xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp (revision c7046f76c2c027b00c0e6ba57cfd28f1a78f5e23)
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
139 
140 // FIXME: Remove this once the bug has been fixed!
141 extern cl::opt<bool> ANDIGlueBug;
142 
143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
144                                      const PPCSubtarget &STI)
145     : TargetLowering(TM), Subtarget(STI) {
146   // Initialize map that relates the PPC addressing modes to the computed flags
147   // of a load/store instruction. The map is used to determine the optimal
148   // addressing mode when selecting load and stores.
149   initializeAddrModeMap();
150   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
151   // arguments are at least 4/8 bytes aligned.
152   bool isPPC64 = Subtarget.isPPC64();
153   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
154 
155   // Set up the register classes.
156   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
157   if (!useSoftFloat()) {
158     if (hasSPE()) {
159       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
160       // EFPU2 APU only supports f32
161       if (!Subtarget.hasEFPU2())
162         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
163     } else {
164       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
165       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
166     }
167   }
168 
169   // Match BITREVERSE to customized fast code sequence in the td file.
170   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
171   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
172 
173   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
174   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
175 
176   // Custom lower inline assembly to check for special registers.
177   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
178   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
179 
180   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
181   for (MVT VT : MVT::integer_valuetypes()) {
182     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
183     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
184   }
185 
186   if (Subtarget.isISA3_0()) {
187     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
188     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
189     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
190     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
191   } else {
192     // No extending loads from f16 or HW conversions back and forth.
193     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
195     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
197     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
198     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
199     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
200     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
201   }
202 
203   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
204 
205   // PowerPC has pre-inc load and store's.
206   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
211   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
212   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
213   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
214   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
215   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
216   if (!Subtarget.hasSPE()) {
217     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
218     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
219     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
220     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
221   }
222 
223   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
224   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
225   for (MVT VT : ScalarIntVTs) {
226     setOperationAction(ISD::ADDC, VT, Legal);
227     setOperationAction(ISD::ADDE, VT, Legal);
228     setOperationAction(ISD::SUBC, VT, Legal);
229     setOperationAction(ISD::SUBE, VT, Legal);
230   }
231 
232   if (Subtarget.useCRBits()) {
233     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
234 
235     if (isPPC64 || Subtarget.hasFPCVT()) {
236       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
240       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
241                         isPPC64 ? MVT::i64 : MVT::i32);
242 
243       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
244       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
245                          isPPC64 ? MVT::i64 : MVT::i32);
246       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
247       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
248                         isPPC64 ? MVT::i64 : MVT::i32);
249 
250       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
254       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
255                         isPPC64 ? MVT::i64 : MVT::i32);
256 
257       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
258       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
259                         isPPC64 ? MVT::i64 : MVT::i32);
260       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
261       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
262                         isPPC64 ? MVT::i64 : MVT::i32);
263     } else {
264       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
265       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
266       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
267       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
268     }
269 
270     // PowerPC does not support direct load/store of condition registers.
271     setOperationAction(ISD::LOAD, MVT::i1, Custom);
272     setOperationAction(ISD::STORE, MVT::i1, Custom);
273 
274     // FIXME: Remove this once the ANDI glue bug is fixed:
275     if (ANDIGlueBug)
276       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
277 
278     for (MVT VT : MVT::integer_valuetypes()) {
279       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
281       setTruncStoreAction(VT, MVT::i1, Expand);
282     }
283 
284     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
285   }
286 
287   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
288   // PPC (the libcall is not available).
289   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
290   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
291   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
292   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
293 
294   // We do not currently implement these libm ops for PowerPC.
295   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
296   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
297   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
298   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
299   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
300   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
301 
302   // PowerPC has no SREM/UREM instructions unless we are on P9
303   // On P9 we may use a hardware instruction to compute the remainder.
304   // When the result of both the remainder and the division is required it is
305   // more efficient to compute the remainder from the result of the division
306   // rather than use the remainder instruction. The instructions are legalized
307   // directly because the DivRemPairsPass performs the transformation at the IR
308   // level.
309   if (Subtarget.isISA3_0()) {
310     setOperationAction(ISD::SREM, MVT::i32, Legal);
311     setOperationAction(ISD::UREM, MVT::i32, Legal);
312     setOperationAction(ISD::SREM, MVT::i64, Legal);
313     setOperationAction(ISD::UREM, MVT::i64, Legal);
314   } else {
315     setOperationAction(ISD::SREM, MVT::i32, Expand);
316     setOperationAction(ISD::UREM, MVT::i32, Expand);
317     setOperationAction(ISD::SREM, MVT::i64, Expand);
318     setOperationAction(ISD::UREM, MVT::i64, Expand);
319   }
320 
321   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
322   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
323   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
324   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
325   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
326   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
327   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
328   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
329   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
330 
331   // Handle constrained floating-point operations of scalar.
332   // TODO: Handle SPE specific operation.
333   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
334   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
335   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
336   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
337   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
338 
339   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
340   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
341   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
342   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
343 
344   if (!Subtarget.hasSPE()) {
345     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasVSX()) {
350     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFSQRT()) {
355     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasFPRND()) {
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
364 
365     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
366     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
367     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
368     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
369   }
370 
371   // We don't support sin/cos/sqrt/fmod/pow
372   setOperationAction(ISD::FSIN , MVT::f64, Expand);
373   setOperationAction(ISD::FCOS , MVT::f64, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
375   setOperationAction(ISD::FREM , MVT::f64, Expand);
376   setOperationAction(ISD::FPOW , MVT::f64, Expand);
377   setOperationAction(ISD::FSIN , MVT::f32, Expand);
378   setOperationAction(ISD::FCOS , MVT::f32, Expand);
379   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
380   setOperationAction(ISD::FREM , MVT::f32, Expand);
381   setOperationAction(ISD::FPOW , MVT::f32, Expand);
382   if (Subtarget.hasSPE()) {
383     setOperationAction(ISD::FMA  , MVT::f64, Expand);
384     setOperationAction(ISD::FMA  , MVT::f32, Expand);
385   } else {
386     setOperationAction(ISD::FMA  , MVT::f64, Legal);
387     setOperationAction(ISD::FMA  , MVT::f32, Legal);
388   }
389 
390   if (Subtarget.hasSPE())
391     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
392 
393   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
394 
395   // If we're enabling GP optimizations, use hardware square root
396   if (!Subtarget.hasFSQRT() &&
397       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
398         Subtarget.hasFRE()))
399     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
400 
401   if (!Subtarget.hasFSQRT() &&
402       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
403         Subtarget.hasFRES()))
404     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
405 
406   if (Subtarget.hasFCPSGN()) {
407     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
408     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
409   } else {
410     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
412   }
413 
414   if (Subtarget.hasFPRND()) {
415     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
416     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
417     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
418     setOperationAction(ISD::FROUND, MVT::f64, Legal);
419 
420     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
421     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
422     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
423     setOperationAction(ISD::FROUND, MVT::f32, Legal);
424   }
425 
426   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
427   // to speed up scalar BSWAP64.
428   // CTPOP or CTTZ were introduced in P8/P9 respectively
429   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
430   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
431     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
432   else
433     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
434   if (Subtarget.isISA3_0()) {
435     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
436     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
437   } else {
438     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
439     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
440   }
441 
442   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
443     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
444     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
445   } else {
446     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
447     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
448   }
449 
450   // PowerPC does not have ROTR
451   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
452   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
453 
454   if (!Subtarget.useCRBits()) {
455     // PowerPC does not have Select
456     setOperationAction(ISD::SELECT, MVT::i32, Expand);
457     setOperationAction(ISD::SELECT, MVT::i64, Expand);
458     setOperationAction(ISD::SELECT, MVT::f32, Expand);
459     setOperationAction(ISD::SELECT, MVT::f64, Expand);
460   }
461 
462   // PowerPC wants to turn select_cc of FP into fsel when possible.
463   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
464   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
465 
466   // PowerPC wants to optimize integer setcc a bit
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::SETCC, MVT::i32, Custom);
469 
470   if (Subtarget.hasFPU()) {
471     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
472     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
473     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
474 
475     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
476     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
477     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
478   }
479 
480   // PowerPC does not have BRCOND which requires SetCC
481   if (!Subtarget.useCRBits())
482     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
483 
484   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
485 
486   if (Subtarget.hasSPE()) {
487     // SPE has built-in conversions
488     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
489     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
490     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
491     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
492     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
493     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
494 
495     // SPE supports signaling compare of f32/f64.
496     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
497     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
498   } else {
499     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
500     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
501     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
502 
503     // PowerPC does not have [U|S]INT_TO_FP
504     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
505     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
506     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
507     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
508   }
509 
510   if (Subtarget.hasDirectMove() && isPPC64) {
511     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
512     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
513     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
514     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
515     if (TM.Options.UnsafeFPMath) {
516       setOperationAction(ISD::LRINT, MVT::f64, Legal);
517       setOperationAction(ISD::LRINT, MVT::f32, Legal);
518       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
519       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
520       setOperationAction(ISD::LROUND, MVT::f64, Legal);
521       setOperationAction(ISD::LROUND, MVT::f32, Legal);
522       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
523       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
524     }
525   } else {
526     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
527     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
528     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
529     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
530   }
531 
532   // We cannot sextinreg(i1).  Expand to shifts.
533   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
534 
535   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
536   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
537   // support continuation, user-level threading, and etc.. As a result, no
538   // other SjLj exception interfaces are implemented and please don't build
539   // your own exception handling based on them.
540   // LLVM/Clang supports zero-cost DWARF exception handling.
541   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
542   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
543 
544   // We want to legalize GlobalAddress and ConstantPool nodes into the
545   // appropriate instructions to materialize the address.
546   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
547   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
548   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
549   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
550   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
551   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
552   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
553   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
554   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
555   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
556 
557   // TRAP is legal.
558   setOperationAction(ISD::TRAP, MVT::Other, Legal);
559 
560   // TRAMPOLINE is custom lowered.
561   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
562   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
563 
564   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
565   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
566 
567   if (Subtarget.is64BitELFABI()) {
568     // VAARG always uses double-word chunks, so promote anything smaller.
569     setOperationAction(ISD::VAARG, MVT::i1, Promote);
570     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
571     setOperationAction(ISD::VAARG, MVT::i8, Promote);
572     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
573     setOperationAction(ISD::VAARG, MVT::i16, Promote);
574     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
575     setOperationAction(ISD::VAARG, MVT::i32, Promote);
576     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
577     setOperationAction(ISD::VAARG, MVT::Other, Expand);
578   } else if (Subtarget.is32BitELFABI()) {
579     // VAARG is custom lowered with the 32-bit SVR4 ABI.
580     setOperationAction(ISD::VAARG, MVT::Other, Custom);
581     setOperationAction(ISD::VAARG, MVT::i64, Custom);
582   } else
583     setOperationAction(ISD::VAARG, MVT::Other, Expand);
584 
585   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
586   if (Subtarget.is32BitELFABI())
587     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
588   else
589     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
590 
591   // Use the default implementation.
592   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
593   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
594   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
595   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
596   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
597   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
598   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
599   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
600   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
601 
602   // We want to custom lower some of our intrinsics.
603   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
604   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
605   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
606 
607   // To handle counter-based loop conditions.
608   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
609 
610   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
611   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
612   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
613   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
614 
615   // Comparisons that require checking two conditions.
616   if (Subtarget.hasSPE()) {
617     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
618     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
619     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
620     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
621   }
622   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
623   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
624   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
625   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
626   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
627   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
628   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
629   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
630   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
631   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
632   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
633   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
634 
635   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
636   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
637 
638   if (Subtarget.has64BitSupport()) {
639     // They also have instructions for converting between i64 and fp.
640     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
641     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
642     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
643     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
644     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
645     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
646     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
647     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
648     // This is just the low 32 bits of a (signed) fp->i64 conversion.
649     // We cannot do this with Promote because i64 is not a legal type.
650     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
651     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
652 
653     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
654       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
655       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
656     }
657   } else {
658     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
659     if (Subtarget.hasSPE()) {
660       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
661       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
662     } else {
663       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
664       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
665     }
666   }
667 
668   // With the instructions enabled under FPCVT, we can do everything.
669   if (Subtarget.hasFPCVT()) {
670     if (Subtarget.has64BitSupport()) {
671       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
672       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
673       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
674       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
675       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
676       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
677       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
678       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
679     }
680 
681     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
682     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
683     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
684     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
685     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
686     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
687     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
688     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
689   }
690 
691   if (Subtarget.use64BitRegs()) {
692     // 64-bit PowerPC implementations can support i64 types directly
693     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
694     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
695     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
696     // 64-bit PowerPC wants to expand i128 shifts itself.
697     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
698     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
699     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
700   } else {
701     // 32-bit PowerPC wants to expand i64 shifts itself.
702     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
703     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
704     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
705   }
706 
707   // PowerPC has better expansions for funnel shifts than the generic
708   // TargetLowering::expandFunnelShift.
709   if (Subtarget.has64BitSupport()) {
710     setOperationAction(ISD::FSHL, MVT::i64, Custom);
711     setOperationAction(ISD::FSHR, MVT::i64, Custom);
712   }
713   setOperationAction(ISD::FSHL, MVT::i32, Custom);
714   setOperationAction(ISD::FSHR, MVT::i32, Custom);
715 
716   if (Subtarget.hasVSX()) {
717     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
718     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
719     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
720     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
721   }
722 
723   if (Subtarget.hasAltivec()) {
724     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
725       setOperationAction(ISD::SADDSAT, VT, Legal);
726       setOperationAction(ISD::SSUBSAT, VT, Legal);
727       setOperationAction(ISD::UADDSAT, VT, Legal);
728       setOperationAction(ISD::USUBSAT, VT, Legal);
729     }
730     // First set operation action for all vector types to expand. Then we
731     // will selectively turn on ones that can be effectively codegen'd.
732     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
733       // add/sub are legal for all supported vector VT's.
734       setOperationAction(ISD::ADD, VT, Legal);
735       setOperationAction(ISD::SUB, VT, Legal);
736 
737       // For v2i64, these are only valid with P8Vector. This is corrected after
738       // the loop.
739       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
740         setOperationAction(ISD::SMAX, VT, Legal);
741         setOperationAction(ISD::SMIN, VT, Legal);
742         setOperationAction(ISD::UMAX, VT, Legal);
743         setOperationAction(ISD::UMIN, VT, Legal);
744       }
745       else {
746         setOperationAction(ISD::SMAX, VT, Expand);
747         setOperationAction(ISD::SMIN, VT, Expand);
748         setOperationAction(ISD::UMAX, VT, Expand);
749         setOperationAction(ISD::UMIN, VT, Expand);
750       }
751 
752       if (Subtarget.hasVSX()) {
753         setOperationAction(ISD::FMAXNUM, VT, Legal);
754         setOperationAction(ISD::FMINNUM, VT, Legal);
755       }
756 
757       // Vector instructions introduced in P8
758       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
759         setOperationAction(ISD::CTPOP, VT, Legal);
760         setOperationAction(ISD::CTLZ, VT, Legal);
761       }
762       else {
763         setOperationAction(ISD::CTPOP, VT, Expand);
764         setOperationAction(ISD::CTLZ, VT, Expand);
765       }
766 
767       // Vector instructions introduced in P9
768       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
769         setOperationAction(ISD::CTTZ, VT, Legal);
770       else
771         setOperationAction(ISD::CTTZ, VT, Expand);
772 
773       // We promote all shuffles to v16i8.
774       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
775       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
776 
777       // We promote all non-typed operations to v4i32.
778       setOperationAction(ISD::AND   , VT, Promote);
779       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
780       setOperationAction(ISD::OR    , VT, Promote);
781       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
782       setOperationAction(ISD::XOR   , VT, Promote);
783       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
784       setOperationAction(ISD::LOAD  , VT, Promote);
785       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
786       setOperationAction(ISD::SELECT, VT, Promote);
787       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
788       setOperationAction(ISD::VSELECT, VT, Legal);
789       setOperationAction(ISD::SELECT_CC, VT, Promote);
790       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
791       setOperationAction(ISD::STORE, VT, Promote);
792       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
793 
794       // No other operations are legal.
795       setOperationAction(ISD::MUL , VT, Expand);
796       setOperationAction(ISD::SDIV, VT, Expand);
797       setOperationAction(ISD::SREM, VT, Expand);
798       setOperationAction(ISD::UDIV, VT, Expand);
799       setOperationAction(ISD::UREM, VT, Expand);
800       setOperationAction(ISD::FDIV, VT, Expand);
801       setOperationAction(ISD::FREM, VT, Expand);
802       setOperationAction(ISD::FNEG, VT, Expand);
803       setOperationAction(ISD::FSQRT, VT, Expand);
804       setOperationAction(ISD::FLOG, VT, Expand);
805       setOperationAction(ISD::FLOG10, VT, Expand);
806       setOperationAction(ISD::FLOG2, VT, Expand);
807       setOperationAction(ISD::FEXP, VT, Expand);
808       setOperationAction(ISD::FEXP2, VT, Expand);
809       setOperationAction(ISD::FSIN, VT, Expand);
810       setOperationAction(ISD::FCOS, VT, Expand);
811       setOperationAction(ISD::FABS, VT, Expand);
812       setOperationAction(ISD::FFLOOR, VT, Expand);
813       setOperationAction(ISD::FCEIL,  VT, Expand);
814       setOperationAction(ISD::FTRUNC, VT, Expand);
815       setOperationAction(ISD::FRINT,  VT, Expand);
816       setOperationAction(ISD::FNEARBYINT, VT, Expand);
817       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
818       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
819       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
820       setOperationAction(ISD::MULHU, VT, Expand);
821       setOperationAction(ISD::MULHS, VT, Expand);
822       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
823       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
824       setOperationAction(ISD::UDIVREM, VT, Expand);
825       setOperationAction(ISD::SDIVREM, VT, Expand);
826       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
827       setOperationAction(ISD::FPOW, VT, Expand);
828       setOperationAction(ISD::BSWAP, VT, Expand);
829       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
830       setOperationAction(ISD::ROTL, VT, Expand);
831       setOperationAction(ISD::ROTR, VT, Expand);
832 
833       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
834         setTruncStoreAction(VT, InnerVT, Expand);
835         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
836         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
837         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
838       }
839     }
840     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
841     if (!Subtarget.hasP8Vector()) {
842       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
843       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
844       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
845       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
846     }
847 
848     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
849     // with merges, splats, etc.
850     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
851 
852     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
853     // are cheap, so handle them before they get expanded to scalar.
854     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
855     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
856     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
857     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
858     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
859 
860     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
861     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
862     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
863     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
864     setOperationAction(ISD::SELECT, MVT::v4i32,
865                        Subtarget.useCRBits() ? Legal : Expand);
866     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
867     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
868     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
869     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
870     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
871     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
872     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
873     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
874     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
875     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
876     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
877     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
878     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
879 
880     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
881     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
882     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
883     if (Subtarget.hasAltivec())
884       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
885         setOperationAction(ISD::ROTL, VT, Legal);
886     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
887     if (Subtarget.hasP8Altivec())
888       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
889 
890     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
891     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
892     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
893     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
894 
895     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
896     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
897 
898     if (Subtarget.hasVSX()) {
899       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
900       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
901       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
902     }
903 
904     if (Subtarget.hasP8Altivec())
905       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
906     else
907       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
908 
909     if (Subtarget.isISA3_1()) {
910       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
911       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
912       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
913       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
914       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
915       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
916       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
917       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
918       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
919       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
920       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
921       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
922       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
923       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
924       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
925       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
926       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
927       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
928     }
929 
930     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
931     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
932 
933     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
934     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
935 
936     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
937     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
938     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
939     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
940 
941     // Altivec does not contain unordered floating-point compare instructions
942     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
943     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
944     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
945     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
946 
947     if (Subtarget.hasVSX()) {
948       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
949       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
950       if (Subtarget.hasP8Vector()) {
951         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
952         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
953       }
954       if (Subtarget.hasDirectMove() && isPPC64) {
955         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
956         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
957         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
958         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
959         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
960         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
961         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
962         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
963       }
964       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
965 
966       // The nearbyint variants are not allowed to raise the inexact exception
967       // so we can only code-gen them with unsafe math.
968       if (TM.Options.UnsafeFPMath) {
969         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
970         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
971       }
972 
973       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
974       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
975       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
976       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
977       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
978       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
979       setOperationAction(ISD::FROUND, MVT::f64, Legal);
980       setOperationAction(ISD::FRINT, MVT::f64, Legal);
981 
982       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
983       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
984       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
985       setOperationAction(ISD::FROUND, MVT::f32, Legal);
986       setOperationAction(ISD::FRINT, MVT::f32, Legal);
987 
988       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
989       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
990 
991       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
992       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
993 
994       // Share the Altivec comparison restrictions.
995       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
996       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
997       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
998       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
999 
1000       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1001       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1002 
1003       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
1004 
1005       if (Subtarget.hasP8Vector())
1006         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1007 
1008       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1009 
1010       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1011       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1012       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1013 
1014       if (Subtarget.hasP8Altivec()) {
1015         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1016         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1017         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1018 
1019         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1020         // SRL, but not for SRA because of the instructions available:
1021         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1022         // doing
1023         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1024         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1025         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1026 
1027         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1028       }
1029       else {
1030         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1031         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1032         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1033 
1034         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1035 
1036         // VSX v2i64 only supports non-arithmetic operations.
1037         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1038         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1039       }
1040 
1041       if (Subtarget.isISA3_1())
1042         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1043       else
1044         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1045 
1046       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1047       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1048       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1049       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1050 
1051       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1052 
1053       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1054       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1055       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1056       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1057       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1058       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1059       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1060       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1061 
1062       // Custom handling for partial vectors of integers converted to
1063       // floating point. We already have optimal handling for v2i32 through
1064       // the DAG combine, so those aren't necessary.
1065       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1066       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1067       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1068       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1069       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1070       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1071       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1072       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1073       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1074       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1075       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1076       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1077       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1078       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1079       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1080       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1081 
1082       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1083       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1084       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1085       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1086       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1087       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1088 
1089       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1090       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1091 
1092       // Handle constrained floating-point operations of vector.
1093       // The predictor is `hasVSX` because altivec instruction has
1094       // no exception but VSX vector instruction has.
1095       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1096       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1097       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1098       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1099       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1100       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1101       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1102       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1103       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1104       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1105       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1106       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1107       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1108 
1109       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1110       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1111       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1112       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1113       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1114       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1115       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1116       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1117       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1118       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1119       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1120       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1121       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1122 
1123       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1124       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1125 
1126       for (MVT FPT : MVT::fp_valuetypes())
1127         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1128 
1129       // Expand the SELECT to SELECT_CC
1130       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1131 
1132       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1133       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1134 
1135       // No implementation for these ops for PowerPC.
1136       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1137       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1138       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1139       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1140       setOperationAction(ISD::FREM, MVT::f128, Expand);
1141     }
1142 
1143     if (Subtarget.hasP8Altivec()) {
1144       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1145       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1146     }
1147 
1148     if (Subtarget.hasP9Vector()) {
1149       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1150       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1151 
1152       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1153       // SRL, but not for SRA because of the instructions available:
1154       // VS{RL} and VS{RL}O.
1155       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1156       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1157       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1158 
1159       setOperationAction(ISD::FADD, MVT::f128, Legal);
1160       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1161       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1162       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1163       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1164 
1165       setOperationAction(ISD::FMA, MVT::f128, Legal);
1166       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1167       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1168       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1169       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1170       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1171       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1172 
1173       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1174       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1175       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1176       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1177       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1178       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1179 
1180       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1181       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1182       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1183 
1184       // Handle constrained floating-point operations of fp128
1185       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1186       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1187       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1188       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1189       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1190       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1191       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1192       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1193       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1194       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1195       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1196       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1197       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1198       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1199       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1200       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1201       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1202       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1203       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1204       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1205     } else if (Subtarget.hasVSX()) {
1206       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1207       setOperationAction(ISD::STORE, MVT::f128, Promote);
1208 
1209       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1210       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1211 
1212       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1213       // fp_to_uint and int_to_fp.
1214       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1215       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1216 
1217       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1218       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1219       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1220       setOperationAction(ISD::FABS, MVT::f128, Expand);
1221       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1222       setOperationAction(ISD::FMA, MVT::f128, Expand);
1223       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1224 
1225       // Expand the fp_extend if the target type is fp128.
1226       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1227       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1228 
1229       // Expand the fp_round if the source type is fp128.
1230       for (MVT VT : {MVT::f32, MVT::f64}) {
1231         setOperationAction(ISD::FP_ROUND, VT, Custom);
1232         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1233       }
1234 
1235       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1236       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1237       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1238       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1239 
1240       // Lower following f128 select_cc pattern:
1241       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1242       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1243 
1244       // We need to handle f128 SELECT_CC with integer result type.
1245       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1246       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1247     }
1248 
1249     if (Subtarget.hasP9Altivec()) {
1250       if (Subtarget.isISA3_1()) {
1251         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1252         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1253         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1254         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1255       } else {
1256         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1257         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1258       }
1259       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1260       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1261       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1262       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1263       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1264       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1265       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1266     }
1267   }
1268 
1269   if (Subtarget.pairedVectorMemops()) {
1270     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1271     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1272     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1273   }
1274   if (Subtarget.hasMMA()) {
1275     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1276     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1277     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1278     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1279   }
1280 
1281   if (Subtarget.has64BitSupport())
1282     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1283 
1284   if (Subtarget.isISA3_1())
1285     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1286 
1287   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1288 
1289   if (!isPPC64) {
1290     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1291     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1292   }
1293 
1294   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) {
1295     setMaxAtomicSizeInBitsSupported(128);
1296     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1297     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1298     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1299   }
1300 
1301   setBooleanContents(ZeroOrOneBooleanContent);
1302 
1303   if (Subtarget.hasAltivec()) {
1304     // Altivec instructions set fields to all zeros or all ones.
1305     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1306   }
1307 
1308   setLibcallName(RTLIB::MULO_I128, nullptr);
1309   if (!isPPC64) {
1310     // These libcalls are not available in 32-bit.
1311     setLibcallName(RTLIB::SHL_I128, nullptr);
1312     setLibcallName(RTLIB::SRL_I128, nullptr);
1313     setLibcallName(RTLIB::SRA_I128, nullptr);
1314     setLibcallName(RTLIB::MUL_I128, nullptr);
1315     setLibcallName(RTLIB::MULO_I64, nullptr);
1316     setLibcallName(RTLIB::MULO_I128, nullptr);
1317   }
1318 
1319   if (!isPPC64)
1320     setMaxAtomicSizeInBitsSupported(32);
1321 
1322   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1323 
1324   // We have target-specific dag combine patterns for the following nodes:
1325   setTargetDAGCombine(ISD::ADD);
1326   setTargetDAGCombine(ISD::SHL);
1327   setTargetDAGCombine(ISD::SRA);
1328   setTargetDAGCombine(ISD::SRL);
1329   setTargetDAGCombine(ISD::MUL);
1330   setTargetDAGCombine(ISD::FMA);
1331   setTargetDAGCombine(ISD::SINT_TO_FP);
1332   setTargetDAGCombine(ISD::BUILD_VECTOR);
1333   if (Subtarget.hasFPCVT())
1334     setTargetDAGCombine(ISD::UINT_TO_FP);
1335   setTargetDAGCombine(ISD::LOAD);
1336   setTargetDAGCombine(ISD::STORE);
1337   setTargetDAGCombine(ISD::BR_CC);
1338   if (Subtarget.useCRBits())
1339     setTargetDAGCombine(ISD::BRCOND);
1340   setTargetDAGCombine(ISD::BSWAP);
1341   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1342   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1343   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1344 
1345   setTargetDAGCombine(ISD::SIGN_EXTEND);
1346   setTargetDAGCombine(ISD::ZERO_EXTEND);
1347   setTargetDAGCombine(ISD::ANY_EXTEND);
1348 
1349   setTargetDAGCombine(ISD::TRUNCATE);
1350   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1351 
1352 
1353   if (Subtarget.useCRBits()) {
1354     setTargetDAGCombine(ISD::TRUNCATE);
1355     setTargetDAGCombine(ISD::SETCC);
1356     setTargetDAGCombine(ISD::SELECT_CC);
1357   }
1358 
1359   if (Subtarget.hasP9Altivec()) {
1360     setTargetDAGCombine(ISD::ABS);
1361     setTargetDAGCombine(ISD::VSELECT);
1362   }
1363 
1364   setLibcallName(RTLIB::LOG_F128, "logf128");
1365   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1366   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1367   setLibcallName(RTLIB::EXP_F128, "expf128");
1368   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1369   setLibcallName(RTLIB::SIN_F128, "sinf128");
1370   setLibcallName(RTLIB::COS_F128, "cosf128");
1371   setLibcallName(RTLIB::POW_F128, "powf128");
1372   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1373   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1374   setLibcallName(RTLIB::REM_F128, "fmodf128");
1375   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1376   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1377   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1378   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1379   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1380   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1381   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1382   setLibcallName(RTLIB::RINT_F128, "rintf128");
1383   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1384   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1385   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1386   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1387 
1388   // With 32 condition bits, we don't need to sink (and duplicate) compares
1389   // aggressively in CodeGenPrep.
1390   if (Subtarget.useCRBits()) {
1391     setHasMultipleConditionRegisters();
1392     setJumpIsExpensive();
1393   }
1394 
1395   setMinFunctionAlignment(Align(4));
1396 
1397   switch (Subtarget.getCPUDirective()) {
1398   default: break;
1399   case PPC::DIR_970:
1400   case PPC::DIR_A2:
1401   case PPC::DIR_E500:
1402   case PPC::DIR_E500mc:
1403   case PPC::DIR_E5500:
1404   case PPC::DIR_PWR4:
1405   case PPC::DIR_PWR5:
1406   case PPC::DIR_PWR5X:
1407   case PPC::DIR_PWR6:
1408   case PPC::DIR_PWR6X:
1409   case PPC::DIR_PWR7:
1410   case PPC::DIR_PWR8:
1411   case PPC::DIR_PWR9:
1412   case PPC::DIR_PWR10:
1413   case PPC::DIR_PWR_FUTURE:
1414     setPrefLoopAlignment(Align(16));
1415     setPrefFunctionAlignment(Align(16));
1416     break;
1417   }
1418 
1419   if (Subtarget.enableMachineScheduler())
1420     setSchedulingPreference(Sched::Source);
1421   else
1422     setSchedulingPreference(Sched::Hybrid);
1423 
1424   computeRegisterProperties(STI.getRegisterInfo());
1425 
1426   // The Freescale cores do better with aggressive inlining of memcpy and
1427   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1428   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1429       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1430     MaxStoresPerMemset = 32;
1431     MaxStoresPerMemsetOptSize = 16;
1432     MaxStoresPerMemcpy = 32;
1433     MaxStoresPerMemcpyOptSize = 8;
1434     MaxStoresPerMemmove = 32;
1435     MaxStoresPerMemmoveOptSize = 8;
1436   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1437     // The A2 also benefits from (very) aggressive inlining of memcpy and
1438     // friends. The overhead of a the function call, even when warm, can be
1439     // over one hundred cycles.
1440     MaxStoresPerMemset = 128;
1441     MaxStoresPerMemcpy = 128;
1442     MaxStoresPerMemmove = 128;
1443     MaxLoadsPerMemcmp = 128;
1444   } else {
1445     MaxLoadsPerMemcmp = 8;
1446     MaxLoadsPerMemcmpOptSize = 4;
1447   }
1448 
1449   IsStrictFPEnabled = true;
1450 
1451   // Let the subtarget (CPU) decide if a predictable select is more expensive
1452   // than the corresponding branch. This information is used in CGP to decide
1453   // when to convert selects into branches.
1454   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1455 }
1456 
1457 // *********************************** NOTE ************************************
1458 // For selecting load and store instructions, the addressing modes are defined
1459 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1460 // patterns to match the load the store instructions.
1461 //
1462 // The TD definitions for the addressing modes correspond to their respective
1463 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1464 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1465 // address mode flags of a particular node. Afterwards, the computed address
1466 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1467 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1468 // accordingly, based on the preferred addressing mode.
1469 //
1470 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1471 // MemOpFlags contains all the possible flags that can be used to compute the
1472 // optimal addressing mode for load and store instructions.
1473 // AddrMode contains all the possible load and store addressing modes available
1474 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1475 //
1476 // When adding new load and store instructions, it is possible that new address
1477 // flags may need to be added into MemOpFlags, and a new addressing mode will
1478 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1479 // of the minimal and main distinguishing address flags for the new load/store
1480 // instructions) will need to be added into initializeAddrModeMap() below.
1481 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1482 // need to be updated to account for selecting the optimal addressing mode.
1483 // *****************************************************************************
1484 /// Initialize the map that relates the different addressing modes of the load
1485 /// and store instructions to a set of flags. This ensures the load/store
1486 /// instruction is correctly matched during instruction selection.
1487 void PPCTargetLowering::initializeAddrModeMap() {
1488   AddrModesMap[PPC::AM_DForm] = {
1489       // LWZ, STW
1490       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1491       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1492       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1493       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1494       // LBZ, LHZ, STB, STH
1495       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1496       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1497       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1498       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1499       // LHA
1500       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1501       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1502       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1503       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1504       // LFS, LFD, STFS, STFD
1505       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1506       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1507       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1508       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1509   };
1510   AddrModesMap[PPC::AM_DSForm] = {
1511       // LWA
1512       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1513       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1514       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1515       // LD, STD
1516       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1517       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1518       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1519       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1520       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1521       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1522       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1523   };
1524   AddrModesMap[PPC::AM_DQForm] = {
1525       // LXV, STXV
1526       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1527       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1528       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1529   };
1530   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1531                                        PPC::MOF_SubtargetP10};
1532   // TODO: Add mapping for quadword load/store.
1533 }
1534 
1535 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1536 /// the desired ByVal argument alignment.
1537 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1538   if (MaxAlign == MaxMaxAlign)
1539     return;
1540   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1541     if (MaxMaxAlign >= 32 &&
1542         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1543       MaxAlign = Align(32);
1544     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1545              MaxAlign < 16)
1546       MaxAlign = Align(16);
1547   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1548     Align EltAlign;
1549     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1550     if (EltAlign > MaxAlign)
1551       MaxAlign = EltAlign;
1552   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1553     for (auto *EltTy : STy->elements()) {
1554       Align EltAlign;
1555       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1556       if (EltAlign > MaxAlign)
1557         MaxAlign = EltAlign;
1558       if (MaxAlign == MaxMaxAlign)
1559         break;
1560     }
1561   }
1562 }
1563 
1564 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1565 /// function arguments in the caller parameter area.
1566 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1567                                                   const DataLayout &DL) const {
1568   // 16byte and wider vectors are passed on 16byte boundary.
1569   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1570   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1571   if (Subtarget.hasAltivec())
1572     getMaxByValAlign(Ty, Alignment, Align(16));
1573   return Alignment.value();
1574 }
1575 
1576 bool PPCTargetLowering::useSoftFloat() const {
1577   return Subtarget.useSoftFloat();
1578 }
1579 
1580 bool PPCTargetLowering::hasSPE() const {
1581   return Subtarget.hasSPE();
1582 }
1583 
1584 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1585   return VT.isScalarInteger();
1586 }
1587 
1588 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1589   switch ((PPCISD::NodeType)Opcode) {
1590   case PPCISD::FIRST_NUMBER:    break;
1591   case PPCISD::FSEL:            return "PPCISD::FSEL";
1592   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1593   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1594   case PPCISD::FCFID:           return "PPCISD::FCFID";
1595   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1596   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1597   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1598   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1599   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1600   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1601   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1602   case PPCISD::FP_TO_UINT_IN_VSR:
1603                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1604   case PPCISD::FP_TO_SINT_IN_VSR:
1605                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1606   case PPCISD::FRE:             return "PPCISD::FRE";
1607   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1608   case PPCISD::FTSQRT:
1609     return "PPCISD::FTSQRT";
1610   case PPCISD::FSQRT:
1611     return "PPCISD::FSQRT";
1612   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1613   case PPCISD::VPERM:           return "PPCISD::VPERM";
1614   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1615   case PPCISD::XXSPLTI_SP_TO_DP:
1616     return "PPCISD::XXSPLTI_SP_TO_DP";
1617   case PPCISD::XXSPLTI32DX:
1618     return "PPCISD::XXSPLTI32DX";
1619   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1620   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1621   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1622   case PPCISD::CMPB:            return "PPCISD::CMPB";
1623   case PPCISD::Hi:              return "PPCISD::Hi";
1624   case PPCISD::Lo:              return "PPCISD::Lo";
1625   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1626   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1627   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1628   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1629   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1630   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1631   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1632   case PPCISD::SRL:             return "PPCISD::SRL";
1633   case PPCISD::SRA:             return "PPCISD::SRA";
1634   case PPCISD::SHL:             return "PPCISD::SHL";
1635   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1636   case PPCISD::CALL:            return "PPCISD::CALL";
1637   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1638   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1639   case PPCISD::CALL_RM:
1640     return "PPCISD::CALL_RM";
1641   case PPCISD::CALL_NOP_RM:
1642     return "PPCISD::CALL_NOP_RM";
1643   case PPCISD::CALL_NOTOC_RM:
1644     return "PPCISD::CALL_NOTOC_RM";
1645   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1646   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1647   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1648   case PPCISD::BCTRL_RM:
1649     return "PPCISD::BCTRL_RM";
1650   case PPCISD::BCTRL_LOAD_TOC_RM:
1651     return "PPCISD::BCTRL_LOAD_TOC_RM";
1652   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1653   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1654   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1655   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1656   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1657   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1658   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1659   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1660   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1661   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1662   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1663     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1664   case PPCISD::ANDI_rec_1_EQ_BIT:
1665     return "PPCISD::ANDI_rec_1_EQ_BIT";
1666   case PPCISD::ANDI_rec_1_GT_BIT:
1667     return "PPCISD::ANDI_rec_1_GT_BIT";
1668   case PPCISD::VCMP:            return "PPCISD::VCMP";
1669   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1670   case PPCISD::LBRX:            return "PPCISD::LBRX";
1671   case PPCISD::STBRX:           return "PPCISD::STBRX";
1672   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1673   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1674   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1675   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1676   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1677   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1678   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1679   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1680   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1681   case PPCISD::ST_VSR_SCAL_INT:
1682                                 return "PPCISD::ST_VSR_SCAL_INT";
1683   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1684   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1685   case PPCISD::BDZ:             return "PPCISD::BDZ";
1686   case PPCISD::MFFS:            return "PPCISD::MFFS";
1687   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1688   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1689   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1690   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1691   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1692   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1693   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1694   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1695   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1696   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1697   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1698   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1699   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1700   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1701   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1702   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1703   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1704   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1705   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1706   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1707   case PPCISD::PADDI_DTPREL:
1708     return "PPCISD::PADDI_DTPREL";
1709   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1710   case PPCISD::SC:              return "PPCISD::SC";
1711   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1712   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1713   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1714   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1715   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1716   case PPCISD::VABSD:           return "PPCISD::VABSD";
1717   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1718   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1719   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1720   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1721   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1722   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1723   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1724   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1725     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1726   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1727     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1728   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1729   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1730   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1731   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1732   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1733   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1734   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1735   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1736   case PPCISD::STRICT_FADDRTZ:
1737     return "PPCISD::STRICT_FADDRTZ";
1738   case PPCISD::STRICT_FCTIDZ:
1739     return "PPCISD::STRICT_FCTIDZ";
1740   case PPCISD::STRICT_FCTIWZ:
1741     return "PPCISD::STRICT_FCTIWZ";
1742   case PPCISD::STRICT_FCTIDUZ:
1743     return "PPCISD::STRICT_FCTIDUZ";
1744   case PPCISD::STRICT_FCTIWUZ:
1745     return "PPCISD::STRICT_FCTIWUZ";
1746   case PPCISD::STRICT_FCFID:
1747     return "PPCISD::STRICT_FCFID";
1748   case PPCISD::STRICT_FCFIDU:
1749     return "PPCISD::STRICT_FCFIDU";
1750   case PPCISD::STRICT_FCFIDS:
1751     return "PPCISD::STRICT_FCFIDS";
1752   case PPCISD::STRICT_FCFIDUS:
1753     return "PPCISD::STRICT_FCFIDUS";
1754   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1755   }
1756   return nullptr;
1757 }
1758 
1759 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1760                                           EVT VT) const {
1761   if (!VT.isVector())
1762     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1763 
1764   return VT.changeVectorElementTypeToInteger();
1765 }
1766 
1767 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1768   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1769   return true;
1770 }
1771 
1772 //===----------------------------------------------------------------------===//
1773 // Node matching predicates, for use by the tblgen matching code.
1774 //===----------------------------------------------------------------------===//
1775 
1776 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1777 static bool isFloatingPointZero(SDValue Op) {
1778   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1779     return CFP->getValueAPF().isZero();
1780   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1781     // Maybe this has already been legalized into the constant pool?
1782     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1783       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1784         return CFP->getValueAPF().isZero();
1785   }
1786   return false;
1787 }
1788 
1789 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1790 /// true if Op is undef or if it matches the specified value.
1791 static bool isConstantOrUndef(int Op, int Val) {
1792   return Op < 0 || Op == Val;
1793 }
1794 
1795 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1796 /// VPKUHUM instruction.
1797 /// The ShuffleKind distinguishes between big-endian operations with
1798 /// two different inputs (0), either-endian operations with two identical
1799 /// inputs (1), and little-endian operations with two different inputs (2).
1800 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1801 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1802                                SelectionDAG &DAG) {
1803   bool IsLE = DAG.getDataLayout().isLittleEndian();
1804   if (ShuffleKind == 0) {
1805     if (IsLE)
1806       return false;
1807     for (unsigned i = 0; i != 16; ++i)
1808       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1809         return false;
1810   } else if (ShuffleKind == 2) {
1811     if (!IsLE)
1812       return false;
1813     for (unsigned i = 0; i != 16; ++i)
1814       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1815         return false;
1816   } else if (ShuffleKind == 1) {
1817     unsigned j = IsLE ? 0 : 1;
1818     for (unsigned i = 0; i != 8; ++i)
1819       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1820           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1821         return false;
1822   }
1823   return true;
1824 }
1825 
1826 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1827 /// VPKUWUM instruction.
1828 /// The ShuffleKind distinguishes between big-endian operations with
1829 /// two different inputs (0), either-endian operations with two identical
1830 /// inputs (1), and little-endian operations with two different inputs (2).
1831 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1832 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1833                                SelectionDAG &DAG) {
1834   bool IsLE = DAG.getDataLayout().isLittleEndian();
1835   if (ShuffleKind == 0) {
1836     if (IsLE)
1837       return false;
1838     for (unsigned i = 0; i != 16; i += 2)
1839       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1840           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1841         return false;
1842   } else if (ShuffleKind == 2) {
1843     if (!IsLE)
1844       return false;
1845     for (unsigned i = 0; i != 16; i += 2)
1846       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1847           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1848         return false;
1849   } else if (ShuffleKind == 1) {
1850     unsigned j = IsLE ? 0 : 2;
1851     for (unsigned i = 0; i != 8; i += 2)
1852       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1853           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1854           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1855           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1856         return false;
1857   }
1858   return true;
1859 }
1860 
1861 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1862 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1863 /// current subtarget.
1864 ///
1865 /// The ShuffleKind distinguishes between big-endian operations with
1866 /// two different inputs (0), either-endian operations with two identical
1867 /// inputs (1), and little-endian operations with two different inputs (2).
1868 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1869 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1870                                SelectionDAG &DAG) {
1871   const PPCSubtarget& Subtarget =
1872       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1873   if (!Subtarget.hasP8Vector())
1874     return false;
1875 
1876   bool IsLE = DAG.getDataLayout().isLittleEndian();
1877   if (ShuffleKind == 0) {
1878     if (IsLE)
1879       return false;
1880     for (unsigned i = 0; i != 16; i += 4)
1881       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1882           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1883           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1884           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1885         return false;
1886   } else if (ShuffleKind == 2) {
1887     if (!IsLE)
1888       return false;
1889     for (unsigned i = 0; i != 16; i += 4)
1890       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1891           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1892           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1893           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1894         return false;
1895   } else if (ShuffleKind == 1) {
1896     unsigned j = IsLE ? 0 : 4;
1897     for (unsigned i = 0; i != 8; i += 4)
1898       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1899           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1900           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1901           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1902           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1903           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1904           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1905           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1906         return false;
1907   }
1908   return true;
1909 }
1910 
1911 /// isVMerge - Common function, used to match vmrg* shuffles.
1912 ///
1913 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1914                      unsigned LHSStart, unsigned RHSStart) {
1915   if (N->getValueType(0) != MVT::v16i8)
1916     return false;
1917   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1918          "Unsupported merge size!");
1919 
1920   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1921     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1922       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1923                              LHSStart+j+i*UnitSize) ||
1924           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1925                              RHSStart+j+i*UnitSize))
1926         return false;
1927     }
1928   return true;
1929 }
1930 
1931 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1932 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1933 /// The ShuffleKind distinguishes between big-endian merges with two
1934 /// different inputs (0), either-endian merges with two identical inputs (1),
1935 /// and little-endian merges with two different inputs (2).  For the latter,
1936 /// the input operands are swapped (see PPCInstrAltivec.td).
1937 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1938                              unsigned ShuffleKind, SelectionDAG &DAG) {
1939   if (DAG.getDataLayout().isLittleEndian()) {
1940     if (ShuffleKind == 1) // unary
1941       return isVMerge(N, UnitSize, 0, 0);
1942     else if (ShuffleKind == 2) // swapped
1943       return isVMerge(N, UnitSize, 0, 16);
1944     else
1945       return false;
1946   } else {
1947     if (ShuffleKind == 1) // unary
1948       return isVMerge(N, UnitSize, 8, 8);
1949     else if (ShuffleKind == 0) // normal
1950       return isVMerge(N, UnitSize, 8, 24);
1951     else
1952       return false;
1953   }
1954 }
1955 
1956 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1957 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1958 /// The ShuffleKind distinguishes between big-endian merges with two
1959 /// different inputs (0), either-endian merges with two identical inputs (1),
1960 /// and little-endian merges with two different inputs (2).  For the latter,
1961 /// the input operands are swapped (see PPCInstrAltivec.td).
1962 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1963                              unsigned ShuffleKind, SelectionDAG &DAG) {
1964   if (DAG.getDataLayout().isLittleEndian()) {
1965     if (ShuffleKind == 1) // unary
1966       return isVMerge(N, UnitSize, 8, 8);
1967     else if (ShuffleKind == 2) // swapped
1968       return isVMerge(N, UnitSize, 8, 24);
1969     else
1970       return false;
1971   } else {
1972     if (ShuffleKind == 1) // unary
1973       return isVMerge(N, UnitSize, 0, 0);
1974     else if (ShuffleKind == 0) // normal
1975       return isVMerge(N, UnitSize, 0, 16);
1976     else
1977       return false;
1978   }
1979 }
1980 
1981 /**
1982  * Common function used to match vmrgew and vmrgow shuffles
1983  *
1984  * The indexOffset determines whether to look for even or odd words in
1985  * the shuffle mask. This is based on the of the endianness of the target
1986  * machine.
1987  *   - Little Endian:
1988  *     - Use offset of 0 to check for odd elements
1989  *     - Use offset of 4 to check for even elements
1990  *   - Big Endian:
1991  *     - Use offset of 0 to check for even elements
1992  *     - Use offset of 4 to check for odd elements
1993  * A detailed description of the vector element ordering for little endian and
1994  * big endian can be found at
1995  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1996  * Targeting your applications - what little endian and big endian IBM XL C/C++
1997  * compiler differences mean to you
1998  *
1999  * The mask to the shuffle vector instruction specifies the indices of the
2000  * elements from the two input vectors to place in the result. The elements are
2001  * numbered in array-access order, starting with the first vector. These vectors
2002  * are always of type v16i8, thus each vector will contain 16 elements of size
2003  * 8. More info on the shuffle vector can be found in the
2004  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2005  * Language Reference.
2006  *
2007  * The RHSStartValue indicates whether the same input vectors are used (unary)
2008  * or two different input vectors are used, based on the following:
2009  *   - If the instruction uses the same vector for both inputs, the range of the
2010  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2011  *     be 0.
2012  *   - If the instruction has two different vectors then the range of the
2013  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2014  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2015  *     to 31 specify elements in the second vector).
