // The last operand is the chain, except when the node has glue. If the node 5406 // has glue, then the last operand is the glue, and the chain is the second 5407 // last operand. 5408 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5409 if (LastValue.getValueType() != MVT::Glue) 5410 return LastValue; 5411 5412 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5413 } 5414 5415 // Creates the node that moves a functions address into the count register 5416 // to prepare for an indirect call instruction. 5417 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5418 SDValue &Glue, SDValue &Chain, 5419 const SDLoc &dl) { 5420 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5421 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5422 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5423 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5424 // The glue is the second value produced. 5425 Glue = Chain.getValue(1); 5426 } 5427 5428 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5429 SDValue &Glue, SDValue &Chain, 5430 SDValue CallSeqStart, 5431 const CallBase *CB, const SDLoc &dl, 5432 bool hasNest, 5433 const PPCSubtarget &Subtarget) { 5434 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5435 // entry point, but to the function descriptor (the function entry point 5436 // address is part of the function descriptor though). 5437 // The function descriptor is a three doubleword structure with the 5438 // following fields: function entry point, TOC base address and 5439 // environment pointer. 5440 // Thus for a call through a function pointer, the following actions need 5441 // to be performed: 5442 // 1. Save the TOC of the caller in the TOC save area of its stack 5443 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5444 // 2. Load the address of the function entry point from the function 5445 // descriptor. 5446 // 3. Load the TOC of the callee from the function descriptor into r2. 5447 // 4. Load the environment pointer from the function descriptor into 5448 // r11. 5449 // 5. Branch to the function entry point address. 5450 // 6. On return of the callee, the TOC of the caller needs to be 5451 // restored (this is done in FinishCall()). 5452 // 5453 // The loads are scheduled at the beginning of the call sequence, and the 5454 // register copies are flagged together to ensure that no other 5455 // operations can be scheduled in between. E.g. without flagging the 5456 // copies together, a TOC access in the caller could be scheduled between 5457 // the assignment of the callee TOC and the branch to the callee, which leads 5458 // to incorrect code. 5459 5460 // Start by loading the function address from the descriptor. 5461 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5462 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5463 ? (MachineMemOperand::MODereferenceable | 5464 MachineMemOperand::MOInvariant) 5465 : MachineMemOperand::MONone; 5466 5467 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5468 5469 // Registers used in building the DAG. 5470 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5471 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5472 5473 // Offsets of descriptor members. 5474 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5475 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5476 5477 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5478 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5479 5480 // One load for the functions entry point address. 5481 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5482 Alignment, MMOFlags); 5483 5484 // One for loading the TOC anchor for the module that contains the called 5485 // function. 5486 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5487 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5488 SDValue TOCPtr = 5489 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5490 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5491 5492 // One for loading the environment pointer. 5493 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5494 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5495 SDValue LoadEnvPtr = 5496 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5497 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5498 5499 5500 // Then copy the newly loaded TOC anchor to the TOC pointer. 5501 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5502 Chain = TOCVal.getValue(0); 5503 Glue = TOCVal.getValue(1); 5504 5505 // If the function call has an explicit 'nest' parameter, it takes the 5506 // place of the environment pointer. 5507 assert((!hasNest || !Subtarget.isAIXABI()) && 5508 "Nest parameter is not supported on AIX."); 5509 if (!hasNest) { 5510 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5511 Chain = EnvVal.getValue(0); 5512 Glue = EnvVal.getValue(1); 5513 } 5514 5515 // The rest of the indirect call sequence is the same as the non-descriptor 5516 // DAG. 5517 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5518 } 5519 5520 static void 5521 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5522 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5523 SelectionDAG &DAG, 5524 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5525 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5526 const PPCSubtarget &Subtarget) { 5527 const bool IsPPC64 = Subtarget.isPPC64(); 5528 // MVT for a general purpose register. 5529 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5530 5531 // First operand is always the chain. 5532 Ops.push_back(Chain); 5533 5534 // If it's a direct call pass the callee as the second operand. 5535 if (!CFlags.IsIndirect) 5536 Ops.push_back(Callee); 5537 else { 5538 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5539 5540 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5541 // on the stack (this would have been done in `LowerCall_64SVR4` or 5542 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5543 // represents both the indirect branch and a load that restores the TOC 5544 // pointer from the linkage area. The operand for the TOC restore is an add 5545 // of the TOC save offset to the stack pointer. This must be the second 5546 // operand: after the chain input but before any other variadic arguments. 5547 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5548 // saved or used. 5549 if (isTOCSaveRestoreRequired(Subtarget)) { 5550 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5551 5552 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5553 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5554 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5555 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5556 Ops.push_back(AddTOC); 5557 } 5558 5559 // Add the register used for the environment pointer. 5560 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5561 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5562 RegVT)); 5563 5564 5565 // Add CTR register as callee so a bctr can be emitted later. 5566 if (CFlags.IsTailCall) 5567 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5568 } 5569 5570 // If this is a tail call add stack pointer delta. 5571 if (CFlags.IsTailCall) 5572 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5573 5574 // Add argument registers to the end of the list so that they are known live 5575 // into the call. 5576 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5577 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5578 RegsToPass[i].second.getValueType())); 5579 5580 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5581 // no way to mark dependencies as implicit here. 5582 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5583 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5584 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5585 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5586 5587 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5588 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5589 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5590 5591 // Add a register mask operand representing the call-preserved registers. 5592 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5593 const uint32_t *Mask = 5594 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5595 assert(Mask && "Missing call preserved mask for calling convention"); 5596 Ops.push_back(DAG.getRegisterMask(Mask)); 5597 5598 // If the glue is valid, it is the last operand. 5599 if (Glue.getNode()) 5600 Ops.push_back(Glue); 5601 } 5602 5603 SDValue PPCTargetLowering::FinishCall( 5604 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5605 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5606 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5607 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5608 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5609 5610 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5611 Subtarget.isAIXABI()) 5612 setUsesTOCBasePtr(DAG); 5613 5614 unsigned CallOpc = 5615 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5616 Subtarget, DAG.getTarget()); 5617 5618 if (!CFlags.IsIndirect) 5619 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5620 else if (Subtarget.usesFunctionDescriptors()) 5621 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5622 dl, CFlags.HasNest, Subtarget); 5623 else 5624 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5625 5626 // Build the operand list for the call instruction. 5627 SmallVector<SDValue, 8> Ops; 5628 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5629 SPDiff, Subtarget); 5630 5631 // Emit tail call. 5632 if (CFlags.IsTailCall) { 5633 // Indirect tail call when using PC Relative calls do not have the same 5634 // constraints. 5635 assert(((Callee.getOpcode() == ISD::Register && 5636 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5637 Callee.getOpcode() == ISD::TargetExternalSymbol || 5638 Callee.getOpcode() == ISD::TargetGlobalAddress || 5639 isa<ConstantSDNode>(Callee) || 5640 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5641 "Expecting a global address, external symbol, absolute value, " 5642 "register or an indirect tail call when PC Relative calls are " 5643 "used."); 5644 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5645 assert(CallOpc == PPCISD::TC_RETURN && 5646 "Unexpected call opcode for a tail call."); 5647 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5648 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5649 } 5650 5651 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5652 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5653 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5654 Glue = Chain.getValue(1); 5655 5656 // When performing tail call optimization the callee pops its arguments off 5657 // the stack. Account for this here so these bytes can be pushed back on in 5658 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5659 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5660 getTargetMachine().Options.GuaranteedTailCallOpt) 5661 ? NumBytes 5662 : 0; 5663 5664 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5665 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5666 Glue, dl); 5667 Glue = Chain.getValue(1); 5668 5669 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5670 DAG, InVals); 5671 } 5672 5673 SDValue 5674 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5675 SmallVectorImpl<SDValue> &InVals) const { 5676 SelectionDAG &DAG = CLI.DAG; 5677 SDLoc &dl = CLI.DL; 5678 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5679 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5680 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5681 SDValue Chain = CLI.Chain; 5682 SDValue Callee = CLI.Callee; 5683 bool &isTailCall = CLI.IsTailCall; 5684 CallingConv::ID CallConv = CLI.CallConv; 5685 bool isVarArg = CLI.IsVarArg; 5686 bool isPatchPoint = CLI.IsPatchPoint; 5687 const CallBase *CB = CLI.CB; 5688 5689 if (isTailCall) { 5690 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5691 isTailCall = false; 5692 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5693 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5694 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5695 else 5696 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5697 Ins, DAG); 5698 if (isTailCall) { 5699 ++NumTailCalls; 5700 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5701 ++NumSiblingCalls; 5702 5703 // PC Relative calls no longer guarantee that the callee is a Global 5704 // Address Node. The callee could be an indirect tail call in which 5705 // case the SDValue for the callee could be a load (to load the address 5706 // of a function pointer) or it may be a register copy (to move the 5707 // address of the callee from a function parameter into a virtual 5708 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5709 assert((Subtarget.isUsingPCRelativeCalls() || 5710 isa<GlobalAddressSDNode>(Callee)) && 5711 "Callee should be an llvm::Function object."); 5712 5713 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5714 << "\nTCO callee: "); 5715 LLVM_DEBUG(Callee.dump()); 5716 } 5717 } 5718 5719 if (!isTailCall && CB && CB->isMustTailCall()) 5720 report_fatal_error("failed to perform tail call elimination on a call " 5721 "site marked musttail"); 5722 5723 // When long calls (i.e. indirect calls) are always used, calls are always 5724 // made via function pointer. If we have a function name, first translate it 5725 // into a pointer. 5726 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5727 !isTailCall) 5728 Callee = LowerGlobalAddress(Callee, DAG); 5729 5730 CallFlags CFlags( 5731 CallConv, isTailCall, isVarArg, isPatchPoint, 5732 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5733 // hasNest 5734 Subtarget.is64BitELFABI() && 5735 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5736 CLI.NoMerge); 5737 5738 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5739 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5740 InVals, CB); 5741 5742 if (Subtarget.isSVR4ABI()) 5743 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5744 InVals, CB); 5745 5746 if (Subtarget.isAIXABI()) 5747 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5748 InVals, CB); 5749 5750 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5751 InVals, CB); 5752 } 5753 5754 SDValue PPCTargetLowering::LowerCall_32SVR4( 5755 SDValue Chain, SDValue Callee, CallFlags CFlags, 5756 const SmallVectorImpl<ISD::OutputArg> &Outs, 5757 const SmallVectorImpl<SDValue> &OutVals, 5758 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5759 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5760 const CallBase *CB) const { 5761 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5762 // of the 32-bit SVR4 ABI stack frame layout. 5763 5764 const CallingConv::ID CallConv = CFlags.CallConv; 5765 const bool IsVarArg = CFlags.IsVarArg; 5766 const bool IsTailCall = CFlags.IsTailCall; 5767 5768 assert((CallConv == CallingConv::C || 5769 CallConv == CallingConv::Cold || 5770 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5771 5772 const Align PtrAlign(4); 5773 5774 MachineFunction &MF = DAG.getMachineFunction(); 5775 5776 // Mark this function as potentially containing a function that contains a 5777 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5778 // and restoring the callers stack pointer in this functions epilog. This is 5779 // done because by tail calling the called function might overwrite the value 5780 // in this function's (MF) stack pointer stack slot 0(SP). 5781 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5782 CallConv == CallingConv::Fast) 5783 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5784 5785 // Count how many bytes are to be pushed on the stack, including the linkage 5786 // area, parameter list area and the part of the local variable space which 5787 // contains copies of aggregates which are passed by value. 5788 5789 // Assign locations to all of the outgoing arguments. 5790 SmallVector<CCValAssign, 16> ArgLocs; 5791 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5792 5793 // Reserve space for the linkage area on the stack. 5794 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5795 PtrAlign); 5796 if (useSoftFloat()) 5797 CCInfo.PreAnalyzeCallOperands(Outs); 5798 5799 if (IsVarArg) { 5800 // Handle fixed and variable vector arguments differently. 5801 // Fixed vector arguments go into registers as long as registers are 5802 // available. Variable vector arguments always go into memory. 5803 unsigned NumArgs = Outs.size(); 5804 5805 for (unsigned i = 0; i != NumArgs; ++i) { 5806 MVT ArgVT = Outs[i].VT; 5807 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5808 bool Result; 5809 5810 if (Outs[i].IsFixed) { 5811 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5812 CCInfo); 5813 } else { 5814 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5815 ArgFlags, CCInfo); 5816 } 5817 5818 if (Result) { 5819 #ifndef NDEBUG 5820 errs() << "Call operand #" << i << " has unhandled type " 5821 << EVT(ArgVT).getEVTString() << "\n"; 5822 #endif 5823 llvm_unreachable(nullptr); 5824 } 5825 } 5826 } else { 5827 // All arguments are treated the same. 5828 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5829 } 5830 CCInfo.clearWasPPCF128(); 5831 5832 // Assign locations to all of the outgoing aggregate by value arguments. 5833 SmallVector<CCValAssign, 16> ByValArgLocs; 5834 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5835 5836 // Reserve stack space for the allocations in CCInfo. 5837 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5838 5839 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5840 5841 // Size of the linkage area, parameter list area and the part of the local 5842 // space variable where copies of aggregates which are passed by value are 5843 // stored. 5844 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5845 5846 // Calculate by how many bytes the stack has to be adjusted in case of tail 5847 // call optimization. 5848 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5849 5850 // Adjust the stack pointer for the new arguments... 5851 // These operations are automatically eliminated by the prolog/epilog pass 5852 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5853 SDValue CallSeqStart = Chain; 5854 5855 // Load the return address and frame pointer so it can be moved somewhere else 5856 // later. 5857 SDValue LROp, FPOp; 5858 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5859 5860 // Set up a copy of the stack pointer for use loading and storing any 5861 // arguments that may not fit in the registers available for argument 5862 // passing. 5863 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5864 5865 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5866 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5867 SmallVector<SDValue, 8> MemOpChains; 5868 5869 bool seenFloatArg = false; 5870 // Walk the register/memloc assignments, inserting copies/loads. 5871 // i - Tracks the index into the list of registers allocated for the call 5872 // RealArgIdx - Tracks the index into the list of actual function arguments 5873 // j - Tracks the index into the list of byval arguments 5874 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5875 i != e; 5876 ++i, ++RealArgIdx) { 5877 CCValAssign &VA = ArgLocs[i]; 5878 SDValue Arg = OutVals[RealArgIdx]; 5879 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5880 5881 if (Flags.isByVal()) { 5882 // Argument is an aggregate which is passed by value, thus we need to 5883 // create a copy of it in the local variable space of the current stack 5884 // frame (which is the stack frame of the caller) and pass the address of 5885 // this copy to the callee. 5886 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5887 CCValAssign &ByValVA = ByValArgLocs[j++]; 5888 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5889 5890 // Memory reserved in the local variable space of the callers stack frame. 5891 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5892 5893 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5894 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5895 StackPtr, PtrOff); 5896 5897 // Create a copy of the argument in the local area of the current 5898 // stack frame. 5899 SDValue MemcpyCall = 5900 CreateCopyOfByValArgument(Arg, PtrOff, 5901 CallSeqStart.getNode()->getOperand(0), 5902 Flags, DAG, dl); 5903 5904 // This must go outside the CALLSEQ_START..END. 5905 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5906 SDLoc(MemcpyCall)); 5907 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5908 NewCallSeqStart.getNode()); 5909 Chain = CallSeqStart = NewCallSeqStart; 5910 5911 // Pass the address of the aggregate copy on the stack either in a 5912 // physical register or in the parameter list area of the current stack 5913 // frame to the callee. 5914 Arg = PtrOff; 5915 } 5916 5917 // When useCRBits() is true, there can be i1 arguments. 5918 // It is because getRegisterType(MVT::i1) => MVT::i1, 5919 // and for other integer types getRegisterType() => MVT::i32. 5920 // Extend i1 and ensure callee will get i32. 5921 if (Arg.getValueType() == MVT::i1) 5922 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5923 dl, MVT::i32, Arg); 5924 5925 if (VA.isRegLoc()) { 5926 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5927 // Put argument in a physical register. 5928 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5929 bool IsLE = Subtarget.isLittleEndian(); 5930 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5931 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5932 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5933 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5934 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5935 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5936 SVal.getValue(0))); 5937 } else 5938 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5939 } else { 5940 // Put argument in the parameter list area of the current stack frame. 5941 assert(VA.isMemLoc()); 5942 unsigned LocMemOffset = VA.getLocMemOffset(); 5943 5944 if (!IsTailCall) { 5945 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5946 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5947 StackPtr, PtrOff); 5948 5949 MemOpChains.push_back( 5950 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5951 } else { 5952 // Calculate and remember argument location. 5953 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5954 TailCallArguments); 5955 } 5956 } 5957 } 5958 5959 if (!MemOpChains.empty()) 5960 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5961 5962 // Build a sequence of copy-to-reg nodes chained together with token chain 5963 // and flag operands which copy the outgoing args into the appropriate regs. 5964 SDValue InFlag; 5965 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5966 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5967 RegsToPass[i].second, InFlag); 5968 InFlag = Chain.getValue(1); 5969 } 5970 5971 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5972 // registers. 5973 if (IsVarArg) { 5974 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5975 SDValue Ops[] = { Chain, InFlag }; 5976 5977 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5978 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5979 5980 InFlag = Chain.getValue(1); 5981 } 5982 5983 if (IsTailCall) 5984 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5985 TailCallArguments); 5986 5987 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5988 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5989 } 5990 5991 // Copy an argument into memory, being careful to do this outside the 5992 // call sequence for the call to which the argument belongs. 5993 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5994 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5995 SelectionDAG &DAG, const SDLoc &dl) const { 5996 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5997 CallSeqStart.getNode()->getOperand(0), 5998 Flags, DAG, dl); 5999 // The MEMCPY must go outside the CALLSEQ_START..END. 6000 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6001 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6002 SDLoc(MemcpyCall)); 6003 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6004 NewCallSeqStart.getNode()); 6005 return NewCallSeqStart; 6006 } 6007 6008 SDValue PPCTargetLowering::LowerCall_64SVR4( 6009 SDValue Chain, SDValue Callee, CallFlags CFlags, 6010 const SmallVectorImpl<ISD::OutputArg> &Outs, 6011 const SmallVectorImpl<SDValue> &OutVals, 6012 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6013 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6014 const CallBase *CB) const { 6015 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6016 bool isLittleEndian = Subtarget.isLittleEndian(); 6017 unsigned NumOps = Outs.size(); 6018 bool IsSibCall = false; 6019 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6020 6021 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6022 unsigned PtrByteSize = 8; 6023 6024 MachineFunction &MF = DAG.getMachineFunction(); 6025 6026 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6027 IsSibCall = true; 6028 6029 // Mark this function as potentially containing a function that contains a 6030 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6031 // and restoring the callers stack pointer in this functions epilog. This is 6032 // done because by tail calling the called function might overwrite the value 6033 // in this function's (MF) stack pointer stack slot 0(SP). 6034 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6035 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6036 6037 assert(!(IsFastCall && CFlags.IsVarArg) && 6038 "fastcc not supported on varargs functions"); 6039 6040 // Count how many bytes are to be pushed on the stack, including the linkage 6041 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6042 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6043 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6044 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6045 unsigned NumBytes = LinkageSize; 6046 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6047 unsigned &QFPR_idx = FPR_idx; 6048 6049 static const MCPhysReg GPR[] = { 6050 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6051 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6052 }; 6053 static const MCPhysReg VR[] = { 6054 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6055 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6056 }; 6057 6058 const unsigned NumGPRs = array_lengthof(GPR); 6059 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6060 const unsigned NumVRs = array_lengthof(VR); 6061 const unsigned NumQFPRs = NumFPRs; 6062 6063 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6064 // can be passed to the callee in registers. 6065 // For the fast calling convention, there is another check below. 6066 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6067 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6068 if (!HasParameterArea) { 6069 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6070 unsigned AvailableFPRs = NumFPRs; 6071 unsigned AvailableVRs = NumVRs; 6072 unsigned NumBytesTmp = NumBytes; 6073 for (unsigned i = 0; i != NumOps; ++i) { 6074 if (Outs[i].Flags.isNest()) continue; 6075 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6076 PtrByteSize, LinkageSize, ParamAreaSize, 6077 NumBytesTmp, AvailableFPRs, AvailableVRs, 6078 Subtarget.hasQPX())) 6079 HasParameterArea = true; 6080 } 6081 } 6082 6083 // When using the fast calling convention, we don't provide backing for 6084 // arguments that will be in registers. 6085 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6086 6087 // Avoid allocating parameter area for fastcc functions if all the arguments 6088 // can be passed in the registers. 6089 if (IsFastCall) 6090 HasParameterArea = false; 6091 6092 // Add up all the space actually used. 6093 for (unsigned i = 0; i != NumOps; ++i) { 6094 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6095 EVT ArgVT = Outs[i].VT; 6096 EVT OrigVT = Outs[i].ArgVT; 6097 6098 if (Flags.isNest()) 6099 continue; 6100 6101 if (IsFastCall) { 6102 if (Flags.isByVal()) { 6103 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6104 if (NumGPRsUsed > NumGPRs) 6105 HasParameterArea = true; 6106 } else { 6107 switch (ArgVT.getSimpleVT().SimpleTy) { 6108 default: llvm_unreachable("Unexpected ValueType for argument!"); 6109 case MVT::i1: 6110 case MVT::i32: 6111 case MVT::i64: 6112 if (++NumGPRsUsed <= NumGPRs) 6113 continue; 6114 break; 6115 case MVT::v4i32: 6116 case MVT::v8i16: 6117 case MVT::v16i8: 6118 case MVT::v2f64: 6119 case MVT::v2i64: 6120 case MVT::v1i128: 6121 case MVT::f128: 6122 if (++NumVRsUsed <= NumVRs) 6123 continue; 6124 break; 6125 case MVT::v4f32: 6126 // When using QPX, this is handled like a FP register, otherwise, it 6127 // is an Altivec register. 6128 if (Subtarget.hasQPX()) { 6129 if (++NumFPRsUsed <= NumFPRs) 6130 continue; 6131 } else { 6132 if (++NumVRsUsed <= NumVRs) 6133 continue; 6134 } 6135 break; 6136 case MVT::f32: 6137 case MVT::f64: 6138 case MVT::v4f64: // QPX 6139 case MVT::v4i1: // QPX 6140 if (++NumFPRsUsed <= NumFPRs) 6141 continue; 6142 break; 6143 } 6144 HasParameterArea = true; 6145 } 6146 } 6147 6148 /* Respect alignment of argument on the stack. */ 6149 auto Alignement = 6150 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6151 NumBytes = alignTo(NumBytes, Alignement); 6152 6153 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6154 if (Flags.isInConsecutiveRegsLast()) 6155 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6156 } 6157 6158 unsigned NumBytesActuallyUsed = NumBytes; 6159 6160 // In the old ELFv1 ABI, 6161 // the prolog code of the callee may store up to 8 GPR argument registers to 6162 // the stack, allowing va_start to index over them in memory if its varargs. 6163 // Because we cannot tell if this is needed on the caller side, we have to 6164 // conservatively assume that it is needed. As such, make sure we have at 6165 // least enough stack space for the caller to store the 8 GPRs. 6166 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6167 // really requires memory operands, e.g. a vararg function. 6168 if (HasParameterArea) 6169 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6170 else 6171 NumBytes = LinkageSize; 6172 6173 // Tail call needs the stack to be aligned. 6174 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6175 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6176 6177 int SPDiff = 0; 6178 6179 // Calculate by how many bytes the stack has to be adjusted in case of tail 6180 // call optimization. 6181 if (!IsSibCall) 6182 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6183 6184 // To protect arguments on the stack from being clobbered in a tail call, 6185 // force all the loads to happen before doing any other lowering. 6186 if (CFlags.IsTailCall) 6187 Chain = DAG.getStackArgumentTokenFactor(Chain); 6188 6189 // Adjust the stack pointer for the new arguments... 6190 // These operations are automatically eliminated by the prolog/epilog pass 6191 if (!IsSibCall) 6192 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6193 SDValue CallSeqStart = Chain; 6194 6195 // Load the return address and frame pointer so it can be move somewhere else 6196 // later. 6197 SDValue LROp, FPOp; 6198 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6199 6200 // Set up a copy of the stack pointer for use loading and storing any 6201 // arguments that may not fit in the registers available for argument 6202 // passing. 6203 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6204 6205 // Figure out which arguments are going to go in registers, and which in 6206 // memory. Also, if this is a vararg function, floating point operations 6207 // must be stored to our stack, and loaded into integer regs as well, if 6208 // any integer regs are available for argument passing. 6209 unsigned ArgOffset = LinkageSize; 6210 6211 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6212 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6213 6214 SmallVector<SDValue, 8> MemOpChains; 6215 for (unsigned i = 0; i != NumOps; ++i) { 6216 SDValue Arg = OutVals[i]; 6217 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6218 EVT ArgVT = Outs[i].VT; 6219 EVT OrigVT = Outs[i].ArgVT; 6220 6221 // PtrOff will be used to store the current argument to the stack if a 6222 // register cannot be found for it. 6223 SDValue PtrOff; 6224 6225 // We re-align the argument offset for each argument, except when using the 6226 // fast calling convention, when we need to make sure we do that only when 6227 // we'll actually use a stack slot. 6228 auto ComputePtrOff = [&]() { 6229 /* Respect alignment of argument on the stack. */ 6230 auto Alignment = 6231 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6232 ArgOffset = alignTo(ArgOffset, Alignment); 6233 6234 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6235 6236 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6237 }; 6238 6239 if (!IsFastCall) { 6240 ComputePtrOff(); 6241 6242 /* Compute GPR index associated with argument offset. */ 6243 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6244 GPR_idx = std::min(GPR_idx, NumGPRs); 6245 } 6246 6247 // Promote integers to 64-bit values. 6248 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6249 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6250 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6251 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6252 } 6253 6254 // FIXME memcpy is used way more than necessary. Correctness first. 6255 // Note: "by value" is code for passing a structure by value, not 6256 // basic types. 6257 if (Flags.isByVal()) { 6258 // Note: Size includes alignment padding, so 6259 // struct x { short a; char b; } 6260 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6261 // These are the proper values we need for right-justifying the 6262 // aggregate in a parameter register. 6263 unsigned Size = Flags.getByValSize(); 6264 6265 // An empty aggregate parameter takes up no storage and no 6266 // registers. 6267 if (Size == 0) 6268 continue; 6269 6270 if (IsFastCall) 6271 ComputePtrOff(); 6272 6273 // All aggregates smaller than 8 bytes must be passed right-justified. 6274 if (Size==1 || Size==2 || Size==4) { 6275 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6276 if (GPR_idx != NumGPRs) { 6277 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6278 MachinePointerInfo(), VT); 6279 MemOpChains.push_back(Load.getValue(1)); 6280 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6281 6282 ArgOffset += PtrByteSize; 6283 continue; 6284 } 6285 } 6286 6287 if (GPR_idx == NumGPRs && Size < 8) { 6288 SDValue AddPtr = PtrOff; 6289 if (!isLittleEndian) { 6290 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6291 PtrOff.getValueType()); 6292 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6293 } 6294 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6295 CallSeqStart, 6296 Flags, DAG, dl); 6297 ArgOffset += PtrByteSize; 6298 continue; 6299 } 6300 // Copy entire object into memory. There are cases where gcc-generated 6301 // code assumes it is there, even if it could be put entirely into 6302 // registers. (This is not what the doc says.) 6303 6304 // FIXME: The above statement is likely due to a misunderstanding of the 6305 // documents. All arguments must be copied into the parameter area BY 6306 // THE CALLEE in the event that the callee takes the address of any 6307 // formal argument. That has not yet been implemented. However, it is 6308 // reasonable to use the stack area as a staging area for the register 6309 // load. 6310 6311 // Skip this for small aggregates, as we will use the same slot for a 6312 // right-justified copy, below. 6313 if (Size >= 8) 6314 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6315 CallSeqStart, 6316 Flags, DAG, dl); 6317 6318 // When a register is available, pass a small aggregate right-justified. 6319 if (Size < 8 && GPR_idx != NumGPRs) { 6320 // The easiest way to get this right-justified in a register 6321 // is to copy the structure into the rightmost portion of a 6322 // local variable slot, then load the whole slot into the 6323 // register. 6324 // FIXME: The memcpy seems to produce pretty awful code for 6325 // small aggregates, particularly for packed ones. 6326 // FIXME: It would be preferable to use the slot in the 6327 // parameter save area instead of a new local variable. 6328 SDValue AddPtr = PtrOff; 6329 if (!isLittleEndian) { 6330 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6331 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6332 } 6333 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6334 CallSeqStart, 6335 Flags, DAG, dl); 6336 6337 // Load the slot into the register. 6338 SDValue Load = 6339 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6340 MemOpChains.push_back(Load.getValue(1)); 6341 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6342 6343 // Done with this argument. 6344 ArgOffset += PtrByteSize; 6345 continue; 6346 } 6347 6348 // For aggregates larger than PtrByteSize, copy the pieces of the 6349 // object that fit into registers from the parameter save area. 6350 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6351 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6352 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6353 if (GPR_idx != NumGPRs) { 6354 SDValue Load = 6355 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6356 MemOpChains.push_back(Load.getValue(1)); 6357 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6358 ArgOffset += PtrByteSize; 6359 } else { 6360 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6361 break; 6362 } 6363 } 6364 continue; 6365 } 6366 6367 switch (Arg.getSimpleValueType().SimpleTy) { 6368 default: llvm_unreachable("Unexpected ValueType for argument!"); 6369 case MVT::i1: 6370 case MVT::i32: 6371 case MVT::i64: 6372 if (Flags.isNest()) { 6373 // The 'nest' parameter, if any, is passed in R11. 6374 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6375 break; 6376 } 6377 6378 // These can be scalar arguments or elements of an integer array type 6379 // passed directly. Clang may use those instead of "byval" aggregate 6380 // types to avoid forcing arguments to memory unnecessarily. 6381 if (GPR_idx != NumGPRs) { 6382 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6383 } else { 6384 if (IsFastCall) 6385 ComputePtrOff(); 6386 6387 assert(HasParameterArea && 6388 "Parameter area must exist to pass an argument in memory."); 6389 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6390 true, CFlags.IsTailCall, false, MemOpChains, 6391 TailCallArguments, dl); 6392 if (IsFastCall) 6393 ArgOffset += PtrByteSize; 6394 } 6395 if (!IsFastCall) 6396 ArgOffset += PtrByteSize; 6397 break; 6398 case MVT::f32: 6399 case MVT::f64: { 6400 // These can be scalar arguments or elements of a float array type 6401 // passed directly. The latter are used to implement ELFv2 homogenous 6402 // float aggregates. 6403 6404 // Named arguments go into FPRs first, and once they overflow, the 6405 // remaining arguments go into GPRs and then the parameter save area. 6406 // Unnamed arguments for vararg functions always go to GPRs and 6407 // then the parameter save area. For now, put all arguments to vararg 6408 // routines always in both locations (FPR *and* GPR or stack slot). 6409 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6410 bool NeededLoad = false; 6411 6412 // First load the argument into the next available FPR. 6413 if (FPR_idx != NumFPRs) 6414 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6415 6416 // Next, load the argument into GPR or stack slot if needed. 6417 if (!NeedGPROrStack) 6418 ; 6419 else if (GPR_idx != NumGPRs && !IsFastCall) { 6420 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6421 // once we support fp <-> gpr moves. 6422 6423 // In the non-vararg case, this can only ever happen in the 6424 // presence of f32 array types, since otherwise we never run 6425 // out of FPRs before running out of GPRs. 6426 SDValue ArgVal; 6427 6428 // Double values are always passed in a single GPR. 6429 if (Arg.getValueType() != MVT::f32) { 6430 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6431 6432 // Non-array float values are extended and passed in a GPR. 6433 } else if (!Flags.isInConsecutiveRegs()) { 6434 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6435 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6436 6437 // If we have an array of floats, we collect every odd element 6438 // together with its predecessor into one GPR. 6439 } else if (ArgOffset % PtrByteSize != 0) { 6440 SDValue Lo, Hi; 6441 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6442 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6443 if (!isLittleEndian) 6444 std::swap(Lo, Hi); 6445 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6446 6447 // The final element, if even, goes into the first half of a GPR. 6448 } else if (Flags.isInConsecutiveRegsLast()) { 6449 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6450 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6451 if (!isLittleEndian) 6452 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6453 DAG.getConstant(32, dl, MVT::i32)); 6454 6455 // Non-final even elements are skipped; they will be handled 6456 // together the with subsequent argument on the next go-around. 6457 } else 6458 ArgVal = SDValue(); 6459 6460 if (ArgVal.getNode()) 6461 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6462 } else { 6463 if (IsFastCall) 6464 ComputePtrOff(); 6465 6466 // Single-precision floating-point values are mapped to the 6467 // second (rightmost) word of the stack doubleword. 6468 if (Arg.getValueType() == MVT::f32 && 6469 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6470 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6471 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6472 } 6473 6474 assert(HasParameterArea && 6475 "Parameter area must exist to pass an argument in memory."); 6476 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6477 true, CFlags.IsTailCall, false, MemOpChains, 6478 TailCallArguments, dl); 6479 6480 NeededLoad = true; 6481 } 6482 // When passing an array of floats, the array occupies consecutive 6483 // space in the argument area; only round up to the next doubleword 6484 // at the end of the array. Otherwise, each float takes 8 bytes. 6485 if (!IsFastCall || NeededLoad) { 6486 ArgOffset += (Arg.getValueType() == MVT::f32 && 6487 Flags.isInConsecutiveRegs()) ? 4 : 8; 6488 if (Flags.isInConsecutiveRegsLast()) 6489 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6490 } 6491 break; 6492 } 6493 case MVT::v4f32: 6494 case MVT::v4i32: 6495 case MVT::v8i16: 6496 case MVT::v16i8: 6497 case MVT::v2f64: 6498 case MVT::v2i64: 6499 case MVT::v1i128: 6500 case MVT::f128: 6501 if (!Subtarget.hasQPX()) { 6502 // These can be scalar arguments or elements of a vector array type 6503 // passed directly. The latter are used to implement ELFv2 homogenous 6504 // vector aggregates. 6505 6506 // For a varargs call, named arguments go into VRs or on the stack as 6507 // usual; unnamed arguments always go to the stack or the corresponding 6508 // GPRs when within range. For now, we always put the value in both 6509 // locations (or even all three). 6510 if (CFlags.IsVarArg) { 6511 assert(HasParameterArea && 6512 "Parameter area must exist if we have a varargs call."); 6513 // We could elide this store in the case where the object fits 6514 // entirely in R registers. Maybe later. 6515 SDValue Store = 6516 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6517 MemOpChains.push_back(Store); 6518 if (VR_idx != NumVRs) { 6519 SDValue Load = 6520 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6521 MemOpChains.push_back(Load.getValue(1)); 6522 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6523 } 6524 ArgOffset += 16; 6525 for (unsigned i=0; i<16; i+=PtrByteSize) { 6526 if (GPR_idx == NumGPRs) 6527 break; 6528 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6529 DAG.getConstant(i, dl, PtrVT)); 6530 SDValue Load = 6531 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6532 MemOpChains.push_back(Load.getValue(1)); 6533 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6534 } 6535 break; 6536 } 6537 6538 // Non-varargs Altivec params go into VRs or on the stack. 6539 if (VR_idx != NumVRs) { 6540 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6541 } else { 6542 if (IsFastCall) 6543 ComputePtrOff(); 6544 6545 assert(HasParameterArea && 6546 "Parameter area must exist to pass an argument in memory."); 6547 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6548 true, CFlags.IsTailCall, true, MemOpChains, 6549 TailCallArguments, dl); 6550 if (IsFastCall) 6551 ArgOffset += 16; 6552 } 6553 6554 if (!IsFastCall) 6555 ArgOffset += 16; 6556 break; 6557 } // not QPX 6558 6559 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6560 "Invalid QPX parameter type"); 6561 6562 LLVM_FALLTHROUGH; 6563 case MVT::v4f64: 6564 case MVT::v4i1: { 6565 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6566 if (CFlags.IsVarArg) { 6567 assert(HasParameterArea && 6568 "Parameter area must exist if we have a varargs call."); 6569 // We could elide this store in the case where the object fits 6570 // entirely in R registers. Maybe later. 6571 SDValue Store = 6572 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6573 MemOpChains.push_back(Store); 6574 if (QFPR_idx != NumQFPRs) { 6575 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6576 PtrOff, MachinePointerInfo()); 6577 MemOpChains.push_back(Load.getValue(1)); 6578 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6579 } 6580 ArgOffset += (IsF32 ? 16 : 32); 6581 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6582 if (GPR_idx == NumGPRs) 6583 break; 6584 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6585 DAG.getConstant(i, dl, PtrVT)); 6586 SDValue Load = 6587 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6588 MemOpChains.push_back(Load.getValue(1)); 6589 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6590 } 6591 break; 6592 } 6593 6594 // Non-varargs QPX params go into registers or on the stack. 6595 if (QFPR_idx != NumQFPRs) { 6596 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6597 } else { 6598 if (IsFastCall) 6599 ComputePtrOff(); 6600 6601 assert(HasParameterArea && 6602 "Parameter area must exist to pass an argument in memory."); 6603 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6604 true, CFlags.IsTailCall, true, MemOpChains, 6605 TailCallArguments, dl); 6606 if (IsFastCall) 6607 ArgOffset += (IsF32 ? 16 : 32); 6608 } 6609 6610 if (!IsFastCall) 6611 ArgOffset += (IsF32 ? 16 : 32); 6612 break; 6613 } 6614 } 6615 } 6616 6617 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6618 "mismatch in size of parameter area"); 6619 (void)NumBytesActuallyUsed; 6620 6621 if (!MemOpChains.empty()) 6622 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6623 6624 // Check if this is an indirect call (MTCTR/BCTRL). 6625 // See prepareDescriptorIndirectCall and buildCallOperands for more 6626 // information about calls through function pointers in the 64-bit SVR4 ABI. 6627 if (CFlags.IsIndirect) { 6628 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6629 // caller in the TOC save area. 6630 if (isTOCSaveRestoreRequired(Subtarget)) { 6631 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6632 // Load r2 into a virtual register and store it to the TOC save area. 6633 setUsesTOCBasePtr(DAG); 6634 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6635 // TOC save area offset. 6636 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6637 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6638 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6639 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6640 MachinePointerInfo::getStack( 6641 DAG.getMachineFunction(), TOCSaveOffset)); 6642 } 6643 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6644 // This does not mean the MTCTR instruction must use R12; it's easier 6645 // to model this as an extra parameter, so do that. 6646 if (isELFv2ABI && !CFlags.IsPatchPoint) 6647 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6648 } 6649 6650 // Build a sequence of copy-to-reg nodes chained together with token chain 6651 // and flag operands which copy the outgoing args into the appropriate regs. 6652 SDValue InFlag; 6653 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6654 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6655 RegsToPass[i].second, InFlag); 6656 InFlag = Chain.getValue(1); 6657 } 6658 6659 if (CFlags.IsTailCall && !IsSibCall) 6660 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6661 TailCallArguments); 6662 6663 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6664 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6665 } 6666 6667 SDValue PPCTargetLowering::LowerCall_Darwin( 6668 SDValue Chain, SDValue Callee, CallFlags CFlags, 6669 const SmallVectorImpl<ISD::OutputArg> &Outs, 6670 const SmallVectorImpl<SDValue> &OutVals, 6671 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6672 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6673 const CallBase *CB) const { 6674 unsigned NumOps = Outs.size(); 6675 6676 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6677 bool isPPC64 = PtrVT == MVT::i64; 6678 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6679 6680 MachineFunction &MF = DAG.getMachineFunction(); 6681 6682 // Mark this function as potentially containing a function that contains a 6683 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6684 // and restoring the callers stack pointer in this functions epilog. This is 6685 // done because by tail calling the called function might overwrite the value 6686 // in this function's (MF) stack pointer stack slot 0(SP). 6687 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6688 CFlags.CallConv == CallingConv::Fast) 6689 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6690 6691 // Count how many bytes are to be pushed on the stack, including the linkage 6692 // area, and parameter passing area. We start with 24/48 bytes, which is 6693 // prereserved space for [SP][CR][LR][3 x unused]. 6694 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6695 unsigned NumBytes = LinkageSize; 6696 6697 // Add up all the space actually used. 6698 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6699 // they all go in registers, but we must reserve stack space for them for 6700 // possible use by the caller. In varargs or 64-bit calls, parameters are 6701 // assigned stack space in order, with padding so Altivec parameters are 6702 // 16-byte aligned. 6703 unsigned nAltivecParamsAtEnd = 0; 6704 for (unsigned i = 0; i != NumOps; ++i) { 6705 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6706 EVT ArgVT = Outs[i].VT; 6707 // Varargs Altivec parameters are padded to a 16 byte boundary. 6708 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6709 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6710 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6711 if (!CFlags.IsVarArg && !isPPC64) { 6712 // Non-varargs Altivec parameters go after all the non-Altivec 6713 // parameters; handle those later so we know how much padding we need. 6714 nAltivecParamsAtEnd++; 6715 continue; 6716 } 6717 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6718 NumBytes = ((NumBytes+15)/16)*16; 6719 } 6720 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6721 } 6722 6723 // Allow for Altivec parameters at the end, if needed. 6724 if (nAltivecParamsAtEnd) { 6725 NumBytes = ((NumBytes+15)/16)*16; 6726 NumBytes += 16*nAltivecParamsAtEnd; 6727 } 6728 6729 // The prolog code of the callee may store up to 8 GPR argument registers to 6730 // the stack, allowing va_start to index over them in memory if its varargs. 6731 // Because we cannot tell if this is needed on the caller side, we have to 6732 // conservatively assume that it is needed. As such, make sure we have at 6733 // least enough stack space for the caller to store the 8 GPRs. 6734 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6735 6736 // Tail call needs the stack to be aligned. 6737 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6738 CFlags.CallConv == CallingConv::Fast) 6739 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6740 6741 // Calculate by how many bytes the stack has to be adjusted in case of tail 6742 // call optimization. 6743 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6744 6745 // To protect arguments on the stack from being clobbered in a tail call, 6746 // force all the loads to happen before doing any other lowering. 6747 if (CFlags.IsTailCall) 6748 Chain = DAG.getStackArgumentTokenFactor(Chain); 6749 6750 // Adjust the stack pointer for the new arguments... 6751 // These operations are automatically eliminated by the prolog/epilog pass 6752 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6753 SDValue CallSeqStart = Chain; 6754 6755 // Load the return address and frame pointer so it can be move somewhere else 6756 // later. 6757 SDValue LROp, FPOp; 6758 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6759 6760 // Set up a copy of the stack pointer for use loading and storing any 6761 // arguments that may not fit in the registers available for argument 6762 // passing. 6763 SDValue StackPtr; 6764 if (isPPC64) 6765 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6766 else 6767 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6768 6769 // Figure out which arguments are going to go in registers, and which in 6770 // memory. Also, if this is a vararg function, floating point operations 6771 // must be stored to our stack, and loaded into integer regs as well, if 6772 // any integer regs are available for argument passing. 6773 unsigned ArgOffset = LinkageSize; 6774 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6775 6776 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6777 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6778 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6779 }; 6780 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6781 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6782 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6783 }; 6784 static const MCPhysReg VR[] = { 6785 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6786 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6787 }; 6788 const unsigned NumGPRs = array_lengthof(GPR_32); 6789 const unsigned NumFPRs = 13; 6790 const unsigned NumVRs = array_lengthof(VR); 6791 6792 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6793 6794 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6795 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6796 6797 SmallVector<SDValue, 8> MemOpChains; 6798 for (unsigned i = 0; i != NumOps; ++i) { 6799 SDValue Arg = OutVals[i]; 6800 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6801 6802 // PtrOff will be used to store the current argument to the stack if a 6803 // register cannot be found for it. 6804 SDValue PtrOff; 6805 6806 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6807 6808 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6809 6810 // On PPC64, promote integers to 64-bit values. 