2016  *
2017  * \param[in] N The shuffle vector SD Node to analyze
2018  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2019  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2020  * vector to the shuffle_vector instruction
2021  * \return true iff this shuffle vector represents an even or odd word merge
2022  */
2023 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2024                      unsigned RHSStartValue) {
2025   if (N->getValueType(0) != MVT::v16i8)
2026     return false;
2027 
2028   for (unsigned i = 0; i < 2; ++i)
2029     for (unsigned j = 0; j < 4; ++j)
2030       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2031                              i*RHSStartValue+j+IndexOffset) ||
2032           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2033                              i*RHSStartValue+j+IndexOffset+8))
2034         return false;
2035   return true;
2036 }
2037 
2038 /**
2039  * Determine if the specified shuffle mask is suitable for the vmrgew or
2040  * vmrgow instructions.
2041  *
2042  * \param[in] N The shuffle vector SD Node to analyze
2043  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2044  * \param[in] ShuffleKind Identify the type of merge:
2045  *   - 0 = big-endian merge with two different inputs;
2046  *   - 1 = either-endian merge with two identical inputs;
2047  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2048  *     little-endian merges).
2049  * \param[in] DAG The current SelectionDAG
2050  * \return true iff this shuffle mask
2051  */
2052 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2053                               unsigned ShuffleKind, SelectionDAG &DAG) {
2054   if (DAG.getDataLayout().isLittleEndian()) {
2055     unsigned indexOffset = CheckEven ? 4 : 0;
2056     if (ShuffleKind == 1) // Unary
2057       return isVMerge(N, indexOffset, 0);
2058     else if (ShuffleKind == 2) // swapped
2059       return isVMerge(N, indexOffset, 16);
2060     else
2061       return false;
2062   }
2063   else {
2064     unsigned indexOffset = CheckEven ? 0 : 4;
2065     if (ShuffleKind == 1) // Unary
2066       return isVMerge(N, indexOffset, 0);
2067     else if (ShuffleKind == 0) // Normal
2068       return isVMerge(N, indexOffset, 16);
2069     else
2070       return false;
2071   }
2072   return false;
2073 }
2074 
2075 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2076 /// amount, otherwise return -1.
2077 /// The ShuffleKind distinguishes between big-endian operations with two
2078 /// different inputs (0), either-endian operations with two identical inputs
2079 /// (1), and little-endian operations with two different inputs (2).  For the
2080 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2081 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2082                              SelectionDAG &DAG) {
2083   if (N->getValueType(0) != MVT::v16i8)
2084     return -1;
2085 
2086   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2087 
2088   // Find the first non-undef value in the shuffle mask.
2089   unsigned i;
2090   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2091     /*search*/;
2092 
2093   if (i == 16) return -1;  // all undef.
2094 
2095   // Otherwise, check to see if the rest of the elements are consecutively
2096   // numbered from this value.
2097   unsigned ShiftAmt = SVOp->getMaskElt(i);
2098   if (ShiftAmt < i) return -1;
2099 
2100   ShiftAmt -= i;
2101   bool isLE = DAG.getDataLayout().isLittleEndian();
2102 
2103   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2104     // Check the rest of the elements to see if they are consecutive.
2105     for (++i; i != 16; ++i)
2106       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2107         return -1;
2108   } else if (ShuffleKind == 1) {
2109     // Check the rest of the elements to see if they are consecutive.
2110     for (++i; i != 16; ++i)
2111       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2112         return -1;
2113   } else
2114     return -1;
2115 
2116   if (isLE)
2117     ShiftAmt = 16 - ShiftAmt;
2118 
2119   return ShiftAmt;
2120 }
2121 
2122 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2123 /// specifies a splat of a single element that is suitable for input to
2124 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2125 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2126   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2127          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2128 
2129   // The consecutive indices need to specify an element, not part of two
2130   // different elements.  So abandon ship early if this isn't the case.
2131   if (N->getMaskElt(0) % EltSize != 0)
2132     return false;
2133 
2134   // This is a splat operation if each element of the permute is the same, and
2135   // if the value doesn't reference the second vector.
2136   unsigned ElementBase = N->getMaskElt(0);
2137 
2138   // FIXME: Handle UNDEF elements too!
2139   if (ElementBase >= 16)
2140     return false;
2141 
2142   // Check that the indices are consecutive, in the case of a multi-byte element
2143   // splatted with a v16i8 mask.
2144   for (unsigned i = 1; i != EltSize; ++i)
2145     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2146       return false;
2147 
2148   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2149     if (N->getMaskElt(i) < 0) continue;
2150     for (unsigned j = 0; j != EltSize; ++j)
2151       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2152         return false;
2153   }
2154   return true;
2155 }
2156 
2157 /// Check that the mask is shuffling N byte elements. Within each N byte
2158 /// element of the mask, the indices could be either in increasing or
2159 /// decreasing order as long as they are consecutive.
2160 /// \param[in] N the shuffle vector SD Node to analyze
2161 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2162 /// Word/DoubleWord/QuadWord).
2163 /// \param[in] StepLen the delta indices number among the N byte element, if
2164 /// the mask is in increasing/decreasing order then it is 1/-1.
2165 /// \return true iff the mask is shuffling N byte elements.
2166 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2167                                    int StepLen) {
2168   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2169          "Unexpected element width.");
2170   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2171 
2172   unsigned NumOfElem = 16 / Width;
2173   unsigned MaskVal[16]; //  Width is never greater than 16
2174   for (unsigned i = 0; i < NumOfElem; ++i) {
2175     MaskVal[0] = N->getMaskElt(i * Width);
2176     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2177       return false;
2178     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2179       return false;
2180     }
2181 
2182     for (unsigned int j = 1; j < Width; ++j) {
2183       MaskVal[j] = N->getMaskElt(i * Width + j);
2184       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2185         return false;
2186       }
2187     }
2188   }
2189 
2190   return true;
2191 }
2192 
2193 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2194                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2195   if (!isNByteElemShuffleMask(N, 4, 1))
2196     return false;
2197 
2198   // Now we look at mask elements 0,4,8,12
2199   unsigned M0 = N->getMaskElt(0) / 4;
2200   unsigned M1 = N->getMaskElt(4) / 4;
2201   unsigned M2 = N->getMaskElt(8) / 4;
2202   unsigned M3 = N->getMaskElt(12) / 4;
2203   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2204   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2205 
2206   // Below, let H and L be arbitrary elements of the shuffle mask
2207   // where H is in the range [4,7] and L is in the range [0,3].
2208   // H, 1, 2, 3 or L, 5, 6, 7
2209   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2210       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2211     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2212     InsertAtByte = IsLE ? 12 : 0;
2213     Swap = M0 < 4;
2214     return true;
2215   }
2216   // 0, H, 2, 3 or 4, L, 6, 7
2217   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2218       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2219     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2220     InsertAtByte = IsLE ? 8 : 4;
2221     Swap = M1 < 4;
2222     return true;
2223   }
2224   // 0, 1, H, 3 or 4, 5, L, 7
2225   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2226       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2227     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2228     InsertAtByte = IsLE ? 4 : 8;
2229     Swap = M2 < 4;
2230     return true;
2231   }
2232   // 0, 1, 2, H or 4, 5, 6, L
2233   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2234       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2235     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2236     InsertAtByte = IsLE ? 0 : 12;
2237     Swap = M3 < 4;
2238     return true;
2239   }
2240 
2241   // If both vector operands for the shuffle are the same vector, the mask will
2242   // contain only elements from the first one and the second one will be undef.
2243   if (N->getOperand(1).isUndef()) {
2244     ShiftElts = 0;
2245     Swap = true;
2246     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2247     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2248       InsertAtByte = IsLE ? 12 : 0;
2249       return true;
2250     }
2251     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2252       InsertAtByte = IsLE ? 8 : 4;
2253       return true;
2254     }
2255     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2256       InsertAtByte = IsLE ? 4 : 8;
2257       return true;
2258     }
2259     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2260       InsertAtByte = IsLE ? 0 : 12;
2261       return true;
2262     }
2263   }
2264 
2265   return false;
2266 }
2267 
2268 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2269                                bool &Swap, bool IsLE) {
2270   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2271   // Ensure each byte index of the word is consecutive.
2272   if (!isNByteElemShuffleMask(N, 4, 1))
2273     return false;
2274 
2275   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2276   unsigned M0 = N->getMaskElt(0) / 4;
2277   unsigned M1 = N->getMaskElt(4) / 4;
2278   unsigned M2 = N->getMaskElt(8) / 4;
2279   unsigned M3 = N->getMaskElt(12) / 4;
2280 
2281   // If both vector operands for the shuffle are the same vector, the mask will
2282   // contain only elements from the first one and the second one will be undef.
2283   if (N->getOperand(1).isUndef()) {
2284     assert(M0 < 4 && "Indexing into an undef vector?");
2285     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2286       return false;
2287 
2288     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2289     Swap = false;
2290     return true;
2291   }
2292 
2293   // Ensure each word index of the ShuffleVector Mask is consecutive.
2294   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2295     return false;
2296 
2297   if (IsLE) {
2298     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2299       // Input vectors don't need to be swapped if the leading element
2300       // of the result is one of the 3 left elements of the second vector
2301       // (or if there is no shift to be done at all).
2302       Swap = false;
2303       ShiftElts = (8 - M0) % 8;
2304     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2305       // Input vectors need to be swapped if the leading element
2306       // of the result is one of the 3 left elements of the first vector
2307       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2308       Swap = true;
2309       ShiftElts = (4 - M0) % 4;
2310     }
2311 
2312     return true;
2313   } else {                                          // BE
2314     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2315       // Input vectors don't need to be swapped if the leading element
2316       // of the result is one of the 4 elements of the first vector.
2317       Swap = false;
2318       ShiftElts = M0;
2319     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2320       // Input vectors need to be swapped if the leading element
2321       // of the result is one of the 4 elements of the right vector.
2322       Swap = true;
2323       ShiftElts = M0 - 4;
2324     }
2325 
2326     return true;
2327   }
2328 }
2329 
2330 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2331   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2332 
2333   if (!isNByteElemShuffleMask(N, Width, -1))
2334     return false;
2335 
2336   for (int i = 0; i < 16; i += Width)
2337     if (N->getMaskElt(i) != i + Width - 1)
2338       return false;
2339 
2340   return true;
2341 }
2342 
2343 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2344   return isXXBRShuffleMaskHelper(N, 2);
2345 }
2346 
2347 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2348   return isXXBRShuffleMaskHelper(N, 4);
2349 }
2350 
2351 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2352   return isXXBRShuffleMaskHelper(N, 8);
2353 }
2354 
2355 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2356   return isXXBRShuffleMaskHelper(N, 16);
2357 }
2358 
2359 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2360 /// if the inputs to the instruction should be swapped and set \p DM to the
2361 /// value for the immediate.
2362 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2363 /// AND element 0 of the result comes from the first input (LE) or second input
2364 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2365 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2366 /// mask.
2367 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2368                                bool &Swap, bool IsLE) {
2369   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2370 
2371   // Ensure each byte index of the double word is consecutive.
2372   if (!isNByteElemShuffleMask(N, 8, 1))
2373     return false;
2374 
2375   unsigned M0 = N->getMaskElt(0) / 8;
2376   unsigned M1 = N->getMaskElt(8) / 8;
2377   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2378 
2379   // If both vector operands for the shuffle are the same vector, the mask will
2380   // contain only elements from the first one and the second one will be undef.
2381   if (N->getOperand(1).isUndef()) {
2382     if ((M0 | M1) < 2) {
2383       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2384       Swap = false;
2385       return true;
2386     } else
2387       return false;
2388   }
2389 
2390   if (IsLE) {
2391     if (M0 > 1 && M1 < 2) {
2392       Swap = false;
2393     } else if (M0 < 2 && M1 > 1) {
2394       M0 = (M0 + 2) % 4;
2395       M1 = (M1 + 2) % 4;
2396       Swap = true;
2397     } else
2398       return false;
2399 
2400     // Note: if control flow comes here that means Swap is already set above
2401     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2402     return true;
2403   } else { // BE
2404     if (M0 < 2 && M1 > 1) {
2405       Swap = false;
2406     } else if (M0 > 1 && M1 < 2) {
2407       M0 = (M0 + 2) % 4;
2408       M1 = (M1 + 2) % 4;
2409       Swap = true;
2410     } else
2411       return false;
2412 
2413     // Note: if control flow comes here that means Swap is already set above
2414     DM = (M0 << 1) + (M1 & 1);
2415     return true;
2416   }
2417 }
2418 
2419 
2420 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2421 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2422 /// elements are counted from the left of the vector register).
2423 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2424                                          SelectionDAG &DAG) {
2425   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2426   assert(isSplatShuffleMask(SVOp, EltSize));
2427   if (DAG.getDataLayout().isLittleEndian())
2428     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2429   else
2430     return SVOp->getMaskElt(0) / EltSize;
2431 }
2432 
2433 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2434 /// by using a vspltis[bhw] instruction of the specified element size, return
2435 /// the constant being splatted.  The ByteSize field indicates the number of
2436 /// bytes of each element [124] -> [bhw].
2437 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2438   SDValue OpVal;
2439 
2440   // If ByteSize of the splat is bigger than the element size of the
2441   // build_vector, then we have a case where we are checking for a splat where
2442   // multiple elements of the buildvector are folded together into a single
2443   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2444   unsigned EltSize = 16/N->getNumOperands();
2445   if (EltSize < ByteSize) {
2446     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2447     SDValue UniquedVals[4];
2448     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2449 
2450     // See if all of the elements in the buildvector agree across.
2451     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2452       if (N->getOperand(i).isUndef()) continue;
2453       // If the element isn't a constant, bail fully out.
2454       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2455 
2456       if (!UniquedVals[i&(Multiple-1)].getNode())
2457         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2458       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2459         return SDValue();  // no match.
2460     }
2461 
2462     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2463     // either constant or undef values that are identical for each chunk.  See
2464     // if these chunks can form into a larger vspltis*.
2465 
2466     // Check to see if all of the leading entries are either 0 or -1.  If
2467     // neither, then this won't fit into the immediate field.
2468     bool LeadingZero = true;
2469     bool LeadingOnes = true;
2470     for (unsigned i = 0; i != Multiple-1; ++i) {
2471       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2472 
2473       LeadingZero &= isNullConstant(UniquedVals[i]);
2474       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2475     }
2476     // Finally, check the least significant entry.
2477     if (LeadingZero) {
2478       if (!UniquedVals[Multiple-1].getNode())
2479         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2480       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2481       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2482         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2483     }
2484     if (LeadingOnes) {
2485       if (!UniquedVals[Multiple-1].getNode())
2486         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2487       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2488       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2489         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2490     }
2491 
2492     return SDValue();
2493   }
2494 
2495   // Check to see if this buildvec has a single non-undef value in its elements.
2496   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2497     if (N->getOperand(i).isUndef()) continue;
2498     if (!OpVal.getNode())
2499       OpVal = N->getOperand(i);
2500     else if (OpVal != N->getOperand(i))
2501       return SDValue();
2502   }
2503 
2504   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2505 
2506   unsigned ValSizeInBytes = EltSize;
2507   uint64_t Value = 0;
2508   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2509     Value = CN->getZExtValue();
2510   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2511     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2512     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2513   }
2514 
2515   // If the splat value is larger than the element value, then we can never do
2516   // this splat.  The only case that we could fit the replicated bits into our
2517   // immediate field for would be zero, and we prefer to use vxor for it.
2518   if (ValSizeInBytes < ByteSize) return SDValue();
2519 
2520   // If the element value is larger than the splat value, check if it consists
2521   // of a repeated bit pattern of size ByteSize.
2522   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2523     return SDValue();
2524 
2525   // Properly sign extend the value.
2526   int MaskVal = SignExtend32(Value, ByteSize * 8);
2527 
2528   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2529   if (MaskVal == 0) return SDValue();
2530 
2531   // Finally, if this value fits in a 5 bit sext field, return it
2532   if (SignExtend32<5>(MaskVal) == MaskVal)
2533     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2534   return SDValue();
2535 }
2536 
2537 //===----------------------------------------------------------------------===//
2538 //  Addressing Mode Selection
2539 //===----------------------------------------------------------------------===//
2540 
2541 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2542 /// or 64-bit immediate, and if the value can be accurately represented as a
2543 /// sign extension from a 16-bit value.  If so, this returns true and the
2544 /// immediate.
2545 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2546   if (!isa<ConstantSDNode>(N))
2547     return false;
2548 
2549   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2550   if (N->getValueType(0) == MVT::i32)
2551     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2552   else
2553     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2554 }
2555 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2556   return isIntS16Immediate(Op.getNode(), Imm);
2557 }
2558 
2559 /// Used when computing address flags for selecting loads and stores.
2560 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2561 /// An OR of two provably disjoint values is equivalent to an ADD.
2562 /// Most PPC load/store instructions compute the effective address as a sum,
2563 /// so doing this conversion is useful.
2564 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2565   if (N.getOpcode() != ISD::OR)
2566     return false;
2567   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2568   if (!LHSKnown.Zero.getBoolValue())
2569     return false;
2570   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2571   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2572 }
2573 
2574 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2575 /// be represented as an indexed [r+r] operation.
2576 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2577                                                SDValue &Index,
2578                                                SelectionDAG &DAG) const {
2579   for (SDNode *U : N->uses()) {
2580     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2581       if (Memop->getMemoryVT() == MVT::f64) {
2582           Base = N.getOperand(0);
2583           Index = N.getOperand(1);
2584           return true;
2585       }
2586     }
2587   }
2588   return false;
2589 }
2590 
2591 /// isIntS34Immediate - This method tests if value of node given can be
2592 /// accurately represented as a sign extension from a 34-bit value.  If so,
2593 /// this returns true and the immediate.
2594 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2595   if (!isa<ConstantSDNode>(N))
2596     return false;
2597 
2598   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2599   return isInt<34>(Imm);
2600 }
2601 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2602   return isIntS34Immediate(Op.getNode(), Imm);
2603 }
2604 
2605 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2606 /// can be represented as an indexed [r+r] operation.  Returns false if it
2607 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2608 /// non-zero and N can be represented by a base register plus a signed 16-bit
2609 /// displacement, make a more precise judgement by checking (displacement % \p
2610 /// EncodingAlignment).
2611 bool PPCTargetLowering::SelectAddressRegReg(
2612     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2613     MaybeAlign EncodingAlignment) const {
2614   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2615   // a [pc+imm].
2616   if (SelectAddressPCRel(N, Base))
2617     return false;
2618 
2619   int16_t Imm = 0;
2620   if (N.getOpcode() == ISD::ADD) {
2621     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2622     // SPE load/store can only handle 8-bit offsets.
2623     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2624         return true;
2625     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2626         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2627       return false; // r+i
2628     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2629       return false;    // r+i
2630 
2631     Base = N.getOperand(0);
2632     Index = N.getOperand(1);
2633     return true;
2634   } else if (N.getOpcode() == ISD::OR) {
2635     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2636         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2637       return false; // r+i can fold it if we can.
2638 
2639     // If this is an or of disjoint bitfields, we can codegen this as an add
2640     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2641     // disjoint.
2642     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2643 
2644     if (LHSKnown.Zero.getBoolValue()) {
2645       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2646       // If all of the bits are known zero on the LHS or RHS, the add won't
2647       // carry.
2648       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2649         Base = N.getOperand(0);
2650         Index = N.getOperand(1);
2651         return true;
2652       }
2653     }
2654   }
2655 
2656   return false;
2657 }
2658 
2659 // If we happen to be doing an i64 load or store into a stack slot that has
2660 // less than a 4-byte alignment, then the frame-index elimination may need to
2661 // use an indexed load or store instruction (because the offset may not be a
2662 // multiple of 4). The extra register needed to hold the offset comes from the
2663 // register scavenger, and it is possible that the scavenger will need to use
2664 // an emergency spill slot. As a result, we need to make sure that a spill slot
2665 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2666 // stack slot.
2667 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2668   // FIXME: This does not handle the LWA case.
2669   if (VT != MVT::i64)
2670     return;
2671 
2672   // NOTE: We'll exclude negative FIs here, which come from argument
2673   // lowering, because there are no known test cases triggering this problem
2674   // using packed structures (or similar). We can remove this exclusion if
2675   // we find such a test case. The reason why this is so test-case driven is
2676   // because this entire 'fixup' is only to prevent crashes (from the
2677   // register scavenger) on not-really-valid inputs. For example, if we have:
2678   //   %a = alloca i1
2679   //   %b = bitcast i1* %a to i64*
2680   //   store i64* a, i64 b
2681   // then the store should really be marked as 'align 1', but is not. If it
2682   // were marked as 'align 1' then the indexed form would have been
2683   // instruction-selected initially, and the problem this 'fixup' is preventing
2684   // won't happen regardless.
2685   if (FrameIdx < 0)
2686     return;
2687 
2688   MachineFunction &MF = DAG.getMachineFunction();
2689   MachineFrameInfo &MFI = MF.getFrameInfo();
2690 
2691   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2692     return;
2693 
2694   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2695   FuncInfo->setHasNonRISpills();
2696 }
2697 
2698 /// Returns true if the address N can be represented by a base register plus
2699 /// a signed 16-bit displacement [r+imm], and if it is not better
2700 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2701 /// displacements that are multiples of that value.
2702 bool PPCTargetLowering::SelectAddressRegImm(
2703     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2704     MaybeAlign EncodingAlignment) const {
2705   // FIXME dl should come from parent load or store, not from address
2706   SDLoc dl(N);
2707 
2708   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2709   // a [pc+imm].
2710   if (SelectAddressPCRel(N, Base))
2711     return false;
2712 
2713   // If this can be more profitably realized as r+r, fail.
2714   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2715     return false;
2716 
2717   if (N.getOpcode() == ISD::ADD) {
2718     int16_t imm = 0;
2719     if (isIntS16Immediate(N.getOperand(1), imm) &&
2720         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2721       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2722       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2723         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2724         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2725       } else {
2726         Base = N.getOperand(0);
2727       }
2728       return true; // [r+i]
2729     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2730       // Match LOAD (ADD (X, Lo(G))).
2731       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2732              && "Cannot handle constant offsets yet!");
2733       Disp = N.getOperand(1).getOperand(0);  // The global address.
2734       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2735              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2736              Disp.getOpcode() == ISD::TargetConstantPool ||
2737              Disp.getOpcode() == ISD::TargetJumpTable);
2738       Base = N.getOperand(0);
2739       return true;  // [&g+r]
2740     }
2741   } else if (N.getOpcode() == ISD::OR) {
2742     int16_t imm = 0;
2743     if (isIntS16Immediate(N.getOperand(1), imm) &&
2744         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2745       // If this is an or of disjoint bitfields, we can codegen this as an add
2746       // (for better address arithmetic) if the LHS and RHS of the OR are
2747       // provably disjoint.
2748       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2749 
2750       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2751         // If all of the bits are known zero on the LHS or RHS, the add won't
2752         // carry.
2753         if (FrameIndexSDNode *FI =
2754               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2755           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2756           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2757         } else {
2758           Base = N.getOperand(0);
2759         }
2760         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2761         return true;
2762       }
2763     }
2764   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2765     // Loading from a constant address.
2766 
2767     // If this address fits entirely in a 16-bit sext immediate field, codegen
2768     // this as "d, 0"
2769     int16_t Imm;
2770     if (isIntS16Immediate(CN, Imm) &&
2771         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2772       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2773       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2774                              CN->getValueType(0));
2775       return true;
2776     }
2777 
2778     // Handle 32-bit sext immediates with LIS + addr mode.
2779     if ((CN->getValueType(0) == MVT::i32 ||
2780          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2781         (!EncodingAlignment ||
2782          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2783       int Addr = (int)CN->getZExtValue();
2784 
2785       // Otherwise, break this down into an LIS + disp.
2786       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2787 
2788       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2789                                    MVT::i32);
2790       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2791       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2792       return true;
2793     }
2794   }
2795 
2796   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2797   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2798     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2799     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2800   } else
2801     Base = N;
2802   return true;      // [r+0]
2803 }
2804 
2805 /// Similar to the 16-bit case but for instructions that take a 34-bit
2806 /// displacement field (prefixed loads/stores).
2807 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2808                                               SDValue &Base,
2809                                               SelectionDAG &DAG) const {
2810   // Only on 64-bit targets.
2811   if (N.getValueType() != MVT::i64)
2812     return false;
2813 
2814   SDLoc dl(N);
2815   int64_t Imm = 0;
2816 
2817   if (N.getOpcode() == ISD::ADD) {
2818     if (!isIntS34Immediate(N.getOperand(1), Imm))
2819       return false;
2820     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2821     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2822       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2823     else
2824       Base = N.getOperand(0);
2825     return true;
2826   }
2827 
2828   if (N.getOpcode() == ISD::OR) {
2829     if (!isIntS34Immediate(N.getOperand(1), Imm))
2830       return false;
2831     // If this is an or of disjoint bitfields, we can codegen this as an add
2832     // (for better address arithmetic) if the LHS and RHS of the OR are
2833     // provably disjoint.
2834     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2835     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2836       return false;
2837     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2838       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2839     else
2840       Base = N.getOperand(0);
2841     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2842     return true;
2843   }
2844 
2845   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2846     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2847     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2848     return true;
2849   }
2850 
2851   return false;
2852 }
2853 
2854 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2855 /// represented as an indexed [r+r] operation.
2856 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2857                                                 SDValue &Index,
2858                                                 SelectionDAG &DAG) const {
2859   // Check to see if we can easily represent this as an [r+r] address.  This
2860   // will fail if it thinks that the address is more profitably represented as
2861   // reg+imm, e.g. where imm = 0.
2862   if (SelectAddressRegReg(N, Base, Index, DAG))
2863     return true;
2864 
2865   // If the address is the result of an add, we will utilize the fact that the
2866   // address calculation includes an implicit add.  However, we can reduce
2867   // register pressure if we do not materialize a constant just for use as the
2868   // index register.  We only get rid of the add if it is not an add of a
2869   // value and a 16-bit signed constant and both have a single use.
2870   int16_t imm = 0;
2871   if (N.getOpcode() == ISD::ADD &&
2872       (!isIntS16Immediate(N.getOperand(1), imm) ||
2873        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2874     Base = N.getOperand(0);
2875     Index = N.getOperand(1);
2876     return true;
2877   }
2878 
2879   // Otherwise, do it the hard way, using R0 as the base register.
2880   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2881                          N.getValueType());
2882   Index = N;
2883   return true;
2884 }
2885 
2886 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2887   Ty *PCRelCand = dyn_cast<Ty>(N);
2888   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2889 }
2890 
2891 /// Returns true if this address is a PC Relative address.
2892 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2893 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2894 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2895   // This is a materialize PC Relative node. Always select this as PC Relative.
2896   Base = N;
2897   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2898     return true;
2899   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2900       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2901       isValidPCRelNode<JumpTableSDNode>(N) ||
2902       isValidPCRelNode<BlockAddressSDNode>(N))
2903     return true;
2904   return false;
2905 }
2906 
2907 /// Returns true if we should use a direct load into vector instruction
2908 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2909 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2910 
2911   // If there are any other uses other than scalar to vector, then we should
2912   // keep it as a scalar load -> direct move pattern to prevent multiple
2913   // loads.
2914   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2915   if (!LD)
2916     return false;
2917 
2918   EVT MemVT = LD->getMemoryVT();
2919   if (!MemVT.isSimple())
2920     return false;
2921   switch(MemVT.getSimpleVT().SimpleTy) {
2922   case MVT::i64:
2923     break;
2924   case MVT::i32:
2925     if (!ST.hasP8Vector())
2926       return false;
2927     break;
2928   case MVT::i16:
2929   case MVT::i8:
2930     if (!ST.hasP9Vector())
2931       return false;
2932     break;
2933   default:
2934     return false;
2935   }
2936 
2937   SDValue LoadedVal(N, 0);
2938   if (!LoadedVal.hasOneUse())
2939     return false;
2940 
2941   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2942        UI != UE; ++UI)
2943     if (UI.getUse().get().getResNo() == 0 &&
2944         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2945         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2946       return false;
2947 
2948   return true;
2949 }
2950 
2951 /// getPreIndexedAddressParts - returns true by value, base pointer and
2952 /// offset pointer and addressing mode by reference if the node's address
2953 /// can be legally represented as pre-indexed load / store address.
2954 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2955                                                   SDValue &Offset,
2956                                                   ISD::MemIndexedMode &AM,
2957                                                   SelectionDAG &DAG) const {
2958   if (DisablePPCPreinc) return false;
2959 
2960   bool isLoad = true;
2961   SDValue Ptr;
2962   EVT VT;
2963   unsigned Alignment;
2964   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2965     Ptr = LD->getBasePtr();
2966     VT = LD->getMemoryVT();
2967     Alignment = LD->getAlignment();
2968   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2969     Ptr = ST->getBasePtr();
2970     VT  = ST->getMemoryVT();
2971     Alignment = ST->getAlignment();
2972     isLoad = false;
2973   } else
2974     return false;
2975 
2976   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2977   // instructions because we can fold these into a more efficient instruction
2978   // instead, (such as LXSD).
2979   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2980     return false;
2981   }
2982 
2983   // PowerPC doesn't have preinc load/store instructions for vectors
2984   if (VT.isVector())
2985     return false;
2986 
2987   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2988     // Common code will reject creating a pre-inc form if the base pointer
2989     // is a frame index, or if N is a store and the base pointer is either
2990     // the same as or a predecessor of the value being stored.  Check for
2991     // those situations here, and try with swapped Base/Offset instead.
2992     bool Swap = false;
2993 
2994     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2995       Swap = true;
2996     else if (!isLoad) {
2997       SDValue Val = cast<StoreSDNode>(N)->getValue();
2998       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2999         Swap = true;
3000     }
3001 
3002     if (Swap)
3003       std::swap(Base, Offset);
3004 
3005     AM = ISD::PRE_INC;
3006     return true;
3007   }
3008 
3009   // LDU/STU can only handle immediates that are a multiple of 4.
3010   if (VT != MVT::i64) {
3011     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
3012       return false;
3013   } else {
3014     // LDU/STU need an address with at least 4-byte alignment.
3015     if (Alignment < 4)
3016       return false;
3017 
3018     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3019       return false;
3020   }
3021 
3022   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3023     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3024     // sext i32 to i64 when addr mode is r+i.
3025     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3026         LD->getExtensionType() == ISD::SEXTLOAD &&
3027         isa<ConstantSDNode>(Offset))
3028       return false;
3029   }
3030 
3031   AM = ISD::PRE_INC;
3032   return true;
3033 }
3034 
3035 //===----------------------------------------------------------------------===//
3036 //  LowerOperation implementation
3037 //===----------------------------------------------------------------------===//
3038 
3039 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3040 /// and LoOpFlags to the target MO flags.
3041 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3042                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3043                                const GlobalValue *GV = nullptr) {
3044   HiOpFlags = PPCII::MO_HA;
3045   LoOpFlags = PPCII::MO_LO;
3046 
3047   // Don't use the pic base if not in PIC relocation model.
3048   if (IsPIC) {
3049     HiOpFlags |= PPCII::MO_PIC_FLAG;
3050     LoOpFlags |= PPCII::MO_PIC_FLAG;
3051   }
3052 }
3053 
3054 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3055                              SelectionDAG &DAG) {
3056   SDLoc DL(HiPart);
3057   EVT PtrVT = HiPart.getValueType();
3058   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3059 
3060   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3061   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3062 
3063   // With PIC, the first instruction is actually "GR+hi(&G)".
3064   if (isPIC)
3065     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3066                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3067 
3068   // Generate non-pic code that has direct accesses to the constant pool.
3069   // The address of the global is just (hi(&g)+lo(&g)).
3070   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3071 }
3072 
3073 static void setUsesTOCBasePtr(MachineFunction &MF) {
3074   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3075   FuncInfo->setUsesTOCBasePtr();
3076 }
3077 
3078 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3079   setUsesTOCBasePtr(DAG.getMachineFunction());
3080 }
3081 
3082 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3083                                        SDValue GA) const {
3084   const bool Is64Bit = Subtarget.isPPC64();
3085   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3086   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3087                         : Subtarget.isAIXABI()
3088                               ? DAG.getRegister(PPC::R2, VT)
3089                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3090   SDValue Ops[] = { GA, Reg };
3091   return DAG.getMemIntrinsicNode(
3092       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3093       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3094       MachineMemOperand::MOLoad);
3095 }
3096 
3097 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3098                                              SelectionDAG &DAG) const {
3099   EVT PtrVT = Op.getValueType();
3100   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3101   const Constant *C = CP->getConstVal();
3102 
3103   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3104   // The actual address of the GlobalValue is stored in the TOC.
3105   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3106     if (Subtarget.isUsingPCRelativeCalls()) {
3107       SDLoc DL(CP);
3108       EVT Ty = getPointerTy(DAG.getDataLayout());
3109       SDValue ConstPool = DAG.getTargetConstantPool(
3110           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3111       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3112     }
3113     setUsesTOCBasePtr(DAG);
3114     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3115     return getTOCEntry(DAG, SDLoc(CP), GA);
3116   }
3117 
3118   unsigned MOHiFlag, MOLoFlag;
3119   bool IsPIC = isPositionIndependent();
3120   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3121 
3122   if (IsPIC && Subtarget.isSVR4ABI()) {
3123     SDValue GA =
3124         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3125     return getTOCEntry(DAG, SDLoc(CP), GA);
3126   }
3127 
3128   SDValue CPIHi =
3129       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3130   SDValue CPILo =
3131       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3132   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3133 }
3134 
3135 // For 64-bit PowerPC, prefer the more compact relative encodings.
3136 // This trades 32 bits per jump table entry for one or two instructions
3137 // on the jump site.
3138 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3139   if (isJumpTableRelative())
3140     return MachineJumpTableInfo::EK_LabelDifference32;
3141 
3142   return TargetLowering::getJumpTableEncoding();
3143 }
3144 
3145 bool PPCTargetLowering::isJumpTableRelative() const {
3146   if (UseAbsoluteJumpTables)
3147     return false;
3148   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3149     return true;
3150   return TargetLowering::isJumpTableRelative();
3151 }
3152 
3153 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3154                                                     SelectionDAG &DAG) const {
3155   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3156     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3157 
3158   switch (getTargetMachine().getCodeModel()) {
3159   case CodeModel::Small:
3160   case CodeModel::Medium:
3161     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3162   default:
3163     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3164                        getPointerTy(DAG.getDataLayout()));
3165   }
3166 }
3167 
3168 const MCExpr *
3169 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3170                                                 unsigned JTI,
3171                                                 MCContext &Ctx) const {
3172   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3173     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3174 
3175   switch (getTargetMachine().getCodeModel()) {
3176   case CodeModel::Small:
3177   case CodeModel::Medium:
3178     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3179   default:
3180     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3181   }
3182 }
3183 
3184 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3185   EVT PtrVT = Op.getValueType();
3186   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3187 
3188   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3189   if (Subtarget.isUsingPCRelativeCalls()) {
3190     SDLoc DL(JT);
3191     EVT Ty = getPointerTy(DAG.getDataLayout());
3192     SDValue GA =
3193         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3194     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3195     return MatAddr;
3196   }
3197 
3198   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3199   // The actual address of the GlobalValue is stored in the TOC.
3200   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3201     setUsesTOCBasePtr(DAG);
3202     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3203     return getTOCEntry(DAG, SDLoc(JT), GA);
3204   }
3205 
3206   unsigned MOHiFlag, MOLoFlag;
3207   bool IsPIC = isPositionIndependent();
3208   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3209 
3210   if (IsPIC && Subtarget.isSVR4ABI()) {
3211     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3212                                         PPCII::MO_PIC_FLAG);
3213     return getTOCEntry(DAG, SDLoc(GA), GA);
3214   }
3215 
3216   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3217   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3218   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3219 }
3220 
3221 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3222                                              SelectionDAG &DAG) const {
3223   EVT PtrVT = Op.getValueType();
3224   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3225   const BlockAddress *BA = BASDN->getBlockAddress();
3226 
3227   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3228   if (Subtarget.isUsingPCRelativeCalls()) {
3229     SDLoc DL(BASDN);
3230     EVT Ty = getPointerTy(DAG.getDataLayout());
3231     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3232                                            PPCII::MO_PCREL_FLAG);
3233     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3234     return MatAddr;
3235   }
3236 
3237   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3238   // The actual BlockAddress is stored in the TOC.
3239   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3240     setUsesTOCBasePtr(DAG);
3241     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3242     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3243   }
3244 
3245   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3246   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3247     return getTOCEntry(
3248         DAG, SDLoc(BASDN),
3249         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3250 
3251   unsigned MOHiFlag, MOLoFlag;
3252   bool IsPIC = isPositionIndependent();
3253   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3254   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3255   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3256   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3257 }
3258 
3259 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3260                                               SelectionDAG &DAG) const {
3261   if (Subtarget.isAIXABI())
3262     return LowerGlobalTLSAddressAIX(Op, DAG);
3263 
3264   return LowerGlobalTLSAddressLinux(Op, DAG);
3265 }
3266 
3267 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3268                                                     SelectionDAG &DAG) const {
3269   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3270 
3271   if (DAG.getTarget().useEmulatedTLS())
3272     report_fatal_error("Emulated TLS is not yet supported on AIX");
3273 
3274   SDLoc dl(GA);
3275   const GlobalValue *GV = GA->getGlobal();
3276   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3277 
3278   // The general-dynamic model is the only access model supported for now, so
3279   // all the GlobalTLSAddress nodes are lowered with this model.
3280   // We need to generate two TOC entries, one for the variable offset, one for
3281   // the region handle. The global address for the TOC entry of the region
3282   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3283   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3284   SDValue VariableOffsetTGA =
3285       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3286   SDValue RegionHandleTGA =
3287       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3288   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3289   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3290   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3291                      RegionHandle);
3292 }
3293 
3294 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3295                                                       SelectionDAG &DAG) const {
3296   // FIXME: TLS addresses currently use medium model code sequences,
3297   // which is the most useful form.  Eventually support for small and
3298   // large models could be added if users need it, at the cost of
3299   // additional complexity.
3300   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3301   if (DAG.getTarget().useEmulatedTLS())
3302     return LowerToTLSEmulatedModel(GA, DAG);
3303 
3304   SDLoc dl(GA);
3305   const GlobalValue *GV = GA->getGlobal();
3306   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3307   bool is64bit = Subtarget.isPPC64();
3308   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3309   PICLevel::Level picLevel = M->getPICLevel();
3310 
3311   const TargetMachine &TM = getTargetMachine();
3312   TLSModel::Model Model = TM.getTLSModel(GV);
3313 
3314   if (Model == TLSModel::LocalExec) {
3315     if (Subtarget.isUsingPCRelativeCalls()) {
3316       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3317       SDValue TGA = DAG.getTargetGlobalAddress(
3318           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3319       SDValue MatAddr =
3320           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3321       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3322     }
3323 
3324     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3325                                                PPCII::MO_TPREL_HA);
3326     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3327                                                PPCII::MO_TPREL_LO);
3328     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3329                              : DAG.getRegister(PPC::R2, MVT::i32);
3330 
3331     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3332     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3333   }
3334 
3335   if (Model == TLSModel::InitialExec) {
3336     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3337     SDValue TGA = DAG.getTargetGlobalAddress(
3338         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3339     SDValue TGATLS = DAG.getTargetGlobalAddress(
3340         GV, dl, PtrVT, 0,
3341         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3342     SDValue TPOffset;
3343     if (IsPCRel) {
3344       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3345       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3346                              MachinePointerInfo());
3347     } else {
3348       SDValue GOTPtr;
3349       if (is64bit) {
3350         setUsesTOCBasePtr(DAG);
3351         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3352         GOTPtr =
3353             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3354       } else {
3355         if (!TM.isPositionIndependent())
3356           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3357         else if (picLevel == PICLevel::SmallPIC)
3358           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3359         else
3360           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3361       }
3362       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3363     }
3364     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3365   }
3366 
3367   if (Model == TLSModel::GeneralDynamic) {
3368     if (Subtarget.isUsingPCRelativeCalls()) {
3369       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3370                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3371       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3372     }
3373 
3374     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3375     SDValue GOTPtr;
3376     if (is64bit) {
3377       setUsesTOCBasePtr(DAG);
3378       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3379       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3380                                    GOTReg, TGA);
3381     } else {
3382       if (picLevel == PICLevel::SmallPIC)
3383         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3384       else
3385         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3386     }
3387     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3388                        GOTPtr, TGA, TGA);
3389   }
3390 
3391   if (Model == TLSModel::LocalDynamic) {
3392     if (Subtarget.isUsingPCRelativeCalls()) {
3393       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3394                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3395       SDValue MatPCRel =
3396           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3397       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3398     }
3399 
3400     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3401     SDValue GOTPtr;
3402     if (is64bit) {
3403       setUsesTOCBasePtr(DAG);
3404       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3405       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3406                            GOTReg, TGA);
3407     } else {
3408       if (picLevel == PICLevel::SmallPIC)
3409         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3410       else
3411         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3412     }
3413     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3414                                   PtrVT, GOTPtr, TGA, TGA);
3415     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3416                                       PtrVT, TLSAddr, TGA);
3417     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3418   }
3419 
3420   llvm_unreachable("Unknown TLS model!");
3421 }
3422 
3423 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3424                                               SelectionDAG &DAG) const {
3425   EVT PtrVT = Op.getValueType();
3426   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3427   SDLoc DL(GSDN);
3428   const GlobalValue *GV = GSDN->getGlobal();
3429 
3430   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3431   // The actual address of the GlobalValue is stored in the TOC.
3432   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3433     if (Subtarget.isUsingPCRelativeCalls()) {
3434       EVT Ty = getPointerTy(DAG.getDataLayout());
3435       if (isAccessedAsGotIndirect(Op)) {
3436         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3437                                                 PPCII::MO_PCREL_FLAG |
3438                                                     PPCII::MO_GOT_FLAG);
3439         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3440         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3441                                    MachinePointerInfo());
3442         return Load;
3443       } else {
3444         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3445                                                 PPCII::MO_PCREL_FLAG);
3446         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3447       }
3448     }
3449     setUsesTOCBasePtr(DAG);
3450     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3451     return getTOCEntry(DAG, DL, GA);
3452   }
3453 
3454   unsigned MOHiFlag, MOLoFlag;
3455   bool IsPIC = isPositionIndependent();
3456   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3457 
3458   if (IsPIC && Subtarget.isSVR4ABI()) {
3459     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3460                                             GSDN->getOffset(),
3461                                             PPCII::MO_PIC_FLAG);
3462     return getTOCEntry(DAG, DL, GA);
3463   }
3464 
3465   SDValue GAHi =
3466     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3467   SDValue GALo =
3468     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3469 
3470   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3471 }
3472 
3473 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3474   bool IsStrict = Op->isStrictFPOpcode();
3475   ISD::CondCode CC =
3476       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3477   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3478   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3479   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3480   EVT LHSVT = LHS.getValueType();
3481   SDLoc dl(Op);
3482 
3483   // Soften the setcc with libcall if it is fp128.
3484   if (LHSVT == MVT::f128) {
3485     assert(!Subtarget.hasP9Vector() &&
3486            "SETCC for f128 is already legal under Power9!");
3487     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3488                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3489     if (RHS.getNode())
3490       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3491                         DAG.getCondCode(CC));
3492     if (IsStrict)
3493       return DAG.getMergeValues({LHS, Chain}, dl);
3494     return LHS;
3495   }
3496 
3497   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3498 
3499   if (Op.getValueType() == MVT::v2i64) {
3500     // When the operands themselves are v2i64 values, we need to do something
3501     // special because VSX has no underlying comparison operations for these.
3502     if (LHS.getValueType() == MVT::v2i64) {
3503       // Equality can be handled by casting to the legal type for Altivec
3504       // comparisons, everything else needs to be expanded.
3505       if (CC != ISD::SETEQ && CC != ISD::SETNE)
3506         return SDValue();
3507       SDValue SetCC32 = DAG.getSetCC(
3508           dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3509           DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3510       int ShuffV[] = {1, 0, 3, 2};
3511       SDValue Shuff =
3512           DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3513       return DAG.getBitcast(MVT::v2i64,
3514                             DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR,
3515                                         dl, MVT::v4i32, Shuff, SetCC32));
3516     }
3517 
3518     // We handle most of these in the usual way.
3519     return Op;
3520   }
3521 
3522   // If we're comparing for equality to zero, expose the fact that this is
3523   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3524   // fold the new nodes.
3525   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3526     return V;
3527 
3528   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3529     // Leave comparisons against 0 and -1 alone for now, since they're usually
3530     // optimized.  FIXME: revisit this when we can custom lower all setcc
3531     // optimizations.
3532     if (C->isAllOnes() || C->isZero())
3533       return SDValue();
3534   }
3535 
3536   // If we have an integer seteq/setne, turn it into a compare against zero
3537   // by xor'ing the rhs with the lhs, which is faster than setting a
3538   // condition register, reading it back out, and masking the correct bit.  The
3539   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3540   // the result to other bit-twiddling opportunities.
3541   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3542     EVT VT = Op.getValueType();
3543     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3544     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3545   }
3546   return SDValue();
3547 }
3548 
3549 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3550   SDNode *Node = Op.getNode();
3551   EVT VT = Node->getValueType(0);
3552   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3553   SDValue InChain = Node->getOperand(0);
3554   SDValue VAListPtr = Node->getOperand(1);
3555   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3556   SDLoc dl(Node);
3557 
3558   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3559 
3560   // gpr_index
3561   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3562                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3563   InChain = GprIndex.getValue(1);
3564 
3565   if (VT == MVT::i64) {
3566     // Check if GprIndex is even
3567     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3568                                  DAG.getConstant(1, dl, MVT::i32));
3569     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3570                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3571     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3572                                           DAG.getConstant(1, dl, MVT::i32));
3573     // Align GprIndex to be even if it isn't
3574     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3575                            GprIndex);
3576   }
3577 
3578   // fpr index is 1 byte after gpr
3579   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3580                                DAG.getConstant(1, dl, MVT::i32));
3581 
3582   // fpr
3583   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3584                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3585   InChain = FprIndex.getValue(1);
3586 
3587   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3588                                        DAG.getConstant(8, dl, MVT::i32));
3589 
3590   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3591                                         DAG.getConstant(4, dl, MVT::i32));
3592 
3593   // areas
3594   SDValue OverflowArea =
3595       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3596   InChain = OverflowArea.getValue(1);
3597 
3598   SDValue RegSaveArea =
3599       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3600   InChain = RegSaveArea.getValue(1);
3601 
3602   // select overflow_area if index > 8
3603   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3604                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3605 
3606   // adjustment constant gpr_index * 4/8
3607   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3608                                     VT.isInteger() ? GprIndex : FprIndex,
3609                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3610                                                     MVT::i32));
3611 
3612   // OurReg = RegSaveArea + RegConstant
3613   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3614                                RegConstant);
3615 
3616   // Floating types are 32 bytes into RegSaveArea
3617   if (VT.isFloatingPoint())
3618     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3619                          DAG.getConstant(32, dl, MVT::i32));
3620 
3621   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3622   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3623                                    VT.isInteger() ? GprIndex : FprIndex,
3624                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3625                                                    MVT::i32));
3626 
3627   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3628                               VT.isInteger() ? VAListPtr : FprPtr,
3629                               MachinePointerInfo(SV), MVT::i8);
3630 
3631   // determine if we should load from reg_save_area or overflow_area
3632   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3633 
3634   // increase overflow_area by 4/8 if gpr/fpr > 8
3635   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3636                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3637                                           dl, MVT::i32));
3638 
3639   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3640                              OverflowAreaPlusN);
3641 
3642   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3643                               MachinePointerInfo(), MVT::i32);
3644 
3645   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3646 }
3647 
3648 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3649   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3650 
3651   // We have to copy the entire va_list struct:
3652   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3653   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3654                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3655                        false, true, false, MachinePointerInfo(),
3656                        MachinePointerInfo());
3657 }
3658 
3659 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3660                                                   SelectionDAG &DAG) const {
3661   if (Subtarget.isAIXABI())
3662     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3663 
3664   return Op.getOperand(0);
3665 }
3666 
3667 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3668   MachineFunction &MF = DAG.getMachineFunction();
3669   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3670 
3671   assert((Op.getOpcode() == ISD::INLINEASM ||
3672           Op.getOpcode() == ISD::INLINEASM_BR) &&
3673          "Expecting Inline ASM node.");
3674 
3675   // If an LR store is already known to be required then there is not point in
3676   // checking this ASM as well.
3677   if (MFI.isLRStoreRequired())
3678     return Op;
3679 
3680   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3681   // type MVT::Glue. We want to ignore this last operand if that is the case.
3682   unsigned NumOps = Op.getNumOperands();
3683   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3684     --NumOps;
3685 
3686   // Check all operands that may contain the LR.
3687   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3688     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3689     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3690     ++i; // Skip the ID value.
3691 
3692     switch (InlineAsm::getKind(Flags)) {
3693     default:
3694       llvm_unreachable("Bad flags!");
3695     case InlineAsm::Kind_RegUse:
3696     case InlineAsm::Kind_Imm:
3697     case InlineAsm::Kind_Mem:
3698       i += NumVals;
3699       break;
3700     case InlineAsm::Kind_Clobber:
3701     case InlineAsm::Kind_RegDef:
3702     case InlineAsm::Kind_RegDefEarlyClobber: {
3703       for (; NumVals; --NumVals, ++i) {
3704         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3705         if (Reg != PPC::LR && Reg != PPC::LR8)
3706           continue;
3707         MFI.setLRStoreRequired();
3708         return Op;
3709       }
3710       break;
3711     }
3712     }
3713   }
3714 
3715   return Op;
3716 }
3717 
3718 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3719                                                 SelectionDAG &DAG) const {
3720   if (Subtarget.isAIXABI())
3721     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3722 
3723   SDValue Chain = Op.getOperand(0);
3724   SDValue Trmp = Op.getOperand(1); // trampoline
3725   SDValue FPtr = Op.getOperand(2); // nested function
3726   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3727   SDLoc dl(Op);
3728 
3729   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3730   bool isPPC64 = (PtrVT == MVT::i64);
3731   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3732 
3733   TargetLowering::ArgListTy Args;
3734   TargetLowering::ArgListEntry Entry;
3735 
3736   Entry.Ty = IntPtrTy;
3737   Entry.Node = Trmp; Args.push_back(Entry);
3738 
3739   // TrampSize == (isPPC64 ? 48 : 40);
3740   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3741                                isPPC64 ? MVT::i64 : MVT::i32);
3742   Args.push_back(Entry);
3743 
3744   Entry.Node = FPtr; Args.push_back(Entry);
3745   Entry.Node = Nest; Args.push_back(Entry);
3746 
3747   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3748   TargetLowering::CallLoweringInfo CLI(DAG);
3749   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3750       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3751       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3752 
3753   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3754   return CallResult.second;
3755 }
3756 
3757 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3758   MachineFunction &MF = DAG.getMachineFunction();
3759   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3760   EVT PtrVT = getPointerTy(MF.getDataLayout());
3761 
3762   SDLoc dl(Op);
3763 
3764   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3765     // vastart just stores the address of the VarArgsFrameIndex slot into the
3766     // memory location argument.
3767     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3768     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3769     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3770                         MachinePointerInfo(SV));
3771   }
3772 
3773   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3774   // We suppose the given va_list is already allocated.
3775   //
3776   // typedef struct {
3777   //  char gpr;     /* index into the array of 8 GPRs
3778   //                 * stored in the register save area
3779   //                 * gpr=0 corresponds to r3,
3780   //                 * gpr=1 to r4, etc.
3781   //                 */
3782   //  char fpr;     /* index into the array of 8 FPRs
3783   //                 * stored in the register save area
3784   //                 * fpr=0 corresponds to f1,
3785   //                 * fpr=1 to f2, etc.
3786   //                 */
3787   //  char *overflow_arg_area;
3788   //                /* location on stack that holds
3789   //                 * the next overflow argument
3790   //                 */
3791   //  char *reg_save_area;
3792   //               /* where r3:r10 and f1:f8 (if saved)
3793   //                * are stored
3794   //                */
3795   // } va_list[1];
3796 
3797   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3798   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3799   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3800                                             PtrVT);
3801   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3802                                  PtrVT);
3803 
3804   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3805   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3806 
3807   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3808   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3809 
3810   uint64_t FPROffset = 1;
3811   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3812 
3813   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3814 
3815   // Store first byte : number of int regs
3816   SDValue firstStore =
3817       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3818                         MachinePointerInfo(SV), MVT::i8);
3819   uint64_t nextOffset = FPROffset;
3820   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3821                                   ConstFPROffset);
3822 
3823   // Store second byte : number of float regs
3824   SDValue secondStore =
3825       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3826                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3827   nextOffset += StackOffset;
3828   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3829 
3830   // Store second word : arguments given on stack
3831   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3832                                     MachinePointerInfo(SV, nextOffset));
3833   nextOffset += FrameOffset;
3834   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3835 
3836   // Store third word : arguments given in registers
3837   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3838                       MachinePointerInfo(SV, nextOffset));
3839 }
3840 
3841 /// FPR - The set of FP registers that should be allocated for arguments
3842 /// on Darwin and AIX.
3843 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3844                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3845                                 PPC::F11, PPC::F12, PPC::F13};
3846 
3847 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3848 /// the stack.
3849 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3850                                        unsigned PtrByteSize) {
3851   unsigned ArgSize = ArgVT.getStoreSize();
3852   if (Flags.isByVal())
3853     ArgSize = Flags.getByValSize();
3854 
3855   // Round up to multiples of the pointer size, except for array members,
3856   // which are always packed.
3857   if (!Flags.isInConsecutiveRegs())
3858     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3859 
3860   return ArgSize;
3861 }
3862 
3863 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3864 /// on the stack.
3865 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3866                                          ISD::ArgFlagsTy Flags,
3867                                          unsigned PtrByteSize) {
3868   Align Alignment(PtrByteSize);
3869 
3870   // Altivec parameters are padded to a 16 byte boundary.
3871   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3872       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3873       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3874       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3875     Alignment = Align(16);
3876 
3877   // ByVal parameters are aligned as requested.
3878   if (Flags.isByVal()) {
3879     auto BVAlign = Flags.getNonZeroByValAlign();
3880     if (BVAlign > PtrByteSize) {
3881       if (BVAlign.value() % PtrByteSize != 0)
3882         llvm_unreachable(
3883             "ByVal alignment is not a multiple of the pointer size");
3884 
3885       Alignment = BVAlign;
3886     }
3887   }
3888 
3889   // Array members are always packed to their original alignment.
3890   if (Flags.isInConsecutiveRegs()) {
3891     // If the array member was split into multiple registers, the first
3892     // needs to be aligned to the size of the full type.  (Except for
3893     // ppcf128, which is only aligned as its f64 components.)
3894     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3895       Alignment = Align(OrigVT.getStoreSize());
3896     else
3897       Alignment = Align(ArgVT.getStoreSize());
3898   }
3899 
3900   return Alignment;
3901 }
3902 
3903 /// CalculateStackSlotUsed - Return whether this argument will use its
3904 /// stack slot (instead of being passed in registers).  ArgOffset,
3905 /// AvailableFPRs, and AvailableVRs must hold the current argument
3906 /// position, and will be updated to account for this argument.
3907 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3908                                    unsigned PtrByteSize, unsigned LinkageSize,
3909                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3910                                    unsigned &AvailableFPRs,
3911                                    unsigned &AvailableVRs) {
3912   bool UseMemory = false;
3913 
3914   // Respect alignment of argument on the stack.
3915   Align Alignment =
3916       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3917   ArgOffset = alignTo(ArgOffset, Alignment);
3918   // If there's no space left in the argument save area, we must
3919   // use memory (this check also catches zero-sized arguments).
3920   if (ArgOffset >= LinkageSize + ParamAreaSize)
3921     UseMemory = true;
3922 
3923   // Allocate argument on the stack.
3924   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3925   if (Flags.isInConsecutiveRegsLast())
3926     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3927   // If we overran the argument save area, we must use memory
3928   // (this check catches arguments passed partially in memory)
3929   if (ArgOffset > LinkageSize + ParamAreaSize)
3930     UseMemory = true;
3931 
3932   // However, if the argument is actually passed in an FPR or a VR,
3933   // we don't use memory after all.
3934   if (!Flags.isByVal()) {
3935     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3936       if (AvailableFPRs > 0) {
3937         --AvailableFPRs;
3938         return false;
3939       }
3940     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3941         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3942         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3943         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3944       if (AvailableVRs > 0) {
3945         --AvailableVRs;
3946         return false;
3947       }
3948   }
3949 
3950   return UseMemory;
3951 }
3952 
3953 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3954 /// ensure minimum alignment required for target.
3955 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3956                                      unsigned NumBytes) {
3957   return alignTo(NumBytes, Lowering->getStackAlign());
3958 }
3959 
3960 SDValue PPCTargetLowering::LowerFormalArguments(
3961     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3962     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3963     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3964   if (Subtarget.isAIXABI())
3965     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3966                                     InVals);
3967   if (Subtarget.is64BitELFABI())
3968     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3969                                        InVals);
3970   assert(Subtarget.is32BitELFABI());
3971   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3972                                      InVals);
3973 }
3974 
3975 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3976     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3977     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3978     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3979 
3980   // 32-bit SVR4 ABI Stack Frame Layout:
3981   //              +-----------------------------------+
3982   //        +-->  |            Back chain             |
3983   //        |     +-----------------------------------+
3984   //        |     | Floating-point register save area |
3985   //        |     +-----------------------------------+
3986   //        |     |    General register save area     |
3987   //        |     +-----------------------------------+
3988   //        |     |          CR save word             |
3989   //        |     +-----------------------------------+
3990   //        |     |         VRSAVE save word          |
3991   //        |     +-----------------------------------+
3992   //        |     |         Alignment padding         |
3993   //        |     +-----------------------------------+
3994   //        |     |     Vector register save area     |
3995   //        |     +-----------------------------------+
3996   //        |     |       Local variable space        |
3997   //        |     +-----------------------------------+
3998   //        |     |        Parameter list area        |
3999   //        |     +-----------------------------------+
4000   //        |     |           LR save word            |
4001   //        |     +-----------------------------------+
4002   // SP-->  +---  |            Back chain             |
4003   //              +-----------------------------------+
4004   //
4005   // Specifications:
4006   //   System V Application Binary Interface PowerPC Processor Supplement
4007   //   AltiVec Technology Programming Interface Manual
4008 
4009   MachineFunction &MF = DAG.getMachineFunction();
4010   MachineFrameInfo &MFI = MF.getFrameInfo();
4011   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4012 
4013   EVT PtrVT = getPointerTy(MF.getDataLayout());
4014   // Potential tail calls could cause overwriting of argument stack slots.
4015   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4016                        (CallConv == CallingConv::Fast));
4017   const Align PtrAlign(4);
4018 
4019   // Assign locations to all of the incoming arguments.
4020   SmallVector<CCValAssign, 16> ArgLocs;
4021   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4022                  *DAG.getContext());
4023 
4024   // Reserve space for the linkage area on the stack.
4025   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4026   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4027   if (useSoftFloat())
4028     CCInfo.PreAnalyzeFormalArguments(Ins);
4029 
4030   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4031   CCInfo.clearWasPPCF128();
4032 
4033   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4034     CCValAssign &VA = ArgLocs[i];
4035 
4036     // Arguments stored in registers.
4037     if (VA.isRegLoc()) {
4038       const TargetRegisterClass *RC;
4039       EVT ValVT = VA.getValVT();
4040 
4041       switch (ValVT.getSimpleVT().SimpleTy) {
4042         default:
4043           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4044         case MVT::i1:
4045         case MVT::i32:
4046           RC = &PPC::GPRCRegClass;
4047           break;
4048         case MVT::f32:
4049           if (Subtarget.hasP8Vector())
4050             RC = &PPC::VSSRCRegClass;
4051           else if (Subtarget.hasSPE())
4052             RC = &PPC::GPRCRegClass;
4053           else
4054             RC = &PPC::F4RCRegClass;
4055           break;
4056         case MVT::f64:
4057           if (Subtarget.hasVSX())
4058             RC = &PPC::VSFRCRegClass;
4059           else if (Subtarget.hasSPE())
4060             // SPE passes doubles in GPR pairs.
4061             RC = &PPC::GPRCRegClass;
4062           else
4063             RC = &PPC::F8RCRegClass;
4064           break;
4065         case MVT::v16i8:
4066         case MVT::v8i16:
4067         case MVT::v4i32:
4068           RC = &PPC::VRRCRegClass;
4069           break;
4070         case MVT::v4f32:
4071           RC = &PPC::VRRCRegClass;
4072           break;
4073         case MVT::v2f64:
4074         case MVT::v2i64:
4075           RC = &PPC::VRRCRegClass;
4076           break;
4077       }
4078 
4079       SDValue ArgValue;
4080       // Transform the arguments stored in physical registers into
4081       // virtual ones.
4082       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4083         assert(i + 1 < e && "No second half of double precision argument");
4084         Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4085         Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4086         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4087         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4088         if (!Subtarget.isLittleEndian())
4089           std::swap (ArgValueLo, ArgValueHi);
4090         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4091                                ArgValueHi);
4092       } else {
4093         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4094         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4095                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4096         if (ValVT == MVT::i1)
4097           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4098       }
4099 
4100       InVals.push_back(ArgValue);
4101     } else {
4102       // Argument stored in memory.
4103       assert(VA.isMemLoc());
4104 
4105       // Get the extended size of the argument type in stack
4106       unsigned ArgSize = VA.getLocVT().getStoreSize();
4107       // Get the actual size of the argument type
4108       unsigned ObjSize = VA.getValVT().getStoreSize();
4109       unsigned ArgOffset = VA.getLocMemOffset();
4110       // Stack objects in PPC32 are right justified.
4111       ArgOffset += ArgSize - ObjSize;
4112       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4113 
4114       // Create load nodes to retrieve arguments from the stack.
4115       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4116       InVals.push_back(
4117           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4118     }
4119   }
4120 
4121   // Assign locations to all of the incoming aggregate by value arguments.
4122   // Aggregates passed by value are stored in the local variable space of the
4123   // caller's stack frame, right above the parameter list area.
4124   SmallVector<CCValAssign, 16> ByValArgLocs;
4125   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4126                       ByValArgLocs, *DAG.getContext());
4127 
4128   // Reserve stack space for the allocations in CCInfo.
4129   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4130 
4131   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4132 
4133   // Area that is at least reserved in the caller of this function.
4134   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4135   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4136 
4137   // Set the size that is at least reserved in caller of this function.  Tail
4138   // call optimized function's reserved stack space needs to be aligned so that
4139   // taking the difference between two stack areas will result in an aligned
4140   // stack.
4141   MinReservedArea =
4142       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4143   FuncInfo->setMinReservedArea(MinReservedArea);
4144 
4145   SmallVector<SDValue, 8> MemOps;
4146 
4147   // If the function takes variable number of arguments, make a frame index for
4148   // the start of the first vararg value... for expansion of llvm.va_start.
4149   if (isVarArg) {
4150     static const MCPhysReg GPArgRegs[] = {
4151       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4152       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4153     };
4154     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4155 
4156     static const MCPhysReg FPArgRegs[] = {
4157       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4158       PPC::F8
4159     };
4160     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4161 
4162     if (useSoftFloat() || hasSPE())
4163        NumFPArgRegs = 0;
4164 
4165     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4166     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4167 
4168     // Make room for NumGPArgRegs and NumFPArgRegs.
4169     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4170                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4171 
4172     FuncInfo->setVarArgsStackOffset(
4173       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4174                             CCInfo.getNextStackOffset(), true));
4175 
4176     FuncInfo->setVarArgsFrameIndex(
4177         MFI.CreateStackObject(Depth, Align(8), false));
4178     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4179 
4180     // The fixed integer arguments of a variadic function are stored to the
4181     // VarArgsFrameIndex on the stack so that they may be loaded by
4182     // dereferencing the result of va_next.
4183     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4184       // Get an existing live-in vreg, or add a new one.
4185       Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4186       if (!VReg)
4187         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4188 
4189       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4190       SDValue Store =
4191           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4192       MemOps.push_back(Store);
4193       // Increment the address by four for the next argument to store
4194       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4195       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4196     }
4197 
4198     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4199     // is set.
4200     // The double arguments are stored to the VarArgsFrameIndex
4201     // on the stack.
4202     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4203       // Get an existing live-in vreg, or add a new one.
4204       Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4205       if (!VReg)
4206         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4207 
4208       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4209       SDValue Store =
4210           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4211       MemOps.push_back(Store);
4212       // Increment the address by eight for the next argument to store
4213       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4214                                          PtrVT);
4215       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4216     }
4217   }
4218 
4219   if (!MemOps.empty())
4220     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4221 
4222   return Chain;
4223 }
4224 
4225 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4226 // value to MVT::i64 and then truncate to the correct register size.
4227 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4228                                              EVT ObjectVT, SelectionDAG &DAG,
4229                                              SDValue ArgVal,
4230                                              const SDLoc &dl) const {
4231   if (Flags.isSExt())
4232     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4233                          DAG.getValueType(ObjectVT));
4234   else if (Flags.isZExt())
4235     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4236                          DAG.getValueType(ObjectVT));
4237 
4238   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4239 }
4240 
4241 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4242     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4243     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4244     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4245   // TODO: add description of PPC stack frame format, or at least some docs.
4246   //
4247   bool isELFv2ABI = Subtarget.isELFv2ABI();
4248   bool isLittleEndian = Subtarget.isLittleEndian();
4249   MachineFunction &MF = DAG.getMachineFunction();
4250   MachineFrameInfo &MFI = MF.getFrameInfo();
4251   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4252 
4253   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4254          "fastcc not supported on varargs functions");
4255 
4256   EVT PtrVT = getPointerTy(MF.getDataLayout());
4257   // Potential tail calls could cause overwriting of argument stack slots.
4258   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4259                        (CallConv == CallingConv::Fast));
4260   unsigned PtrByteSize = 8;
4261   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4262 
4263   static const MCPhysReg GPR[] = {
4264     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4265     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4266   };
4267   static const MCPhysReg VR[] = {
4268     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4269     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4270   };
4271 
4272   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4273   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4274   const unsigned Num_VR_Regs  = array_lengthof(VR);
4275 
4276   // Do a first pass over the arguments to determine whether the ABI
4277   // guarantees that our caller has allocated the parameter save area
4278   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4279   // in the ELFv2 ABI, it is true if this is a vararg function or if
4280   // any parameter is located in a stack slot.
4281 
4282   bool HasParameterArea = !isELFv2ABI || isVarArg;
4283   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4284   unsigned NumBytes = LinkageSize;
4285   unsigned AvailableFPRs = Num_FPR_Regs;
4286   unsigned AvailableVRs = Num_VR_Regs;
4287   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4288     if (Ins[i].Flags.isNest())
4289       continue;
4290 
4291     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4292                                PtrByteSize, LinkageSize, ParamAreaSize,
4293                                NumBytes, AvailableFPRs, AvailableVRs))
4294       HasParameterArea = true;
4295   }
4296 
4297   // Add DAG nodes to load the arguments or copy them out of registers.  On
4298   // entry to a function on PPC, the arguments start after the linkage area,
4299   // although the first ones are often in registers.
4300 
4301   unsigned ArgOffset = LinkageSize;
4302   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4303   SmallVector<SDValue, 8> MemOps;
4304   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4305   unsigned CurArgIdx = 0;
4306   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4307     SDValue ArgVal;
4308     bool needsLoad = false;
4309     EVT ObjectVT = Ins[ArgNo].VT;
4310     EVT OrigVT = Ins[ArgNo].ArgVT;
4311     unsigned ObjSize = ObjectVT.getStoreSize();
4312     unsigned ArgSize = ObjSize;
4313     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4314     if (Ins[ArgNo].isOrigArg()) {
4315       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4316       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4317     }
4318     // We re-align the argument offset for each argument, except when using the
4319     // fast calling convention, when we need to make sure we do that only when
4320     // we'll actually use a stack slot.
4321     unsigned CurArgOffset;
4322     Align Alignment;
4323     auto ComputeArgOffset = [&]() {
4324       /* Respect alignment of argument on the stack.  */
4325       Alignment =
4326           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4327       ArgOffset = alignTo(ArgOffset, Alignment);
4328       CurArgOffset = ArgOffset;
4329     };
4330 
4331     if (CallConv != CallingConv::Fast) {
4332       ComputeArgOffset();
4333 
4334       /* Compute GPR index associated with argument offset.  */
4335       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4336       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4337     }
4338 
4339     // FIXME the codegen can be much improved in some cases.
4340     // We do not have to keep everything in memory.
4341     if (Flags.isByVal()) {
4342       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4343 
4344       if (CallConv == CallingConv::Fast)
4345         ComputeArgOffset();
4346 
4347       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4348       ObjSize = Flags.getByValSize();
4349       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4350       // Empty aggregate parameters do not take up registers.  Examples:
4351       //   struct { } a;
4352       //   union  { } b;
4353       //   int c[0];
4354       // etc.  However, we have to provide a place-holder in InVals, so
4355       // pretend we have an 8-byte item at the current address for that
4356       // purpose.
4357       if (!ObjSize) {
4358         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4359         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4360         InVals.push_back(FIN);
4361         continue;
4362       }
4363 
4364       // Create a stack object covering all stack doublewords occupied
4365       // by the argument.  If the argument is (fully or partially) on
4366       // the stack, or if the argument is fully in registers but the
4367       // caller has allocated the parameter save anyway, we can refer
4368       // directly to the caller's stack frame.  Otherwise, create a
4369       // local copy in our own frame.
4370       int FI;
4371       if (HasParameterArea ||
4372           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4373         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4374       else
4375         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4376       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4377 
4378       // Handle aggregates smaller than 8 bytes.
4379       if (ObjSize < PtrByteSize) {
4380         // The value of the object is its address, which differs from the
4381         // address of the enclosing doubleword on big-endian systems.
4382         SDValue Arg = FIN;
4383         if (!isLittleEndian) {
4384           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4385           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4386         }
4387         InVals.push_back(Arg);
4388 
4389         if (GPR_idx != Num_GPR_Regs) {
4390           Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4391           FuncInfo->addLiveInAttr(VReg, Flags);
4392           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4393           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4394           SDValue Store =
4395               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4396                                 MachinePointerInfo(&*FuncArg), ObjType);
4397           MemOps.push_back(Store);
4398         }
4399         // Whether we copied from a register or not, advance the offset
4400         // into the parameter save area by a full doubleword.
4401         ArgOffset += PtrByteSize;
4402         continue;
4403       }
4404 
4405       // The value of the object is its address, which is the address of
4406       // its first stack doubleword.
4407       InVals.push_back(FIN);
4408 
4409       // Store whatever pieces of the object are in registers to memory.
4410       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4411         if (GPR_idx == Num_GPR_Regs)
4412           break;
4413 
4414         Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4415         FuncInfo->addLiveInAttr(VReg, Flags);
4416         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4417         SDValue Addr = FIN;
4418         if (j) {
4419           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4420           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4421         }
4422         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4423                                      MachinePointerInfo(&*FuncArg, j));
4424         MemOps.push_back(Store);
4425         ++GPR_idx;
4426       }
4427       ArgOffset += ArgSize;
4428       continue;
4429     }
4430 
4431     switch (ObjectVT.getSimpleVT().SimpleTy) {
4432     default: llvm_unreachable("Unhandled argument type!");
4433     case MVT::i1:
4434     case MVT::i32:
4435     case MVT::i64:
4436       if (Flags.isNest()) {
4437         // The 'nest' parameter, if any, is passed in R11.
4438         Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4439         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4440 
4441         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4442           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4443 
4444         break;
4445       }
4446 
4447       // These can be scalar arguments or elements of an integer array type
4448       // passed directly.  Clang may use those instead of "byval" aggregate
4449       // types to avoid forcing arguments to memory unnecessarily.
4450       if (GPR_idx != Num_GPR_Regs) {
4451         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4452         FuncInfo->addLiveInAttr(VReg, Flags);
4453         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4454 
4455         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4456           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4457           // value to MVT::i64 and then truncate to the correct register size.
4458           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4459       } else {
4460         if (CallConv == CallingConv::Fast)
4461           ComputeArgOffset();
4462 
4463         needsLoad = true;
4464         ArgSize = PtrByteSize;
4465       }
4466       if (CallConv != CallingConv::Fast || needsLoad)
4467         ArgOffset += 8;
4468       break;
4469 
4470     case MVT::f32:
4471     case MVT::f64:
4472       // These can be scalar arguments or elements of a float array type
4473       // passed directly.  The latter are used to implement ELFv2 homogenous
4474       // float aggregates.
4475       if (FPR_idx != Num_FPR_Regs) {
4476         unsigned VReg;
4477 
4478         if (ObjectVT == MVT::f32)
4479           VReg = MF.addLiveIn(FPR[FPR_idx],
4480                               Subtarget.hasP8Vector()
4481                                   ? &PPC::VSSRCRegClass
4482                                   : &PPC::F4RCRegClass);
4483         else
4484           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4485                                                 ? &PPC::VSFRCRegClass
4486                                                 : &PPC::F8RCRegClass);
4487 
4488         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4489         ++FPR_idx;
4490       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4491         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4492         // once we support fp <-> gpr moves.
4493 
4494         // This can only ever happen in the presence of f32 array types,
4495         // since otherwise we never run out of FPRs before running out
4496         // of GPRs.
4497         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4498         FuncInfo->addLiveInAttr(VReg, Flags);
4499         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4500 
4501         if (ObjectVT == MVT::f32) {
4502           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4503             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4504                                  DAG.getConstant(32, dl, MVT::i32));
4505           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4506         }
4507 
4508         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4509       } else {
4510         if (CallConv == CallingConv::Fast)
4511           ComputeArgOffset();
4512 
4513         needsLoad = true;
4514       }
4515 
4516       // When passing an array of floats, the array occupies consecutive
4517       // space in the argument area; only round up to the next doubleword
4518       // at the end of the array.  Otherwise, each float takes 8 bytes.
4519       if (CallConv != CallingConv::Fast || needsLoad) {
4520         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4521         ArgOffset += ArgSize;
4522         if (Flags.isInConsecutiveRegsLast())
4523           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4524       }
4525       break;
4526     case MVT::v4f32:
4527     case MVT::v4i32:
4528     case MVT::v8i16:
4529     case MVT::v16i8:
4530     case MVT::v2f64:
4531     case MVT::v2i64:
4532     case MVT::v1i128:
4533     case MVT::f128:
4534       // These can be scalar arguments or elements of a vector array type
4535       // passed directly.  The latter are used to implement ELFv2 homogenous
4536       // vector aggregates.
4537       if (VR_idx != Num_VR_Regs) {
4538         Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4539         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4540         ++VR_idx;
4541       } else {
4542         if (CallConv == CallingConv::Fast)
4543           ComputeArgOffset();
4544         needsLoad = true;
4545       }
4546       if (CallConv != CallingConv::Fast || needsLoad)
4547         ArgOffset += 16;
4548       break;
4549     }
4550 
4551     // We need to load the argument to a virtual register if we determined
4552     // above that we ran out of physical registers of the appropriate type.
4553     if (needsLoad) {
4554       if (ObjSize < ArgSize && !isLittleEndian)
4555         CurArgOffset += ArgSize - ObjSize;
4556       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4557       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4558       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4559     }
4560 
4561     InVals.push_back(ArgVal);
4562   }
4563 
4564   // Area that is at least reserved in the caller of this function.
4565   unsigned MinReservedArea;
4566   if (HasParameterArea)
4567     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4568   else
4569     MinReservedArea = LinkageSize;
4570 
4571   // Set the size that is at least reserved in caller of this function.  Tail
4572   // call optimized functions' reserved stack space needs to be aligned so that
4573   // taking the difference between two stack areas will result in an aligned
4574   // stack.
4575   MinReservedArea =
4576       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4577   FuncInfo->setMinReservedArea(MinReservedArea);
4578 
4579   // If the function takes variable number of arguments, make a frame index for
4580   // the start of the first vararg value... for expansion of llvm.va_start.
4581   // On ELFv2ABI spec, it writes:
4582   // C programs that are intended to be *portable* across different compilers
4583   // and architectures must use the header file <stdarg.h> to deal with variable
4584   // argument lists.
4585   if (isVarArg && MFI.hasVAStart()) {
4586     int Depth = ArgOffset;
4587 
4588     FuncInfo->setVarArgsFrameIndex(
4589       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4590     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4591 
4592     // If this function is vararg, store any remaining integer argument regs
4593     // to their spots on the stack so that they may be loaded by dereferencing
4594     // the result of va_next.
4595     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4596          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4597       Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4598       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4599       SDValue Store =
4600           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4601       MemOps.push_back(Store);
4602       // Increment the address by four for the next argument to store
4603       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4604       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4605     }
4606   }
4607 
4608   if (!MemOps.empty())
4609     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4610 
4611   return Chain;
4612 }
4613 
4614 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4615 /// adjusted to accommodate the arguments for the tailcall.
4616 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4617                                    unsigned ParamSize) {
4618 
4619   if (!isTailCall) return 0;
4620 
4621   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4622   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4623   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4624   // Remember only if the new adjustment is bigger.
4625   if (SPDiff < FI->getTailCallSPDelta())
4626     FI->setTailCallSPDelta(SPDiff);
4627 
4628   return SPDiff;
4629 }
4630 
4631 static bool isFunctionGlobalAddress(SDValue Callee);
4632 
4633 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4634                               const TargetMachine &TM) {
4635   // It does not make sense to call callsShareTOCBase() with a caller that
4636   // is PC Relative since PC Relative callers do not have a TOC.
4637 #ifndef NDEBUG
4638   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4639   assert(!STICaller->isUsingPCRelativeCalls() &&
4640          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4641 #endif
4642 
4643   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4644   // don't have enough information to determine if the caller and callee share
4645   // the same  TOC base, so we have to pessimistically assume they don't for
4646   // correctness.
4647   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4648   if (!G)
4649     return false;
4650 
4651   const GlobalValue *GV = G->getGlobal();
4652 
4653   // If the callee is preemptable, then the static linker will use a plt-stub
4654   // which saves the toc to the stack, and needs a nop after the call
4655   // instruction to convert to a toc-restore.
4656   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4657     return false;
4658 
4659   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4660   // We may need a TOC restore in the situation where the caller requires a
4661   // valid TOC but the callee is PC Relative and does not.
4662   const Function *F = dyn_cast<Function>(GV);
4663   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4664 
4665   // If we have an Alias we can try to get the function from there.
4666   if (Alias) {
4667     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4668     F = dyn_cast<Function>(GlobalObj);
4669   }
4670 
4671   // If we still have no valid function pointer we do not have enough
4672   // information to determine if the callee uses PC Relative calls so we must
4673   // assume that it does.
4674   if (!F)
4675     return false;
4676 
4677   // If the callee uses PC Relative we cannot guarantee that the callee won't
4678   // clobber the TOC of the caller and so we must assume that the two
4679   // functions do not share a TOC base.
4680   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4681   if (STICallee->isUsingPCRelativeCalls())
4682     return false;
4683 
4684   // If the GV is not a strong definition then we need to assume it can be
4685   // replaced by another function at link time. The function that replaces
4686   // it may not share the same TOC as the caller since the callee may be
4687   // replaced by a PC Relative version of the same function.
4688   if (!GV->isStrongDefinitionForLinker())
4689     return false;
4690 
4691   // The medium and large code models are expected to provide a sufficiently
4692   // large TOC to provide all data addressing needs of a module with a
4693   // single TOC.
4694   if (CodeModel::Medium == TM.getCodeModel() ||
4695       CodeModel::Large == TM.getCodeModel())
4696     return true;
4697 
4698   // Any explicitly-specified sections and section prefixes must also match.
4699   // Also, if we're using -ffunction-sections, then each function is always in
4700   // a different section (the same is true for COMDAT functions).
4701   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4702       GV->getSection() != Caller->getSection())
4703     return false;
4704   if (const auto *F = dyn_cast<Function>(GV)) {
4705     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4706       return false;
4707   }
4708 
4709   return true;
4710 }
4711 
4712 static bool
4713 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4714                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4715   assert(Subtarget.is64BitELFABI());
4716 
4717   const unsigned PtrByteSize = 8;
4718   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4719 
4720   static const MCPhysReg GPR[] = {
4721     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4722     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4723   };
4724   static const MCPhysReg VR[] = {
4725     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4726     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4727   };
4728 
4729   const unsigned NumGPRs = array_lengthof(GPR);
4730   const unsigned NumFPRs = 13;
4731   const unsigned NumVRs = array_lengthof(VR);
4732   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4733 
4734   unsigned NumBytes = LinkageSize;
4735   unsigned AvailableFPRs = NumFPRs;
4736   unsigned AvailableVRs = NumVRs;
4737 
4738   for (const ISD::OutputArg& Param : Outs) {
4739     if (Param.Flags.isNest()) continue;
4740 
4741     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4742                                LinkageSize, ParamAreaSize, NumBytes,
4743                                AvailableFPRs, AvailableVRs))
4744       return true;
4745   }
4746   return false;
4747 }
4748 
4749 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4750   if (CB.arg_size() != CallerFn->arg_size())
4751     return false;
4752 
4753   auto CalleeArgIter = CB.arg_begin();
4754   auto CalleeArgEnd = CB.arg_end();
4755   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4756 
4757   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4758     const Value* CalleeArg = *CalleeArgIter;
4759     const Value* CallerArg = &(*CallerArgIter);
4760     if (CalleeArg == CallerArg)
4761       continue;
4762 
4763     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4764     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4765     //      }
4766     // 1st argument of callee is undef and has the same type as caller.
4767     if (CalleeArg->getType() == CallerArg->getType() &&
4768         isa<UndefValue>(CalleeArg))
4769       continue;
4770 
4771     return false;
4772   }
4773 
4774   return true;
4775 }
4776 
4777 // Returns true if TCO is possible between the callers and callees
4778 // calling conventions.
4779 static bool
4780 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4781                                     CallingConv::ID CalleeCC) {
4782   // Tail calls are possible with fastcc and ccc.
4783   auto isTailCallableCC  = [] (CallingConv::ID CC){
4784       return  CC == CallingConv::C || CC == CallingConv::Fast;
4785   };
4786   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4787     return false;
4788 
4789   // We can safely tail call both fastcc and ccc callees from a c calling
4790   // convention caller. If the caller is fastcc, we may have less stack space
4791   // than a non-fastcc caller with the same signature so disable tail-calls in
4792   // that case.
4793   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4794 }
4795 
4796 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4797     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4798     const SmallVectorImpl<ISD::OutputArg> &Outs,
4799     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4800   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4801 
4802   if (DisableSCO && !TailCallOpt) return false;
4803 
4804   // Variadic argument functions are not supported.
4805   if (isVarArg) return false;
4806 
4807   auto &Caller = DAG.getMachineFunction().getFunction();
4808   // Check that the calling conventions are compatible for tco.
4809   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4810     return false;
4811 
4812   // Caller contains any byval parameter is not supported.
4813   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4814     return false;
4815 
4816   // Callee contains any byval parameter is not supported, too.
4817   // Note: This is a quick work around, because in some cases, e.g.
4818   // caller's stack size > callee's stack size, we are still able to apply
4819   // sibling call optimization. For example, gcc is able to do SCO for caller1
4820   // in the following example, but not for caller2.
4821   //   struct test {
4822   //     long int a;
4823   //     char ary[56];
4824   //   } gTest;
4825   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4826   //     b->a = v.a;
4827   //     return 0;
4828   //   }
4829   //   void caller1(struct test a, struct test c, struct test *b) {
4830   //     callee(gTest, b); }
4831   //   void caller2(struct test *b) { callee(gTest, b); }
4832   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4833     return false;
4834 
4835   // If callee and caller use different calling conventions, we cannot pass
4836   // parameters on stack since offsets for the parameter area may be different.
4837   if (Caller.getCallingConv() != CalleeCC &&
4838       needStackSlotPassParameters(Subtarget, Outs))
4839     return false;
4840 
4841   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4842   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4843   // callee potentially have different TOC bases then we cannot tail call since
4844   // we need to restore the TOC pointer after the call.
4845   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4846   // We cannot guarantee this for indirect calls or calls to external functions.
4847   // When PC-Relative addressing is used, the concept of the TOC is no longer
4848   // applicable so this check is not required.
4849   // Check first for indirect calls.
4850   if (!Subtarget.isUsingPCRelativeCalls() &&
4851       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4852     return false;
4853 
4854   // Check if we share the TOC base.
4855   if (!Subtarget.isUsingPCRelativeCalls() &&
4856       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4857     return false;
4858 
4859   // TCO allows altering callee ABI, so we don't have to check further.
4860   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4861     return true;
4862 
4863   if (DisableSCO) return false;
4864 
4865   // If callee use the same argument list that caller is using, then we can
4866   // apply SCO on this case. If it is not, then we need to check if callee needs
4867   // stack for passing arguments.
4868   // PC Relative tail calls may not have a CallBase.
4869   // If there is no CallBase we cannot verify if we have the same argument
4870   // list so assume that we don't have the same argument list.
4871   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4872       needStackSlotPassParameters(Subtarget, Outs))
4873     return false;
4874   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4875     return false;
4876 
4877   return true;
4878 }
4879 
4880 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4881 /// for tail call optimization. Targets which want to do tail call
4882 /// optimization should implement this function.
4883 bool
4884 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4885                                                      CallingConv::ID CalleeCC,
4886                                                      bool isVarArg,
4887                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4888                                                      SelectionDAG& DAG) const {
4889   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4890     return false;
4891 
4892   // Variable argument functions are not supported.
4893   if (isVarArg)
4894     return false;
4895 
4896   MachineFunction &MF = DAG.getMachineFunction();
4897   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4898   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4899     // Functions containing by val parameters are not supported.
4900     for (unsigned i = 0; i != Ins.size(); i++) {
4901        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4902        if (Flags.isByVal()) return false;
4903     }
4904 
4905     // Non-PIC/GOT tail calls are supported.
4906     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4907       return true;
4908 
4909     // At the moment we can only do local tail calls (in same module, hidden
4910     // or protected) if we are generating PIC.
4911     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4912       return G->getGlobal()->hasHiddenVisibility()
4913           || G->getGlobal()->hasProtectedVisibility();
4914   }
4915 
4916   return false;
4917 }
4918 
4919 /// isCallCompatibleAddress - Return the immediate to use if the specified
4920 /// 32-bit value is representable in the immediate field of a BxA instruction.
4921 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4922   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4923   if (!C) return nullptr;
4924 
4925   int Addr = C->getZExtValue();
4926   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4927       SignExtend32<26>(Addr) != Addr)
4928     return nullptr;  // Top 6 bits have to be sext of immediate.
4929 
4930   return DAG
4931       .getConstant(
4932           (int)C->getZExtValue() >> 2, SDLoc(Op),
4933           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4934       .getNode();
4935 }
4936 
4937 namespace {
4938 
4939 struct TailCallArgumentInfo {
4940   SDValue Arg;
4941   SDValue FrameIdxOp;
4942   int FrameIdx = 0;
4943 
4944   TailCallArgumentInfo() = default;
4945 };
4946 
4947 } // end anonymous namespace
4948 
4949 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4950 static void StoreTailCallArgumentsToStackSlot(
4951     SelectionDAG &DAG, SDValue Chain,
4952     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4953     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4954   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4955     SDValue Arg = TailCallArgs[i].Arg;
4956     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4957     int FI = TailCallArgs[i].FrameIdx;
4958     // Store relative to framepointer.
4959     MemOpChains.push_back(DAG.getStore(
4960         Chain, dl, Arg, FIN,
4961         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4962   }
4963 }
4964 
4965 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4966 /// the appropriate stack slot for the tail call optimized function call.
4967 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4968                                              SDValue OldRetAddr, SDValue OldFP,
4969                                              int SPDiff, const SDLoc &dl) {
4970   if (SPDiff) {
4971     // Calculate the new stack slot for the return address.
4972     MachineFunction &MF = DAG.getMachineFunction();
4973     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4974     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4975     bool isPPC64 = Subtarget.isPPC64();
4976     int SlotSize = isPPC64 ? 8 : 4;
4977     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4978     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4979                                                          NewRetAddrLoc, true);
4980     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4981     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4982     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4983                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4984   }
4985   return Chain;
4986 }
4987 
4988 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4989 /// the position of the argument.
4990 static void
4991 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4992                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4993                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4994   int Offset = ArgOffset + SPDiff;
4995   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4996   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4997   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4998   SDValue FIN = DAG.getFrameIndex(FI, VT);
4999   TailCallArgumentInfo Info;
5000   Info.Arg = Arg;
5001   Info.FrameIdxOp = FIN;
5002   Info.FrameIdx = FI;
5003   TailCallArguments.push_back(Info);
5004 }
5005 
5006 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5007 /// stack slot. Returns the chain as result and the loaded frame pointers in
5008 /// LROpOut/FPOpout. Used when tail calling.
5009 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5010     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5011     SDValue &FPOpOut, const SDLoc &dl) const {
5012   if (SPDiff) {
5013     // Load the LR and FP stack slot for later adjusting.
5014     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5015     LROpOut = getReturnAddrFrameIndex(DAG);
5016     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5017     Chain = SDValue(LROpOut.getNode(), 1);
5018   }
5019   return Chain;
5020 }
5021 
5022 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5023 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5024 /// specified by the specific parameter attribute. The copy will be passed as
5025 /// a byval function parameter.
5026 /// Sometimes what we are copying is the end of a larger object, the part that
5027 /// does not fit in registers.
5028 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5029                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5030                                          SelectionDAG &DAG, const SDLoc &dl) {
5031   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5032   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5033                        Flags.getNonZeroByValAlign(), false, false, false,
5034                        MachinePointerInfo(), MachinePointerInfo());
5035 }
5036 
5037 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5038 /// tail calls.
5039 static void LowerMemOpCallTo(
5040     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5041     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5042     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5043     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5044   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5045   if (!isTailCall) {
5046     if (isVector) {
5047       SDValue StackPtr;
5048       if (isPPC64)
5049         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5050       else
5051         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5052       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5053                            DAG.getConstant(ArgOffset, dl, PtrVT));
5054     }
5055     MemOpChains.push_back(
5056         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5057     // Calculate and remember argument location.
5058   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5059                                   TailCallArguments);
5060 }
5061 
5062 static void
5063 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5064                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5065                 SDValue FPOp,
5066                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5067   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5068   // might overwrite each other in case of tail call optimization.
5069   SmallVector<SDValue, 8> MemOpChains2;
5070   // Do not flag preceding copytoreg stuff together with the following stuff.
5071   InFlag = SDValue();
5072   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5073                                     MemOpChains2, dl);
5074   if (!MemOpChains2.empty())
5075     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5076 
5077   // Store the return address to the appropriate stack slot.
5078   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5079 
5080   // Emit callseq_end just before tailcall node.
5081   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5082                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5083   InFlag = Chain.getValue(1);
5084 }
5085 
5086 // Is this global address that of a function that can be called by name? (as
5087 // opposed to something that must hold a descriptor for an indirect call).
5088 static bool isFunctionGlobalAddress(SDValue Callee) {
5089   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5090     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5091         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5092       return false;
5093 
5094     return G->getGlobal()->getValueType()->isFunctionTy();
5095   }
5096 
5097   return false;
5098 }
5099 
5100 SDValue PPCTargetLowering::LowerCallResult(
5101     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5102     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5103     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5104   SmallVector<CCValAssign, 16> RVLocs;
5105   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5106                     *DAG.getContext());
5107 
5108   CCRetInfo.AnalyzeCallResult(
5109       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5110                ? RetCC_PPC_Cold
5111                : RetCC_PPC);
5112 
5113   // Copy all of the result registers out of their specified physreg.
5114   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5115     CCValAssign &VA = RVLocs[i];
5116     assert(VA.isRegLoc() && "Can only return in registers!");
5117 
5118     SDValue Val;
5119 
5120     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5121       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5122                                       InFlag);
5123       Chain = Lo.getValue(1);
5124       InFlag = Lo.getValue(2);
5125       VA = RVLocs[++i]; // skip ahead to next loc
5126       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5127                                       InFlag);
5128       Chain = Hi.getValue(1);
5129       InFlag = Hi.getValue(2);
5130       if (!Subtarget.isLittleEndian())
5131         std::swap (Lo, Hi);
5132       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5133     } else {
5134       Val = DAG.getCopyFromReg(Chain, dl,
5135                                VA.getLocReg(), VA.getLocVT(), InFlag);
5136       Chain = Val.getValue(1);
5137       InFlag = Val.getValue(2);
5138     }
5139 
5140     switch (VA.getLocInfo()) {
5141     default: llvm_unreachable("Unknown loc info!");
5142     case CCValAssign::Full: break;
5143     case CCValAssign::AExt:
5144       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5145       break;
5146     case CCValAssign::ZExt:
5147       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5148                         DAG.getValueType(VA.getValVT()));
5149       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5150       break;
5151     case CCValAssign::SExt:
5152       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5153                         DAG.getValueType(VA.getValVT()));
5154       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5155       break;
5156     }
5157 
5158     InVals.push_back(Val);
5159   }
5160 
5161   return Chain;
5162 }
5163 
5164 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5165                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5166   // PatchPoint calls are not indirect.
5167   if (isPatchPoint)
5168     return false;
5169 
5170   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5171     return false;
5172 
5173   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5174   // becuase the immediate function pointer points to a descriptor instead of
5175   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5176   // pointer immediate points to the global entry point, while the BLA would
5177   // need to jump to the local entry point (see rL211174).
5178   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5179       isBLACompatibleAddress(Callee, DAG))
5180     return false;
5181 
5182   return true;
5183 }
5184 
5185 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5186 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5187   return Subtarget.isAIXABI() ||
5188          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5189 }
5190 
5191 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5192                               const Function &Caller, const SDValue &Callee,
5193                               const PPCSubtarget &Subtarget,
5194                               const TargetMachine &TM,
5195                               bool IsStrictFPCall = false) {
5196   if (CFlags.IsTailCall)
5197     return PPCISD::TC_RETURN;
5198 
5199   unsigned RetOpc = 0;
5200   // This is a call through a function pointer.
5201   if (CFlags.IsIndirect) {
5202     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5203     // indirect calls. The save of the caller's TOC pointer to the stack will be
5204     // inserted into the DAG as part of call lowering. The restore of the TOC
5205     // pointer is modeled by using a pseudo instruction for the call opcode that
5206     // represents the 2 instruction sequence of an indirect branch and link,
5207     // immediately followed by a load of the TOC pointer from the the stack save
5208     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5209     // as it is not saved or used.
5210     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5211                                                  : PPCISD::BCTRL;
5212   } else if (Subtarget.isUsingPCRelativeCalls()) {
5213     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5214     RetOpc = PPCISD::CALL_NOTOC;
5215   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5216     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5217     // immediately following the call instruction if the caller and callee may
5218     // have different TOC bases. At link time if the linker determines the calls
5219     // may not share a TOC base, the call is redirected to a trampoline inserted
5220     // by the linker. The trampoline will (among other things) save the callers
5221     // TOC pointer at an ABI designated offset in the linkage area and the
5222     // linker will rewrite the nop to be a load of the TOC pointer from the
5223     // linkage area into gpr2.
5224     RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5225                                                     : PPCISD::CALL_NOP;
5226   else
5227     RetOpc = PPCISD::CALL;
5228   if (IsStrictFPCall) {
5229     switch (RetOpc) {
5230     default:
5231       llvm_unreachable("Unknown call opcode");
5232     case PPCISD::BCTRL_LOAD_TOC:
5233       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5234       break;
5235     case PPCISD::BCTRL:
5236       RetOpc = PPCISD::BCTRL_RM;
5237       break;
5238     case PPCISD::CALL_NOTOC:
5239       RetOpc = PPCISD::CALL_NOTOC_RM;
5240       break;
5241     case PPCISD::CALL:
5242       RetOpc = PPCISD::CALL_RM;
5243       break;
5244     case PPCISD::CALL_NOP:
5245       RetOpc = PPCISD::CALL_NOP_RM;
5246       break;
5247     }
5248   }
5249   return RetOpc;
5250 }
5251 
5252 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5253                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5254   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5255     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5256       return SDValue(Dest, 0);
5257 
5258   // Returns true if the callee is local, and false otherwise.
5259   auto isLocalCallee = [&]() {
5260     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5261     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5262     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5263 
5264     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5265            !isa_and_nonnull<GlobalIFunc>(GV);
5266   };
5267 
5268   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5269   // a static relocation model causes some versions of GNU LD (2.17.50, at
5270   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5271   // built with secure-PLT.