6811 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6812 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6813 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6814 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6815 } 6816 6817 // FIXME memcpy is used way more than necessary. Correctness first. 6818 // Note: "by value" is code for passing a structure by value, not 6819 // basic types. 6820 if (Flags.isByVal()) { 6821 unsigned Size = Flags.getByValSize(); 6822 // Very small objects are passed right-justified. Everything else is 6823 // passed left-justified. 6824 if (Size==1 || Size==2) { 6825 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6826 if (GPR_idx != NumGPRs) { 6827 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6828 MachinePointerInfo(), VT); 6829 MemOpChains.push_back(Load.getValue(1)); 6830 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6831 6832 ArgOffset += PtrByteSize; 6833 } else { 6834 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6835 PtrOff.getValueType()); 6836 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6837 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6838 CallSeqStart, 6839 Flags, DAG, dl); 6840 ArgOffset += PtrByteSize; 6841 } 6842 continue; 6843 } 6844 // Copy entire object into memory. There are cases where gcc-generated 6845 // code assumes it is there, even if it could be put entirely into 6846 // registers. (This is not what the doc says.) 6847 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6848 CallSeqStart, 6849 Flags, DAG, dl); 6850 6851 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6852 // copy the pieces of the object that fit into registers from the 6853 // parameter save area. 6854 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6855 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6856 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6857 if (GPR_idx != NumGPRs) { 6858 SDValue Load = 6859 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6860 MemOpChains.push_back(Load.getValue(1)); 6861 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6862 ArgOffset += PtrByteSize; 6863 } else { 6864 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6865 break; 6866 } 6867 } 6868 continue; 6869 } 6870 6871 switch (Arg.getSimpleValueType().SimpleTy) { 6872 default: llvm_unreachable("Unexpected ValueType for argument!"); 6873 case MVT::i1: 6874 case MVT::i32: 6875 case MVT::i64: 6876 if (GPR_idx != NumGPRs) { 6877 if (Arg.getValueType() == MVT::i1) 6878 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6879 6880 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6881 } else { 6882 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6883 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6884 TailCallArguments, dl); 6885 } 6886 ArgOffset += PtrByteSize; 6887 break; 6888 case MVT::f32: 6889 case MVT::f64: 6890 if (FPR_idx != NumFPRs) { 6891 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6892 6893 if (CFlags.IsVarArg) { 6894 SDValue Store = 6895 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6896 MemOpChains.push_back(Store); 6897 6898 // Float varargs are always shadowed in available integer registers 6899 if (GPR_idx != NumGPRs) { 6900 SDValue Load = 6901 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6902 MemOpChains.push_back(Load.getValue(1)); 6903 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6904 } 6905 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6906 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6907 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6908 SDValue Load = 6909 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6910 MemOpChains.push_back(Load.getValue(1)); 6911 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6912 } 6913 } else { 6914 // If we have any FPRs remaining, we may also have GPRs remaining. 6915 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6916 // GPRs. 6917 if (GPR_idx != NumGPRs) 6918 ++GPR_idx; 6919 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6920 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6921 ++GPR_idx; 6922 } 6923 } else 6924 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6925 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6926 TailCallArguments, dl); 6927 if (isPPC64) 6928 ArgOffset += 8; 6929 else 6930 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6931 break; 6932 case MVT::v4f32: 6933 case MVT::v4i32: 6934 case MVT::v8i16: 6935 case MVT::v16i8: 6936 if (CFlags.IsVarArg) { 6937 // These go aligned on the stack, or in the corresponding R registers 6938 // when within range. The Darwin PPC ABI doc claims they also go in 6939 // V registers; in fact gcc does this only for arguments that are 6940 // prototyped, not for those that match the ... We do it for all 6941 // arguments, seems to work. 6942 while (ArgOffset % 16 !=0) { 6943 ArgOffset += PtrByteSize; 6944 if (GPR_idx != NumGPRs) 6945 GPR_idx++; 6946 } 6947 // We could elide this store in the case where the object fits 6948 // entirely in R registers. Maybe later. 6949 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6950 DAG.getConstant(ArgOffset, dl, PtrVT)); 6951 SDValue Store = 6952 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6953 MemOpChains.push_back(Store); 6954 if (VR_idx != NumVRs) { 6955 SDValue Load = 6956 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6957 MemOpChains.push_back(Load.getValue(1)); 6958 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6959 } 6960 ArgOffset += 16; 6961 for (unsigned i=0; i<16; i+=PtrByteSize) { 6962 if (GPR_idx == NumGPRs) 6963 break; 6964 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6965 DAG.getConstant(i, dl, PtrVT)); 6966 SDValue Load = 6967 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6968 MemOpChains.push_back(Load.getValue(1)); 6969 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6970 } 6971 break; 6972 } 6973 6974 // Non-varargs Altivec params generally go in registers, but have 6975 // stack space allocated at the end. 6976 if (VR_idx != NumVRs) { 6977 // Doesn't have GPR space allocated. 6978 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6979 } else if (nAltivecParamsAtEnd==0) { 6980 // We are emitting Altivec params in order. 6981 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6982 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6983 TailCallArguments, dl); 6984 ArgOffset += 16; 6985 } 6986 break; 6987 } 6988 } 6989 // If all Altivec parameters fit in registers, as they usually do, 6990 // they get stack space following the non-Altivec parameters. We 6991 // don't track this here because nobody below needs it. 6992 // If there are more Altivec parameters than fit in registers emit 6993 // the stores here. 6994 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6995 unsigned j = 0; 6996 // Offset is aligned; skip 1st 12 params which go in V registers. 6997 ArgOffset = ((ArgOffset+15)/16)*16; 6998 ArgOffset += 12*16; 6999 for (unsigned i = 0; i != NumOps; ++i) { 7000 SDValue Arg = OutVals[i]; 7001 EVT ArgType = Outs[i].VT; 7002 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 7003 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 7004 if (++j > NumVRs) { 7005 SDValue PtrOff; 7006 // We are emitting Altivec params in order. 7007 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 7008 isPPC64, CFlags.IsTailCall, true, MemOpChains, 7009 TailCallArguments, dl); 7010 ArgOffset += 16; 7011 } 7012 } 7013 } 7014 } 7015 7016 if (!MemOpChains.empty()) 7017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7018 7019 // On Darwin, R12 must contain the address of an indirect callee. This does 7020 // not mean the MTCTR instruction must use R12; it's easier to model this as 7021 // an extra parameter, so do that. 7022 if (CFlags.IsIndirect) { 7023 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7024 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 7025 PPC::R12), Callee)); 7026 } 7027 7028 // Build a sequence of copy-to-reg nodes chained together with token chain 7029 // and flag operands which copy the outgoing args into the appropriate regs. 7030 SDValue InFlag; 7031 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 7032 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 7033 RegsToPass[i].second, InFlag); 7034 InFlag = Chain.getValue(1); 7035 } 7036 7037 if (CFlags.IsTailCall) 7038 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 7039 TailCallArguments); 7040 7041 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7042 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7043 } 7044 7045 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 7046 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 7047 CCState &State) { 7048 7049 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 7050 State.getMachineFunction().getSubtarget()); 7051 const bool IsPPC64 = Subtarget.isPPC64(); 7052 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 7053 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 7054 7055 assert((!ValVT.isInteger() || 7056 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 7057 "Integer argument exceeds register size: should have been legalized"); 7058 7059 if (ValVT == MVT::f128) 7060 report_fatal_error("f128 is unimplemented on AIX."); 7061 7062 if (ArgFlags.isNest()) 7063 report_fatal_error("Nest arguments are unimplemented."); 7064 7065 if (ValVT.isVector() || LocVT.isVector()) 7066 report_fatal_error("Vector arguments are unimplemented on AIX."); 7067 7068 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7069 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7070 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7071 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7072 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7073 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7074 7075 if (ArgFlags.isByVal()) { 7076 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7077 report_fatal_error("Pass-by-value arguments with alignment greater than " 7078 "register width are not supported."); 7079 7080 const unsigned ByValSize = ArgFlags.getByValSize(); 7081 7082 // An empty aggregate parameter takes up no storage and no registers, 7083 // but needs a MemLoc for a stack slot for the formal arguments side. 7084 if (ByValSize == 0) { 7085 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7086 State.getNextStackOffset(), RegVT, 7087 LocInfo)); 7088 return false; 7089 } 7090 7091 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7092 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7093 for (const unsigned E = Offset + StackSize; Offset < E; 7094 Offset += PtrAlign.value()) { 7095 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7096 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7097 else { 7098 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7099 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7100 LocInfo)); 7101 break; 7102 } 7103 } 7104 return false; 7105 } 7106 7107 // Arguments always reserve parameter save area. 7108 switch (ValVT.SimpleTy) { 7109 default: 7110 report_fatal_error("Unhandled value type for argument."); 7111 case MVT::i64: 7112 // i64 arguments should have been split to i32 for PPC32. 7113 assert(IsPPC64 && "PPC32 should have split i64 values."); 7114 LLVM_FALLTHROUGH; 7115 case MVT::i1: 7116 case MVT::i32: { 7117 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7118 // AIX integer arguments are always passed in register width. 7119 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 7120 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7121 : CCValAssign::LocInfo::ZExt; 7122 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7123 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7124 else 7125 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7126 7127 return false; 7128 } 7129 case MVT::f32: 7130 case MVT::f64: { 7131 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7132 const unsigned StoreSize = LocVT.getStoreSize(); 7133 // Floats are always 4-byte aligned in the PSA on AIX. 7134 // This includes f64 in 64-bit mode for ABI compatibility. 7135 const unsigned Offset = 7136 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7137 unsigned FReg = State.AllocateReg(FPR); 7138 if (FReg) 7139 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7140 7141 // Reserve and initialize GPRs or initialize the PSA as required. 7142 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7143 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7144 assert(FReg && "An FPR should be available when a GPR is reserved."); 7145 if (State.isVarArg()) { 7146 // Successfully reserved GPRs are only initialized for vararg calls. 7147 // Custom handling is required for: 7148 // f64 in PPC32 needs to be split into 2 GPRs. 7149 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7150 State.addLoc( 7151 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7152 } 7153 } else { 7154 // If there are insufficient GPRs, the PSA needs to be initialized. 7155 // Initialization occurs even if an FPR was initialized for 7156 // compatibility with the AIX XL compiler. The full memory for the 7157 // argument will be initialized even if a prior word is saved in GPR. 7158 // A custom memLoc is used when the argument also passes in FPR so 7159 // that the callee handling can skip over it easily. 7160 State.addLoc( 7161 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7162 LocInfo) 7163 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7164 break; 7165 } 7166 } 7167 7168 return false; 7169 } 7170 } 7171 return true; 7172 } 7173 7174 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7175 bool IsPPC64) { 7176 assert((IsPPC64 || SVT != MVT::i64) && 7177 "i64 should have been split for 32-bit codegen."); 7178 7179 switch (SVT) { 7180 default: 7181 report_fatal_error("Unexpected value type for formal argument"); 7182 case MVT::i1: 7183 case MVT::i32: 7184 case MVT::i64: 7185 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7186 case MVT::f32: 7187 return &PPC::F4RCRegClass; 7188 case MVT::f64: 7189 return &PPC::F8RCRegClass; 7190 } 7191 } 7192 7193 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7194 SelectionDAG &DAG, SDValue ArgValue, 7195 MVT LocVT, const SDLoc &dl) { 7196 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7197 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7198 7199 if (Flags.isSExt()) 7200 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7201 DAG.getValueType(ValVT)); 7202 else if (Flags.isZExt()) 7203 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7204 DAG.getValueType(ValVT)); 7205 7206 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7207 } 7208 7209 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7210 const unsigned LASize = FL->getLinkageSize(); 7211 7212 if (PPC::GPRCRegClass.contains(Reg)) { 7213 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7214 "Reg must be a valid argument register!"); 7215 return LASize + 4 * (Reg - PPC::R3); 7216 } 7217 7218 if (PPC::G8RCRegClass.contains(Reg)) { 7219 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7220 "Reg must be a valid argument register!"); 7221 return LASize + 8 * (Reg - PPC::X3); 7222 } 7223 7224 llvm_unreachable("Only general purpose registers expected."); 7225 } 7226 7227 // AIX ABI Stack Frame Layout: 7228 // 7229 // Low Memory +--------------------------------------------+ 7230 // SP +---> | Back chain | ---+ 7231 // | +--------------------------------------------+ | 7232 // | | Saved Condition Register | | 7233 // | +--------------------------------------------+ | 7234 // | | Saved Linkage Register | | 7235 // | +--------------------------------------------+ | Linkage Area 7236 // | | Reserved for compilers | | 7237 // | +--------------------------------------------+ | 7238 // | | Reserved for binders | | 7239 // | +--------------------------------------------+ | 7240 // | | Saved TOC pointer | ---+ 7241 // | +--------------------------------------------+ 7242 // | | Parameter save area | 7243 // | +--------------------------------------------+ 7244 // | | Alloca space | 7245 // | +--------------------------------------------+ 7246 // | | Local variable space | 7247 // | +--------------------------------------------+ 7248 // | | Float/int conversion temporary | 7249 // | +--------------------------------------------+ 7250 // | | Save area for AltiVec registers | 7251 // | +--------------------------------------------+ 7252 // | | AltiVec alignment padding | 7253 // | +--------------------------------------------+ 7254 // | | Save area for VRSAVE register | 7255 // | +--------------------------------------------+ 7256 // | | Save area for General Purpose registers | 7257 // | +--------------------------------------------+ 7258 // | | Save area for Floating Point registers | 7259 // | +--------------------------------------------+ 7260 // +---- | Back chain | 7261 // High Memory +--------------------------------------------+ 7262 // 7263 // Specifications: 7264 // AIX 7.2 Assembler Language Reference 7265 // Subroutine linkage convention 7266 7267 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7268 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7269 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7270 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7271 7272 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7273 CallConv == CallingConv::Fast) && 7274 "Unexpected calling convention!"); 7275 7276 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7277 report_fatal_error("Tail call support is unimplemented on AIX."); 7278 7279 if (useSoftFloat()) 7280 report_fatal_error("Soft float support is unimplemented on AIX."); 7281 7282 const PPCSubtarget &Subtarget = 7283 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7284 if (Subtarget.hasQPX()) 7285 report_fatal_error("QPX support is not supported on AIX."); 7286 7287 const bool IsPPC64 = Subtarget.isPPC64(); 7288 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7289 7290 // Assign locations to all of the incoming arguments. 7291 SmallVector<CCValAssign, 16> ArgLocs; 7292 MachineFunction &MF = DAG.getMachineFunction(); 7293 MachineFrameInfo &MFI = MF.getFrameInfo(); 7294 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7295 7296 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7297 // Reserve space for the linkage area on the stack. 7298 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7299 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7300 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7301 7302 SmallVector<SDValue, 8> MemOps; 7303 7304 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7305 CCValAssign &VA = ArgLocs[I++]; 7306 MVT LocVT = VA.getLocVT(); 7307 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7308 7309 // For compatibility with the AIX XL compiler, the float args in the 7310 // parameter save area are initialized even if the argument is available 7311 // in register. The caller is required to initialize both the register 7312 // and memory, however, the callee can choose to expect it in either. 7313 // The memloc is dismissed here because the argument is retrieved from 7314 // the register. 7315 if (VA.isMemLoc() && VA.needsCustom()) 7316 continue; 7317 7318 if (Flags.isByVal() && VA.isMemLoc()) { 7319 const unsigned Size = 7320 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7321 PtrByteSize); 7322 const int FI = MF.getFrameInfo().CreateFixedObject( 7323 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7324 /* IsAliased */ true); 7325 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7326 InVals.push_back(FIN); 7327 7328 continue; 7329 } 7330 7331 if (Flags.isByVal()) { 7332 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7333 7334 const MCPhysReg ArgReg = VA.getLocReg(); 7335 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7336 7337 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7338 report_fatal_error("Over aligned byvals not supported yet."); 7339 7340 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7341 const int FI = MF.getFrameInfo().CreateFixedObject( 7342 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7343 /* IsAliased */ true); 7344 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7345 InVals.push_back(FIN); 7346 7347 // Add live ins for all the RegLocs for the same ByVal. 7348 const TargetRegisterClass *RegClass = 7349 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7350 7351 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7352 unsigned Offset) { 7353 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7354 // Since the callers side has left justified the aggregate in the 7355 // register, we can simply store the entire register into the stack 7356 // slot. 7357 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7358 // The store to the fixedstack object is needed becuase accessing a 7359 // field of the ByVal will use a gep and load. Ideally we will optimize 7360 // to extracting the value from the register directly, and elide the 7361 // stores when the arguments address is not taken, but that will need to 7362 // be future work. 7363 SDValue Store = 7364 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7365 DAG.getObjectPtrOffset(dl, FIN, Offset), 7366 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7367 7368 MemOps.push_back(Store); 7369 }; 7370 7371 unsigned Offset = 0; 7372 HandleRegLoc(VA.getLocReg(), Offset); 7373 Offset += PtrByteSize; 7374 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7375 Offset += PtrByteSize) { 7376 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7377 "RegLocs should be for ByVal argument."); 7378 7379 const CCValAssign RL = ArgLocs[I++]; 7380 HandleRegLoc(RL.getLocReg(), Offset); 7381 } 7382 7383 if (Offset != StackSize) { 7384 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7385 "Expected MemLoc for remaining bytes."); 7386 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7387 // Consume the MemLoc.The InVal has already been emitted, so nothing 7388 // more needs to be done. 7389 ++I; 7390 } 7391 7392 continue; 7393 } 7394 7395 EVT ValVT = VA.getValVT(); 7396 if (VA.isRegLoc() && !VA.needsCustom()) { 7397 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7398 unsigned VReg = 7399 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7400 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7401 if (ValVT.isScalarInteger() && 7402 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7403 ArgValue = 7404 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7405 } 7406 InVals.push_back(ArgValue); 7407 continue; 7408 } 7409 if (VA.isMemLoc()) { 7410 const unsigned LocSize = LocVT.getStoreSize(); 7411 const unsigned ValSize = ValVT.getStoreSize(); 7412 assert((ValSize <= LocSize) && 7413 "Object size is larger than size of MemLoc"); 7414 int CurArgOffset = VA.getLocMemOffset(); 7415 // Objects are right-justified because AIX is big-endian. 7416 if (LocSize > ValSize) 7417 CurArgOffset += LocSize - ValSize; 7418 // Potential tail calls could cause overwriting of argument stack slots. 7419 const bool IsImmutable = 7420 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7421 (CallConv == CallingConv::Fast)); 7422 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7423 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7424 SDValue ArgValue = 7425 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7426 InVals.push_back(ArgValue); 7427 continue; 7428 } 7429 } 7430 7431 // On AIX a minimum of 8 words is saved to the parameter save area. 7432 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7433 // Area that is at least reserved in the caller of this function. 7434 unsigned CallerReservedArea = 7435 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7436 7437 // Set the size that is at least reserved in caller of this function. Tail 7438 // call optimized function's reserved stack space needs to be aligned so 7439 // that taking the difference between two stack areas will result in an 7440 // aligned stack. 7441 CallerReservedArea = 7442 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7443 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7444 FuncInfo->setMinReservedArea(CallerReservedArea); 7445 7446 if (isVarArg) { 7447 FuncInfo->setVarArgsFrameIndex( 7448 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7449 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7450 7451 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7452 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7453 7454 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7455 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7456 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7457 7458 // The fixed integer arguments of a variadic function are stored to the 7459 // VarArgsFrameIndex on the stack so that they may be loaded by 7460 // dereferencing the result of va_next. 7461 for (unsigned GPRIndex = 7462 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7463 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7464 7465 const unsigned VReg = 7466 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7467 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7468 7469 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7470 SDValue Store = 7471 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7472 MemOps.push_back(Store); 7473 // Increment the address for the next argument to store. 7474 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7475 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7476 } 7477 } 7478 7479 if (!MemOps.empty()) 7480 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7481 7482 return Chain; 7483 } 7484 7485 SDValue PPCTargetLowering::LowerCall_AIX( 7486 SDValue Chain, SDValue Callee, CallFlags CFlags, 7487 const SmallVectorImpl<ISD::OutputArg> &Outs, 7488 const SmallVectorImpl<SDValue> &OutVals, 7489 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7490 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7491 const CallBase *CB) const { 7492 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7493 // AIX ABI stack frame layout. 7494 7495 assert((CFlags.CallConv == CallingConv::C || 7496 CFlags.CallConv == CallingConv::Cold || 7497 CFlags.CallConv == CallingConv::Fast) && 7498 "Unexpected calling convention!"); 7499 7500 if (CFlags.IsPatchPoint) 7501 report_fatal_error("This call type is unimplemented on AIX."); 7502 7503 const PPCSubtarget& Subtarget = 7504 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7505 if (Subtarget.hasQPX()) 7506 report_fatal_error("QPX is not supported on AIX."); 7507 if (Subtarget.hasAltivec()) 7508 report_fatal_error("Altivec support is unimplemented on AIX."); 7509 7510 MachineFunction &MF = DAG.getMachineFunction(); 7511 SmallVector<CCValAssign, 16> ArgLocs; 7512 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7513 *DAG.getContext()); 7514 7515 // Reserve space for the linkage save area (LSA) on the stack. 7516 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7517 // [SP][CR][LR][2 x reserved][TOC]. 7518 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7519 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7520 const bool IsPPC64 = Subtarget.isPPC64(); 7521 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7522 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7523 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7524 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7525 7526 // The prolog code of the callee may store up to 8 GPR argument registers to 7527 // the stack, allowing va_start to index over them in memory if the callee 7528 // is variadic. 7529 // Because we cannot tell if this is needed on the caller side, we have to 7530 // conservatively assume that it is needed. As such, make sure we have at 7531 // least enough stack space for the caller to store the 8 GPRs. 7532 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7533 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7534 CCInfo.getNextStackOffset()); 7535 7536 // Adjust the stack pointer for the new arguments... 7537 // These operations are automatically eliminated by the prolog/epilog pass. 7538 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7539 SDValue CallSeqStart = Chain; 7540 7541 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7542 SmallVector<SDValue, 8> MemOpChains; 7543 7544 // Set up a copy of the stack pointer for loading and storing any 7545 // arguments that may not fit in the registers available for argument 7546 // passing. 7547 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7548 : DAG.getRegister(PPC::R1, MVT::i32); 7549 7550 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7551 const unsigned ValNo = ArgLocs[I].getValNo(); 7552 SDValue Arg = OutVals[ValNo]; 7553 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7554 7555 if (Flags.isByVal()) { 7556 const unsigned ByValSize = Flags.getByValSize(); 7557 7558 // Nothing to do for zero-sized ByVals on the caller side. 7559 if (!ByValSize) { 7560 ++I; 7561 continue; 7562 } 7563 7564 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7565 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7566 (LoadOffset != 0) 7567 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7568 : Arg, 7569 MachinePointerInfo(), VT); 7570 }; 7571 7572 unsigned LoadOffset = 0; 7573 7574 // Initialize registers, which are fully occupied by the by-val argument. 7575 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7576 SDValue Load = GetLoad(PtrVT, LoadOffset); 7577 MemOpChains.push_back(Load.getValue(1)); 7578 LoadOffset += PtrByteSize; 7579 const CCValAssign &ByValVA = ArgLocs[I++]; 7580 assert(ByValVA.getValNo() == ValNo && 7581 "Unexpected location for pass-by-value argument."); 7582 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7583 } 7584 7585 if (LoadOffset == ByValSize) 7586 continue; 7587 7588 // There must be one more loc to handle the remainder. 7589 assert(ArgLocs[I].getValNo() == ValNo && 7590 "Expected additional location for by-value argument."); 7591 7592 if (ArgLocs[I].isMemLoc()) { 7593 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7594 const CCValAssign &ByValVA = ArgLocs[I++]; 7595 ISD::ArgFlagsTy MemcpyFlags = Flags; 7596 // Only memcpy the bytes that don't pass in register. 7597 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7598 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7599 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7600 : Arg, 7601 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7602 CallSeqStart, MemcpyFlags, DAG, dl); 7603 continue; 7604 } 7605 7606 // Initialize the final register residue. 7607 // Any residue that occupies the final by-val arg register must be 7608 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7609 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7610 // 2 and 1 byte loads. 7611 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7612 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7613 "Unexpected register residue for by-value argument."); 7614 SDValue ResidueVal; 7615 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7616 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7617 const MVT VT = 7618 N == 1 ? MVT::i8 7619 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7620 SDValue Load = GetLoad(VT, LoadOffset); 7621 MemOpChains.push_back(Load.getValue(1)); 7622 LoadOffset += N; 7623 Bytes += N; 7624 7625 // By-val arguments are passed left-justfied in register. 7626 // Every load here needs to be shifted, otherwise a full register load 7627 // should have been used. 7628 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7629 "Unexpected load emitted during handling of pass-by-value " 7630 "argument."); 7631 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7632 EVT ShiftAmountTy = 7633 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7634 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7635 SDValue ShiftedLoad = 7636 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7637 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7638 ShiftedLoad) 7639 : ShiftedLoad; 7640 } 7641 7642 const CCValAssign &ByValVA = ArgLocs[I++]; 7643 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7644 continue; 7645 } 7646 7647 CCValAssign &VA = ArgLocs[I++]; 7648 const MVT LocVT = VA.getLocVT(); 7649 const MVT ValVT = VA.getValVT(); 7650 7651 switch (VA.getLocInfo()) { 7652 default: 7653 report_fatal_error("Unexpected argument extension type."); 7654 case CCValAssign::Full: 7655 break; 7656 case CCValAssign::ZExt: 7657 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7658 break; 7659 case CCValAssign::SExt: 7660 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7661 break; 7662 } 7663 7664 if (VA.isRegLoc() && !VA.needsCustom()) { 7665 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7666 continue; 7667 } 7668 7669 if (VA.isMemLoc()) { 7670 SDValue PtrOff = 7671 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7672 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7673 MemOpChains.push_back( 7674 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7675 7676 continue; 7677 } 7678 7679 // Custom handling is used for GPR initializations for vararg float 7680 // arguments. 7681 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7682 ValVT.isFloatingPoint() && LocVT.isInteger() && 7683 "Unexpected register handling for calling convention."); 7684 7685 SDValue ArgAsInt = 7686 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7687 7688 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7689 // f32 in 32-bit GPR 7690 // f64 in 64-bit GPR 7691 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7692 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7693 // f32 in 64-bit GPR. 7694 RegsToPass.push_back(std::make_pair( 7695 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7696 else { 7697 // f64 in two 32-bit GPRs 7698 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7699 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7700 "Unexpected custom register for argument!"); 7701 CCValAssign &GPR1 = VA; 7702 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7703 DAG.getConstant(32, dl, MVT::i8)); 7704 RegsToPass.push_back(std::make_pair( 7705 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7706 7707 if (I != E) { 7708 // If only 1 GPR was available, there will only be one custom GPR and 7709 // the argument will also pass in memory. 7710 CCValAssign &PeekArg = ArgLocs[I]; 7711 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7712 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7713 CCValAssign &GPR2 = ArgLocs[I++]; 7714 RegsToPass.push_back(std::make_pair( 7715 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7716 } 7717 } 7718 } 7719 } 7720 7721 if (!MemOpChains.empty()) 7722 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7723 7724 // For indirect calls, we need to save the TOC base to the stack for 7725 // restoration after the call. 7726 if (CFlags.IsIndirect) { 7727 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7728 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7729 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7730 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7731 const unsigned TOCSaveOffset = 7732 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7733 7734 setUsesTOCBasePtr(DAG); 7735 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7736 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7737 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7738 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7739 Chain = DAG.getStore( 7740 Val.getValue(1), dl, Val, AddPtr, 7741 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7742 } 7743 7744 // Build a sequence of copy-to-reg nodes chained together with token chain 7745 // and flag operands which copy the outgoing args into the appropriate regs. 7746 SDValue InFlag; 7747 for (auto Reg : RegsToPass) { 7748 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7749 InFlag = Chain.getValue(1); 7750 } 7751 7752 const int SPDiff = 0; 7753 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7754 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7755 } 7756 7757 bool 7758 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7759 MachineFunction &MF, bool isVarArg, 7760 const SmallVectorImpl<ISD::OutputArg> &Outs, 7761 LLVMContext &Context) const { 7762 SmallVector<CCValAssign, 16> RVLocs; 7763 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7764 return CCInfo.CheckReturn( 7765 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7766 ? RetCC_PPC_Cold 7767 : RetCC_PPC); 7768 } 7769 7770 SDValue 7771 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7772 bool isVarArg, 7773 const SmallVectorImpl<ISD::OutputArg> &Outs, 7774 const SmallVectorImpl<SDValue> &OutVals, 7775 const SDLoc &dl, SelectionDAG &DAG) const { 7776 SmallVector<CCValAssign, 16> RVLocs; 7777 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7778 *DAG.getContext()); 7779 CCInfo.AnalyzeReturn(Outs, 7780 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7781 ? RetCC_PPC_Cold 7782 : RetCC_PPC); 7783 7784 SDValue Flag; 7785 SmallVector<SDValue, 4> RetOps(1, Chain); 7786 7787 // Copy the result values into the output registers. 7788 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7789 CCValAssign &VA = RVLocs[i]; 7790 assert(VA.isRegLoc() && "Can only return in registers!"); 7791 7792 SDValue Arg = OutVals[RealResIdx]; 7793 7794 switch (VA.getLocInfo()) { 7795 default: llvm_unreachable("Unknown loc info!"); 7796 case CCValAssign::Full: break; 7797 case CCValAssign::AExt: 7798 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7799 break; 7800 case CCValAssign::ZExt: 7801 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7802 break; 7803 case CCValAssign::SExt: 7804 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7805 break; 7806 } 7807 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7808 bool isLittleEndian = Subtarget.isLittleEndian(); 7809 // Legalize ret f64 -> ret 2 x i32. 7810 SDValue SVal = 7811 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7812 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7813 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7814 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7815 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7816 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7817 Flag = Chain.getValue(1); 7818 VA = RVLocs[++i]; // skip ahead to next loc 7819 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7820 } else 7821 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7822 Flag = Chain.getValue(1); 7823 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7824 } 7825 7826 RetOps[0] = Chain; // Update chain. 7827 7828 // Add the flag if we have it. 7829 if (Flag.getNode()) 7830 RetOps.push_back(Flag); 7831 7832 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7833 } 7834 7835 SDValue 7836 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7837 SelectionDAG &DAG) const { 7838 SDLoc dl(Op); 7839 7840 // Get the correct type for integers. 7841 EVT IntVT = Op.getValueType(); 7842 7843 // Get the inputs. 7844 SDValue Chain = Op.getOperand(0); 7845 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7846 // Build a DYNAREAOFFSET node. 7847 SDValue Ops[2] = {Chain, FPSIdx}; 7848 SDVTList VTs = DAG.getVTList(IntVT); 7849 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7850 } 7851 7852 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7853 SelectionDAG &DAG) const { 7854 // When we pop the dynamic allocation we need to restore the SP link. 7855 SDLoc dl(Op); 7856 7857 // Get the correct type for pointers. 7858 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7859 7860 // Construct the stack pointer operand. 7861 bool isPPC64 = Subtarget.isPPC64(); 7862 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7863 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7864 7865 // Get the operands for the STACKRESTORE. 7866 SDValue Chain = Op.getOperand(0); 7867 SDValue SaveSP = Op.getOperand(1); 7868 7869 // Load the old link SP. 7870 SDValue LoadLinkSP = 7871 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7872 7873 // Restore the stack pointer. 7874 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7875 7876 // Store the old link SP. 7877 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7878 } 7879 7880 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7881 MachineFunction &MF = DAG.getMachineFunction(); 7882 bool isPPC64 = Subtarget.isPPC64(); 7883 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7884 7885 // Get current frame pointer save index. The users of this index will be 7886 // primarily DYNALLOC instructions. 7887 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7888 int RASI = FI->getReturnAddrSaveIndex(); 7889 7890 // If the frame pointer save index hasn't been defined yet. 7891 if (!RASI) { 7892 // Find out what the fix offset of the frame pointer save area. 7893 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7894 // Allocate the frame index for frame pointer save area. 7895 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7896 // Save the result. 7897 FI->setReturnAddrSaveIndex(RASI); 7898 } 7899 return DAG.getFrameIndex(RASI, PtrVT); 7900 } 7901 7902 SDValue 7903 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7904 MachineFunction &MF = DAG.getMachineFunction(); 7905 bool isPPC64 = Subtarget.isPPC64(); 7906 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7907 7908 // Get current frame pointer save index. The users of this index will be 7909 // primarily DYNALLOC instructions. 7910 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7911 int FPSI = FI->getFramePointerSaveIndex(); 7912 7913 // If the frame pointer save index hasn't been defined yet. 7914 if (!FPSI) { 7915 // Find out what the fix offset of the frame pointer save area. 7916 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7917 // Allocate the frame index for frame pointer save area. 7918 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7919 // Save the result. 7920 FI->setFramePointerSaveIndex(FPSI); 7921 } 7922 return DAG.getFrameIndex(FPSI, PtrVT); 7923 } 7924 7925 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7926 SelectionDAG &DAG) const { 7927 MachineFunction &MF = DAG.getMachineFunction(); 7928 // Get the inputs. 7929 SDValue Chain = Op.getOperand(0); 7930 SDValue Size = Op.getOperand(1); 7931 SDLoc dl(Op); 7932 7933 // Get the correct type for pointers. 7934 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7935 // Negate the size. 7936 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7937 DAG.getConstant(0, dl, PtrVT), Size); 7938 // Construct a node for the frame pointer save index. 7939 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7940 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7941 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7942 if (hasInlineStackProbe(MF)) 7943 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7944 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7945 } 7946 7947 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7948 SelectionDAG &DAG) const { 7949 MachineFunction &MF = DAG.getMachineFunction(); 7950 7951 bool isPPC64 = Subtarget.isPPC64(); 7952 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7953 7954 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7955 return DAG.getFrameIndex(FI, PtrVT); 7956 } 7957 7958 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7959 SelectionDAG &DAG) const { 7960 SDLoc DL(Op); 7961 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7962 DAG.getVTList(MVT::i32, MVT::Other), 7963 Op.getOperand(0), Op.getOperand(1)); 7964 } 7965 7966 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7967 SelectionDAG &DAG) const { 7968 SDLoc DL(Op); 7969 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7970 Op.getOperand(0), Op.getOperand(1)); 7971 } 7972 7973 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7974 if (Op.getValueType().isVector()) 7975 return LowerVectorLoad(Op, DAG); 7976 7977 assert(Op.getValueType() == MVT::i1 && 7978 "Custom lowering only for i1 loads"); 7979 7980 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7981 7982 SDLoc dl(Op); 7983 LoadSDNode *LD = cast<LoadSDNode>(Op); 7984 7985 SDValue Chain = LD->getChain(); 7986 SDValue BasePtr = LD->getBasePtr(); 7987 MachineMemOperand *MMO = LD->getMemOperand(); 7988 7989 SDValue NewLD = 7990 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7991 BasePtr, MVT::i8, MMO); 7992 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7993 7994 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7995 return DAG.getMergeValues(Ops, dl); 7996 } 7997 7998 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7999 if (Op.getOperand(1).getValueType().isVector()) 8000 return LowerVectorStore(Op, DAG); 8001 8002 assert(Op.getOperand(1).getValueType() == MVT::i1 && 8003 "Custom lowering only for i1 stores"); 8004 8005 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 8006 8007 SDLoc dl(Op); 8008 StoreSDNode *ST = cast<StoreSDNode>(Op); 8009 8010 SDValue Chain = ST->getChain(); 8011 SDValue BasePtr = ST->getBasePtr(); 8012 SDValue Value = ST->getValue(); 8013 MachineMemOperand *MMO = ST->getMemOperand(); 8014 8015 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 8016 Value); 8017 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 8018 } 8019 8020 // FIXME: Remove this once the ANDI glue bug is fixed: 8021 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 8022 assert(Op.getValueType() == MVT::i1 && 8023 "Custom lowering only for i1 results"); 8024 8025 SDLoc DL(Op); 8026 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 8027 } 8028 8029 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 8030 SelectionDAG &DAG) const { 8031 8032 // Implements a vector truncate that fits in a vector register as a shuffle. 8033 // We want to legalize vector truncates down to where the source fits in 8034 // a vector register (and target is therefore smaller than vector register 8035 // size). At that point legalization will try to custom lower the sub-legal 8036 // result and get here - where we can contain the truncate as a single target 8037 // operation. 8038 8039 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 8040 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 8041 // 8042 // We will implement it for big-endian ordering as this (where x denotes 8043 // undefined): 8044 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8045 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8046 // 8047 // The same operation in little-endian ordering will be: 8048 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8049 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8050 8051 assert(Op.getValueType().isVector() && "Vector type expected."); 8052 8053 SDLoc DL(Op); 8054 SDValue N1 = Op.getOperand(0); 8055 unsigned SrcSize = N1.getValueType().getSizeInBits(); 8056 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 8057 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8058 8059 EVT TrgVT = Op.getValueType(); 8060 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8061 EVT EltVT = TrgVT.getVectorElementType(); 8062 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8063 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8064 8065 // First list the elements we want to keep. 8066 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8067 SmallVector<int, 16> ShuffV; 8068 if (Subtarget.isLittleEndian()) 8069 for (unsigned i = 0; i < TrgNumElts; ++i) 8070 ShuffV.push_back(i * SizeMult); 8071 else 8072 for (unsigned i = 1; i <= TrgNumElts; ++i) 8073 ShuffV.push_back(i * SizeMult - 1); 8074 8075 // Populate the remaining elements with undefs. 8076 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8077 // ShuffV.push_back(i + WideNumElts); 8078 ShuffV.push_back(WideNumElts + 1); 8079 8080 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 8081 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 8082 } 8083 8084 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8085 /// possible. 8086 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8087 // Not FP? Not a fsel. 8088 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8089 !Op.getOperand(2).getValueType().isFloatingPoint()) 8090 return Op; 8091 8092 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8093 8094 EVT ResVT = Op.getValueType(); 8095 EVT CmpVT = Op.getOperand(0).getValueType(); 8096 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8097 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8098 SDLoc dl(Op); 8099 SDNodeFlags Flags = Op.getNode()->getFlags(); 8100 8101 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8102 // presence of infinities. 8103 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8104 switch (CC) { 8105 default: 8106 break; 8107 case ISD::SETOGT: 8108 case ISD::SETGT: 8109 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8110 case ISD::SETOLT: 8111 case ISD::SETLT: 8112 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8113 } 8114 } 8115 8116 // We might be able to do better than this under some circumstances, but in 8117 // general, fsel-based lowering of select is a finite-math-only optimization. 8118 // For more information, see section F.3 of the 2.06 ISA specification. 8119 // With ISA 3.0 8120 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8121 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8122 return Op; 8123 8124 // If the RHS of the comparison is a 0.0, we don't need to do the 8125 // subtraction at all. 8126 SDValue Sel1; 8127 if (isFloatingPointZero(RHS)) 8128 switch (CC) { 8129 default: break; // SETUO etc aren't handled by fsel. 8130 case ISD::SETNE: 8131 std::swap(TV, FV); 8132 LLVM_FALLTHROUGH; 8133 case ISD::SETEQ: 8134 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8135 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8136 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8137 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8138 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8139 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8140 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8141 case ISD::SETULT: 8142 case ISD::SETLT: 8143 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8144 LLVM_FALLTHROUGH; 8145 case ISD::SETOGE: 8146 case ISD::SETGE: 8147 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8148 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8149 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8150 case ISD::SETUGT: 8151 case ISD::SETGT: 8152 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8153 LLVM_FALLTHROUGH; 8154 case ISD::SETOLE: 8155 case ISD::SETLE: 8156 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8157 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8158 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8159 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8160 } 8161 8162 SDValue Cmp; 8163 switch (CC) { 8164 default: break; // SETUO etc aren't handled by fsel. 8165 case ISD::SETNE: 8166 std::swap(TV, FV); 8167 LLVM_FALLTHROUGH; 8168 case ISD::SETEQ: 8169 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8170 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8171 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8172 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8173 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8174 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8175 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8176 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8177 case ISD::SETULT: 8178 case ISD::SETLT: 8179 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8180 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8181 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8182 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8183 case ISD::SETOGE: 8184 case ISD::SETGE: 8185 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8186 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8187 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8188 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8189 case ISD::SETUGT: 8190 case ISD::SETGT: 8191 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8192 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8193 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8194 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8195 case ISD::SETOLE: 8196 case ISD::SETLE: 8197 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8198 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8199 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8200 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8201 } 8202 return Op; 8203 } 8204 8205 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8206 SelectionDAG &DAG, 8207 const SDLoc &dl) const { 8208 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8209 SDValue Src = Op.getOperand(0); 8210 if (Src.getValueType() == MVT::f32) 8211 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8212 8213 SDValue Tmp; 8214 switch (Op.getSimpleValueType().SimpleTy) { 8215 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8216 case MVT::i32: 8217 Tmp = DAG.getNode( 8218 Op.getOpcode() == ISD::FP_TO_SINT 8219 ? PPCISD::FCTIWZ 8220 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8221 dl, MVT::f64, Src); 8222 break; 8223 case MVT::i64: 8224 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8225 "i64 FP_TO_UINT is supported only with FPCVT"); 8226 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8227 PPCISD::FCTIDUZ, 8228 dl, MVT::f64, Src); 8229 break; 8230 } 8231 8232 // Convert the FP value to an int value through memory. 8233 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8234 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8235 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8236 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8237 MachinePointerInfo MPI = 8238 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8239 8240 // Emit a store to the stack slot. 8241 SDValue Chain; 8242 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8243 if (i32Stack) { 8244 MachineFunction &MF = DAG.getMachineFunction(); 8245 Alignment = Align(4); 8246 MachineMemOperand *MMO = 8247 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8248 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8249 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8250 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8251 } else 8252 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8253 8254 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8255 // add in a bias on big endian. 8256 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8257 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8258 DAG.getConstant(4, dl, FIPtr.getValueType())); 8259 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8260 } 8261 8262 RLI.Chain = Chain; 8263 RLI.Ptr = FIPtr; 8264 RLI.MPI = MPI; 8265 RLI.Alignment = Alignment; 8266 } 8267 8268 /// Custom lowers floating point to integer conversions to use 8269 /// the direct move instructions available in ISA 2.07 to avoid the 8270 /// need for load/store combinations. 