5272   bool UsePlt =
5273       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5274       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5275 
5276   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5277     const TargetMachine &TM = Subtarget.getTargetMachine();
5278     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5279     MCSymbolXCOFF *S =
5280         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5281 
5282     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5283     return DAG.getMCSymbol(S, PtrVT);
5284   };
5285 
5286   if (isFunctionGlobalAddress(Callee)) {
5287     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5288 
5289     if (Subtarget.isAIXABI()) {
5290       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5291       return getAIXFuncEntryPointSymbolSDNode(GV);
5292     }
5293     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5294                                       UsePlt ? PPCII::MO_PLT : 0);
5295   }
5296 
5297   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5298     const char *SymName = S->getSymbol();
5299     if (Subtarget.isAIXABI()) {
5300       // If there exists a user-declared function whose name is the same as the
5301       // ExternalSymbol's, then we pick up the user-declared version.
5302       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5303       if (const Function *F =
5304               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5305         return getAIXFuncEntryPointSymbolSDNode(F);
5306 
5307       // On AIX, direct function calls reference the symbol for the function's
5308       // entry point, which is named by prepending a "." before the function's
5309       // C-linkage name. A Qualname is returned here because an external
5310       // function entry point is a csect with XTY_ER property.
5311       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5312         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5313         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5314             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5315             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5316         return Sec->getQualNameSymbol();
5317       };
5318 
5319       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5320     }
5321     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5322                                        UsePlt ? PPCII::MO_PLT : 0);
5323   }
5324 
5325   // No transformation needed.
5326   assert(Callee.getNode() && "What no callee?");
5327   return Callee;
5328 }
5329 
5330 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5331   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5332          "Expected a CALLSEQ_STARTSDNode.");
5333 
5334   // The last operand is the chain, except when the node has glue. If the node
5335   // has glue, then the last operand is the glue, and the chain is the second
5336   // last operand.
5337   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5338   if (LastValue.getValueType() != MVT::Glue)
5339     return LastValue;
5340 
5341   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5342 }
5343 
5344 // Creates the node that moves a functions address into the count register
5345 // to prepare for an indirect call instruction.
5346 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5347                                 SDValue &Glue, SDValue &Chain,
5348                                 const SDLoc &dl) {
5349   SDValue MTCTROps[] = {Chain, Callee, Glue};
5350   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5351   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5352                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5353   // The glue is the second value produced.
5354   Glue = Chain.getValue(1);
5355 }
5356 
5357 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5358                                           SDValue &Glue, SDValue &Chain,
5359                                           SDValue CallSeqStart,
5360                                           const CallBase *CB, const SDLoc &dl,
5361                                           bool hasNest,
5362                                           const PPCSubtarget &Subtarget) {
5363   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5364   // entry point, but to the function descriptor (the function entry point
5365   // address is part of the function descriptor though).
5366   // The function descriptor is a three doubleword structure with the
5367   // following fields: function entry point, TOC base address and
5368   // environment pointer.
5369   // Thus for a call through a function pointer, the following actions need
5370   // to be performed:
5371   //   1. Save the TOC of the caller in the TOC save area of its stack
5372   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5373   //   2. Load the address of the function entry point from the function
5374   //      descriptor.
5375   //   3. Load the TOC of the callee from the function descriptor into r2.
5376   //   4. Load the environment pointer from the function descriptor into
5377   //      r11.
5378   //   5. Branch to the function entry point address.
5379   //   6. On return of the callee, the TOC of the caller needs to be
5380   //      restored (this is done in FinishCall()).
5381   //
5382   // The loads are scheduled at the beginning of the call sequence, and the
5383   // register copies are flagged together to ensure that no other
5384   // operations can be scheduled in between. E.g. without flagging the
5385   // copies together, a TOC access in the caller could be scheduled between
5386   // the assignment of the callee TOC and the branch to the callee, which leads
5387   // to incorrect code.
5388 
5389   // Start by loading the function address from the descriptor.
5390   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5391   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5392                       ? (MachineMemOperand::MODereferenceable |
5393                          MachineMemOperand::MOInvariant)
5394                       : MachineMemOperand::MONone;
5395 
5396   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5397 
5398   // Registers used in building the DAG.
5399   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5400   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5401 
5402   // Offsets of descriptor members.
5403   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5404   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5405 
5406   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5407   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5408 
5409   // One load for the functions entry point address.
5410   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5411                                     Alignment, MMOFlags);
5412 
5413   // One for loading the TOC anchor for the module that contains the called
5414   // function.
5415   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5416   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5417   SDValue TOCPtr =
5418       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5419                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5420 
5421   // One for loading the environment pointer.
5422   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5423   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5424   SDValue LoadEnvPtr =
5425       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5426                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5427 
5428 
5429   // Then copy the newly loaded TOC anchor to the TOC pointer.
5430   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5431   Chain = TOCVal.getValue(0);
5432   Glue = TOCVal.getValue(1);
5433 
5434   // If the function call has an explicit 'nest' parameter, it takes the
5435   // place of the environment pointer.
5436   assert((!hasNest || !Subtarget.isAIXABI()) &&
5437          "Nest parameter is not supported on AIX.");
5438   if (!hasNest) {
5439     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5440     Chain = EnvVal.getValue(0);
5441     Glue = EnvVal.getValue(1);
5442   }
5443 
5444   // The rest of the indirect call sequence is the same as the non-descriptor
5445   // DAG.
5446   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5447 }
5448 
5449 static void
5450 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5451                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5452                   SelectionDAG &DAG,
5453                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5454                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5455                   const PPCSubtarget &Subtarget) {
5456   const bool IsPPC64 = Subtarget.isPPC64();
5457   // MVT for a general purpose register.
5458   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5459 
5460   // First operand is always the chain.
5461   Ops.push_back(Chain);
5462 
5463   // If it's a direct call pass the callee as the second operand.
5464   if (!CFlags.IsIndirect)
5465     Ops.push_back(Callee);
5466   else {
5467     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5468 
5469     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5470     // on the stack (this would have been done in `LowerCall_64SVR4` or
5471     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5472     // represents both the indirect branch and a load that restores the TOC
5473     // pointer from the linkage area. The operand for the TOC restore is an add
5474     // of the TOC save offset to the stack pointer. This must be the second
5475     // operand: after the chain input but before any other variadic arguments.
5476     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5477     // saved or used.
5478     if (isTOCSaveRestoreRequired(Subtarget)) {
5479       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5480 
5481       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5482       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5483       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5484       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5485       Ops.push_back(AddTOC);
5486     }
5487 
5488     // Add the register used for the environment pointer.
5489     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5490       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5491                                     RegVT));
5492 
5493 
5494     // Add CTR register as callee so a bctr can be emitted later.
5495     if (CFlags.IsTailCall)
5496       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5497   }
5498 
5499   // If this is a tail call add stack pointer delta.
5500   if (CFlags.IsTailCall)
5501     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5502 
5503   // Add argument registers to the end of the list so that they are known live
5504   // into the call.
5505   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5506     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5507                                   RegsToPass[i].second.getValueType()));
5508 
5509   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5510   // no way to mark dependencies as implicit here.
5511   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5512   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5513        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5514     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5515 
5516   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5517   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5518     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5519 
5520   // Add a register mask operand representing the call-preserved registers.
5521   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5522   const uint32_t *Mask =
5523       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5524   assert(Mask && "Missing call preserved mask for calling convention");
5525   Ops.push_back(DAG.getRegisterMask(Mask));
5526 
5527   // If the glue is valid, it is the last operand.
5528   if (Glue.getNode())
5529     Ops.push_back(Glue);
5530 }
5531 
5532 SDValue PPCTargetLowering::FinishCall(
5533     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5534     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5535     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5536     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5537     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5538 
5539   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5540       Subtarget.isAIXABI())
5541     setUsesTOCBasePtr(DAG);
5542 
5543   unsigned CallOpc =
5544       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5545                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5546 
5547   if (!CFlags.IsIndirect)
5548     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5549   else if (Subtarget.usesFunctionDescriptors())
5550     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5551                                   dl, CFlags.HasNest, Subtarget);
5552   else
5553     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5554 
5555   // Build the operand list for the call instruction.
5556   SmallVector<SDValue, 8> Ops;
5557   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5558                     SPDiff, Subtarget);
5559 
5560   // Emit tail call.
5561   if (CFlags.IsTailCall) {
5562     // Indirect tail call when using PC Relative calls do not have the same
5563     // constraints.
5564     assert(((Callee.getOpcode() == ISD::Register &&
5565              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5566             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5567             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5568             isa<ConstantSDNode>(Callee) ||
5569             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5570            "Expecting a global address, external symbol, absolute value, "
5571            "register or an indirect tail call when PC Relative calls are "
5572            "used.");
5573     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5574     assert(CallOpc == PPCISD::TC_RETURN &&
5575            "Unexpected call opcode for a tail call.");
5576     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5577     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5578   }
5579 
5580   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5581   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5582   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5583   Glue = Chain.getValue(1);
5584 
5585   // When performing tail call optimization the callee pops its arguments off
5586   // the stack. Account for this here so these bytes can be pushed back on in
5587   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5588   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5589                          getTargetMachine().Options.GuaranteedTailCallOpt)
5590                             ? NumBytes
5591                             : 0;
5592 
5593   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5594                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5595                              Glue, dl);
5596   Glue = Chain.getValue(1);
5597 
5598   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5599                          DAG, InVals);
5600 }
5601 
5602 SDValue
5603 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5604                              SmallVectorImpl<SDValue> &InVals) const {
5605   SelectionDAG &DAG                     = CLI.DAG;
5606   SDLoc &dl                             = CLI.DL;
5607   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5608   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5609   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5610   SDValue Chain                         = CLI.Chain;
5611   SDValue Callee                        = CLI.Callee;
5612   bool &isTailCall                      = CLI.IsTailCall;
5613   CallingConv::ID CallConv              = CLI.CallConv;
5614   bool isVarArg                         = CLI.IsVarArg;
5615   bool isPatchPoint                     = CLI.IsPatchPoint;
5616   const CallBase *CB                    = CLI.CB;
5617 
5618   if (isTailCall) {
5619     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5620       isTailCall = false;
5621     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5622       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5623           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5624     else
5625       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5626                                                      Ins, DAG);
5627     if (isTailCall) {
5628       ++NumTailCalls;
5629       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5630         ++NumSiblingCalls;
5631 
5632       // PC Relative calls no longer guarantee that the callee is a Global
5633       // Address Node. The callee could be an indirect tail call in which
5634       // case the SDValue for the callee could be a load (to load the address
5635       // of a function pointer) or it may be a register copy (to move the
5636       // address of the callee from a function parameter into a virtual
5637       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5638       assert((Subtarget.isUsingPCRelativeCalls() ||
5639               isa<GlobalAddressSDNode>(Callee)) &&
5640              "Callee should be an llvm::Function object.");
5641 
5642       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5643                         << "\nTCO callee: ");
5644       LLVM_DEBUG(Callee.dump());
5645     }
5646   }
5647 
5648   if (!isTailCall && CB && CB->isMustTailCall())
5649     report_fatal_error("failed to perform tail call elimination on a call "
5650                        "site marked musttail");
5651 
5652   // When long calls (i.e. indirect calls) are always used, calls are always
5653   // made via function pointer. If we have a function name, first translate it
5654   // into a pointer.
5655   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5656       !isTailCall)
5657     Callee = LowerGlobalAddress(Callee, DAG);
5658 
5659   CallFlags CFlags(
5660       CallConv, isTailCall, isVarArg, isPatchPoint,
5661       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5662       // hasNest
5663       Subtarget.is64BitELFABI() &&
5664           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5665       CLI.NoMerge);
5666 
5667   if (Subtarget.isAIXABI())
5668     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5669                          InVals, CB);
5670 
5671   assert(Subtarget.isSVR4ABI());
5672   if (Subtarget.isPPC64())
5673     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5674                             InVals, CB);
5675   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5676                           InVals, CB);
5677 }
5678 
5679 SDValue PPCTargetLowering::LowerCall_32SVR4(
5680     SDValue Chain, SDValue Callee, CallFlags CFlags,
5681     const SmallVectorImpl<ISD::OutputArg> &Outs,
5682     const SmallVectorImpl<SDValue> &OutVals,
5683     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5684     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5685     const CallBase *CB) const {
5686   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5687   // of the 32-bit SVR4 ABI stack frame layout.
5688 
5689   const CallingConv::ID CallConv = CFlags.CallConv;
5690   const bool IsVarArg = CFlags.IsVarArg;
5691   const bool IsTailCall = CFlags.IsTailCall;
5692 
5693   assert((CallConv == CallingConv::C ||
5694           CallConv == CallingConv::Cold ||
5695           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5696 
5697   const Align PtrAlign(4);
5698 
5699   MachineFunction &MF = DAG.getMachineFunction();
5700 
5701   // Mark this function as potentially containing a function that contains a
5702   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5703   // and restoring the callers stack pointer in this functions epilog. This is
5704   // done because by tail calling the called function might overwrite the value
5705   // in this function's (MF) stack pointer stack slot 0(SP).
5706   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5707       CallConv == CallingConv::Fast)
5708     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5709 
5710   // Count how many bytes are to be pushed on the stack, including the linkage
5711   // area, parameter list area and the part of the local variable space which
5712   // contains copies of aggregates which are passed by value.
5713 
5714   // Assign locations to all of the outgoing arguments.
5715   SmallVector<CCValAssign, 16> ArgLocs;
5716   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5717 
5718   // Reserve space for the linkage area on the stack.
5719   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5720                        PtrAlign);
5721   if (useSoftFloat())
5722     CCInfo.PreAnalyzeCallOperands(Outs);
5723 
5724   if (IsVarArg) {
5725     // Handle fixed and variable vector arguments differently.
5726     // Fixed vector arguments go into registers as long as registers are
5727     // available. Variable vector arguments always go into memory.
5728     unsigned NumArgs = Outs.size();
5729 
5730     for (unsigned i = 0; i != NumArgs; ++i) {
5731       MVT ArgVT = Outs[i].VT;
5732       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5733       bool Result;
5734 
5735       if (Outs[i].IsFixed) {
5736         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5737                                CCInfo);
5738       } else {
5739         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5740                                       ArgFlags, CCInfo);
5741       }
5742 
5743       if (Result) {
5744 #ifndef NDEBUG
5745         errs() << "Call operand #" << i << " has unhandled type "
5746              << EVT(ArgVT).getEVTString() << "\n";
5747 #endif
5748         llvm_unreachable(nullptr);
5749       }
5750     }
5751   } else {
5752     // All arguments are treated the same.
5753     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5754   }
5755   CCInfo.clearWasPPCF128();
5756 
5757   // Assign locations to all of the outgoing aggregate by value arguments.
5758   SmallVector<CCValAssign, 16> ByValArgLocs;
5759   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5760 
5761   // Reserve stack space for the allocations in CCInfo.
5762   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5763 
5764   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5765 
5766   // Size of the linkage area, parameter list area and the part of the local
5767   // space variable where copies of aggregates which are passed by value are
5768   // stored.
5769   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5770 
5771   // Calculate by how many bytes the stack has to be adjusted in case of tail
5772   // call optimization.
5773   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5774 
5775   // Adjust the stack pointer for the new arguments...
5776   // These operations are automatically eliminated by the prolog/epilog pass
5777   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5778   SDValue CallSeqStart = Chain;
5779 
5780   // Load the return address and frame pointer so it can be moved somewhere else
5781   // later.
5782   SDValue LROp, FPOp;
5783   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5784 
5785   // Set up a copy of the stack pointer for use loading and storing any
5786   // arguments that may not fit in the registers available for argument
5787   // passing.
5788   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5789 
5790   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5791   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5792   SmallVector<SDValue, 8> MemOpChains;
5793 
5794   bool seenFloatArg = false;
5795   // Walk the register/memloc assignments, inserting copies/loads.
5796   // i - Tracks the index into the list of registers allocated for the call
5797   // RealArgIdx - Tracks the index into the list of actual function arguments
5798   // j - Tracks the index into the list of byval arguments
5799   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5800        i != e;
5801        ++i, ++RealArgIdx) {
5802     CCValAssign &VA = ArgLocs[i];
5803     SDValue Arg = OutVals[RealArgIdx];
5804     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5805 
5806     if (Flags.isByVal()) {
5807       // Argument is an aggregate which is passed by value, thus we need to
5808       // create a copy of it in the local variable space of the current stack
5809       // frame (which is the stack frame of the caller) and pass the address of
5810       // this copy to the callee.
5811       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5812       CCValAssign &ByValVA = ByValArgLocs[j++];
5813       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5814 
5815       // Memory reserved in the local variable space of the callers stack frame.
5816       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5817 
5818       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5819       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5820                            StackPtr, PtrOff);
5821 
5822       // Create a copy of the argument in the local area of the current
5823       // stack frame.
5824       SDValue MemcpyCall =
5825         CreateCopyOfByValArgument(Arg, PtrOff,
5826                                   CallSeqStart.getNode()->getOperand(0),
5827                                   Flags, DAG, dl);
5828 
5829       // This must go outside the CALLSEQ_START..END.
5830       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5831                                                      SDLoc(MemcpyCall));
5832       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5833                              NewCallSeqStart.getNode());
5834       Chain = CallSeqStart = NewCallSeqStart;
5835 
5836       // Pass the address of the aggregate copy on the stack either in a
5837       // physical register or in the parameter list area of the current stack
5838       // frame to the callee.
5839       Arg = PtrOff;
5840     }
5841 
5842     // When useCRBits() is true, there can be i1 arguments.
5843     // It is because getRegisterType(MVT::i1) => MVT::i1,
5844     // and for other integer types getRegisterType() => MVT::i32.
5845     // Extend i1 and ensure callee will get i32.
5846     if (Arg.getValueType() == MVT::i1)
5847       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5848                         dl, MVT::i32, Arg);
5849 
5850     if (VA.isRegLoc()) {
5851       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5852       // Put argument in a physical register.
5853       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5854         bool IsLE = Subtarget.isLittleEndian();
5855         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5856                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5857         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5858         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5859                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5860         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5861                              SVal.getValue(0)));
5862       } else
5863         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5864     } else {
5865       // Put argument in the parameter list area of the current stack frame.
5866       assert(VA.isMemLoc());
5867       unsigned LocMemOffset = VA.getLocMemOffset();
5868 
5869       if (!IsTailCall) {
5870         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5871         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5872                              StackPtr, PtrOff);
5873 
5874         MemOpChains.push_back(
5875             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5876       } else {
5877         // Calculate and remember argument location.
5878         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5879                                  TailCallArguments);
5880       }
5881     }
5882   }
5883 
5884   if (!MemOpChains.empty())
5885     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5886 
5887   // Build a sequence of copy-to-reg nodes chained together with token chain
5888   // and flag operands which copy the outgoing args into the appropriate regs.
5889   SDValue InFlag;
5890   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5891     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5892                              RegsToPass[i].second, InFlag);
5893     InFlag = Chain.getValue(1);
5894   }
5895 
5896   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5897   // registers.
5898   if (IsVarArg) {
5899     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5900     SDValue Ops[] = { Chain, InFlag };
5901 
5902     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5903                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5904 
5905     InFlag = Chain.getValue(1);
5906   }
5907 
5908   if (IsTailCall)
5909     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5910                     TailCallArguments);
5911 
5912   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5913                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5914 }
5915 
5916 // Copy an argument into memory, being careful to do this outside the
5917 // call sequence for the call to which the argument belongs.
5918 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5919     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5920     SelectionDAG &DAG, const SDLoc &dl) const {
5921   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5922                         CallSeqStart.getNode()->getOperand(0),
5923                         Flags, DAG, dl);
5924   // The MEMCPY must go outside the CALLSEQ_START..END.
5925   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5926   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5927                                                  SDLoc(MemcpyCall));
5928   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5929                          NewCallSeqStart.getNode());
5930   return NewCallSeqStart;
5931 }
5932 
5933 SDValue PPCTargetLowering::LowerCall_64SVR4(
5934     SDValue Chain, SDValue Callee, CallFlags CFlags,
5935     const SmallVectorImpl<ISD::OutputArg> &Outs,
5936     const SmallVectorImpl<SDValue> &OutVals,
5937     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5938     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5939     const CallBase *CB) const {
5940   bool isELFv2ABI = Subtarget.isELFv2ABI();
5941   bool isLittleEndian = Subtarget.isLittleEndian();
5942   unsigned NumOps = Outs.size();
5943   bool IsSibCall = false;
5944   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5945 
5946   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5947   unsigned PtrByteSize = 8;
5948 
5949   MachineFunction &MF = DAG.getMachineFunction();
5950 
5951   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5952     IsSibCall = true;
5953 
5954   // Mark this function as potentially containing a function that contains a
5955   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5956   // and restoring the callers stack pointer in this functions epilog. This is
5957   // done because by tail calling the called function might overwrite the value
5958   // in this function's (MF) stack pointer stack slot 0(SP).
5959   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5960     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5961 
5962   assert(!(IsFastCall && CFlags.IsVarArg) &&
5963          "fastcc not supported on varargs functions");
5964 
5965   // Count how many bytes are to be pushed on the stack, including the linkage
5966   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5967   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5968   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5969   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5970   unsigned NumBytes = LinkageSize;
5971   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5972 
5973   static const MCPhysReg GPR[] = {
5974     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5975     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5976   };
5977   static const MCPhysReg VR[] = {
5978     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5979     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5980   };
5981 
5982   const unsigned NumGPRs = array_lengthof(GPR);
5983   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5984   const unsigned NumVRs  = array_lengthof(VR);
5985 
5986   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5987   // can be passed to the callee in registers.
5988   // For the fast calling convention, there is another check below.
5989   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5990   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5991   if (!HasParameterArea) {
5992     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5993     unsigned AvailableFPRs = NumFPRs;
5994     unsigned AvailableVRs = NumVRs;
5995     unsigned NumBytesTmp = NumBytes;
5996     for (unsigned i = 0; i != NumOps; ++i) {
5997       if (Outs[i].Flags.isNest()) continue;
5998       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5999                                  PtrByteSize, LinkageSize, ParamAreaSize,
6000                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6001         HasParameterArea = true;
6002     }
6003   }
6004 
6005   // When using the fast calling convention, we don't provide backing for
6006   // arguments that will be in registers.
6007   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6008 
6009   // Avoid allocating parameter area for fastcc functions if all the arguments
6010   // can be passed in the registers.
6011   if (IsFastCall)
6012     HasParameterArea = false;
6013 
6014   // Add up all the space actually used.
6015   for (unsigned i = 0; i != NumOps; ++i) {
6016     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6017     EVT ArgVT = Outs[i].VT;
6018     EVT OrigVT = Outs[i].ArgVT;
6019 
6020     if (Flags.isNest())
6021       continue;
6022 
6023     if (IsFastCall) {
6024       if (Flags.isByVal()) {
6025         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6026         if (NumGPRsUsed > NumGPRs)
6027           HasParameterArea = true;
6028       } else {
6029         switch (ArgVT.getSimpleVT().SimpleTy) {
6030         default: llvm_unreachable("Unexpected ValueType for argument!");
6031         case MVT::i1:
6032         case MVT::i32:
6033         case MVT::i64:
6034           if (++NumGPRsUsed <= NumGPRs)
6035             continue;
6036           break;
6037         case MVT::v4i32:
6038         case MVT::v8i16:
6039         case MVT::v16i8:
6040         case MVT::v2f64:
6041         case MVT::v2i64:
6042         case MVT::v1i128:
6043         case MVT::f128:
6044           if (++NumVRsUsed <= NumVRs)
6045             continue;
6046           break;
6047         case MVT::v4f32:
6048           if (++NumVRsUsed <= NumVRs)
6049             continue;
6050           break;
6051         case MVT::f32:
6052         case MVT::f64:
6053           if (++NumFPRsUsed <= NumFPRs)
6054             continue;
6055           break;
6056         }
6057         HasParameterArea = true;
6058       }
6059     }
6060 
6061     /* Respect alignment of argument on the stack.  */
6062     auto Alignement =
6063         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6064     NumBytes = alignTo(NumBytes, Alignement);
6065 
6066     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6067     if (Flags.isInConsecutiveRegsLast())
6068       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6069   }
6070 
6071   unsigned NumBytesActuallyUsed = NumBytes;
6072 
6073   // In the old ELFv1 ABI,
6074   // the prolog code of the callee may store up to 8 GPR argument registers to
6075   // the stack, allowing va_start to index over them in memory if its varargs.
6076   // Because we cannot tell if this is needed on the caller side, we have to
6077   // conservatively assume that it is needed.  As such, make sure we have at
6078   // least enough stack space for the caller to store the 8 GPRs.
6079   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6080   // really requires memory operands, e.g. a vararg function.
6081   if (HasParameterArea)
6082     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6083   else
6084     NumBytes = LinkageSize;
6085 
6086   // Tail call needs the stack to be aligned.
6087   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6088     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6089 
6090   int SPDiff = 0;
6091 
6092   // Calculate by how many bytes the stack has to be adjusted in case of tail
6093   // call optimization.
6094   if (!IsSibCall)
6095     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6096 
6097   // To protect arguments on the stack from being clobbered in a tail call,
6098   // force all the loads to happen before doing any other lowering.
6099   if (CFlags.IsTailCall)
6100     Chain = DAG.getStackArgumentTokenFactor(Chain);
6101 
6102   // Adjust the stack pointer for the new arguments...
6103   // These operations are automatically eliminated by the prolog/epilog pass
6104   if (!IsSibCall)
6105     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6106   SDValue CallSeqStart = Chain;
6107 
6108   // Load the return address and frame pointer so it can be move somewhere else
6109   // later.
6110   SDValue LROp, FPOp;
6111   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6112 
6113   // Set up a copy of the stack pointer for use loading and storing any
6114   // arguments that may not fit in the registers available for argument
6115   // passing.
6116   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6117 
6118   // Figure out which arguments are going to go in registers, and which in
6119   // memory.  Also, if this is a vararg function, floating point operations
6120   // must be stored to our stack, and loaded into integer regs as well, if
6121   // any integer regs are available for argument passing.
6122   unsigned ArgOffset = LinkageSize;
6123 
6124   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6125   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6126 
6127   SmallVector<SDValue, 8> MemOpChains;
6128   for (unsigned i = 0; i != NumOps; ++i) {
6129     SDValue Arg = OutVals[i];
6130     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6131     EVT ArgVT = Outs[i].VT;
6132     EVT OrigVT = Outs[i].ArgVT;
6133 
6134     // PtrOff will be used to store the current argument to the stack if a
6135     // register cannot be found for it.
6136     SDValue PtrOff;
6137 
6138     // We re-align the argument offset for each argument, except when using the
6139     // fast calling convention, when we need to make sure we do that only when
6140     // we'll actually use a stack slot.
6141     auto ComputePtrOff = [&]() {
6142       /* Respect alignment of argument on the stack.  */
6143       auto Alignment =
6144           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6145       ArgOffset = alignTo(ArgOffset, Alignment);
6146 
6147       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6148 
6149       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6150     };
6151 
6152     if (!IsFastCall) {
6153       ComputePtrOff();
6154 
6155       /* Compute GPR index associated with argument offset.  */
6156       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6157       GPR_idx = std::min(GPR_idx, NumGPRs);
6158     }
6159 
6160     // Promote integers to 64-bit values.
6161     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6162       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6163       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6164       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6165     }
6166 
6167     // FIXME memcpy is used way more than necessary.  Correctness first.
6168     // Note: "by value" is code for passing a structure by value, not
6169     // basic types.
6170     if (Flags.isByVal()) {
6171       // Note: Size includes alignment padding, so
6172       //   struct x { short a; char b; }
6173       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6174       // These are the proper values we need for right-justifying the
6175       // aggregate in a parameter register.
6176       unsigned Size = Flags.getByValSize();
6177 
6178       // An empty aggregate parameter takes up no storage and no
6179       // registers.
6180       if (Size == 0)
6181         continue;
6182 
6183       if (IsFastCall)
6184         ComputePtrOff();
6185 
6186       // All aggregates smaller than 8 bytes must be passed right-justified.
6187       if (Size==1 || Size==2 || Size==4) {
6188         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6189         if (GPR_idx != NumGPRs) {
6190           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6191                                         MachinePointerInfo(), VT);
6192           MemOpChains.push_back(Load.getValue(1));
6193           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6194 
6195           ArgOffset += PtrByteSize;
6196           continue;
6197         }
6198       }
6199 
6200       if (GPR_idx == NumGPRs && Size < 8) {
6201         SDValue AddPtr = PtrOff;
6202         if (!isLittleEndian) {
6203           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6204                                           PtrOff.getValueType());
6205           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6206         }
6207         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6208                                                           CallSeqStart,
6209                                                           Flags, DAG, dl);
6210         ArgOffset += PtrByteSize;
6211         continue;
6212       }
6213       // Copy the object to parameter save area if it can not be entirely passed
6214       // by registers.
6215       // FIXME: we only need to copy the parts which need to be passed in
6216       // parameter save area. For the parts passed by registers, we don't need
6217       // to copy them to the stack although we need to allocate space for them
6218       // in parameter save area.
6219       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6220         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6221                                                           CallSeqStart,
6222                                                           Flags, DAG, dl);
6223 
6224       // When a register is available, pass a small aggregate right-justified.
6225       if (Size < 8 && GPR_idx != NumGPRs) {
6226         // The easiest way to get this right-justified in a register
6227         // is to copy the structure into the rightmost portion of a
6228         // local variable slot, then load the whole slot into the
6229         // register.
6230         // FIXME: The memcpy seems to produce pretty awful code for
6231         // small aggregates, particularly for packed ones.
6232         // FIXME: It would be preferable to use the slot in the
6233         // parameter save area instead of a new local variable.
6234         SDValue AddPtr = PtrOff;
6235         if (!isLittleEndian) {
6236           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6237           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6238         }
6239         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6240                                                           CallSeqStart,
6241                                                           Flags, DAG, dl);
6242 
6243         // Load the slot into the register.
6244         SDValue Load =
6245             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6246         MemOpChains.push_back(Load.getValue(1));
6247         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6248 
6249         // Done with this argument.
6250         ArgOffset += PtrByteSize;
6251         continue;
6252       }
6253 
6254       // For aggregates larger than PtrByteSize, copy the pieces of the
6255       // object that fit into registers from the parameter save area.
6256       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6257         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6258         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6259         if (GPR_idx != NumGPRs) {
6260           SDValue Load =
6261               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6262           MemOpChains.push_back(Load.getValue(1));
6263           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6264           ArgOffset += PtrByteSize;
6265         } else {
6266           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6267           break;
6268         }
6269       }
6270       continue;
6271     }
6272 
6273     switch (Arg.getSimpleValueType().SimpleTy) {
6274     default: llvm_unreachable("Unexpected ValueType for argument!");
6275     case MVT::i1:
6276     case MVT::i32:
6277     case MVT::i64:
6278       if (Flags.isNest()) {
6279         // The 'nest' parameter, if any, is passed in R11.
6280         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6281         break;
6282       }
6283 
6284       // These can be scalar arguments or elements of an integer array type
6285       // passed directly.  Clang may use those instead of "byval" aggregate
6286       // types to avoid forcing arguments to memory unnecessarily.
6287       if (GPR_idx != NumGPRs) {
6288         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6289       } else {
6290         if (IsFastCall)
6291           ComputePtrOff();
6292 
6293         assert(HasParameterArea &&
6294                "Parameter area must exist to pass an argument in memory.");
6295         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6296                          true, CFlags.IsTailCall, false, MemOpChains,
6297                          TailCallArguments, dl);
6298         if (IsFastCall)
6299           ArgOffset += PtrByteSize;
6300       }
6301       if (!IsFastCall)
6302         ArgOffset += PtrByteSize;
6303       break;
6304     case MVT::f32:
6305     case MVT::f64: {
6306       // These can be scalar arguments or elements of a float array type
6307       // passed directly.  The latter are used to implement ELFv2 homogenous
6308       // float aggregates.
6309 
6310       // Named arguments go into FPRs first, and once they overflow, the
6311       // remaining arguments go into GPRs and then the parameter save area.
6312       // Unnamed arguments for vararg functions always go to GPRs and
6313       // then the parameter save area.  For now, put all arguments to vararg
6314       // routines always in both locations (FPR *and* GPR or stack slot).
6315       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6316       bool NeededLoad = false;
6317 
6318       // First load the argument into the next available FPR.
6319       if (FPR_idx != NumFPRs)
6320         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6321 
6322       // Next, load the argument into GPR or stack slot if needed.
6323       if (!NeedGPROrStack)
6324         ;
6325       else if (GPR_idx != NumGPRs && !IsFastCall) {
6326         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6327         // once we support fp <-> gpr moves.
6328 
6329         // In the non-vararg case, this can only ever happen in the
6330         // presence of f32 array types, since otherwise we never run
6331         // out of FPRs before running out of GPRs.
6332         SDValue ArgVal;
6333 
6334         // Double values are always passed in a single GPR.
6335         if (Arg.getValueType() != MVT::f32) {
6336           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6337 
6338         // Non-array float values are extended and passed in a GPR.
6339         } else if (!Flags.isInConsecutiveRegs()) {
6340           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6341           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6342 
6343         // If we have an array of floats, we collect every odd element
6344         // together with its predecessor into one GPR.
6345         } else if (ArgOffset % PtrByteSize != 0) {
6346           SDValue Lo, Hi;
6347           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6348           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6349           if (!isLittleEndian)
6350             std::swap(Lo, Hi);
6351           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6352 
6353         // The final element, if even, goes into the first half of a GPR.
6354         } else if (Flags.isInConsecutiveRegsLast()) {
6355           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6356           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6357           if (!isLittleEndian)
6358             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6359                                  DAG.getConstant(32, dl, MVT::i32));
6360 
6361         // Non-final even elements are skipped; they will be handled
6362         // together the with subsequent argument on the next go-around.
6363         } else
6364           ArgVal = SDValue();
6365 
6366         if (ArgVal.getNode())
6367           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6368       } else {
6369         if (IsFastCall)
6370           ComputePtrOff();
6371 
6372         // Single-precision floating-point values are mapped to the
6373         // second (rightmost) word of the stack doubleword.
6374         if (Arg.getValueType() == MVT::f32 &&
6375             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6376           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6377           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6378         }
6379 
6380         assert(HasParameterArea &&
6381                "Parameter area must exist to pass an argument in memory.");
6382         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6383                          true, CFlags.IsTailCall, false, MemOpChains,
6384                          TailCallArguments, dl);
6385 
6386         NeededLoad = true;
6387       }
6388       // When passing an array of floats, the array occupies consecutive
6389       // space in the argument area; only round up to the next doubleword
6390       // at the end of the array.  Otherwise, each float takes 8 bytes.
6391       if (!IsFastCall || NeededLoad) {
6392         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6393                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6394         if (Flags.isInConsecutiveRegsLast())
6395           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6396       }
6397       break;
6398     }
6399     case MVT::v4f32:
6400     case MVT::v4i32:
6401     case MVT::v8i16:
6402     case MVT::v16i8:
6403     case MVT::v2f64:
6404     case MVT::v2i64:
6405     case MVT::v1i128:
6406     case MVT::f128:
6407       // These can be scalar arguments or elements of a vector array type
6408       // passed directly.  The latter are used to implement ELFv2 homogenous
6409       // vector aggregates.
6410 
6411       // For a varargs call, named arguments go into VRs or on the stack as
6412       // usual; unnamed arguments always go to the stack or the corresponding
6413       // GPRs when within range.  For now, we always put the value in both
6414       // locations (or even all three).
6415       if (CFlags.IsVarArg) {
6416         assert(HasParameterArea &&
6417                "Parameter area must exist if we have a varargs call.");
6418         // We could elide this store in the case where the object fits
6419         // entirely in R registers.  Maybe later.
6420         SDValue Store =
6421             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6422         MemOpChains.push_back(Store);
6423         if (VR_idx != NumVRs) {
6424           SDValue Load =
6425               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6426           MemOpChains.push_back(Load.getValue(1));
6427           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6428         }
6429         ArgOffset += 16;
6430         for (unsigned i=0; i<16; i+=PtrByteSize) {
6431           if (GPR_idx == NumGPRs)
6432             break;
6433           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6434                                    DAG.getConstant(i, dl, PtrVT));
6435           SDValue Load =
6436               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6437           MemOpChains.push_back(Load.getValue(1));
6438           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6439         }
6440         break;
6441       }
6442 
6443       // Non-varargs Altivec params go into VRs or on the stack.
6444       if (VR_idx != NumVRs) {
6445         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6446       } else {
6447         if (IsFastCall)
6448           ComputePtrOff();
6449 
6450         assert(HasParameterArea &&
6451                "Parameter area must exist to pass an argument in memory.");
6452         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6453                          true, CFlags.IsTailCall, true, MemOpChains,
6454                          TailCallArguments, dl);
6455         if (IsFastCall)
6456           ArgOffset += 16;
6457       }
6458 
6459       if (!IsFastCall)
6460         ArgOffset += 16;
6461       break;
6462     }
6463   }
6464 
6465   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6466          "mismatch in size of parameter area");
6467   (void)NumBytesActuallyUsed;
6468 
6469   if (!MemOpChains.empty())
6470     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6471 
6472   // Check if this is an indirect call (MTCTR/BCTRL).
6473   // See prepareDescriptorIndirectCall and buildCallOperands for more
6474   // information about calls through function pointers in the 64-bit SVR4 ABI.
6475   if (CFlags.IsIndirect) {
6476     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6477     // caller in the TOC save area.
6478     if (isTOCSaveRestoreRequired(Subtarget)) {
6479       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6480       // Load r2 into a virtual register and store it to the TOC save area.
6481       setUsesTOCBasePtr(DAG);
6482       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6483       // TOC save area offset.
6484       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6485       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6486       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6487       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6488                            MachinePointerInfo::getStack(
6489                                DAG.getMachineFunction(), TOCSaveOffset));
6490     }
6491     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6492     // This does not mean the MTCTR instruction must use R12; it's easier
6493     // to model this as an extra parameter, so do that.
6494     if (isELFv2ABI && !CFlags.IsPatchPoint)
6495       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6496   }
6497 
6498   // Build a sequence of copy-to-reg nodes chained together with token chain
6499   // and flag operands which copy the outgoing args into the appropriate regs.
6500   SDValue InFlag;
6501   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6502     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6503                              RegsToPass[i].second, InFlag);
6504     InFlag = Chain.getValue(1);
6505   }
6506 
6507   if (CFlags.IsTailCall && !IsSibCall)
6508     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6509                     TailCallArguments);
6510 
6511   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6512                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6513 }
6514 
6515 // Returns true when the shadow of a general purpose argument register
6516 // in the parameter save area is aligned to at least 'RequiredAlign'.
6517 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6518   assert(RequiredAlign.value() <= 16 &&
6519          "Required alignment greater than stack alignment.");
6520   switch (Reg) {
6521   default:
6522     report_fatal_error("called on invalid register.");
6523   case PPC::R5:
6524   case PPC::R9:
6525   case PPC::X3:
6526   case PPC::X5:
6527   case PPC::X7:
6528   case PPC::X9:
6529     // These registers are 16 byte aligned which is the most strict aligment
6530     // we can support.
6531     return true;
6532   case PPC::R3:
6533   case PPC::R7:
6534   case PPC::X4:
6535   case PPC::X6:
6536   case PPC::X8:
6537   case PPC::X10:
6538     // The shadow of these registers in the PSA is 8 byte aligned.
6539     return RequiredAlign <= 8;
6540   case PPC::R4:
6541   case PPC::R6:
6542   case PPC::R8:
6543   case PPC::R10:
6544     return RequiredAlign <= 4;
6545   }
6546 }
6547 
6548 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6549                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6550                    CCState &S) {
6551   AIXCCState &State = static_cast<AIXCCState &>(S);
6552   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6553       State.getMachineFunction().getSubtarget());
6554   const bool IsPPC64 = Subtarget.isPPC64();
6555   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6556   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6557 
6558   if (ValVT == MVT::f128)
6559     report_fatal_error("f128 is unimplemented on AIX.");
6560 
6561   if (ArgFlags.isNest())
6562     report_fatal_error("Nest arguments are unimplemented.");
6563 
6564   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6565                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6566                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6567   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6568                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6569                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6570 
6571   static const MCPhysReg VR[] = {// Vector registers.
6572                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6573                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6574                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6575 
6576   if (ArgFlags.isByVal()) {
6577     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6578       report_fatal_error("Pass-by-value arguments with alignment greater than "
6579                          "register width are not supported.");
6580 
6581     const unsigned ByValSize = ArgFlags.getByValSize();
6582 
6583     // An empty aggregate parameter takes up no storage and no registers,
6584     // but needs a MemLoc for a stack slot for the formal arguments side.
6585     if (ByValSize == 0) {
6586       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6587                                        State.getNextStackOffset(), RegVT,
6588                                        LocInfo));
6589       return false;
6590     }
6591 
6592     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6593     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6594     for (const unsigned E = Offset + StackSize; Offset < E;
6595          Offset += PtrAlign.value()) {
6596       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6597         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6598       else {
6599         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6600                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6601                                          LocInfo));
6602         break;
6603       }
6604     }
6605     return false;
6606   }
6607 
6608   // Arguments always reserve parameter save area.
6609   switch (ValVT.SimpleTy) {
6610   default:
6611     report_fatal_error("Unhandled value type for argument.");
6612   case MVT::i64:
6613     // i64 arguments should have been split to i32 for PPC32.
6614     assert(IsPPC64 && "PPC32 should have split i64 values.");
6615     LLVM_FALLTHROUGH;
6616   case MVT::i1:
6617   case MVT::i32: {
6618     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6619     // AIX integer arguments are always passed in register width.
6620     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6621       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6622                                   : CCValAssign::LocInfo::ZExt;
6623     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6624       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6625     else
6626       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6627 
6628     return false;
6629   }
6630   case MVT::f32:
6631   case MVT::f64: {
6632     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6633     const unsigned StoreSize = LocVT.getStoreSize();
6634     // Floats are always 4-byte aligned in the PSA on AIX.
6635     // This includes f64 in 64-bit mode for ABI compatibility.
6636     const unsigned Offset =
6637         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6638     unsigned FReg = State.AllocateReg(FPR);
6639     if (FReg)
6640       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6641 
6642     // Reserve and initialize GPRs or initialize the PSA as required.
6643     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6644       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6645         assert(FReg && "An FPR should be available when a GPR is reserved.");
6646         if (State.isVarArg()) {
6647           // Successfully reserved GPRs are only initialized for vararg calls.
6648           // Custom handling is required for:
6649           //   f64 in PPC32 needs to be split into 2 GPRs.
6650           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6651           State.addLoc(
6652               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6653         }
6654       } else {
6655         // If there are insufficient GPRs, the PSA needs to be initialized.
6656         // Initialization occurs even if an FPR was initialized for
6657         // compatibility with the AIX XL compiler. The full memory for the
6658         // argument will be initialized even if a prior word is saved in GPR.
6659         // A custom memLoc is used when the argument also passes in FPR so
6660         // that the callee handling can skip over it easily.
6661         State.addLoc(
6662             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6663                                              LocInfo)
6664                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6665         break;
6666       }
6667     }
6668 
6669     return false;
6670   }
6671   case MVT::v4f32:
6672   case MVT::v4i32:
6673   case MVT::v8i16:
6674   case MVT::v16i8:
6675   case MVT::v2i64:
6676   case MVT::v2f64:
6677   case MVT::v1i128: {
6678     const unsigned VecSize = 16;
6679     const Align VecAlign(VecSize);
6680 
6681     if (!State.isVarArg()) {
6682       // If there are vector registers remaining we don't consume any stack
6683       // space.
6684       if (unsigned VReg = State.AllocateReg(VR)) {
6685         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6686         return false;
6687       }
6688       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6689       // might be allocated in the portion of the PSA that is shadowed by the
6690       // GPRs.
6691       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6692       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6693       return false;
6694     }
6695 
6696     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6697     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6698 
6699     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6700     // Burn any underaligned registers and their shadowed stack space until
6701     // we reach the required alignment.
6702     while (NextRegIndex != GPRs.size() &&
6703            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6704       // Shadow allocate register and its stack shadow.
6705       unsigned Reg = State.AllocateReg(GPRs);
6706       State.AllocateStack(PtrSize, PtrAlign);
6707       assert(Reg && "Allocating register unexpectedly failed.");
6708       (void)Reg;
6709       NextRegIndex = State.getFirstUnallocated(GPRs);
6710     }
6711 
6712     // Vectors that are passed as fixed arguments are handled differently.
6713     // They are passed in VRs if any are available (unlike arguments passed
6714     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6715     // functions)
6716     if (State.isFixed(ValNo)) {
6717       if (unsigned VReg = State.AllocateReg(VR)) {
6718         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6719         // Shadow allocate GPRs and stack space even though we pass in a VR.
6720         for (unsigned I = 0; I != VecSize; I += PtrSize)
6721           State.AllocateReg(GPRs);
6722         State.AllocateStack(VecSize, VecAlign);
6723         return false;
6724       }
6725       // No vector registers remain so pass on the stack.
6726       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6727       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6728       return false;
6729     }
6730 
6731     // If all GPRS are consumed then we pass the argument fully on the stack.
6732     if (NextRegIndex == GPRs.size()) {
6733       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6734       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6735       return false;
6736     }
6737 
6738     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6739     // half of the argument, and then need to pass the remaining half on the
6740     // stack.
6741     if (GPRs[NextRegIndex] == PPC::R9) {
6742       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6743       State.addLoc(
6744           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6745 
6746       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6747       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6748       assert(FirstReg && SecondReg &&
6749              "Allocating R9 or R10 unexpectedly failed.");
6750       State.addLoc(
6751           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6752       State.addLoc(
6753           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6754       return false;
6755     }
6756 
6757     // We have enough GPRs to fully pass the vector argument, and we have
6758     // already consumed any underaligned registers. Start with the custom
6759     // MemLoc and then the custom RegLocs.
6760     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6761     State.addLoc(
6762         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6763     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6764       const unsigned Reg = State.AllocateReg(GPRs);
6765       assert(Reg && "Failed to allocated register for vararg vector argument");
6766       State.addLoc(
6767           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6768     }
6769     return false;
6770   }
6771   }
6772   return true;
6773 }
6774 
6775 // So far, this function is only used by LowerFormalArguments_AIX()
6776 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6777                                                     bool IsPPC64,
6778                                                     bool HasP8Vector,
6779                                                     bool HasVSX) {
6780   assert((IsPPC64 || SVT != MVT::i64) &&
6781          "i64 should have been split for 32-bit codegen.");
6782 
6783   switch (SVT) {
6784   default:
6785     report_fatal_error("Unexpected value type for formal argument");
6786   case MVT::i1:
6787   case MVT::i32:
6788   case MVT::i64:
6789     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6790   case MVT::f32:
6791     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6792   case MVT::f64:
6793     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6794   case MVT::v4f32:
6795   case MVT::v4i32:
6796   case MVT::v8i16:
6797   case MVT::v16i8:
6798   case MVT::v2i64:
6799   case MVT::v2f64:
6800   case MVT::v1i128:
6801     return &PPC::VRRCRegClass;
6802   }
6803 }
6804 
6805 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6806                                         SelectionDAG &DAG, SDValue ArgValue,
6807                                         MVT LocVT, const SDLoc &dl) {
6808   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6809   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6810 
6811   if (Flags.isSExt())
6812     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6813                            DAG.getValueType(ValVT));
6814   else if (Flags.isZExt())
6815     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6816                            DAG.getValueType(ValVT));
6817 
6818   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6819 }
6820 
6821 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6822   const unsigned LASize = FL->getLinkageSize();
6823 
6824   if (PPC::GPRCRegClass.contains(Reg)) {
6825     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6826            "Reg must be a valid argument register!");
6827     return LASize + 4 * (Reg - PPC::R3);
6828   }
6829 
6830   if (PPC::G8RCRegClass.contains(Reg)) {
6831     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6832            "Reg must be a valid argument register!");
6833     return LASize + 8 * (Reg - PPC::X3);
6834   }
6835 
6836   llvm_unreachable("Only general purpose registers expected.");
6837 }
6838 
6839 //   AIX ABI Stack Frame Layout:
6840 //
6841 //   Low Memory +--------------------------------------------+
6842 //   SP   +---> | Back chain                                 | ---+
6843 //        |     +--------------------------------------------+    |
6844 //        |     | Saved Condition Register                   |    |
6845 //        |     +--------------------------------------------+    |
6846 //        |     | Saved Linkage Register                     |    |
6847 //        |     +--------------------------------------------+    | Linkage Area
6848 //        |     | Reserved for compilers                     |    |
6849 //        |     +--------------------------------------------+    |
6850 //        |     | Reserved for binders                       |    |
6851 //        |     +--------------------------------------------+    |
6852 //        |     | Saved TOC pointer                          | ---+
6853 //        |     +--------------------------------------------+
6854 //        |     | Parameter save area                        |
6855 //        |     +--------------------------------------------+
6856 //        |     | Alloca space                               |
6857 //        |     +--------------------------------------------+
6858 //        |     | Local variable space                       |
6859 //        |     +--------------------------------------------+
6860 //        |     | Float/int conversion temporary             |
6861 //        |     +--------------------------------------------+
6862 //        |     | Save area for AltiVec registers            |
6863 //        |     +--------------------------------------------+
6864 //        |     | AltiVec alignment padding                  |
6865 //        |     +--------------------------------------------+
6866 //        |     | Save area for VRSAVE register              |
6867 //        |     +--------------------------------------------+
6868 //        |     | Save area for General Purpose registers    |
6869 //        |     +--------------------------------------------+
6870 //        |     | Save area for Floating Point registers     |
6871 //        |     +--------------------------------------------+
6872 //        +---- | Back chain                                 |
6873 // High Memory  +--------------------------------------------+
6874 //
6875 //  Specifications:
6876 //  AIX 7.2 Assembler Language Reference
6877 //  Subroutine linkage convention
6878 
6879 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6880     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6881     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6882     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6883 
6884   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6885           CallConv == CallingConv::Fast) &&
6886          "Unexpected calling convention!");
6887 
6888   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6889     report_fatal_error("Tail call support is unimplemented on AIX.");
6890 
6891   if (useSoftFloat())
6892     report_fatal_error("Soft float support is unimplemented on AIX.");
6893 
6894   const PPCSubtarget &Subtarget =
6895       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6896 
6897   const bool IsPPC64 = Subtarget.isPPC64();
6898   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6899 
6900   // Assign locations to all of the incoming arguments.
6901   SmallVector<CCValAssign, 16> ArgLocs;
6902   MachineFunction &MF = DAG.getMachineFunction();
6903   MachineFrameInfo &MFI = MF.getFrameInfo();
6904   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6905   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6906 
6907   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6908   // Reserve space for the linkage area on the stack.
6909   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6910   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6911   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6912 
6913   SmallVector<SDValue, 8> MemOps;
6914 
6915   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6916     CCValAssign &VA = ArgLocs[I++];
6917     MVT LocVT = VA.getLocVT();
6918     MVT ValVT = VA.getValVT();
6919     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6920     // For compatibility with the AIX XL compiler, the float args in the
6921     // parameter save area are initialized even if the argument is available
6922     // in register.  The caller is required to initialize both the register
6923     // and memory, however, the callee can choose to expect it in either.
6924     // The memloc is dismissed here because the argument is retrieved from
6925     // the register.
6926     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6927       continue;
6928 
6929     auto HandleMemLoc = [&]() {
6930       const unsigned LocSize = LocVT.getStoreSize();
6931       const unsigned ValSize = ValVT.getStoreSize();
6932       assert((ValSize <= LocSize) &&
6933              "Object size is larger than size of MemLoc");
6934       int CurArgOffset = VA.getLocMemOffset();
6935       // Objects are right-justified because AIX is big-endian.
6936       if (LocSize > ValSize)
6937         CurArgOffset += LocSize - ValSize;
6938       // Potential tail calls could cause overwriting of argument stack slots.
6939       const bool IsImmutable =
6940           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6941             (CallConv == CallingConv::Fast));
6942       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6943       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6944       SDValue ArgValue =
6945           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6946       InVals.push_back(ArgValue);
6947     };
6948 
6949     // Vector arguments to VaArg functions are passed both on the stack, and
6950     // in any available GPRs. Load the value from the stack and add the GPRs
6951     // as live ins.
6952     if (VA.isMemLoc() && VA.needsCustom()) {
6953       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6954       assert(isVarArg && "Only use custom memloc for vararg.");
6955       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6956       // matching custom RegLocs.
6957       const unsigned OriginalValNo = VA.getValNo();
6958       (void)OriginalValNo;
6959 
6960       auto HandleCustomVecRegLoc = [&]() {
6961         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6962                "Missing custom RegLoc.");
6963         VA = ArgLocs[I++];
6964         assert(VA.getValVT().isVector() &&
6965                "Unexpected Val type for custom RegLoc.");
6966         assert(VA.getValNo() == OriginalValNo &&
6967                "ValNo mismatch between custom MemLoc and RegLoc.");
6968         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6969         MF.addLiveIn(VA.getLocReg(),
6970                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
6971                                        Subtarget.hasVSX()));
6972       };
6973 
6974       HandleMemLoc();
6975       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6976       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6977       // R10.
6978       HandleCustomVecRegLoc();
6979       HandleCustomVecRegLoc();
6980 
6981       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6982       // we passed the vector in R5, R6, R7 and R8.
6983       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6984         assert(!IsPPC64 &&
6985                "Only 2 custom RegLocs expected for 64-bit codegen.");
6986         HandleCustomVecRegLoc();
6987         HandleCustomVecRegLoc();
6988       }
6989 
6990       continue;
6991     }
6992 
6993     if (VA.isRegLoc()) {
6994       if (VA.getValVT().isScalarInteger())
6995         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6996       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
6997         switch (VA.getValVT().SimpleTy) {
6998         default:
6999           report_fatal_error("Unhandled value type for argument.");
7000         case MVT::f32:
7001           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
7002           break;
7003         case MVT::f64:
7004           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7005           break;
7006         }
7007       } else if (VA.getValVT().isVector()) {
7008         switch (VA.getValVT().SimpleTy) {
7009         default:
7010           report_fatal_error("Unhandled value type for argument.");
7011         case MVT::v16i8:
7012           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7013           break;
7014         case MVT::v8i16:
7015           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7016           break;
7017         case MVT::v4i32:
7018         case MVT::v2i64:
7019         case MVT::v1i128:
7020           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7021           break;
7022         case MVT::v4f32:
7023         case MVT::v2f64:
7024           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7025           break;
7026         }
7027       }
7028     }
7029 
7030     if (Flags.isByVal() && VA.isMemLoc()) {
7031       const unsigned Size =
7032           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7033                   PtrByteSize);
7034       const int FI = MF.getFrameInfo().CreateFixedObject(
7035           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7036           /* IsAliased */ true);
7037       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7038       InVals.push_back(FIN);
7039 
7040       continue;
7041     }
7042 
7043     if (Flags.isByVal()) {
7044       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7045 
7046       const MCPhysReg ArgReg = VA.getLocReg();
7047       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7048 
7049       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7050         report_fatal_error("Over aligned byvals not supported yet.");
7051 
7052       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7053       const int FI = MF.getFrameInfo().CreateFixedObject(
7054           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7055           /* IsAliased */ true);
7056       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7057       InVals.push_back(FIN);
7058 
7059       // Add live ins for all the RegLocs for the same ByVal.
7060       const TargetRegisterClass *RegClass =
7061           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7062 
7063       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7064                                                unsigned Offset) {
7065         const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7066         // Since the callers side has left justified the aggregate in the
7067         // register, we can simply store the entire register into the stack
7068         // slot.
7069         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7070         // The store to the fixedstack object is needed becuase accessing a
7071         // field of the ByVal will use a gep and load. Ideally we will optimize
7072         // to extracting the value from the register directly, and elide the
7073         // stores when the arguments address is not taken, but that will need to
7074         // be future work.
7075         SDValue Store = DAG.getStore(
7076             CopyFrom.getValue(1), dl, CopyFrom,
7077             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7078             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7079 
7080         MemOps.push_back(Store);
7081       };
7082 
7083       unsigned Offset = 0;
7084       HandleRegLoc(VA.getLocReg(), Offset);
7085       Offset += PtrByteSize;
7086       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7087            Offset += PtrByteSize) {
7088         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7089                "RegLocs should be for ByVal argument.");
7090 
7091         const CCValAssign RL = ArgLocs[I++];
7092         HandleRegLoc(RL.getLocReg(), Offset);
7093         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7094       }
7095 
7096       if (Offset != StackSize) {
7097         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7098                "Expected MemLoc for remaining bytes.");
7099         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7100         // Consume the MemLoc.The InVal has already been emitted, so nothing
7101         // more needs to be done.
7102         ++I;
7103       }
7104 
7105       continue;
7106     }
7107 
7108     if (VA.isRegLoc() && !VA.needsCustom()) {
7109       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7110       Register VReg =
7111           MF.addLiveIn(VA.getLocReg(),
7112                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7113                                          Subtarget.hasVSX()));
7114       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7115       if (ValVT.isScalarInteger() &&
7116           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7117         ArgValue =
7118             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7119       }
7120       InVals.push_back(ArgValue);
7121       continue;
7122     }
7123     if (VA.isMemLoc()) {
7124       HandleMemLoc();
7125       continue;
7126     }
7127   }
7128 
7129   // On AIX a minimum of 8 words is saved to the parameter save area.
7130   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7131   // Area that is at least reserved in the caller of this function.
7132   unsigned CallerReservedArea =
7133       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7134 
7135   // Set the size that is at least reserved in caller of this function. Tail
7136   // call optimized function's reserved stack space needs to be aligned so
7137   // that taking the difference between two stack areas will result in an
7138   // aligned stack.
7139   CallerReservedArea =
7140       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7141   FuncInfo->setMinReservedArea(CallerReservedArea);
7142 
7143   if (isVarArg) {
7144     FuncInfo->setVarArgsFrameIndex(
7145         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7146     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7147 
7148     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7149                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7150 
7151     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7152                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7153     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7154 
7155     // The fixed integer arguments of a variadic function are stored to the
7156     // VarArgsFrameIndex on the stack so that they may be loaded by
7157     // dereferencing the result of va_next.
7158     for (unsigned GPRIndex =
7159              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7160          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7161 
7162       const Register VReg =
7163           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7164                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7165 
7166       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7167       SDValue Store =
7168           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7169       MemOps.push_back(Store);
7170       // Increment the address for the next argument to store.
7171       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7172       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7173     }
7174   }
7175 
7176   if (!MemOps.empty())
7177     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7178 
7179   return Chain;
7180 }
7181 
7182 SDValue PPCTargetLowering::LowerCall_AIX(
7183     SDValue Chain, SDValue Callee, CallFlags CFlags,
7184     const SmallVectorImpl<ISD::OutputArg> &Outs,
7185     const SmallVectorImpl<SDValue> &OutVals,
7186     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7187     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7188     const CallBase *CB) const {
7189   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7190   // AIX ABI stack frame layout.
7191 
7192   assert((CFlags.CallConv == CallingConv::C ||
7193           CFlags.CallConv == CallingConv::Cold ||
7194           CFlags.CallConv == CallingConv::Fast) &&
7195          "Unexpected calling convention!");
7196 
7197   if (CFlags.IsPatchPoint)
7198     report_fatal_error("This call type is unimplemented on AIX.");
7199 
7200   const PPCSubtarget& Subtarget =
7201       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7202 
7203   MachineFunction &MF = DAG.getMachineFunction();
7204   SmallVector<CCValAssign, 16> ArgLocs;
7205   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7206                     *DAG.getContext());
7207 
7208   // Reserve space for the linkage save area (LSA) on the stack.
7209   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7210   //   [SP][CR][LR][2 x reserved][TOC].
7211   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7212   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7213   const bool IsPPC64 = Subtarget.isPPC64();
7214   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7215   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7216   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7217   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7218 
7219   // The prolog code of the callee may store up to 8 GPR argument registers to
7220   // the stack, allowing va_start to index over them in memory if the callee
7221   // is variadic.
7222   // Because we cannot tell if this is needed on the caller side, we have to
7223   // conservatively assume that it is needed.  As such, make sure we have at
7224   // least enough stack space for the caller to store the 8 GPRs.
7225   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7226   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7227                                      CCInfo.getNextStackOffset());
7228 
7229   // Adjust the stack pointer for the new arguments...
7230   // These operations are automatically eliminated by the prolog/epilog pass.
7231   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7232   SDValue CallSeqStart = Chain;
7233 
7234   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7235   SmallVector<SDValue, 8> MemOpChains;
7236 
7237   // Set up a copy of the stack pointer for loading and storing any
7238   // arguments that may not fit in the registers available for argument
7239   // passing.
7240   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7241                                    : DAG.getRegister(PPC::R1, MVT::i32);
7242 
7243   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7244     const unsigned ValNo = ArgLocs[I].getValNo();
7245     SDValue Arg = OutVals[ValNo];
7246     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7247 
7248     if (Flags.isByVal()) {
7249       const unsigned ByValSize = Flags.getByValSize();
7250 
7251       // Nothing to do for zero-sized ByVals on the caller side.
7252       if (!ByValSize) {
7253         ++I;
7254         continue;
7255       }
7256 
7257       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7258         return DAG.getExtLoad(
7259             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7260             (LoadOffset != 0)
7261                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7262                 : Arg,
7263             MachinePointerInfo(), VT);
7264       };
7265 
7266       unsigned LoadOffset = 0;
7267 
7268       // Initialize registers, which are fully occupied by the by-val argument.
7269       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7270         SDValue Load = GetLoad(PtrVT, LoadOffset);
7271         MemOpChains.push_back(Load.getValue(1));
7272         LoadOffset += PtrByteSize;
7273         const CCValAssign &ByValVA = ArgLocs[I++];
7274         assert(ByValVA.getValNo() == ValNo &&
7275                "Unexpected location for pass-by-value argument.");
7276         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7277       }
7278 
7279       if (LoadOffset == ByValSize)
7280         continue;
7281 
7282       // There must be one more loc to handle the remainder.
7283       assert(ArgLocs[I].getValNo() == ValNo &&
7284              "Expected additional location for by-value argument.");
7285 
7286       if (ArgLocs[I].isMemLoc()) {
7287         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7288         const CCValAssign &ByValVA = ArgLocs[I++];
7289         ISD::ArgFlagsTy MemcpyFlags = Flags;
7290         // Only memcpy the bytes that don't pass in register.
7291         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7292         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7293             (LoadOffset != 0)
7294                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7295                 : Arg,
7296             DAG.getObjectPtrOffset(dl, StackPtr,
7297                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7298             CallSeqStart, MemcpyFlags, DAG, dl);
7299         continue;
7300       }
7301 
7302       // Initialize the final register residue.
7303       // Any residue that occupies the final by-val arg register must be
7304       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7305       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7306       // 2 and 1 byte loads.
7307       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7308       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7309              "Unexpected register residue for by-value argument.");
7310       SDValue ResidueVal;
7311       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7312         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7313         const MVT VT =
7314             N == 1 ? MVT::i8
7315                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7316         SDValue Load = GetLoad(VT, LoadOffset);
7317         MemOpChains.push_back(Load.getValue(1));
7318         LoadOffset += N;
7319         Bytes += N;
7320 
7321         // By-val arguments are passed left-justfied in register.
7322         // Every load here needs to be shifted, otherwise a full register load
7323         // should have been used.
7324         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7325                "Unexpected load emitted during handling of pass-by-value "
7326                "argument.");
7327         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7328         EVT ShiftAmountTy =
7329             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7330         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7331         SDValue ShiftedLoad =
7332             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7333         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7334                                               ShiftedLoad)
7335                                 : ShiftedLoad;
7336       }
7337 
7338       const CCValAssign &ByValVA = ArgLocs[I++];
7339       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7340       continue;
7341     }
7342 
7343     CCValAssign &VA = ArgLocs[I++];
7344     const MVT LocVT = VA.getLocVT();
7345     const MVT ValVT = VA.getValVT();
7346 
7347     switch (VA.getLocInfo()) {
7348     default:
7349       report_fatal_error("Unexpected argument extension type.");
7350     case CCValAssign::Full:
7351       break;
7352     case CCValAssign::ZExt:
7353       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7354       break;
7355     case CCValAssign::SExt:
7356       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7357       break;
7358     }
7359 
7360     if (VA.isRegLoc() && !VA.needsCustom()) {
7361       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7362       continue;
7363     }
7364 
7365     // Vector arguments passed to VarArg functions need custom handling when
7366     // they are passed (at least partially) in GPRs.
7367     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7368       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7369       // Store value to its stack slot.
7370       SDValue PtrOff =
7371           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7372       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7373       SDValue Store =
7374           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7375       MemOpChains.push_back(Store);
7376       const unsigned OriginalValNo = VA.getValNo();
7377       // Then load the GPRs from the stack
7378       unsigned LoadOffset = 0;
7379       auto HandleCustomVecRegLoc = [&]() {
7380         assert(I != E && "Unexpected end of CCvalAssigns.");
7381         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7382                "Expected custom RegLoc.");
7383         CCValAssign RegVA = ArgLocs[I++];
7384         assert(RegVA.getValNo() == OriginalValNo &&
7385                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7386         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7387                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7388         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7389         MemOpChains.push_back(Load.getValue(1));
7390         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7391         LoadOffset += PtrByteSize;
7392       };
7393 
7394       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7395       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7396       // R10.
7397       HandleCustomVecRegLoc();
7398       HandleCustomVecRegLoc();
7399 
7400       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7401           ArgLocs[I].getValNo() == OriginalValNo) {
7402         assert(!IsPPC64 &&
7403                "Only 2 custom RegLocs expected for 64-bit codegen.");
7404         HandleCustomVecRegLoc();
7405         HandleCustomVecRegLoc();
7406       }
7407 
7408       continue;
7409     }
7410 
7411     if (VA.isMemLoc()) {
7412       SDValue PtrOff =
7413           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7414       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7415       MemOpChains.push_back(
7416           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7417 
7418       continue;
7419     }
7420 
7421     if (!ValVT.isFloatingPoint())
7422       report_fatal_error(
7423           "Unexpected register handling for calling convention.");
7424 
7425     // Custom handling is used for GPR initializations for vararg float
7426     // arguments.
7427     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7428            LocVT.isInteger() &&
7429            "Custom register handling only expected for VarArg.");
7430 
7431     SDValue ArgAsInt =
7432         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7433 
7434     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7435       // f32 in 32-bit GPR
7436       // f64 in 64-bit GPR
7437       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7438     else if (Arg.getValueType().getFixedSizeInBits() <
7439              LocVT.getFixedSizeInBits())
7440       // f32 in 64-bit GPR.
7441       RegsToPass.push_back(std::make_pair(
7442           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7443     else {
7444       // f64 in two 32-bit GPRs
7445       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7446       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7447              "Unexpected custom register for argument!");
7448       CCValAssign &GPR1 = VA;
7449       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7450                                      DAG.getConstant(32, dl, MVT::i8));
7451       RegsToPass.push_back(std::make_pair(
7452           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7453 
7454       if (I != E) {
7455         // If only 1 GPR was available, there will only be one custom GPR and
7456         // the argument will also pass in memory.
7457         CCValAssign &PeekArg = ArgLocs[I];
7458         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7459           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7460           CCValAssign &GPR2 = ArgLocs[I++];
7461           RegsToPass.push_back(std::make_pair(
7462               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7463         }
7464       }
7465     }
7466   }
7467 
7468   if (!MemOpChains.empty())
7469     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7470 
7471   // For indirect calls, we need to save the TOC base to the stack for
7472   // restoration after the call.
7473   if (CFlags.IsIndirect) {
7474     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7475     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7476     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7477     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7478     const unsigned TOCSaveOffset =
7479         Subtarget.getFrameLowering()->getTOCSaveOffset();
7480 
7481     setUsesTOCBasePtr(DAG);
7482     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7483     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7484     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7485     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7486     Chain = DAG.getStore(
7487         Val.getValue(1), dl, Val, AddPtr,
7488         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7489   }
7490 
7491   // Build a sequence of copy-to-reg nodes chained together with token chain
7492   // and flag operands which copy the outgoing args into the appropriate regs.
7493   SDValue InFlag;
7494   for (auto Reg : RegsToPass) {
7495     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7496     InFlag = Chain.getValue(1);
7497   }
7498 
7499   const int SPDiff = 0;
7500   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7501                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7502 }
7503 
7504 bool
7505 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7506                                   MachineFunction &MF, bool isVarArg,
7507                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7508                                   LLVMContext &Context) const {
7509   SmallVector<CCValAssign, 16> RVLocs;
7510   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7511   return CCInfo.CheckReturn(
7512       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7513                 ? RetCC_PPC_Cold
7514                 : RetCC_PPC);
7515 }
7516 
7517 SDValue
7518 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7519                                bool isVarArg,
7520                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7521                                const SmallVectorImpl<SDValue> &OutVals,
7522                                const SDLoc &dl, SelectionDAG &DAG) const {
7523   SmallVector<CCValAssign, 16> RVLocs;
7524   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7525                  *DAG.getContext());
7526   CCInfo.AnalyzeReturn(Outs,
7527                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7528                            ? RetCC_PPC_Cold
7529                            : RetCC_PPC);
7530 
7531   SDValue Flag;
7532   SmallVector<SDValue, 4> RetOps(1, Chain);
7533 
7534   // Copy the result values into the output registers.
7535   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7536     CCValAssign &VA = RVLocs[i];
7537     assert(VA.isRegLoc() && "Can only return in registers!");
7538 
7539     SDValue Arg = OutVals[RealResIdx];
7540 
7541     switch (VA.getLocInfo()) {
7542     default: llvm_unreachable("Unknown loc info!");
7543     case CCValAssign::Full: break;
7544     case CCValAssign::AExt:
7545       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7546       break;
7547     case CCValAssign::ZExt:
7548       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7549       break;
7550     case CCValAssign::SExt:
7551       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7552       break;
7553     }
7554     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7555       bool isLittleEndian = Subtarget.isLittleEndian();
7556       // Legalize ret f64 -> ret 2 x i32.
7557       SDValue SVal =
7558           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7559                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7560       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7561       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7562       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7563                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7564       Flag = Chain.getValue(1);
7565       VA = RVLocs[++i]; // skip ahead to next loc
7566       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7567     } else
7568       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7569     Flag = Chain.getValue(1);
7570     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7571   }
7572 
7573   RetOps[0] = Chain;  // Update chain.
7574 
7575   // Add the flag if we have it.
7576   if (Flag.getNode())
7577     RetOps.push_back(Flag);
7578 
7579   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7580 }
7581 
7582 SDValue
7583 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7584                                                 SelectionDAG &DAG) const {
7585   SDLoc dl(Op);
7586 
7587   // Get the correct type for integers.
7588   EVT IntVT = Op.getValueType();
7589 
7590   // Get the inputs.
7591   SDValue Chain = Op.getOperand(0);
7592   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7593   // Build a DYNAREAOFFSET node.
7594   SDValue Ops[2] = {Chain, FPSIdx};
7595   SDVTList VTs = DAG.getVTList(IntVT);
7596   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7597 }
7598 
7599 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7600                                              SelectionDAG &DAG) const {
7601   // When we pop the dynamic allocation we need to restore the SP link.
7602   SDLoc dl(Op);
7603 
7604   // Get the correct type for pointers.
7605   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7606 
7607   // Construct the stack pointer operand.
7608   bool isPPC64 = Subtarget.isPPC64();
7609   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7610   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7611 
7612   // Get the operands for the STACKRESTORE.
7613   SDValue Chain = Op.getOperand(0);
7614   SDValue SaveSP = Op.getOperand(1);
7615 
7616   // Load the old link SP.
7617   SDValue LoadLinkSP =
7618       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7619 
7620   // Restore the stack pointer.
7621   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7622 
7623   // Store the old link SP.
7624   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7625 }
7626 
7627 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7628   MachineFunction &MF = DAG.getMachineFunction();
7629   bool isPPC64 = Subtarget.isPPC64();
7630   EVT PtrVT = getPointerTy(MF.getDataLayout());
7631 
7632   // Get current frame pointer save index.  The users of this index will be
7633   // primarily DYNALLOC instructions.
7634   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7635   int RASI = FI->getReturnAddrSaveIndex();
7636 
7637   // If the frame pointer save index hasn't been defined yet.
7638   if (!RASI) {
7639     // Find out what the fix offset of the frame pointer save area.
7640     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7641     // Allocate the frame index for frame pointer save area.
7642     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7643     // Save the result.
7644     FI->setReturnAddrSaveIndex(RASI);
7645   }
7646   return DAG.getFrameIndex(RASI, PtrVT);
7647 }
7648 
7649 SDValue
7650 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7651   MachineFunction &MF = DAG.getMachineFunction();
7652   bool isPPC64 = Subtarget.isPPC64();
7653   EVT PtrVT = getPointerTy(MF.getDataLayout());
7654 
7655   // Get current frame pointer save index.  The users of this index will be
7656   // primarily DYNALLOC instructions.
7657   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7658   int FPSI = FI->getFramePointerSaveIndex();
7659 
7660   // If the frame pointer save index hasn't been defined yet.
7661   if (!FPSI) {
7662     // Find out what the fix offset of the frame pointer save area.
7663     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7664     // Allocate the frame index for frame pointer save area.
7665     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7666     // Save the result.
7667     FI->setFramePointerSaveIndex(FPSI);
7668   }
7669   return DAG.getFrameIndex(FPSI, PtrVT);
7670 }
7671 
7672 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7673                                                    SelectionDAG &DAG) const {
7674   MachineFunction &MF = DAG.getMachineFunction();
7675   // Get the inputs.
7676   SDValue Chain = Op.getOperand(0);
7677   SDValue Size  = Op.getOperand(1);
7678   SDLoc dl(Op);
7679 
7680   // Get the correct type for pointers.
7681   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7682   // Negate the size.
7683   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7684                                 DAG.getConstant(0, dl, PtrVT), Size);
7685   // Construct a node for the frame pointer save index.
7686   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7687   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7688   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7689   if (hasInlineStackProbe(MF))
7690     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7691   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7692 }
7693 
7694 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7695                                                      SelectionDAG &DAG) const {
7696   MachineFunction &MF = DAG.getMachineFunction();
7697 
7698   bool isPPC64 = Subtarget.isPPC64();
7699   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7700 
7701   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7702   return DAG.getFrameIndex(FI, PtrVT);
7703 }
7704 
7705 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7706                                                SelectionDAG &DAG) const {
7707   SDLoc DL(Op);
7708   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7709                      DAG.getVTList(MVT::i32, MVT::Other),
7710                      Op.getOperand(0), Op.getOperand(1));
7711 }
7712 
7713 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7714                                                 SelectionDAG &DAG) const {
7715   SDLoc DL(Op);
7716   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7717                      Op.getOperand(0), Op.getOperand(1));
7718 }
7719 
7720 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7721   if (Op.getValueType().isVector())
7722     return LowerVectorLoad(Op, DAG);
7723 
7724   assert(Op.getValueType() == MVT::i1 &&
7725          "Custom lowering only for i1 loads");
7726 
7727   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7728 
7729   SDLoc dl(Op);
7730   LoadSDNode *LD = cast<LoadSDNode>(Op);
7731 
7732   SDValue Chain = LD->getChain();
7733   SDValue BasePtr = LD->getBasePtr();
7734   MachineMemOperand *MMO = LD->getMemOperand();
7735 
7736   SDValue NewLD =
7737       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7738                      BasePtr, MVT::i8, MMO);
7739   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7740 
7741   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7742   return DAG.getMergeValues(Ops, dl);
7743 }
7744 
7745 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7746   if (Op.getOperand(1).getValueType().isVector())
7747     return LowerVectorStore(Op, DAG);
7748 
7749   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7750          "Custom lowering only for i1 stores");
7751 
7752   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7753 
7754   SDLoc dl(Op);
7755   StoreSDNode *ST = cast<StoreSDNode>(Op);
7756 
7757   SDValue Chain = ST->getChain();
7758   SDValue BasePtr = ST->getBasePtr();
7759   SDValue Value = ST->getValue();
7760   MachineMemOperand *MMO = ST->getMemOperand();
7761 
7762   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7763                       Value);
7764   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7765 }
7766 
7767 // FIXME: Remove this once the ANDI glue bug is fixed:
7768 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7769   assert(Op.getValueType() == MVT::i1 &&
7770          "Custom lowering only for i1 results");
7771 
7772   SDLoc DL(Op);
7773   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7774 }
7775 
7776 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7777                                                SelectionDAG &DAG) const {
7778 
7779   // Implements a vector truncate that fits in a vector register as a shuffle.
7780   // We want to legalize vector truncates down to where the source fits in
7781   // a vector register (and target is therefore smaller than vector register
7782   // size).  At that point legalization will try to custom lower the sub-legal
7783   // result and get here - where we can contain the truncate as a single target
7784   // operation.
7785 
7786   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7787   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7788   //
7789   // We will implement it for big-endian ordering as this (where x denotes
7790   // undefined):
7791   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7792   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7793   //
7794   // The same operation in little-endian ordering will be:
7795   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7796   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7797 
7798   EVT TrgVT = Op.getValueType();
7799   assert(TrgVT.isVector() && "Vector type expected.");
7800   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7801   EVT EltVT = TrgVT.getVectorElementType();
7802   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7803       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7804       !isPowerOf2_32(EltVT.getSizeInBits()))
7805     return SDValue();
7806 
7807   SDValue N1 = Op.getOperand(0);
7808   EVT SrcVT = N1.getValueType();
7809   unsigned SrcSize = SrcVT.getSizeInBits();
7810   if (SrcSize > 256 ||
7811       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7812       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7813     return SDValue();
7814   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7815     return SDValue();
7816 
7817   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7818   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7819 
7820   SDLoc DL(Op);
7821   SDValue Op1, Op2;
7822   if (SrcSize == 256) {
7823     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7824     EVT SplitVT =
7825         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7826     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7827     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7828                       DAG.getConstant(0, DL, VecIdxTy));
7829     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7830                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7831   }
7832   else {
7833     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7834     Op2 = DAG.getUNDEF(WideVT);
7835   }
7836 
7837   // First list the elements we want to keep.
7838   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7839   SmallVector<int, 16> ShuffV;
7840   if (Subtarget.isLittleEndian())
7841     for (unsigned i = 0; i < TrgNumElts; ++i)
7842       ShuffV.push_back(i * SizeMult);
7843   else
7844     for (unsigned i = 1; i <= TrgNumElts; ++i)
7845       ShuffV.push_back(i * SizeMult - 1);
7846 
7847   // Populate the remaining elements with undefs.
7848   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7849     // ShuffV.push_back(i + WideNumElts);
7850     ShuffV.push_back(WideNumElts + 1);
7851 
7852   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7853   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7854   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7855 }
7856 
7857 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7858 /// possible.
7859 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7860   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7861   EVT ResVT = Op.getValueType();
7862   EVT CmpVT = Op.getOperand(0).getValueType();
7863   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7864   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7865   SDLoc dl(Op);
7866 
7867   // Without power9-vector, we don't have native instruction for f128 comparison.
7868   // Following transformation to libcall is needed for setcc:
7869   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7870   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7871     SDValue Z = DAG.getSetCC(
7872         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7873         LHS, RHS, CC);
7874     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7875     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7876   }
7877 
7878   // Not FP, or using SPE? Not a fsel.
7879   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7880       Subtarget.hasSPE())
7881     return Op;
7882 
7883   SDNodeFlags Flags = Op.getNode()->getFlags();
7884 
7885   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7886   // presence of infinities.
7887   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7888     switch (CC) {
7889     default:
7890       break;
7891     case ISD::SETOGT:
7892     case ISD::SETGT:
7893       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7894     case ISD::SETOLT:
7895     case ISD::SETLT:
7896       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7897     }
7898   }
7899 
7900   // We might be able to do better than this under some circumstances, but in
7901   // general, fsel-based lowering of select is a finite-math-only optimization.
7902   // For more information, see section F.3 of the 2.06 ISA specification.
7903   // With ISA 3.0
7904   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7905       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7906     return Op;
7907 
7908   // If the RHS of the comparison is a 0.0, we don't need to do the
7909   // subtraction at all.
7910   SDValue Sel1;
7911   if (isFloatingPointZero(RHS))
7912     switch (CC) {
7913     default: break;       // SETUO etc aren't handled by fsel.
7914     case ISD::SETNE:
7915       std::swap(TV, FV);
7916       LLVM_FALLTHROUGH;
7917     case ISD::SETEQ:
7918       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7919         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7920       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7921       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7922         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7923       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7924                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7925     case ISD::SETULT:
7926     case ISD::SETLT:
7927       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7928       LLVM_FALLTHROUGH;
7929     case ISD::SETOGE:
7930     case ISD::SETGE:
7931       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7932         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7933       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7934     case ISD::SETUGT:
7935     case ISD::SETGT:
7936       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7937       LLVM_FALLTHROUGH;
7938     case ISD::SETOLE:
7939     case ISD::SETLE:
7940       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7941         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7942       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7943                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7944     }
7945 
7946   SDValue Cmp;
7947   switch (CC) {
7948   default: break;       // SETUO etc aren't handled by fsel.
7949   case ISD::SETNE:
7950     std::swap(TV, FV);
7951     LLVM_FALLTHROUGH;
7952   case ISD::SETEQ:
7953     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7954     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7955       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7956     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7957     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7958       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7959     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7960                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7961   case ISD::SETULT:
7962   case ISD::SETLT:
7963     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7964     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7965       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7966     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7967   case ISD::SETOGE:
7968   case ISD::SETGE:
7969     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7970     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7971       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7972     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7973   case ISD::SETUGT:
7974   case ISD::SETGT:
7975     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7976     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7977       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7978     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7979   case ISD::SETOLE:
7980   case ISD::SETLE:
7981     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7982     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7983       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7984     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7985   }
7986   return Op;
7987 }
7988 
7989 static unsigned getPPCStrictOpcode(unsigned Opc) {
7990   switch (Opc) {
7991   default:
7992     llvm_unreachable("No strict version of this opcode!");
7993   case PPCISD::FCTIDZ:
7994     return PPCISD::STRICT_FCTIDZ;
7995   case PPCISD::FCTIWZ:
7996     return PPCISD::STRICT_FCTIWZ;
7997   case PPCISD::FCTIDUZ:
7998     return PPCISD::STRICT_FCTIDUZ;
7999   case PPCISD::FCTIWUZ:
8000     return PPCISD::STRICT_FCTIWUZ;
8001   case PPCISD::FCFID:
8002     return PPCISD::STRICT_FCFID;
8003   case PPCISD::FCFIDU:
8004     return PPCISD::STRICT_FCFIDU;
8005   case PPCISD::FCFIDS:
8006     return PPCISD::STRICT_FCFIDS;
8007   case PPCISD::FCFIDUS:
8008     return PPCISD::STRICT_FCFIDUS;
8009   }
8010 }
8011 
8012 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8013                               const PPCSubtarget &Subtarget) {
8014   SDLoc dl(Op);
8015   bool IsStrict = Op->isStrictFPOpcode();
8016   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8017                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8018 
8019   // TODO: Any other flags to propagate?
8020   SDNodeFlags Flags;
8021   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8022 
8023   // For strict nodes, source is the second operand.
8024   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8025   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8026   assert(Src.getValueType().isFloatingPoint());
8027   if (Src.getValueType() == MVT::f32) {
8028     if (IsStrict) {
8029       Src =
8030           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8031                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8032       Chain = Src.getValue(1);
8033     } else
8034       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8035   }
8036   SDValue Conv;
8037   unsigned Opc = ISD::DELETED_NODE;
8038   switch (Op.getSimpleValueType().SimpleTy) {
8039   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8040   case MVT::i32:
8041     Opc = IsSigned ? PPCISD::FCTIWZ
8042                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8043     break;
8044   case MVT::i64:
8045     assert((IsSigned || Subtarget.hasFPCVT()) &&
8046            "i64 FP_TO_UINT is supported only with FPCVT");
8047     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8048   }
8049   if (IsStrict) {
8050     Opc = getPPCStrictOpcode(Opc);
8051     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8052                        {Chain, Src}, Flags);
8053   } else {
8054     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8055   }
8056   return Conv;
8057 }
8058 
8059 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8060                                                SelectionDAG &DAG,
8061                                                const SDLoc &dl) const {
8062   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8063   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8064                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8065   bool IsStrict = Op->isStrictFPOpcode();
8066 
8067   // Convert the FP value to an int value through memory.
8068   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8069                   (IsSigned || Subtarget.hasFPCVT());
8070   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8071   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8072   MachinePointerInfo MPI =
8073       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8074 
8075   // Emit a store to the stack slot.
8076   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8077   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8078   if (i32Stack) {
8079     MachineFunction &MF = DAG.getMachineFunction();
8080     Alignment = Align(4);
8081     MachineMemOperand *MMO =
8082         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8083     SDValue Ops[] = { Chain, Tmp, FIPtr };
8084     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8085               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8086   } else
8087     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8088 
8089   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8090   // add in a bias on big endian.
8091   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8092     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8093                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8094     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8095   }
8096 
8097   RLI.Chain = Chain;
8098   RLI.Ptr = FIPtr;
8099   RLI.MPI = MPI;
8100   RLI.Alignment = Alignment;
8101 }
8102 
8103 /// Custom lowers floating point to integer conversions to use
8104 /// the direct move instructions available in ISA 2.07 to avoid the
8105 /// need for load/store combinations.
8106 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8107                                                     SelectionDAG &DAG,
8108                                                     const SDLoc &dl) const {
8109   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8110   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8111   if (Op->isStrictFPOpcode())
8112     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8113   else
8114     return Mov;
8115 }
8116 
8117 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8118                                           const SDLoc &dl) const {
8119   bool IsStrict = Op->isStrictFPOpcode();
8120   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8121                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8122   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8123   EVT SrcVT = Src.getValueType();
8124   EVT DstVT = Op.getValueType();
8125 
8126   // FP to INT conversions are legal for f128.
8127   if (SrcVT == MVT::f128)
8128     return Subtarget.hasP9Vector() ? Op : SDValue();
8129 
8130   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8131   // PPC (the libcall is not available).
8132   if (SrcVT == MVT::ppcf128) {
8133     if (DstVT == MVT::i32) {
8134       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8135       // set other fast-math flags to FP operations in both strict and
8136       // non-strict cases. (FP_TO_SINT, FSUB)
8137       SDNodeFlags Flags;
8138       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8139 
8140       if (IsSigned) {
8141         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8142                                  DAG.getIntPtrConstant(0, dl));
8143         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8144                                  DAG.getIntPtrConstant(1, dl));
8145 
8146         // Add the two halves of the long double in round-to-zero mode, and use
8147         // a smaller FP_TO_SINT.
8148         if (IsStrict) {
8149           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8150                                     DAG.getVTList(MVT::f64, MVT::Other),
8151                                     {Op.getOperand(0), Lo, Hi}, Flags);
8152           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8153                              DAG.getVTList(MVT::i32, MVT::Other),
8154                              {Res.getValue(1), Res}, Flags);
8155         } else {
8156           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8157           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8158         }
8159       } else {
8160         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8161         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8162         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8163         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8164         if (IsStrict) {
8165           // Sel = Src < 0x80000000
8166           // FltOfs = select Sel, 0.0, 0x80000000
8167           // IntOfs = select Sel, 0, 0x80000000
8168           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8169           SDValue Chain = Op.getOperand(0);
8170           EVT SetCCVT =
8171               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8172           EVT DstSetCCVT =
8173               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8174           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8175                                      Chain, true);
8176           Chain = Sel.getValue(1);
8177 
8178           SDValue FltOfs = DAG.getSelect(
8179               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8180           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8181 
8182           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8183                                     DAG.getVTList(SrcVT, MVT::Other),
8184                                     {Chain, Src, FltOfs}, Flags);
8185           Chain = Val.getValue(1);
8186           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8187                                      DAG.getVTList(DstVT, MVT::Other),
8188                                      {Chain, Val}, Flags);
8189           Chain = SInt.getValue(1);
8190           SDValue IntOfs = DAG.getSelect(
8191               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8192           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8193           return DAG.getMergeValues({Result, Chain}, dl);
8194         } else {
8195           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8196           // FIXME: generated code sucks.
8197           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8198           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8199           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8200           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8201           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8202         }
8203       }
8204     }
8205 
8206     return SDValue();
8207   }
8208 
8209   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8210     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8211 
8212   ReuseLoadInfo RLI;
8213   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8214 
8215   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8216                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8217 }
8218 
8219 // We're trying to insert a regular store, S, and then a load, L. If the
8220 // incoming value, O, is a load, we might just be able to have our load use the
8221 // address used by O. However, we don't know if anything else will store to
8222 // that address before we can load from it. To prevent this situation, we need
8223 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8224 // the same chain operand as O, we create a token factor from the chain results
8225 // of O and L, and we replace all uses of O's chain result with that token
8226 // factor (see spliceIntoChain below for this last part).
8227 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8228                                             ReuseLoadInfo &RLI,
8229                                             SelectionDAG &DAG,
8230                                             ISD::LoadExtType ET) const {
8231   // Conservatively skip reusing for constrained FP nodes.
8232   if (Op->isStrictFPOpcode())
8233     return false;
8234 
8235   SDLoc dl(Op);
8236   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8237                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8238   if (ET == ISD::NON_EXTLOAD &&
8239       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8240       isOperationLegalOrCustom(Op.getOpcode(),
8241                                Op.getOperand(0).getValueType())) {
8242 
8243     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8244     return true;
8245   }
8246 
8247   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8248   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8249       LD->isNonTemporal())
8250     return false;
8251   if (LD->getMemoryVT() != MemVT)
8252     return false;
8253 
8254   // If the result of the load is an illegal type, then we can't build a
8255   // valid chain for reuse since the legalised loads and token factor node that
8256   // ties the legalised loads together uses a different output chain then the
8257   // illegal load.
8258   if (!isTypeLegal(LD->getValueType(0)))
8259     return false;
8260 
8261   RLI.Ptr = LD->getBasePtr();
8262   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8263     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8264            "Non-pre-inc AM on PPC?");
8265     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8266                           LD->getOffset());
8267   }
8268 
8269   RLI.Chain = LD->getChain();
8270   RLI.MPI = LD->getPointerInfo();
8271   RLI.IsDereferenceable = LD->isDereferenceable();
8272   RLI.IsInvariant = LD->isInvariant();
8273   RLI.Alignment = LD->getAlign();
8274   RLI.AAInfo = LD->getAAInfo();
8275   RLI.Ranges = LD->getRanges();
8276 
8277   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8278   return true;
8279 }
8280 
8281 // Given the head of the old chain, ResChain, insert a token factor containing
8282 // it and NewResChain, and make users of ResChain now be users of that token
8283 // factor.
8284 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8285 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8286                                         SDValue NewResChain,
8287                                         SelectionDAG &DAG) const {
8288   if (!ResChain)
8289     return;
8290 
8291   SDLoc dl(NewResChain);
8292 
8293   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8294                            NewResChain, DAG.getUNDEF(MVT::Other));
8295   assert(TF.getNode() != NewResChain.getNode() &&
8296          "A new TF really is required here");
8297 
8298   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8299   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8300 }
8301 
8302 /// Analyze profitability of direct move
8303 /// prefer float load to int load plus direct move
8304 /// when there is no integer use of int load
8305 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8306   SDNode *Origin = Op.getOperand(0).getNode();
8307   if (Origin->getOpcode() != ISD::LOAD)
8308     return true;
8309 
8310   // If there is no LXSIBZX/LXSIHZX, like Power8,
8311   // prefer direct move if the memory size is 1 or 2 bytes.
8312   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8313   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8314     return true;
8315 
8316   for (SDNode::use_iterator UI = Origin->use_begin(),
8317                             UE = Origin->use_end();
8318        UI != UE; ++UI) {
8319 
8320     // Only look at the users of the loaded value.
8321     if (UI.getUse().get().getResNo() != 0)
8322       continue;
8323 
8324     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8325         UI->getOpcode() != ISD::UINT_TO_FP &&
8326         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8327         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8328       return true;
8329   }
8330 
8331   return false;
8332 }
8333 
8334 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8335                               const PPCSubtarget &Subtarget,
8336                               SDValue Chain = SDValue()) {
8337   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8338                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8339   SDLoc dl(Op);
8340 
8341   // TODO: Any other flags to propagate?
8342   SDNodeFlags Flags;
8343   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8344 
8345   // If we have FCFIDS, then use it when converting to single-precision.
8346   // Otherwise, convert to double-precision and then round.
8347   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8348   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8349                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8350   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8351   if (Op->isStrictFPOpcode()) {
8352     if (!Chain)
8353       Chain = Op.getOperand(0);
8354     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8355                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8356   } else
8357     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8358 }
8359 
8360 /// Custom lowers integer to floating point conversions to use
8361 /// the direct move instructions available in ISA 2.07 to avoid the
8362 /// need for load/store combinations.
8363 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8364                                                     SelectionDAG &DAG,
8365                                                     const SDLoc &dl) const {
8366   assert((Op.getValueType() == MVT::f32 ||
8367           Op.getValueType() == MVT::f64) &&
8368          "Invalid floating point type as target of conversion");
8369   assert(Subtarget.hasFPCVT() &&
8370          "Int to FP conversions with direct moves require FPCVT");
8371   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8372   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8373   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8374                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8375   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8376   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8377   return convertIntToFP(Op, Mov, DAG, Subtarget);
8378 }
8379 
8380 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8381 
8382   EVT VecVT = Vec.getValueType();
8383   assert(VecVT.isVector() && "Expected a vector type.");
8384   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8385 
8386   EVT EltVT = VecVT.getVectorElementType();
8387   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8388   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8389 
8390   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8391   SmallVector<SDValue, 16> Ops(NumConcat);
8392   Ops[0] = Vec;
8393   SDValue UndefVec = DAG.getUNDEF(VecVT);
8394   for (unsigned i = 1; i < NumConcat; ++i)
8395     Ops[i] = UndefVec;
8396 
8397   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8398 }
8399 
8400 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8401                                                 const SDLoc &dl) const {
8402   bool IsStrict = Op->isStrictFPOpcode();
8403   unsigned Opc = Op.getOpcode();
8404   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8405   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8406           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8407          "Unexpected conversion type");
8408   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8409          "Supports conversions to v2f64/v4f32 only.");
8410 
8411   // TODO: Any other flags to propagate?
8412   SDNodeFlags Flags;
8413   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8414 
8415   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8416   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8417 
8418   SDValue Wide = widenVec(DAG, Src, dl);
8419   EVT WideVT = Wide.getValueType();
8420   unsigned WideNumElts = WideVT.getVectorNumElements();
8421   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8422 
8423   SmallVector<int, 16> ShuffV;
8424   for (unsigned i = 0; i < WideNumElts; ++i)
8425     ShuffV.push_back(i + WideNumElts);
8426 
8427   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8428   int SaveElts = FourEltRes ? 4 : 2;
8429   if (Subtarget.isLittleEndian())
8430     for (int i = 0; i < SaveElts; i++)
8431       ShuffV[i * Stride] = i;
8432   else
8433     for (int i = 1; i <= SaveElts; i++)
8434       ShuffV[i * Stride - 1] = i - 1;
8435 
8436   SDValue ShuffleSrc2 =
8437       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8438   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8439 
8440   SDValue Extend;
8441   if (SignedConv) {
8442     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8443     EVT ExtVT = Src.getValueType();
8444     if (Subtarget.hasP9Altivec())
8445       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8446                                IntermediateVT.getVectorNumElements());
8447 
8448     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8449                          DAG.getValueType(ExtVT));
8450   } else
8451     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8452 
8453   if (IsStrict)
8454     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8455                        {Op.getOperand(0), Extend}, Flags);
8456 
8457   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8458 }
8459 
8460 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8461                                           SelectionDAG &DAG) const {
8462   SDLoc dl(Op);
8463   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8464                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8465   bool IsStrict = Op->isStrictFPOpcode();
8466   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8467   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8468 
8469   // TODO: Any other flags to propagate?
8470   SDNodeFlags Flags;
8471   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8472 
8473   EVT InVT = Src.getValueType();
8474   EVT OutVT = Op.getValueType();
8475   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8476       isOperationCustom(Op.getOpcode(), InVT))
8477     return LowerINT_TO_FPVector(Op, DAG, dl);
8478 
8479   // Conversions to f128 are legal.