8271 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8272 SelectionDAG &DAG, 8273 const SDLoc &dl) const { 8274 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8275 SDValue Src = Op.getOperand(0); 8276 8277 if (Src.getValueType() == MVT::f32) 8278 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8279 8280 SDValue Tmp; 8281 switch (Op.getSimpleValueType().SimpleTy) { 8282 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8283 case MVT::i32: 8284 Tmp = DAG.getNode( 8285 Op.getOpcode() == ISD::FP_TO_SINT 8286 ? PPCISD::FCTIWZ 8287 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8288 dl, MVT::f64, Src); 8289 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8290 break; 8291 case MVT::i64: 8292 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8293 "i64 FP_TO_UINT is supported only with FPCVT"); 8294 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8295 PPCISD::FCTIDUZ, 8296 dl, MVT::f64, Src); 8297 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8298 break; 8299 } 8300 return Tmp; 8301 } 8302 8303 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8304 const SDLoc &dl) const { 8305 8306 // FP to INT conversions are legal for f128. 8307 if (Op->getOperand(0).getValueType() == MVT::f128) 8308 return Op; 8309 8310 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8311 // PPC (the libcall is not available). 8312 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8313 if (Op.getValueType() == MVT::i32) { 8314 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8315 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8316 MVT::f64, Op.getOperand(0), 8317 DAG.getIntPtrConstant(0, dl)); 8318 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8319 MVT::f64, Op.getOperand(0), 8320 DAG.getIntPtrConstant(1, dl)); 8321 8322 // Add the two halves of the long double in round-to-zero mode. 8323 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8324 8325 // Now use a smaller FP_TO_SINT. 8326 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8327 } 8328 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8329 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8330 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8331 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8332 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8333 // FIXME: generated code sucks. 8334 // TODO: Are there fast-math-flags to propagate to this FSUB? 8335 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8336 Op.getOperand(0), Tmp); 8337 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8338 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8339 DAG.getConstant(0x80000000, dl, MVT::i32)); 8340 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8341 Op.getOperand(0)); 8342 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8343 ISD::SETGE); 8344 } 8345 } 8346 8347 return SDValue(); 8348 } 8349 8350 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8351 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8352 8353 ReuseLoadInfo RLI; 8354 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8355 8356 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8357 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8358 } 8359 8360 // We're trying to insert a regular store, S, and then a load, L. If the 8361 // incoming value, O, is a load, we might just be able to have our load use the 8362 // address used by O. However, we don't know if anything else will store to 8363 // that address before we can load from it. To prevent this situation, we need 8364 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8365 // the same chain operand as O, we create a token factor from the chain results 8366 // of O and L, and we replace all uses of O's chain result with that token 8367 // factor (see spliceIntoChain below for this last part). 8368 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8369 ReuseLoadInfo &RLI, 8370 SelectionDAG &DAG, 8371 ISD::LoadExtType ET) const { 8372 SDLoc dl(Op); 8373 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8374 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8375 if (ET == ISD::NON_EXTLOAD && 8376 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8377 isOperationLegalOrCustom(Op.getOpcode(), 8378 Op.getOperand(0).getValueType())) { 8379 8380 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8381 return true; 8382 } 8383 8384 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8385 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8386 LD->isNonTemporal()) 8387 return false; 8388 if (LD->getMemoryVT() != MemVT) 8389 return false; 8390 8391 RLI.Ptr = LD->getBasePtr(); 8392 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8393 assert(LD->getAddressingMode() == ISD::PRE_INC && 8394 "Non-pre-inc AM on PPC?"); 8395 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8396 LD->getOffset()); 8397 } 8398 8399 RLI.Chain = LD->getChain(); 8400 RLI.MPI = LD->getPointerInfo(); 8401 RLI.IsDereferenceable = LD->isDereferenceable(); 8402 RLI.IsInvariant = LD->isInvariant(); 8403 RLI.Alignment = LD->getAlign(); 8404 RLI.AAInfo = LD->getAAInfo(); 8405 RLI.Ranges = LD->getRanges(); 8406 8407 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8408 return true; 8409 } 8410 8411 // Given the head of the old chain, ResChain, insert a token factor containing 8412 // it and NewResChain, and make users of ResChain now be users of that token 8413 // factor. 8414 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8415 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8416 SDValue NewResChain, 8417 SelectionDAG &DAG) const { 8418 if (!ResChain) 8419 return; 8420 8421 SDLoc dl(NewResChain); 8422 8423 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8424 NewResChain, DAG.getUNDEF(MVT::Other)); 8425 assert(TF.getNode() != NewResChain.getNode() && 8426 "A new TF really is required here"); 8427 8428 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8429 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8430 } 8431 8432 /// Analyze profitability of direct move 8433 /// prefer float load to int load plus direct move 8434 /// when there is no integer use of int load 8435 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8436 SDNode *Origin = Op.getOperand(0).getNode(); 8437 if (Origin->getOpcode() != ISD::LOAD) 8438 return true; 8439 8440 // If there is no LXSIBZX/LXSIHZX, like Power8, 8441 // prefer direct move if the memory size is 1 or 2 bytes. 8442 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8443 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8444 return true; 8445 8446 for (SDNode::use_iterator UI = Origin->use_begin(), 8447 UE = Origin->use_end(); 8448 UI != UE; ++UI) { 8449 8450 // Only look at the users of the loaded value. 8451 if (UI.getUse().get().getResNo() != 0) 8452 continue; 8453 8454 if (UI->getOpcode() != ISD::SINT_TO_FP && 8455 UI->getOpcode() != ISD::UINT_TO_FP) 8456 return true; 8457 } 8458 8459 return false; 8460 } 8461 8462 /// Custom lowers integer to floating point conversions to use 8463 /// the direct move instructions available in ISA 2.07 to avoid the 8464 /// need for load/store combinations. 8465 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8466 SelectionDAG &DAG, 8467 const SDLoc &dl) const { 8468 assert((Op.getValueType() == MVT::f32 || 8469 Op.getValueType() == MVT::f64) && 8470 "Invalid floating point type as target of conversion"); 8471 assert(Subtarget.hasFPCVT() && 8472 "Int to FP conversions with direct moves require FPCVT"); 8473 SDValue FP; 8474 SDValue Src = Op.getOperand(0); 8475 bool SinglePrec = Op.getValueType() == MVT::f32; 8476 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8477 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8478 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8479 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8480 8481 if (WordInt) { 8482 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8483 dl, MVT::f64, Src); 8484 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8485 } 8486 else { 8487 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8488 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8489 } 8490 8491 return FP; 8492 } 8493 8494 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8495 8496 EVT VecVT = Vec.getValueType(); 8497 assert(VecVT.isVector() && "Expected a vector type."); 8498 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8499 8500 EVT EltVT = VecVT.getVectorElementType(); 8501 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8502 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8503 8504 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8505 SmallVector<SDValue, 16> Ops(NumConcat); 8506 Ops[0] = Vec; 8507 SDValue UndefVec = DAG.getUNDEF(VecVT); 8508 for (unsigned i = 1; i < NumConcat; ++i) 8509 Ops[i] = UndefVec; 8510 8511 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8512 } 8513 8514 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8515 const SDLoc &dl) const { 8516 8517 unsigned Opc = Op.getOpcode(); 8518 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8519 "Unexpected conversion type"); 8520 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8521 "Supports conversions to v2f64/v4f32 only."); 8522 8523 bool SignedConv = Opc == ISD::SINT_TO_FP; 8524 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8525 8526 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8527 EVT WideVT = Wide.getValueType(); 8528 unsigned WideNumElts = WideVT.getVectorNumElements(); 8529 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8530 8531 SmallVector<int, 16> ShuffV; 8532 for (unsigned i = 0; i < WideNumElts; ++i) 8533 ShuffV.push_back(i + WideNumElts); 8534 8535 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8536 int SaveElts = FourEltRes ? 4 : 2; 8537 if (Subtarget.isLittleEndian()) 8538 for (int i = 0; i < SaveElts; i++) 8539 ShuffV[i * Stride] = i; 8540 else 8541 for (int i = 1; i <= SaveElts; i++) 8542 ShuffV[i * Stride - 1] = i - 1; 8543 8544 SDValue ShuffleSrc2 = 8545 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8546 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8547 8548 SDValue Extend; 8549 if (SignedConv) { 8550 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8551 EVT ExtVT = Op.getOperand(0).getValueType(); 8552 if (Subtarget.hasP9Altivec()) 8553 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8554 IntermediateVT.getVectorNumElements()); 8555 8556 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8557 DAG.getValueType(ExtVT)); 8558 } else 8559 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8560 8561 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8562 } 8563 8564 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8565 SelectionDAG &DAG) const { 8566 SDLoc dl(Op); 8567 8568 EVT InVT = Op.getOperand(0).getValueType(); 8569 EVT OutVT = Op.getValueType(); 8570 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8571 isOperationCustom(Op.getOpcode(), InVT)) 8572 return LowerINT_TO_FPVector(Op, DAG, dl); 8573 8574 // Conversions to f128 are legal. 8575 if (Op.getValueType() == MVT::f128) 8576 return Op; 8577 8578 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8579 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8580 return SDValue(); 8581 8582 SDValue Value = Op.getOperand(0); 8583 // The values are now known to be -1 (false) or 1 (true). To convert this 8584 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8585 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8586 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8587 8588 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8589 8590 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8591 8592 if (Op.getValueType() != MVT::v4f64) 8593 Value = DAG.getNode(ISD::FP_ROUND, dl, 8594 Op.getValueType(), Value, 8595 DAG.getIntPtrConstant(1, dl)); 8596 return Value; 8597 } 8598 8599 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8600 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8601 return SDValue(); 8602 8603 if (Op.getOperand(0).getValueType() == MVT::i1) 8604 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8605 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8606 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8607 8608 // If we have direct moves, we can do all the conversion, skip the store/load 8609 // however, without FPCVT we can't do most conversions. 8610 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8611 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8612 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8613 8614 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8615 "UINT_TO_FP is supported only with FPCVT"); 8616 8617 // If we have FCFIDS, then use it when converting to single-precision. 8618 // Otherwise, convert to double-precision and then round. 8619 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8620 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8621 : PPCISD::FCFIDS) 8622 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8623 : PPCISD::FCFID); 8624 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8625 ? MVT::f32 8626 : MVT::f64; 8627 8628 if (Op.getOperand(0).getValueType() == MVT::i64) { 8629 SDValue SINT = Op.getOperand(0); 8630 // When converting to single-precision, we actually need to convert 8631 // to double-precision first and then round to single-precision. 8632 // To avoid double-rounding effects during that operation, we have 8633 // to prepare the input operand. Bits that might be truncated when 8634 // converting to double-precision are replaced by a bit that won't 8635 // be lost at this stage, but is below the single-precision rounding 8636 // position. 8637 // 8638 // However, if -enable-unsafe-fp-math is in effect, accept double 8639 // rounding to avoid the extra overhead. 8640 if (Op.getValueType() == MVT::f32 && 8641 !Subtarget.hasFPCVT() && 8642 !DAG.getTarget().Options.UnsafeFPMath) { 8643 8644 // Twiddle input to make sure the low 11 bits are zero. (If this 8645 // is the case, we are guaranteed the value will fit into the 53 bit 8646 // mantissa of an IEEE double-precision value without rounding.) 8647 // If any of those low 11 bits were not zero originally, make sure 8648 // bit 12 (value 2048) is set instead, so that the final rounding 8649 // to single-precision gets the correct result. 8650 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8651 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8652 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8653 Round, DAG.getConstant(2047, dl, MVT::i64)); 8654 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8655 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8656 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8657 8658 // However, we cannot use that value unconditionally: if the magnitude 8659 // of the input value is small, the bit-twiddling we did above might 8660 // end up visibly changing the output. Fortunately, in that case, we 8661 // don't need to twiddle bits since the original input will convert 8662 // exactly to double-precision floating-point already. Therefore, 8663 // construct a conditional to use the original value if the top 11 8664 // bits are all sign-bit copies, and use the rounded value computed 8665 // above otherwise. 8666 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8667 SINT, DAG.getConstant(53, dl, MVT::i32)); 8668 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8669 Cond, DAG.getConstant(1, dl, MVT::i64)); 8670 Cond = DAG.getSetCC( 8671 dl, 8672 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8673 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8674 8675 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8676 } 8677 8678 ReuseLoadInfo RLI; 8679 SDValue Bits; 8680 8681 MachineFunction &MF = DAG.getMachineFunction(); 8682 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8683 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8684 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8685 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8686 } else if (Subtarget.hasLFIWAX() && 8687 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8688 MachineMemOperand *MMO = 8689 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8690 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8691 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8692 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8693 DAG.getVTList(MVT::f64, MVT::Other), 8694 Ops, MVT::i32, MMO); 8695 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8696 } else if (Subtarget.hasFPCVT() && 8697 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8698 MachineMemOperand *MMO = 8699 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8700 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8701 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8702 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8703 DAG.getVTList(MVT::f64, MVT::Other), 8704 Ops, MVT::i32, MMO); 8705 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8706 } else if (((Subtarget.hasLFIWAX() && 8707 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8708 (Subtarget.hasFPCVT() && 8709 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8710 SINT.getOperand(0).getValueType() == MVT::i32) { 8711 MachineFrameInfo &MFI = MF.getFrameInfo(); 8712 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8713 8714 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8715 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8716 8717 SDValue Store = 8718 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8719 MachinePointerInfo::getFixedStack( 8720 DAG.getMachineFunction(), FrameIdx)); 8721 8722 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8723 "Expected an i32 store"); 8724 8725 RLI.Ptr = FIdx; 8726 RLI.Chain = Store; 8727 RLI.MPI = 8728 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8729 RLI.Alignment = Align(4); 8730 8731 MachineMemOperand *MMO = 8732 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8733 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8734 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8735 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8736 PPCISD::LFIWZX : PPCISD::LFIWAX, 8737 dl, DAG.getVTList(MVT::f64, MVT::Other), 8738 Ops, MVT::i32, MMO); 8739 } else 8740 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8741 8742 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8743 8744 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8745 FP = DAG.getNode(ISD::FP_ROUND, dl, 8746 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8747 return FP; 8748 } 8749 8750 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8751 "Unhandled INT_TO_FP type in custom expander!"); 8752 // Since we only generate this in 64-bit mode, we can take advantage of 8753 // 64-bit registers. In particular, sign extend the input value into the 8754 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8755 // then lfd it and fcfid it. 8756 MachineFunction &MF = DAG.getMachineFunction(); 8757 MachineFrameInfo &MFI = MF.getFrameInfo(); 8758 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8759 8760 SDValue Ld; 8761 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8762 ReuseLoadInfo RLI; 8763 bool ReusingLoad; 8764 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8765 DAG))) { 8766 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8767 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8768 8769 SDValue Store = 8770 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8771 MachinePointerInfo::getFixedStack( 8772 DAG.getMachineFunction(), FrameIdx)); 8773 8774 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8775 "Expected an i32 store"); 8776 8777 RLI.Ptr = FIdx; 8778 RLI.Chain = Store; 8779 RLI.MPI = 8780 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8781 RLI.Alignment = Align(4); 8782 } 8783 8784 MachineMemOperand *MMO = 8785 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8786 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8787 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8788 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8789 PPCISD::LFIWZX : PPCISD::LFIWAX, 8790 dl, DAG.getVTList(MVT::f64, MVT::Other), 8791 Ops, MVT::i32, MMO); 8792 if (ReusingLoad) 8793 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8794 } else { 8795 assert(Subtarget.isPPC64() && 8796 "i32->FP without LFIWAX supported only on PPC64"); 8797 8798 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8799 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8800 8801 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8802 Op.getOperand(0)); 8803 8804 // STD the extended value into the stack slot. 8805 SDValue Store = DAG.getStore( 8806 DAG.getEntryNode(), dl, Ext64, FIdx, 8807 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8808 8809 // Load the value as a double. 8810 Ld = DAG.getLoad( 8811 MVT::f64, dl, Store, FIdx, 8812 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8813 } 8814 8815 // FCFID it and return it. 8816 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8817 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8818 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8819 DAG.getIntPtrConstant(0, dl)); 8820 return FP; 8821 } 8822 8823 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8824 SelectionDAG &DAG) const { 8825 SDLoc dl(Op); 8826 /* 8827 The rounding mode is in bits 30:31 of FPSR, and has the following 8828 settings: 8829 00 Round to nearest 8830 01 Round to 0 8831 10 Round to +inf 8832 11 Round to -inf 8833 8834 FLT_ROUNDS, on the other hand, expects the following: 8835 -1 Undefined 8836 0 Round to 0 8837 1 Round to nearest 8838 2 Round to +inf 8839 3 Round to -inf 8840 8841 To perform the conversion, we do: 8842 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8843 */ 8844 8845 MachineFunction &MF = DAG.getMachineFunction(); 8846 EVT VT = Op.getValueType(); 8847 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8848 8849 // Save FP Control Word to register 8850 SDValue Chain = Op.getOperand(0); 8851 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8852 Chain = MFFS.getValue(1); 8853 8854 // Save FP register to stack slot 8855 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8856 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8857 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8858 8859 // Load FP Control Word from low 32 bits of stack slot. 8860 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8861 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8862 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8863 Chain = CWD.getValue(1); 8864 8865 // Transform as necessary 8866 SDValue CWD1 = 8867 DAG.getNode(ISD::AND, dl, MVT::i32, 8868 CWD, DAG.getConstant(3, dl, MVT::i32)); 8869 SDValue CWD2 = 8870 DAG.getNode(ISD::SRL, dl, MVT::i32, 8871 DAG.getNode(ISD::AND, dl, MVT::i32, 8872 DAG.getNode(ISD::XOR, dl, MVT::i32, 8873 CWD, DAG.getConstant(3, dl, MVT::i32)), 8874 DAG.getConstant(3, dl, MVT::i32)), 8875 DAG.getConstant(1, dl, MVT::i32)); 8876 8877 SDValue RetVal = 8878 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8879 8880 RetVal = 8881 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8882 dl, VT, RetVal); 8883 8884 return DAG.getMergeValues({RetVal, Chain}, dl); 8885 } 8886 8887 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8888 EVT VT = Op.getValueType(); 8889 unsigned BitWidth = VT.getSizeInBits(); 8890 SDLoc dl(Op); 8891 assert(Op.getNumOperands() == 3 && 8892 VT == Op.getOperand(1).getValueType() && 8893 "Unexpected SHL!"); 8894 8895 // Expand into a bunch of logical ops. Note that these ops 8896 // depend on the PPC behavior for oversized shift amounts. 8897 SDValue Lo = Op.getOperand(0); 8898 SDValue Hi = Op.getOperand(1); 8899 SDValue Amt = Op.getOperand(2); 8900 EVT AmtVT = Amt.getValueType(); 8901 8902 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8903 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8904 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8905 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8906 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8907 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8908 DAG.getConstant(-BitWidth, dl, AmtVT)); 8909 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8910 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8911 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8912 SDValue OutOps[] = { OutLo, OutHi }; 8913 return DAG.getMergeValues(OutOps, dl); 8914 } 8915 8916 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8917 EVT VT = Op.getValueType(); 8918 SDLoc dl(Op); 8919 unsigned BitWidth = VT.getSizeInBits(); 8920 assert(Op.getNumOperands() == 3 && 8921 VT == Op.getOperand(1).getValueType() && 8922 "Unexpected SRL!"); 8923 8924 // Expand into a bunch of logical ops. Note that these ops 8925 // depend on the PPC behavior for oversized shift amounts. 8926 SDValue Lo = Op.getOperand(0); 8927 SDValue Hi = Op.getOperand(1); 8928 SDValue Amt = Op.getOperand(2); 8929 EVT AmtVT = Amt.getValueType(); 8930 8931 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8932 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8933 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8934 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8935 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8936 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8937 DAG.getConstant(-BitWidth, dl, AmtVT)); 8938 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8939 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8940 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8941 SDValue OutOps[] = { OutLo, OutHi }; 8942 return DAG.getMergeValues(OutOps, dl); 8943 } 8944 8945 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8946 SDLoc dl(Op); 8947 EVT VT = Op.getValueType(); 8948 unsigned BitWidth = VT.getSizeInBits(); 8949 assert(Op.getNumOperands() == 3 && 8950 VT == Op.getOperand(1).getValueType() && 8951 "Unexpected SRA!"); 8952 8953 // Expand into a bunch of logical ops, followed by a select_cc. 8954 SDValue Lo = Op.getOperand(0); 8955 SDValue Hi = Op.getOperand(1); 8956 SDValue Amt = Op.getOperand(2); 8957 EVT AmtVT = Amt.getValueType(); 8958 8959 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8960 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8961 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8962 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8963 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8964 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8965 DAG.getConstant(-BitWidth, dl, AmtVT)); 8966 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8967 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8968 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8969 Tmp4, Tmp6, ISD::SETLE); 8970 SDValue OutOps[] = { OutLo, OutHi }; 8971 return DAG.getMergeValues(OutOps, dl); 8972 } 8973 8974 //===----------------------------------------------------------------------===// 8975 // Vector related lowering. 8976 // 8977 8978 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8979 /// element size of SplatSize. Cast the result to VT. 8980 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8981 SelectionDAG &DAG, const SDLoc &dl) { 8982 static const MVT VTys[] = { // canonical VT to use for each size. 8983 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8984 }; 8985 8986 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8987 8988 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8989 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 8990 SplatSize = 1; 8991 Val = 0xFF; 8992 } 8993 8994 EVT CanonicalVT = VTys[SplatSize-1]; 8995 8996 // Build a canonical splat for this value. 8997 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8998 } 8999 9000 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9001 /// specified intrinsic ID. 9002 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9003 const SDLoc &dl, EVT DestVT = MVT::Other) { 9004 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9005 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9006 DAG.getConstant(IID, dl, MVT::i32), Op); 9007 } 9008 9009 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9010 /// specified intrinsic ID. 9011 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9012 SelectionDAG &DAG, const SDLoc &dl, 9013 EVT DestVT = MVT::Other) { 9014 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9015 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9016 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9017 } 9018 9019 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9020 /// specified intrinsic ID. 9021 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9022 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9023 EVT DestVT = MVT::Other) { 9024 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9025 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9026 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9027 } 9028 9029 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9030 /// amount. The result has the specified value type. 9031 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9032 SelectionDAG &DAG, const SDLoc &dl) { 9033 // Force LHS/RHS to be the right type. 9034 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9035 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9036 9037 int Ops[16]; 9038 for (unsigned i = 0; i != 16; ++i) 9039 Ops[i] = i + Amt; 9040 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9041 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9042 } 9043 9044 /// Do we have an efficient pattern in a .td file for this node? 9045 /// 9046 /// \param V - pointer to the BuildVectorSDNode being matched 9047 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9048 /// 9049 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9050 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9051 /// the opposite is true (expansion is beneficial) are: 9052 /// - The node builds a vector out of integers that are not 32 or 64-bits 9053 /// - The node builds a vector out of constants 9054 /// - The node is a "load-and-splat" 9055 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9056 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9057 bool HasDirectMove, 9058 bool HasP8Vector) { 9059 EVT VecVT = V->getValueType(0); 9060 bool RightType = VecVT == MVT::v2f64 || 9061 (HasP8Vector && VecVT == MVT::v4f32) || 9062 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9063 if (!RightType) 9064 return false; 9065 9066 bool IsSplat = true; 9067 bool IsLoad = false; 9068 SDValue Op0 = V->getOperand(0); 9069 9070 // This function is called in a block that confirms the node is not a constant 9071 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9072 // different constants. 9073 if (V->isConstant()) 9074 return false; 9075 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9076 if (V->getOperand(i).isUndef()) 9077 return false; 9078 // We want to expand nodes that represent load-and-splat even if the 9079 // loaded value is a floating point truncation or conversion to int. 9080 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9081 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9082 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9083 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9084 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9085 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9086 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9087 IsLoad = true; 9088 // If the operands are different or the input is not a load and has more 9089 // uses than just this BV node, then it isn't a splat. 9090 if (V->getOperand(i) != Op0 || 9091 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9092 IsSplat = false; 9093 } 9094 return !(IsSplat && IsLoad); 9095 } 9096 9097 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9098 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9099 9100 SDLoc dl(Op); 9101 SDValue Op0 = Op->getOperand(0); 9102 9103 if ((Op.getValueType() != MVT::f128) || 9104 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9105 (Op0.getOperand(0).getValueType() != MVT::i64) || 9106 (Op0.getOperand(1).getValueType() != MVT::i64)) 9107 return SDValue(); 9108 9109 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9110 Op0.getOperand(1)); 9111 } 9112 9113 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9114 const SDValue *InputLoad = &Op; 9115 if (InputLoad->getOpcode() == ISD::BITCAST) 9116 InputLoad = &InputLoad->getOperand(0); 9117 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9118 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9119 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9120 InputLoad = &InputLoad->getOperand(0); 9121 } 9122 if (InputLoad->getOpcode() != ISD::LOAD) 9123 return nullptr; 9124 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9125 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9126 } 9127 9128 // Convert the argument APFloat to a single precision APFloat if there is no 9129 // loss in information during the conversion to single precision APFloat and the 9130 // resulting number is not a denormal number. Return true if successful. 9131 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9132 APFloat APFloatToConvert = ArgAPFloat; 9133 bool LosesInfo = true; 9134 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9135 &LosesInfo); 9136 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9137 if (Success) 9138 ArgAPFloat = APFloatToConvert; 9139 return Success; 9140 } 9141 9142 // Bitcast the argument APInt to a double and convert it to a single precision 9143 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9144 // argument if there is no loss in information during the conversion from 9145 // double to single precision APFloat and the resulting number is not a denormal 9146 // number. Return true if successful. 9147 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9148 double DpValue = ArgAPInt.bitsToDouble(); 9149 APFloat APFloatDp(DpValue); 9150 bool Success = convertToNonDenormSingle(APFloatDp); 9151 if (Success) 9152 ArgAPInt = APFloatDp.bitcastToAPInt(); 9153 return Success; 9154 } 9155 9156 // If this is a case we can't handle, return null and let the default 9157 // expansion code take care of it. If we CAN select this case, and if it 9158 // selects to a single instruction, return Op. Otherwise, if we can codegen 9159 // this case more efficiently than a constant pool load, lower it to the 9160 // sequence of ops that should be used. 9161 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9162 SelectionDAG &DAG) const { 9163 SDLoc dl(Op); 9164 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9165 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9166 9167 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 9168 // We first build an i32 vector, load it into a QPX register, 9169 // then convert it to a floating-point vector and compare it 9170 // to a zero vector to get the boolean result. 9171 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9172 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 9173 MachinePointerInfo PtrInfo = 9174 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9175 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9176 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9177 9178 assert(BVN->getNumOperands() == 4 && 9179 "BUILD_VECTOR for v4i1 does not have 4 operands"); 9180 9181 bool IsConst = true; 9182 for (unsigned i = 0; i < 4; ++i) { 9183 if (BVN->getOperand(i).isUndef()) continue; 9184 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 9185 IsConst = false; 9186 break; 9187 } 9188 } 9189 9190 if (IsConst) { 9191 Constant *One = 9192 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 9193 Constant *NegOne = 9194 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 9195 9196 Constant *CV[4]; 9197 for (unsigned i = 0; i < 4; ++i) { 9198 if (BVN->getOperand(i).isUndef()) 9199 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 9200 else if (isNullConstant(BVN->getOperand(i))) 9201 CV[i] = NegOne; 9202 else 9203 CV[i] = One; 9204 } 9205 9206 Constant *CP = ConstantVector::get(CV); 9207 SDValue CPIdx = 9208 DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16)); 9209 9210 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 9211 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 9212 return DAG.getMemIntrinsicNode( 9213 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 9214 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 9215 } 9216 9217 SmallVector<SDValue, 4> Stores; 9218 for (unsigned i = 0; i < 4; ++i) { 9219 if (BVN->getOperand(i).isUndef()) continue; 9220 9221 unsigned Offset = 4*i; 9222 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9223 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9224 9225 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 9226 if (StoreSize > 4) { 9227 Stores.push_back( 9228 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9229 PtrInfo.getWithOffset(Offset), MVT::i32)); 9230 } else { 9231 SDValue StoreValue = BVN->getOperand(i); 9232 if (StoreSize < 4) 9233 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9234 9235 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9236 PtrInfo.getWithOffset(Offset))); 9237 } 9238 } 9239 9240 SDValue StoreChain; 9241 if (!Stores.empty()) 9242 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9243 else 9244 StoreChain = DAG.getEntryNode(); 9245 9246 // Now load from v4i32 into the QPX register; this will extend it to 9247 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9248 // is typed as v4f64 because the QPX register integer states are not 9249 // explicitly represented. 9250 9251 SDValue Ops[] = {StoreChain, 9252 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9253 FIdx}; 9254 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9255 9256 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9257 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9258 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9259 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9260 LoadedVect); 9261 9262 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9263 9264 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9265 } 9266 9267 // All other QPX vectors are handled by generic code. 9268 if (Subtarget.hasQPX()) 9269 return SDValue(); 9270 9271 // Check if this is a splat of a constant value. 9272 APInt APSplatBits, APSplatUndef; 9273 unsigned SplatBitSize; 9274 bool HasAnyUndefs; 9275 bool BVNIsConstantSplat = 9276 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9277 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9278 9279 // If it is a splat of a double, check if we can shrink it to a 32 bit 9280 // non-denormal float which when converted back to double gives us the same 9281 // double. This is to exploit the XXSPLTIDP instruction. 9282 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9283 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9284 convertToNonDenormSingle(APSplatBits)) { 9285 SDValue SplatNode = DAG.getNode( 9286 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9287 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9288 return DAG.getBitcast(Op.getValueType(), SplatNode); 9289 } 9290 9291 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9292 9293 bool IsPermutedLoad = false; 9294 const SDValue *InputLoad = 9295 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9296 // Handle load-and-splat patterns as we have instructions that will do this 9297 // in one go. 9298 if (InputLoad && DAG.isSplatValue(Op, true)) { 9299 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9300 9301 // We have handling for 4 and 8 byte elements. 9302 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9303 9304 // Checking for a single use of this load, we have to check for vector 9305 // width (128 bits) / ElementSize uses (since each operand of the 9306 // BUILD_VECTOR is a separate use of the value. 9307 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9308 ((Subtarget.hasVSX() && ElementSize == 64) || 9309 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9310 SDValue Ops[] = { 9311 LD->getChain(), // Chain 9312 LD->getBasePtr(), // Ptr 9313 DAG.getValueType(Op.getValueType()) // VT 9314 }; 9315 return 9316 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9317 DAG.getVTList(Op.getValueType(), MVT::Other), 9318 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9319 } 9320 } 9321 9322 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9323 // lowered to VSX instructions under certain conditions. 9324 // Without VSX, there is no pattern more efficient than expanding the node. 9325 if (Subtarget.hasVSX() && 9326 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9327 Subtarget.hasP8Vector())) 9328 return Op; 9329 return SDValue(); 9330 } 9331 9332 uint64_t SplatBits = APSplatBits.getZExtValue(); 9333 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9334 unsigned SplatSize = SplatBitSize / 8; 9335 9336 // First, handle single instruction cases. 9337 9338 // All zeros? 9339 if (SplatBits == 0) { 9340 // Canonicalize all zero vectors to be v4i32. 9341 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9342 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9343 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9344 } 9345 return Op; 9346 } 9347 9348 // We have XXSPLTIW for constant splats four bytes wide. 9349 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9350 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9351 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9352 // turned into a 4-byte splat of 0xABABABAB. 9353 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9354 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 9355 Op.getValueType(), DAG, dl); 9356 9357 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9358 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9359 dl); 9360 9361 // We have XXSPLTIB for constant splats one byte wide. 9362 if (Subtarget.hasP9Vector() && SplatSize == 1) 9363 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9364 dl); 9365 9366 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9367 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9368 (32-SplatBitSize)); 9369 if (SextVal >= -16 && SextVal <= 15) 9370 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9371 dl); 9372 9373 // Two instruction sequences. 9374 9375 // If this value is in the range [-32,30] and is even, use: 9376 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9377 // If this value is in the range [17,31] and is odd, use: 9378 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9379 // If this value is in the range [-31,-17] and is odd, use: 9380 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9381 // Note the last two are three-instruction sequences. 9382 if (SextVal >= -32 && SextVal <= 31) { 9383 // To avoid having these optimizations undone by constant folding, 9384 // we convert to a pseudo that will be expanded later into one of 9385 // the above forms. 9386 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9387 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9388 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9389 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9390 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9391 if (VT == Op.getValueType()) 9392 return RetVal; 9393 else 9394 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9395 } 9396 9397 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9398 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9399 // for fneg/fabs. 9400 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9401 // Make -1 and vspltisw -1: 9402 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9403 9404 // Make the VSLW intrinsic, computing 0x8000_0000. 9405 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9406 OnesV, DAG, dl); 9407 9408 // xor by OnesV to invert it. 9409 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9410 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9411 } 9412 9413 // Check to see if this is a wide variety of vsplti*, binop self cases. 9414 static const signed char SplatCsts[] = { 9415 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9416 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9417 }; 9418 9419 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9420 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9421 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9422 int i = SplatCsts[idx]; 9423 9424 // Figure out what shift amount will be used by altivec if shifted by i in 9425 // this splat size. 9426 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9427 9428 // vsplti + shl self. 9429 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9430 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9431 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9432 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9433 Intrinsic::ppc_altivec_vslw 9434 }; 9435 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9436 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9437 } 9438 9439 // vsplti + srl self. 9440 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9441 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9442 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9443 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9444 Intrinsic::ppc_altivec_vsrw 9445 }; 9446 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9447 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9448 } 9449 9450 // vsplti + sra self. 9451 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9452 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9453 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9454 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9455 Intrinsic::ppc_altivec_vsraw 9456 }; 9457 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9458 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9459 } 9460 9461 // vsplti + rol self. 9462 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9463 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9464 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9465 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9466 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9467 Intrinsic::ppc_altivec_vrlw 9468 }; 9469 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9470 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9471 } 9472 9473 // t = vsplti c, result = vsldoi t, t, 1 9474 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9475 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9476 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9477 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9478 } 9479 // t = vsplti c, result = vsldoi t, t, 2 9480 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9481 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9482 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9483 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9484 } 9485 // t = vsplti c, result = vsldoi t, t, 3 9486 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9487 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9488 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9489 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9490 } 9491 } 9492 9493 return SDValue(); 9494 } 9495 9496 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9497 /// the specified operations to build the shuffle. 9498 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9499 SDValue RHS, SelectionDAG &DAG, 9500 const SDLoc &dl) { 9501 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9502 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9503 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9504 9505 enum { 9506 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9507 OP_VMRGHW, 9508 OP_VMRGLW, 9509 OP_VSPLTISW0, 9510 OP_VSPLTISW1, 9511 OP_VSPLTISW2, 9512 OP_VSPLTISW3, 9513 OP_VSLDOI4, 9514 OP_VSLDOI8, 9515 OP_VSLDOI12 9516 }; 9517 9518 if (OpNum == OP_COPY) { 9519 if (LHSID == (1*9+2)*9+3) return LHS; 9520 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9521 return RHS; 9522 } 9523 9524 SDValue OpLHS, OpRHS; 9525 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9526 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9527 9528 int ShufIdxs[16]; 9529 switch (OpNum) { 9530 default: llvm_unreachable("Unknown i32 permute!"); 9531 case OP_VMRGHW: 9532 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9533 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9534 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9535 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9536 break; 9537 case OP_VMRGLW: 9538 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9539 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9540 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9541 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9542 break; 9543 case OP_VSPLTISW0: 9544 for (unsigned i = 0; i != 16; ++i) 9545 ShufIdxs[i] = (i&3)+0; 9546 break; 9547 case OP_VSPLTISW1: 9548 for (unsigned i = 0; i != 16; ++i) 9549 ShufIdxs[i] = (i&3)+4; 9550 break; 9551 case OP_VSPLTISW2: 9552 for (unsigned i = 0; i != 16; ++i) 9553 ShufIdxs[i] = (i&3)+8; 9554 break; 9555 case OP_VSPLTISW3: 9556 for (unsigned i = 0; i != 16; ++i) 9557 ShufIdxs[i] = (i&3)+12; 9558 break; 9559 case OP_VSLDOI4: 9560 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9561 case OP_VSLDOI8: 9562 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9563 case OP_VSLDOI12: 9564 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9565 } 9566 EVT VT = OpLHS.getValueType(); 9567 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9568 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9569 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9570 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9571 } 9572 9573 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9574 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9575 /// SDValue. 9576 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9577 SelectionDAG &DAG) const { 9578 const unsigned BytesInVector = 16; 9579 bool IsLE = Subtarget.isLittleEndian(); 9580 SDLoc dl(N); 9581 SDValue V1 = N->getOperand(0); 9582 SDValue V2 = N->getOperand(1); 9583 unsigned ShiftElts = 0, InsertAtByte = 0; 9584 bool Swap = false; 9585 9586 // Shifts required to get the byte we want at element 7. 9587 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9588 0, 15, 14, 13, 12, 11, 10, 9}; 9589 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9590 1, 2, 3, 4, 5, 6, 7, 8}; 9591 9592 ArrayRef<int> Mask = N->getMask(); 9593 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9594 9595 // For each mask element, find out if we're just inserting something 9596 // from V2 into V1 or vice versa. 9597 // Possible permutations inserting an element from V2 into V1: 9598 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9599 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9600 // ... 9601 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9602 // Inserting from V1 into V2 will be similar, except mask range will be 9603 // [16,31]. 9604 9605 bool FoundCandidate = false; 9606 // If both vector operands for the shuffle are the same vector, the mask 9607 // will contain only elements from the first one and the second one will be 9608 // undef. 9609 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9610 // Go through the mask of half-words to find an element that's being moved 9611 // from one vector to the other. 9612 for (unsigned i = 0; i < BytesInVector; ++i) { 9613 unsigned CurrentElement = Mask[i]; 9614 // If 2nd operand is undefined, we should only look for element 7 in the 9615 // Mask. 9616 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9617 continue; 9618 9619 bool OtherElementsInOrder = true; 9620 // Examine the other elements in the Mask to see if they're in original 9621 // order. 9622 for (unsigned j = 0; j < BytesInVector; ++j) { 9623 if (j == i) 9624 continue; 9625 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9626 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9627 // in which we always assume we're always picking from the 1st operand. 9628 int MaskOffset = 9629 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9630 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9631 OtherElementsInOrder = false; 9632 break; 9633 } 9634 } 9635 // If other elements are in original order, we record the number of shifts 9636 // we need to get the element we want into element 7. Also record which byte 9637 // in the vector we should insert into. 9638 if (OtherElementsInOrder) { 9639 // If 2nd operand is undefined, we assume no shifts and no swapping. 9640 if (V2.isUndef()) { 9641 ShiftElts = 0; 9642 Swap = false; 9643 } else { 9644 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9645 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9646 : BigEndianShifts[CurrentElement & 0xF]; 9647 Swap = CurrentElement < BytesInVector; 9648 } 9649 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9650 FoundCandidate = true; 9651 break; 9652 } 9653 } 9654 9655 if (!FoundCandidate) 9656 return SDValue(); 9657 9658 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9659 // optionally with VECSHL if shift is required. 9660 if (Swap) 9661 std::swap(V1, V2); 9662 if (V2.isUndef()) 9663 V2 = V1; 9664 if (ShiftElts) { 9665 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9666 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9667 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9668 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9669 } 9670 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9671 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9672 } 9673 9674 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9675 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9676 /// SDValue. 9677 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9678 SelectionDAG &DAG) const { 9679 const unsigned NumHalfWords = 8; 9680 const unsigned BytesInVector = NumHalfWords * 2; 9681 // Check that the shuffle is on half-words. 9682 if (!isNByteElemShuffleMask(N, 2, 1)) 9683 return SDValue(); 9684 9685 bool IsLE = Subtarget.isLittleEndian(); 9686 SDLoc dl(N); 9687 SDValue V1 = N->getOperand(0); 9688 SDValue V2 = N->getOperand(1); 9689 unsigned ShiftElts = 0, InsertAtByte = 0; 9690 bool Swap = false; 9691 9692 // Shifts required to get the half-word we want at element 3. 9693 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9694 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9695 9696 uint32_t Mask = 0; 9697 uint32_t OriginalOrderLow = 0x1234567; 9698 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9699 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9700 // 32-bit space, only need 4-bit nibbles per element. 9701 for (unsigned i = 0; i < NumHalfWords; ++i) { 9702 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9703 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9704 } 9705 9706 // For each mask element, find out if we're just inserting something 9707 // from V2 into V1 or vice versa. Possible permutations inserting an element 9708 // from V2 into V1: 9709 // X, 1, 2, 3, 4, 5, 6, 7 9710 // 0, X, 2, 3, 4, 5, 6, 7 9711 // 0, 1, X, 3, 4, 5, 6, 7 9712 // 0, 1, 2, X, 4, 5, 6, 7 9713 // 0, 1, 2, 3, X, 5, 6, 7 9714 // 0, 1, 2, 3, 4, X, 6, 7 9715 // 0, 1, 2, 3, 4, 5, X, 7 9716 // 0, 1, 2, 3, 4, 5, 6, X 9717 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9718 9719 bool FoundCandidate = false; 9720 // Go through the mask of half-words to find an element that's being moved 9721 // from one vector to the other. 