8480   if (Op.getValueType() == MVT::f128)
8481     return Subtarget.hasP9Vector() ? Op : SDValue();
8482 
8483   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8484   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8485     return SDValue();
8486 
8487   if (Src.getValueType() == MVT::i1) {
8488     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8489                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8490                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8491     if (IsStrict)
8492       return DAG.getMergeValues({Sel, Chain}, dl);
8493     else
8494       return Sel;
8495   }
8496 
8497   // If we have direct moves, we can do all the conversion, skip the store/load
8498   // however, without FPCVT we can't do most conversions.
8499   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8500       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8501     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8502 
8503   assert((IsSigned || Subtarget.hasFPCVT()) &&
8504          "UINT_TO_FP is supported only with FPCVT");
8505 
8506   if (Src.getValueType() == MVT::i64) {
8507     SDValue SINT = Src;
8508     // When converting to single-precision, we actually need to convert
8509     // to double-precision first and then round to single-precision.
8510     // To avoid double-rounding effects during that operation, we have
8511     // to prepare the input operand.  Bits that might be truncated when
8512     // converting to double-precision are replaced by a bit that won't
8513     // be lost at this stage, but is below the single-precision rounding
8514     // position.
8515     //
8516     // However, if -enable-unsafe-fp-math is in effect, accept double
8517     // rounding to avoid the extra overhead.
8518     if (Op.getValueType() == MVT::f32 &&
8519         !Subtarget.hasFPCVT() &&
8520         !DAG.getTarget().Options.UnsafeFPMath) {
8521 
8522       // Twiddle input to make sure the low 11 bits are zero.  (If this
8523       // is the case, we are guaranteed the value will fit into the 53 bit
8524       // mantissa of an IEEE double-precision value without rounding.)
8525       // If any of those low 11 bits were not zero originally, make sure
8526       // bit 12 (value 2048) is set instead, so that the final rounding
8527       // to single-precision gets the correct result.
8528       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8529                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8530       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8531                           Round, DAG.getConstant(2047, dl, MVT::i64));
8532       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8533       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8534                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8535 
8536       // However, we cannot use that value unconditionally: if the magnitude
8537       // of the input value is small, the bit-twiddling we did above might
8538       // end up visibly changing the output.  Fortunately, in that case, we
8539       // don't need to twiddle bits since the original input will convert
8540       // exactly to double-precision floating-point already.  Therefore,
8541       // construct a conditional to use the original value if the top 11
8542       // bits are all sign-bit copies, and use the rounded value computed
8543       // above otherwise.
8544       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8545                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8546       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8547                          Cond, DAG.getConstant(1, dl, MVT::i64));
8548       Cond = DAG.getSetCC(
8549           dl,
8550           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8551           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8552 
8553       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8554     }
8555 
8556     ReuseLoadInfo RLI;
8557     SDValue Bits;
8558 
8559     MachineFunction &MF = DAG.getMachineFunction();
8560     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8561       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8562                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8563       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8564     } else if (Subtarget.hasLFIWAX() &&
8565                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8566       MachineMemOperand *MMO =
8567         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8568                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8569       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8570       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8571                                      DAG.getVTList(MVT::f64, MVT::Other),
8572                                      Ops, MVT::i32, MMO);
8573       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8574     } else if (Subtarget.hasFPCVT() &&
8575                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8576       MachineMemOperand *MMO =
8577         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8578                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8579       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8580       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8581                                      DAG.getVTList(MVT::f64, MVT::Other),
8582                                      Ops, MVT::i32, MMO);
8583       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8584     } else if (((Subtarget.hasLFIWAX() &&
8585                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8586                 (Subtarget.hasFPCVT() &&
8587                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8588                SINT.getOperand(0).getValueType() == MVT::i32) {
8589       MachineFrameInfo &MFI = MF.getFrameInfo();
8590       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8591 
8592       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8593       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8594 
8595       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8596                                    MachinePointerInfo::getFixedStack(
8597                                        DAG.getMachineFunction(), FrameIdx));
8598       Chain = Store;
8599 
8600       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8601              "Expected an i32 store");
8602 
8603       RLI.Ptr = FIdx;
8604       RLI.Chain = Chain;
8605       RLI.MPI =
8606           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8607       RLI.Alignment = Align(4);
8608 
8609       MachineMemOperand *MMO =
8610         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8611                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8612       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8613       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8614                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8615                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8616                                      Ops, MVT::i32, MMO);
8617       Chain = Bits.getValue(1);
8618     } else
8619       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8620 
8621     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8622     if (IsStrict)
8623       Chain = FP.getValue(1);
8624 
8625     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8626       if (IsStrict)
8627         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8628                          DAG.getVTList(MVT::f32, MVT::Other),
8629                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8630       else
8631         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8632                          DAG.getIntPtrConstant(0, dl));
8633     }
8634     return FP;
8635   }
8636 
8637   assert(Src.getValueType() == MVT::i32 &&
8638          "Unhandled INT_TO_FP type in custom expander!");
8639   // Since we only generate this in 64-bit mode, we can take advantage of
8640   // 64-bit registers.  In particular, sign extend the input value into the
8641   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8642   // then lfd it and fcfid it.
8643   MachineFunction &MF = DAG.getMachineFunction();
8644   MachineFrameInfo &MFI = MF.getFrameInfo();
8645   EVT PtrVT = getPointerTy(MF.getDataLayout());
8646 
8647   SDValue Ld;
8648   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8649     ReuseLoadInfo RLI;
8650     bool ReusingLoad;
8651     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8652       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8653       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8654 
8655       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8656                                    MachinePointerInfo::getFixedStack(
8657                                        DAG.getMachineFunction(), FrameIdx));
8658       Chain = Store;
8659 
8660       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8661              "Expected an i32 store");
8662 
8663       RLI.Ptr = FIdx;
8664       RLI.Chain = Chain;
8665       RLI.MPI =
8666           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8667       RLI.Alignment = Align(4);
8668     }
8669 
8670     MachineMemOperand *MMO =
8671       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8672                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8673     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8674     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8675                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8676                                  MVT::i32, MMO);
8677     Chain = Ld.getValue(1);
8678     if (ReusingLoad)
8679       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8680   } else {
8681     assert(Subtarget.isPPC64() &&
8682            "i32->FP without LFIWAX supported only on PPC64");
8683 
8684     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8685     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8686 
8687     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8688 
8689     // STD the extended value into the stack slot.
8690     SDValue Store = DAG.getStore(
8691         Chain, dl, Ext64, FIdx,
8692         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8693     Chain = Store;
8694 
8695     // Load the value as a double.
8696     Ld = DAG.getLoad(
8697         MVT::f64, dl, Chain, FIdx,
8698         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8699     Chain = Ld.getValue(1);
8700   }
8701 
8702   // FCFID it and return it.
8703   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8704   if (IsStrict)
8705     Chain = FP.getValue(1);
8706   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8707     if (IsStrict)
8708       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8709                        DAG.getVTList(MVT::f32, MVT::Other),
8710                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8711     else
8712       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8713                        DAG.getIntPtrConstant(0, dl));
8714   }
8715   return FP;
8716 }
8717 
8718 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8719                                             SelectionDAG &DAG) const {
8720   SDLoc dl(Op);
8721   /*
8722    The rounding mode is in bits 30:31 of FPSR, and has the following
8723    settings:
8724      00 Round to nearest
8725      01 Round to 0
8726      10 Round to +inf
8727      11 Round to -inf
8728 
8729   FLT_ROUNDS, on the other hand, expects the following:
8730     -1 Undefined
8731      0 Round to 0
8732      1 Round to nearest
8733      2 Round to +inf
8734      3 Round to -inf
8735 
8736   To perform the conversion, we do:
8737     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8738   */
8739 
8740   MachineFunction &MF = DAG.getMachineFunction();
8741   EVT VT = Op.getValueType();
8742   EVT PtrVT = getPointerTy(MF.getDataLayout());
8743 
8744   // Save FP Control Word to register
8745   SDValue Chain = Op.getOperand(0);
8746   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8747   Chain = MFFS.getValue(1);
8748 
8749   SDValue CWD;
8750   if (isTypeLegal(MVT::i64)) {
8751     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8752                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8753   } else {
8754     // Save FP register to stack slot
8755     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8756     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8757     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8758 
8759     // Load FP Control Word from low 32 bits of stack slot.
8760     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8761            "Stack slot adjustment is valid only on big endian subtargets!");
8762     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8763     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8764     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8765     Chain = CWD.getValue(1);
8766   }
8767 
8768   // Transform as necessary
8769   SDValue CWD1 =
8770     DAG.getNode(ISD::AND, dl, MVT::i32,
8771                 CWD, DAG.getConstant(3, dl, MVT::i32));
8772   SDValue CWD2 =
8773     DAG.getNode(ISD::SRL, dl, MVT::i32,
8774                 DAG.getNode(ISD::AND, dl, MVT::i32,
8775                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8776                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8777                             DAG.getConstant(3, dl, MVT::i32)),
8778                 DAG.getConstant(1, dl, MVT::i32));
8779 
8780   SDValue RetVal =
8781     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8782 
8783   RetVal =
8784       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8785                   dl, VT, RetVal);
8786 
8787   return DAG.getMergeValues({RetVal, Chain}, dl);
8788 }
8789 
8790 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8791   EVT VT = Op.getValueType();
8792   unsigned BitWidth = VT.getSizeInBits();
8793   SDLoc dl(Op);
8794   assert(Op.getNumOperands() == 3 &&
8795          VT == Op.getOperand(1).getValueType() &&
8796          "Unexpected SHL!");
8797 
8798   // Expand into a bunch of logical ops.  Note that these ops
8799   // depend on the PPC behavior for oversized shift amounts.
8800   SDValue Lo = Op.getOperand(0);
8801   SDValue Hi = Op.getOperand(1);
8802   SDValue Amt = Op.getOperand(2);
8803   EVT AmtVT = Amt.getValueType();
8804 
8805   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8806                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8807   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8808   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8809   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8810   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8811                              DAG.getConstant(-BitWidth, dl, AmtVT));
8812   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8813   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8814   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8815   SDValue OutOps[] = { OutLo, OutHi };
8816   return DAG.getMergeValues(OutOps, dl);
8817 }
8818 
8819 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8820   EVT VT = Op.getValueType();
8821   SDLoc dl(Op);
8822   unsigned BitWidth = VT.getSizeInBits();
8823   assert(Op.getNumOperands() == 3 &&
8824          VT == Op.getOperand(1).getValueType() &&
8825          "Unexpected SRL!");
8826 
8827   // Expand into a bunch of logical ops.  Note that these ops
8828   // depend on the PPC behavior for oversized shift amounts.
8829   SDValue Lo = Op.getOperand(0);
8830   SDValue Hi = Op.getOperand(1);
8831   SDValue Amt = Op.getOperand(2);
8832   EVT AmtVT = Amt.getValueType();
8833 
8834   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8835                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8836   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8837   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8838   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8839   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8840                              DAG.getConstant(-BitWidth, dl, AmtVT));
8841   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8842   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8843   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8844   SDValue OutOps[] = { OutLo, OutHi };
8845   return DAG.getMergeValues(OutOps, dl);
8846 }
8847 
8848 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8849   SDLoc dl(Op);
8850   EVT VT = Op.getValueType();
8851   unsigned BitWidth = VT.getSizeInBits();
8852   assert(Op.getNumOperands() == 3 &&
8853          VT == Op.getOperand(1).getValueType() &&
8854          "Unexpected SRA!");
8855 
8856   // Expand into a bunch of logical ops, followed by a select_cc.
8857   SDValue Lo = Op.getOperand(0);
8858   SDValue Hi = Op.getOperand(1);
8859   SDValue Amt = Op.getOperand(2);
8860   EVT AmtVT = Amt.getValueType();
8861 
8862   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8863                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8864   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8865   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8866   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8867   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8868                              DAG.getConstant(-BitWidth, dl, AmtVT));
8869   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8870   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8871   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8872                                   Tmp4, Tmp6, ISD::SETLE);
8873   SDValue OutOps[] = { OutLo, OutHi };
8874   return DAG.getMergeValues(OutOps, dl);
8875 }
8876 
8877 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8878                                             SelectionDAG &DAG) const {
8879   SDLoc dl(Op);
8880   EVT VT = Op.getValueType();
8881   unsigned BitWidth = VT.getSizeInBits();
8882 
8883   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8884   SDValue X = Op.getOperand(0);
8885   SDValue Y = Op.getOperand(1);
8886   SDValue Z = Op.getOperand(2);
8887   EVT AmtVT = Z.getValueType();
8888 
8889   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8890   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8891   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8892   // on PowerPC shift by BW being well defined.
8893   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8894                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8895   SDValue SubZ =
8896       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8897   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8898   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8899   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8900 }
8901 
8902 //===----------------------------------------------------------------------===//
8903 // Vector related lowering.
8904 //
8905 
8906 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8907 /// element size of SplatSize. Cast the result to VT.
8908 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8909                                       SelectionDAG &DAG, const SDLoc &dl) {
8910   static const MVT VTys[] = { // canonical VT to use for each size.
8911     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8912   };
8913 
8914   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8915 
8916   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8917   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8918     SplatSize = 1;
8919     Val = 0xFF;
8920   }
8921 
8922   EVT CanonicalVT = VTys[SplatSize-1];
8923 
8924   // Build a canonical splat for this value.
8925   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8926 }
8927 
8928 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8929 /// specified intrinsic ID.
8930 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8931                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8932   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8933   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8934                      DAG.getConstant(IID, dl, MVT::i32), Op);
8935 }
8936 
8937 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8938 /// specified intrinsic ID.
8939 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8940                                 SelectionDAG &DAG, const SDLoc &dl,
8941                                 EVT DestVT = MVT::Other) {
8942   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8943   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8944                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8945 }
8946 
8947 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8948 /// specified intrinsic ID.
8949 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8950                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8951                                 EVT DestVT = MVT::Other) {
8952   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8953   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8954                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8955 }
8956 
8957 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8958 /// amount.  The result has the specified value type.
8959 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8960                            SelectionDAG &DAG, const SDLoc &dl) {
8961   // Force LHS/RHS to be the right type.
8962   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8963   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8964 
8965   int Ops[16];
8966   for (unsigned i = 0; i != 16; ++i)
8967     Ops[i] = i + Amt;
8968   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8969   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8970 }
8971 
8972 /// Do we have an efficient pattern in a .td file for this node?
8973 ///
8974 /// \param V - pointer to the BuildVectorSDNode being matched
8975 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8976 ///
8977 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8978 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8979 /// the opposite is true (expansion is beneficial) are:
8980 /// - The node builds a vector out of integers that are not 32 or 64-bits
8981 /// - The node builds a vector out of constants
8982 /// - The node is a "load-and-splat"
8983 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8984 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8985                                             bool HasDirectMove,
8986                                             bool HasP8Vector) {
8987   EVT VecVT = V->getValueType(0);
8988   bool RightType = VecVT == MVT::v2f64 ||
8989     (HasP8Vector && VecVT == MVT::v4f32) ||
8990     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8991   if (!RightType)
8992     return false;
8993 
8994   bool IsSplat = true;
8995   bool IsLoad = false;
8996   SDValue Op0 = V->getOperand(0);
8997 
8998   // This function is called in a block that confirms the node is not a constant
8999   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9000   // different constants.
9001   if (V->isConstant())
9002     return false;
9003   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9004     if (V->getOperand(i).isUndef())
9005       return false;
9006     // We want to expand nodes that represent load-and-splat even if the
9007     // loaded value is a floating point truncation or conversion to int.
9008     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9009         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9010          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9011         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9012          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9013         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9014          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9015       IsLoad = true;
9016     // If the operands are different or the input is not a load and has more
9017     // uses than just this BV node, then it isn't a splat.
9018     if (V->getOperand(i) != Op0 ||
9019         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9020       IsSplat = false;
9021   }
9022   return !(IsSplat && IsLoad);
9023 }
9024 
9025 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9026 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9027 
9028   SDLoc dl(Op);
9029   SDValue Op0 = Op->getOperand(0);
9030 
9031   if ((Op.getValueType() != MVT::f128) ||
9032       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9033       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9034       (Op0.getOperand(1).getValueType() != MVT::i64))
9035     return SDValue();
9036 
9037   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9038                      Op0.getOperand(1));
9039 }
9040 
9041 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9042   const SDValue *InputLoad = &Op;
9043   if (InputLoad->getOpcode() == ISD::BITCAST)
9044     InputLoad = &InputLoad->getOperand(0);
9045   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9046       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9047     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9048     InputLoad = &InputLoad->getOperand(0);
9049   }
9050   if (InputLoad->getOpcode() != ISD::LOAD)
9051     return nullptr;
9052   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9053   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9054 }
9055 
9056 // Convert the argument APFloat to a single precision APFloat if there is no
9057 // loss in information during the conversion to single precision APFloat and the
9058 // resulting number is not a denormal number. Return true if successful.
9059 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9060   APFloat APFloatToConvert = ArgAPFloat;
9061   bool LosesInfo = true;
9062   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9063                            &LosesInfo);
9064   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9065   if (Success)
9066     ArgAPFloat = APFloatToConvert;
9067   return Success;
9068 }
9069 
9070 // Bitcast the argument APInt to a double and convert it to a single precision
9071 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9072 // argument if there is no loss in information during the conversion from
9073 // double to single precision APFloat and the resulting number is not a denormal
9074 // number. Return true if successful.
9075 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9076   double DpValue = ArgAPInt.bitsToDouble();
9077   APFloat APFloatDp(DpValue);
9078   bool Success = convertToNonDenormSingle(APFloatDp);
9079   if (Success)
9080     ArgAPInt = APFloatDp.bitcastToAPInt();
9081   return Success;
9082 }
9083 
9084 // Nondestructive check for convertTonNonDenormSingle.
9085 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9086   // Only convert if it loses info, since XXSPLTIDP should
9087   // handle the other case.
9088   APFloat APFloatToConvert = ArgAPFloat;
9089   bool LosesInfo = true;
9090   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9091                            &LosesInfo);
9092 
9093   return (!LosesInfo && !APFloatToConvert.isDenormal());
9094 }
9095 
9096 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9097                              unsigned &Opcode) {
9098   LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0));
9099   if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode))
9100     return false;
9101 
9102   EVT Ty = Op->getValueType(0);
9103   // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending
9104   // as we cannot handle extending loads for these types.
9105   if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9106       ISD::isNON_EXTLoad(InputNode))
9107     return true;
9108 
9109   EVT MemVT = InputNode->getMemoryVT();
9110   // For v8i16 and v16i8 types, extending loads can be handled as long as the
9111   // memory VT is the same vector element VT type.
9112   // The loads feeding into the v8i16 and v16i8 types will be extending because
9113   // scalar i8/i16 are not legal types.
9114   if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) &&
9115       (MemVT == Ty.getVectorElementType()))
9116     return true;
9117 
9118   if (Ty == MVT::v2i64) {
9119     // Check the extend type, when the input type is i32, and the output vector
9120     // type is v2i64.
9121     if (MemVT == MVT::i32) {
9122       if (ISD::isZEXTLoad(InputNode))
9123         Opcode = PPCISD::ZEXT_LD_SPLAT;
9124       if (ISD::isSEXTLoad(InputNode))
9125         Opcode = PPCISD::SEXT_LD_SPLAT;
9126     }
9127     return true;
9128   }
9129   return false;
9130 }
9131 
9132 // If this is a case we can't handle, return null and let the default
9133 // expansion code take care of it.  If we CAN select this case, and if it
9134 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9135 // this case more efficiently than a constant pool load, lower it to the
9136 // sequence of ops that should be used.
9137 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9138                                              SelectionDAG &DAG) const {
9139   SDLoc dl(Op);
9140   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9141   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9142 
9143   // Check if this is a splat of a constant value.
9144   APInt APSplatBits, APSplatUndef;
9145   unsigned SplatBitSize;
9146   bool HasAnyUndefs;
9147   bool BVNIsConstantSplat =
9148       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9149                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9150 
9151   // If it is a splat of a double, check if we can shrink it to a 32 bit
9152   // non-denormal float which when converted back to double gives us the same
9153   // double. This is to exploit the XXSPLTIDP instruction.
9154   // If we lose precision, we use XXSPLTI32DX.
9155   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9156       Subtarget.hasPrefixInstrs()) {
9157     // Check the type first to short-circuit so we don't modify APSplatBits if
9158     // this block isn't executed.
9159     if ((Op->getValueType(0) == MVT::v2f64) &&
9160         convertToNonDenormSingle(APSplatBits)) {
9161       SDValue SplatNode = DAG.getNode(
9162           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9163           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9164       return DAG.getBitcast(Op.getValueType(), SplatNode);
9165     } else {
9166       // We may lose precision, so we have to use XXSPLTI32DX.
9167 
9168       uint32_t Hi =
9169           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9170       uint32_t Lo =
9171           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9172       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9173 
9174       if (!Hi || !Lo)
9175         // If either load is 0, then we should generate XXLXOR to set to 0.
9176         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9177 
9178       if (Hi)
9179         SplatNode = DAG.getNode(
9180             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9181             DAG.getTargetConstant(0, dl, MVT::i32),
9182             DAG.getTargetConstant(Hi, dl, MVT::i32));
9183 
9184       if (Lo)
9185         SplatNode =
9186             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9187                         DAG.getTargetConstant(1, dl, MVT::i32),
9188                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9189 
9190       return DAG.getBitcast(Op.getValueType(), SplatNode);
9191     }
9192   }
9193 
9194   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9195     unsigned NewOpcode = PPCISD::LD_SPLAT;
9196 
9197     // Handle load-and-splat patterns as we have instructions that will do this
9198     // in one go.
9199     if (DAG.isSplatValue(Op, true) &&
9200         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9201       const SDValue *InputLoad = &Op.getOperand(0);
9202       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9203 
9204       // If the input load is an extending load, it will be an i32 -> i64
9205       // extending load and isValidSplatLoad() will update NewOpcode.
9206       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9207       unsigned ElementSize =
9208           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9209 
9210       assert(((ElementSize == 2 * MemorySize)
9211                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9212                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9213                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9214              "Unmatched element size and opcode!\n");
9215 
9216       // Checking for a single use of this load, we have to check for vector
9217       // width (128 bits) / ElementSize uses (since each operand of the
9218       // BUILD_VECTOR is a separate use of the value.
9219       unsigned NumUsesOfInputLD = 128 / ElementSize;
9220       for (SDValue BVInOp : Op->ops())
9221         if (BVInOp.isUndef())
9222           NumUsesOfInputLD--;
9223 
9224       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9225       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9226       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9227       // 15", but funciton IsValidSplatLoad() now will only return true when
9228       // the data at index 0 is not nullptr. So we will not get into trouble for
9229       // these cases.
9230       //
9231       // case 1 - lfiwzx/lfiwax
9232       // 1.1: load result is i32 and is sign/zero extend to i64;
9233       // 1.2: build a v2i64 vector type with above loaded value;
9234       // 1.3: the vector has only one value at index 0, others are all undef;
9235       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9236       if (NumUsesOfInputLD == 1 &&
9237           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9238            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9239            Subtarget.hasLFIWAX()))
9240         return SDValue();
9241 
9242       // case 2 - lxvr[hb]x
9243       // 2.1: load result is at most i16;
9244       // 2.2: build a vector with above loaded value;
9245       // 2.3: the vector has only one value at index 0, others are all undef;
9246       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9247       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9248           Subtarget.isISA3_1() && ElementSize <= 16)
9249         return SDValue();
9250 
9251       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9252       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9253           Subtarget.hasVSX()) {
9254         SDValue Ops[] = {
9255           LD->getChain(),    // Chain
9256           LD->getBasePtr(),  // Ptr
9257           DAG.getValueType(Op.getValueType()) // VT
9258         };
9259         SDValue LdSplt = DAG.getMemIntrinsicNode(
9260             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9261             LD->getMemoryVT(), LD->getMemOperand());
9262         // Replace all uses of the output chain of the original load with the
9263         // output chain of the new load.
9264         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9265                                       LdSplt.getValue(1));
9266         return LdSplt;
9267       }
9268     }
9269 
9270     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9271     // 32-bits can be lowered to VSX instructions under certain conditions.
9272     // Without VSX, there is no pattern more efficient than expanding the node.
9273     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9274         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9275                                         Subtarget.hasP8Vector()))
9276       return Op;
9277     return SDValue();
9278   }
9279 
9280   uint64_t SplatBits = APSplatBits.getZExtValue();
9281   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9282   unsigned SplatSize = SplatBitSize / 8;
9283 
9284   // First, handle single instruction cases.
9285 
9286   // All zeros?
9287   if (SplatBits == 0) {
9288     // Canonicalize all zero vectors to be v4i32.
9289     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9290       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9291       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9292     }
9293     return Op;
9294   }
9295 
9296   // We have XXSPLTIW for constant splats four bytes wide.
9297   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9298   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9299   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9300   // turned into a 4-byte splat of 0xABABABAB.
9301   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9302     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9303                                   Op.getValueType(), DAG, dl);
9304 
9305   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9306     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9307                                   dl);
9308 
9309   // We have XXSPLTIB for constant splats one byte wide.
9310   if (Subtarget.hasP9Vector() && SplatSize == 1)
9311     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9312                                   dl);
9313 
9314   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9315   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9316                     (32-SplatBitSize));
9317   if (SextVal >= -16 && SextVal <= 15)
9318     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9319                                   dl);
9320 
9321   // Two instruction sequences.
9322 
9323   // If this value is in the range [-32,30] and is even, use:
9324   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9325   // If this value is in the range [17,31] and is odd, use:
9326   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9327   // If this value is in the range [-31,-17] and is odd, use:
9328   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9329   // Note the last two are three-instruction sequences.
9330   if (SextVal >= -32 && SextVal <= 31) {
9331     // To avoid having these optimizations undone by constant folding,
9332     // we convert to a pseudo that will be expanded later into one of
9333     // the above forms.
9334     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9335     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9336               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9337     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9338     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9339     if (VT == Op.getValueType())
9340       return RetVal;
9341     else
9342       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9343   }
9344 
9345   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9346   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9347   // for fneg/fabs.
9348   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9349     // Make -1 and vspltisw -1:
9350     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9351 
9352     // Make the VSLW intrinsic, computing 0x8000_0000.
9353     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9354                                    OnesV, DAG, dl);
9355 
9356     // xor by OnesV to invert it.
9357     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9358     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9359   }
9360 
9361   // Check to see if this is a wide variety of vsplti*, binop self cases.
9362   static const signed char SplatCsts[] = {
9363     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9364     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9365   };
9366 
9367   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9368     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9369     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9370     int i = SplatCsts[idx];
9371 
9372     // Figure out what shift amount will be used by altivec if shifted by i in
9373     // this splat size.
9374     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9375 
9376     // vsplti + shl self.
9377     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9378       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9379       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9380         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9381         Intrinsic::ppc_altivec_vslw
9382       };
9383       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9384       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9385     }
9386 
9387     // vsplti + srl self.
9388     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9389       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9390       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9391         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9392         Intrinsic::ppc_altivec_vsrw
9393       };
9394       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9395       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9396     }
9397 
9398     // vsplti + rol self.
9399     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9400                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9401       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9402       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9403         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9404         Intrinsic::ppc_altivec_vrlw
9405       };
9406       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9407       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9408     }
9409 
9410     // t = vsplti c, result = vsldoi t, t, 1
9411     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9412       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9413       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9414       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9415     }
9416     // t = vsplti c, result = vsldoi t, t, 2
9417     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9418       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9419       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9420       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9421     }
9422     // t = vsplti c, result = vsldoi t, t, 3
9423     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9424       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9425       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9426       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9427     }
9428   }
9429 
9430   return SDValue();
9431 }
9432 
9433 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9434 /// the specified operations to build the shuffle.
9435 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9436                                       SDValue RHS, SelectionDAG &DAG,
9437                                       const SDLoc &dl) {
9438   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9439   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9440   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9441 
9442   enum {
9443     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9444     OP_VMRGHW,
9445     OP_VMRGLW,
9446     OP_VSPLTISW0,
9447     OP_VSPLTISW1,
9448     OP_VSPLTISW2,
9449     OP_VSPLTISW3,
9450     OP_VSLDOI4,
9451     OP_VSLDOI8,
9452     OP_VSLDOI12
9453   };
9454 
9455   if (OpNum == OP_COPY) {
9456     if (LHSID == (1*9+2)*9+3) return LHS;
9457     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9458     return RHS;
9459   }
9460 
9461   SDValue OpLHS, OpRHS;
9462   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9463   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9464 
9465   int ShufIdxs[16];
9466   switch (OpNum) {
9467   default: llvm_unreachable("Unknown i32 permute!");
9468   case OP_VMRGHW:
9469     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9470     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9471     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9472     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9473     break;
9474   case OP_VMRGLW:
9475     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9476     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9477     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9478     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9479     break;
9480   case OP_VSPLTISW0:
9481     for (unsigned i = 0; i != 16; ++i)
9482       ShufIdxs[i] = (i&3)+0;
9483     break;
9484   case OP_VSPLTISW1:
9485     for (unsigned i = 0; i != 16; ++i)
9486       ShufIdxs[i] = (i&3)+4;
9487     break;
9488   case OP_VSPLTISW2:
9489     for (unsigned i = 0; i != 16; ++i)
9490       ShufIdxs[i] = (i&3)+8;
9491     break;
9492   case OP_VSPLTISW3:
9493     for (unsigned i = 0; i != 16; ++i)
9494       ShufIdxs[i] = (i&3)+12;
9495     break;
9496   case OP_VSLDOI4:
9497     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9498   case OP_VSLDOI8:
9499     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9500   case OP_VSLDOI12:
9501     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9502   }
9503   EVT VT = OpLHS.getValueType();
9504   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9505   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9506   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9507   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9508 }
9509 
9510 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9511 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9512 /// SDValue.
9513 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9514                                            SelectionDAG &DAG) const {
9515   const unsigned BytesInVector = 16;
9516   bool IsLE = Subtarget.isLittleEndian();
9517   SDLoc dl(N);
9518   SDValue V1 = N->getOperand(0);
9519   SDValue V2 = N->getOperand(1);
9520   unsigned ShiftElts = 0, InsertAtByte = 0;
9521   bool Swap = false;
9522 
9523   // Shifts required to get the byte we want at element 7.
9524   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9525                                    0, 15, 14, 13, 12, 11, 10, 9};
9526   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9527                                 1, 2,  3,  4,  5,  6,  7,  8};
9528 
9529   ArrayRef<int> Mask = N->getMask();
9530   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9531 
9532   // For each mask element, find out if we're just inserting something
9533   // from V2 into V1 or vice versa.
9534   // Possible permutations inserting an element from V2 into V1:
9535   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9536   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9537   //   ...
9538   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9539   // Inserting from V1 into V2 will be similar, except mask range will be
9540   // [16,31].
9541 
9542   bool FoundCandidate = false;
9543   // If both vector operands for the shuffle are the same vector, the mask
9544   // will contain only elements from the first one and the second one will be
9545   // undef.
9546   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9547   // Go through the mask of half-words to find an element that's being moved
9548   // from one vector to the other.
9549   for (unsigned i = 0; i < BytesInVector; ++i) {
9550     unsigned CurrentElement = Mask[i];
9551     // If 2nd operand is undefined, we should only look for element 7 in the
9552     // Mask.
9553     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9554       continue;
9555 
9556     bool OtherElementsInOrder = true;
9557     // Examine the other elements in the Mask to see if they're in original
9558     // order.
9559     for (unsigned j = 0; j < BytesInVector; ++j) {
9560       if (j == i)
9561         continue;
9562       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9563       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9564       // in which we always assume we're always picking from the 1st operand.
9565       int MaskOffset =
9566           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9567       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9568         OtherElementsInOrder = false;
9569         break;
9570       }
9571     }
9572     // If other elements are in original order, we record the number of shifts
9573     // we need to get the element we want into element 7. Also record which byte
9574     // in the vector we should insert into.
9575     if (OtherElementsInOrder) {
9576       // If 2nd operand is undefined, we assume no shifts and no swapping.
9577       if (V2.isUndef()) {
9578         ShiftElts = 0;
9579         Swap = false;
9580       } else {
9581         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9582         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9583                          : BigEndianShifts[CurrentElement & 0xF];
9584         Swap = CurrentElement < BytesInVector;
9585       }
9586       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9587       FoundCandidate = true;
9588       break;
9589     }
9590   }
9591 
9592   if (!FoundCandidate)
9593     return SDValue();
9594 
9595   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9596   // optionally with VECSHL if shift is required.
9597   if (Swap)
9598     std::swap(V1, V2);
9599   if (V2.isUndef())
9600     V2 = V1;
9601   if (ShiftElts) {
9602     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9603                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9604     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9605                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9606   }
9607   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9608                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9609 }
9610 
9611 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9612 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9613 /// SDValue.
9614 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9615                                            SelectionDAG &DAG) const {
9616   const unsigned NumHalfWords = 8;
9617   const unsigned BytesInVector = NumHalfWords * 2;
9618   // Check that the shuffle is on half-words.
9619   if (!isNByteElemShuffleMask(N, 2, 1))
9620     return SDValue();
9621 
9622   bool IsLE = Subtarget.isLittleEndian();
9623   SDLoc dl(N);
9624   SDValue V1 = N->getOperand(0);
9625   SDValue V2 = N->getOperand(1);
9626   unsigned ShiftElts = 0, InsertAtByte = 0;
9627   bool Swap = false;
9628 
9629   // Shifts required to get the half-word we want at element 3.
9630   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9631   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9632 
9633   uint32_t Mask = 0;
9634   uint32_t OriginalOrderLow = 0x1234567;
9635   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9636   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9637   // 32-bit space, only need 4-bit nibbles per element.
9638   for (unsigned i = 0; i < NumHalfWords; ++i) {
9639     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9640     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9641   }
9642 
9643   // For each mask element, find out if we're just inserting something
9644   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9645   // from V2 into V1:
9646   //   X, 1, 2, 3, 4, 5, 6, 7
9647   //   0, X, 2, 3, 4, 5, 6, 7
9648   //   0, 1, X, 3, 4, 5, 6, 7
9649   //   0, 1, 2, X, 4, 5, 6, 7
9650   //   0, 1, 2, 3, X, 5, 6, 7
9651   //   0, 1, 2, 3, 4, X, 6, 7
9652   //   0, 1, 2, 3, 4, 5, X, 7
9653   //   0, 1, 2, 3, 4, 5, 6, X
9654   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9655 
9656   bool FoundCandidate = false;
9657   // Go through the mask of half-words to find an element that's being moved
9658   // from one vector to the other.
9659   for (unsigned i = 0; i < NumHalfWords; ++i) {
9660     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9661     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9662     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9663     uint32_t TargetOrder = 0x0;
9664 
9665     // If both vector operands for the shuffle are the same vector, the mask
9666     // will contain only elements from the first one and the second one will be
9667     // undef.
9668     if (V2.isUndef()) {
9669       ShiftElts = 0;
9670       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9671       TargetOrder = OriginalOrderLow;
9672       Swap = false;
9673       // Skip if not the correct element or mask of other elements don't equal
9674       // to our expected order.
9675       if (MaskOneElt == VINSERTHSrcElem &&
9676           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9677         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9678         FoundCandidate = true;
9679         break;
9680       }
9681     } else { // If both operands are defined.
9682       // Target order is [8,15] if the current mask is between [0,7].
9683       TargetOrder =
9684           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9685       // Skip if mask of other elements don't equal our expected order.
9686       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9687         // We only need the last 3 bits for the number of shifts.
9688         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9689                          : BigEndianShifts[MaskOneElt & 0x7];
9690         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9691         Swap = MaskOneElt < NumHalfWords;
9692         FoundCandidate = true;
9693         break;
9694       }
9695     }
9696   }
9697 
9698   if (!FoundCandidate)
9699     return SDValue();
9700 
9701   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9702   // optionally with VECSHL if shift is required.
9703   if (Swap)
9704     std::swap(V1, V2);
9705   if (V2.isUndef())
9706     V2 = V1;
9707   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9708   if (ShiftElts) {
9709     // Double ShiftElts because we're left shifting on v16i8 type.
9710     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9711                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9712     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9713     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9714                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9715     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9716   }
9717   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9718   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9719                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9720   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9721 }
9722 
9723 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9724 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9725 /// return the default SDValue.
9726 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9727                                               SelectionDAG &DAG) const {
9728   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9729   // to v16i8. Peek through the bitcasts to get the actual operands.
9730   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9731   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9732 
9733   auto ShuffleMask = SVN->getMask();
9734   SDValue VecShuffle(SVN, 0);
9735   SDLoc DL(SVN);
9736 
9737   // Check that we have a four byte shuffle.
9738   if (!isNByteElemShuffleMask(SVN, 4, 1))
9739     return SDValue();
9740 
9741   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9742   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9743     std::swap(LHS, RHS);
9744     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9745     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9746   }
9747 
9748   // Ensure that the RHS is a vector of constants.
9749   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9750   if (!BVN)
9751     return SDValue();
9752 
9753   // Check if RHS is a splat of 4-bytes (or smaller).
9754   APInt APSplatValue, APSplatUndef;
9755   unsigned SplatBitSize;
9756   bool HasAnyUndefs;
9757   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9758                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9759       SplatBitSize > 32)
9760     return SDValue();
9761 
9762   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9763   // The instruction splats a constant C into two words of the source vector
9764   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9765   // Thus we check that the shuffle mask is the equivalent  of
9766   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9767   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9768   // within each word are consecutive, so we only need to check the first byte.
9769   SDValue Index;
9770   bool IsLE = Subtarget.isLittleEndian();
9771   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9772       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9773        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9774     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9775   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9776            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9777             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9778     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9779   else
9780     return SDValue();
9781 
9782   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9783   // for XXSPLTI32DX.
9784   unsigned SplatVal = APSplatValue.getZExtValue();
9785   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9786     SplatVal |= (SplatVal << SplatBitSize);
9787 
9788   SDValue SplatNode = DAG.getNode(
9789       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9790       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9791   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9792 }
9793 
9794 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9795 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9796 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9797 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9798 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9799   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9800   assert(Op.getValueType() == MVT::v1i128 &&
9801          "Only set v1i128 as custom, other type shouldn't reach here!");
9802   SDLoc dl(Op);
9803   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9804   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9805   unsigned SHLAmt = N1.getConstantOperandVal(0);
9806   if (SHLAmt % 8 == 0) {
9807     SmallVector<int, 16> Mask(16, 0);
9808     std::iota(Mask.begin(), Mask.end(), 0);
9809     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9810     if (SDValue Shuffle =
9811             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9812                                  DAG.getUNDEF(MVT::v16i8), Mask))
9813       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9814   }
9815   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9816   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9817                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9818   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9819                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9820   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9821   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9822 }
9823 
9824 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9825 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9826 /// return the code it can be lowered into.  Worst case, it can always be
9827 /// lowered into a vperm.
9828 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9829                                                SelectionDAG &DAG) const {
9830   SDLoc dl(Op);
9831   SDValue V1 = Op.getOperand(0);
9832   SDValue V2 = Op.getOperand(1);
9833   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9834 
9835   // Any nodes that were combined in the target-independent combiner prior
9836   // to vector legalization will not be sent to the target combine. Try to
9837   // combine it here.
9838   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9839     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9840       return NewShuffle;
9841     Op = NewShuffle;
9842     SVOp = cast<ShuffleVectorSDNode>(Op);
9843     V1 = Op.getOperand(0);
9844     V2 = Op.getOperand(1);
9845   }
9846   EVT VT = Op.getValueType();
9847   bool isLittleEndian = Subtarget.isLittleEndian();
9848 
9849   unsigned ShiftElts, InsertAtByte;
9850   bool Swap = false;
9851 
9852   // If this is a load-and-splat, we can do that with a single instruction
9853   // in some cases. However if the load has multiple uses, we don't want to
9854   // combine it because that will just produce multiple loads.
9855   bool IsPermutedLoad = false;
9856   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9857   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9858       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9859       InputLoad->hasOneUse()) {
9860     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9861     int SplatIdx =
9862       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9863 
9864     // The splat index for permuted loads will be in the left half of the vector
9865     // which is strictly wider than the loaded value by 8 bytes. So we need to
9866     // adjust the splat index to point to the correct address in memory.
9867     if (IsPermutedLoad) {
9868       assert((isLittleEndian || IsFourByte) &&
9869              "Unexpected size for permuted load on big endian target");
9870       SplatIdx += IsFourByte ? 2 : 1;
9871       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9872              "Splat of a value outside of the loaded memory");
9873     }
9874 
9875     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9876     // For 4-byte load-and-splat, we need Power9.
9877     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9878       uint64_t Offset = 0;
9879       if (IsFourByte)
9880         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9881       else
9882         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9883 
9884       // If the width of the load is the same as the width of the splat,
9885       // loading with an offset would load the wrong memory.
9886       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9887         Offset = 0;
9888 
9889       SDValue BasePtr = LD->getBasePtr();
9890       if (Offset != 0)
9891         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9892                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9893       SDValue Ops[] = {
9894         LD->getChain(),    // Chain
9895         BasePtr,           // BasePtr
9896         DAG.getValueType(Op.getValueType()) // VT
9897       };
9898       SDVTList VTL =
9899         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9900       SDValue LdSplt =
9901         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9902                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9903       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9904       if (LdSplt.getValueType() != SVOp->getValueType(0))
9905         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9906       return LdSplt;
9907     }
9908   }
9909   if (Subtarget.hasP9Vector() &&
9910       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9911                            isLittleEndian)) {
9912     if (Swap)
9913       std::swap(V1, V2);
9914     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9915     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9916     if (ShiftElts) {
9917       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9918                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9919       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9920                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9921       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9922     }
9923     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9924                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9925     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9926   }
9927 
9928   if (Subtarget.hasPrefixInstrs()) {
9929     SDValue SplatInsertNode;
9930     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9931       return SplatInsertNode;
9932   }
9933 
9934   if (Subtarget.hasP9Altivec()) {
9935     SDValue NewISDNode;
9936     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9937       return NewISDNode;
9938 
9939     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9940       return NewISDNode;
9941   }
9942 
9943   if (Subtarget.hasVSX() &&
9944       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9945     if (Swap)
9946       std::swap(V1, V2);
9947     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9948     SDValue Conv2 =
9949         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9950 
9951     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9952                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9953     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9954   }
9955 
9956   if (Subtarget.hasVSX() &&
9957     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9958     if (Swap)
9959       std::swap(V1, V2);
9960     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9961     SDValue Conv2 =
9962         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9963 
9964     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9965                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9966     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9967   }
9968 
9969   if (Subtarget.hasP9Vector()) {
9970      if (PPC::isXXBRHShuffleMask(SVOp)) {
9971       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9972       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9973       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9974     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9975       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9976       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9977       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9978     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9979       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9980       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9981       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9982     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9983       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9984       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9985       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9986     }
9987   }
9988 
9989   if (Subtarget.hasVSX()) {
9990     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9991       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9992 
9993       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9994       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9995                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9996       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9997     }
9998 
9999     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10000     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10001       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10002       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10003       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10004     }
10005   }
10006 
10007   // Cases that are handled by instructions that take permute immediates
10008   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10009   // selected by the instruction selector.
10010   if (V2.isUndef()) {
10011     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10012         PPC::isSplatShuffleMask(SVOp, 2) ||
10013         PPC::isSplatShuffleMask(SVOp, 4) ||
10014         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10015         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10016         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10017         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10018         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10019         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10020         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10021         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10022         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10023         (Subtarget.hasP8Altivec() && (
10024          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10025          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10026          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10027       return Op;
10028     }
10029   }
10030 
10031   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10032   // and produce a fixed permutation.  If any of these match, do not lower to
10033   // VPERM.
10034   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10035   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10036       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10037       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10038       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10039       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10040       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10041       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10042       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10043       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10044       (Subtarget.hasP8Altivec() && (
10045        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10046        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10047        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10048     return Op;
10049 
10050   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10051   // perfect shuffle table to emit an optimal matching sequence.
10052   ArrayRef<int> PermMask = SVOp->getMask();
10053 
10054   unsigned PFIndexes[4];
10055   bool isFourElementShuffle = true;
10056   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
10057     unsigned EltNo = 8;   // Start out undef.
10058     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
10059       if (PermMask[i*4+j] < 0)
10060         continue;   // Undef, ignore it.
10061 
10062       unsigned ByteSource = PermMask[i*4+j];
10063       if ((ByteSource & 3) != j) {
10064         isFourElementShuffle = false;
10065         break;
10066       }
10067 
10068       if (EltNo == 8) {
10069         EltNo = ByteSource/4;
10070       } else if (EltNo != ByteSource/4) {
10071         isFourElementShuffle = false;
10072         break;
10073       }
10074     }
10075     PFIndexes[i] = EltNo;
10076   }
10077 
10078   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10079   // perfect shuffle vector to determine if it is cost effective to do this as
10080   // discrete instructions, or whether we should use a vperm.
10081   // For now, we skip this for little endian until such time as we have a
10082   // little-endian perfect shuffle table.
10083   if (isFourElementShuffle && !isLittleEndian) {
10084     // Compute the index in the perfect shuffle table.
10085     unsigned PFTableIndex =
10086       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10087 
10088     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10089     unsigned Cost  = (PFEntry >> 30);
10090 
10091     // Determining when to avoid vperm is tricky.  Many things affect the cost
10092     // of vperm, particularly how many times the perm mask needs to be computed.
10093     // For example, if the perm mask can be hoisted out of a loop or is already
10094     // used (perhaps because there are multiple permutes with the same shuffle
10095     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10096     // the loop requires an extra register.
10097     //
10098     // As a compromise, we only emit discrete instructions if the shuffle can be
10099     // generated in 3 or fewer operations.  When we have loop information
10100     // available, if this block is within a loop, we should avoid using vperm
10101     // for 3-operation perms and use a constant pool load instead.
10102     if (Cost < 3)
10103       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10104   }
10105 
10106   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10107   // vector that will get spilled to the constant pool.
10108   if (V2.isUndef()) V2 = V1;
10109 
10110   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10111   // that it is in input element units, not in bytes.  Convert now.
10112 
10113   // For little endian, the order of the input vectors is reversed, and
10114   // the permutation mask is complemented with respect to 31.  This is
10115   // necessary to produce proper semantics with the big-endian-biased vperm
10116   // instruction.
10117   EVT EltVT = V1.getValueType().getVectorElementType();
10118   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10119 
10120   SmallVector<SDValue, 16> ResultMask;
10121   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10122     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10123 
10124     for (unsigned j = 0; j != BytesPerElement; ++j)
10125       if (isLittleEndian)
10126         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10127                                              dl, MVT::i32));
10128       else
10129         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10130                                              MVT::i32));
10131   }
10132 
10133   ShufflesHandledWithVPERM++;
10134   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10135   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10136   LLVM_DEBUG(SVOp->dump());
10137   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10138   LLVM_DEBUG(VPermMask.dump());
10139 
10140   if (isLittleEndian)
10141     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10142                        V2, V1, VPermMask);
10143   else
10144     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10145                        V1, V2, VPermMask);
10146 }
10147 
10148 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10149 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10150 /// information about the intrinsic.
10151 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10152                                  bool &isDot, const PPCSubtarget &Subtarget) {
10153   unsigned IntrinsicID =
10154       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10155   CompareOpc = -1;
10156   isDot = false;
10157   switch (IntrinsicID) {
10158   default:
10159     return false;
10160   // Comparison predicates.
10161   case Intrinsic::ppc_altivec_vcmpbfp_p:
10162     CompareOpc = 966;
10163     isDot = true;
10164     break;
10165   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10166     CompareOpc = 198;
10167     isDot = true;
10168     break;
10169   case Intrinsic::ppc_altivec_vcmpequb_p:
10170     CompareOpc = 6;
10171     isDot = true;
10172     break;
10173   case Intrinsic::ppc_altivec_vcmpequh_p:
10174     CompareOpc = 70;
10175     isDot = true;
10176     break;
10177   case Intrinsic::ppc_altivec_vcmpequw_p:
10178     CompareOpc = 134;
10179     isDot = true;
10180     break;
10181   case Intrinsic::ppc_altivec_vcmpequd_p:
10182     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10183       CompareOpc = 199;
10184       isDot = true;
10185     } else
10186       return false;
10187     break;
10188   case Intrinsic::ppc_altivec_vcmpneb_p:
10189   case Intrinsic::ppc_altivec_vcmpneh_p:
10190   case Intrinsic::ppc_altivec_vcmpnew_p:
10191   case Intrinsic::ppc_altivec_vcmpnezb_p:
10192   case Intrinsic::ppc_altivec_vcmpnezh_p:
10193   case Intrinsic::ppc_altivec_vcmpnezw_p:
10194     if (Subtarget.hasP9Altivec()) {
10195       switch (IntrinsicID) {
10196       default:
10197         llvm_unreachable("Unknown comparison intrinsic.");
10198       case Intrinsic::ppc_altivec_vcmpneb_p:
10199         CompareOpc = 7;
10200         break;
10201       case Intrinsic::ppc_altivec_vcmpneh_p:
10202         CompareOpc = 71;
10203         break;
10204       case Intrinsic::ppc_altivec_vcmpnew_p:
10205         CompareOpc = 135;
10206         break;
10207       case Intrinsic::ppc_altivec_vcmpnezb_p:
10208         CompareOpc = 263;
10209         break;
10210       case Intrinsic::ppc_altivec_vcmpnezh_p:
10211         CompareOpc = 327;
10212         break;
10213       case Intrinsic::ppc_altivec_vcmpnezw_p:
10214         CompareOpc = 391;
10215         break;
10216       }
10217       isDot = true;
10218     } else
10219       return false;
10220     break;
10221   case Intrinsic::ppc_altivec_vcmpgefp_p:
10222     CompareOpc = 454;
10223     isDot = true;
10224     break;
10225   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10226     CompareOpc = 710;
10227     isDot = true;
10228     break;
10229   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10230     CompareOpc = 774;
10231     isDot = true;
10232     break;
10233   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10234     CompareOpc = 838;
10235     isDot = true;
10236     break;
10237   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10238     CompareOpc = 902;
10239     isDot = true;
10240     break;
10241   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10242     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10243       CompareOpc = 967;
10244       isDot = true;
10245     } else
10246       return false;
10247     break;
10248   case Intrinsic::ppc_altivec_vcmpgtub_p:
10249     CompareOpc = 518;
10250     isDot = true;
10251     break;
10252   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10253     CompareOpc = 582;
10254     isDot = true;
10255     break;
10256   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10257     CompareOpc = 646;
10258     isDot = true;
10259     break;
10260   case Intrinsic::ppc_altivec_vcmpgtud_p:
10261     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10262       CompareOpc = 711;
10263       isDot = true;
10264     } else
10265       return false;
10266     break;
10267 
10268   case Intrinsic::ppc_altivec_vcmpequq:
10269   case Intrinsic::ppc_altivec_vcmpgtsq:
10270   case Intrinsic::ppc_altivec_vcmpgtuq:
10271     if (!Subtarget.isISA3_1())
10272       return false;
10273     switch (IntrinsicID) {
10274     default:
10275       llvm_unreachable("Unknown comparison intrinsic.");
10276     case Intrinsic::ppc_altivec_vcmpequq:
10277       CompareOpc = 455;
10278       break;
10279     case Intrinsic::ppc_altivec_vcmpgtsq:
10280       CompareOpc = 903;
10281       break;
10282     case Intrinsic::ppc_altivec_vcmpgtuq:
10283       CompareOpc = 647;
10284       break;
10285     }
10286     break;
10287 
10288   // VSX predicate comparisons use the same infrastructure
10289   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10290   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10291   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10292   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10293   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10294   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10295     if (Subtarget.hasVSX()) {
10296       switch (IntrinsicID) {
10297       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10298         CompareOpc = 99;
10299         break;
10300       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10301         CompareOpc = 115;
10302         break;
10303       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10304         CompareOpc = 107;
10305         break;
10306       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10307         CompareOpc = 67;
10308         break;
10309       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10310         CompareOpc = 83;
10311         break;
10312       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10313         CompareOpc = 75;
10314         break;
10315       }
10316       isDot = true;
10317     } else
10318       return false;
10319     break;
10320 
10321   // Normal Comparisons.
10322   case Intrinsic::ppc_altivec_vcmpbfp:
10323     CompareOpc = 966;
10324     break;
10325   case Intrinsic::ppc_altivec_vcmpeqfp:
10326     CompareOpc = 198;
10327     break;
10328   case Intrinsic::ppc_altivec_vcmpequb:
10329     CompareOpc = 6;
10330     break;
10331   case Intrinsic::ppc_altivec_vcmpequh:
10332     CompareOpc = 70;
10333     break;
10334   case Intrinsic::ppc_altivec_vcmpequw:
10335     CompareOpc = 134;
10336     break;
10337   case Intrinsic::ppc_altivec_vcmpequd:
10338     if (Subtarget.hasP8Altivec())
10339       CompareOpc = 199;
10340     else
10341       return false;
10342     break;
10343   case Intrinsic::ppc_altivec_vcmpneb:
10344   case Intrinsic::ppc_altivec_vcmpneh:
10345   case Intrinsic::ppc_altivec_vcmpnew:
10346   case Intrinsic::ppc_altivec_vcmpnezb:
10347   case Intrinsic::ppc_altivec_vcmpnezh:
10348   case Intrinsic::ppc_altivec_vcmpnezw:
10349     if (Subtarget.hasP9Altivec())
10350       switch (IntrinsicID) {
10351       default:
10352         llvm_unreachable("Unknown comparison intrinsic.");
10353       case Intrinsic::ppc_altivec_vcmpneb:
10354         CompareOpc = 7;
10355         break;
10356       case Intrinsic::ppc_altivec_vcmpneh:
10357         CompareOpc = 71;
10358         break;
10359       case Intrinsic::ppc_altivec_vcmpnew:
10360         CompareOpc = 135;
10361         break;
10362       case Intrinsic::ppc_altivec_vcmpnezb:
10363         CompareOpc = 263;
10364         break;
10365       case Intrinsic::ppc_altivec_vcmpnezh:
10366         CompareOpc = 327;
10367         break;
10368       case Intrinsic::ppc_altivec_vcmpnezw:
10369         CompareOpc = 391;
10370         break;
10371       }
10372     else
10373       return false;
10374     break;
10375   case Intrinsic::ppc_altivec_vcmpgefp:
10376     CompareOpc = 454;
10377     break;
10378   case Intrinsic::ppc_altivec_vcmpgtfp:
10379     CompareOpc = 710;
10380     break;
10381   case Intrinsic::ppc_altivec_vcmpgtsb:
10382     CompareOpc = 774;
10383     break;
10384   case Intrinsic::ppc_altivec_vcmpgtsh:
10385     CompareOpc = 838;
10386     break;
10387   case Intrinsic::ppc_altivec_vcmpgtsw:
10388     CompareOpc = 902;
10389     break;
10390   case Intrinsic::ppc_altivec_vcmpgtsd:
10391     if (Subtarget.hasP8Altivec())
10392       CompareOpc = 967;
10393     else
10394       return false;
10395     break;
10396   case Intrinsic::ppc_altivec_vcmpgtub:
10397     CompareOpc = 518;
10398     break;
10399   case Intrinsic::ppc_altivec_vcmpgtuh:
10400     CompareOpc = 582;
10401     break;
10402   case Intrinsic::ppc_altivec_vcmpgtuw:
10403     CompareOpc = 646;
10404     break;
10405   case Intrinsic::ppc_altivec_vcmpgtud:
10406     if (Subtarget.hasP8Altivec())
10407       CompareOpc = 711;
10408     else
10409       return false;
10410     break;
10411   case Intrinsic::ppc_altivec_vcmpequq_p:
10412   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10413   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10414     if (!Subtarget.isISA3_1())
10415       return false;
10416     switch (IntrinsicID) {
10417     default:
10418       llvm_unreachable("Unknown comparison intrinsic.");
10419     case Intrinsic::ppc_altivec_vcmpequq_p:
10420       CompareOpc = 455;
10421       break;
10422     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10423       CompareOpc = 903;
10424       break;
10425     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10426       CompareOpc = 647;
10427       break;
10428     }
10429     isDot = true;
10430     break;
10431   }
10432   return true;
10433 }
10434 
10435 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10436 /// lower, do it, otherwise return null.
10437 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10438                                                    SelectionDAG &DAG) const {
10439   unsigned IntrinsicID =
10440     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10441 
10442   SDLoc dl(Op);
10443 
10444   switch (IntrinsicID) {
10445   case Intrinsic::thread_pointer:
10446     // Reads the thread pointer register, used for __builtin_thread_pointer.
10447     if (Subtarget.isPPC64())
10448       return DAG.getRegister(PPC::X13, MVT::i64);
10449     return DAG.getRegister(PPC::R2, MVT::i32);
10450 
10451   case Intrinsic::ppc_mma_disassemble_acc:
10452   case Intrinsic::ppc_vsx_disassemble_pair: {
10453     int NumVecs = 2;
10454     SDValue WideVec = Op.getOperand(1);
10455     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10456       NumVecs = 4;
10457       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10458     }
10459     SmallVector<SDValue, 4> RetOps;
10460     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10461       SDValue Extract = DAG.getNode(
10462           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10463           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10464                                                      : VecNo,
10465                           dl, getPointerTy(DAG.getDataLayout())));
10466       RetOps.push_back(Extract);
10467     }
10468     return DAG.getMergeValues(RetOps, dl);
10469   }
10470 
10471   case Intrinsic::ppc_unpack_longdouble: {
10472     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10473     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10474            "Argument of long double unpack must be 0 or 1!");
10475     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10476                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10477                                        Idx->getValueType(0)));
10478   }
10479 
10480   case Intrinsic::ppc_compare_exp_lt:
10481   case Intrinsic::ppc_compare_exp_gt:
10482   case Intrinsic::ppc_compare_exp_eq:
10483   case Intrinsic::ppc_compare_exp_uo: {
10484     unsigned Pred;
10485     switch (IntrinsicID) {
10486     case Intrinsic::ppc_compare_exp_lt:
10487       Pred = PPC::PRED_LT;
10488       break;
10489     case Intrinsic::ppc_compare_exp_gt:
10490       Pred = PPC::PRED_GT;
10491       break;
10492     case Intrinsic::ppc_compare_exp_eq:
10493       Pred = PPC::PRED_EQ;
10494       break;
10495     case Intrinsic::ppc_compare_exp_uo:
10496       Pred = PPC::PRED_UN;
10497       break;
10498     }
10499     return SDValue(
10500         DAG.getMachineNode(
10501             PPC::SELECT_CC_I4, dl, MVT::i32,
10502             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10503                                         Op.getOperand(1), Op.getOperand(2)),
10504                      0),
10505              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10506              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10507         0);
10508   }
10509   case Intrinsic::ppc_test_data_class_d:
10510   case Intrinsic::ppc_test_data_class_f: {
10511     unsigned CmprOpc = PPC::XSTSTDCDP;
10512     if (IntrinsicID == Intrinsic::ppc_test_data_class_f)
10513       CmprOpc = PPC::XSTSTDCSP;
10514     return SDValue(
10515         DAG.getMachineNode(
10516             PPC::SELECT_CC_I4, dl, MVT::i32,
10517             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10518                                         Op.getOperand(1)),
10519                      0),
10520              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10521              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10522         0);
10523   }
10524   case Intrinsic::ppc_convert_f128_to_ppcf128:
10525   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10526     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10527                             ? RTLIB::CONVERT_PPCF128_F128
10528                             : RTLIB::CONVERT_F128_PPCF128;
10529     MakeLibCallOptions CallOptions;
10530     std::pair<SDValue, SDValue> Result =
10531         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10532                     dl, SDValue());
10533     return Result.first;
10534   }
10535   }
10536 
10537   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10538   // opcode number of the comparison.
10539   int CompareOpc;
10540   bool isDot;
10541   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10542     return SDValue();    // Don't custom lower most intrinsics.
10543 
10544   // If this is a non-dot comparison, make the VCMP node and we are done.
10545   if (!isDot) {
10546     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10547                               Op.getOperand(1), Op.getOperand(2),
10548                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10549     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10550   }
10551 
10552   // Create the PPCISD altivec 'dot' comparison node.
10553   SDValue Ops[] = {
10554     Op.getOperand(2),  // LHS
10555     Op.getOperand(3),  // RHS
10556     DAG.getConstant(CompareOpc, dl, MVT::i32)
10557   };
10558   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10559   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10560 
10561   // Now that we have the comparison, emit a copy from the CR to a GPR.
10562   // This is flagged to the above dot comparison.
10563   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10564                                 DAG.getRegister(PPC::CR6, MVT::i32),
10565                                 CompNode.getValue(1));
10566 
10567   // Unpack the result based on how the target uses it.
10568   unsigned BitNo;   // Bit # of CR6.
10569   bool InvertBit;   // Invert result?
10570   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10571   default:  // Can't happen, don't crash on invalid number though.
10572   case 0:   // Return the value of the EQ bit of CR6.
10573     BitNo = 0; InvertBit = false;
10574     break;
10575   case 1:   // Return the inverted value of the EQ bit of CR6.
10576     BitNo = 0; InvertBit = true;
10577     break;
10578   case 2:   // Return the value of the LT bit of CR6.
10579     BitNo = 2; InvertBit = false;
10580     break;
10581   case 3:   // Return the inverted value of the LT bit of CR6.
10582     BitNo = 2; InvertBit = true;
10583     break;
10584   }
10585 
10586   // Shift the bit into the low position.
10587   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10588                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10589   // Isolate the bit.
10590   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10591                       DAG.getConstant(1, dl, MVT::i32));
10592 
10593   // If we are supposed to, toggle the bit.
10594   if (InvertBit)
10595     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10596                         DAG.getConstant(1, dl, MVT::i32));
10597   return Flags;
10598 }
10599 
10600 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10601                                                SelectionDAG &DAG) const {
10602   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10603   // the beginning of the argument list.
10604   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10605   SDLoc DL(Op);
10606   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10607   case Intrinsic::ppc_cfence: {
10608     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10609     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10610     SDValue Val = Op.getOperand(ArgStart + 1);
10611     EVT Ty = Val.getValueType();
10612     if (Ty == MVT::i128) {
10613       // FIXME: Testing one of two paired registers is sufficient to guarantee
10614       // ordering?
10615       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10616     }
10617     return SDValue(
10618         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10619                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10620                            Op.getOperand(0)),
10621         0);
10622   }
10623   default:
10624     break;
10625   }
10626   return SDValue();
10627 }
10628 
10629 // Lower scalar BSWAP64 to xxbrd.
10630 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10631   SDLoc dl(Op);
10632   if (!Subtarget.isPPC64())
10633     return Op;
10634   // MTVSRDD
10635   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10636                    Op.getOperand(0));
10637   // XXBRD
10638   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10639   // MFVSRD
10640   int VectorIndex = 0;
10641   if (Subtarget.isLittleEndian())
10642     VectorIndex = 1;
10643   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10644                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10645   return Op;
10646 }
10647 
10648 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10649 // compared to a value that is atomically loaded (atomic loads zero-extend).
10650 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10651                                                 SelectionDAG &DAG) const {
10652   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10653          "Expecting an atomic compare-and-swap here.");
10654   SDLoc dl(Op);
10655   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10656   EVT MemVT = AtomicNode->getMemoryVT();
10657   if (MemVT.getSizeInBits() >= 32)
10658     return Op;
10659 
10660   SDValue CmpOp = Op.getOperand(2);
10661   // If this is already correctly zero-extended, leave it alone.
10662   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10663   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10664     return Op;
10665 
10666   // Clear the high bits of the compare operand.
10667   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10668   SDValue NewCmpOp =
10669     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10670                 DAG.getConstant(MaskVal, dl, MVT::i32));
10671 
10672   // Replace the existing compare operand with the properly zero-extended one.
10673   SmallVector<SDValue, 4> Ops;
10674   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10675     Ops.push_back(AtomicNode->getOperand(i));
10676   Ops[2] = NewCmpOp;
10677   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10678   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10679   auto NodeTy =
10680     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10681   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10682 }
10683 
10684 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10685                                                   SelectionDAG &DAG) const {
10686   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10687   EVT MemVT = N->getMemoryVT();
10688   assert(MemVT.getSimpleVT() == MVT::i128 &&
10689          "Expect quadword atomic operations");
10690   SDLoc dl(N);
10691   unsigned Opc = N->getOpcode();
10692   switch (Opc) {
10693   case ISD::ATOMIC_LOAD: {
10694     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10695     // lowered to ppc instructions by pattern matching instruction selector.
10696     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10697     SmallVector<SDValue, 4> Ops{
10698         N->getOperand(0),
10699         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10700     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10701       Ops.push_back(N->getOperand(I));
10702     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10703                                                 Ops, MemVT, N->getMemOperand());
10704     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10705     SDValue ValHi =
10706         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10707     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10708                         DAG.getConstant(64, dl, MVT::i32));
10709     SDValue Val =
10710         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10711     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10712                        {Val, LoadedVal.getValue(2)});
10713   }
10714   case ISD::ATOMIC_STORE: {
10715     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10716     // lowered to ppc instructions by pattern matching instruction selector.
10717     SDVTList Tys = DAG.getVTList(MVT::Other);
10718     SmallVector<SDValue, 4> Ops{
10719         N->getOperand(0),
10720         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10721     SDValue Val = N->getOperand(2);
10722     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10723     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10724                                 DAG.getConstant(64, dl, MVT::i32));
10725     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10726     Ops.push_back(ValLo);
10727     Ops.push_back(ValHi);
10728     Ops.push_back(N->getOperand(1));
10729     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10730                                    N->getMemOperand());
10731   }
10732   default:
10733     llvm_unreachable("Unexpected atomic opcode");
10734   }
10735 }
10736 
10737 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10738                                                  SelectionDAG &DAG) const {
10739   SDLoc dl(Op);
10740   // Create a stack slot that is 16-byte aligned.
10741   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10742   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10743   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10744   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10745 
10746   // Store the input value into Value#0 of the stack slot.
10747   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10748                                MachinePointerInfo());
10749   // Load it out.
10750   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10751 }
10752 
10753 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10754                                                   SelectionDAG &DAG) const {
10755   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10756          "Should only be called for ISD::INSERT_VECTOR_ELT");
10757 
10758   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10759 
10760   EVT VT = Op.getValueType();
10761   SDLoc dl(Op);
10762   SDValue V1 = Op.getOperand(0);
10763   SDValue V2 = Op.getOperand(1);
10764 
10765   if (VT == MVT::v2f64 && C)
10766     return Op;
10767 
10768   if (Subtarget.hasP9Vector()) {
10769     // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way
10770     // because on P10, it allows this specific insert_vector_elt load pattern to
10771     // utilize the refactored load and store infrastructure in order to exploit
10772     // prefixed loads.
10773     // On targets with inexpensive direct moves (Power9 and up), a
10774     // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer
10775     // load since a single precision load will involve conversion to double
10776     // precision on the load followed by another conversion to single precision.
10777     if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) &&
10778         (isa<LoadSDNode>(V2))) {
10779       SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1);
10780       SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2);
10781       SDValue InsVecElt =
10782           DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector,
10783                       BitcastLoad, Op.getOperand(2));
10784       return DAG.getBitcast(MVT::v4f32, InsVecElt);
10785     }
10786   }
10787 
10788   if (Subtarget.isISA3_1()) {
10789     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10790       return SDValue();
10791     // On P10, we have legal lowering for constant and variable indices for
10792     // all vectors.
10793     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10794         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
10795       return Op;
10796   }
10797 
10798   // Before P10, we have legal lowering for constant indices but not for
10799   // variable ones.
10800   if (!C)
10801     return SDValue();
10802 
10803   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10804   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10805     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10806     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10807     unsigned InsertAtElement = C->getZExtValue();
10808     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10809     if (Subtarget.isLittleEndian()) {
10810       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10811     }
10812     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10813                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10814   }
10815   return Op;
10816 }
10817 
10818 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10819                                            SelectionDAG &DAG) const {
10820   SDLoc dl(Op);
10821   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10822   SDValue LoadChain = LN->getChain();
10823   SDValue BasePtr = LN->getBasePtr();
10824   EVT VT = Op.getValueType();
10825 
10826   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10827     return Op;
10828 
10829   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10830   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10831   // 2 or 4 vsx registers.
10832   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10833          "Type unsupported without MMA");
10834   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10835          "Type unsupported without paired vector support");
10836   Align Alignment = LN->getAlign();
10837   SmallVector<SDValue, 4> Loads;
10838   SmallVector<SDValue, 4> LoadChains;
10839   unsigned NumVecs = VT.getSizeInBits() / 128;
10840   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10841     SDValue Load =
10842         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10843                     LN->getPointerInfo().getWithOffset(Idx * 16),
10844                     commonAlignment(Alignment, Idx * 16),
10845                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10846     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10847                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10848     Loads.push_back(Load);
10849     LoadChains.push_back(Load.getValue(1));
10850   }
10851   if (Subtarget.isLittleEndian()) {
10852     std::reverse(Loads.begin(), Loads.end());
10853     std::reverse(LoadChains.begin(), LoadChains.end());
10854   }
10855   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10856   SDValue Value =
10857       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10858                   dl, VT, Loads);
10859   SDValue RetOps[] = {Value, TF};
10860   return DAG.getMergeValues(RetOps, dl);
10861 }
10862 
10863 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10864                                             SelectionDAG &DAG) const {
10865   SDLoc dl(Op);
10866   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10867   SDValue StoreChain = SN->getChain();
10868   SDValue BasePtr = SN->getBasePtr();
10869   SDValue Value = SN->getValue();
10870   EVT StoreVT = Value.getValueType();
10871 
10872   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10873     return Op;
10874 
10875   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10876   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10877   // underlying registers individually.
10878   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10879          "Type unsupported without MMA");
10880   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10881          "Type unsupported without paired vector support");
10882   Align Alignment = SN->getAlign();
10883   SmallVector<SDValue, 4> Stores;
10884   unsigned NumVecs = 2;
10885   if (StoreVT == MVT::v512i1) {
10886     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10887     NumVecs = 4;
10888   }
10889   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10890     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10891     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10892                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10893     SDValue Store =
10894         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10895                      SN->getPointerInfo().getWithOffset(Idx * 16),
10896                      commonAlignment(Alignment, Idx * 16),
10897                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10898     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10899                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10900     Stores.push_back(Store);
10901   }
10902   SDValue TF = DAG.getTokenFactor(dl, Stores);
10903   return TF;
10904 }
10905 
10906 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10907   SDLoc dl(Op);
10908   if (Op.getValueType() == MVT::v4i32) {
10909     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10910 
10911     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10912     // +16 as shift amt.
10913     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10914     SDValue RHSSwap =   // = vrlw RHS, 16
10915       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10916 
10917     // Shrinkify inputs to v8i16.
10918     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10919     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10920     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10921 
10922     // Low parts multiplied together, generating 32-bit results (we ignore the
10923     // top parts).
10924     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10925                                         LHS, RHS, DAG, dl, MVT::v4i32);
10926 
10927     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10928                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10929     // Shift the high parts up 16 bits.
10930     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10931                               Neg16, DAG, dl);
10932     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10933   } else if (Op.getValueType() == MVT::v16i8) {
10934     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10935     bool isLittleEndian = Subtarget.isLittleEndian();
10936 
10937     // Multiply the even 8-bit parts, producing 16-bit sums.
10938     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10939                                            LHS, RHS, DAG, dl, MVT::v8i16);
10940     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10941 
10942     // Multiply the odd 8-bit parts, producing 16-bit sums.
10943     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10944                                           LHS, RHS, DAG, dl, MVT::v8i16);
10945     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10946 
10947     // Merge the results together.  Because vmuleub and vmuloub are
10948     // instructions with a big-endian bias, we must reverse the
10949     // element numbering and reverse the meaning of "odd" and "even"
10950     // when generating little endian code.
10951     int Ops[16];
10952     for (unsigned i = 0; i != 8; ++i) {
10953       if (isLittleEndian) {
10954         Ops[i*2  ] = 2*i;
10955         Ops[i*2+1] = 2*i+16;
10956       } else {
10957         Ops[i*2  ] = 2*i+1;
10958         Ops[i*2+1] = 2*i+1+16;
10959       }
10960     }
10961     if (isLittleEndian)
10962       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10963     else
10964       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10965   } else {
10966     llvm_unreachable("Unknown mul to lower!");
10967   }
10968 }
10969 
10970 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10971   bool IsStrict = Op->isStrictFPOpcode();
10972   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10973       !Subtarget.hasP9Vector())
10974     return SDValue();
10975 
10976   return Op;
10977 }
10978 
10979 // Custom lowering for fpext vf32 to v2f64
10980 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10981 
10982   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10983          "Should only be called for ISD::FP_EXTEND");
10984 
10985   // FIXME: handle extends from half precision float vectors on P9.
10986   // We only want to custom lower an extend from v2f32 to v2f64.
10987   if (Op.getValueType() != MVT::v2f64 ||
10988       Op.getOperand(0).getValueType() != MVT::v2f32)
10989     return SDValue();
10990 
10991   SDLoc dl(Op);
10992   SDValue Op0 = Op.getOperand(0);
10993 
10994   switch (Op0.getOpcode()) {
10995   default:
10996     return SDValue();
10997   case ISD::EXTRACT_SUBVECTOR: {
10998     assert(Op0.getNumOperands() == 2 &&
10999            isa<ConstantSDNode>(Op0->getOperand(1)) &&
11000            "Node should have 2 operands with second one being a constant!");
11001 
11002     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11003       return SDValue();
11004 
11005     // Custom lower is only done for high or low doubleword.
11006     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
11007     if (Idx % 2 != 0)
11008       return SDValue();
11009 
11010     // Since input is v4f32, at this point Idx is either 0 or 2.
11011     // Shift to get the doubleword position we want.
11012     int DWord = Idx >> 1;
11013 
11014     // High and low word positions are different on little endian.
11015     if (Subtarget.isLittleEndian())
11016       DWord ^= 0x1;
11017 
11018     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11019                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11020   }
11021   case ISD::FADD:
11022   case ISD::FMUL:
11023   case ISD::FSUB: {
11024     SDValue NewLoad[2];
11025     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11026       // Ensure both input are loads.
11027       SDValue LdOp = Op0.getOperand(i);
11028       if (LdOp.getOpcode() != ISD::LOAD)
11029         return SDValue();
11030       // Generate new load node.
11031       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11032       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11033       NewLoad[i] = DAG.getMemIntrinsicNode(
11034           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11035           LD->getMemoryVT(), LD->getMemOperand());
11036     }
11037     SDValue NewOp =
11038         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11039                     NewLoad[1], Op0.getNode()->getFlags());
11040     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11041                        DAG.getConstant(0, dl, MVT::i32));
11042   }
11043   case ISD::LOAD: {
11044     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11045     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11046     SDValue NewLd = DAG.getMemIntrinsicNode(
11047         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11048         LD->getMemoryVT(), LD->getMemOperand());
11049     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11050                        DAG.getConstant(0, dl, MVT::i32));
11051   }
11052   }
11053   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11054 }
11055 
11056 /// LowerOperation - Provide custom lowering hooks for some operations.
11057 ///
11058 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11059   switch (Op.getOpcode()) {
11060   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11061   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11062   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11063   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11064   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11065   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11066   case ISD::STRICT_FSETCC:
11067   case ISD::STRICT_FSETCCS:
11068   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11069   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11070   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11071 
11072   case ISD::INLINEASM:
11073   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11074   // Variable argument lowering.
11075   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11076   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11077   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11078 
11079   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11080   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11081   case ISD::GET_DYNAMIC_AREA_OFFSET:
11082     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11083 
11084   // Exception handling lowering.
11085   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11086   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11087   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11088 
11089   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11090   case ISD::STORE:              return LowerSTORE(Op, DAG);
11091   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11092   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11093   case ISD::STRICT_FP_TO_UINT:
11094   case ISD::STRICT_FP_TO_SINT:
11095   case ISD::FP_TO_UINT:
11096   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11097   case ISD::STRICT_UINT_TO_FP:
11098   case ISD::STRICT_SINT_TO_FP:
11099   case ISD::UINT_TO_FP:
11100   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11101   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11102 
11103   // Lower 64-bit shifts.
11104   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11105   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11106   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11107 
11108   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11109   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11110 
11111   // Vector-related lowering.
11112   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11113   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11114   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11115   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11116   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11117   case ISD::MUL:                return LowerMUL(Op, DAG);
11118   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11119   case ISD::STRICT_FP_ROUND:
11120   case ISD::FP_ROUND:
11121     return LowerFP_ROUND(Op, DAG);
11122   case ISD::ROTL:               return LowerROTL(Op, DAG);
11123 
11124   // For counter-based loop handling.
11125   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11126 
11127   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11128 
11129   // Frame & Return address.
11130   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11131   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11132 
11133   case ISD::INTRINSIC_VOID:
11134     return LowerINTRINSIC_VOID(Op, DAG);
11135   case ISD::BSWAP:
11136     return LowerBSWAP(Op, DAG);
11137   case ISD::ATOMIC_CMP_SWAP:
11138     return LowerATOMIC_CMP_SWAP(Op, DAG);
11139   case ISD::ATOMIC_STORE:
11140     return LowerATOMIC_LOAD_STORE(Op, DAG);
11141   }
11142 }
11143 
11144 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11145                                            SmallVectorImpl<SDValue>&Results,
11146                                            SelectionDAG &DAG) const {
11147   SDLoc dl(N);
11148   switch (N->getOpcode()) {
11149   default:
11150     llvm_unreachable("Do not know how to custom type legalize this operation!");
11151   case ISD::ATOMIC_LOAD: {
11152     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11153     Results.push_back(Res);
11154     Results.push_back(Res.getValue(1));
11155     break;
11156   }
11157   case ISD::READCYCLECOUNTER: {
11158     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11159     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11160 
11161     Results.push_back(
11162         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11163     Results.push_back(RTB.getValue(2));
11164     break;
11165   }
11166   case ISD::INTRINSIC_W_CHAIN: {
11167     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11168         Intrinsic::loop_decrement)
11169       break;
11170 
11171     assert(N->getValueType(0) == MVT::i1 &&
11172            "Unexpected result type for CTR decrement intrinsic");
11173     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11174                                  N->getValueType(0));
11175     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11176     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11177                                  N->getOperand(1));
11178 
11179     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11180     Results.push_back(NewInt.getValue(1));
11181     break;
11182   }
11183   case ISD::INTRINSIC_WO_CHAIN: {
11184     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11185     case Intrinsic::ppc_pack_longdouble:
11186       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11187                                     N->getOperand(2), N->getOperand(1)));
11188       break;
11189     case Intrinsic::ppc_convert_f128_to_ppcf128:
11190       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11191       break;
11192     }
11193     break;
11194   }
11195   case ISD::VAARG: {
11196     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11197       return;
11198 
11199     EVT VT = N->getValueType(0);
11200 
11201     if (VT == MVT::i64) {
11202       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11203 
11204       Results.push_back(NewNode);
11205       Results.push_back(NewNode.getValue(1));
11206     }
11207     return;
11208   }
11209   case ISD::STRICT_FP_TO_SINT:
11210   case ISD::STRICT_FP_TO_UINT:
11211   case ISD::FP_TO_SINT:
11212   case ISD::FP_TO_UINT: {
11213     // LowerFP_TO_INT() can only handle f32 and f64.
11214     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11215         MVT::ppcf128)
11216       return;
11217     SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11218     Results.push_back(LoweredValue);
11219     if (N->isStrictFPOpcode())
11220       Results.push_back(LoweredValue.getValue(1));
11221     return;
11222   }
11223   case ISD::TRUNCATE: {
11224     if (!N->getValueType(0).isVector())
11225       return;
11226     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11227     if (Lowered)
11228       Results.push_back(Lowered);
11229     return;
11230   }
11231   case ISD::FSHL:
11232   case ISD::FSHR:
11233     // Don't handle funnel shifts here.
11234     return;
11235   case ISD::BITCAST:
11236     // Don't handle bitcast here.
11237     return;
11238   case ISD::FP_EXTEND:
11239     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11240     if (Lowered)
11241       Results.push_back(Lowered);
11242     return;
11243   }
11244 }
11245 
11246 //===----------------------------------------------------------------------===//
11247 //  Other Lowering Code
11248 //===----------------------------------------------------------------------===//
11249 
11250 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11251   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11252   Function *Func = Intrinsic::getDeclaration(M, Id);
11253   return Builder.CreateCall(Func, {});
11254 }
11255 
11256 // The mappings for emitLeading/TrailingFence is taken from
11257 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11258 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11259                                                  Instruction *Inst,
11260                                                  AtomicOrdering Ord) const {
11261   if (Ord == AtomicOrdering::SequentiallyConsistent)
11262     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11263   if (isReleaseOrStronger(Ord))
11264     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11265   return nullptr;
11266 }
11267 
11268 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11269                                                   Instruction *Inst,
11270                                                   AtomicOrdering Ord) const {
11271   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11272     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11273     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11274     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11275     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11276       return Builder.CreateCall(
11277           Intrinsic::getDeclaration(
11278               Builder.GetInsertBlock()->getParent()->getParent(),
11279               Intrinsic::ppc_cfence, {Inst->getType()}),
11280           {Inst});
11281     // FIXME: Can use isync for rmw operation.
11282     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11283   }
11284   return nullptr;
11285 }
11286 
11287 MachineBasicBlock *
11288 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11289                                     unsigned AtomicSize,
11290                                     unsigned BinOpcode,
11291                                     unsigned CmpOpcode,
11292                                     unsigned CmpPred) const {
11293   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11294   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11295 
11296   auto LoadMnemonic = PPC::LDARX;
11297   auto StoreMnemonic = PPC::STDCX;
11298   switch (AtomicSize) {
11299   default:
11300     llvm_unreachable("Unexpected size of atomic entity");
11301   case 1:
11302     LoadMnemonic = PPC::LBARX;
11303     StoreMnemonic = PPC::STBCX;
11304     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11305     break;
11306   case 2:
11307     LoadMnemonic = PPC::LHARX;
11308     StoreMnemonic = PPC::STHCX;
11309     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11310     break;
11311   case 4:
11312     LoadMnemonic = PPC::LWARX;
11313     StoreMnemonic = PPC::STWCX;
11314     break;
11315   case 8:
11316     LoadMnemonic = PPC::LDARX;
11317     StoreMnemonic = PPC::STDCX;
11318     break;
11319   }
11320 
11321   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11322   MachineFunction *F = BB->getParent();
11323   MachineFunction::iterator It = ++BB->getIterator();
11324 
11325   Register dest = MI.getOperand(0).getReg();
11326   Register ptrA = MI.getOperand(1).getReg();
11327   Register ptrB = MI.getOperand(2).getReg();
11328   Register incr = MI.getOperand(3).getReg();
11329   DebugLoc dl = MI.getDebugLoc();
11330 
11331   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11332   MachineBasicBlock *loop2MBB =
11333     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11334   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11335   F->insert(It, loopMBB);
11336   if (CmpOpcode)
11337     F->insert(It, loop2MBB);
11338   F->insert(It, exitMBB);
11339   exitMBB->splice(exitMBB->begin(), BB,
11340                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11341   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11342 
11343   MachineRegisterInfo &RegInfo = F->getRegInfo();
11344   Register TmpReg = (!BinOpcode) ? incr :
11345     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11346                                            : &PPC::GPRCRegClass);
11347 
11348   //  thisMBB:
11349   //   ...
11350   //   fallthrough --> loopMBB
11351   BB->addSuccessor(loopMBB);
11352 
11353   //  loopMBB:
11354   //   l[wd]arx dest, ptr
11355   //   add r0, dest, incr
11356   //   st[wd]cx. r0, ptr
11357   //   bne- loopMBB
11358   //   fallthrough --> exitMBB
11359 
11360   // For max/min...
11361   //  loopMBB:
11362   //   l[wd]arx dest, ptr
11363   //   cmpl?[wd] incr, dest
11364   //   bgt exitMBB
11365   //  loop2MBB:
11366   //   st[wd]cx. dest, ptr
11367   //   bne- loopMBB
11368   //   fallthrough --> exitMBB
11369 
11370   BB = loopMBB;
11371   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11372     .addReg(ptrA).addReg(ptrB);
11373   if (BinOpcode)
11374     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11375   if (CmpOpcode) {
11376     // Signed comparisons of byte or halfword values must be sign-extended.
11377     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11378       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11379       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11380               ExtReg).addReg(dest);
11381       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11382         .addReg(incr).addReg(ExtReg);
11383     } else
11384       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11385         .addReg(incr).addReg(dest);
11386 
11387     BuildMI(BB, dl, TII->get(PPC::BCC))
11388       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11389     BB->addSuccessor(loop2MBB);
11390     BB->addSuccessor(exitMBB);
11391     BB = loop2MBB;
11392   }
11393   BuildMI(BB, dl, TII->get(StoreMnemonic))
11394     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11395   BuildMI(BB, dl, TII->get(PPC::BCC))
11396     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11397   BB->addSuccessor(loopMBB);
11398   BB->addSuccessor(exitMBB);
11399 
11400   //  exitMBB:
11401   //   ...
11402   BB = exitMBB;
11403   return BB;
11404 }
11405 
11406 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11407   switch(MI.getOpcode()) {
11408   default:
11409     return false;
11410   case PPC::COPY:
11411     return TII->isSignExtended(MI);
11412   case PPC::LHA:
11413   case PPC::LHA8:
11414   case PPC::LHAU:
11415   case PPC::LHAU8:
11416   case PPC::LHAUX:
11417   case PPC::LHAUX8:
11418   case PPC::LHAX:
11419   case PPC::LHAX8:
11420   case PPC::LWA:
11421   case PPC::LWAUX:
11422   case PPC::LWAX:
11423   case PPC::LWAX_32:
11424   case PPC::LWA_32:
11425   case PPC::PLHA:
11426   case PPC::PLHA8:
11427   case PPC::PLHA8pc:
11428   case PPC::PLHApc:
11429   case PPC::PLWA:
11430   case PPC::PLWA8:
11431   case PPC::PLWA8pc:
11432   case PPC::PLWApc:
11433   case PPC::EXTSB:
11434   case PPC::EXTSB8:
11435   case PPC::EXTSB8_32_64:
11436   case PPC::EXTSB8_rec:
11437   case PPC::EXTSB_rec:
11438   case PPC::EXTSH:
11439   case PPC::EXTSH8:
11440   case PPC::EXTSH8_32_64:
11441   case PPC::EXTSH8_rec:
11442   case PPC::EXTSH_rec:
11443   case PPC::EXTSW:
11444   case PPC::EXTSWSLI:
11445   case PPC::EXTSWSLI_32_64:
11446   case PPC::EXTSWSLI_32_64_rec:
11447   case PPC::EXTSWSLI_rec:
11448   case PPC::EXTSW_32:
11449   case PPC::EXTSW_32_64:
11450   case PPC::EXTSW_32_64_rec:
11451   case PPC::EXTSW_rec:
11452   case PPC::SRAW:
11453   case PPC::SRAWI:
11454   case PPC::SRAWI_rec:
11455   case PPC::SRAW_rec:
11456     return true;
11457   }
11458   return false;
11459 }
11460 
11461 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11462     MachineInstr &MI, MachineBasicBlock *BB,
11463     bool is8bit, // operation
11464     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11465   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11466   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11467 
11468   // If this is a signed comparison and the value being compared is not known
11469   // to be sign extended, sign extend it here.
11470   DebugLoc dl = MI.getDebugLoc();
11471   MachineFunction *F = BB->getParent();
11472   MachineRegisterInfo &RegInfo = F->getRegInfo();
11473   Register incr = MI.getOperand(3).getReg();
11474   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11475     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11476 
11477   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11478     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11479     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11480         .addReg(MI.getOperand(3).getReg());
11481     MI.getOperand(3).setReg(ValueReg);
11482   }
11483   // If we support part-word atomic mnemonics, just use them
11484   if (Subtarget.hasPartwordAtomics())
11485     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11486                             CmpPred);
11487 
11488   // In 64 bit mode we have to use 64 bits for addresses, even though the
11489   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11490   // registers without caring whether they're 32 or 64, but here we're
11491   // doing actual arithmetic on the addresses.
11492   bool is64bit = Subtarget.isPPC64();
11493   bool isLittleEndian = Subtarget.isLittleEndian();
11494   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11495 
11496   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11497   MachineFunction::iterator It = ++BB->getIterator();
11498 
11499   Register dest = MI.getOperand(0).getReg();
11500   Register ptrA = MI.getOperand(1).getReg();
11501   Register ptrB = MI.getOperand(2).getReg();
11502 
11503   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11504   MachineBasicBlock *loop2MBB =
11505       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11506   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11507   F->insert(It, loopMBB);
11508   if (CmpOpcode)
11509     F->insert(It, loop2MBB);
11510   F->insert(It, exitMBB);
11511   exitMBB->splice(exitMBB->begin(), BB,
11512                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11513   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11514 
11515   const TargetRegisterClass *RC =
11516       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11517   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11518 
11519   Register PtrReg = RegInfo.createVirtualRegister(RC);
11520   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11521   Register ShiftReg =
11522       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11523   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11524   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11525   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11526   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11527   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11528   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11529   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11530   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11531   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11532   Register Ptr1Reg;
11533   Register TmpReg =
11534       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11535 
11536   //  thisMBB:
11537   //   ...
11538   //   fallthrough --> loopMBB
11539   BB->addSuccessor(loopMBB);
11540 
11541   // The 4-byte load must be aligned, while a char or short may be
11542   // anywhere in the word.  Hence all this nasty bookkeeping code.
11543   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11544   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11545   //   xori shift, shift1, 24 [16]
11546   //   rlwinm ptr, ptr1, 0, 0, 29
11547   //   slw incr2, incr, shift
11548   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11549   //   slw mask, mask2, shift
11550   //  loopMBB:
11551   //   lwarx tmpDest, ptr
11552   //   add tmp, tmpDest, incr2
11553   //   andc tmp2, tmpDest, mask
11554   //   and tmp3, tmp, mask
11555   //   or tmp4, tmp3, tmp2
11556   //   stwcx. tmp4, ptr
11557   //   bne- loopMBB
11558   //   fallthrough --> exitMBB
11559   //   srw SrwDest, tmpDest, shift
11560   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11561   if (ptrA != ZeroReg) {
11562     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11563     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11564         .addReg(ptrA)
11565         .addReg(ptrB);
11566   } else {
11567     Ptr1Reg = ptrB;
11568   }
11569   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11570   // mode.
11571   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11572       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11573       .addImm(3)
11574       .addImm(27)
11575       .addImm(is8bit ? 28 : 27);
11576   if (!isLittleEndian)
11577     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11578         .addReg(Shift1Reg)
11579         .addImm(is8bit ? 24 : 16);
11580   if (is64bit)
11581     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11582         .addReg(Ptr1Reg)
11583         .addImm(0)
11584         .addImm(61);
11585   else
11586     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11587         .addReg(Ptr1Reg)
11588         .addImm(0)
11589         .addImm(0)
11590         .addImm(29);
11591   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11592   if (is8bit)
11593     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11594   else {
11595     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11596     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11597         .addReg(Mask3Reg)
11598         .addImm(65535);
11599   }
11600   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11601       .addReg(Mask2Reg)
11602       .addReg(ShiftReg);
11603 
11604   BB = loopMBB;
11605   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11606       .addReg(ZeroReg)
11607       .addReg(PtrReg);
11608   if (BinOpcode)
11609     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11610         .addReg(Incr2Reg)
11611         .addReg(TmpDestReg);
11612   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11613       .addReg(TmpDestReg)
11614       .addReg(MaskReg);
11615   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11616   if (CmpOpcode) {
11617     // For unsigned comparisons, we can directly compare the shifted values.
11618     // For signed comparisons we shift and sign extend.
11619     Register SReg = RegInfo.createVirtualRegister(GPRC);
11620     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11621         .addReg(TmpDestReg)
11622         .addReg(MaskReg);
11623     unsigned ValueReg = SReg;
11624     unsigned CmpReg = Incr2Reg;
11625     if (CmpOpcode == PPC::CMPW) {
11626       ValueReg = RegInfo.createVirtualRegister(GPRC);
11627       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11628           .addReg(SReg)
11629           .addReg(ShiftReg);
11630       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11631       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11632           .addReg(ValueReg);
11633       ValueReg = ValueSReg;
11634       CmpReg = incr;
11635     }
11636     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11637         .addReg(CmpReg)
11638         .addReg(ValueReg);
11639     BuildMI(BB, dl, TII->get(PPC::BCC))
11640         .addImm(CmpPred)
11641         .addReg(PPC::CR0)
11642         .addMBB(exitMBB);
11643     BB->addSuccessor(loop2MBB);
11644     BB->addSuccessor(exitMBB);
11645     BB = loop2MBB;
11646   }
11647   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11648   BuildMI(BB, dl, TII->get(PPC::STWCX))
11649       .addReg(Tmp4Reg)
11650       .addReg(ZeroReg)
11651       .addReg(PtrReg);
11652   BuildMI(BB, dl, TII->get(PPC::BCC))
11653       .addImm(PPC::PRED_NE)
11654       .addReg(PPC::CR0)
11655       .addMBB(loopMBB);
11656   BB->addSuccessor(loopMBB);
11657   BB->addSuccessor(exitMBB);
11658 
11659   //  exitMBB:
11660   //   ...
11661   BB = exitMBB;
11662   // Since the shift amount is not a constant, we need to clear
11663   // the upper bits with a separate RLWINM.
11664   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11665       .addReg(SrwDestReg)
11666       .addImm(0)
11667       .addImm(is8bit ? 24 : 16)
11668       .addImm(31);
11669   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11670       .addReg(TmpDestReg)
11671       .addReg(ShiftReg);
11672   return BB;
11673 }
11674 
11675 llvm::MachineBasicBlock *
11676 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11677                                     MachineBasicBlock *MBB) const {
11678   DebugLoc DL = MI.getDebugLoc();
11679   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11680   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11681 
11682   MachineFunction *MF = MBB->getParent();
11683   MachineRegisterInfo &MRI = MF->getRegInfo();
11684 
11685   const BasicBlock *BB = MBB->getBasicBlock();
11686   MachineFunction::iterator I = ++MBB->getIterator();
11687 
11688   Register DstReg = MI.getOperand(0).getReg();
11689   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11690   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11691   Register mainDstReg = MRI.createVirtualRegister(RC);
11692   Register restoreDstReg = MRI.createVirtualRegister(RC);
11693 
11694   MVT PVT = getPointerTy(MF->getDataLayout());
11695   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11696          "Invalid Pointer Size!");
11697   // For v = setjmp(buf), we generate
11698   //
11699   // thisMBB:
11700   //  SjLjSetup mainMBB
11701   //  bl mainMBB
11702   //  v_restore = 1
11703   //  b sinkMBB
11704   //
11705   // mainMBB:
11706   //  buf[LabelOffset] = LR
11707   //  v_main = 0
11708   //
11709   // sinkMBB:
11710   //  v = phi(main, restore)
11711   //
11712 
11713   MachineBasicBlock *thisMBB = MBB;
11714   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11715   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11716   MF->insert(I, mainMBB);
11717   MF->insert(I, sinkMBB);
11718 
11719   MachineInstrBuilder MIB;
11720 
11721   // Transfer the remainder of BB and its successor edges to sinkMBB.
11722   sinkMBB->splice(sinkMBB->begin(), MBB,
11723                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11724   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11725 
11726   // Note that the structure of the jmp_buf used here is not compatible
11727   // with that used by libc, and is not designed to be. Specifically, it
11728   // stores only those 'reserved' registers that LLVM does not otherwise
11729   // understand how to spill. Also, by convention, by the time this
11730   // intrinsic is called, Clang has already stored the frame address in the
11731   // first slot of the buffer and stack address in the third. Following the
11732   // X86 target code, we'll store the jump address in the second slot. We also
11733   // need to save the TOC pointer (R2) to handle jumps between shared
11734   // libraries, and that will be stored in the fourth slot. The thread
11735   // identifier (R13) is not affected.
11736 
11737   // thisMBB:
11738   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11739   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11740   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11741 
11742   // Prepare IP either in reg.
11743   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11744   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11745   Register BufReg = MI.getOperand(1).getReg();
11746 
11747   if (Subtarget.is64BitELFABI()) {
11748     setUsesTOCBasePtr(*MBB->getParent());
11749     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11750               .addReg(PPC::X2)
11751               .addImm(TOCOffset)
11752               .addReg(BufReg)
11753               .cloneMemRefs(MI);
11754   }
11755 
11756   // Naked functions never have a base pointer, and so we use r1. For all
11757   // other functions, this decision must be delayed until during PEI.