9722 for (unsigned i = 0; i < NumHalfWords; ++i) { 9723 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9724 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9725 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9726 uint32_t TargetOrder = 0x0; 9727 9728 // If both vector operands for the shuffle are the same vector, the mask 9729 // will contain only elements from the first one and the second one will be 9730 // undef. 9731 if (V2.isUndef()) { 9732 ShiftElts = 0; 9733 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9734 TargetOrder = OriginalOrderLow; 9735 Swap = false; 9736 // Skip if not the correct element or mask of other elements don't equal 9737 // to our expected order. 9738 if (MaskOneElt == VINSERTHSrcElem && 9739 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9740 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9741 FoundCandidate = true; 9742 break; 9743 } 9744 } else { // If both operands are defined. 9745 // Target order is [8,15] if the current mask is between [0,7]. 9746 TargetOrder = 9747 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9748 // Skip if mask of other elements don't equal our expected order. 9749 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9750 // We only need the last 3 bits for the number of shifts. 9751 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9752 : BigEndianShifts[MaskOneElt & 0x7]; 9753 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9754 Swap = MaskOneElt < NumHalfWords; 9755 FoundCandidate = true; 9756 break; 9757 } 9758 } 9759 } 9760 9761 if (!FoundCandidate) 9762 return SDValue(); 9763 9764 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9765 // optionally with VECSHL if shift is required. 9766 if (Swap) 9767 std::swap(V1, V2); 9768 if (V2.isUndef()) 9769 V2 = V1; 9770 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9771 if (ShiftElts) { 9772 // Double ShiftElts because we're left shifting on v16i8 type. 9773 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9774 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9775 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9776 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9777 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9778 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9779 } 9780 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9781 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9782 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9783 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9784 } 9785 9786 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9787 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9788 /// return the default SDValue. 9789 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9790 SelectionDAG &DAG) const { 9791 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9792 // to v16i8. Peek through the bitcasts to get the actual operands. 9793 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9794 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9795 9796 auto ShuffleMask = SVN->getMask(); 9797 SDValue VecShuffle(SVN, 0); 9798 SDLoc DL(SVN); 9799 9800 // Check that we have a four byte shuffle. 9801 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9802 return SDValue(); 9803 9804 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9805 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9806 std::swap(LHS, RHS); 9807 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9808 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9809 } 9810 9811 // Ensure that the RHS is a vector of constants. 9812 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9813 if (!BVN) 9814 return SDValue(); 9815 9816 // Check if RHS is a splat of 4-bytes (or smaller). 9817 APInt APSplatValue, APSplatUndef; 9818 unsigned SplatBitSize; 9819 bool HasAnyUndefs; 9820 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9821 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9822 SplatBitSize > 32) 9823 return SDValue(); 9824 9825 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9826 // The instruction splats a constant C into two words of the source vector 9827 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9828 // Thus we check that the shuffle mask is the equivalent of 9829 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9830 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9831 // within each word are consecutive, so we only need to check the first byte. 9832 SDValue Index; 9833 bool IsLE = Subtarget.isLittleEndian(); 9834 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9835 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9836 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9837 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9838 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9839 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9840 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9841 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9842 else 9843 return SDValue(); 9844 9845 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9846 // for XXSPLTI32DX. 9847 unsigned SplatVal = APSplatValue.getZExtValue(); 9848 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9849 SplatVal |= (SplatVal << SplatBitSize); 9850 9851 SDValue SplatNode = DAG.getNode( 9852 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9853 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9854 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9855 } 9856 9857 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9858 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9859 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9860 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9861 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9862 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9863 assert(Op.getValueType() == MVT::v1i128 && 9864 "Only set v1i128 as custom, other type shouldn't reach here!"); 9865 SDLoc dl(Op); 9866 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9867 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9868 unsigned SHLAmt = N1.getConstantOperandVal(0); 9869 if (SHLAmt % 8 == 0) { 9870 SmallVector<int, 16> Mask(16, 0); 9871 std::iota(Mask.begin(), Mask.end(), 0); 9872 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9873 if (SDValue Shuffle = 9874 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9875 DAG.getUNDEF(MVT::v16i8), Mask)) 9876 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9877 } 9878 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9879 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9880 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9881 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9882 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9883 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9884 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9885 } 9886 9887 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9888 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9889 /// return the code it can be lowered into. Worst case, it can always be 9890 /// lowered into a vperm. 9891 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9892 SelectionDAG &DAG) const { 9893 SDLoc dl(Op); 9894 SDValue V1 = Op.getOperand(0); 9895 SDValue V2 = Op.getOperand(1); 9896 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9897 9898 // Any nodes that were combined in the target-independent combiner prior 9899 // to vector legalization will not be sent to the target combine. Try to 9900 // combine it here. 9901 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9902 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9903 return NewShuffle; 9904 Op = NewShuffle; 9905 SVOp = cast<ShuffleVectorSDNode>(Op); 9906 V1 = Op.getOperand(0); 9907 V2 = Op.getOperand(1); 9908 } 9909 EVT VT = Op.getValueType(); 9910 bool isLittleEndian = Subtarget.isLittleEndian(); 9911 9912 unsigned ShiftElts, InsertAtByte; 9913 bool Swap = false; 9914 9915 // If this is a load-and-splat, we can do that with a single instruction 9916 // in some cases. However if the load has multiple uses, we don't want to 9917 // combine it because that will just produce multiple loads. 9918 bool IsPermutedLoad = false; 9919 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9920 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9921 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9922 InputLoad->hasOneUse()) { 9923 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9924 int SplatIdx = 9925 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9926 9927 // The splat index for permuted loads will be in the left half of the vector 9928 // which is strictly wider than the loaded value by 8 bytes. So we need to 9929 // adjust the splat index to point to the correct address in memory. 9930 if (IsPermutedLoad) { 9931 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9932 SplatIdx += IsFourByte ? 2 : 1; 9933 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9934 "Splat of a value outside of the loaded memory"); 9935 } 9936 9937 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9938 // For 4-byte load-and-splat, we need Power9. 9939 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9940 uint64_t Offset = 0; 9941 if (IsFourByte) 9942 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9943 else 9944 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9945 9946 SDValue BasePtr = LD->getBasePtr(); 9947 if (Offset != 0) 9948 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9949 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9950 SDValue Ops[] = { 9951 LD->getChain(), // Chain 9952 BasePtr, // BasePtr 9953 DAG.getValueType(Op.getValueType()) // VT 9954 }; 9955 SDVTList VTL = 9956 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9957 SDValue LdSplt = 9958 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9959 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9960 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9961 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9962 return LdSplt; 9963 } 9964 } 9965 if (Subtarget.hasP9Vector() && 9966 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9967 isLittleEndian)) { 9968 if (Swap) 9969 std::swap(V1, V2); 9970 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9971 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9972 if (ShiftElts) { 9973 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9974 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9975 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9976 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9977 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9978 } 9979 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9980 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9981 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9982 } 9983 9984 if (Subtarget.hasPrefixInstrs()) { 9985 SDValue SplatInsertNode; 9986 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9987 return SplatInsertNode; 9988 } 9989 9990 if (Subtarget.hasP9Altivec()) { 9991 SDValue NewISDNode; 9992 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9993 return NewISDNode; 9994 9995 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9996 return NewISDNode; 9997 } 9998 9999 if (Subtarget.hasVSX() && 10000 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10001 if (Swap) 10002 std::swap(V1, V2); 10003 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10004 SDValue Conv2 = 10005 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 10006 10007 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 10008 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10009 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 10010 } 10011 10012 if (Subtarget.hasVSX() && 10013 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10014 if (Swap) 10015 std::swap(V1, V2); 10016 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10017 SDValue Conv2 = 10018 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10019 10020 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10021 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10022 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10023 } 10024 10025 if (Subtarget.hasP9Vector()) { 10026 if (PPC::isXXBRHShuffleMask(SVOp)) { 10027 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10028 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10029 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10030 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10031 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10032 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10033 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10034 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10035 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10036 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10037 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10038 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10039 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10040 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10041 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10042 } 10043 } 10044 10045 if (Subtarget.hasVSX()) { 10046 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10047 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10048 10049 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10050 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10051 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10052 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10053 } 10054 10055 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10056 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10057 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10058 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10059 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10060 } 10061 } 10062 10063 if (Subtarget.hasQPX()) { 10064 if (VT.getVectorNumElements() != 4) 10065 return SDValue(); 10066 10067 if (V2.isUndef()) V2 = V1; 10068 10069 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 10070 if (AlignIdx != -1) { 10071 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 10072 DAG.getConstant(AlignIdx, dl, MVT::i32)); 10073 } else if (SVOp->isSplat()) { 10074 int SplatIdx = SVOp->getSplatIndex(); 10075 if (SplatIdx >= 4) { 10076 std::swap(V1, V2); 10077 SplatIdx -= 4; 10078 } 10079 10080 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 10081 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10082 } 10083 10084 // Lower this into a qvgpci/qvfperm pair. 10085 10086 // Compute the qvgpci literal 10087 unsigned idx = 0; 10088 for (unsigned i = 0; i < 4; ++i) { 10089 int m = SVOp->getMaskElt(i); 10090 unsigned mm = m >= 0 ? (unsigned) m : i; 10091 idx |= mm << (3-i)*3; 10092 } 10093 10094 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 10095 DAG.getConstant(idx, dl, MVT::i32)); 10096 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 10097 } 10098 10099 // Cases that are handled by instructions that take permute immediates 10100 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10101 // selected by the instruction selector. 10102 if (V2.isUndef()) { 10103 if (PPC::isSplatShuffleMask(SVOp, 1) || 10104 PPC::isSplatShuffleMask(SVOp, 2) || 10105 PPC::isSplatShuffleMask(SVOp, 4) || 10106 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10107 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10108 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10109 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10110 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10111 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10112 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10113 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10114 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10115 (Subtarget.hasP8Altivec() && ( 10116 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10117 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10118 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10119 return Op; 10120 } 10121 } 10122 10123 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10124 // and produce a fixed permutation. If any of these match, do not lower to 10125 // VPERM. 10126 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10127 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10128 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10129 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10130 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10131 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10132 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10133 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10134 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10135 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10136 (Subtarget.hasP8Altivec() && ( 10137 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10138 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10139 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10140 return Op; 10141 10142 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10143 // perfect shuffle table to emit an optimal matching sequence. 10144 ArrayRef<int> PermMask = SVOp->getMask(); 10145 10146 unsigned PFIndexes[4]; 10147 bool isFourElementShuffle = true; 10148 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10149 unsigned EltNo = 8; // Start out undef. 10150 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10151 if (PermMask[i*4+j] < 0) 10152 continue; // Undef, ignore it. 10153 10154 unsigned ByteSource = PermMask[i*4+j]; 10155 if ((ByteSource & 3) != j) { 10156 isFourElementShuffle = false; 10157 break; 10158 } 10159 10160 if (EltNo == 8) { 10161 EltNo = ByteSource/4; 10162 } else if (EltNo != ByteSource/4) { 10163 isFourElementShuffle = false; 10164 break; 10165 } 10166 } 10167 PFIndexes[i] = EltNo; 10168 } 10169 10170 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10171 // perfect shuffle vector to determine if it is cost effective to do this as 10172 // discrete instructions, or whether we should use a vperm. 10173 // For now, we skip this for little endian until such time as we have a 10174 // little-endian perfect shuffle table. 10175 if (isFourElementShuffle && !isLittleEndian) { 10176 // Compute the index in the perfect shuffle table. 10177 unsigned PFTableIndex = 10178 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10179 10180 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10181 unsigned Cost = (PFEntry >> 30); 10182 10183 // Determining when to avoid vperm is tricky. Many things affect the cost 10184 // of vperm, particularly how many times the perm mask needs to be computed. 10185 // For example, if the perm mask can be hoisted out of a loop or is already 10186 // used (perhaps because there are multiple permutes with the same shuffle 10187 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10188 // the loop requires an extra register. 10189 // 10190 // As a compromise, we only emit discrete instructions if the shuffle can be 10191 // generated in 3 or fewer operations. When we have loop information 10192 // available, if this block is within a loop, we should avoid using vperm 10193 // for 3-operation perms and use a constant pool load instead. 10194 if (Cost < 3) 10195 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10196 } 10197 10198 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10199 // vector that will get spilled to the constant pool. 10200 if (V2.isUndef()) V2 = V1; 10201 10202 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10203 // that it is in input element units, not in bytes. Convert now. 10204 10205 // For little endian, the order of the input vectors is reversed, and 10206 // the permutation mask is complemented with respect to 31. This is 10207 // necessary to produce proper semantics with the big-endian-biased vperm 10208 // instruction. 10209 EVT EltVT = V1.getValueType().getVectorElementType(); 10210 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10211 10212 SmallVector<SDValue, 16> ResultMask; 10213 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10214 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10215 10216 for (unsigned j = 0; j != BytesPerElement; ++j) 10217 if (isLittleEndian) 10218 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10219 dl, MVT::i32)); 10220 else 10221 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10222 MVT::i32)); 10223 } 10224 10225 ShufflesHandledWithVPERM++; 10226 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10227 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10228 LLVM_DEBUG(SVOp->dump()); 10229 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10230 LLVM_DEBUG(VPermMask.dump()); 10231 10232 if (isLittleEndian) 10233 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10234 V2, V1, VPermMask); 10235 else 10236 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10237 V1, V2, VPermMask); 10238 } 10239 10240 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10241 /// vector comparison. If it is, return true and fill in Opc/isDot with 10242 /// information about the intrinsic. 10243 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10244 bool &isDot, const PPCSubtarget &Subtarget) { 10245 unsigned IntrinsicID = 10246 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10247 CompareOpc = -1; 10248 isDot = false; 10249 switch (IntrinsicID) { 10250 default: 10251 return false; 10252 // Comparison predicates. 10253 case Intrinsic::ppc_altivec_vcmpbfp_p: 10254 CompareOpc = 966; 10255 isDot = true; 10256 break; 10257 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10258 CompareOpc = 198; 10259 isDot = true; 10260 break; 10261 case Intrinsic::ppc_altivec_vcmpequb_p: 10262 CompareOpc = 6; 10263 isDot = true; 10264 break; 10265 case Intrinsic::ppc_altivec_vcmpequh_p: 10266 CompareOpc = 70; 10267 isDot = true; 10268 break; 10269 case Intrinsic::ppc_altivec_vcmpequw_p: 10270 CompareOpc = 134; 10271 isDot = true; 10272 break; 10273 case Intrinsic::ppc_altivec_vcmpequd_p: 10274 if (Subtarget.hasP8Altivec()) { 10275 CompareOpc = 199; 10276 isDot = true; 10277 } else 10278 return false; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpneb_p: 10281 case Intrinsic::ppc_altivec_vcmpneh_p: 10282 case Intrinsic::ppc_altivec_vcmpnew_p: 10283 case Intrinsic::ppc_altivec_vcmpnezb_p: 10284 case Intrinsic::ppc_altivec_vcmpnezh_p: 10285 case Intrinsic::ppc_altivec_vcmpnezw_p: 10286 if (Subtarget.hasP9Altivec()) { 10287 switch (IntrinsicID) { 10288 default: 10289 llvm_unreachable("Unknown comparison intrinsic."); 10290 case Intrinsic::ppc_altivec_vcmpneb_p: 10291 CompareOpc = 7; 10292 break; 10293 case Intrinsic::ppc_altivec_vcmpneh_p: 10294 CompareOpc = 71; 10295 break; 10296 case Intrinsic::ppc_altivec_vcmpnew_p: 10297 CompareOpc = 135; 10298 break; 10299 case Intrinsic::ppc_altivec_vcmpnezb_p: 10300 CompareOpc = 263; 10301 break; 10302 case Intrinsic::ppc_altivec_vcmpnezh_p: 10303 CompareOpc = 327; 10304 break; 10305 case Intrinsic::ppc_altivec_vcmpnezw_p: 10306 CompareOpc = 391; 10307 break; 10308 } 10309 isDot = true; 10310 } else 10311 return false; 10312 break; 10313 case Intrinsic::ppc_altivec_vcmpgefp_p: 10314 CompareOpc = 454; 10315 isDot = true; 10316 break; 10317 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10318 CompareOpc = 710; 10319 isDot = true; 10320 break; 10321 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10322 CompareOpc = 774; 10323 isDot = true; 10324 break; 10325 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10326 CompareOpc = 838; 10327 isDot = true; 10328 break; 10329 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10330 CompareOpc = 902; 10331 isDot = true; 10332 break; 10333 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10334 if (Subtarget.hasP8Altivec()) { 10335 CompareOpc = 967; 10336 isDot = true; 10337 } else 10338 return false; 10339 break; 10340 case Intrinsic::ppc_altivec_vcmpgtub_p: 10341 CompareOpc = 518; 10342 isDot = true; 10343 break; 10344 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10345 CompareOpc = 582; 10346 isDot = true; 10347 break; 10348 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10349 CompareOpc = 646; 10350 isDot = true; 10351 break; 10352 case Intrinsic::ppc_altivec_vcmpgtud_p: 10353 if (Subtarget.hasP8Altivec()) { 10354 CompareOpc = 711; 10355 isDot = true; 10356 } else 10357 return false; 10358 break; 10359 10360 // VSX predicate comparisons use the same infrastructure 10361 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10362 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10363 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10364 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10365 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10366 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10367 if (Subtarget.hasVSX()) { 10368 switch (IntrinsicID) { 10369 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10370 CompareOpc = 99; 10371 break; 10372 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10373 CompareOpc = 115; 10374 break; 10375 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10376 CompareOpc = 107; 10377 break; 10378 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10379 CompareOpc = 67; 10380 break; 10381 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10382 CompareOpc = 83; 10383 break; 10384 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10385 CompareOpc = 75; 10386 break; 10387 } 10388 isDot = true; 10389 } else 10390 return false; 10391 break; 10392 10393 // Normal Comparisons. 10394 case Intrinsic::ppc_altivec_vcmpbfp: 10395 CompareOpc = 966; 10396 break; 10397 case Intrinsic::ppc_altivec_vcmpeqfp: 10398 CompareOpc = 198; 10399 break; 10400 case Intrinsic::ppc_altivec_vcmpequb: 10401 CompareOpc = 6; 10402 break; 10403 case Intrinsic::ppc_altivec_vcmpequh: 10404 CompareOpc = 70; 10405 break; 10406 case Intrinsic::ppc_altivec_vcmpequw: 10407 CompareOpc = 134; 10408 break; 10409 case Intrinsic::ppc_altivec_vcmpequd: 10410 if (Subtarget.hasP8Altivec()) 10411 CompareOpc = 199; 10412 else 10413 return false; 10414 break; 10415 case Intrinsic::ppc_altivec_vcmpneb: 10416 case Intrinsic::ppc_altivec_vcmpneh: 10417 case Intrinsic::ppc_altivec_vcmpnew: 10418 case Intrinsic::ppc_altivec_vcmpnezb: 10419 case Intrinsic::ppc_altivec_vcmpnezh: 10420 case Intrinsic::ppc_altivec_vcmpnezw: 10421 if (Subtarget.hasP9Altivec()) 10422 switch (IntrinsicID) { 10423 default: 10424 llvm_unreachable("Unknown comparison intrinsic."); 10425 case Intrinsic::ppc_altivec_vcmpneb: 10426 CompareOpc = 7; 10427 break; 10428 case Intrinsic::ppc_altivec_vcmpneh: 10429 CompareOpc = 71; 10430 break; 10431 case Intrinsic::ppc_altivec_vcmpnew: 10432 CompareOpc = 135; 10433 break; 10434 case Intrinsic::ppc_altivec_vcmpnezb: 10435 CompareOpc = 263; 10436 break; 10437 case Intrinsic::ppc_altivec_vcmpnezh: 10438 CompareOpc = 327; 10439 break; 10440 case Intrinsic::ppc_altivec_vcmpnezw: 10441 CompareOpc = 391; 10442 break; 10443 } 10444 else 10445 return false; 10446 break; 10447 case Intrinsic::ppc_altivec_vcmpgefp: 10448 CompareOpc = 454; 10449 break; 10450 case Intrinsic::ppc_altivec_vcmpgtfp: 10451 CompareOpc = 710; 10452 break; 10453 case Intrinsic::ppc_altivec_vcmpgtsb: 10454 CompareOpc = 774; 10455 break; 10456 case Intrinsic::ppc_altivec_vcmpgtsh: 10457 CompareOpc = 838; 10458 break; 10459 case Intrinsic::ppc_altivec_vcmpgtsw: 10460 CompareOpc = 902; 10461 break; 10462 case Intrinsic::ppc_altivec_vcmpgtsd: 10463 if (Subtarget.hasP8Altivec()) 10464 CompareOpc = 967; 10465 else 10466 return false; 10467 break; 10468 case Intrinsic::ppc_altivec_vcmpgtub: 10469 CompareOpc = 518; 10470 break; 10471 case Intrinsic::ppc_altivec_vcmpgtuh: 10472 CompareOpc = 582; 10473 break; 10474 case Intrinsic::ppc_altivec_vcmpgtuw: 10475 CompareOpc = 646; 10476 break; 10477 case Intrinsic::ppc_altivec_vcmpgtud: 10478 if (Subtarget.hasP8Altivec()) 10479 CompareOpc = 711; 10480 else 10481 return false; 10482 break; 10483 } 10484 return true; 10485 } 10486 10487 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10488 /// lower, do it, otherwise return null. 10489 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10490 SelectionDAG &DAG) const { 10491 unsigned IntrinsicID = 10492 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10493 10494 SDLoc dl(Op); 10495 10496 if (IntrinsicID == Intrinsic::thread_pointer) { 10497 // Reads the thread pointer register, used for __builtin_thread_pointer. 10498 if (Subtarget.isPPC64()) 10499 return DAG.getRegister(PPC::X13, MVT::i64); 10500 return DAG.getRegister(PPC::R2, MVT::i32); 10501 } 10502 10503 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10504 // opcode number of the comparison. 10505 int CompareOpc; 10506 bool isDot; 10507 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10508 return SDValue(); // Don't custom lower most intrinsics. 10509 10510 // If this is a non-dot comparison, make the VCMP node and we are done. 10511 if (!isDot) { 10512 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10513 Op.getOperand(1), Op.getOperand(2), 10514 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10515 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10516 } 10517 10518 // Create the PPCISD altivec 'dot' comparison node. 10519 SDValue Ops[] = { 10520 Op.getOperand(2), // LHS 10521 Op.getOperand(3), // RHS 10522 DAG.getConstant(CompareOpc, dl, MVT::i32) 10523 }; 10524 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10525 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10526 10527 // Now that we have the comparison, emit a copy from the CR to a GPR. 10528 // This is flagged to the above dot comparison. 10529 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10530 DAG.getRegister(PPC::CR6, MVT::i32), 10531 CompNode.getValue(1)); 10532 10533 // Unpack the result based on how the target uses it. 10534 unsigned BitNo; // Bit # of CR6. 10535 bool InvertBit; // Invert result? 10536 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10537 default: // Can't happen, don't crash on invalid number though. 10538 case 0: // Return the value of the EQ bit of CR6. 10539 BitNo = 0; InvertBit = false; 10540 break; 10541 case 1: // Return the inverted value of the EQ bit of CR6. 10542 BitNo = 0; InvertBit = true; 10543 break; 10544 case 2: // Return the value of the LT bit of CR6. 10545 BitNo = 2; InvertBit = false; 10546 break; 10547 case 3: // Return the inverted value of the LT bit of CR6. 10548 BitNo = 2; InvertBit = true; 10549 break; 10550 } 10551 10552 // Shift the bit into the low position. 10553 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10554 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10555 // Isolate the bit. 10556 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10557 DAG.getConstant(1, dl, MVT::i32)); 10558 10559 // If we are supposed to, toggle the bit. 10560 if (InvertBit) 10561 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10562 DAG.getConstant(1, dl, MVT::i32)); 10563 return Flags; 10564 } 10565 10566 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10567 SelectionDAG &DAG) const { 10568 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10569 // the beginning of the argument list. 10570 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10571 SDLoc DL(Op); 10572 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10573 case Intrinsic::ppc_cfence: { 10574 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10575 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10576 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10577 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10578 Op.getOperand(ArgStart + 1)), 10579 Op.getOperand(0)), 10580 0); 10581 } 10582 default: 10583 break; 10584 } 10585 return SDValue(); 10586 } 10587 10588 // Lower scalar BSWAP64 to xxbrd. 10589 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10590 SDLoc dl(Op); 10591 // MTVSRDD 10592 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10593 Op.getOperand(0)); 10594 // XXBRD 10595 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10596 // MFVSRD 10597 int VectorIndex = 0; 10598 if (Subtarget.isLittleEndian()) 10599 VectorIndex = 1; 10600 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10601 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10602 return Op; 10603 } 10604 10605 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10606 // compared to a value that is atomically loaded (atomic loads zero-extend). 10607 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10608 SelectionDAG &DAG) const { 10609 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10610 "Expecting an atomic compare-and-swap here."); 10611 SDLoc dl(Op); 10612 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10613 EVT MemVT = AtomicNode->getMemoryVT(); 10614 if (MemVT.getSizeInBits() >= 32) 10615 return Op; 10616 10617 SDValue CmpOp = Op.getOperand(2); 10618 // If this is already correctly zero-extended, leave it alone. 10619 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10620 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10621 return Op; 10622 10623 // Clear the high bits of the compare operand. 10624 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10625 SDValue NewCmpOp = 10626 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10627 DAG.getConstant(MaskVal, dl, MVT::i32)); 10628 10629 // Replace the existing compare operand with the properly zero-extended one. 10630 SmallVector<SDValue, 4> Ops; 10631 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10632 Ops.push_back(AtomicNode->getOperand(i)); 10633 Ops[2] = NewCmpOp; 10634 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10635 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10636 auto NodeTy = 10637 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10638 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10639 } 10640 10641 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10642 SelectionDAG &DAG) const { 10643 SDLoc dl(Op); 10644 // Create a stack slot that is 16-byte aligned. 10645 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10646 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10647 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10648 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10649 10650 // Store the input value into Value#0 of the stack slot. 10651 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10652 MachinePointerInfo()); 10653 // Load it out. 10654 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10655 } 10656 10657 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10658 SelectionDAG &DAG) const { 10659 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10660 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10661 10662 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10663 // We have legal lowering for constant indices but not for variable ones. 10664 if (!C) 10665 return SDValue(); 10666 10667 EVT VT = Op.getValueType(); 10668 SDLoc dl(Op); 10669 SDValue V1 = Op.getOperand(0); 10670 SDValue V2 = Op.getOperand(1); 10671 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10672 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10673 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10674 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10675 unsigned InsertAtElement = C->getZExtValue(); 10676 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10677 if (Subtarget.isLittleEndian()) { 10678 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10679 } 10680 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10681 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10682 } 10683 return Op; 10684 } 10685 10686 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10687 SelectionDAG &DAG) const { 10688 SDLoc dl(Op); 10689 SDNode *N = Op.getNode(); 10690 10691 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10692 "Unknown extract_vector_elt type"); 10693 10694 SDValue Value = N->getOperand(0); 10695 10696 // The first part of this is like the store lowering except that we don't 10697 // need to track the chain. 10698 10699 // The values are now known to be -1 (false) or 1 (true). To convert this 10700 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10701 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10702 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10703 10704 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10705 // understand how to form the extending load. 10706 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10707 10708 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10709 10710 // Now convert to an integer and store. 10711 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10712 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10713 Value); 10714 10715 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10716 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10717 MachinePointerInfo PtrInfo = 10718 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10719 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10720 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10721 10722 SDValue StoreChain = DAG.getEntryNode(); 10723 SDValue Ops[] = {StoreChain, 10724 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10725 Value, FIdx}; 10726 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10727 10728 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10729 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10730 10731 // Extract the value requested. 10732 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10733 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10734 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10735 10736 SDValue IntVal = 10737 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10738 10739 if (!Subtarget.useCRBits()) 10740 return IntVal; 10741 10742 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10743 } 10744 10745 /// Lowering for QPX v4i1 loads 10746 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10747 SelectionDAG &DAG) const { 10748 SDLoc dl(Op); 10749 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10750 SDValue LoadChain = LN->getChain(); 10751 SDValue BasePtr = LN->getBasePtr(); 10752 10753 if (Op.getValueType() == MVT::v4f64 || 10754 Op.getValueType() == MVT::v4f32) { 10755 EVT MemVT = LN->getMemoryVT(); 10756 unsigned Alignment = LN->getAlignment(); 10757 10758 // If this load is properly aligned, then it is legal. 10759 if (Alignment >= MemVT.getStoreSize()) 10760 return Op; 10761 10762 EVT ScalarVT = Op.getValueType().getScalarType(), 10763 ScalarMemVT = MemVT.getScalarType(); 10764 unsigned Stride = ScalarMemVT.getStoreSize(); 10765 10766 SDValue Vals[4], LoadChains[4]; 10767 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10768 SDValue Load; 10769 if (ScalarVT != ScalarMemVT) 10770 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10771 BasePtr, 10772 LN->getPointerInfo().getWithOffset(Idx * Stride), 10773 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10774 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10775 else 10776 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10777 LN->getPointerInfo().getWithOffset(Idx * Stride), 10778 MinAlign(Alignment, Idx * Stride), 10779 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10780 10781 if (Idx == 0 && LN->isIndexed()) { 10782 assert(LN->getAddressingMode() == ISD::PRE_INC && 10783 "Unknown addressing mode on vector load"); 10784 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10785 LN->getAddressingMode()); 10786 } 10787 10788 Vals[Idx] = Load; 10789 LoadChains[Idx] = Load.getValue(1); 10790 10791 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10792 DAG.getConstant(Stride, dl, 10793 BasePtr.getValueType())); 10794 } 10795 10796 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10797 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10798 10799 if (LN->isIndexed()) { 10800 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10801 return DAG.getMergeValues(RetOps, dl); 10802 } 10803 10804 SDValue RetOps[] = { Value, TF }; 10805 return DAG.getMergeValues(RetOps, dl); 10806 } 10807 10808 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10809 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10810 10811 // To lower v4i1 from a byte array, we load the byte elements of the 10812 // vector and then reuse the BUILD_VECTOR logic. 10813 10814 SDValue VectElmts[4], VectElmtChains[4]; 10815 for (unsigned i = 0; i < 4; ++i) { 10816 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10817 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10818 10819 VectElmts[i] = DAG.getExtLoad( 10820 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10821 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10822 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10823 VectElmtChains[i] = VectElmts[i].getValue(1); 10824 } 10825 10826 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10827 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10828 10829 SDValue RVals[] = { Value, LoadChain }; 10830 return DAG.getMergeValues(RVals, dl); 10831 } 10832 10833 /// Lowering for QPX v4i1 stores 10834 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10835 SelectionDAG &DAG) const { 10836 SDLoc dl(Op); 10837 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10838 SDValue StoreChain = SN->getChain(); 10839 SDValue BasePtr = SN->getBasePtr(); 10840 SDValue Value = SN->getValue(); 10841 10842 if (Value.getValueType() == MVT::v4f64 || 10843 Value.getValueType() == MVT::v4f32) { 10844 EVT MemVT = SN->getMemoryVT(); 10845 unsigned Alignment = SN->getAlignment(); 10846 10847 // If this store is properly aligned, then it is legal. 10848 if (Alignment >= MemVT.getStoreSize()) 10849 return Op; 10850 10851 EVT ScalarVT = Value.getValueType().getScalarType(), 10852 ScalarMemVT = MemVT.getScalarType(); 10853 unsigned Stride = ScalarMemVT.getStoreSize(); 10854 10855 SDValue Stores[4]; 10856 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10857 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10858 DAG.getVectorIdxConstant(Idx, dl)); 10859 SDValue Store; 10860 if (ScalarVT != ScalarMemVT) 10861 Store = 10862 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10863 SN->getPointerInfo().getWithOffset(Idx * Stride), 10864 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10865 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10866 else 10867 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10868 SN->getPointerInfo().getWithOffset(Idx * Stride), 10869 MinAlign(Alignment, Idx * Stride), 10870 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10871 10872 if (Idx == 0 && SN->isIndexed()) { 10873 assert(SN->getAddressingMode() == ISD::PRE_INC && 10874 "Unknown addressing mode on vector store"); 10875 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10876 SN->getAddressingMode()); 10877 } 10878 10879 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10880 DAG.getConstant(Stride, dl, 10881 BasePtr.getValueType())); 10882 Stores[Idx] = Store; 10883 } 10884 10885 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10886 10887 if (SN->isIndexed()) { 10888 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10889 return DAG.getMergeValues(RetOps, dl); 10890 } 10891 10892 return TF; 10893 } 10894 10895 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10896 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10897 10898 // The values are now known to be -1 (false) or 1 (true). To convert this 10899 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10900 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10901 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10902 10903 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10904 // understand how to form the extending load. 10905 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10906 10907 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10908 10909 // Now convert to an integer and store. 10910 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10911 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10912 Value); 10913 10914 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10915 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10916 MachinePointerInfo PtrInfo = 10917 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10918 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10919 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10920 10921 SDValue Ops[] = {StoreChain, 10922 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10923 Value, FIdx}; 10924 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10925 10926 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10927 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10928 10929 // Move data into the byte array. 10930 SDValue Loads[4], LoadChains[4]; 10931 for (unsigned i = 0; i < 4; ++i) { 10932 unsigned Offset = 4*i; 10933 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10934 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10935 10936 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10937 PtrInfo.getWithOffset(Offset)); 10938 LoadChains[i] = Loads[i].getValue(1); 10939 } 10940 10941 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10942 10943 SDValue Stores[4]; 10944 for (unsigned i = 0; i < 4; ++i) { 10945 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10946 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10947 10948 Stores[i] = DAG.getTruncStore( 10949 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10950 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10951 SN->getAAInfo()); 10952 } 10953 10954 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10955 10956 return StoreChain; 10957 } 10958 10959 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10960 SDLoc dl(Op); 10961 if (Op.getValueType() == MVT::v4i32) { 10962 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10963 10964 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10965 // +16 as shift amt. 10966 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10967 SDValue RHSSwap = // = vrlw RHS, 16 10968 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10969 10970 // Shrinkify inputs to v8i16. 10971 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10972 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10973 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10974 10975 // Low parts multiplied together, generating 32-bit results (we ignore the 10976 // top parts). 10977 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10978 LHS, RHS, DAG, dl, MVT::v4i32); 10979 10980 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10981 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10982 // Shift the high parts up 16 bits. 10983 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10984 Neg16, DAG, dl); 10985 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10986 } else if (Op.getValueType() == MVT::v16i8) { 10987 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10988 bool isLittleEndian = Subtarget.isLittleEndian(); 10989 10990 // Multiply the even 8-bit parts, producing 16-bit sums. 10991 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10992 LHS, RHS, DAG, dl, MVT::v8i16); 10993 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10994 10995 // Multiply the odd 8-bit parts, producing 16-bit sums. 10996 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10997 LHS, RHS, DAG, dl, MVT::v8i16); 10998 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10999 11000 // Merge the results together. Because vmuleub and vmuloub are 11001 // instructions with a big-endian bias, we must reverse the 11002 // element numbering and reverse the meaning of "odd" and "even" 11003 // when generating little endian code. 11004 int Ops[16]; 11005 for (unsigned i = 0; i != 8; ++i) { 11006 if (isLittleEndian) { 11007 Ops[i*2 ] = 2*i; 11008 Ops[i*2+1] = 2*i+16; 11009 } else { 11010 Ops[i*2 ] = 2*i+1; 11011 Ops[i*2+1] = 2*i+1+16; 11012 } 11013 } 11014 if (isLittleEndian) 11015 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11016 else 11017 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11018 } else { 11019 llvm_unreachable("Unknown mul to lower!"); 11020 } 11021 } 11022 11023 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 11024 11025 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 11026 11027 EVT VT = Op.getValueType(); 11028 assert(VT.isVector() && 11029 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 11030 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 11031 VT == MVT::v16i8) && 11032 "Unexpected vector element type!"); 11033 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 11034 "Current subtarget doesn't support smax v2i64!"); 11035 11036 // For vector abs, it can be lowered to: 11037 // abs x 11038 // ==> 11039 // y = -x 11040 // smax(x, y) 11041 11042 SDLoc dl(Op); 11043 SDValue X = Op.getOperand(0); 11044 SDValue Zero = DAG.getConstant(0, dl, VT); 11045 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 11046 11047 // SMAX patch https://reviews.llvm.org/D47332 11048 // hasn't landed yet, so use intrinsic first here. 11049 // TODO: Should use SMAX directly once SMAX patch landed 11050 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 11051 if (VT == MVT::v2i64) 11052 BifID = Intrinsic::ppc_altivec_vmaxsd; 11053 else if (VT == MVT::v8i16) 11054 BifID = Intrinsic::ppc_altivec_vmaxsh; 11055 else if (VT == MVT::v16i8) 11056 BifID = Intrinsic::ppc_altivec_vmaxsb; 11057 11058 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 11059 } 11060 11061 // Custom lowering for fpext vf32 to v2f64 11062 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11063 11064 assert(Op.getOpcode() == ISD::FP_EXTEND && 11065 "Should only be called for ISD::FP_EXTEND"); 11066 11067 // FIXME: handle extends from half precision float vectors on P9. 11068 // We only want to custom lower an extend from v2f32 to v2f64. 11069 if (Op.getValueType() != MVT::v2f64 || 11070 Op.getOperand(0).getValueType() != MVT::v2f32) 11071 return SDValue(); 11072 11073 SDLoc dl(Op); 11074 SDValue Op0 = Op.getOperand(0); 11075 11076 switch (Op0.getOpcode()) { 11077 default: 11078 return SDValue(); 11079 case ISD::EXTRACT_SUBVECTOR: { 11080 assert(Op0.getNumOperands() == 2 && 11081 isa<ConstantSDNode>(Op0->getOperand(1)) && 11082 "Node should have 2 operands with second one being a constant!"); 11083 11084 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11085 return SDValue(); 11086 11087 // Custom lower is only done for high or low doubleword. 11088 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11089 if (Idx % 2 != 0) 11090 return SDValue(); 11091 11092 // Since input is v4f32, at this point Idx is either 0 or 2. 11093 // Shift to get the doubleword position we want. 11094 int DWord = Idx >> 1; 11095 11096 // High and low word positions are different on little endian. 11097 if (Subtarget.isLittleEndian()) 11098 DWord ^= 0x1; 11099 11100 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11101 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11102 } 11103 case ISD::FADD: 11104 case ISD::FMUL: 11105 case ISD::FSUB: { 11106 SDValue NewLoad[2]; 11107 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11108 // Ensure both input are loads. 11109 SDValue LdOp = Op0.getOperand(i); 11110 if (LdOp.getOpcode() != ISD::LOAD) 11111 return SDValue(); 11112 // Generate new load node. 11113 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11114 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11115 NewLoad[i] = DAG.getMemIntrinsicNode( 11116 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11117 LD->getMemoryVT(), LD->getMemOperand()); 11118 } 11119 SDValue NewOp = 11120 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11121 NewLoad[1], Op0.getNode()->getFlags()); 11122 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11123 DAG.getConstant(0, dl, MVT::i32)); 11124 } 11125 case ISD::LOAD: { 11126 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11127 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11128 SDValue NewLd = DAG.getMemIntrinsicNode( 11129 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11130 LD->getMemoryVT(), LD->getMemOperand()); 11131 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11132 DAG.getConstant(0, dl, MVT::i32)); 11133 } 11134 } 11135 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11136 } 11137 11138 /// LowerOperation - Provide custom lowering hooks for some operations. 11139 /// 11140 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11141 switch (Op.getOpcode()) { 11142 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11143 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11144 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11145 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11146 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11147 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11148 case ISD::SETCC: return LowerSETCC(Op, DAG); 11149 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11150 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11151 11152 // Variable argument lowering. 11153 case ISD::VASTART: return LowerVASTART(Op, DAG); 11154 case ISD::VAARG: return LowerVAARG(Op, DAG); 11155 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11156 11157 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11158 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11159 case ISD::GET_DYNAMIC_AREA_OFFSET: 11160 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11161 11162 // Exception handling lowering. 11163 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11164 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11165 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11166 11167 case ISD::LOAD: return LowerLOAD(Op, DAG); 11168 case ISD::STORE: return LowerSTORE(Op, DAG); 11169 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11170 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11171 case ISD::FP_TO_UINT: 11172 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11173 case ISD::UINT_TO_FP: 11174 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11175 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11176 11177 // Lower 64-bit shifts. 11178 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11179 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11180 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11181 11182 // Vector-related lowering. 11183 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11184 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11185 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11186 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11187 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 11188 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11189 case ISD::MUL: return LowerMUL(Op, DAG); 11190 case ISD::ABS: return LowerABS(Op, DAG); 11191 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11192 case ISD::ROTL: return LowerROTL(Op, DAG); 11193 11194 // For counter-based loop handling. 11195 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11196 11197 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11198 11199 // Frame & Return address. 11200 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11201 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11202 11203 case ISD::INTRINSIC_VOID: 11204 return LowerINTRINSIC_VOID(Op, DAG); 11205 case ISD::BSWAP: 11206 return LowerBSWAP(Op, DAG); 11207 case ISD::ATOMIC_CMP_SWAP: 11208 return LowerATOMIC_CMP_SWAP(Op, DAG); 11209 } 11210 } 11211 11212 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11213 SmallVectorImpl<SDValue>&Results, 11214 SelectionDAG &DAG) const { 11215 SDLoc dl(N); 11216 switch (N->getOpcode()) { 11217 default: 11218 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11219 case ISD::READCYCLECOUNTER: { 11220 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11221 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11222 11223 Results.push_back( 11224 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11225 Results.push_back(RTB.getValue(2)); 11226 break; 11227 } 11228 case ISD::INTRINSIC_W_CHAIN: { 11229 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11230 Intrinsic::loop_decrement) 11231 break; 11232 11233 assert(N->getValueType(0) == MVT::i1 && 11234 "Unexpected result type for CTR decrement intrinsic"); 11235 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11236 N->getValueType(0)); 11237 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11238 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11239 N->getOperand(1)); 11240 11241 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11242 Results.push_back(NewInt.getValue(1)); 11243 break; 11244 } 11245 case ISD::VAARG: { 11246 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11247 return; 11248 11249 EVT VT = N->getValueType(0); 11250 11251 if (VT == MVT::i64) { 11252 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11253 11254 Results.push_back(NewNode); 11255 Results.push_back(NewNode.getValue(1)); 11256 } 11257 return; 11258 } 11259 case ISD::FP_TO_SINT: 11260 case ISD::FP_TO_UINT: 11261 // LowerFP_TO_INT() can only handle f32 and f64. 11262 if (N->getOperand(0).getValueType() == MVT::ppcf128) 11263 return; 11264 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11265 return; 11266 case ISD::TRUNCATE: { 11267 EVT TrgVT = N->getValueType(0); 11268 EVT OpVT = N->getOperand(0).getValueType(); 11269 if (TrgVT.isVector() && 11270 isOperationCustom(N->getOpcode(), TrgVT) && 11271 OpVT.getSizeInBits() <= 128 && 11272 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 11273 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 11274 return; 11275 } 11276 case ISD::BITCAST: 11277 // Don't handle bitcast here. 11278 return; 11279 case ISD::FP_EXTEND: 11280 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11281 if (Lowered) 11282 Results.push_back(Lowered); 11283 return; 11284 } 11285 } 11286 11287 //===----------------------------------------------------------------------===// 11288 // Other Lowering Code 11289 //===----------------------------------------------------------------------===// 11290 11291 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11292 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11293 Function *Func = Intrinsic::getDeclaration(M, Id); 11294 return Builder.CreateCall(Func, {}); 11295 } 11296 11297 // The mappings for emitLeading/TrailingFence is taken from 11298 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11299 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11300 Instruction *Inst, 11301 AtomicOrdering Ord) const { 11302 if (Ord == AtomicOrdering::SequentiallyConsistent) 11303 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11304 if (isReleaseOrStronger(Ord)) 11305 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11306 return nullptr; 11307 } 11308 11309 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11310 Instruction *Inst, 11311 AtomicOrdering Ord) const { 11312 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11313 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11314 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11315 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11316 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11317 return Builder.CreateCall( 11318 Intrinsic::getDeclaration( 11319 Builder.GetInsertBlock()->getParent()->getParent(), 11320 Intrinsic::ppc_cfence, {Inst->getType()}), 11321 {Inst}); 11322 // FIXME: Can use isync for rmw operation. 11323 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11324 } 11325 return nullptr; 11326 } 11327 11328 MachineBasicBlock * 11329 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11330 unsigned AtomicSize, 11331 unsigned BinOpcode, 11332 unsigned CmpOpcode, 11333 unsigned CmpPred) const { 11334 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11335 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11336 11337 auto LoadMnemonic = PPC::LDARX; 11338 auto StoreMnemonic = PPC::STDCX; 11339 switch (AtomicSize) { 11340 default: 11341 llvm_unreachable("Unexpected size of atomic entity"); 11342 case 1: 11343 LoadMnemonic = PPC::LBARX; 11344 StoreMnemonic = PPC::STBCX; 11345 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11346 break; 11347 case 2: 11348 LoadMnemonic = PPC::LHARX; 11349 StoreMnemonic = PPC::STHCX; 11350 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11351 break; 11352 case 4: 11353 LoadMnemonic = PPC::LWARX; 11354 StoreMnemonic = PPC::STWCX; 11355 break; 11356 case 8: 11357 LoadMnemonic = PPC::LDARX; 11358 StoreMnemonic = PPC::STDCX; 11359 break; 11360 } 11361 11362 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11363 MachineFunction *F = BB->getParent(); 11364 MachineFunction::iterator It = ++BB->getIterator(); 11365 11366 Register dest = MI.getOperand(0).getReg(); 11367 Register ptrA = MI.getOperand(1).getReg(); 11368 Register ptrB = MI.getOperand(2).getReg(); 11369 Register incr = MI.getOperand(3).getReg(); 11370 DebugLoc dl = MI.getDebugLoc(); 11371 11372 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11373 MachineBasicBlock *loop2MBB = 11374 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11375 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11376 F->insert(It, loopMBB); 11377 if (CmpOpcode) 11378 F->insert(It, loop2MBB); 11379 F->insert(It, exitMBB); 11380 exitMBB->splice(exitMBB->begin(), BB, 11381 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11382 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11383 11384 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11385 Register TmpReg = (!BinOpcode) ? incr : 11386 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11387 : &PPC::GPRCRegClass); 11388 11389 // thisMBB: 11390 // ... 11391 // fallthrough --> loopMBB 11392 BB->addSuccessor(loopMBB); 11393 11394 // loopMBB: 11395 // l[wd]arx dest, ptr 11396 // add r0, dest, incr 11397 // st[wd]cx. r0, ptr 11398 // bne- loopMBB 11399 // fallthrough --> exitMBB 11400 11401 // For max/min... 11402 // loopMBB: 11403 // l[wd]arx dest, ptr 11404 // cmpl?[wd] incr, dest 11405 // bgt exitMBB 11406 // loop2MBB: 11407 // st[wd]cx. dest, ptr 11408 // bne- loopMBB 11409 // fallthrough --> exitMBB 11410 11411 BB = loopMBB; 11412 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11413 .addReg(ptrA).addReg(ptrB); 11414 if (BinOpcode) 11415 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11416 if (CmpOpcode) { 11417 // Signed comparisons of byte or halfword values must be sign-extended. 11418 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11419 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11420 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11421 ExtReg).addReg(dest); 11422 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11423 .addReg(incr).addReg(ExtReg); 11424 } else 11425 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11426 .addReg(incr).addReg(dest); 11427 11428 BuildMI(BB, dl, TII->get(PPC::BCC)) 11429 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11430 BB->addSuccessor(loop2MBB); 11431 BB->addSuccessor(exitMBB); 11432 BB = loop2MBB; 11433 } 11434 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11435 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11436 BuildMI(BB, dl, TII->get(PPC::BCC)) 11437 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11438 BB->addSuccessor(loopMBB); 11439 BB->addSuccessor(exitMBB); 11440 11441 // exitMBB: 11442 // ... 11443 BB = exitMBB; 11444 return BB; 11445 } 11446 11447 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11448 MachineInstr &MI, MachineBasicBlock *BB, 11449 bool is8bit, // operation 11450 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11451 // If we support part-word atomic mnemonics, just use them 11452 if (Subtarget.hasPartwordAtomics()) 11453 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11454 CmpPred); 11455 11456 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11457 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11458 // In 64 bit mode we have to use 64 bits for addresses, even though the 11459 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11460 // registers without caring whether they're 32 or 64, but here we're 11461 // doing actual arithmetic on the addresses. 11462 bool is64bit = Subtarget.isPPC64(); 11463 bool isLittleEndian = Subtarget.isLittleEndian(); 11464 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11465 11466 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11467 MachineFunction *F = BB->getParent(); 11468 MachineFunction::iterator It = ++BB->getIterator(); 11469 11470 Register dest = MI.getOperand(0).getReg(); 11471 Register ptrA = MI.getOperand(1).getReg(); 11472 Register ptrB = MI.getOperand(2).getReg(); 11473 Register incr = MI.getOperand(3).getReg(); 11474 DebugLoc dl = MI.getDebugLoc(); 11475 11476 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11477 MachineBasicBlock *loop2MBB = 11478 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11479 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11480 F->insert(It, loopMBB); 11481 if (CmpOpcode) 11482 F->insert(It, loop2MBB); 11483 F->insert(It, exitMBB); 11484 exitMBB->splice(exitMBB->begin(), BB, 11485 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11486 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11487 11488 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11489 const TargetRegisterClass *RC = 11490 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11491 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11492 11493 Register PtrReg = RegInfo.createVirtualRegister(RC); 11494 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11495 Register ShiftReg = 11496 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11497 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11498 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11499 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11500 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11501 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11502 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11503 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11504 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11505 Register Ptr1Reg; 11506 Register TmpReg = 11507 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11508 11509 // thisMBB: 11510 // ... 11511 // fallthrough --> loopMBB 11512 BB->addSuccessor(loopMBB); 11513 11514 // The 4-byte load must be aligned, while a char or short may be 11515 // anywhere in the word. Hence all this nasty bookkeeping code. 11516 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11517 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11518 // xori shift, shift1, 24 [16] 11519 // rlwinm ptr, ptr1, 0, 0, 29 11520 // slw incr2, incr, shift 11521 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11522 // slw mask, mask2, shift 11523 // loopMBB: 11524 // lwarx tmpDest, ptr 11525 // add tmp, tmpDest, incr2 11526 // andc tmp2, tmpDest, mask 11527 // and tmp3, tmp, mask 11528 // or tmp4, tmp3, tmp2 11529 // stwcx. tmp4, ptr 11530 // bne- loopMBB 11531 // fallthrough --> exitMBB 11532 // srw dest, tmpDest, shift 11533 if (ptrA != ZeroReg) { 11534 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11535 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11536 .addReg(ptrA) 11537 .addReg(ptrB); 11538 } else { 11539 Ptr1Reg = ptrB; 11540 } 11541 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11542 // mode. 11543 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11544 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11545 .addImm(3) 11546 .addImm(27) 11547 .addImm(is8bit ? 28 : 27); 11548 if (!isLittleEndian) 11549 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11550 .addReg(Shift1Reg) 11551 .addImm(is8bit ? 24 : 16); 11552 if (is64bit) 11553 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11554 .addReg(Ptr1Reg) 11555 .addImm(0) 11556 .addImm(61); 11557 else 11558 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11559 .addReg(Ptr1Reg) 11560 .addImm(0) 11561 .addImm(0) 11562 .addImm(29); 11563 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11564 if (is8bit) 11565 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11566 else { 11567 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11568 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11569 .addReg(Mask3Reg) 11570 .addImm(65535); 11571 } 11572 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11573 .addReg(Mask2Reg) 11574 .addReg(ShiftReg); 11575 11576 BB = loopMBB; 11577 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11578 .addReg(ZeroReg) 11579 .addReg(PtrReg); 11580 if (BinOpcode) 11581 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11582 .addReg(Incr2Reg) 11583 .addReg(TmpDestReg); 11584 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11585 .addReg(TmpDestReg) 11586 .addReg(MaskReg); 11587 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11588 if (CmpOpcode) { 11589 // For unsigned comparisons, we can directly compare the shifted values. 11590 // For signed comparisons we shift and sign extend. 11591 Register SReg = RegInfo.createVirtualRegister(GPRC); 11592 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11593 .addReg(TmpDestReg) 11594 .addReg(MaskReg); 11595 unsigned ValueReg = SReg; 11596 unsigned CmpReg = Incr2Reg; 11597 if (CmpOpcode == PPC::CMPW) { 11598 ValueReg = RegInfo.createVirtualRegister(GPRC); 11599 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11600 .addReg(SReg) 11601 .addReg(ShiftReg); 11602 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11603 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11604 .addReg(ValueReg); 11605 ValueReg = ValueSReg; 11606 CmpReg = incr; 11607 } 11608 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11609 .addReg(CmpReg) 11610 .addReg(ValueReg); 11611 BuildMI(BB, dl, TII->get(PPC::BCC)) 11612 .addImm(CmpPred) 11613 .addReg(PPC::CR0) 11614 .addMBB(exitMBB); 11615 BB->addSuccessor(loop2MBB); 11616 BB->addSuccessor(exitMBB); 11617 BB = loop2MBB; 11618 } 11619 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11620 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11621 .addReg(Tmp4Reg) 11622 .addReg(ZeroReg) 11623 .addReg(PtrReg); 11624 BuildMI(BB, dl, TII->get(PPC::BCC)) 11625 .addImm(PPC::PRED_NE) 11626 .addReg(PPC::CR0) 11627 .addMBB(loopMBB); 11628 BB->addSuccessor(loopMBB); 11629 BB->addSuccessor(exitMBB); 11630 11631 // exitMBB: 11632 // ... 11633 BB = exitMBB; 11634 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11635 .addReg(TmpDestReg) 11636 .addReg(ShiftReg); 11637 return BB; 11638 } 11639 11640 llvm::MachineBasicBlock * 11641 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11642 MachineBasicBlock *MBB) const { 11643 DebugLoc DL = MI.getDebugLoc(); 11644 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11645 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11646 11647 MachineFunction *MF = MBB->getParent(); 11648 MachineRegisterInfo &MRI = MF->getRegInfo(); 11649 11650 const BasicBlock *BB = MBB->getBasicBlock(); 11651 MachineFunction::iterator I = ++MBB->getIterator(); 11652 11653 Register DstReg = MI.getOperand(0).getReg(); 11654 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11655 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11656 Register mainDstReg = MRI.createVirtualRegister(RC); 11657 Register restoreDstReg = MRI.createVirtualRegister(RC); 11658 11659 MVT PVT = getPointerTy(MF->getDataLayout()); 11660 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11661 "Invalid Pointer Size!"); 11662 // For v = setjmp(buf), we generate 11663 // 11664 // thisMBB: 11665 // SjLjSetup mainMBB 11666 // bl mainMBB 11667 // v_restore = 1 11668 // b sinkMBB 11669 // 11670 // mainMBB: 11671 // buf[LabelOffset] = LR 11672 // v_main = 0 11673 // 11674 // sinkMBB: 11675 // v = phi(main, restore) 11676 // 11677 11678 MachineBasicBlock *thisMBB = MBB; 11679 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11680 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11681 MF->insert(I, mainMBB); 11682 MF->insert(I, sinkMBB); 11683 11684 MachineInstrBuilder MIB; 11685 11686 // Transfer the remainder of BB and its successor edges to sinkMBB. 11687 sinkMBB->splice(sinkMBB->begin(), MBB, 11688 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11689 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11690 11691 // Note that the structure of the jmp_buf used here is not compatible 11692 // with that used by libc, and is not designed to be. Specifically, it 11693 // stores only those 'reserved' registers that LLVM does not otherwise 11694 // understand how to spill. Also, by convention, by the time this 11695 // intrinsic is called, Clang has already stored the frame address in the 11696 // first slot of the buffer and stack address in the third. Following the 11697 // X86 target code, we'll store the jump address in the second slot. We also 11698 // need to save the TOC pointer (R2) to handle jumps between shared 11699 // libraries, and that will be stored in the fourth slot. The thread 11700 // identifier (R13) is not affected. 11701 11702 // thisMBB: 11703 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11704 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11705 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11706 11707 // Prepare IP either in reg. 11708 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11709 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11710 Register BufReg = MI.getOperand(1).getReg(); 11711 11712 if (Subtarget.is64BitELFABI()) { 11713 setUsesTOCBasePtr(*MBB->getParent()); 11714 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11715 .addReg(PPC::X2) 11716 .addImm(TOCOffset) 11717 .addReg(BufReg) 11718 .cloneMemRefs(MI); 11719 } 11720 11721 // Naked functions never have a base pointer, and so we use r1. For all 11722 // other functions, this decision must be delayed until during PEI. 11723 unsigned BaseReg; 11724 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11725 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11726 else 11727 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11728 11729 MIB = BuildMI(*thisMBB, MI, DL, 11730 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11731 .addReg(BaseReg) 11732 .addImm(BPOffset) 11733 .addReg(BufReg) 11734 .cloneMemRefs(MI); 11735 11736 // Setup 11737 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11738 MIB.addRegMask(TRI->getNoPreservedMask()); 11739 11740 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11741 11742 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11743 .addMBB(mainMBB); 11744 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11745 11746 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11747 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11748 11749 // mainMBB: 11750 // mainDstReg = 0 11751 MIB = 11752 BuildMI(mainMBB, DL, 11753 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11754 11755 // Store IP 11756 if (Subtarget.isPPC64()) { 11757 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11758 .addReg(LabelReg) 11759 .addImm(LabelOffset) 11760 .addReg(BufReg); 11761 } else { 11762 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11763 .addReg(LabelReg) 11764 .addImm(LabelOffset) 11765 .addReg(BufReg); 11766 } 11767 MIB.cloneMemRefs(MI); 11768 11769 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11770 mainMBB->addSuccessor(sinkMBB); 11771 11772 // sinkMBB: 11773 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11774 TII->get(PPC::PHI), DstReg) 11775 .addReg(mainDstReg).addMBB(mainMBB) 11776 .addReg(restoreDstReg).addMBB(thisMBB); 11777 11778 MI.eraseFromParent(); 11779 return sinkMBB; 11780 } 11781 11782 MachineBasicBlock * 11783 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11784 MachineBasicBlock *MBB) const { 11785 DebugLoc DL = MI.getDebugLoc(); 11786 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11787 11788 MachineFunction *MF = MBB->getParent(); 11789 MachineRegisterInfo &MRI = MF->getRegInfo(); 11790 11791 MVT PVT = getPointerTy(MF->getDataLayout()); 11792 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11793 "Invalid Pointer Size!"); 11794 11795 const TargetRegisterClass *RC = 11796 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11797 Register Tmp = MRI.createVirtualRegister(RC); 11798 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11799 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11800 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11801 unsigned BP = 11802 (PVT == MVT::i64) 11803 ? PPC::X30 11804 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11805 : PPC::R30); 11806 11807 MachineInstrBuilder MIB; 11808 11809 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11810 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11811 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11812 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11813 11814 Register BufReg = MI.getOperand(0).getReg(); 11815 11816 // Reload FP (the jumped-to function may not have had a 11817 // frame pointer, and if so, then its r31 will be restored 11818 // as necessary). 11819 if (PVT == MVT::i64) { 11820 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11821 .addImm(0) 11822 .addReg(BufReg); 11823 } else { 11824 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11825 .addImm(0) 11826 .addReg(BufReg); 11827 } 11828 MIB.cloneMemRefs(MI); 11829 11830 // Reload IP 11831 if (PVT == MVT::i64) { 11832 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11833 .addImm(LabelOffset) 11834 .addReg(BufReg); 11835 } else { 11836 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11837 .addImm(LabelOffset) 11838 .addReg(BufReg); 11839 } 11840 MIB.cloneMemRefs(MI); 11841 11842 // Reload SP 11843 if (PVT == MVT::i64) { 11844 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11845 .addImm(SPOffset) 11846 .addReg(BufReg); 11847 } else { 11848 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11849 .addImm(SPOffset) 11850 .addReg(BufReg); 11851 } 11852 MIB.cloneMemRefs(MI); 11853 11854 // Reload BP 11855 if (PVT == MVT::i64) { 11856 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11857 .addImm(BPOffset) 11858 .addReg(BufReg); 11859 } else { 11860 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11861 .addImm(BPOffset) 11862 .addReg(BufReg); 11863 } 11864 MIB.cloneMemRefs(MI); 11865 11866 // Reload TOC 11867 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11868 setUsesTOCBasePtr(*MBB->getParent()); 11869 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11870 .addImm(TOCOffset) 11871 .addReg(BufReg) 11872 .cloneMemRefs(MI); 11873 } 11874 11875 // Jump 11876 BuildMI(*MBB, MI, DL, 11877 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11878 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11879 11880 MI.eraseFromParent(); 11881 return MBB; 11882 } 11883 11884 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11885 // If the function specifically requests inline stack probes, emit them. 11886 if (MF.getFunction().hasFnAttribute("probe-stack")) 11887 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11888 "inline-asm"; 11889 return false; 11890 } 11891 11892 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11893 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11894 unsigned StackAlign = TFI->getStackAlignment(); 11895 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11896 "Unexpected stack alignment"); 11897 // The default stack probe size is 4096 if the function has no 11898 // stack-probe-size attribute. 11899 unsigned StackProbeSize = 4096; 11900 const Function &Fn = MF.getFunction(); 11901 if (Fn.hasFnAttribute("stack-probe-size")) 11902 Fn.getFnAttribute("stack-probe-size") 11903 .getValueAsString() 11904 .getAsInteger(0, StackProbeSize); 11905 // Round down to the stack alignment. 11906 StackProbeSize &= ~(StackAlign - 1); 11907 return StackProbeSize ? StackProbeSize : StackAlign; 11908 } 11909 11910 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11911 // into three phases. In the first phase, it uses pseudo instruction 11912 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11913 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11914 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11915 // MaxCallFrameSize so that it can calculate correct data area pointer. 11916 MachineBasicBlock * 11917 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11918 MachineBasicBlock *MBB) const { 11919 const bool isPPC64 = Subtarget.isPPC64(); 11920 MachineFunction *MF = MBB->getParent(); 11921 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11922 DebugLoc DL = MI.getDebugLoc(); 11923 const unsigned ProbeSize = getStackProbeSize(*MF); 11924 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11925 MachineRegisterInfo &MRI = MF->getRegInfo(); 11926 // The CFG of probing stack looks as 11927 // +-----+ 11928 // | MBB | 11929 // +--+--+ 11930 // | 11931 // +----v----+ 11932 // +--->+ TestMBB +---+ 11933 // | +----+----+ | 11934 // | | | 11935 // | +-----v----+ | 11936 // +---+ BlockMBB | | 11937 // +----------+ | 11938 // | 11939 // +---------+ | 11940 // | TailMBB +<--+ 11941 // +---------+ 11942 // In MBB, calculate previous frame pointer and final stack pointer. 11943 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11944 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11945 // TailMBB is spliced via \p MI. 11946 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11947 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11948 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11949 11950 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11951 MF->insert(MBBIter, TestMBB); 11952 MF->insert(MBBIter, BlockMBB); 11953 MF->insert(MBBIter, TailMBB); 11954 11955 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11956 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11957 11958 Register DstReg = MI.getOperand(0).getReg(); 11959 Register NegSizeReg = MI.getOperand(1).getReg(); 11960 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11961 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11962 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11963 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11964 11965 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11966 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11967 // NegSize. 11968 unsigned ProbeOpc; 11969 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11970 ProbeOpc = 11971 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11972 else 11973 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11974 // and NegSizeReg will be allocated in the same phyreg to avoid 11975 // redundant copy when NegSizeReg has only one use which is current MI and 11976 // will be replaced by PREPARE_PROBED_ALLOCA then. 11977 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11978 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11979 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11980 .addDef(ActualNegSizeReg) 11981 .addReg(NegSizeReg) 11982 .add(MI.getOperand(2)) 11983 .add(MI.getOperand(3)); 11984 11985 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11986 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11987 FinalStackPtr) 11988 .addReg(SPReg) 11989 .addReg(ActualNegSizeReg); 11990 11991 // Materialize a scratch register for update. 11992 int64_t NegProbeSize = -(int64_t)ProbeSize; 11993 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11994 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11995 if (!isInt<16>(NegProbeSize)) { 11996 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11997 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11998 .addImm(NegProbeSize >> 16); 11999 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12000 ScratchReg) 12001 .addReg(TempReg) 12002 .addImm(NegProbeSize & 0xFFFF); 12003 } else 12004 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12005 .addImm(NegProbeSize); 12006 12007 { 12008 // Probing leading residual part. 12009 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12010 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12011 .addReg(ActualNegSizeReg) 12012 .addReg(ScratchReg); 12013 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12014 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12015 .addReg(Div) 12016 .addReg(ScratchReg); 12017 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12018 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12019 .addReg(Mul) 12020 .addReg(ActualNegSizeReg); 12021 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12022 .addReg(FramePointer) 12023 .addReg(SPReg) 12024 .addReg(NegMod); 12025 } 12026 12027 { 12028 // Remaining part should be multiple of ProbeSize. 12029 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12030 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12031 .addReg(SPReg) 12032 .addReg(FinalStackPtr); 12033 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12034 .addImm(PPC::PRED_EQ) 12035 .addReg(CmpResult) 12036 .addMBB(TailMBB); 12037 TestMBB->addSuccessor(BlockMBB); 12038 TestMBB->addSuccessor(TailMBB); 12039 } 12040 12041 { 12042 // Touch the block. 12043 // |P...|P...|P... 12044 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12045 .addReg(FramePointer) 12046 .addReg(SPReg) 12047 .addReg(ScratchReg); 12048 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12049 BlockMBB->addSuccessor(TestMBB); 12050 } 12051 12052 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12053 // DYNAREAOFFSET pseudo instruction to get the future result. 12054 Register MaxCallFrameSizeReg = 12055 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12056 BuildMI(TailMBB, DL, 12057 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12058 MaxCallFrameSizeReg) 12059 .add(MI.getOperand(2)) 12060 .add(MI.getOperand(3)); 12061 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12062 .addReg(SPReg) 12063 .addReg(MaxCallFrameSizeReg); 12064 12065 // Splice instructions after MI to TailMBB. 12066 TailMBB->splice(TailMBB->end(), MBB, 12067 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12068 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12069 MBB->addSuccessor(TestMBB); 12070 12071 // Delete the pseudo instruction. 12072 MI.eraseFromParent(); 12073 12074 ++NumDynamicAllocaProbed; 12075 return TailMBB; 12076 } 12077 12078 MachineBasicBlock * 12079 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12080 MachineBasicBlock *BB) const { 12081 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12082 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12083 if (Subtarget.is64BitELFABI() && 12084 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12085 !Subtarget.isUsingPCRelativeCalls()) { 12086 // Call lowering should have added an r2 operand to indicate a dependence 12087 // on the TOC base pointer value. It can't however, because there is no 12088 // way to mark the dependence as implicit there, and so the stackmap code 12089 // will confuse it with a regular operand. Instead, add the dependence 12090 // here. 12091 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12092 } 12093 12094 return emitPatchPoint(MI, BB); 12095 } 12096 12097 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12098 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12099 return emitEHSjLjSetJmp(MI, BB); 12100 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12101 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12102 return emitEHSjLjLongJmp(MI, BB); 12103 } 12104 12105 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12106 12107 // To "insert" these instructions we actually have to insert their 12108 // control-flow patterns. 12109 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12110 MachineFunction::iterator It = ++BB->getIterator(); 12111 12112 MachineFunction *F = BB->getParent(); 12113 12114 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12115 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12116 MI.getOpcode() == PPC::SELECT_I8) { 12117 SmallVector<MachineOperand, 2> Cond; 12118 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12119 MI.getOpcode() == PPC::SELECT_CC_I8) 12120 Cond.push_back(MI.getOperand(4)); 12121 else 12122 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12123 Cond.push_back(MI.getOperand(1)); 12124 12125 DebugLoc dl = MI.getDebugLoc(); 12126 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12127 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12128 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12129 MI.getOpcode() == PPC::SELECT_CC_F8 || 12130 MI.getOpcode() == PPC::SELECT_CC_F16 || 12131 MI.getOpcode() == PPC::SELECT_CC_QFRC || 12132 MI.getOpcode() == PPC::SELECT_CC_QSRC || 12133 MI.getOpcode() == PPC::SELECT_CC_QBRC || 12134 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12135 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12136 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12137 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12138 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12139 MI.getOpcode() == PPC::SELECT_CC_SPE || 12140 MI.getOpcode() == PPC::SELECT_F4 || 12141 MI.getOpcode() == PPC::SELECT_F8 || 12142 MI.getOpcode() == PPC::SELECT_F16 || 12143 MI.getOpcode() == PPC::SELECT_QFRC || 12144 MI.getOpcode() == PPC::SELECT_QSRC || 12145 MI.getOpcode() == PPC::SELECT_QBRC || 12146 MI.getOpcode() == PPC::SELECT_SPE || 12147 MI.getOpcode() == PPC::SELECT_SPE4 || 12148 MI.getOpcode() == PPC::SELECT_VRRC || 12149 MI.getOpcode() == PPC::SELECT_VSFRC || 12150 MI.getOpcode() == PPC::SELECT_VSSRC || 12151 MI.getOpcode() == PPC::SELECT_VSRC) { 12152 // The incoming instruction knows the destination vreg to set, the 12153 // condition code register to branch on, the true/false values to 12154 // select between, and a branch opcode to use. 12155 12156 // thisMBB: 12157 // ... 12158 // TrueVal = ... 12159 // cmpTY ccX, r1, r2 12160 // bCC copy1MBB 12161 // fallthrough --> copy0MBB 12162 MachineBasicBlock *thisMBB = BB; 12163 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12164 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12165 DebugLoc dl = MI.getDebugLoc(); 12166 F->insert(It, copy0MBB); 12167 F->insert(It, sinkMBB); 12168 12169 // Transfer the remainder of BB and its successor edges to sinkMBB. 12170 sinkMBB->splice(sinkMBB->begin(), BB, 12171 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12172 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12173 12174 // Next, add the true and fallthrough blocks as its successors. 12175 BB->addSuccessor(copy0MBB); 12176 BB->addSuccessor(sinkMBB); 12177 12178 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12179 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12180 MI.getOpcode() == PPC::SELECT_F16 || 12181 MI.getOpcode() == PPC::SELECT_SPE4 || 12182 MI.getOpcode() == PPC::SELECT_SPE || 12183 MI.getOpcode() == PPC::SELECT_QFRC || 12184 MI.getOpcode() == PPC::SELECT_QSRC || 12185 MI.getOpcode() == PPC::SELECT_QBRC || 12186 MI.getOpcode() == PPC::SELECT_VRRC || 12187 MI.getOpcode() == PPC::SELECT_VSFRC || 12188 MI.getOpcode() == PPC::SELECT_VSSRC || 12189 MI.getOpcode() == PPC::SELECT_VSRC) { 12190 BuildMI(BB, dl, TII->get(PPC::BC)) 12191 .addReg(MI.getOperand(1).getReg()) 12192 .addMBB(sinkMBB); 12193 } else { 12194 unsigned SelectPred = MI.getOperand(4).getImm(); 12195 BuildMI(BB, dl, TII->get(PPC::BCC)) 12196 .addImm(SelectPred) 12197 .addReg(MI.getOperand(1).getReg()) 12198 .addMBB(sinkMBB); 12199 } 12200 12201 // copy0MBB: 12202 // %FalseValue = ... 12203 // # fallthrough to sinkMBB 12204 BB = copy0MBB; 12205 12206 // Update machine-CFG edges 12207 BB->addSuccessor(sinkMBB); 12208 12209 // sinkMBB: 12210 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12211 // ... 12212 BB = sinkMBB; 12213 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12214 .addReg(MI.getOperand(3).getReg()) 12215 .addMBB(copy0MBB) 12216 .addReg(MI.getOperand(2).getReg()) 12217 .addMBB(thisMBB); 12218 } else if (MI.getOpcode() == PPC::ReadTB) { 12219 // To read the 64-bit time-base register on a 32-bit target, we read the 12220 // two halves. Should the counter have wrapped while it was being read, we 12221 // need to try again. 12222 // ... 12223 // readLoop: 12224 // mfspr Rx,TBU # load from TBU 12225 // mfspr Ry,TB # load from TB 12226 // mfspr Rz,TBU # load from TBU 12227 // cmpw crX,Rx,Rz # check if 'old'='new' 12228 // bne readLoop # branch if they're not equal 12229 // ... 12230 12231 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12232 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12233 DebugLoc dl = MI.getDebugLoc(); 12234 F->insert(It, readMBB); 12235 F->insert(It, sinkMBB); 12236 12237 // Transfer the remainder of BB and its successor edges to sinkMBB. 12238 sinkMBB->splice(sinkMBB->begin(), BB, 12239 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12240 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12241 12242 BB->addSuccessor(readMBB); 12243 BB = readMBB; 12244 12245 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12246 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12247 Register LoReg = MI.getOperand(0).getReg(); 12248 Register HiReg = MI.getOperand(1).getReg(); 12249 12250 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12251 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12252 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12253 12254 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12255 12256 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12257 .addReg(HiReg) 12258 .addReg(ReadAgainReg); 12259 BuildMI(BB, dl, TII->get(PPC::BCC)) 12260 .addImm(PPC::PRED_NE) 12261 .addReg(CmpReg) 12262 .addMBB(readMBB); 12263 12264 BB->addSuccessor(readMBB); 12265 BB->addSuccessor(sinkMBB); 12266 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12267 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12268 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12269 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12270 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12271 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12272 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12273 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12274 12275 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12276 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12277 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12278 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12279 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12280 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12281 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12282 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12283 12284 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12285 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12286 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12287 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12288 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12289 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12290 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12291 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12292 12293 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12294 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12295 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12296 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12297 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12298 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12299 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12300 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12301 12302 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12303 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12304 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12305 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12306 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12307 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12308 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12309 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12310 12311 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12312 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12313 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12314 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12315 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12316 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12317 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12318 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12319 12320 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12321 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12322 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12323 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12324 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12325 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12326 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12327 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12328 12329 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12330 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12331 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12332 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12333 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12334 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12335 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12336 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12337 12338 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12339 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12340 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12341 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12342 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12343 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12344 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12345 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12346 12347 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12348 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12349 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12350 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12351 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12352 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12353 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12354 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12355 12356 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12357 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12358 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12359 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12360 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12361 BB = EmitAtomicBinary(MI, BB, 4, 0); 12362 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12363 BB = EmitAtomicBinary(MI, BB, 8, 0); 12364 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12365 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12366 (Subtarget.hasPartwordAtomics() && 12367 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12368 (Subtarget.hasPartwordAtomics() && 12369 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12370 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12371 12372 auto LoadMnemonic = PPC::LDARX; 12373 auto StoreMnemonic = PPC::STDCX; 12374 switch (MI.getOpcode()) { 12375 default: 12376 llvm_unreachable("Compare and swap of unknown size"); 12377 case PPC::ATOMIC_CMP_SWAP_I8: 12378 LoadMnemonic = PPC::LBARX; 12379 StoreMnemonic = PPC::STBCX; 12380 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12381 break; 12382 case PPC::ATOMIC_CMP_SWAP_I16: 12383 LoadMnemonic = PPC::LHARX; 12384 StoreMnemonic = PPC::STHCX; 12385 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12386 break; 12387 case PPC::ATOMIC_CMP_SWAP_I32: 12388 LoadMnemonic = PPC::LWARX; 12389 StoreMnemonic = PPC::STWCX; 12390 break; 12391 case PPC::ATOMIC_CMP_SWAP_I64: 12392 LoadMnemonic = PPC::LDARX; 12393 StoreMnemonic = PPC::STDCX; 12394 break; 12395 } 12396 Register dest = MI.getOperand(0).getReg(); 12397 Register ptrA = MI.getOperand(1).getReg(); 12398 Register ptrB = MI.getOperand(2).getReg(); 12399 Register oldval = MI.getOperand(3).getReg(); 12400 Register newval = MI.getOperand(4).getReg(); 12401 DebugLoc dl = MI.getDebugLoc(); 12402 12403 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12404 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12405 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12406 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12407 F->insert(It, loop1MBB); 12408 F->insert(It, loop2MBB); 12409 F->insert(It, midMBB); 12410 F->insert(It, exitMBB); 12411 exitMBB->splice(exitMBB->begin(), BB, 12412 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12413 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12414 12415 // thisMBB: 12416 // ... 12417 // fallthrough --> loopMBB 12418 BB->addSuccessor(loop1MBB); 12419 12420 // loop1MBB: 12421 // l[bhwd]arx dest, ptr 12422 // cmp[wd] dest, oldval 12423 // bne- midMBB 12424 // loop2MBB: 12425 // st[bhwd]cx. newval, ptr 12426 // bne- loopMBB 12427 // b exitBB 12428 // midMBB: 12429 // st[bhwd]cx. dest, ptr 12430 // exitBB: 12431 BB = loop1MBB; 12432 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12433 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12434 .addReg(oldval) 12435 .addReg(dest); 12436 BuildMI(BB, dl, TII->get(PPC::BCC)) 12437 .addImm(PPC::PRED_NE) 12438 .addReg(PPC::CR0) 12439 .addMBB(midMBB); 12440 BB->addSuccessor(loop2MBB); 12441 BB->addSuccessor(midMBB); 12442 12443 BB = loop2MBB; 12444 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12445 .addReg(newval) 12446 .addReg(ptrA) 12447 .addReg(ptrB); 12448 BuildMI(BB, dl, TII->get(PPC::BCC)) 12449 .addImm(PPC::PRED_NE) 12450 .addReg(PPC::CR0) 12451 .addMBB(loop1MBB); 12452 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12453 BB->addSuccessor(loop1MBB); 12454 BB->addSuccessor(exitMBB); 12455 12456 BB = midMBB; 12457 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12458 .addReg(dest) 12459 .addReg(ptrA) 12460 .addReg(ptrB); 12461 BB->addSuccessor(exitMBB); 12462 12463 // exitMBB: 12464 // ... 12465 BB = exitMBB; 12466 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12467 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12468 // We must use 64-bit registers for addresses when targeting 64-bit, 12469 // since we're actually doing arithmetic on them. Other registers 12470 // can be 32-bit. 12471 bool is64bit = Subtarget.isPPC64(); 12472 bool isLittleEndian = Subtarget.isLittleEndian(); 12473 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12474 12475 Register dest = MI.getOperand(0).getReg(); 12476 Register ptrA = MI.getOperand(1).getReg(); 12477 Register ptrB = MI.getOperand(2).getReg(); 12478 Register oldval = MI.getOperand(3).getReg(); 12479 Register newval = MI.getOperand(4).getReg(); 12480 DebugLoc dl = MI.getDebugLoc(); 12481 12482 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12483 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12484 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12485 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12486 F->insert(It, loop1MBB); 12487 F->insert(It, loop2MBB); 12488 F->insert(It, midMBB); 12489 F->insert(It, exitMBB); 12490 exitMBB->splice(exitMBB->begin(), BB, 12491 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12492 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12493 12494 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12495 const TargetRegisterClass *RC = 12496 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12497 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12498 12499 Register PtrReg = RegInfo.createVirtualRegister(RC); 12500 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12501 Register ShiftReg = 12502 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12503 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12504 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12505 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12506 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12507 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12508 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12509 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12510 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12511 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12512 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12513 Register Ptr1Reg; 12514 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12515 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12516 // thisMBB: 12517 // ... 12518 // fallthrough --> loopMBB 12519 BB->addSuccessor(loop1MBB); 12520 12521 // The 4-byte load must be aligned, while a char or short may be 12522 // anywhere in the word. Hence all this nasty bookkeeping code. 12523 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12524 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12525 // xori shift, shift1, 24 [16] 12526 // rlwinm ptr, ptr1, 0, 0, 29 12527 // slw newval2, newval, shift 12528 // slw oldval2, oldval,shift 12529 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12530 // slw mask, mask2, shift 12531 // and newval3, newval2, mask 12532 // and oldval3, oldval2, mask 12533 // loop1MBB: 12534 // lwarx tmpDest, ptr 12535 // and tmp, tmpDest, mask 12536 // cmpw tmp, oldval3 12537 // bne- midMBB 12538 // loop2MBB: 12539 // andc tmp2, tmpDest, mask 12540 // or tmp4, tmp2, newval3 12541 // stwcx. tmp4, ptr 12542 // bne- loop1MBB 12543 // b exitBB 12544 // midMBB: 12545 // stwcx. tmpDest, ptr 12546 // exitBB: 12547 // srw dest, tmpDest, shift 12548 if (ptrA != ZeroReg) { 12549 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12550 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12551 .addReg(ptrA) 12552 .addReg(ptrB); 12553 } else { 12554 Ptr1Reg = ptrB; 12555 } 12556 12557 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12558 // mode. 12559 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12560 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12561 .addImm(3) 12562 .addImm(27) 12563 .addImm(is8bit ? 28 : 27); 12564 if (!isLittleEndian) 12565 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12566 .addReg(Shift1Reg) 12567 .addImm(is8bit ? 24 : 16); 12568 if (is64bit) 12569 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12570 .addReg(Ptr1Reg) 12571 .addImm(0) 12572 .addImm(61); 12573 else 12574 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12575 .addReg(Ptr1Reg) 12576 .addImm(0) 12577 .addImm(0) 12578 .addImm(29); 12579 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12580 .addReg(newval) 12581 .addReg(ShiftReg); 12582 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12583 .addReg(oldval) 12584 .addReg(ShiftReg); 12585 if (is8bit) 12586 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12587 else { 12588 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12589 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12590 .addReg(Mask3Reg) 12591 .addImm(65535); 12592 } 12593 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12594 .addReg(Mask2Reg) 12595 .addReg(ShiftReg); 12596 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12597 .addReg(NewVal2Reg) 12598 .addReg(MaskReg); 12599 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12600 .addReg(OldVal2Reg) 12601 .addReg(MaskReg); 12602 12603 BB = loop1MBB; 12604 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12605 .addReg(ZeroReg) 12606 .addReg(PtrReg); 12607 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12608 .addReg(TmpDestReg) 12609 .addReg(MaskReg); 12610 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12611 .addReg(TmpReg) 12612 .addReg(OldVal3Reg); 12613 BuildMI(BB, dl, TII->get(PPC::BCC)) 12614 .addImm(PPC::PRED_NE) 12615 .addReg(PPC::CR0) 12616 .addMBB(midMBB); 12617 BB->addSuccessor(loop2MBB); 12618 BB->addSuccessor(midMBB); 12619 12620 BB = loop2MBB; 12621 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12622 .addReg(TmpDestReg) 12623 .addReg(MaskReg); 12624 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12625 .addReg(Tmp2Reg) 12626 .addReg(NewVal3Reg); 12627 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12628 .addReg(Tmp4Reg) 12629 .addReg(ZeroReg) 12630 .addReg(PtrReg); 12631 BuildMI(BB, dl, TII->get(PPC::BCC)) 12632 .addImm(PPC::PRED_NE) 12633 .addReg(PPC::CR0) 12634 .addMBB(loop1MBB); 12635 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12636 BB->addSuccessor(loop1MBB); 12637 BB->addSuccessor(exitMBB); 12638 12639 BB = midMBB; 12640 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12641 .addReg(TmpDestReg) 12642 .addReg(ZeroReg) 12643 .addReg(PtrReg); 12644 BB->addSuccessor(exitMBB); 12645 12646 // exitMBB: 12647 // ... 12648 BB = exitMBB; 12649 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12650 .addReg(TmpReg) 12651 .addReg(ShiftReg); 12652 } else if (MI.getOpcode() == PPC::FADDrtz) { 12653 // This pseudo performs an FADD with rounding mode temporarily forced 12654 // to round-to-zero. We emit this via custom inserter since the FPSCR 12655 // is not modeled at the SelectionDAG level. 12656 Register Dest = MI.getOperand(0).getReg(); 12657 Register Src1 = MI.getOperand(1).getReg(); 12658 Register Src2 = MI.getOperand(2).getReg(); 12659 DebugLoc dl = MI.getDebugLoc(); 12660 12661 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12662 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12663 12664 // Save FPSCR value. 12665 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12666 12667 // Set rounding mode to round-to-zero. 12668 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12669 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12670 12671 // Perform addition. 12672 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12673 12674 // Restore FPSCR value. 12675 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12676 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12677 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12678 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12679 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12680 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12681 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12682 ? PPC::ANDI8_rec 12683 : PPC::ANDI_rec; 12684 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12685 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12686 12687 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12688 Register Dest = RegInfo.createVirtualRegister( 12689 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12690 12691 DebugLoc Dl = MI.getDebugLoc(); 12692 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12693 .addReg(MI.getOperand(1).getReg()) 12694 .addImm(1); 12695 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12696 MI.getOperand(0).getReg()) 12697 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12698 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12699 DebugLoc Dl = MI.getDebugLoc(); 12700 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12701 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12702 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12703 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12704 MI.getOperand(0).getReg()) 12705 .addReg(CRReg); 12706 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12707 DebugLoc Dl = MI.getDebugLoc(); 12708 unsigned Imm = MI.getOperand(1).getImm(); 12709 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12710 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12711 MI.getOperand(0).getReg()) 12712 .addReg(PPC::CR0EQ); 12713 } else if (MI.getOpcode() == PPC::SETRNDi) { 12714 DebugLoc dl = MI.getDebugLoc(); 12715 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12716 12717 // Save FPSCR value. 12718 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12719 12720 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12721 // the following settings: 12722 // 00 Round to nearest 12723 // 01 Round to 0 12724 // 10 Round to +inf 12725 // 11 Round to -inf 12726 12727 // When the operand is immediate, using the two least significant bits of 12728 // the immediate to set the bits 62:63 of FPSCR. 12729 unsigned Mode = MI.getOperand(1).getImm(); 12730 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12731 .addImm(31); 12732 12733 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12734 .addImm(30); 12735 } else if (MI.getOpcode() == PPC::SETRND) { 12736 DebugLoc dl = MI.getDebugLoc(); 12737 12738 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12739 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12740 // If the target doesn't have DirectMove, we should use stack to do the 12741 // conversion, because the target doesn't have the instructions like mtvsrd 12742 // or mfvsrd to do this conversion directly. 12743 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12744 if (Subtarget.hasDirectMove()) { 12745 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12746 .addReg(SrcReg); 12747 } else { 12748 // Use stack to do the register copy. 12749 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12750 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12751 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12752 if (RC == &PPC::F8RCRegClass) { 12753 // Copy register from F8RCRegClass to G8RCRegclass. 12754 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12755 "Unsupported RegClass."); 12756 12757 StoreOp = PPC::STFD; 12758 LoadOp = PPC::LD; 12759 } else { 12760 // Copy register from G8RCRegClass to F8RCRegclass. 12761 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12762 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12763 "Unsupported RegClass."); 12764 } 12765 12766 MachineFrameInfo &MFI = F->getFrameInfo(); 12767 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12768 12769 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12770 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12771 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12772 MFI.getObjectAlign(FrameIdx)); 12773 12774 // Store the SrcReg into the stack. 12775 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12776 .addReg(SrcReg) 12777 .addImm(0) 12778 .addFrameIndex(FrameIdx) 12779 .addMemOperand(MMOStore); 12780 12781 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12782 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12783 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12784 MFI.getObjectAlign(FrameIdx)); 12785 12786 // Load from the stack where SrcReg is stored, and save to DestReg, 12787 // so we have done the RegClass conversion from RegClass::SrcReg to 12788 // RegClass::DestReg. 12789 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12790 .addImm(0) 12791 .addFrameIndex(FrameIdx) 12792 .addMemOperand(MMOLoad); 12793 } 12794 }; 12795 12796 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12797 12798 // Save FPSCR value. 12799 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12800 12801 // When the operand is gprc register, use two least significant bits of the 12802 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12803 // 12804 // copy OldFPSCRTmpReg, OldFPSCRReg 12805 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12806 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12807 // copy NewFPSCRReg, NewFPSCRTmpReg 12808 // mtfsf 255, NewFPSCRReg 12809 MachineOperand SrcOp = MI.getOperand(1); 12810 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12811 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12812 12813 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12814 12815 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12816 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12817 12818 // The first operand of INSERT_SUBREG should be a register which has 12819 // subregisters, we only care about its RegClass, so we should use an 12820 // IMPLICIT_DEF register. 12821 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12822 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12823 .addReg(ImDefReg) 12824 .add(SrcOp) 12825 .addImm(1); 12826 12827 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12828 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12829 .addReg(OldFPSCRTmpReg) 12830 .addReg(ExtSrcReg) 12831 .addImm(0) 12832 .addImm(62); 12833 12834 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12835 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12836 12837 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12838 // bits of FPSCR. 12839 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12840 .addImm(255) 12841 .addReg(NewFPSCRReg) 12842 .addImm(0) 12843 .addImm(0); 12844 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12845 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12846 return emitProbedAlloca(MI, BB); 12847 } else { 12848 llvm_unreachable("Unexpected instr type to insert"); 12849 } 12850 12851 MI.eraseFromParent(); // The pseudo instruction is gone now. 12852 return BB; 12853 } 12854 12855 //===----------------------------------------------------------------------===// 12856 // Target Optimization Hooks 12857 //===----------------------------------------------------------------------===// 12858 12859 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12860 // For the estimates, convergence is quadratic, so we essentially double the 12861 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12862 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12863 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12864 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12865 if (VT.getScalarType() == MVT::f64) 12866 RefinementSteps++; 12867 return RefinementSteps; 12868 } 12869 12870 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12871 int Enabled, int &RefinementSteps, 12872 bool &UseOneConstNR, 12873 bool Reciprocal) const { 12874 EVT VT = Operand.getValueType(); 12875 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12876 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12877 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12878 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12879 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12880 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12881 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12882 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12883 12884 // The Newton-Raphson computation with a single constant does not provide 12885 // enough accuracy on some CPUs. 12886 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12887 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12888 } 12889 return SDValue(); 12890 } 12891 12892 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12893 int Enabled, 12894 int &RefinementSteps) const { 12895 EVT VT = Operand.getValueType(); 12896 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12897 (VT == MVT::f64 && Subtarget.hasFRE()) || 12898 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12899 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12900 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12901 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12902 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12903 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12904 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12905 } 12906 return SDValue(); 12907 } 12908 12909 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12910 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12911 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12912 // enabled for division), this functionality is redundant with the default 12913 // combiner logic (once the division -> reciprocal/multiply transformation 12914 // has taken place). As a result, this matters more for older cores than for 12915 // newer ones. 12916 12917 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12918 // reciprocal if there are two or more FDIVs (for embedded cores with only 12919 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12920 switch (Subtarget.getCPUDirective()) { 12921 default: 12922 return 3; 12923 case PPC::DIR_440: 12924 case PPC::DIR_A2: 12925 case PPC::DIR_E500: 12926 case PPC::DIR_E500mc: 12927 case PPC::DIR_E5500: 12928 return 2; 12929 } 12930 } 12931 12932 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12933 // collapsed, and so we need to look through chains of them. 12934 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12935 int64_t& Offset, SelectionDAG &DAG) { 12936 if (DAG.isBaseWithConstantOffset(Loc)) { 12937 Base = Loc.getOperand(0); 12938 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12939 12940 // The base might itself be a base plus an offset, and if so, accumulate 12941 // that as well. 12942 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12943 } 12944 } 12945 12946 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12947 unsigned Bytes, int Dist, 12948 SelectionDAG &DAG) { 12949 if (VT.getSizeInBits() / 8 != Bytes) 12950 return false; 12951 12952 SDValue BaseLoc = Base->getBasePtr(); 12953 if (Loc.getOpcode() == ISD::FrameIndex) { 12954 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12955 return false; 12956 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12957 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12958 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12959 int FS = MFI.getObjectSize(FI); 12960 int BFS = MFI.getObjectSize(BFI); 12961 if (FS != BFS || FS != (int)Bytes) return false; 12962 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12963 } 12964 12965 SDValue Base1 = Loc, Base2 = BaseLoc; 12966 int64_t Offset1 = 0, Offset2 = 0; 12967 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12968 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12969 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12970 return true; 12971 12972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12973 const GlobalValue *GV1 = nullptr; 12974 const GlobalValue *GV2 = nullptr; 12975 Offset1 = 0; 12976 Offset2 = 0; 12977 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12978 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12979 if (isGA1 && isGA2 && GV1 == GV2) 12980 return Offset1 == (Offset2 + Dist*Bytes); 12981 return false; 12982 } 12983 12984 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12985 // not enforce equality of the chain operands. 12986 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12987 unsigned Bytes, int Dist, 12988 SelectionDAG &DAG) { 12989 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12990 EVT VT = LS->getMemoryVT(); 12991 SDValue Loc = LS->getBasePtr(); 12992 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12993 } 12994 12995 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12996 EVT VT; 12997 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12998 default: return false; 12999 case Intrinsic::ppc_qpx_qvlfd: 13000 case Intrinsic::ppc_qpx_qvlfda: 13001 VT = MVT::v4f64; 13002 break; 13003 case Intrinsic::ppc_qpx_qvlfs: 13004 case Intrinsic::ppc_qpx_qvlfsa: 13005 VT = MVT::v4f32; 13006 break; 13007 case Intrinsic::ppc_qpx_qvlfcd: 13008 case Intrinsic::ppc_qpx_qvlfcda: 13009 VT = MVT::v2f64; 13010 break; 13011 case Intrinsic::ppc_qpx_qvlfcs: 13012 case Intrinsic::ppc_qpx_qvlfcsa: 13013 VT = MVT::v2f32; 13014 break; 13015 case Intrinsic::ppc_qpx_qvlfiwa: 13016 case Intrinsic::ppc_qpx_qvlfiwz: 13017 case Intrinsic::ppc_altivec_lvx: 13018 case Intrinsic::ppc_altivec_lvxl: 13019 case Intrinsic::ppc_vsx_lxvw4x: 13020 case Intrinsic::ppc_vsx_lxvw4x_be: 13021 VT = MVT::v4i32; 13022 break; 13023 case Intrinsic::ppc_vsx_lxvd2x: 13024 case Intrinsic::ppc_vsx_lxvd2x_be: 13025 VT = MVT::v2f64; 13026 break; 13027 case Intrinsic::ppc_altivec_lvebx: 13028 VT = MVT::i8; 13029 break; 13030 case Intrinsic::ppc_altivec_lvehx: 13031 VT = MVT::i16; 13032 break; 13033 case Intrinsic::ppc_altivec_lvewx: 13034 VT = MVT::i32; 13035 break; 13036 } 13037 13038 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13039 } 13040 13041 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13042 EVT VT; 13043 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13044 default: return false; 13045 case Intrinsic::ppc_qpx_qvstfd: 13046 case Intrinsic::ppc_qpx_qvstfda: 13047 VT = MVT::v4f64; 13048 break; 13049 case Intrinsic::ppc_qpx_qvstfs: 13050 case Intrinsic::ppc_qpx_qvstfsa: 13051 VT = MVT::v4f32; 13052 break; 13053 case Intrinsic::ppc_qpx_qvstfcd: 13054 case Intrinsic::ppc_qpx_qvstfcda: 13055 VT = MVT::v2f64; 13056 break; 13057 case Intrinsic::ppc_qpx_qvstfcs: 13058 case Intrinsic::ppc_qpx_qvstfcsa: 13059 VT = MVT::v2f32; 13060 break; 13061 case Intrinsic::ppc_qpx_qvstfiw: 13062 case Intrinsic::ppc_qpx_qvstfiwa: 13063 case Intrinsic::ppc_altivec_stvx: 13064 case Intrinsic::ppc_altivec_stvxl: 13065 case Intrinsic::ppc_vsx_stxvw4x: 13066 VT = MVT::v4i32; 13067 break; 13068 case Intrinsic::ppc_vsx_stxvd2x: 13069 VT = MVT::v2f64; 13070 break; 13071 case Intrinsic::ppc_vsx_stxvw4x_be: 13072 VT = MVT::v4i32; 13073 break; 13074 case Intrinsic::ppc_vsx_stxvd2x_be: 13075 VT = MVT::v2f64; 13076 break; 13077 case Intrinsic::ppc_altivec_stvebx: 13078 VT = MVT::i8; 13079 break; 13080 case Intrinsic::ppc_altivec_stvehx: 13081 VT = MVT::i16; 13082 break; 13083 case Intrinsic::ppc_altivec_stvewx: 13084 VT = MVT::i32; 13085 break; 13086 } 13087 13088 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13089 } 13090 13091 return false; 13092 } 13093 13094 // Return true is there is a nearyby consecutive load to the one provided 13095 // (regardless of alignment). We search up and down the chain, looking though 13096 // token factors and other loads (but nothing else). As a result, a true result 13097 // indicates that it is safe to create a new consecutive load adjacent to the 13098 // load provided. 13099 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13100 SDValue Chain = LD->getChain(); 13101 EVT VT = LD->getMemoryVT(); 13102 13103 SmallSet<SDNode *, 16> LoadRoots; 13104 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13105 SmallSet<SDNode *, 16> Visited; 13106 13107 // First, search up the chain, branching to follow all token-factor operands. 13108 // If we find a consecutive load, then we're done, otherwise, record all 13109 // nodes just above the top-level loads and token factors. 13110 while (!Queue.empty()) { 13111 SDNode *ChainNext = Queue.pop_back_val(); 13112 if (!Visited.insert(ChainNext).second) 13113 continue; 13114 13115 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13116 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13117 return true; 13118 13119 if (!Visited.count(ChainLD->getChain().getNode())) 13120 Queue.push_back(ChainLD->getChain().getNode()); 13121 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13122 for (const SDUse &O : ChainNext->ops()) 13123 if (!Visited.count(O.getNode())) 13124 Queue.push_back(O.getNode()); 13125 } else 13126 LoadRoots.insert(ChainNext); 13127 } 13128 13129 // Second, search down the chain, starting from the top-level nodes recorded 13130 // in the first phase. These top-level nodes are the nodes just above all 13131 // loads and token factors. Starting with their uses, recursively look though 13132 // all loads (just the chain uses) and token factors to find a consecutive 13133 // load. 13134 Visited.clear(); 13135 Queue.clear(); 13136 13137 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13138 IE = LoadRoots.end(); I != IE; ++I) { 13139 Queue.push_back(*I); 13140 13141 while (!Queue.empty()) { 13142 SDNode *LoadRoot = Queue.pop_back_val(); 13143 if (!Visited.insert(LoadRoot).second) 13144 continue; 13145 13146 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13147 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13148 return true; 13149 13150 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13151 UE = LoadRoot->use_end(); UI != UE; ++UI) 13152 if (((isa<MemSDNode>(*UI) && 13153 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13154 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13155 Queue.push_back(*UI); 13156 } 13157 } 13158 13159 return false; 13160 } 13161 13162 /// This function is called when we have proved that a SETCC node can be replaced 13163 /// by subtraction (and other supporting instructions) so that the result of 13164 /// comparison is kept in a GPR instead of CR. This function is purely for 13165 /// codegen purposes and has some flags to guide the codegen process. 13166 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13167 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13168 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13169 13170 // Zero extend the operands to the largest legal integer. Originally, they 13171 // must be of a strictly smaller size. 13172 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13173 DAG.getConstant(Size, DL, MVT::i32)); 13174 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13175 DAG.getConstant(Size, DL, MVT::i32)); 13176 13177 // Swap if needed. Depends on the condition code. 13178 if (Swap) 13179 std::swap(Op0, Op1); 13180 13181 // Subtract extended integers. 13182 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13183 13184 // Move the sign bit to the least significant position and zero out the rest. 13185 // Now the least significant bit carries the result of original comparison. 13186 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13187 DAG.getConstant(Size - 1, DL, MVT::i32)); 13188 auto Final = Shifted; 13189 13190 // Complement the result if needed. Based on the condition code. 13191 if (Complement) 13192 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13193 DAG.getConstant(1, DL, MVT::i64)); 13194 13195 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13196 } 13197 13198 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13199 DAGCombinerInfo &DCI) const { 13200 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13201 13202 SelectionDAG &DAG = DCI.DAG; 13203 SDLoc DL(N); 13204 13205 // Size of integers being compared has a critical role in the following 13206 // analysis, so we prefer to do this when all types are legal. 13207 if (!DCI.isAfterLegalizeDAG()) 13208 return SDValue(); 13209 13210 // If all users of SETCC extend its value to a legal integer type 13211 // then we replace SETCC with a subtraction 13212 for (SDNode::use_iterator UI = N->use_begin(), 13213 UE = N->use_end(); UI != UE; ++UI) { 13214 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13215 return SDValue(); 13216 } 13217 13218 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13219 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13220 13221 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13222 13223 if (OpSize < Size) { 13224 switch (CC) { 13225 default: break; 13226 case ISD::SETULT: 13227 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13228 case ISD::SETULE: 13229 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13230 case ISD::SETUGT: 13231 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13232 case ISD::SETUGE: 13233 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13234 } 13235 } 13236 13237 return SDValue(); 13238 } 13239 13240 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13241 DAGCombinerInfo &DCI) const { 13242 SelectionDAG &DAG = DCI.DAG; 13243 SDLoc dl(N); 13244 13245 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13246 // If we're tracking CR bits, we need to be careful that we don't have: 13247 // trunc(binary-ops(zext(x), zext(y))) 13248 // or 13249 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13250 // such that we're unnecessarily moving things into GPRs when it would be 13251 // better to keep them in CR bits. 13252 13253 // Note that trunc here can be an actual i1 trunc, or can be the effective 13254 // truncation that comes from a setcc or select_cc. 13255 if (N->getOpcode() == ISD::TRUNCATE && 13256 N->getValueType(0) != MVT::i1) 13257 return SDValue(); 13258 13259 if (N->getOperand(0).getValueType() != MVT::i32 && 13260 N->getOperand(0).getValueType() != MVT::i64) 13261 return SDValue(); 13262 13263 if (N->getOpcode() == ISD::SETCC || 13264 N->getOpcode() == ISD::SELECT_CC) { 13265 // If we're looking at a comparison, then we need to make sure that the 13266 // high bits (all except for the first) don't matter the result. 13267 ISD::CondCode CC = 13268 cast<CondCodeSDNode>(N->getOperand( 13269 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13270 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13271 13272 if (ISD::isSignedIntSetCC(CC)) { 13273 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13274 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13275 return SDValue(); 13276 } else if (ISD::isUnsignedIntSetCC(CC)) { 13277 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13278 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13279 !DAG.MaskedValueIsZero(N->getOperand(1), 13280 APInt::getHighBitsSet(OpBits, OpBits-1))) 13281 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13282 : SDValue()); 13283 } else { 13284 // This is neither a signed nor an unsigned comparison, just make sure 13285 // that the high bits are equal. 13286 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13287 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13288 13289 // We don't really care about what is known about the first bit (if 13290 // anything), so clear it in all masks prior to comparing them. 13291 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13292 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13293 13294 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13295 return SDValue(); 13296 } 13297 } 13298 13299 // We now know that the higher-order bits are irrelevant, we just need to 13300 // make sure that all of the intermediate operations are bit operations, and 13301 // all inputs are extensions. 13302 if (N->getOperand(0).getOpcode() != ISD::AND && 13303 N->getOperand(0).getOpcode() != ISD::OR && 13304 N->getOperand(0).getOpcode() != ISD::XOR && 13305 N->getOperand(0).getOpcode() != ISD::SELECT && 13306 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13307 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13308 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13309 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13310 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13311 return SDValue(); 13312 13313 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13314 N->getOperand(1).getOpcode() != ISD::AND && 13315 N->getOperand(1).getOpcode() != ISD::OR && 13316 N->getOperand(1).getOpcode() != ISD::XOR && 13317 N->getOperand(1).getOpcode() != ISD::SELECT && 13318 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13319 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13320 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13321 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13322 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13323 return SDValue(); 13324 13325 SmallVector<SDValue, 4> Inputs; 13326 SmallVector<SDValue, 8> BinOps, PromOps; 13327 SmallPtrSet<SDNode *, 16> Visited; 13328 13329 for (unsigned i = 0; i < 2; ++i) { 13330 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13331 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13332 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13333 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13334 isa<ConstantSDNode>(N->getOperand(i))) 13335 Inputs.push_back(N->getOperand(i)); 13336 else 13337 BinOps.push_back(N->getOperand(i)); 13338 13339 if (N->getOpcode() == ISD::TRUNCATE) 13340 break; 13341 } 13342 13343 // Visit all inputs, collect all binary operations (and, or, xor and 13344 // select) that are all fed by extensions. 13345 while (!BinOps.empty()) { 13346 SDValue BinOp = BinOps.back(); 13347 BinOps.pop_back(); 13348 13349 if (!Visited.insert(BinOp.getNode()).second) 13350 continue; 13351 13352 PromOps.push_back(BinOp); 13353 13354 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13355 // The condition of the select is not promoted. 13356 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13357 continue; 13358 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13359 continue; 13360 13361 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13362 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13363 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13364 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13365 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13366 Inputs.push_back(BinOp.getOperand(i)); 13367 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13368 BinOp.getOperand(i).getOpcode() == ISD::OR || 13369 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13370 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13371 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13372 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13373 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13374 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13375 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13376 BinOps.push_back(BinOp.getOperand(i)); 13377 } else { 13378 // We have an input that is not an extension or another binary 13379 // operation; we'll abort this transformation. 13380 return SDValue(); 13381 } 13382 } 13383 } 13384 13385 // Make sure that this is a self-contained cluster of operations (which 13386 // is not quite the same thing as saying that everything has only one 13387 // use). 13388 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13389 if (isa<ConstantSDNode>(Inputs[i])) 13390 continue; 13391 13392 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13393 UE = Inputs[i].getNode()->use_end(); 13394 UI != UE; ++UI) { 13395 SDNode *User = *UI; 13396 if (User != N && !Visited.count(User)) 13397 return SDValue(); 13398 13399 // Make sure that we're not going to promote the non-output-value 13400 // operand(s) or SELECT or SELECT_CC. 13401 // FIXME: Although we could sometimes handle this, and it does occur in 13402 // practice that one of the condition inputs to the select is also one of 13403 // the outputs, we currently can't deal with this. 13404 if (User->getOpcode() == ISD::SELECT) { 13405 if (User->getOperand(0) == Inputs[i]) 13406 return SDValue(); 13407 } else if (User->getOpcode() == ISD::SELECT_CC) { 13408 if (User->getOperand(0) == Inputs[i] || 13409 User->getOperand(1) == Inputs[i]) 13410 return SDValue(); 13411 } 13412 } 13413 } 13414 13415 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13416 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13417 UE = PromOps[i].getNode()->use_end(); 13418 UI != UE; ++UI) { 13419 SDNode *User = *UI; 13420 if (User != N && !Visited.count(User)) 13421 return SDValue(); 13422 13423 // Make sure that we're not going to promote the non-output-value 13424 // operand(s) or SELECT or SELECT_CC. 13425 // FIXME: Although we could sometimes handle this, and it does occur in 13426 // practice that one of the condition inputs to the select is also one of 13427 // the outputs, we currently can't deal with this. 13428 if (User->getOpcode() == ISD::SELECT) { 13429 if (User->getOperand(0) == PromOps[i]) 13430 return SDValue(); 13431 } else if (User->getOpcode() == ISD::SELECT_CC) { 13432 if (User->getOperand(0) == PromOps[i] || 13433 User->getOperand(1) == PromOps[i]) 13434 return SDValue(); 13435 } 13436 } 13437 } 13438 13439 // Replace all inputs with the extension operand. 13440 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13441 // Constants may have users outside the cluster of to-be-promoted nodes, 13442 // and so we need to replace those as we do the promotions. 13443 if (isa<ConstantSDNode>(Inputs[i])) 13444 continue; 13445 else 13446 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13447 } 13448 13449 std::list<HandleSDNode> PromOpHandles; 13450 for (auto &PromOp : PromOps) 13451 PromOpHandles.emplace_back(PromOp); 13452 13453 // Replace all operations (these are all the same, but have a different 13454 // (i1) return type). DAG.getNode will validate that the types of 13455 // a binary operator match, so go through the list in reverse so that 13456 // we've likely promoted both operands first. Any intermediate truncations or 13457 // extensions disappear. 13458 while (!PromOpHandles.empty()) { 13459 SDValue PromOp = PromOpHandles.back().getValue(); 13460 PromOpHandles.pop_back(); 13461 13462 if (PromOp.getOpcode() == ISD::TRUNCATE || 13463 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13464 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13465 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13466 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13467 PromOp.getOperand(0).getValueType() != MVT::i1) { 13468 // The operand is not yet ready (see comment below). 13469 PromOpHandles.emplace_front(PromOp); 13470 continue; 13471 } 13472 13473 SDValue RepValue = PromOp.getOperand(0); 13474 if (isa<ConstantSDNode>(RepValue)) 13475 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13476 13477 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13478 continue; 13479 } 13480 13481 unsigned C; 13482 switch (PromOp.getOpcode()) { 13483 default: C = 0; break; 13484 case ISD::SELECT: C = 1; break; 13485 case ISD::SELECT_CC: C = 2; break; 13486 } 13487 13488 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13489 PromOp.getOperand(C).getValueType() != MVT::i1) || 13490 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13491 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13492 // The to-be-promoted operands of this node have not yet been 13493 // promoted (this should be rare because we're going through the 13494 // list backward, but if one of the operands has several users in 13495 // this cluster of to-be-promoted nodes, it is possible). 13496 PromOpHandles.emplace_front(PromOp); 13497 continue; 13498 } 13499 13500 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13501 PromOp.getNode()->op_end()); 13502 13503 // If there are any constant inputs, make sure they're replaced now. 13504 for (unsigned i = 0; i < 2; ++i) 13505 if (isa<ConstantSDNode>(Ops[C+i])) 13506 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13507 13508 DAG.ReplaceAllUsesOfValueWith(PromOp, 13509 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13510 } 13511 13512 // Now we're left with the initial truncation itself. 13513 if (N->getOpcode() == ISD::TRUNCATE) 13514 return N->getOperand(0); 13515 13516 // Otherwise, this is a comparison. The operands to be compared have just 13517 // changed type (to i1), but everything else is the same. 13518 return SDValue(N, 0); 13519 } 13520 13521 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13522 DAGCombinerInfo &DCI) const { 13523 SelectionDAG &DAG = DCI.DAG; 13524 SDLoc dl(N); 13525 13526 // If we're tracking CR bits, we need to be careful that we don't have: 13527 // zext(binary-ops(trunc(x), trunc(y))) 13528 // or 13529 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13530 // such that we're unnecessarily moving things into CR bits that can more 13531 // efficiently stay in GPRs. Note that if we're not certain that the high 13532 // bits are set as required by the final extension, we still may need to do 13533 // some masking to get the proper behavior. 13534 13535 // This same functionality is important on PPC64 when dealing with 13536 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13537 // the return values of functions. Because it is so similar, it is handled 13538 // here as well. 13539 13540 if (N->getValueType(0) != MVT::i32 && 13541 N->getValueType(0) != MVT::i64) 13542 return SDValue(); 13543 13544 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13545 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13546 return SDValue(); 13547 13548 if (N->getOperand(0).getOpcode() != ISD::AND && 13549 N->getOperand(0).getOpcode() != ISD::OR && 13550 N->getOperand(0).getOpcode() != ISD::XOR && 13551 N->getOperand(0).getOpcode() != ISD::SELECT && 13552 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13553 return SDValue(); 13554 13555 SmallVector<SDValue, 4> Inputs; 13556 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13557 SmallPtrSet<SDNode *, 16> Visited; 13558 13559 // Visit all inputs, collect all binary operations (and, or, xor and 13560 // select) that are all fed by truncations. 13561 while (!BinOps.empty()) { 13562 SDValue BinOp = BinOps.back(); 13563 BinOps.pop_back(); 13564 13565 if (!Visited.insert(BinOp.getNode()).second) 13566 continue; 13567 13568 PromOps.push_back(BinOp); 13569 13570 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13571 // The condition of the select is not promoted. 13572 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13573 continue; 13574 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13575 continue; 13576 13577 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13578 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13579 Inputs.push_back(BinOp.getOperand(i)); 13580 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13581 BinOp.getOperand(i).getOpcode() == ISD::OR || 13582 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13583 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13584 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13585 BinOps.push_back(BinOp.getOperand(i)); 13586 } else { 13587 // We have an input that is not a truncation or another binary 13588 // operation; we'll abort this transformation. 13589 return SDValue(); 13590 } 13591 } 13592 } 13593 13594 // The operands of a select that must be truncated when the select is 13595 // promoted because the operand is actually part of the to-be-promoted set. 13596 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13597 13598 // Make sure that this is a self-contained cluster of operations (which 13599 // is not quite the same thing as saying that everything has only one 13600 // use). 13601 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13602 if (isa<ConstantSDNode>(Inputs[i])) 13603 continue; 13604 13605 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13606 UE = Inputs[i].getNode()->use_end(); 13607 UI != UE; ++UI) { 13608 SDNode *User = *UI; 13609 if (User != N && !Visited.count(User)) 13610 return SDValue(); 13611 13612 // If we're going to promote the non-output-value operand(s) or SELECT or 13613 // SELECT_CC, record them for truncation. 13614 if (User->getOpcode() == ISD::SELECT) { 13615 if (User->getOperand(0) == Inputs[i]) 13616 SelectTruncOp[0].insert(std::make_pair(User, 13617 User->getOperand(0).getValueType())); 13618 } else if (User->getOpcode() == ISD::SELECT_CC) { 13619 if (User->getOperand(0) == Inputs[i]) 13620 SelectTruncOp[0].insert(std::make_pair(User, 13621 User->getOperand(0).getValueType())); 13622 if (User->getOperand(1) == Inputs[i]) 13623 SelectTruncOp[1].insert(std::make_pair(User, 13624 User->getOperand(1).getValueType())); 13625 } 13626 } 13627 } 13628 13629 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13630 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13631 UE = PromOps[i].getNode()->use_end(); 13632 UI != UE; ++UI) { 13633 SDNode *User = *UI; 13634 if (User != N && !Visited.count(User)) 13635 return SDValue(); 13636 13637 // If we're going to promote the non-output-value operand(s) or SELECT or 13638 // SELECT_CC, record them for truncation. 13639 if (User->getOpcode() == ISD::SELECT) { 13640 if (User->getOperand(0) == PromOps[i]) 13641 SelectTruncOp[0].insert(std::make_pair(User, 13642 User->getOperand(0).getValueType())); 13643 } else if (User->getOpcode() == ISD::SELECT_CC) { 13644 if (User->getOperand(0) == PromOps[i]) 13645 SelectTruncOp[0].insert(std::make_pair(User, 13646 User->getOperand(0).getValueType())); 13647 if (User->getOperand(1) == PromOps[i]) 13648 SelectTruncOp[1].insert(std::make_pair(User, 13649 User->getOperand(1).getValueType())); 13650 } 13651 } 13652 } 13653 13654 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13655 bool ReallyNeedsExt = false; 13656 if (N->getOpcode() != ISD::ANY_EXTEND) { 13657 // If all of the inputs are not already sign/zero extended, then 13658 // we'll still need to do that at the end. 13659 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13660 if (isa<ConstantSDNode>(Inputs[i])) 13661 continue; 13662 13663 unsigned OpBits = 13664 Inputs[i].getOperand(0).getValueSizeInBits(); 13665 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13666 13667 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13668 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13669 APInt::getHighBitsSet(OpBits, 13670 OpBits-PromBits))) || 13671 (N->getOpcode() == ISD::SIGN_EXTEND && 13672 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13673 (OpBits-(PromBits-1)))) { 13674 ReallyNeedsExt = true; 13675 break; 13676 } 13677 } 13678 } 13679 13680 // Replace all inputs, either with the truncation operand, or a 13681 // truncation or extension to the final output type. 13682 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13683 // Constant inputs need to be replaced with the to-be-promoted nodes that 13684 // use them because they might have users outside of the cluster of 13685 // promoted nodes. 13686 if (isa<ConstantSDNode>(Inputs[i])) 13687 continue; 13688 13689 SDValue InSrc = Inputs[i].getOperand(0); 13690 if (Inputs[i].getValueType() == N->getValueType(0)) 13691 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13692 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13693 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13694 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13695 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13696 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13697 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13698 else 13699 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13700 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13701 } 13702 13703 std::list<HandleSDNode> PromOpHandles; 13704 for (auto &PromOp : PromOps) 13705 PromOpHandles.emplace_back(PromOp); 13706 13707 // Replace all operations (these are all the same, but have a different 13708 // (promoted) return type). DAG.getNode will validate that the types of 13709 // a binary operator match, so go through the list in reverse so that 13710 // we've likely promoted both operands first. 13711 while (!PromOpHandles.empty()) { 13712 SDValue PromOp = PromOpHandles.back().getValue(); 13713 PromOpHandles.pop_back(); 13714 13715 unsigned C; 13716 switch (PromOp.getOpcode()) { 13717 default: C = 0; break; 13718 case ISD::SELECT: C = 1; break; 13719 case ISD::SELECT_CC: C = 2; break; 13720 } 13721 13722 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13723 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13724 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13725 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13726 // The to-be-promoted operands of this node have not yet been 13727 // promoted (this should be rare because we're going through the 13728 // list backward, but if one of the operands has several users in 13729 // this cluster of to-be-promoted nodes, it is possible). 13730 PromOpHandles.emplace_front(PromOp); 13731 continue; 13732 } 13733 13734 // For SELECT and SELECT_CC nodes, we do a similar check for any 13735 // to-be-promoted comparison inputs. 13736 if (PromOp.getOpcode() == ISD::SELECT || 13737 PromOp.getOpcode() == ISD::SELECT_CC) { 13738 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13739 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13740 (SelectTruncOp[1].count(PromOp.getNode()) && 13741 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13742 PromOpHandles.emplace_front(PromOp); 13743 continue; 13744 } 13745 } 13746 13747 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13748 PromOp.getNode()->op_end()); 13749 13750 // If this node has constant inputs, then they'll need to be promoted here. 13751 for (unsigned i = 0; i < 2; ++i) { 13752 if (!isa<ConstantSDNode>(Ops[C+i])) 13753 continue; 13754 if (Ops[C+i].getValueType() == N->getValueType(0)) 13755 continue; 13756 13757 if (N->getOpcode() == ISD::SIGN_EXTEND) 13758 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13759 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13760 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13761 else 13762 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13763 } 13764 13765 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13766 // truncate them again to the original value type. 13767 if (PromOp.getOpcode() == ISD::SELECT || 13768 PromOp.getOpcode() == ISD::SELECT_CC) { 13769 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13770 if (SI0 != SelectTruncOp[0].end()) 13771 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13772 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13773 if (SI1 != SelectTruncOp[1].end()) 13774 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13775 } 13776 13777 DAG.ReplaceAllUsesOfValueWith(PromOp, 13778 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13779 } 13780 13781 // Now we're left with the initial extension itself. 13782 if (!ReallyNeedsExt) 13783 return N->getOperand(0); 13784 13785 // To zero extend, just mask off everything except for the first bit (in the 13786 // i1 case). 13787 if (N->getOpcode() == ISD::ZERO_EXTEND) 13788 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13789 DAG.getConstant(APInt::getLowBitsSet( 13790 N->getValueSizeInBits(0), PromBits), 13791 dl, N->getValueType(0))); 13792 13793 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13794 "Invalid extension type"); 13795 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13796 SDValue ShiftCst = 13797 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13798 return DAG.getNode( 13799 ISD::SRA, dl, N->getValueType(0), 13800 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13801 ShiftCst); 13802 } 13803 13804 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13805 DAGCombinerInfo &DCI) const { 13806 assert(N->getOpcode() == ISD::SETCC && 13807 "Should be called with a SETCC node"); 13808 13809 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13810 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13811 SDValue LHS = N->getOperand(0); 13812 SDValue RHS = N->getOperand(1); 13813 13814 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13815 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13816 LHS.hasOneUse()) 13817 std::swap(LHS, RHS); 13818 13819 // x == 0-y --> x+y == 0 13820 // x != 0-y --> x+y != 0 13821 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13822 RHS.hasOneUse()) { 13823 SDLoc DL(N); 13824 SelectionDAG &DAG = DCI.DAG; 13825 EVT VT = N->getValueType(0); 13826 EVT OpVT = LHS.getValueType(); 13827 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13828 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13829 } 13830 } 13831 13832 return DAGCombineTruncBoolExt(N, DCI); 13833 } 13834 13835 // Is this an extending load from an f32 to an f64? 13836 static bool isFPExtLoad(SDValue Op) { 13837 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13838 return LD->getExtensionType() == ISD::EXTLOAD && 13839 Op.getValueType() == MVT::f64; 13840 return false; 13841 } 13842 13843 /// Reduces the number of fp-to-int conversion when building a vector. 13844 /// 13845 /// If this vector is built out of floating to integer conversions, 13846 /// transform it to a vector built out of floating point values followed by a 13847 /// single floating to integer conversion of the vector. 13848 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13849 /// becomes (fptosi (build_vector ($A, $B, ...))) 13850 SDValue PPCTargetLowering:: 13851 combineElementTruncationToVectorTruncation(SDNode *N, 13852 DAGCombinerInfo &DCI) const { 13853 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13854 "Should be called with a BUILD_VECTOR node"); 13855 13856 SelectionDAG &DAG = DCI.DAG; 13857 SDLoc dl(N); 13858 13859 SDValue FirstInput = N->getOperand(0); 13860 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13861 "The input operand must be an fp-to-int conversion."); 13862 13863 // This combine happens after legalization so the fp_to_[su]i nodes are 13864 // already converted to PPCSISD nodes. 13865 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13866 if (FirstConversion == PPCISD::FCTIDZ || 13867 FirstConversion == PPCISD::FCTIDUZ || 13868 FirstConversion == PPCISD::FCTIWZ || 13869 FirstConversion == PPCISD::FCTIWUZ) { 13870 bool IsSplat = true; 13871 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13872 FirstConversion == PPCISD::FCTIWUZ; 13873 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13874 SmallVector<SDValue, 4> Ops; 13875 EVT TargetVT = N->getValueType(0); 13876 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13877 SDValue NextOp = N->getOperand(i); 13878 if (NextOp.getOpcode() != PPCISD::MFVSR) 13879 return SDValue(); 13880 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13881 if (NextConversion != FirstConversion) 13882 return SDValue(); 13883 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13884 // This is not valid if the input was originally double precision. It is 13885 // also not profitable to do unless this is an extending load in which 13886 // case doing this combine will allow us to combine consecutive loads. 13887 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13888 return SDValue(); 13889 if (N->getOperand(i) != FirstInput) 13890 IsSplat = false; 13891 } 13892 13893 // If this is a splat, we leave it as-is since there will be only a single 13894 // fp-to-int conversion followed by a splat of the integer. This is better 13895 // for 32-bit and smaller ints and neutral for 64-bit ints. 13896 if (IsSplat) 13897 return SDValue(); 13898 13899 // Now that we know we have the right type of node, get its operands 13900 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13901 SDValue In = N->getOperand(i).getOperand(0); 13902 if (Is32Bit) { 13903 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13904 // here, we know that all inputs are extending loads so this is safe). 13905 if (In.isUndef()) 13906 Ops.push_back(DAG.getUNDEF(SrcVT)); 13907 else { 13908 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13909 MVT::f32, In.getOperand(0), 13910 DAG.getIntPtrConstant(1, dl)); 13911 Ops.push_back(Trunc); 13912 } 13913 } else 13914 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13915 } 13916 13917 unsigned Opcode; 13918 if (FirstConversion == PPCISD::FCTIDZ || 13919 FirstConversion == PPCISD::FCTIWZ) 13920 Opcode = ISD::FP_TO_SINT; 13921 else 13922 Opcode = ISD::FP_TO_UINT; 13923 13924 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13925 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13926 return DAG.getNode(Opcode, dl, TargetVT, BV); 13927 } 13928 return SDValue(); 13929 } 13930 13931 /// Reduce the number of loads when building a vector. 13932 /// 13933 /// Building a vector out of multiple loads can be converted to a load 13934 /// of the vector type if the loads are consecutive. If the loads are 13935 /// consecutive but in descending order, a shuffle is added at the end 13936 /// to reorder the vector. 13937 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13938 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13939 "Should be called with a BUILD_VECTOR node"); 13940 13941 SDLoc dl(N); 13942 13943 // Return early for non byte-sized type, as they can't be consecutive. 13944 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13945 return SDValue(); 13946 13947 bool InputsAreConsecutiveLoads = true; 13948 bool InputsAreReverseConsecutive = true; 13949 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13950 SDValue FirstInput = N->getOperand(0); 13951 bool IsRoundOfExtLoad = false; 13952 13953 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13954 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13955 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13956 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13957 } 13958 // Not a build vector of (possibly fp_rounded) loads. 13959 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13960 N->getNumOperands() == 1) 13961 return SDValue(); 13962 13963 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13964 // If any inputs are fp_round(extload), they all must be. 13965 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13966 return SDValue(); 13967 13968 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13969 N->getOperand(i); 13970 if (NextInput.getOpcode() != ISD::LOAD) 13971 return SDValue(); 13972 13973 SDValue PreviousInput = 13974 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13975 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13976 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13977 13978 // If any inputs are fp_round(extload), they all must be. 13979 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13980 return SDValue(); 13981 13982 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13983 InputsAreConsecutiveLoads = false; 13984 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13985 InputsAreReverseConsecutive = false; 13986 13987 // Exit early if the loads are neither consecutive nor reverse consecutive. 13988 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13989 return SDValue(); 13990 } 13991 13992 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13993 "The loads cannot be both consecutive and reverse consecutive."); 13994 13995 SDValue FirstLoadOp = 13996 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13997 SDValue LastLoadOp = 13998 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13999 N->getOperand(N->getNumOperands()-1); 14000 14001 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14002 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14003 if (InputsAreConsecutiveLoads) { 14004 assert(LD1 && "Input needs to be a LoadSDNode."); 14005 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14006 LD1->getBasePtr(), LD1->getPointerInfo(), 14007 LD1->getAlignment()); 14008 } 14009 if (InputsAreReverseConsecutive) { 14010 assert(LDL && "Input needs to be a LoadSDNode."); 14011 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14012 LDL->getBasePtr(), LDL->getPointerInfo(), 14013 LDL->getAlignment()); 14014 SmallVector<int, 16> Ops; 14015 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14016 Ops.push_back(i); 14017 14018 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14019 DAG.getUNDEF(N->getValueType(0)), Ops); 14020 } 14021 return SDValue(); 14022 } 14023 14024 // This function adds the required vector_shuffle needed to get 14025 // the elements of the vector extract in the correct position 14026 // as specified by the CorrectElems encoding. 14027 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14028 SDValue Input, uint64_t Elems, 14029 uint64_t CorrectElems) { 14030 SDLoc dl(N); 14031 14032 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14033 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14034 14035 // Knowing the element indices being extracted from the original 14036 // vector and the order in which they're being inserted, just put 14037 // them at element indices required for the instruction. 14038 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14039 if (DAG.getDataLayout().isLittleEndian()) 14040 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14041 else 14042 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14043 CorrectElems = CorrectElems >> 8; 14044 Elems = Elems >> 8; 14045 } 14046 14047 SDValue Shuffle = 14048 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14049 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14050 14051 EVT VT = N->getValueType(0); 14052 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14053 14054 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14055 Input.getValueType().getVectorElementType(), 14056 VT.getVectorNumElements()); 14057 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14058 DAG.getValueType(ExtVT)); 14059 } 14060 14061 // Look for build vector patterns where input operands come from sign 14062 // extended vector_extract elements of specific indices. If the correct indices 14063 // aren't used, add a vector shuffle to fix up the indices and create 14064 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14065 // during instruction selection. 14066 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14067 // This array encodes the indices that the vector sign extend instructions 14068 // extract from when extending from one type to another for both BE and LE. 14069 // The right nibble of each byte corresponds to the LE incides. 14070 // and the left nibble of each byte corresponds to the BE incides. 14071 // For example: 0x3074B8FC byte->word 14072 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14073 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14074 // For example: 0x000070F8 byte->double word 14075 // For LE: the allowed indices are: 0x0,0x8 14076 // For BE: the allowed indices are: 0x7,0xF 14077 uint64_t TargetElems[] = { 14078 0x3074B8FC, // b->w 14079 0x000070F8, // b->d 14080 0x10325476, // h->w 14081 0x00003074, // h->d 14082 0x00001032, // w->d 14083 }; 14084 14085 uint64_t Elems = 0; 14086 int Index; 14087 SDValue Input; 14088 14089 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14090 if (!Op) 14091 return false; 14092 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14093 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14094 return false; 14095 14096 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14097 // of the right width. 14098 SDValue Extract = Op.getOperand(0); 14099 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14100 Extract = Extract.getOperand(0); 14101 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14102 return false; 14103 14104 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14105 if (!ExtOp) 14106 return false; 14107 14108 Index = ExtOp->getZExtValue(); 14109 if (Input && Input != Extract.getOperand(0)) 14110 return false; 14111 14112 if (!Input) 14113 Input = Extract.getOperand(0); 14114 14115 Elems = Elems << 8; 14116 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14117 Elems |= Index; 14118 14119 return true; 14120 }; 14121 14122 // If the build vector operands aren't sign extended vector extracts, 14123 // of the same input vector, then return. 14124 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14125 if (!isSExtOfVecExtract(N->getOperand(i))) { 14126 return SDValue(); 14127 } 14128 } 14129 14130 // If the vector extract indicies are not correct, add the appropriate 14131 // vector_shuffle. 14132 int TgtElemArrayIdx; 14133 int InputSize = Input.getValueType().getScalarSizeInBits(); 14134 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14135 if (InputSize + OutputSize == 40) 14136 TgtElemArrayIdx = 0; 14137 else if (InputSize + OutputSize == 72) 14138 TgtElemArrayIdx = 1; 14139 else if (InputSize + OutputSize == 48) 14140 TgtElemArrayIdx = 2; 14141 else if (InputSize + OutputSize == 80) 14142 TgtElemArrayIdx = 3; 14143 else if (InputSize + OutputSize == 96) 14144 TgtElemArrayIdx = 4; 14145 else 14146 return SDValue(); 14147 14148 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14149 CorrectElems = DAG.getDataLayout().isLittleEndian() 14150 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14151 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14152 if (Elems != CorrectElems) { 14153 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14154 } 14155 14156 // Regular lowering will catch cases where a shuffle is not needed. 14157 return SDValue(); 14158 } 14159 14160 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14161 DAGCombinerInfo &DCI) const { 14162 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14163 "Should be called with a BUILD_VECTOR node"); 14164 14165 SelectionDAG &DAG = DCI.DAG; 14166 SDLoc dl(N); 14167 14168 if (!Subtarget.hasVSX()) 14169 return SDValue(); 14170 14171 // The target independent DAG combiner will leave a build_vector of 14172 // float-to-int conversions intact. We can generate MUCH better code for 14173 // a float-to-int conversion of a vector of floats. 14174 SDValue FirstInput = N->getOperand(0); 14175 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14176 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14177 if (Reduced) 14178 return Reduced; 14179 } 14180 14181 // If we're building a vector out of consecutive loads, just load that 14182 // vector type. 14183 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14184 if (Reduced) 14185 return Reduced; 14186 14187 // If we're building a vector out of extended elements from another vector 14188 // we have P9 vector integer extend instructions. The code assumes legal 14189 // input types (i.e. it can't handle things like v4i16) so do not run before 14190 // legalization. 14191 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14192 Reduced = combineBVOfVecSExt(N, DAG); 14193 if (Reduced) 14194 return Reduced; 14195 } 14196 14197 14198 if (N->getValueType(0) != MVT::v2f64) 14199 return SDValue(); 14200 14201 // Looking for: 14202 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14203 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14204 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14205 return SDValue(); 14206 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14207 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14208 return SDValue(); 14209 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14210 return SDValue(); 14211 14212 SDValue Ext1 = FirstInput.getOperand(0); 14213 SDValue Ext2 = N->getOperand(1).getOperand(0); 14214 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14215 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14216 return SDValue(); 14217 14218 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14219 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14220 if (!Ext1Op || !Ext2Op) 14221 return SDValue(); 14222 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14223 Ext1.getOperand(0) != Ext2.getOperand(0)) 14224 return SDValue(); 14225 14226 int FirstElem = Ext1Op->getZExtValue(); 14227 int SecondElem = Ext2Op->getZExtValue(); 14228 int SubvecIdx; 14229 if (FirstElem == 0 && SecondElem == 1) 14230 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14231 else if (FirstElem == 2 && SecondElem == 3) 14232 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14233 else 14234 return SDValue(); 14235 14236 SDValue SrcVec = Ext1.getOperand(0); 14237 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14238 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14239 return DAG.getNode(NodeType, dl, MVT::v2f64, 14240 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14241 } 14242 14243 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14244 DAGCombinerInfo &DCI) const { 14245 assert((N->getOpcode() == ISD::SINT_TO_FP || 14246 N->getOpcode() == ISD::UINT_TO_FP) && 14247 "Need an int -> FP conversion node here"); 14248 14249 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14250 return SDValue(); 14251 14252 SelectionDAG &DAG = DCI.DAG; 14253 SDLoc dl(N); 14254 SDValue Op(N, 0); 14255 14256 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14257 // from the hardware. 14258 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14259 return SDValue(); 14260 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14261 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14262 return SDValue(); 14263 14264 SDValue FirstOperand(Op.getOperand(0)); 14265 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14266 (FirstOperand.getValueType() == MVT::i8 || 14267 FirstOperand.getValueType() == MVT::i16); 14268 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14269 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14270 bool DstDouble = Op.getValueType() == MVT::f64; 14271 unsigned ConvOp = Signed ? 14272 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14273 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14274 SDValue WidthConst = 14275 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14276 dl, false); 14277 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14278 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14279 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14280 DAG.getVTList(MVT::f64, MVT::Other), 14281 Ops, MVT::i8, LDN->getMemOperand()); 14282 14283 // For signed conversion, we need to sign-extend the value in the VSR 14284 if (Signed) { 14285 SDValue ExtOps[] = { Ld, WidthConst }; 14286 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14287 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14288 } else 14289 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14290 } 14291 14292 14293 // For i32 intermediate values, unfortunately, the conversion functions 14294 // leave the upper 32 bits of the value are undefined. Within the set of 14295 // scalar instructions, we have no method for zero- or sign-extending the 14296 // value. Thus, we cannot handle i32 intermediate values here. 14297 if (Op.getOperand(0).getValueType() == MVT::i32) 14298 return SDValue(); 14299 14300 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14301 "UINT_TO_FP is supported only with FPCVT"); 14302 14303 // If we have FCFIDS, then use it when converting to single-precision. 14304 // Otherwise, convert to double-precision and then round. 14305 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14306 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14307 : PPCISD::FCFIDS) 14308 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14309 : PPCISD::FCFID); 14310 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14311 ? MVT::f32 14312 : MVT::f64; 14313 14314 // If we're converting from a float, to an int, and back to a float again, 14315 // then we don't need the store/load pair at all. 14316 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14317 Subtarget.hasFPCVT()) || 14318 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14319 SDValue Src = Op.getOperand(0).getOperand(0); 14320 if (Src.getValueType() == MVT::f32) { 14321 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14322 DCI.AddToWorklist(Src.getNode()); 14323 } else if (Src.getValueType() != MVT::f64) { 14324 // Make sure that we don't pick up a ppc_fp128 source value. 14325 return SDValue(); 14326 } 14327 14328 unsigned FCTOp = 14329 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14330 PPCISD::FCTIDUZ; 14331 14332 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14333 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14334 14335 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14336 FP = DAG.getNode(ISD::FP_ROUND, dl, 14337 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14338 DCI.AddToWorklist(FP.getNode()); 14339 } 14340 14341 return FP; 14342 } 14343 14344 return SDValue(); 14345 } 14346 14347 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14348 // builtins) into loads with swaps. 14349 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14350 DAGCombinerInfo &DCI) const { 14351 SelectionDAG &DAG = DCI.DAG; 14352 SDLoc dl(N); 14353 SDValue Chain; 14354 SDValue Base; 14355 MachineMemOperand *MMO; 14356 14357 switch (N->getOpcode()) { 14358 default: 14359 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14360 case ISD::LOAD: { 14361 LoadSDNode *LD = cast<LoadSDNode>(N); 14362 Chain = LD->getChain(); 14363 Base = LD->getBasePtr(); 14364 MMO = LD->getMemOperand(); 14365 // If the MMO suggests this isn't a load of a full vector, leave 14366 // things alone. For a built-in, we have to make the change for 14367 // correctness, so if there is a size problem that will be a bug. 14368 if (MMO->getSize() < 16) 14369 return SDValue(); 14370 break; 14371 } 14372 case ISD::INTRINSIC_W_CHAIN: { 14373 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14374 Chain = Intrin->getChain(); 14375 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14376 // us what we want. Get operand 2 instead. 14377 Base = Intrin->getOperand(2); 14378 MMO = Intrin->getMemOperand(); 14379 break; 14380 } 14381 } 14382 14383 MVT VecTy = N->getValueType(0).getSimpleVT(); 14384 14385 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14386 // aligned and the type is a vector with elements up to 4 bytes 14387 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14388 VecTy.getScalarSizeInBits() <= 32) { 14389 return SDValue(); 14390 } 14391 14392 SDValue LoadOps[] = { Chain, Base }; 14393 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14394 DAG.getVTList(MVT::v2f64, MVT::Other), 14395 LoadOps, MVT::v2f64, MMO); 14396 14397 DCI.AddToWorklist(Load.getNode()); 14398 Chain = Load.getValue(1); 14399 SDValue Swap = DAG.getNode( 14400 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14401 DCI.AddToWorklist(Swap.getNode()); 14402 14403 // Add a bitcast if the resulting load type doesn't match v2f64. 14404 if (VecTy != MVT::v2f64) { 14405 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14406 DCI.AddToWorklist(N.getNode()); 14407 // Package {bitcast value, swap's chain} to match Load's shape. 14408 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14409 N, Swap.getValue(1)); 14410 } 14411 14412 return Swap; 14413 } 14414 14415 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14416 // builtins) into stores with swaps. 14417 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14418 DAGCombinerInfo &DCI) const { 14419 SelectionDAG &DAG = DCI.DAG; 14420 SDLoc dl(N); 14421 SDValue Chain; 14422 SDValue Base; 14423 unsigned SrcOpnd; 14424 MachineMemOperand *MMO; 14425 14426 switch (N->getOpcode()) { 14427 default: 14428 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14429 case ISD::STORE: { 14430 StoreSDNode *ST = cast<StoreSDNode>(N); 14431 Chain = ST->getChain(); 14432 Base = ST->getBasePtr(); 14433 MMO = ST->getMemOperand(); 14434 SrcOpnd = 1; 14435 // If the MMO suggests this isn't a store of a full vector, leave 14436 // things alone. For a built-in, we have to make the change for 14437 // correctness, so if there is a size problem that will be a bug. 14438 if (MMO->getSize() < 16) 14439 return SDValue(); 14440 break; 14441 } 14442 case ISD::INTRINSIC_VOID: { 14443 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14444 Chain = Intrin->getChain(); 14445 // Intrin->getBasePtr() oddly does not get what we want. 14446 Base = Intrin->getOperand(3); 14447 MMO = Intrin->getMemOperand(); 14448 SrcOpnd = 2; 14449 break; 14450 } 14451 } 14452 14453 SDValue Src = N->getOperand(SrcOpnd); 14454 MVT VecTy = Src.getValueType().getSimpleVT(); 14455 14456 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14457 // aligned and the type is a vector with elements up to 4 bytes 14458 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14459 VecTy.getScalarSizeInBits() <= 32) { 14460 return SDValue(); 14461 } 14462 14463 // All stores are done as v2f64 and possible bit cast. 14464 if (VecTy != MVT::v2f64) { 14465 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14466 DCI.AddToWorklist(Src.getNode()); 14467 } 14468 14469 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14470 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14471 DCI.AddToWorklist(Swap.getNode()); 14472 Chain = Swap.getValue(1); 14473 SDValue StoreOps[] = { Chain, Swap, Base }; 14474 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14475 DAG.getVTList(MVT::Other), 14476 StoreOps, VecTy, MMO); 14477 DCI.AddToWorklist(Store.getNode()); 14478 return Store; 14479 } 14480 14481 // Handle DAG combine for STORE (FP_TO_INT F). 14482 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14483 DAGCombinerInfo &DCI) const { 14484 14485 SelectionDAG &DAG = DCI.DAG; 14486 SDLoc dl(N); 14487 unsigned Opcode = N->getOperand(1).getOpcode(); 14488 14489 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14490 && "Not a FP_TO_INT Instruction!"); 14491 14492 SDValue Val = N->getOperand(1).getOperand(0); 14493 EVT Op1VT = N->getOperand(1).getValueType(); 14494 EVT ResVT = Val.getValueType(); 14495 14496 // Floating point types smaller than 32 bits are not legal on Power. 14497 if (ResVT.getScalarSizeInBits() < 32) 14498 return SDValue(); 14499 14500 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14501 bool ValidTypeForStoreFltAsInt = 14502 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14503 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14504 14505 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14506 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14507 return SDValue(); 14508 14509 // Extend f32 values to f64 14510 if (ResVT.getScalarSizeInBits() == 32) { 14511 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14512 DCI.AddToWorklist(Val.getNode()); 14513 } 14514 14515 // Set signed or unsigned conversion opcode. 14516 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14517 PPCISD::FP_TO_SINT_IN_VSR : 14518 PPCISD::FP_TO_UINT_IN_VSR; 14519 14520 Val = DAG.getNode(ConvOpcode, 14521 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14522 DCI.AddToWorklist(Val.getNode()); 14523 14524 // Set number of bytes being converted. 14525 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14526 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14527 DAG.getIntPtrConstant(ByteSize, dl, false), 14528 DAG.getValueType(Op1VT) }; 14529 14530 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14531 DAG.getVTList(MVT::Other), Ops, 14532 cast<StoreSDNode>(N)->getMemoryVT(), 14533 cast<StoreSDNode>(N)->getMemOperand()); 14534 14535 DCI.AddToWorklist(Val.getNode()); 14536 return Val; 14537 } 14538 14539 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14540 // Check that the source of the element keeps flipping 14541 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14542 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14543 for (int i = 1, e = Mask.size(); i < e; i++) { 14544 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14545 return false; 14546 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14547 return false; 14548 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14549 } 14550 return true; 14551 } 14552 14553 static bool isSplatBV(SDValue Op) { 14554 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14555 return false; 14556 SDValue FirstOp; 14557 14558 // Find first non-undef input. 14559 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14560 FirstOp = Op.getOperand(i); 14561 if (!FirstOp.isUndef()) 14562 break; 14563 } 14564 14565 // All inputs are undef or the same as the first non-undef input. 14566 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14567 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14568 return false; 14569 return true; 14570 } 14571 14572 static SDValue isScalarToVec(SDValue Op) { 14573 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14574 return Op; 14575 if (Op.getOpcode() != ISD::BITCAST) 14576 return SDValue(); 14577 Op = Op.getOperand(0); 14578 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14579 return Op; 14580 return SDValue(); 14581 } 14582 14583 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14584 int LHSMaxIdx, int RHSMinIdx, 14585 int RHSMaxIdx, int HalfVec) { 14586 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14587 int Idx = ShuffV[i]; 14588 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14589 ShuffV[i] += HalfVec; 14590 } 14591 return; 14592 } 14593 14594 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14595 // the original is: 14596 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14597 // In such a case, just change the shuffle mask to extract the element 14598 // from the permuted index. 14599 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14600 SDLoc dl(OrigSToV); 14601 EVT VT = OrigSToV.getValueType(); 14602 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14603 "Expecting a SCALAR_TO_VECTOR here"); 14604 SDValue Input = OrigSToV.getOperand(0); 14605 14606 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14607 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14608 SDValue OrigVector = Input.getOperand(0); 14609 14610 // Can't handle non-const element indices or different vector types 14611 // for the input to the extract and the output of the scalar_to_vector. 14612 if (Idx && VT == OrigVector.getValueType()) { 14613 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14614 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14615 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14616 } 14617 } 14618 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14619 OrigSToV.getOperand(0)); 14620 } 14621 14622 // On little endian subtargets, combine shuffles such as: 14623 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14624 // into: 14625 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14626 // because the latter can be matched to a single instruction merge. 14627 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14628 // to put the value into element zero. Adjust the shuffle mask so that the 14629 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14630 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14631 SelectionDAG &DAG) const { 14632 SDValue LHS = SVN->getOperand(0); 14633 SDValue RHS = SVN->getOperand(1); 14634 auto Mask = SVN->getMask(); 14635 int NumElts = LHS.getValueType().getVectorNumElements(); 14636 SDValue Res(SVN, 0); 14637 SDLoc dl(SVN); 14638 14639 // None of these combines are useful on big endian systems since the ISA 14640 // already has a big endian bias. 14641 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14642 return Res; 14643 14644 // If this is not a shuffle of a shuffle and the first element comes from 14645 // the second vector, canonicalize to the commuted form. This will make it 14646 // more likely to match one of the single instruction patterns. 14647 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14648 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14649 std::swap(LHS, RHS); 14650 Res = DAG.getCommutedVectorShuffle(*SVN); 14651 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14652 } 14653 14654 // Adjust the shuffle mask if either input vector comes from a 14655 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14656 // form (to prevent the need for a swap). 14657 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14658 SDValue SToVLHS = isScalarToVec(LHS); 14659 SDValue SToVRHS = isScalarToVec(RHS); 14660 if (SToVLHS || SToVRHS) { 14661 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14662 : SToVRHS.getValueType().getVectorNumElements(); 14663 int NumEltsOut = ShuffV.size(); 14664 14665 // Initially assume that neither input is permuted. These will be adjusted 14666 // accordingly if either input is. 14667 int LHSMaxIdx = -1; 14668 int RHSMinIdx = -1; 14669 int RHSMaxIdx = -1; 14670 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14671 14672 // Get the permuted scalar to vector nodes for the source(s) that come from 14673 // ISD::SCALAR_TO_VECTOR. 14674 if (SToVLHS) { 14675 // Set up the values for the shuffle vector fixup. 14676 LHSMaxIdx = NumEltsOut / NumEltsIn; 14677 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14678 if (SToVLHS.getValueType() != LHS.getValueType()) 14679 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14680 LHS = SToVLHS; 14681 } 14682 if (SToVRHS) { 14683 RHSMinIdx = NumEltsOut; 14684 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14685 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14686 if (SToVRHS.getValueType() != RHS.getValueType()) 14687 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14688 RHS = SToVRHS; 14689 } 14690 14691 // Fix up the shuffle mask to reflect where the desired element actually is. 14692 // The minimum and maximum indices that correspond to element zero for both 14693 // the LHS and RHS are computed and will control which shuffle mask entries 14694 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14695 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14696 // HalfVec to refer to the corresponding element in the permuted vector. 14697 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14698 HalfVec); 14699 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14700 14701 // We may have simplified away the shuffle. We won't be able to do anything 14702 // further with it here. 14703 if (!isa<ShuffleVectorSDNode>(Res)) 14704 return Res; 14705 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14706 } 14707 14708 // The common case after we commuted the shuffle is that the RHS is a splat 14709 // and we have elements coming in from the splat at indices that are not 14710 // conducive to using a merge. 14711 // Example: 14712 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14713 if (!isSplatBV(RHS)) 14714 return Res; 14715 14716 // We are looking for a mask such that all even elements are from 14717 // one vector and all odd elements from the other. 14718 if (!isAlternatingShuffMask(Mask, NumElts)) 14719 return Res; 14720 14721 // Adjust the mask so we are pulling in the same index from the splat 14722 // as the index from the interesting vector in consecutive elements. 14723 // Example (even elements from first vector): 14724 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14725 if (Mask[0] < NumElts) 14726 for (int i = 1, e = Mask.size(); i < e; i += 2) 14727 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14728 // Example (odd elements from first vector): 14729 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14730 else 14731 for (int i = 0, e = Mask.size(); i < e; i += 2) 14732 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14733 14734 // If the RHS has undefs, we need to remove them since we may have created 14735 // a shuffle that adds those instead of the splat value. 14736 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14737 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14738 14739 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14740 return Res; 14741 } 14742 14743 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14744 LSBaseSDNode *LSBase, 14745 DAGCombinerInfo &DCI) const { 14746 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14747 "Not a reverse memop pattern!"); 14748 14749 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14750 auto Mask = SVN->getMask(); 14751 int i = 0; 14752 auto I = Mask.rbegin(); 14753 auto E = Mask.rend(); 14754 14755 for (; I != E; ++I) { 14756 if (*I != i) 14757 return false; 14758 i++; 14759 } 14760 return true; 14761 }; 14762 14763 SelectionDAG &DAG = DCI.DAG; 14764 EVT VT = SVN->getValueType(0); 14765 14766 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14767 return SDValue(); 14768 14769 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14770 // See comment in PPCVSXSwapRemoval.cpp. 14771 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14772 if (!Subtarget.hasP9Vector()) 14773 return SDValue(); 14774 14775 if(!IsElementReverse(SVN)) 14776 return SDValue(); 14777 14778 if (LSBase->getOpcode() == ISD::LOAD) { 14779 SDLoc dl(SVN); 14780 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14781 return DAG.getMemIntrinsicNode( 14782 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14783 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14784 } 14785 14786 if (LSBase->getOpcode() == ISD::STORE) { 14787 SDLoc dl(LSBase); 14788 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14789 LSBase->getBasePtr()}; 14790 return DAG.getMemIntrinsicNode( 14791 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14792 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14793 } 14794 14795 llvm_unreachable("Expected a load or store node here"); 14796 } 14797 14798 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14799 DAGCombinerInfo &DCI) const { 14800 SelectionDAG &DAG = DCI.DAG; 14801 SDLoc dl(N); 14802 switch (N->getOpcode()) { 14803 default: break; 14804 case ISD::ADD: 14805 return combineADD(N, DCI); 14806 case ISD::SHL: 14807 return combineSHL(N, DCI); 14808 case ISD::SRA: 14809 return combineSRA(N, DCI); 14810 case ISD::SRL: 14811 return combineSRL(N, DCI); 14812 case ISD::MUL: 14813 return combineMUL(N, DCI); 14814 case ISD::FMA: 14815 case PPCISD::FNMSUB: 14816 return combineFMALike(N, DCI); 14817 case PPCISD::SHL: 14818 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14819 return N->getOperand(0); 14820 break; 14821 case PPCISD::SRL: 14822 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14823 return N->getOperand(0); 14824 break; 14825 case PPCISD::SRA: 14826 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14827 if (C->isNullValue() || // 0 >>s V -> 0. 14828 C->isAllOnesValue()) // -1 >>s V -> -1. 14829 return N->getOperand(0); 14830 } 14831 break; 14832 case ISD::SIGN_EXTEND: 14833 case ISD::ZERO_EXTEND: 14834 case ISD::ANY_EXTEND: 14835 return DAGCombineExtBoolTrunc(N, DCI); 14836 case ISD::TRUNCATE: 14837 return combineTRUNCATE(N, DCI); 14838 case ISD::SETCC: 14839 if (SDValue CSCC = combineSetCC(N, DCI)) 14840 return CSCC; 14841 LLVM_FALLTHROUGH; 14842 case ISD::SELECT_CC: 14843 return DAGCombineTruncBoolExt(N, DCI); 14844 case ISD::SINT_TO_FP: 14845 case ISD::UINT_TO_FP: 14846 return combineFPToIntToFP(N, DCI); 14847 case ISD::VECTOR_SHUFFLE: 14848 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14849 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14850 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14851 } 14852 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14853 case ISD::STORE: { 14854 14855 EVT Op1VT = N->getOperand(1).getValueType(); 14856 unsigned Opcode = N->getOperand(1).getOpcode(); 14857 14858 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14859 SDValue Val= combineStoreFPToInt(N, DCI); 14860 if (Val) 14861 return Val; 14862 } 14863 14864 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14865 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14866 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14867 if (Val) 14868 return Val; 14869 } 14870 14871 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14872 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14873 N->getOperand(1).getNode()->hasOneUse() && 14874 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14875 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14876 14877 // STBRX can only handle simple types and it makes no sense to store less 14878 // two bytes in byte-reversed order. 14879 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14880 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14881 break; 14882 14883 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14884 // Do an any-extend to 32-bits if this is a half-word input. 14885 if (BSwapOp.getValueType() == MVT::i16) 14886 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14887 14888 // If the type of BSWAP operand is wider than stored memory width 14889 // it need to be shifted to the right side before STBRX. 14890 if (Op1VT.bitsGT(mVT)) { 14891 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14892 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14893 DAG.getConstant(Shift, dl, MVT::i32)); 14894 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14895 if (Op1VT == MVT::i64) 14896 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14897 } 14898 14899 SDValue Ops[] = { 14900 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14901 }; 14902 return 14903 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14904 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14905 cast<StoreSDNode>(N)->getMemOperand()); 14906 } 14907 14908 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14909 // So it can increase the chance of CSE constant construction. 14910 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14911 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14912 // Need to sign-extended to 64-bits to handle negative values. 14913 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14914 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14915 MemVT.getSizeInBits()); 14916 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14917 14918 // DAG.getTruncStore() can't be used here because it doesn't accept 14919 // the general (base + offset) addressing mode. 14920 // So we use UpdateNodeOperands and setTruncatingStore instead. 14921 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14922 N->getOperand(3)); 14923 cast<StoreSDNode>(N)->setTruncatingStore(true); 14924 return SDValue(N, 0); 14925 } 14926 14927 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14928 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14929 if (Op1VT.isSimple()) { 14930 MVT StoreVT = Op1VT.getSimpleVT(); 14931 if (Subtarget.needsSwapsForVSXMemOps() && 14932 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14933 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14934 return expandVSXStoreForLE(N, DCI); 14935 } 14936 break; 14937 } 14938 case ISD::LOAD: { 14939 LoadSDNode *LD = cast<LoadSDNode>(N); 14940 EVT VT = LD->getValueType(0); 14941 14942 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14943 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14944 if (VT.isSimple()) { 14945 MVT LoadVT = VT.getSimpleVT(); 14946 if (Subtarget.needsSwapsForVSXMemOps() && 14947 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14948 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14949 return expandVSXLoadForLE(N, DCI); 14950 } 14951 14952 // We sometimes end up with a 64-bit integer load, from which we extract 14953 // two single-precision floating-point numbers. This happens with 14954 // std::complex<float>, and other similar structures, because of the way we 14955 // canonicalize structure copies. However, if we lack direct moves, 14956 // then the final bitcasts from the extracted integer values to the 14957 // floating-point numbers turn into store/load pairs. Even with direct moves, 14958 // just loading the two floating-point numbers is likely better. 14959 auto ReplaceTwoFloatLoad = [&]() { 14960 if (VT != MVT::i64) 14961 return false; 14962 14963 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14964 LD->isVolatile()) 14965 return false; 14966 14967 // We're looking for a sequence like this: 14968 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14969 // t16: i64 = srl t13, Constant:i32<32> 14970 // t17: i32 = truncate t16 14971 // t18: f32 = bitcast t17 14972 // t19: i32 = truncate t13 14973 // t20: f32 = bitcast t19 14974 14975 if (!LD->hasNUsesOfValue(2, 0)) 14976 return false; 14977 14978 auto UI = LD->use_begin(); 14979 while (UI.getUse().getResNo() != 0) ++UI; 14980 SDNode *Trunc = *UI++; 14981 while (UI.getUse().getResNo() != 0) ++UI; 14982 SDNode *RightShift = *UI; 14983 if (Trunc->getOpcode() != ISD::TRUNCATE) 14984 std::swap(Trunc, RightShift); 14985 14986 if (Trunc->getOpcode() != ISD::TRUNCATE || 14987 Trunc->getValueType(0) != MVT::i32 || 14988 !Trunc->hasOneUse()) 14989 return false; 14990 if (RightShift->getOpcode() != ISD::SRL || 14991 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14992 RightShift->getConstantOperandVal(1) != 32 || 14993 !RightShift->hasOneUse()) 14994 return false; 14995 14996 SDNode *Trunc2 = *RightShift->use_begin(); 14997 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14998 Trunc2->getValueType(0) != MVT::i32 || 14999 !Trunc2->hasOneUse()) 15000 return false; 15001 15002 SDNode *Bitcast = *Trunc->use_begin(); 15003 SDNode *Bitcast2 = *Trunc2->use_begin(); 15004 15005 if (Bitcast->getOpcode() != ISD::BITCAST || 15006 Bitcast->getValueType(0) != MVT::f32) 15007 return false; 15008 if (Bitcast2->getOpcode() != ISD::BITCAST || 15009 Bitcast2->getValueType(0) != MVT::f32) 15010 return false; 15011 15012 if (Subtarget.isLittleEndian()) 15013 std::swap(Bitcast, Bitcast2); 15014 15015 // Bitcast has the second float (in memory-layout order) and Bitcast2 15016 // has the first one. 15017 15018 SDValue BasePtr = LD->getBasePtr(); 15019 if (LD->isIndexed()) { 15020 assert(LD->getAddressingMode() == ISD::PRE_INC && 15021 "Non-pre-inc AM on PPC?"); 15022 BasePtr = 15023 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15024 LD->getOffset()); 15025 } 15026 15027 auto MMOFlags = 15028 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15029 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15030 LD->getPointerInfo(), LD->getAlignment(), 15031 MMOFlags, LD->getAAInfo()); 15032 SDValue AddPtr = 15033 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15034 BasePtr, DAG.getIntPtrConstant(4, dl)); 15035 SDValue FloatLoad2 = DAG.getLoad( 15036 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15037 LD->getPointerInfo().getWithOffset(4), 15038 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15039 15040 if (LD->isIndexed()) { 15041 // Note that DAGCombine should re-form any pre-increment load(s) from 15042 // what is produced here if that makes sense. 15043 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15044 } 15045 15046 DCI.CombineTo(Bitcast2, FloatLoad); 15047 DCI.CombineTo(Bitcast, FloatLoad2); 15048 15049 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15050 SDValue(FloatLoad2.getNode(), 1)); 15051 return true; 15052 }; 15053 15054 if (ReplaceTwoFloatLoad()) 15055 return SDValue(N, 0); 15056 15057 EVT MemVT = LD->getMemoryVT(); 15058 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15059 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15060 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 15061 Align ScalarABIAlignment = DAG.getDataLayout().getABITypeAlign(STy); 15062 if (LD->isUnindexed() && VT.isVector() && 15063 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15064 // P8 and later hardware should just use LOAD. 15065 !Subtarget.hasP8Vector() && 15066 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15067 VT == MVT::v4f32)) || 15068 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 15069 LD->getAlign() >= ScalarABIAlignment)) && 15070 LD->getAlign() < ABIAlignment) { 15071 // This is a type-legal unaligned Altivec or QPX load. 15072 SDValue Chain = LD->getChain(); 15073 SDValue Ptr = LD->getBasePtr(); 15074 bool isLittleEndian = Subtarget.isLittleEndian(); 15075 15076 // This implements the loading of unaligned vectors as described in 15077 // the venerable Apple Velocity Engine overview. Specifically: 15078 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15079 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15080 // 15081 // The general idea is to expand a sequence of one or more unaligned 15082 // loads into an alignment-based permutation-control instruction (lvsl 15083 // or lvsr), a series of regular vector loads (which always truncate 15084 // their input address to an aligned address), and a series of 15085 // permutations. The results of these permutations are the requested 15086 // loaded values. The trick is that the last "extra" load is not taken 15087 // from the address you might suspect (sizeof(vector) bytes after the 15088 // last requested load), but rather sizeof(vector) - 1 bytes after the 15089 // last requested vector. The point of this is to avoid a page fault if 15090 // the base address happened to be aligned. This works because if the 15091 // base address is aligned, then adding less than a full vector length 15092 // will cause the last vector in the sequence to be (re)loaded. 15093 // Otherwise, the next vector will be fetched as you might suspect was 15094 // necessary. 15095 15096 // We might be able to reuse the permutation generation from 15097 // a different base address offset from this one by an aligned amount. 15098 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15099 // optimization later. 15100 Intrinsic::ID Intr, IntrLD, IntrPerm; 15101 MVT PermCntlTy, PermTy, LDTy; 15102 if (Subtarget.hasAltivec()) { 15103 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 15104 Intrinsic::ppc_altivec_lvsl; 15105 IntrLD = Intrinsic::ppc_altivec_lvx; 15106 IntrPerm = Intrinsic::ppc_altivec_vperm; 15107 PermCntlTy = MVT::v16i8; 15108 PermTy = MVT::v4i32; 15109 LDTy = MVT::v4i32; 15110 } else { 15111 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 15112 Intrinsic::ppc_qpx_qvlpcls; 15113 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 15114 Intrinsic::ppc_qpx_qvlfs; 15115 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 15116 PermCntlTy = MVT::v4f64; 15117 PermTy = MVT::v4f64; 15118 LDTy = MemVT.getSimpleVT(); 15119 } 15120 15121 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15122 15123 // Create the new MMO for the new base load. It is like the original MMO, 15124 // but represents an area in memory almost twice the vector size centered 15125 // on the original address. If the address is unaligned, we might start 15126 // reading up to (sizeof(vector)-1) bytes below the address of the 15127 // original unaligned load. 15128 MachineFunction &MF = DAG.getMachineFunction(); 15129 MachineMemOperand *BaseMMO = 15130 MF.getMachineMemOperand(LD->getMemOperand(), 15131 -(long)MemVT.getStoreSize()+1, 15132 2*MemVT.getStoreSize()-1); 15133 15134 // Create the new base load. 15135 SDValue LDXIntID = 15136 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15137 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15138 SDValue BaseLoad = 15139 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15140 DAG.getVTList(PermTy, MVT::Other), 15141 BaseLoadOps, LDTy, BaseMMO); 15142 15143 // Note that the value of IncOffset (which is provided to the next 15144 // load's pointer info offset value, and thus used to calculate the 15145 // alignment), and the value of IncValue (which is actually used to 15146 // increment the pointer value) are different! This is because we 15147 // require the next load to appear to be aligned, even though it 15148 // is actually offset from the base pointer by a lesser amount. 15149 int IncOffset = VT.getSizeInBits() / 8; 15150 int IncValue = IncOffset; 15151 15152 // Walk (both up and down) the chain looking for another load at the real 15153 // (aligned) offset (the alignment of the other load does not matter in 15154 // this case). If found, then do not use the offset reduction trick, as 15155 // that will prevent the loads from being later combined (as they would 15156 // otherwise be duplicates). 15157 if (!findConsecutiveLoad(LD, DAG)) 15158 --IncValue; 15159 15160 SDValue Increment = 15161 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15162 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15163 15164 MachineMemOperand *ExtraMMO = 15165 MF.getMachineMemOperand(LD->getMemOperand(), 15166 1, 2*MemVT.getStoreSize()-1); 15167 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15168 SDValue ExtraLoad = 15169 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15170 DAG.getVTList(PermTy, MVT::Other), 15171 ExtraLoadOps, LDTy, ExtraMMO); 15172 15173 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15174 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15175 15176 // Because vperm has a big-endian bias, we must reverse the order 15177 // of the input vectors and complement the permute control vector 15178 // when generating little endian code. We have already handled the 15179 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15180 // and ExtraLoad here. 15181 SDValue Perm; 15182 if (isLittleEndian) 15183 Perm = BuildIntrinsicOp(IntrPerm, 15184 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15185 else 15186 Perm = BuildIntrinsicOp(IntrPerm, 15187 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15188 15189 if (VT != PermTy) 15190 Perm = Subtarget.hasAltivec() ? 15191 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 15192 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 15193 DAG.getTargetConstant(1, dl, MVT::i64)); 15194 // second argument is 1 because this rounding 15195 // is always exact. 15196 15197 // The output of the permutation is our loaded result, the TokenFactor is 15198 // our new chain. 15199 DCI.CombineTo(N, Perm, TF); 15200 return SDValue(N, 0); 15201 } 15202 } 15203 break; 15204 case ISD::INTRINSIC_WO_CHAIN: { 15205 bool isLittleEndian = Subtarget.isLittleEndian(); 15206 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15207 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15208 : Intrinsic::ppc_altivec_lvsl); 15209 if ((IID == Intr || 15210 IID == Intrinsic::ppc_qpx_qvlpcld || 15211 IID == Intrinsic::ppc_qpx_qvlpcls) && 15212 N->getOperand(1)->getOpcode() == ISD::ADD) { 15213 SDValue Add = N->getOperand(1); 15214 15215 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 15216 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 15217 15218 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15219 APInt::getAllOnesValue(Bits /* alignment */) 15220 .zext(Add.getScalarValueSizeInBits()))) { 15221 SDNode *BasePtr = Add->getOperand(0).getNode(); 15222 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15223 UE = BasePtr->use_end(); 15224 UI != UE; ++UI) { 15225 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15226 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 15227 // We've found another LVSL/LVSR, and this address is an aligned 15228 // multiple of that one. The results will be the same, so use the 15229 // one we've just found instead. 15230 15231 return SDValue(*UI, 0); 15232 } 15233 } 15234 } 15235 15236 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15237 SDNode *BasePtr = Add->getOperand(0).getNode(); 15238 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15239 UE = BasePtr->use_end(); UI != UE; ++UI) { 15240 if (UI->getOpcode() == ISD::ADD && 15241 isa<ConstantSDNode>(UI->getOperand(1)) && 15242 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15243 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15244 (1ULL << Bits) == 0) { 15245 SDNode *OtherAdd = *UI; 15246 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15247 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15248 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15249 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15250 return SDValue(*VI, 0); 15251 } 15252 } 15253 } 15254 } 15255 } 15256 } 15257 15258 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15259 // Expose the vabsduw/h/b opportunity for down stream 15260 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15261 (IID == Intrinsic::ppc_altivec_vmaxsw || 15262 IID == Intrinsic::ppc_altivec_vmaxsh || 15263 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15264 SDValue V1 = N->getOperand(1); 15265 SDValue V2 = N->getOperand(2); 15266 if ((V1.getSimpleValueType() == MVT::v4i32 || 15267 V1.getSimpleValueType() == MVT::v8i16 || 15268 V1.getSimpleValueType() == MVT::v16i8) && 15269 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15270 // (0-a, a) 15271 if (V1.getOpcode() == ISD::SUB && 15272 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15273 V1.getOperand(1) == V2) { 15274 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15275 } 15276 // (a, 0-a) 15277 if (V2.getOpcode() == ISD::SUB && 15278 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15279 V2.getOperand(1) == V1) { 15280 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15281 } 15282 // (x-y, y-x) 15283 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15284 V1.getOperand(0) == V2.getOperand(1) && 15285 V1.getOperand(1) == V2.getOperand(0)) { 15286 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15287 } 15288 } 15289 } 15290 } 15291 15292 break; 15293 case ISD::INTRINSIC_W_CHAIN: 15294 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15295 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15296 if (Subtarget.needsSwapsForVSXMemOps()) { 15297 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15298 default: 15299 break; 15300 case Intrinsic::ppc_vsx_lxvw4x: 15301 case Intrinsic::ppc_vsx_lxvd2x: 15302 return expandVSXLoadForLE(N, DCI); 15303 } 15304 } 15305 break; 15306 case ISD::INTRINSIC_VOID: 15307 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15308 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15309 if (Subtarget.needsSwapsForVSXMemOps()) { 15310 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15311 default: 15312 break; 15313 case Intrinsic::ppc_vsx_stxvw4x: 15314 case Intrinsic::ppc_vsx_stxvd2x: 15315 return expandVSXStoreForLE(N, DCI); 15316 } 15317 } 15318 break; 15319 case ISD::BSWAP: 15320 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15321 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15322 N->getOperand(0).hasOneUse() && 15323 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15324 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15325 N->getValueType(0) == MVT::i64))) { 15326 SDValue Load = N->getOperand(0); 15327 LoadSDNode *LD = cast<LoadSDNode>(Load); 15328 // Create the byte-swapping load. 15329 SDValue Ops[] = { 15330 LD->getChain(), // Chain 15331 LD->getBasePtr(), // Ptr 15332 DAG.getValueType(N->getValueType(0)) // VT 15333 }; 15334 SDValue BSLoad = 15335 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15336 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15337 MVT::i64 : MVT::i32, MVT::Other), 15338 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15339 15340 // If this is an i16 load, insert the truncate. 15341 SDValue ResVal = BSLoad; 15342 if (N->getValueType(0) == MVT::i16) 15343 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15344 15345 // First, combine the bswap away. This makes the value produced by the 15346 // load dead. 15347 DCI.CombineTo(N, ResVal); 15348 15349 // Next, combine the load away, we give it a bogus result value but a real 15350 // chain result. The result value is dead because the bswap is dead. 15351 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15352 15353 // Return N so it doesn't get rechecked! 15354 return SDValue(N, 0); 15355 } 15356 break; 15357 case PPCISD::VCMP: 15358 // If a VCMPo node already exists with exactly the same operands as this 15359 // node, use its result instead of this node (VCMPo computes both a CR6 and 15360 // a normal output). 15361 // 15362 if (!N->getOperand(0).hasOneUse() && 15363 !N->getOperand(1).hasOneUse() && 15364 !N->getOperand(2).hasOneUse()) { 15365 15366 // Scan all of the users of the LHS, looking for VCMPo's that match. 15367 SDNode *VCMPoNode = nullptr; 15368 15369 SDNode *LHSN = N->getOperand(0).getNode(); 15370 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15371 UI != E; ++UI) 15372 if (UI->getOpcode() == PPCISD::VCMPo && 15373 UI->getOperand(1) == N->getOperand(1) && 15374 UI->getOperand(2) == N->getOperand(2) && 15375 UI->getOperand(0) == N->getOperand(0)) { 15376 VCMPoNode = *UI; 15377 break; 15378 } 15379 15380 // If there is no VCMPo node, or if the flag value has a single use, don't 15381 // transform this. 15382 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 15383 break; 15384 15385 // Look at the (necessarily single) use of the flag value. If it has a 15386 // chain, this transformation is more complex. Note that multiple things 15387 // could use the value result, which we should ignore. 15388 SDNode *FlagUser = nullptr; 15389 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 15390 FlagUser == nullptr; ++UI) { 15391 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 15392 SDNode *User = *UI; 15393 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15394 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 15395 FlagUser = User; 15396 break; 15397 } 15398 } 15399 } 15400 15401 // If the user is a MFOCRF instruction, we know this is safe. 15402 // Otherwise we give up for right now. 15403 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15404 return SDValue(VCMPoNode, 0); 15405 } 15406 break; 15407 case ISD::BRCOND: { 15408 SDValue Cond = N->getOperand(1); 15409 SDValue Target = N->getOperand(2); 15410 15411 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15412 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15413 Intrinsic::loop_decrement) { 15414 15415 // We now need to make the intrinsic dead (it cannot be instruction 15416 // selected). 15417 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15418 assert(Cond.getNode()->hasOneUse() && 15419 "Counter decrement has more than one use"); 15420 15421 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15422 N->getOperand(0), Target); 15423 } 15424 } 15425 break; 15426 case ISD::BR_CC: { 15427 // If this is a branch on an altivec predicate comparison, lower this so 15428 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15429 // lowering is done pre-legalize, because the legalizer lowers the predicate 15430 // compare down to code that is difficult to reassemble. 15431 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15432 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15433 15434 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15435 // value. If so, pass-through the AND to get to the intrinsic. 15436 if (LHS.getOpcode() == ISD::AND && 15437 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15438 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15439 Intrinsic::loop_decrement && 15440 isa<ConstantSDNode>(LHS.getOperand(1)) && 15441 !isNullConstant(LHS.getOperand(1))) 15442 LHS = LHS.getOperand(0); 15443 15444 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15445 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15446 Intrinsic::loop_decrement && 15447 isa<ConstantSDNode>(RHS)) { 15448 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15449 "Counter decrement comparison is not EQ or NE"); 15450 15451 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15452 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15453 (CC == ISD::SETNE && !Val); 15454 15455 // We now need to make the intrinsic dead (it cannot be instruction 15456 // selected). 15457 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15458 assert(LHS.getNode()->hasOneUse() && 15459 "Counter decrement has more than one use"); 15460 15461 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15462 N->getOperand(0), N->getOperand(4)); 15463 } 15464 15465 int CompareOpc; 15466 bool isDot; 15467 15468 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15469 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15470 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15471 assert(isDot && "Can't compare against a vector result!"); 15472 15473 // If this is a comparison against something other than 0/1, then we know 15474 // that the condition is never/always true. 15475 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15476 if (Val != 0 && Val != 1) { 15477 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15478 return N->getOperand(0); 15479 // Always !=, turn it into an unconditional branch. 15480 return DAG.getNode(ISD::BR, dl, MVT::Other, 15481 N->getOperand(0), N->getOperand(4)); 15482 } 15483 15484 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15485 15486 // Create the PPCISD altivec 'dot' comparison node. 15487 SDValue Ops[] = { 15488 LHS.getOperand(2), // LHS of compare 15489 LHS.getOperand(3), // RHS of compare 15490 DAG.getConstant(CompareOpc, dl, MVT::i32) 15491 }; 15492 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15493 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 15494 15495 // Unpack the result based on how the target uses it. 15496 PPC::Predicate CompOpc; 15497 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15498 default: // Can't happen, don't crash on invalid number though. 15499 case 0: // Branch on the value of the EQ bit of CR6. 15500 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15501 break; 15502 case 1: // Branch on the inverted value of the EQ bit of CR6. 15503 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15504 break; 15505 case 2: // Branch on the value of the LT bit of CR6. 15506 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15507 break; 15508 case 3: // Branch on the inverted value of the LT bit of CR6. 15509 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15510 break; 15511 } 15512 15513 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15514 DAG.getConstant(CompOpc, dl, MVT::i32), 15515 DAG.getRegister(PPC::CR6, MVT::i32), 15516 N->getOperand(4), CompNode.getValue(1)); 15517 } 15518 break; 15519 } 15520 case ISD::BUILD_VECTOR: 15521 return DAGCombineBuildVector(N, DCI); 15522 case ISD::ABS: 15523 return combineABS(N, DCI); 15524 case ISD::VSELECT: 15525 return combineVSelect(N, DCI); 15526 } 15527 15528 return SDValue(); 15529 } 15530 15531 SDValue 15532 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15533 SelectionDAG &DAG, 15534 SmallVectorImpl<SDNode *> &Created) const { 15535 // fold (sdiv X, pow2) 15536 EVT VT = N->getValueType(0); 15537 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15538 return SDValue(); 15539 if ((VT != MVT::i32 && VT != MVT::i64) || 15540 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15541 return SDValue(); 15542 15543 SDLoc DL(N); 15544 SDValue N0 = N->getOperand(0); 15545 15546 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15547 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15548 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15549 15550 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15551 Created.push_back(Op.getNode()); 15552 15553 if (IsNegPow2) { 15554 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15555 Created.push_back(Op.getNode()); 15556 } 15557 15558 return Op; 15559 } 15560 15561 //===----------------------------------------------------------------------===// 15562 // Inline Assembly Support 15563 //===----------------------------------------------------------------------===// 15564 15565 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15566 KnownBits &Known, 15567 const APInt &DemandedElts, 15568 const SelectionDAG &DAG, 15569 unsigned Depth) const { 15570 Known.resetAll(); 15571 switch (Op.getOpcode()) { 15572 default: break; 15573 case PPCISD::LBRX: { 15574 // lhbrx is known to have the top bits cleared out. 15575 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15576 Known.Zero = 0xFFFF0000; 15577 break; 15578 } 15579 case ISD::INTRINSIC_WO_CHAIN: { 15580 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15581 default: break; 15582 case Intrinsic::ppc_altivec_vcmpbfp_p: 15583 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15584 case Intrinsic::ppc_altivec_vcmpequb_p: 15585 case Intrinsic::ppc_altivec_vcmpequh_p: 15586 case Intrinsic::ppc_altivec_vcmpequw_p: 15587 case Intrinsic::ppc_altivec_vcmpequd_p: 15588 case Intrinsic::ppc_altivec_vcmpgefp_p: 15589 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15590 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15591 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15592 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15593 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15594 case Intrinsic::ppc_altivec_vcmpgtub_p: 15595 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15596 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15597 case Intrinsic::ppc_altivec_vcmpgtud_p: 15598 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15599 break; 15600 } 15601 } 15602 } 15603 } 15604 15605 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15606 switch (Subtarget.getCPUDirective()) { 15607 default: break; 15608 case PPC::DIR_970: 15609 case PPC::DIR_PWR4: 15610 case PPC::DIR_PWR5: 15611 case PPC::DIR_PWR5X: 15612 case PPC::DIR_PWR6: 15613 case PPC::DIR_PWR6X: 15614 case PPC::DIR_PWR7: 15615 case PPC::DIR_PWR8: 15616 case PPC::DIR_PWR9: 15617 case PPC::DIR_PWR10: 15618 case PPC::DIR_PWR_FUTURE: { 15619 if (!ML) 15620 break; 15621 15622 if (!DisableInnermostLoopAlign32) { 15623 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15624 // so that we can decrease cache misses and branch-prediction misses. 15625 // Actual alignment of the loop will depend on the hotness check and other 15626 // logic in alignBlocks. 15627 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15628 return Align(32); 15629 } 15630 15631 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15632 15633 // For small loops (between 5 and 8 instructions), align to a 32-byte 15634 // boundary so that the entire loop fits in one instruction-cache line. 15635 uint64_t LoopSize = 0; 15636 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15637 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15638 LoopSize += TII->getInstSizeInBytes(*J); 15639 if (LoopSize > 32) 15640 break; 15641 } 15642 15643 if (LoopSize > 16 && LoopSize <= 32) 15644 return Align(32); 15645 15646 break; 15647 } 15648 } 15649 15650 return TargetLowering::getPrefLoopAlignment(ML); 15651 } 15652 15653 /// getConstraintType - Given a constraint, return the type of 15654 /// constraint it is for this target. 15655 PPCTargetLowering::ConstraintType 15656 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15657 if (Constraint.size() == 1) { 15658 switch (Constraint[0]) { 15659 default: break; 15660 case 'b': 15661 case 'r': 15662 case 'f': 15663 case 'd': 15664 case 'v': 15665 case 'y': 15666 return C_RegisterClass; 15667 case 'Z': 15668 // FIXME: While Z does indicate a memory constraint, it specifically 15669 // indicates an r+r address (used in conjunction with the 'y' modifier 15670 // in the replacement string). Currently, we're forcing the base 15671 // register to be r0 in the asm printer (which is interpreted as zero) 15672 // and forming the complete address in the second register. This is 15673 // suboptimal. 15674 return C_Memory; 15675 } 15676 } else if (Constraint == "wc") { // individual CR bits. 15677 return C_RegisterClass; 15678 } else if (Constraint == "wa" || Constraint == "wd" || 15679 Constraint == "wf" || Constraint == "ws" || 15680 Constraint == "wi" || Constraint == "ww") { 15681 return C_RegisterClass; // VSX registers. 15682 } 15683 return TargetLowering::getConstraintType(Constraint); 15684 } 15685 15686 /// Examine constraint type and operand type and determine a weight value. 15687 /// This object must already have been set up with the operand type 15688 /// and the current alternative constraint selected. 15689 TargetLowering::ConstraintWeight 15690 PPCTargetLowering::getSingleConstraintMatchWeight( 15691 AsmOperandInfo &info, const char *constraint) const { 15692 ConstraintWeight weight = CW_Invalid; 15693 Value *CallOperandVal = info.CallOperandVal; 15694 // If we don't have a value, we can't do a match, 15695 // but allow it at the lowest weight. 15696 if (!CallOperandVal) 15697 return CW_Default; 15698 Type *type = CallOperandVal->getType(); 15699 15700 // Look at the constraint type. 15701 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15702 return CW_Register; // an individual CR bit. 15703 else if ((StringRef(constraint) == "wa" || 15704 StringRef(constraint) == "wd" || 15705 StringRef(constraint) == "wf") && 15706 type->isVectorTy()) 15707 return CW_Register; 15708 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15709 return CW_Register; // just hold 64-bit integers data. 15710 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15711 return CW_Register; 15712 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15713 return CW_Register; 15714 15715 switch (*constraint) { 15716 default: 15717 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15718 break; 15719 case 'b': 15720 if (type->isIntegerTy()) 15721 weight = CW_Register; 15722 break; 15723 case 'f': 15724 if (type->isFloatTy()) 15725 weight = CW_Register; 15726 break; 15727 case 'd': 15728 if (type->isDoubleTy()) 15729 weight = CW_Register; 15730 break; 15731 case 'v': 15732 if (type->isVectorTy()) 15733 weight = CW_Register; 15734 break; 15735 case 'y': 15736 weight = CW_Register; 15737 break; 15738 case 'Z': 15739 weight = CW_Memory; 15740 break; 15741 } 15742 return weight; 15743 } 15744 15745 std::pair<unsigned, const TargetRegisterClass *> 15746 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15747 StringRef Constraint, 15748 MVT VT) const { 15749 if (Constraint.size() == 1) { 15750 // GCC RS6000 Constraint Letters 15751 switch (Constraint[0]) { 15752 case 'b': // R1-R31 15753 if (VT == MVT::i64 && Subtarget.isPPC64()) 15754 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15755 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15756 case 'r': // R0-R31 15757 if (VT == MVT::i64 && Subtarget.isPPC64()) 15758 return std::make_pair(0U, &PPC::G8RCRegClass); 15759 return std::make_pair(0U, &PPC::GPRCRegClass); 15760 // 'd' and 'f' constraints are both defined to be "the floating point 15761 // registers", where one is for 32-bit and the other for 64-bit. We don't 15762 // really care overly much here so just give them all the same reg classes. 15763 case 'd': 15764 case 'f': 15765 if (Subtarget.hasSPE()) { 15766 if (VT == MVT::f32 || VT == MVT::i32) 15767 return std::make_pair(0U, &PPC::GPRCRegClass); 15768 if (VT == MVT::f64 || VT == MVT::i64) 15769 return std::make_pair(0U, &PPC::SPERCRegClass); 15770 } else { 15771 if (VT == MVT::f32 || VT == MVT::i32) 15772 return std::make_pair(0U, &PPC::F4RCRegClass); 15773 if (VT == MVT::f64 || VT == MVT::i64) 15774 return std::make_pair(0U, &PPC::F8RCRegClass); 15775 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15776 return std::make_pair(0U, &PPC::QFRCRegClass); 15777 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15778 return std::make_pair(0U, &PPC::QSRCRegClass); 15779 } 15780 break; 15781 case 'v': 15782 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15783 return std::make_pair(0U, &PPC::QFRCRegClass); 15784 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15785 return std::make_pair(0U, &PPC::QSRCRegClass); 15786 if (Subtarget.hasAltivec()) 15787 return std::make_pair(0U, &PPC::VRRCRegClass); 15788 break; 15789 case 'y': // crrc 15790 return std::make_pair(0U, &PPC::CRRCRegClass); 15791 } 15792 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15793 // An individual CR bit. 15794 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15795 } else if ((Constraint == "wa" || Constraint == "wd" || 15796 Constraint == "wf" || Constraint == "wi") && 15797 Subtarget.hasVSX()) { 15798 return std::make_pair(0U, &PPC::VSRCRegClass); 15799 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15800 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15801 return std::make_pair(0U, &PPC::VSSRCRegClass); 15802 else 15803 return std::make_pair(0U, &PPC::VSFRCRegClass); 15804 } 15805 15806 // If we name a VSX register, we can't defer to the base class because it 15807 // will not recognize the correct register (their names will be VSL{0-31} 15808 // and V{0-31} so they won't match). So we match them here. 15809 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15810 int VSNum = atoi(Constraint.data() + 3); 15811 assert(VSNum >= 0 && VSNum <= 63 && 15812 "Attempted to access a vsr out of range"); 15813 if (VSNum < 32) 15814 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15815 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15816 } 15817 std::pair<unsigned, const TargetRegisterClass *> R = 15818 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15819 15820 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15821 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15822 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15823 // register. 15824 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15825 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15826 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15827 PPC::GPRCRegClass.contains(R.first)) 15828 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15829 PPC::sub_32, &PPC::G8RCRegClass), 15830 &PPC::G8RCRegClass); 15831 15832 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15833 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15834 R.first = PPC::CR0; 15835 R.second = &PPC::CRRCRegClass; 15836 } 15837 15838 return R; 15839 } 15840 15841 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15842 /// vector. If it is invalid, don't add anything to Ops. 15843 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15844 std::string &Constraint, 15845 std::vector<SDValue>&Ops, 15846 SelectionDAG &DAG) const { 15847 SDValue Result; 15848 15849 // Only support length 1 constraints. 15850 if (Constraint.length() > 1) return; 15851 15852 char Letter = Constraint[0]; 15853 switch (Letter) { 15854 default: break; 15855 case 'I': 15856 case 'J': 15857 case 'K': 15858 case 'L': 15859 case 'M': 15860 case 'N': 15861 case 'O': 15862 case 'P': { 15863 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15864 if (!CST) return; // Must be an immediate to match. 15865 SDLoc dl(Op); 15866 int64_t Value = CST->getSExtValue(); 15867 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15868 // numbers are printed as such. 15869 switch (Letter) { 15870 default: llvm_unreachable("Unknown constraint letter!"); 15871 case 'I': // "I" is a signed 16-bit constant. 15872 if (isInt<16>(Value)) 15873 Result = DAG.getTargetConstant(Value, dl, TCVT); 15874 break; 15875 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15876 if (isShiftedUInt<16, 16>(Value)) 15877 Result = DAG.getTargetConstant(Value, dl, TCVT); 15878 break; 15879 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15880 if (isShiftedInt<16, 16>(Value)) 15881 Result = DAG.getTargetConstant(Value, dl, TCVT); 15882 break; 15883 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15884 if (isUInt<16>(Value)) 15885 Result = DAG.getTargetConstant(Value, dl, TCVT); 15886 break; 15887 case 'M': // "M" is a constant that is greater than 31. 15888 if (Value > 31) 15889 Result = DAG.getTargetConstant(Value, dl, TCVT); 15890 break; 15891 case 'N': // "N" is a positive constant that is an exact power of two. 15892 if (Value > 0 && isPowerOf2_64(Value)) 15893 Result = DAG.getTargetConstant(Value, dl, TCVT); 15894 break; 15895 case 'O': // "O" is the constant zero. 15896 if (Value == 0) 15897 Result = DAG.getTargetConstant(Value, dl, TCVT); 15898 break; 15899 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15900 if (isInt<16>(-Value)) 15901 Result = DAG.getTargetConstant(Value, dl, TCVT); 15902 break; 15903 } 15904 break; 15905 } 15906 } 15907 15908 if (Result.getNode()) { 15909 Ops.push_back(Result); 15910 return; 15911 } 15912 15913 // Handle standard constraint letters. 15914 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15915 } 15916 15917 // isLegalAddressingMode - Return true if the addressing mode represented 15918 // by AM is legal for this target, for a load/store of the specified type. 15919 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15920 const AddrMode &AM, Type *Ty, 15921 unsigned AS, Instruction *I) const { 15922 // PPC does not allow r+i addressing modes for vectors! 15923 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15924 return false; 15925 15926 // PPC allows a sign-extended 16-bit immediate field. 15927 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15928 return false; 15929 15930 // No global is ever allowed as a base. 15931 if (AM.BaseGV) 15932 return false; 15933 15934 // PPC only support r+r, 15935 switch (AM.Scale) { 15936 case 0: // "r+i" or just "i", depending on HasBaseReg. 15937 break; 15938 case 1: 15939 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15940 return false; 15941 // Otherwise we have r+r or r+i. 15942 break; 15943 case 2: 15944 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15945 return false; 15946 // Allow 2*r as r+r. 15947 break; 15948 default: 15949 // No other scales are supported. 15950 return false; 15951 } 15952 15953 return true; 15954 } 15955 15956 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15957 SelectionDAG &DAG) const { 15958 MachineFunction &MF = DAG.getMachineFunction(); 15959 MachineFrameInfo &MFI = MF.getFrameInfo(); 15960 MFI.setReturnAddressIsTaken(true); 15961 15962 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15963 return SDValue(); 15964 15965 SDLoc dl(Op); 15966 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15967 15968 // Make sure the function does not optimize away the store of the RA to 15969 // the stack. 15970 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15971 FuncInfo->setLRStoreRequired(); 15972 bool isPPC64 = Subtarget.isPPC64(); 15973 auto PtrVT = getPointerTy(MF.getDataLayout()); 15974 15975 if (Depth > 0) { 15976 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15977 SDValue Offset = 15978 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15979 isPPC64 ? MVT::i64 : MVT::i32); 15980 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15981 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15982 MachinePointerInfo()); 15983 } 15984 15985 // Just load the return address off the stack. 15986 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15987 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15988 MachinePointerInfo()); 15989 } 15990 15991 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15992 SelectionDAG &DAG) const { 15993 SDLoc dl(Op); 15994 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15995 15996 MachineFunction &MF = DAG.getMachineFunction(); 15997 MachineFrameInfo &MFI = MF.getFrameInfo(); 15998 MFI.setFrameAddressIsTaken(true); 15999 16000 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16001 bool isPPC64 = PtrVT == MVT::i64; 16002 16003 // Naked functions never have a frame pointer, and so we use r1. For all 16004 // other functions, this decision must be delayed until during PEI. 16005 unsigned FrameReg; 16006 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16007 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16008 else 16009 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16010 16011 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16012 PtrVT); 16013 while (Depth--) 16014 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16015 FrameAddr, MachinePointerInfo()); 16016 return FrameAddr; 16017 } 16018 16019 // FIXME? Maybe this could be a TableGen attribute on some registers and 16020 // this table could be generated automatically from RegInfo. 16021 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16022 const MachineFunction &MF) const { 16023 bool isPPC64 = Subtarget.isPPC64(); 16024 16025 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16026 if (!is64Bit && VT != LLT::scalar(32)) 16027 report_fatal_error("Invalid register global variable type"); 16028 16029 Register Reg = StringSwitch<Register>(RegName) 16030 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16031 .Case("r2", isPPC64 ? Register() : PPC::R2) 16032 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16033 .Default(Register()); 16034 16035 if (Reg) 16036 return Reg; 16037 report_fatal_error("Invalid register name global variable"); 16038 } 16039 16040 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16041 // 32-bit SVR4 ABI access everything as got-indirect. 16042 if (Subtarget.is32BitELFABI()) 16043 return true; 16044 16045 // AIX accesses everything indirectly through the TOC, which is similar to 16046 // the GOT. 16047 if (Subtarget.isAIXABI()) 16048 return true; 16049 16050 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16051 // If it is small or large code model, module locals are accessed 16052 // indirectly by loading their address from .toc/.got. 16053 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16054 return true; 16055 16056 // JumpTable and BlockAddress are accessed as got-indirect. 16057 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16058 return true; 16059 16060 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16061 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16062 16063 return false; 16064 } 16065 16066 bool 16067 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16068 // The PowerPC target isn't yet aware of offsets. 16069 return false; 16070 } 16071 16072 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16073 const CallInst &I, 16074 MachineFunction &MF, 16075 unsigned Intrinsic) const { 16076 switch (Intrinsic) { 16077 case Intrinsic::ppc_qpx_qvlfd: 16078 case Intrinsic::ppc_qpx_qvlfs: 16079 case Intrinsic::ppc_qpx_qvlfcd: 16080 case Intrinsic::ppc_qpx_qvlfcs: 16081 case Intrinsic::ppc_qpx_qvlfiwa: 16082 case Intrinsic::ppc_qpx_qvlfiwz: 16083 case Intrinsic::ppc_altivec_lvx: 16084 case Intrinsic::ppc_altivec_lvxl: 16085 case Intrinsic::ppc_altivec_lvebx: 16086 case Intrinsic::ppc_altivec_lvehx: 16087 case Intrinsic::ppc_altivec_lvewx: 16088 case Intrinsic::ppc_vsx_lxvd2x: 16089 case Intrinsic::ppc_vsx_lxvw4x: { 16090 EVT VT; 16091 switch (Intrinsic) { 16092 case Intrinsic::ppc_altivec_lvebx: 16093 VT = MVT::i8; 16094 break; 16095 case Intrinsic::ppc_altivec_lvehx: 16096 VT = MVT::i16; 16097 break; 16098 case Intrinsic::ppc_altivec_lvewx: 16099 VT = MVT::i32; 16100 break; 16101 case Intrinsic::ppc_vsx_lxvd2x: 16102 VT = MVT::v2f64; 16103 break; 16104 case Intrinsic::ppc_qpx_qvlfd: 16105 VT = MVT::v4f64; 16106 break; 16107 case Intrinsic::ppc_qpx_qvlfs: 16108 VT = MVT::v4f32; 16109 break; 16110 case Intrinsic::ppc_qpx_qvlfcd: 16111 VT = MVT::v2f64; 16112 break; 16113 case Intrinsic::ppc_qpx_qvlfcs: 16114 VT = MVT::v2f32; 16115 break; 16116 default: 16117 VT = MVT::v4i32; 16118 break; 16119 } 16120 16121 Info.opc = ISD::INTRINSIC_W_CHAIN; 16122 Info.memVT = VT; 16123 Info.ptrVal = I.getArgOperand(0); 16124 Info.offset = -VT.getStoreSize()+1; 16125 Info.size = 2*VT.getStoreSize()-1; 16126 Info.align = Align(1); 16127 Info.flags = MachineMemOperand::MOLoad; 16128 return true; 16129 } 16130 case Intrinsic::ppc_qpx_qvlfda: 16131 case Intrinsic::ppc_qpx_qvlfsa: 16132 case Intrinsic::ppc_qpx_qvlfcda: 16133 case Intrinsic::ppc_qpx_qvlfcsa: 16134 case Intrinsic::ppc_qpx_qvlfiwaa: 16135 case Intrinsic::ppc_qpx_qvlfiwza: { 16136 EVT VT; 16137 switch (Intrinsic) { 16138 case Intrinsic::ppc_qpx_qvlfda: 16139 VT = MVT::v4f64; 16140 break; 16141 case Intrinsic::ppc_qpx_qvlfsa: 16142 VT = MVT::v4f32; 16143 break; 16144 case Intrinsic::ppc_qpx_qvlfcda: 16145 VT = MVT::v2f64; 16146 break; 16147 case Intrinsic::ppc_qpx_qvlfcsa: 16148 VT = MVT::v2f32; 16149 break; 16150 default: 16151 VT = MVT::v4i32; 16152 break; 16153 } 16154 16155 Info.opc = ISD::INTRINSIC_W_CHAIN; 16156 Info.memVT = VT; 16157 Info.ptrVal = I.getArgOperand(0); 16158 Info.offset = 0; 16159 Info.size = VT.getStoreSize(); 16160 Info.align = Align(1); 16161 Info.flags = MachineMemOperand::MOLoad; 16162 return true; 16163 } 16164 case Intrinsic::ppc_qpx_qvstfd: 16165 case Intrinsic::ppc_qpx_qvstfs: 16166 case Intrinsic::ppc_qpx_qvstfcd: 16167 case Intrinsic::ppc_qpx_qvstfcs: 16168 case Intrinsic::ppc_qpx_qvstfiw: 16169 case Intrinsic::ppc_altivec_stvx: 16170 case Intrinsic::ppc_altivec_stvxl: 16171 case Intrinsic::ppc_altivec_stvebx: 16172 case Intrinsic::ppc_altivec_stvehx: 16173 case Intrinsic::ppc_altivec_stvewx: 16174 case Intrinsic::ppc_vsx_stxvd2x: 16175 case Intrinsic::ppc_vsx_stxvw4x: { 16176 EVT VT; 16177 switch (Intrinsic) { 16178 case Intrinsic::ppc_altivec_stvebx: 16179 VT = MVT::i8; 16180 break; 16181 case Intrinsic::ppc_altivec_stvehx: 16182 VT = MVT::i16; 16183 break; 16184 case Intrinsic::ppc_altivec_stvewx: 16185 VT = MVT::i32; 16186 break; 16187 case Intrinsic::ppc_vsx_stxvd2x: 16188 VT = MVT::v2f64; 16189 break; 16190 case Intrinsic::ppc_qpx_qvstfd: 16191 VT = MVT::v4f64; 16192 break; 16193 case Intrinsic::ppc_qpx_qvstfs: 16194 VT = MVT::v4f32; 16195 break; 16196 case Intrinsic::ppc_qpx_qvstfcd: 16197 VT = MVT::v2f64; 16198 break; 16199 case Intrinsic::ppc_qpx_qvstfcs: 16200 VT = MVT::v2f32; 16201 break; 16202 default: 16203 VT = MVT::v4i32; 16204 break; 16205 } 16206 16207 Info.opc = ISD::INTRINSIC_VOID; 16208 Info.memVT = VT; 16209 Info.ptrVal = I.getArgOperand(1); 16210 Info.offset = -VT.getStoreSize()+1; 16211 Info.size = 2*VT.getStoreSize()-1; 16212 Info.align = Align(1); 16213 Info.flags = MachineMemOperand::MOStore; 16214 return true; 16215 } 16216 case Intrinsic::ppc_qpx_qvstfda: 16217 case Intrinsic::ppc_qpx_qvstfsa: 16218 case Intrinsic::ppc_qpx_qvstfcda: 16219 case Intrinsic::ppc_qpx_qvstfcsa: 16220 case Intrinsic::ppc_qpx_qvstfiwa: { 16221 EVT VT; 16222 switch (Intrinsic) { 16223 case Intrinsic::ppc_qpx_qvstfda: 16224 VT = MVT::v4f64; 16225 break; 16226 case Intrinsic::ppc_qpx_qvstfsa: 16227 VT = MVT::v4f32; 16228 break; 16229 case Intrinsic::ppc_qpx_qvstfcda: 16230 VT = MVT::v2f64; 16231 break; 16232 case Intrinsic::ppc_qpx_qvstfcsa: 16233 VT = MVT::v2f32; 16234 break; 16235 default: 16236 VT = MVT::v4i32; 16237 break; 16238 } 16239 16240 Info.opc = ISD::INTRINSIC_VOID; 16241 Info.memVT = VT; 16242 Info.ptrVal = I.getArgOperand(1); 16243 Info.offset = 0; 16244 Info.size = VT.getStoreSize(); 16245 Info.align = Align(1); 16246 Info.flags = MachineMemOperand::MOStore; 16247 return true; 16248 } 16249 default: 16250 break; 16251 } 16252 16253 return false; 16254 } 16255 16256 /// It returns EVT::Other if the type should be determined using generic 16257 /// target-independent logic. 16258 EVT PPCTargetLowering::getOptimalMemOpType( 16259 const MemOp &Op, const AttributeList &FuncAttributes) const { 16260 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16261 // When expanding a memset, require at least two QPX instructions to cover 16262 // the cost of loading the value to be stored from the constant pool. 16263 if (Subtarget.hasQPX() && Op.size() >= 32 && 16264 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 16265 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 16266 return MVT::v4f64; 16267 } 16268 16269 // We should use Altivec/VSX loads and stores when available. For unaligned 16270 // addresses, unaligned VSX loads are only fast starting with the P8. 16271 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16272 (Op.isAligned(Align(16)) || 16273 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16274 return MVT::v4i32; 16275 } 16276 16277 if (Subtarget.isPPC64()) { 16278 return MVT::i64; 16279 } 16280 16281 return MVT::i32; 16282 } 16283 16284 /// Returns true if it is beneficial to convert a load of a constant 16285 /// to just the constant itself. 16286 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16287 Type *Ty) const { 16288 assert(Ty->isIntegerTy()); 16289 16290 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16291 return !(BitSize == 0 || BitSize > 64); 16292 } 16293 16294 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16295 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16296 return false; 16297 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16298 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16299 return NumBits1 == 64 && NumBits2 == 32; 16300 } 16301 16302 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16303 if (!VT1.isInteger() || !VT2.isInteger()) 16304 return false; 16305 unsigned NumBits1 = VT1.getSizeInBits(); 16306 unsigned NumBits2 = VT2.getSizeInBits(); 16307 return NumBits1 == 64 && NumBits2 == 32; 16308 } 16309 16310 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16311 // Generally speaking, zexts are not free, but they are free when they can be 16312 // folded with other operations. 16313 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16314 EVT MemVT = LD->getMemoryVT(); 16315 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16316 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16317 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16318 LD->getExtensionType() == ISD::ZEXTLOAD)) 16319 return true; 16320 } 16321 16322 // FIXME: Add other cases... 16323 // - 32-bit shifts with a zext to i64 16324 // - zext after ctlz, bswap, etc. 16325 // - zext after and by a constant mask 16326 16327 return TargetLowering::isZExtFree(Val, VT2); 16328 } 16329 16330 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16331 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16332 "invalid fpext types"); 16333 // Extending to float128 is not free. 16334 if (DestVT == MVT::f128) 16335 return false; 16336 return true; 16337 } 16338 16339 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16340 return isInt<16>(Imm) || isUInt<16>(Imm); 16341 } 16342 16343 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16344 return isInt<16>(Imm) || isUInt<16>(Imm); 16345 } 16346 16347 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16348 unsigned, 16349 unsigned, 16350 MachineMemOperand::Flags, 16351 bool *Fast) const { 16352 if (DisablePPCUnaligned) 16353 return false; 16354 16355 // PowerPC supports unaligned memory access for simple non-vector types. 16356 // Although accessing unaligned addresses is not as efficient as accessing 16357 // aligned addresses, it is generally more efficient than manual expansion, 16358 // and generally only traps for software emulation when crossing page 16359 // boundaries. 16360 16361 if (!VT.isSimple()) 16362 return false; 16363 16364 if (VT.isFloatingPoint() && !VT.isVector() && 16365 !Subtarget.allowsUnalignedFPAccess()) 16366 return false; 16367 16368 if (VT.getSimpleVT().isVector()) { 16369 if (Subtarget.hasVSX()) { 16370 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16371 VT != MVT::v4f32 && VT != MVT::v4i32) 16372 return false; 16373 } else { 16374 return false; 16375 } 16376 } 16377 16378 if (VT == MVT::ppcf128) 16379 return false; 16380 16381 if (Fast) 16382 *Fast = true; 16383 16384 return true; 16385 } 16386 16387 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16388 EVT VT) const { 16389 return isFMAFasterThanFMulAndFAdd( 16390 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16391 } 16392 16393 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16394 Type *Ty) const { 16395 switch (Ty->getScalarType()->getTypeID()) { 16396 case Type::FloatTyID: 16397 case Type::DoubleTyID: 16398 return true; 16399 case Type::FP128TyID: 16400 return Subtarget.hasP9Vector(); 16401 default: 16402 return false; 16403 } 16404 } 16405 16406 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 16407 // FIXME: add more patterns which are profitable to hoist. 16408 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16409 if (I->getOpcode() != Instruction::FMul) 16410 return true; 16411 16412 if (!I->hasOneUse()) 16413 return true; 16414 16415 Instruction *User = I->user_back(); 16416 assert(User && "A single use instruction with no uses."); 16417 16418 if (User->getOpcode() != Instruction::FSub && 16419 User->getOpcode() != Instruction::FAdd) 16420 return true; 16421 16422 const TargetOptions &Options = getTargetMachine().Options; 16423 const Function *F = I->getFunction(); 16424 const DataLayout &DL = F->getParent()->getDataLayout(); 16425 Type *Ty = User->getOperand(0)->getType(); 16426 16427 return !( 16428 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16429 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16430 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16431 } 16432 16433 const MCPhysReg * 16434 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16435 // LR is a callee-save register, but we must treat it as clobbered by any call 16436 // site. Hence we include LR in the scratch registers, which are in turn added 16437 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16438 // to CTR, which is used by any indirect call. 16439 static const MCPhysReg ScratchRegs[] = { 16440 PPC::X12, PPC::LR8, PPC::CTR8, 0 16441 }; 16442 16443 return ScratchRegs; 16444 } 16445 16446 Register PPCTargetLowering::getExceptionPointerRegister( 16447 const Constant *PersonalityFn) const { 16448 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16449 } 16450 16451 Register PPCTargetLowering::getExceptionSelectorRegister( 16452 const Constant *PersonalityFn) const { 16453 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16454 } 16455 16456 bool 16457 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16458 EVT VT , unsigned DefinedValues) const { 16459 if (VT == MVT::v2i64) 16460 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16461 16462 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 16463 return true; 16464 16465 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16466 } 16467 16468 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16469 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16470 return TargetLowering::getSchedulingPreference(N); 16471 16472 return Sched::ILP; 16473 } 16474 16475 // Create a fast isel object. 16476 FastISel * 16477 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16478 const TargetLibraryInfo *LibInfo) const { 16479 return PPC::createFastISel(FuncInfo, LibInfo); 16480 } 16481 16482 // 'Inverted' means the FMA opcode after negating one multiplicand. 16483 // For example, (fma -a b c) = (fnmsub a b c) 16484 static unsigned invertFMAOpcode(unsigned Opc) { 16485 switch (Opc) { 16486 default: 16487 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16488 case ISD::FMA: 16489 return PPCISD::FNMSUB; 16490 case PPCISD::FNMSUB: 16491 return ISD::FMA; 16492 } 16493 } 16494 16495 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16496 bool LegalOps, bool OptForSize, 16497 NegatibleCost &Cost, 16498 unsigned Depth) const { 16499 if (Depth > SelectionDAG::MaxRecursionDepth) 16500 return SDValue(); 16501 16502 unsigned Opc = Op.getOpcode(); 16503 EVT VT = Op.getValueType(); 16504 SDNodeFlags Flags = Op.getNode()->getFlags(); 16505 16506 switch (Opc) { 16507 case PPCISD::FNMSUB: 16508 // TODO: QPX subtarget is deprecated. No transformation here. 16509 if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX()) 16510 break; 16511 16512 const TargetOptions &Options = getTargetMachine().Options; 16513 SDValue N0 = Op.getOperand(0); 16514 SDValue N1 = Op.getOperand(1); 16515 SDValue N2 = Op.getOperand(2); 16516 SDLoc Loc(Op); 16517 16518 NegatibleCost N2Cost = NegatibleCost::Expensive; 16519 SDValue NegN2 = 16520 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16521 16522 if (!NegN2) 16523 return SDValue(); 16524 16525 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16526 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16527 // These transformations may change sign of zeroes. For example, 16528 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16529 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16530 // Try and choose the cheaper one to negate. 16531 NegatibleCost N0Cost = NegatibleCost::Expensive; 16532 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16533 N0Cost, Depth + 1); 16534 16535 NegatibleCost N1Cost = NegatibleCost::Expensive; 16536 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16537 N1Cost, Depth + 1); 16538 16539 if (NegN0 && N0Cost <= N1Cost) { 16540 Cost = std::min(N0Cost, N2Cost); 16541 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16542 } else if (NegN1) { 16543 Cost = std::min(N1Cost, N2Cost); 16544 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16545 } 16546 } 16547 16548 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16549 if (isOperationLegal(ISD::FMA, VT)) { 16550 Cost = N2Cost; 16551 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16552 } 16553 16554 break; 16555 } 16556 16557 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16558 Cost, Depth); 16559 } 16560 16561 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16562 bool PPCTargetLowering::useLoadStackGuardNode() const { 16563 if (!Subtarget.isTargetLinux()) 16564 return TargetLowering::useLoadStackGuardNode(); 16565 return true; 16566 } 16567 16568 // Override to disable global variable loading on Linux. 16569 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16570 if (!Subtarget.isTargetLinux()) 16571 return TargetLowering::insertSSPDeclarations(M); 16572 } 16573 16574 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16575 bool ForCodeSize) const { 16576 if (!VT.isSimple() || !Subtarget.hasVSX()) 16577 return false; 16578 16579 switch(VT.getSimpleVT().SimpleTy) { 16580 default: 16581 // For FP types that are currently not supported by PPC backend, return 16582 // false. Examples: f16, f80. 16583 return false; 16584 case MVT::f32: 16585 case MVT::f64: 16586 if (Subtarget.hasPrefixInstrs()) { 16587 // With prefixed instructions, we can materialize anything that can be 16588 // represented with a 32-bit immediate, not just positive zero. 16589 APFloat APFloatOfImm = Imm; 16590 return convertToNonDenormSingle(APFloatOfImm); 16591 } 16592 LLVM_FALLTHROUGH; 16593 case MVT::ppcf128: 16594 return Imm.isPosZero(); 16595 } 16596 } 16597 16598 // For vector shift operation op, fold 16599 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16600 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16601 SelectionDAG &DAG) { 16602 SDValue N0 = N->getOperand(0); 16603 SDValue N1 = N->getOperand(1); 16604 EVT VT = N0.getValueType(); 16605 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16606 unsigned Opcode = N->getOpcode(); 16607 unsigned TargetOpcode; 16608 16609 switch (Opcode) { 16610 default: 16611 llvm_unreachable("Unexpected shift operation"); 16612 case ISD::SHL: 16613 TargetOpcode = PPCISD::SHL; 16614 break; 16615 case ISD::SRL: 16616 TargetOpcode = PPCISD::SRL; 16617 break; 16618 case ISD::SRA: 16619 TargetOpcode = PPCISD::SRA; 16620 break; 16621 } 16622 16623 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16624 N1->getOpcode() == ISD::AND) 16625 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16626 if (Mask->getZExtValue() == OpSizeInBits - 1) 16627 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16628 16629 return SDValue(); 16630 } 16631 16632 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16633 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16634 return Value; 16635 16636 SDValue N0 = N->getOperand(0); 16637 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16638 if (!Subtarget.isISA3_0() || 16639 N0.getOpcode() != ISD::SIGN_EXTEND || 16640 N0.getOperand(0).getValueType() != MVT::i32 || 16641 CN1 == nullptr || N->getValueType(0) != MVT::i64) 16642 return SDValue(); 16643 16644 // We can't save an operation here if the value is already extended, and 16645 // the existing shift is easier to combine. 16646 SDValue ExtsSrc = N0.getOperand(0); 16647 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16648 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16649 return SDValue(); 16650 16651 SDLoc DL(N0); 16652 SDValue ShiftBy = SDValue(CN1, 0); 16653 // We want the shift amount to be i32 on the extswli, but the shift could 16654 // have an i64. 16655 if (ShiftBy.getValueType() == MVT::i64) 16656 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16657 16658 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16659 ShiftBy); 16660 } 16661 16662 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16663 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16664 return Value; 16665 16666 return SDValue(); 16667 } 16668 16669 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16670 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16671 return Value; 16672 16673 return SDValue(); 16674 } 16675 16676 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16677 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16678 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16679 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16680 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16681 const PPCSubtarget &Subtarget) { 16682 if (!Subtarget.isPPC64()) 16683 return SDValue(); 16684 16685 SDValue LHS = N->getOperand(0); 16686 SDValue RHS = N->getOperand(1); 16687 16688 auto isZextOfCompareWithConstant = [](SDValue Op) { 16689 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16690 Op.getValueType() != MVT::i64) 16691 return false; 16692 16693 SDValue Cmp = Op.getOperand(0); 16694 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16695 Cmp.getOperand(0).getValueType() != MVT::i64) 16696 return false; 16697 16698 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16699 int64_t NegConstant = 0 - Constant->getSExtValue(); 16700 // Due to the limitations of the addi instruction, 16701 // -C is required to be [-32768, 32767]. 16702 return isInt<16>(NegConstant); 16703 } 16704 16705 return false; 16706 }; 16707 16708 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16709 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16710 16711 // If there is a pattern, canonicalize a zext operand to the RHS. 16712 if (LHSHasPattern && !RHSHasPattern) 16713 std::swap(LHS, RHS); 16714 else if (!LHSHasPattern && !RHSHasPattern) 16715 return SDValue(); 16716 16717 SDLoc DL(N); 16718 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16719 SDValue Cmp = RHS.getOperand(0); 16720 SDValue Z = Cmp.getOperand(0); 16721 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16722 16723 assert(Constant && "Constant Should not be a null pointer."); 16724 int64_t NegConstant = 0 - Constant->getSExtValue(); 16725 16726 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16727 default: break; 16728 case ISD::SETNE: { 16729 // when C == 0 16730 // --> addze X, (addic Z, -1).carry 16731 // / 16732 // add X, (zext(setne Z, C))-- 16733 // \ when -32768 <= -C <= 32767 && C != 0 16734 // --> addze X, (addic (addi Z, -C), -1).carry 16735 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16736 DAG.getConstant(NegConstant, DL, MVT::i64)); 16737 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16738 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16739 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16740 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16741 SDValue(Addc.getNode(), 1)); 16742 } 16743 case ISD::SETEQ: { 16744 // when C == 0 16745 // --> addze X, (subfic Z, 0).carry 16746 // / 16747 // add X, (zext(sete Z, C))-- 16748 // \ when -32768 <= -C <= 32767 && C != 0 16749 // --> addze X, (subfic (addi Z, -C), 0).carry 16750 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16751 DAG.getConstant(NegConstant, DL, MVT::i64)); 16752 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16753 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16754 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16755 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16756 SDValue(Subc.getNode(), 1)); 16757 } 16758 } 16759 16760 return SDValue(); 16761 } 16762 16763 // Transform 16764 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16765 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16766 // In this case both C1 and C2 must be known constants. 16767 // C1+C2 must fit into a 34 bit signed integer. 16768 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16769 const PPCSubtarget &Subtarget) { 16770 if (!Subtarget.isUsingPCRelativeCalls()) 16771 return SDValue(); 16772 16773 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16774 // If we find that node try to cast the Global Address and the Constant. 16775 SDValue LHS = N->getOperand(0); 16776 SDValue RHS = N->getOperand(1); 16777 16778 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16779 std::swap(LHS, RHS); 16780 16781 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16782 return SDValue(); 16783 16784 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16785 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16786 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16787 16788 // Check that both casts succeeded. 16789 if (!GSDN || !ConstNode) 16790 return SDValue(); 16791 16792 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16793 SDLoc DL(GSDN); 16794 16795 // The signed int offset needs to fit in 34 bits. 16796 if (!isInt<34>(NewOffset)) 16797 return SDValue(); 16798 16799 // The new global address is a copy of the old global address except 16800 // that it has the updated Offset. 16801 SDValue GA = 16802 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16803 NewOffset, GSDN->getTargetFlags()); 16804 SDValue MatPCRel = 16805 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16806 return MatPCRel; 16807 } 16808 16809 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16810 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16811 return Value; 16812 16813 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16814 return Value; 16815 16816 return SDValue(); 16817 } 16818 16819 // Detect TRUNCATE operations on bitcasts of float128 values. 16820 // What we are looking for here is the situtation where we extract a subset 16821 // of bits from a 128 bit float. 16822 // This can be of two forms: 16823 // 1) BITCAST of f128 feeding TRUNCATE 16824 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16825 // The reason this is required is because we do not have a legal i128 type 16826 // and so we want to prevent having to store the f128 and then reload part 16827 // of it. 16828 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16829 DAGCombinerInfo &DCI) const { 16830 // If we are using CRBits then try that first. 16831 if (Subtarget.useCRBits()) { 16832 // Check if CRBits did anything and return that if it did. 16833 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16834 return CRTruncValue; 16835 } 16836 16837 SDLoc dl(N); 16838 SDValue Op0 = N->getOperand(0); 16839 16840 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16841 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16842 EVT VT = N->getValueType(0); 16843 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16844 return SDValue(); 16845 SDValue Sub = Op0.getOperand(0); 16846 if (Sub.getOpcode() == ISD::SUB) { 16847 SDValue SubOp0 = Sub.getOperand(0); 16848 SDValue SubOp1 = Sub.getOperand(1); 16849 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16850 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16851 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16852 SubOp1.getOperand(0), 16853 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16854 } 16855 } 16856 } 16857 16858 // Looking for a truncate of i128 to i64. 16859 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16860 return SDValue(); 16861 16862 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16863 16864 // SRL feeding TRUNCATE. 16865 if (Op0.getOpcode() == ISD::SRL) { 16866 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16867 // The right shift has to be by 64 bits. 16868 if (!ConstNode || ConstNode->getZExtValue() != 64) 16869 return SDValue(); 16870 16871 // Switch the element number to extract. 16872 EltToExtract = EltToExtract ? 0 : 1; 16873 // Update Op0 past the SRL. 16874 Op0 = Op0.getOperand(0); 16875 } 16876 16877 // BITCAST feeding a TRUNCATE possibly via SRL. 16878 if (Op0.getOpcode() == ISD::BITCAST && 16879 Op0.getValueType() == MVT::i128 && 16880 Op0.getOperand(0).getValueType() == MVT::f128) { 16881 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16882 return DCI.DAG.getNode( 16883 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16884 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16885 } 16886 return SDValue(); 16887 } 16888 16889 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16890 SelectionDAG &DAG = DCI.DAG; 16891 16892 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16893 if (!ConstOpOrElement) 16894 return SDValue(); 16895 16896 // An imul is usually smaller than the alternative sequence for legal type. 16897 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16898 isOperationLegal(ISD::MUL, N->getValueType(0))) 16899 return SDValue(); 16900 16901 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16902 switch (this->Subtarget.getCPUDirective()) { 16903 default: 16904 // TODO: enhance the condition for subtarget before pwr8 16905 return false; 16906 case PPC::DIR_PWR8: 16907 // type mul add shl 16908 // scalar 4 1 1 16909 // vector 7 2 2 16910 return true; 16911 case PPC::DIR_PWR9: 16912 case PPC::DIR_PWR10: 16913 case PPC::DIR_PWR_FUTURE: 16914 // type mul add shl 16915 // scalar 5 2 2 16916 // vector 7 2 2 16917 16918 // The cycle RATIO of related operations are showed as a table above. 16919 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16920 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16921 // are 4, it is always profitable; but for 3 instrs patterns 16922 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16923 // So we should only do it for vector type. 16924 return IsAddOne && IsNeg ? VT.isVector() : true; 16925 } 16926 }; 16927 16928 EVT VT = N->getValueType(0); 16929 SDLoc DL(N); 16930 16931 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16932 bool IsNeg = MulAmt.isNegative(); 16933 APInt MulAmtAbs = MulAmt.abs(); 16934 16935 if ((MulAmtAbs - 1).isPowerOf2()) { 16936 // (mul x, 2^N + 1) => (add (shl x, N), x) 16937 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16938 16939 if (!IsProfitable(IsNeg, true, VT)) 16940 return SDValue(); 16941 16942 SDValue Op0 = N->getOperand(0); 16943 SDValue Op1 = 16944 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16945 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16946 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16947 16948 if (!IsNeg) 16949 return Res; 16950 16951 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16952 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16953 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16954 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16955 16956 if (!IsProfitable(IsNeg, false, VT)) 16957 return SDValue(); 16958 16959 SDValue Op0 = N->getOperand(0); 16960 SDValue Op1 = 16961 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16962 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16963 16964 if (!IsNeg) 16965 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16966 else 16967 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16968 16969 } else { 16970 return SDValue(); 16971 } 16972 } 16973 16974 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16975 // in combiner since we need to check SD flags and other subtarget features. 16976 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16977 DAGCombinerInfo &DCI) const { 16978 SDValue N0 = N->getOperand(0); 16979 SDValue N1 = N->getOperand(1); 16980 SDValue N2 = N->getOperand(2); 16981 SDNodeFlags Flags = N->getFlags(); 16982 EVT VT = N->getValueType(0); 16983 SelectionDAG &DAG = DCI.DAG; 16984 const TargetOptions &Options = getTargetMachine().Options; 16985 unsigned Opc = N->getOpcode(); 16986 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16987 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16988 SDLoc Loc(N); 16989 16990 // TODO: QPX subtarget is deprecated. No transformation here. 16991 if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT)) 16992 return SDValue(); 16993 16994 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16995 // since (fnmsub a b c)=-0 while c-ab=+0. 16996 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16997 return SDValue(); 16998 16999 // (fma (fneg a) b c) => (fnmsub a b c) 17000 // (fnmsub (fneg a) b c) => (fma a b c) 17001 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17002 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17003 17004 // (fma a (fneg b) c) => (fnmsub a b c) 17005 // (fnmsub a (fneg b) c) => (fma a b c) 17006 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17007 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17008 17009 return SDValue(); 17010 } 17011 17012 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17013 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17014 if (!Subtarget.is64BitELFABI()) 17015 return false; 17016 17017 // If not a tail call then no need to proceed. 17018 if (!CI->isTailCall()) 17019 return false; 17020 17021 // If sibling calls have been disabled and tail-calls aren't guaranteed 17022 // there is no reason to duplicate. 17023 auto &TM = getTargetMachine(); 17024 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17025 return false; 17026 17027 // Can't tail call a function called indirectly, or if it has variadic args. 17028 const Function *Callee = CI->getCalledFunction(); 17029 if (!Callee || Callee->isVarArg()) 17030 return false; 17031 17032 // Make sure the callee and caller calling conventions are eligible for tco. 17033 const Function *Caller = CI->getParent()->getParent(); 17034 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17035 CI->getCallingConv())) 17036 return false; 17037 17038 // If the function is local then we have a good chance at tail-calling it 17039 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17040 } 17041 17042 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17043 if (!Subtarget.hasVSX()) 17044 return false; 17045 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17046 return true; 17047 return VT == MVT::f32 || VT == MVT::f64 || 17048 VT == MVT::v4f32 || VT == MVT::v2f64; 17049 } 17050 17051 bool PPCTargetLowering:: 17052 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17053 const Value *Mask = AndI.getOperand(1); 17054 // If the mask is suitable for andi. or andis. we should sink the and. 17055 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17056 // Can't handle constants wider than 64-bits. 17057 if (CI->getBitWidth() > 64) 17058 return false; 17059 int64_t ConstVal = CI->getZExtValue(); 17060 return isUInt<16>(ConstVal) || 17061 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17062 } 17063 17064 // For non-constant masks, we can always use the record-form and. 17065 return true; 17066 } 17067 17068 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17069 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17070 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17071 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17072 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17073 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17074 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17075 assert(Subtarget.hasP9Altivec() && 17076 "Only combine this when P9 altivec supported!"); 17077 EVT VT = N->getValueType(0); 17078 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17079 return SDValue(); 17080 17081 SelectionDAG &DAG = DCI.DAG; 17082 SDLoc dl(N); 17083 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17084 // Even for signed integers, if it's known to be positive (as signed 17085 // integer) due to zero-extended inputs. 17086 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17087 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17088 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17089 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17090 (SubOpcd1 == ISD::ZERO_EXTEND || 17091 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17092 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17093 N->getOperand(0)->getOperand(0), 17094 N->getOperand(0)->getOperand(1), 17095 DAG.getTargetConstant(0, dl, MVT::i32)); 17096 } 17097 17098 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17099 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17100 N->getOperand(0).hasOneUse()) { 17101 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17102 N->getOperand(0)->getOperand(0), 17103 N->getOperand(0)->getOperand(1), 17104 DAG.getTargetConstant(1, dl, MVT::i32)); 17105 } 17106 } 17107 17108 return SDValue(); 17109 } 17110 17111 // For type v4i32/v8ii16/v16i8, transform 17112 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17113 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17114 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17115 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17116 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17117 DAGCombinerInfo &DCI) const { 17118 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17119 assert(Subtarget.hasP9Altivec() && 17120 "Only combine this when P9 altivec supported!"); 17121 17122 SelectionDAG &DAG = DCI.DAG; 17123 SDLoc dl(N); 17124 SDValue Cond = N->getOperand(0); 17125 SDValue TrueOpnd = N->getOperand(1); 17126 SDValue FalseOpnd = N->getOperand(2); 17127 EVT VT = N->getOperand(1).getValueType(); 17128 17129 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17130 FalseOpnd.getOpcode() != ISD::SUB) 17131 return SDValue(); 17132 17133 // ABSD only available for type v4i32/v8i16/v16i8 17134 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17135 return SDValue(); 17136 17137 // At least to save one more dependent computation 17138 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17139 return SDValue(); 17140 17141 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17142 17143 // Can only handle unsigned comparison here 17144 switch (CC) { 17145 default: 17146 return SDValue(); 17147 case ISD::SETUGT: 17148 case ISD::SETUGE: 17149 break; 17150 case ISD::SETULT: 17151 case ISD::SETULE: 17152 std::swap(TrueOpnd, FalseOpnd); 17153 break; 17154 } 17155 17156 SDValue CmpOpnd1 = Cond.getOperand(0); 17157 SDValue CmpOpnd2 = Cond.getOperand(1); 17158 17159 // SETCC CmpOpnd1 CmpOpnd2 cond 17160 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17161 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17162 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17163 TrueOpnd.getOperand(1) == CmpOpnd2 && 17164 FalseOpnd.getOperand(0) == CmpOpnd2 && 17165 FalseOpnd.getOperand(1) == CmpOpnd1) { 17166 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17167 CmpOpnd1, CmpOpnd2, 17168 DAG.getTargetConstant(0, dl, MVT::i32)); 17169 } 17170 17171 return SDValue(); 17172 } 17173