11758   unsigned BaseReg;
11759   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11760     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11761   else
11762     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11763 
11764   MIB = BuildMI(*thisMBB, MI, DL,
11765                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11766             .addReg(BaseReg)
11767             .addImm(BPOffset)
11768             .addReg(BufReg)
11769             .cloneMemRefs(MI);
11770 
11771   // Setup
11772   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11773   MIB.addRegMask(TRI->getNoPreservedMask());
11774 
11775   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11776 
11777   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11778           .addMBB(mainMBB);
11779   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11780 
11781   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11782   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11783 
11784   // mainMBB:
11785   //  mainDstReg = 0
11786   MIB =
11787       BuildMI(mainMBB, DL,
11788               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11789 
11790   // Store IP
11791   if (Subtarget.isPPC64()) {
11792     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11793             .addReg(LabelReg)
11794             .addImm(LabelOffset)
11795             .addReg(BufReg);
11796   } else {
11797     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11798             .addReg(LabelReg)
11799             .addImm(LabelOffset)
11800             .addReg(BufReg);
11801   }
11802   MIB.cloneMemRefs(MI);
11803 
11804   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11805   mainMBB->addSuccessor(sinkMBB);
11806 
11807   // sinkMBB:
11808   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11809           TII->get(PPC::PHI), DstReg)
11810     .addReg(mainDstReg).addMBB(mainMBB)
11811     .addReg(restoreDstReg).addMBB(thisMBB);
11812 
11813   MI.eraseFromParent();
11814   return sinkMBB;
11815 }
11816 
11817 MachineBasicBlock *
11818 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11819                                      MachineBasicBlock *MBB) const {
11820   DebugLoc DL = MI.getDebugLoc();
11821   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11822 
11823   MachineFunction *MF = MBB->getParent();
11824   MachineRegisterInfo &MRI = MF->getRegInfo();
11825 
11826   MVT PVT = getPointerTy(MF->getDataLayout());
11827   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11828          "Invalid Pointer Size!");
11829 
11830   const TargetRegisterClass *RC =
11831     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11832   Register Tmp = MRI.createVirtualRegister(RC);
11833   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11834   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11835   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11836   unsigned BP =
11837       (PVT == MVT::i64)
11838           ? PPC::X30
11839           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11840                                                               : PPC::R30);
11841 
11842   MachineInstrBuilder MIB;
11843 
11844   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11845   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11846   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11847   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11848 
11849   Register BufReg = MI.getOperand(0).getReg();
11850 
11851   // Reload FP (the jumped-to function may not have had a
11852   // frame pointer, and if so, then its r31 will be restored
11853   // as necessary).
11854   if (PVT == MVT::i64) {
11855     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11856             .addImm(0)
11857             .addReg(BufReg);
11858   } else {
11859     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11860             .addImm(0)
11861             .addReg(BufReg);
11862   }
11863   MIB.cloneMemRefs(MI);
11864 
11865   // Reload IP
11866   if (PVT == MVT::i64) {
11867     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11868             .addImm(LabelOffset)
11869             .addReg(BufReg);
11870   } else {
11871     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11872             .addImm(LabelOffset)
11873             .addReg(BufReg);
11874   }
11875   MIB.cloneMemRefs(MI);
11876 
11877   // Reload SP
11878   if (PVT == MVT::i64) {
11879     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11880             .addImm(SPOffset)
11881             .addReg(BufReg);
11882   } else {
11883     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11884             .addImm(SPOffset)
11885             .addReg(BufReg);
11886   }
11887   MIB.cloneMemRefs(MI);
11888 
11889   // Reload BP
11890   if (PVT == MVT::i64) {
11891     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11892             .addImm(BPOffset)
11893             .addReg(BufReg);
11894   } else {
11895     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11896             .addImm(BPOffset)
11897             .addReg(BufReg);
11898   }
11899   MIB.cloneMemRefs(MI);
11900 
11901   // Reload TOC
11902   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11903     setUsesTOCBasePtr(*MBB->getParent());
11904     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11905               .addImm(TOCOffset)
11906               .addReg(BufReg)
11907               .cloneMemRefs(MI);
11908   }
11909 
11910   // Jump
11911   BuildMI(*MBB, MI, DL,
11912           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11913   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11914 
11915   MI.eraseFromParent();
11916   return MBB;
11917 }
11918 
11919 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11920   // If the function specifically requests inline stack probes, emit them.
11921   if (MF.getFunction().hasFnAttribute("probe-stack"))
11922     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11923            "inline-asm";
11924   return false;
11925 }
11926 
11927 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11928   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11929   unsigned StackAlign = TFI->getStackAlignment();
11930   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11931          "Unexpected stack alignment");
11932   // The default stack probe size is 4096 if the function has no
11933   // stack-probe-size attribute.
11934   unsigned StackProbeSize = 4096;
11935   const Function &Fn = MF.getFunction();
11936   if (Fn.hasFnAttribute("stack-probe-size"))
11937     Fn.getFnAttribute("stack-probe-size")
11938         .getValueAsString()
11939         .getAsInteger(0, StackProbeSize);
11940   // Round down to the stack alignment.
11941   StackProbeSize &= ~(StackAlign - 1);
11942   return StackProbeSize ? StackProbeSize : StackAlign;
11943 }
11944 
11945 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11946 // into three phases. In the first phase, it uses pseudo instruction
11947 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11948 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11949 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11950 // MaxCallFrameSize so that it can calculate correct data area pointer.
11951 MachineBasicBlock *
11952 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11953                                     MachineBasicBlock *MBB) const {
11954   const bool isPPC64 = Subtarget.isPPC64();
11955   MachineFunction *MF = MBB->getParent();
11956   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11957   DebugLoc DL = MI.getDebugLoc();
11958   const unsigned ProbeSize = getStackProbeSize(*MF);
11959   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11960   MachineRegisterInfo &MRI = MF->getRegInfo();
11961   // The CFG of probing stack looks as
11962   //         +-----+
11963   //         | MBB |
11964   //         +--+--+
11965   //            |
11966   //       +----v----+
11967   //  +--->+ TestMBB +---+
11968   //  |    +----+----+   |
11969   //  |         |        |
11970   //  |   +-----v----+   |
11971   //  +---+ BlockMBB |   |
11972   //      +----------+   |
11973   //                     |
11974   //       +---------+   |
11975   //       | TailMBB +<--+
11976   //       +---------+
11977   // In MBB, calculate previous frame pointer and final stack pointer.
11978   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11979   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11980   // TailMBB is spliced via \p MI.
11981   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11982   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11983   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11984 
11985   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11986   MF->insert(MBBIter, TestMBB);
11987   MF->insert(MBBIter, BlockMBB);
11988   MF->insert(MBBIter, TailMBB);
11989 
11990   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11991   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11992 
11993   Register DstReg = MI.getOperand(0).getReg();
11994   Register NegSizeReg = MI.getOperand(1).getReg();
11995   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11996   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11997   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11998   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11999 
12000   // Since value of NegSizeReg might be realigned in prologepilog, insert a
12001   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
12002   // NegSize.
12003   unsigned ProbeOpc;
12004   if (!MRI.hasOneNonDBGUse(NegSizeReg))
12005     ProbeOpc =
12006         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
12007   else
12008     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
12009     // and NegSizeReg will be allocated in the same phyreg to avoid
12010     // redundant copy when NegSizeReg has only one use which is current MI and
12011     // will be replaced by PREPARE_PROBED_ALLOCA then.
12012     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
12013                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
12014   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
12015       .addDef(ActualNegSizeReg)
12016       .addReg(NegSizeReg)
12017       .add(MI.getOperand(2))
12018       .add(MI.getOperand(3));
12019 
12020   // Calculate final stack pointer, which equals to SP + ActualNegSize.
12021   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
12022           FinalStackPtr)
12023       .addReg(SPReg)
12024       .addReg(ActualNegSizeReg);
12025 
12026   // Materialize a scratch register for update.
12027   int64_t NegProbeSize = -(int64_t)ProbeSize;
12028   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
12029   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12030   if (!isInt<16>(NegProbeSize)) {
12031     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12032     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12033         .addImm(NegProbeSize >> 16);
12034     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12035             ScratchReg)
12036         .addReg(TempReg)
12037         .addImm(NegProbeSize & 0xFFFF);
12038   } else
12039     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12040         .addImm(NegProbeSize);
12041 
12042   {
12043     // Probing leading residual part.
12044     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12045     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12046         .addReg(ActualNegSizeReg)
12047         .addReg(ScratchReg);
12048     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12049     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12050         .addReg(Div)
12051         .addReg(ScratchReg);
12052     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12053     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12054         .addReg(Mul)
12055         .addReg(ActualNegSizeReg);
12056     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12057         .addReg(FramePointer)
12058         .addReg(SPReg)
12059         .addReg(NegMod);
12060   }
12061 
12062   {
12063     // Remaining part should be multiple of ProbeSize.
12064     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12065     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12066         .addReg(SPReg)
12067         .addReg(FinalStackPtr);
12068     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12069         .addImm(PPC::PRED_EQ)
12070         .addReg(CmpResult)
12071         .addMBB(TailMBB);
12072     TestMBB->addSuccessor(BlockMBB);
12073     TestMBB->addSuccessor(TailMBB);
12074   }
12075 
12076   {
12077     // Touch the block.
12078     // |P...|P...|P...
12079     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12080         .addReg(FramePointer)
12081         .addReg(SPReg)
12082         .addReg(ScratchReg);
12083     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12084     BlockMBB->addSuccessor(TestMBB);
12085   }
12086 
12087   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12088   // DYNAREAOFFSET pseudo instruction to get the future result.
12089   Register MaxCallFrameSizeReg =
12090       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12091   BuildMI(TailMBB, DL,
12092           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12093           MaxCallFrameSizeReg)
12094       .add(MI.getOperand(2))
12095       .add(MI.getOperand(3));
12096   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12097       .addReg(SPReg)
12098       .addReg(MaxCallFrameSizeReg);
12099 
12100   // Splice instructions after MI to TailMBB.
12101   TailMBB->splice(TailMBB->end(), MBB,
12102                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12103   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12104   MBB->addSuccessor(TestMBB);
12105 
12106   // Delete the pseudo instruction.
12107   MI.eraseFromParent();
12108 
12109   ++NumDynamicAllocaProbed;
12110   return TailMBB;
12111 }
12112 
12113 MachineBasicBlock *
12114 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12115                                                MachineBasicBlock *BB) const {
12116   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12117       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12118     if (Subtarget.is64BitELFABI() &&
12119         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12120         !Subtarget.isUsingPCRelativeCalls()) {
12121       // Call lowering should have added an r2 operand to indicate a dependence
12122       // on the TOC base pointer value. It can't however, because there is no
12123       // way to mark the dependence as implicit there, and so the stackmap code
12124       // will confuse it with a regular operand. Instead, add the dependence
12125       // here.
12126       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12127     }
12128 
12129     return emitPatchPoint(MI, BB);
12130   }
12131 
12132   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12133       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12134     return emitEHSjLjSetJmp(MI, BB);
12135   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12136              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12137     return emitEHSjLjLongJmp(MI, BB);
12138   }
12139 
12140   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12141 
12142   // To "insert" these instructions we actually have to insert their
12143   // control-flow patterns.
12144   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12145   MachineFunction::iterator It = ++BB->getIterator();
12146 
12147   MachineFunction *F = BB->getParent();
12148   MachineRegisterInfo &MRI = F->getRegInfo();
12149 
12150   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12151       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12152       MI.getOpcode() == PPC::SELECT_I8) {
12153     SmallVector<MachineOperand, 2> Cond;
12154     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12155         MI.getOpcode() == PPC::SELECT_CC_I8)
12156       Cond.push_back(MI.getOperand(4));
12157     else
12158       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12159     Cond.push_back(MI.getOperand(1));
12160 
12161     DebugLoc dl = MI.getDebugLoc();
12162     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12163                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12164   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12165              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12166              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12167              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12168              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12169              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12170              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12171              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12172              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12173              MI.getOpcode() == PPC::SELECT_F4 ||
12174              MI.getOpcode() == PPC::SELECT_F8 ||
12175              MI.getOpcode() == PPC::SELECT_F16 ||
12176              MI.getOpcode() == PPC::SELECT_SPE ||
12177              MI.getOpcode() == PPC::SELECT_SPE4 ||
12178              MI.getOpcode() == PPC::SELECT_VRRC ||
12179              MI.getOpcode() == PPC::SELECT_VSFRC ||
12180              MI.getOpcode() == PPC::SELECT_VSSRC ||
12181              MI.getOpcode() == PPC::SELECT_VSRC) {
12182     // The incoming instruction knows the destination vreg to set, the
12183     // condition code register to branch on, the true/false values to
12184     // select between, and a branch opcode to use.
12185 
12186     //  thisMBB:
12187     //  ...
12188     //   TrueVal = ...
12189     //   cmpTY ccX, r1, r2
12190     //   bCC copy1MBB
12191     //   fallthrough --> copy0MBB
12192     MachineBasicBlock *thisMBB = BB;
12193     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12194     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12195     DebugLoc dl = MI.getDebugLoc();
12196     F->insert(It, copy0MBB);
12197     F->insert(It, sinkMBB);
12198 
12199     // Transfer the remainder of BB and its successor edges to sinkMBB.
12200     sinkMBB->splice(sinkMBB->begin(), BB,
12201                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12202     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12203 
12204     // Next, add the true and fallthrough blocks as its successors.
12205     BB->addSuccessor(copy0MBB);
12206     BB->addSuccessor(sinkMBB);
12207 
12208     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12209         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12210         MI.getOpcode() == PPC::SELECT_F16 ||
12211         MI.getOpcode() == PPC::SELECT_SPE4 ||
12212         MI.getOpcode() == PPC::SELECT_SPE ||
12213         MI.getOpcode() == PPC::SELECT_VRRC ||
12214         MI.getOpcode() == PPC::SELECT_VSFRC ||
12215         MI.getOpcode() == PPC::SELECT_VSSRC ||
12216         MI.getOpcode() == PPC::SELECT_VSRC) {
12217       BuildMI(BB, dl, TII->get(PPC::BC))
12218           .addReg(MI.getOperand(1).getReg())
12219           .addMBB(sinkMBB);
12220     } else {
12221       unsigned SelectPred = MI.getOperand(4).getImm();
12222       BuildMI(BB, dl, TII->get(PPC::BCC))
12223           .addImm(SelectPred)
12224           .addReg(MI.getOperand(1).getReg())
12225           .addMBB(sinkMBB);
12226     }
12227 
12228     //  copy0MBB:
12229     //   %FalseValue = ...
12230     //   # fallthrough to sinkMBB
12231     BB = copy0MBB;
12232 
12233     // Update machine-CFG edges
12234     BB->addSuccessor(sinkMBB);
12235 
12236     //  sinkMBB:
12237     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12238     //  ...
12239     BB = sinkMBB;
12240     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12241         .addReg(MI.getOperand(3).getReg())
12242         .addMBB(copy0MBB)
12243         .addReg(MI.getOperand(2).getReg())
12244         .addMBB(thisMBB);
12245   } else if (MI.getOpcode() == PPC::ReadTB) {
12246     // To read the 64-bit time-base register on a 32-bit target, we read the
12247     // two halves. Should the counter have wrapped while it was being read, we
12248     // need to try again.
12249     // ...
12250     // readLoop:
12251     // mfspr Rx,TBU # load from TBU
12252     // mfspr Ry,TB  # load from TB
12253     // mfspr Rz,TBU # load from TBU
12254     // cmpw crX,Rx,Rz # check if 'old'='new'
12255     // bne readLoop   # branch if they're not equal
12256     // ...
12257 
12258     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12259     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12260     DebugLoc dl = MI.getDebugLoc();
12261     F->insert(It, readMBB);
12262     F->insert(It, sinkMBB);
12263 
12264     // Transfer the remainder of BB and its successor edges to sinkMBB.
12265     sinkMBB->splice(sinkMBB->begin(), BB,
12266                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12267     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12268 
12269     BB->addSuccessor(readMBB);
12270     BB = readMBB;
12271 
12272     MachineRegisterInfo &RegInfo = F->getRegInfo();
12273     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12274     Register LoReg = MI.getOperand(0).getReg();
12275     Register HiReg = MI.getOperand(1).getReg();
12276 
12277     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12278     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12279     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12280 
12281     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12282 
12283     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12284         .addReg(HiReg)
12285         .addReg(ReadAgainReg);
12286     BuildMI(BB, dl, TII->get(PPC::BCC))
12287         .addImm(PPC::PRED_NE)
12288         .addReg(CmpReg)
12289         .addMBB(readMBB);
12290 
12291     BB->addSuccessor(readMBB);
12292     BB->addSuccessor(sinkMBB);
12293   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12294     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12295   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12296     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12297   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12298     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12299   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12300     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12301 
12302   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12303     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12304   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12305     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12306   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12307     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12308   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12309     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12310 
12311   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12312     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12313   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12314     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12315   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12316     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12317   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12318     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12319 
12320   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12321     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12322   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12323     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12324   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12325     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12326   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12327     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12328 
12329   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12330     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12331   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12332     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12333   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12334     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12335   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12336     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12337 
12338   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12339     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12340   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12341     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12342   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12343     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12344   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12345     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12346 
12347   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12348     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12349   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12350     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12351   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12352     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12353   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12354     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12355 
12356   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12357     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12358   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12359     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12360   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12361     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12362   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12363     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12364 
12365   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12366     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12367   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12368     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12369   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12370     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12371   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12372     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12373 
12374   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12375     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12376   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12377     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12378   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12379     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12380   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12381     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12382 
12383   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12384     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12385   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12386     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12387   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12388     BB = EmitAtomicBinary(MI, BB, 4, 0);
12389   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12390     BB = EmitAtomicBinary(MI, BB, 8, 0);
12391   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12392            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12393            (Subtarget.hasPartwordAtomics() &&
12394             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12395            (Subtarget.hasPartwordAtomics() &&
12396             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12397     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12398 
12399     auto LoadMnemonic = PPC::LDARX;
12400     auto StoreMnemonic = PPC::STDCX;
12401     switch (MI.getOpcode()) {
12402     default:
12403       llvm_unreachable("Compare and swap of unknown size");
12404     case PPC::ATOMIC_CMP_SWAP_I8:
12405       LoadMnemonic = PPC::LBARX;
12406       StoreMnemonic = PPC::STBCX;
12407       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12408       break;
12409     case PPC::ATOMIC_CMP_SWAP_I16:
12410       LoadMnemonic = PPC::LHARX;
12411       StoreMnemonic = PPC::STHCX;
12412       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12413       break;
12414     case PPC::ATOMIC_CMP_SWAP_I32:
12415       LoadMnemonic = PPC::LWARX;
12416       StoreMnemonic = PPC::STWCX;
12417       break;
12418     case PPC::ATOMIC_CMP_SWAP_I64:
12419       LoadMnemonic = PPC::LDARX;
12420       StoreMnemonic = PPC::STDCX;
12421       break;
12422     }
12423     Register dest = MI.getOperand(0).getReg();
12424     Register ptrA = MI.getOperand(1).getReg();
12425     Register ptrB = MI.getOperand(2).getReg();
12426     Register oldval = MI.getOperand(3).getReg();
12427     Register newval = MI.getOperand(4).getReg();
12428     DebugLoc dl = MI.getDebugLoc();
12429 
12430     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12431     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12432     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12433     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12434     F->insert(It, loop1MBB);
12435     F->insert(It, loop2MBB);
12436     F->insert(It, midMBB);
12437     F->insert(It, exitMBB);
12438     exitMBB->splice(exitMBB->begin(), BB,
12439                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12440     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12441 
12442     //  thisMBB:
12443     //   ...
12444     //   fallthrough --> loopMBB
12445     BB->addSuccessor(loop1MBB);
12446 
12447     // loop1MBB:
12448     //   l[bhwd]arx dest, ptr
12449     //   cmp[wd] dest, oldval
12450     //   bne- midMBB
12451     // loop2MBB:
12452     //   st[bhwd]cx. newval, ptr
12453     //   bne- loopMBB
12454     //   b exitBB
12455     // midMBB:
12456     //   st[bhwd]cx. dest, ptr
12457     // exitBB:
12458     BB = loop1MBB;
12459     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12460     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12461         .addReg(oldval)
12462         .addReg(dest);
12463     BuildMI(BB, dl, TII->get(PPC::BCC))
12464         .addImm(PPC::PRED_NE)
12465         .addReg(PPC::CR0)
12466         .addMBB(midMBB);
12467     BB->addSuccessor(loop2MBB);
12468     BB->addSuccessor(midMBB);
12469 
12470     BB = loop2MBB;
12471     BuildMI(BB, dl, TII->get(StoreMnemonic))
12472         .addReg(newval)
12473         .addReg(ptrA)
12474         .addReg(ptrB);
12475     BuildMI(BB, dl, TII->get(PPC::BCC))
12476         .addImm(PPC::PRED_NE)
12477         .addReg(PPC::CR0)
12478         .addMBB(loop1MBB);
12479     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12480     BB->addSuccessor(loop1MBB);
12481     BB->addSuccessor(exitMBB);
12482 
12483     BB = midMBB;
12484     BuildMI(BB, dl, TII->get(StoreMnemonic))
12485         .addReg(dest)
12486         .addReg(ptrA)
12487         .addReg(ptrB);
12488     BB->addSuccessor(exitMBB);
12489 
12490     //  exitMBB:
12491     //   ...
12492     BB = exitMBB;
12493   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12494              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12495     // We must use 64-bit registers for addresses when targeting 64-bit,
12496     // since we're actually doing arithmetic on them.  Other registers
12497     // can be 32-bit.
12498     bool is64bit = Subtarget.isPPC64();
12499     bool isLittleEndian = Subtarget.isLittleEndian();
12500     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12501 
12502     Register dest = MI.getOperand(0).getReg();
12503     Register ptrA = MI.getOperand(1).getReg();
12504     Register ptrB = MI.getOperand(2).getReg();
12505     Register oldval = MI.getOperand(3).getReg();
12506     Register newval = MI.getOperand(4).getReg();
12507     DebugLoc dl = MI.getDebugLoc();
12508 
12509     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12510     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12511     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12512     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12513     F->insert(It, loop1MBB);
12514     F->insert(It, loop2MBB);
12515     F->insert(It, midMBB);
12516     F->insert(It, exitMBB);
12517     exitMBB->splice(exitMBB->begin(), BB,
12518                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12519     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12520 
12521     MachineRegisterInfo &RegInfo = F->getRegInfo();
12522     const TargetRegisterClass *RC =
12523         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12524     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12525 
12526     Register PtrReg = RegInfo.createVirtualRegister(RC);
12527     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12528     Register ShiftReg =
12529         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12530     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12531     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12532     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12533     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12534     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12535     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12536     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12537     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12538     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12539     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12540     Register Ptr1Reg;
12541     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12542     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12543     //  thisMBB:
12544     //   ...
12545     //   fallthrough --> loopMBB
12546     BB->addSuccessor(loop1MBB);
12547 
12548     // The 4-byte load must be aligned, while a char or short may be
12549     // anywhere in the word.  Hence all this nasty bookkeeping code.
12550     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12551     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12552     //   xori shift, shift1, 24 [16]
12553     //   rlwinm ptr, ptr1, 0, 0, 29
12554     //   slw newval2, newval, shift
12555     //   slw oldval2, oldval,shift
12556     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12557     //   slw mask, mask2, shift
12558     //   and newval3, newval2, mask
12559     //   and oldval3, oldval2, mask
12560     // loop1MBB:
12561     //   lwarx tmpDest, ptr
12562     //   and tmp, tmpDest, mask
12563     //   cmpw tmp, oldval3
12564     //   bne- midMBB
12565     // loop2MBB:
12566     //   andc tmp2, tmpDest, mask
12567     //   or tmp4, tmp2, newval3
12568     //   stwcx. tmp4, ptr
12569     //   bne- loop1MBB
12570     //   b exitBB
12571     // midMBB:
12572     //   stwcx. tmpDest, ptr
12573     // exitBB:
12574     //   srw dest, tmpDest, shift
12575     if (ptrA != ZeroReg) {
12576       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12577       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12578           .addReg(ptrA)
12579           .addReg(ptrB);
12580     } else {
12581       Ptr1Reg = ptrB;
12582     }
12583 
12584     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12585     // mode.
12586     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12587         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12588         .addImm(3)
12589         .addImm(27)
12590         .addImm(is8bit ? 28 : 27);
12591     if (!isLittleEndian)
12592       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12593           .addReg(Shift1Reg)
12594           .addImm(is8bit ? 24 : 16);
12595     if (is64bit)
12596       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12597           .addReg(Ptr1Reg)
12598           .addImm(0)
12599           .addImm(61);
12600     else
12601       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12602           .addReg(Ptr1Reg)
12603           .addImm(0)
12604           .addImm(0)
12605           .addImm(29);
12606     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12607         .addReg(newval)
12608         .addReg(ShiftReg);
12609     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12610         .addReg(oldval)
12611         .addReg(ShiftReg);
12612     if (is8bit)
12613       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12614     else {
12615       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12616       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12617           .addReg(Mask3Reg)
12618           .addImm(65535);
12619     }
12620     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12621         .addReg(Mask2Reg)
12622         .addReg(ShiftReg);
12623     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12624         .addReg(NewVal2Reg)
12625         .addReg(MaskReg);
12626     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12627         .addReg(OldVal2Reg)
12628         .addReg(MaskReg);
12629 
12630     BB = loop1MBB;
12631     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12632         .addReg(ZeroReg)
12633         .addReg(PtrReg);
12634     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12635         .addReg(TmpDestReg)
12636         .addReg(MaskReg);
12637     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12638         .addReg(TmpReg)
12639         .addReg(OldVal3Reg);
12640     BuildMI(BB, dl, TII->get(PPC::BCC))
12641         .addImm(PPC::PRED_NE)
12642         .addReg(PPC::CR0)
12643         .addMBB(midMBB);
12644     BB->addSuccessor(loop2MBB);
12645     BB->addSuccessor(midMBB);
12646 
12647     BB = loop2MBB;
12648     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12649         .addReg(TmpDestReg)
12650         .addReg(MaskReg);
12651     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12652         .addReg(Tmp2Reg)
12653         .addReg(NewVal3Reg);
12654     BuildMI(BB, dl, TII->get(PPC::STWCX))
12655         .addReg(Tmp4Reg)
12656         .addReg(ZeroReg)
12657         .addReg(PtrReg);
12658     BuildMI(BB, dl, TII->get(PPC::BCC))
12659         .addImm(PPC::PRED_NE)
12660         .addReg(PPC::CR0)
12661         .addMBB(loop1MBB);
12662     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12663     BB->addSuccessor(loop1MBB);
12664     BB->addSuccessor(exitMBB);
12665 
12666     BB = midMBB;
12667     BuildMI(BB, dl, TII->get(PPC::STWCX))
12668         .addReg(TmpDestReg)
12669         .addReg(ZeroReg)
12670         .addReg(PtrReg);
12671     BB->addSuccessor(exitMBB);
12672 
12673     //  exitMBB:
12674     //   ...
12675     BB = exitMBB;
12676     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12677         .addReg(TmpReg)
12678         .addReg(ShiftReg);
12679   } else if (MI.getOpcode() == PPC::FADDrtz) {
12680     // This pseudo performs an FADD with rounding mode temporarily forced
12681     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12682     // is not modeled at the SelectionDAG level.
12683     Register Dest = MI.getOperand(0).getReg();
12684     Register Src1 = MI.getOperand(1).getReg();
12685     Register Src2 = MI.getOperand(2).getReg();
12686     DebugLoc dl = MI.getDebugLoc();
12687 
12688     MachineRegisterInfo &RegInfo = F->getRegInfo();
12689     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12690 
12691     // Save FPSCR value.
12692     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12693 
12694     // Set rounding mode to round-to-zero.
12695     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12696         .addImm(31)
12697         .addReg(PPC::RM, RegState::ImplicitDefine);
12698 
12699     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12700         .addImm(30)
12701         .addReg(PPC::RM, RegState::ImplicitDefine);
12702 
12703     // Perform addition.
12704     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12705                    .addReg(Src1)
12706                    .addReg(Src2);
12707     if (MI.getFlag(MachineInstr::NoFPExcept))
12708       MIB.setMIFlag(MachineInstr::NoFPExcept);
12709 
12710     // Restore FPSCR value.
12711     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12712   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12713              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12714              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12715              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12716     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12717                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12718                           ? PPC::ANDI8_rec
12719                           : PPC::ANDI_rec;
12720     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12721                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12722 
12723     MachineRegisterInfo &RegInfo = F->getRegInfo();
12724     Register Dest = RegInfo.createVirtualRegister(
12725         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12726 
12727     DebugLoc Dl = MI.getDebugLoc();
12728     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12729         .addReg(MI.getOperand(1).getReg())
12730         .addImm(1);
12731     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12732             MI.getOperand(0).getReg())
12733         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12734   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12735     DebugLoc Dl = MI.getDebugLoc();
12736     MachineRegisterInfo &RegInfo = F->getRegInfo();
12737     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12738     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12739     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12740             MI.getOperand(0).getReg())
12741         .addReg(CRReg);
12742   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12743     DebugLoc Dl = MI.getDebugLoc();
12744     unsigned Imm = MI.getOperand(1).getImm();
12745     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12746     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12747             MI.getOperand(0).getReg())
12748         .addReg(PPC::CR0EQ);
12749   } else if (MI.getOpcode() == PPC::SETRNDi) {
12750     DebugLoc dl = MI.getDebugLoc();
12751     Register OldFPSCRReg = MI.getOperand(0).getReg();
12752 
12753     // Save FPSCR value.
12754     if (MRI.use_empty(OldFPSCRReg))
12755       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12756     else
12757       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12758 
12759     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12760     // the following settings:
12761     //   00 Round to nearest
12762     //   01 Round to 0
12763     //   10 Round to +inf
12764     //   11 Round to -inf
12765 
12766     // When the operand is immediate, using the two least significant bits of
12767     // the immediate to set the bits 62:63 of FPSCR.
12768     unsigned Mode = MI.getOperand(1).getImm();
12769     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12770         .addImm(31)
12771         .addReg(PPC::RM, RegState::ImplicitDefine);
12772 
12773     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12774         .addImm(30)
12775         .addReg(PPC::RM, RegState::ImplicitDefine);
12776   } else if (MI.getOpcode() == PPC::SETRND) {
12777     DebugLoc dl = MI.getDebugLoc();
12778 
12779     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12780     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12781     // If the target doesn't have DirectMove, we should use stack to do the
12782     // conversion, because the target doesn't have the instructions like mtvsrd
12783     // or mfvsrd to do this conversion directly.
12784     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12785       if (Subtarget.hasDirectMove()) {
12786         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12787           .addReg(SrcReg);
12788       } else {
12789         // Use stack to do the register copy.
12790         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12791         MachineRegisterInfo &RegInfo = F->getRegInfo();
12792         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12793         if (RC == &PPC::F8RCRegClass) {
12794           // Copy register from F8RCRegClass to G8RCRegclass.
12795           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12796                  "Unsupported RegClass.");
12797 
12798           StoreOp = PPC::STFD;
12799           LoadOp = PPC::LD;
12800         } else {
12801           // Copy register from G8RCRegClass to F8RCRegclass.
12802           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12803                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12804                  "Unsupported RegClass.");
12805         }
12806 
12807         MachineFrameInfo &MFI = F->getFrameInfo();
12808         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12809 
12810         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12811             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12812             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12813             MFI.getObjectAlign(FrameIdx));
12814 
12815         // Store the SrcReg into the stack.
12816         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12817           .addReg(SrcReg)
12818           .addImm(0)
12819           .addFrameIndex(FrameIdx)
12820           .addMemOperand(MMOStore);
12821 
12822         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12823             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12824             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12825             MFI.getObjectAlign(FrameIdx));
12826 
12827         // Load from the stack where SrcReg is stored, and save to DestReg,
12828         // so we have done the RegClass conversion from RegClass::SrcReg to
12829         // RegClass::DestReg.
12830         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12831           .addImm(0)
12832           .addFrameIndex(FrameIdx)
12833           .addMemOperand(MMOLoad);
12834       }
12835     };
12836 
12837     Register OldFPSCRReg = MI.getOperand(0).getReg();
12838 
12839     // Save FPSCR value.
12840     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12841 
12842     // When the operand is gprc register, use two least significant bits of the
12843     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12844     //
12845     // copy OldFPSCRTmpReg, OldFPSCRReg
12846     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12847     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12848     // copy NewFPSCRReg, NewFPSCRTmpReg
12849     // mtfsf 255, NewFPSCRReg
12850     MachineOperand SrcOp = MI.getOperand(1);
12851     MachineRegisterInfo &RegInfo = F->getRegInfo();
12852     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12853 
12854     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12855 
12856     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12857     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12858 
12859     // The first operand of INSERT_SUBREG should be a register which has
12860     // subregisters, we only care about its RegClass, so we should use an
12861     // IMPLICIT_DEF register.
12862     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12863     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12864       .addReg(ImDefReg)
12865       .add(SrcOp)
12866       .addImm(1);
12867 
12868     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12869     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12870       .addReg(OldFPSCRTmpReg)
12871       .addReg(ExtSrcReg)
12872       .addImm(0)
12873       .addImm(62);
12874 
12875     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12876     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12877 
12878     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12879     // bits of FPSCR.
12880     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12881       .addImm(255)
12882       .addReg(NewFPSCRReg)
12883       .addImm(0)
12884       .addImm(0);
12885   } else if (MI.getOpcode() == PPC::SETFLM) {
12886     DebugLoc Dl = MI.getDebugLoc();
12887 
12888     // Result of setflm is previous FPSCR content, so we need to save it first.
12889     Register OldFPSCRReg = MI.getOperand(0).getReg();
12890     if (MRI.use_empty(OldFPSCRReg))
12891       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12892     else
12893       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12894 
12895     // Put bits in 32:63 to FPSCR.
12896     Register NewFPSCRReg = MI.getOperand(1).getReg();
12897     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12898         .addImm(255)
12899         .addReg(NewFPSCRReg)
12900         .addImm(0)
12901         .addImm(0);
12902   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12903              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12904     return emitProbedAlloca(MI, BB);
12905   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12906     DebugLoc DL = MI.getDebugLoc();
12907     Register Src = MI.getOperand(2).getReg();
12908     Register Lo = MI.getOperand(0).getReg();
12909     Register Hi = MI.getOperand(1).getReg();
12910     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12911         .addDef(Lo)
12912         .addUse(Src, 0, PPC::sub_gp8_x1);
12913     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12914         .addDef(Hi)
12915         .addUse(Src, 0, PPC::sub_gp8_x0);
12916   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
12917              MI.getOpcode() == PPC::STQX_PSEUDO) {
12918     DebugLoc DL = MI.getDebugLoc();
12919     // Ptr is used as the ptr_rc_no_r0 part
12920     // of LQ/STQ's memory operand and adding result of RA and RB,
12921     // so it has to be g8rc_and_g8rc_nox0.
12922     Register Ptr =
12923         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
12924     Register Val = MI.getOperand(0).getReg();
12925     Register RA = MI.getOperand(1).getReg();
12926     Register RB = MI.getOperand(2).getReg();
12927     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
12928     BuildMI(*BB, MI, DL,
12929             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
12930                                               : TII->get(PPC::STQ))
12931         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
12932         .addImm(0)
12933         .addReg(Ptr);
12934   } else {
12935     llvm_unreachable("Unexpected instr type to insert");
12936   }
12937 
12938   MI.eraseFromParent(); // The pseudo instruction is gone now.
12939   return BB;
12940 }
12941 
12942 //===----------------------------------------------------------------------===//
12943 // Target Optimization Hooks
12944 //===----------------------------------------------------------------------===//
12945 
12946 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12947   // For the estimates, convergence is quadratic, so we essentially double the
12948   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12949   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12950   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12951   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12952   if (VT.getScalarType() == MVT::f64)
12953     RefinementSteps++;
12954   return RefinementSteps;
12955 }
12956 
12957 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12958                                             const DenormalMode &Mode) const {
12959   // We only have VSX Vector Test for software Square Root.
12960   EVT VT = Op.getValueType();
12961   if (!isTypeLegal(MVT::i1) ||
12962       (VT != MVT::f64 &&
12963        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12964     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12965 
12966   SDLoc DL(Op);
12967   // The output register of FTSQRT is CR field.
12968   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12969   // ftsqrt BF,FRB
12970   // Let e_b be the unbiased exponent of the double-precision
12971   // floating-point operand in register FRB.
12972   // fe_flag is set to 1 if either of the following conditions occurs.
12973   //   - The double-precision floating-point operand in register FRB is a zero,
12974   //     a NaN, or an infinity, or a negative value.
12975   //   - e_b is less than or equal to -970.
12976   // Otherwise fe_flag is set to 0.
12977   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12978   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12979   // exponent is less than -970)
12980   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12981   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12982                                     FTSQRT, SRIdxVal),
12983                  0);
12984 }
12985 
12986 SDValue
12987 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12988                                                SelectionDAG &DAG) const {
12989   // We only have VSX Vector Square Root.
12990   EVT VT = Op.getValueType();
12991   if (VT != MVT::f64 &&
12992       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12993     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12994 
12995   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12996 }
12997 
12998 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12999                                            int Enabled, int &RefinementSteps,
13000                                            bool &UseOneConstNR,
13001                                            bool Reciprocal) const {
13002   EVT VT = Operand.getValueType();
13003   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
13004       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
13005       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13006       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13007     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13008       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13009 
13010     // The Newton-Raphson computation with a single constant does not provide
13011     // enough accuracy on some CPUs.
13012     UseOneConstNR = !Subtarget.needsTwoConstNR();
13013     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
13014   }
13015   return SDValue();
13016 }
13017 
13018 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
13019                                             int Enabled,
13020                                             int &RefinementSteps) const {
13021   EVT VT = Operand.getValueType();
13022   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
13023       (VT == MVT::f64 && Subtarget.hasFRE()) ||
13024       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13025       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13026     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13027       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13028     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
13029   }
13030   return SDValue();
13031 }
13032 
13033 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13034   // Note: This functionality is used only when unsafe-fp-math is enabled, and
13035   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13036   // enabled for division), this functionality is redundant with the default
13037   // combiner logic (once the division -> reciprocal/multiply transformation
13038   // has taken place). As a result, this matters more for older cores than for
13039   // newer ones.
13040 
13041   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13042   // reciprocal if there are two or more FDIVs (for embedded cores with only
13043   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13044   switch (Subtarget.getCPUDirective()) {
13045   default:
13046     return 3;
13047   case PPC::DIR_440:
13048   case PPC::DIR_A2:
13049   case PPC::DIR_E500:
13050   case PPC::DIR_E500mc:
13051   case PPC::DIR_E5500:
13052     return 2;
13053   }
13054 }
13055 
13056 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13057 // collapsed, and so we need to look through chains of them.
13058 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13059                                      int64_t& Offset, SelectionDAG &DAG) {
13060   if (DAG.isBaseWithConstantOffset(Loc)) {
13061     Base = Loc.getOperand(0);
13062     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13063 
13064     // The base might itself be a base plus an offset, and if so, accumulate
13065     // that as well.
13066     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13067   }
13068 }
13069 
13070 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13071                             unsigned Bytes, int Dist,
13072                             SelectionDAG &DAG) {
13073   if (VT.getSizeInBits() / 8 != Bytes)
13074     return false;
13075 
13076   SDValue BaseLoc = Base->getBasePtr();
13077   if (Loc.getOpcode() == ISD::FrameIndex) {
13078     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13079       return false;
13080     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13081     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13082     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13083     int FS  = MFI.getObjectSize(FI);
13084     int BFS = MFI.getObjectSize(BFI);
13085     if (FS != BFS || FS != (int)Bytes) return false;
13086     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13087   }
13088 
13089   SDValue Base1 = Loc, Base2 = BaseLoc;
13090   int64_t Offset1 = 0, Offset2 = 0;
13091   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13092   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13093   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13094     return true;
13095 
13096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13097   const GlobalValue *GV1 = nullptr;
13098   const GlobalValue *GV2 = nullptr;
13099   Offset1 = 0;
13100   Offset2 = 0;
13101   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13102   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13103   if (isGA1 && isGA2 && GV1 == GV2)
13104     return Offset1 == (Offset2 + Dist*Bytes);
13105   return false;
13106 }
13107 
13108 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13109 // not enforce equality of the chain operands.
13110 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13111                             unsigned Bytes, int Dist,
13112                             SelectionDAG &DAG) {
13113   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13114     EVT VT = LS->getMemoryVT();
13115     SDValue Loc = LS->getBasePtr();
13116     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13117   }
13118 
13119   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13120     EVT VT;
13121     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13122     default: return false;
13123     case Intrinsic::ppc_altivec_lvx:
13124     case Intrinsic::ppc_altivec_lvxl:
13125     case Intrinsic::ppc_vsx_lxvw4x:
13126     case Intrinsic::ppc_vsx_lxvw4x_be:
13127       VT = MVT::v4i32;
13128       break;
13129     case Intrinsic::ppc_vsx_lxvd2x:
13130     case Intrinsic::ppc_vsx_lxvd2x_be:
13131       VT = MVT::v2f64;
13132       break;
13133     case Intrinsic::ppc_altivec_lvebx:
13134       VT = MVT::i8;
13135       break;
13136     case Intrinsic::ppc_altivec_lvehx:
13137       VT = MVT::i16;
13138       break;
13139     case Intrinsic::ppc_altivec_lvewx:
13140       VT = MVT::i32;
13141       break;
13142     }
13143 
13144     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13145   }
13146 
13147   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13148     EVT VT;
13149     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13150     default: return false;
13151     case Intrinsic::ppc_altivec_stvx:
13152     case Intrinsic::ppc_altivec_stvxl:
13153     case Intrinsic::ppc_vsx_stxvw4x:
13154       VT = MVT::v4i32;
13155       break;
13156     case Intrinsic::ppc_vsx_stxvd2x:
13157       VT = MVT::v2f64;
13158       break;
13159     case Intrinsic::ppc_vsx_stxvw4x_be:
13160       VT = MVT::v4i32;
13161       break;
13162     case Intrinsic::ppc_vsx_stxvd2x_be:
13163       VT = MVT::v2f64;
13164       break;
13165     case Intrinsic::ppc_altivec_stvebx:
13166       VT = MVT::i8;
13167       break;
13168     case Intrinsic::ppc_altivec_stvehx:
13169       VT = MVT::i16;
13170       break;
13171     case Intrinsic::ppc_altivec_stvewx:
13172       VT = MVT::i32;
13173       break;
13174     }
13175 
13176     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13177   }
13178 
13179   return false;
13180 }
13181 
13182 // Return true is there is a nearyby consecutive load to the one provided
13183 // (regardless of alignment). We search up and down the chain, looking though
13184 // token factors and other loads (but nothing else). As a result, a true result
13185 // indicates that it is safe to create a new consecutive load adjacent to the
13186 // load provided.
13187 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13188   SDValue Chain = LD->getChain();
13189   EVT VT = LD->getMemoryVT();
13190 
13191   SmallSet<SDNode *, 16> LoadRoots;
13192   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13193   SmallSet<SDNode *, 16> Visited;
13194 
13195   // First, search up the chain, branching to follow all token-factor operands.
13196   // If we find a consecutive load, then we're done, otherwise, record all
13197   // nodes just above the top-level loads and token factors.
13198   while (!Queue.empty()) {
13199     SDNode *ChainNext = Queue.pop_back_val();
13200     if (!Visited.insert(ChainNext).second)
13201       continue;
13202 
13203     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13204       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13205         return true;
13206 
13207       if (!Visited.count(ChainLD->getChain().getNode()))
13208         Queue.push_back(ChainLD->getChain().getNode());
13209     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13210       for (const SDUse &O : ChainNext->ops())
13211         if (!Visited.count(O.getNode()))
13212           Queue.push_back(O.getNode());
13213     } else
13214       LoadRoots.insert(ChainNext);
13215   }
13216 
13217   // Second, search down the chain, starting from the top-level nodes recorded
13218   // in the first phase. These top-level nodes are the nodes just above all
13219   // loads and token factors. Starting with their uses, recursively look though
13220   // all loads (just the chain uses) and token factors to find a consecutive
13221   // load.
13222   Visited.clear();
13223   Queue.clear();
13224 
13225   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13226        IE = LoadRoots.end(); I != IE; ++I) {
13227     Queue.push_back(*I);
13228 
13229     while (!Queue.empty()) {
13230       SDNode *LoadRoot = Queue.pop_back_val();
13231       if (!Visited.insert(LoadRoot).second)
13232         continue;
13233 
13234       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13235         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13236           return true;
13237 
13238       for (SDNode *U : LoadRoot->uses())
13239         if (((isa<MemSDNode>(U) &&
13240               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13241              U->getOpcode() == ISD::TokenFactor) &&
13242             !Visited.count(U))
13243           Queue.push_back(U);
13244     }
13245   }
13246 
13247   return false;
13248 }
13249 
13250 /// This function is called when we have proved that a SETCC node can be replaced
13251 /// by subtraction (and other supporting instructions) so that the result of
13252 /// comparison is kept in a GPR instead of CR. This function is purely for
13253 /// codegen purposes and has some flags to guide the codegen process.
13254 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13255                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13256   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13257 
13258   // Zero extend the operands to the largest legal integer. Originally, they
13259   // must be of a strictly smaller size.
13260   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13261                          DAG.getConstant(Size, DL, MVT::i32));
13262   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13263                          DAG.getConstant(Size, DL, MVT::i32));
13264 
13265   // Swap if needed. Depends on the condition code.
13266   if (Swap)
13267     std::swap(Op0, Op1);
13268 
13269   // Subtract extended integers.
13270   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13271 
13272   // Move the sign bit to the least significant position and zero out the rest.
13273   // Now the least significant bit carries the result of original comparison.
13274   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13275                              DAG.getConstant(Size - 1, DL, MVT::i32));
13276   auto Final = Shifted;
13277 
13278   // Complement the result if needed. Based on the condition code.
13279   if (Complement)
13280     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13281                         DAG.getConstant(1, DL, MVT::i64));
13282 
13283   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13284 }
13285 
13286 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13287                                                   DAGCombinerInfo &DCI) const {
13288   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13289 
13290   SelectionDAG &DAG = DCI.DAG;
13291   SDLoc DL(N);
13292 
13293   // Size of integers being compared has a critical role in the following
13294   // analysis, so we prefer to do this when all types are legal.
13295   if (!DCI.isAfterLegalizeDAG())
13296     return SDValue();
13297 
13298   // If all users of SETCC extend its value to a legal integer type
13299   // then we replace SETCC with a subtraction
13300   for (const SDNode *U : N->uses())
13301     if (U->getOpcode() != ISD::ZERO_EXTEND)
13302       return SDValue();
13303 
13304   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13305   auto OpSize = N->getOperand(0).getValueSizeInBits();
13306 
13307   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13308 
13309   if (OpSize < Size) {
13310     switch (CC) {
13311     default: break;
13312     case ISD::SETULT:
13313       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13314     case ISD::SETULE:
13315       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13316     case ISD::SETUGT:
13317       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13318     case ISD::SETUGE:
13319       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13320     }
13321   }
13322 
13323   return SDValue();
13324 }
13325 
13326 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13327                                                   DAGCombinerInfo &DCI) const {
13328   SelectionDAG &DAG = DCI.DAG;
13329   SDLoc dl(N);
13330 
13331   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13332   // If we're tracking CR bits, we need to be careful that we don't have:
13333   //   trunc(binary-ops(zext(x), zext(y)))
13334   // or
13335   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13336   // such that we're unnecessarily moving things into GPRs when it would be
13337   // better to keep them in CR bits.
13338 
13339   // Note that trunc here can be an actual i1 trunc, or can be the effective
13340   // truncation that comes from a setcc or select_cc.
13341   if (N->getOpcode() == ISD::TRUNCATE &&
13342       N->getValueType(0) != MVT::i1)
13343     return SDValue();
13344 
13345   if (N->getOperand(0).getValueType() != MVT::i32 &&
13346       N->getOperand(0).getValueType() != MVT::i64)
13347     return SDValue();
13348 
13349   if (N->getOpcode() == ISD::SETCC ||
13350       N->getOpcode() == ISD::SELECT_CC) {
13351     // If we're looking at a comparison, then we need to make sure that the
13352     // high bits (all except for the first) don't matter the result.
13353     ISD::CondCode CC =
13354       cast<CondCodeSDNode>(N->getOperand(
13355         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13356     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13357 
13358     if (ISD::isSignedIntSetCC(CC)) {
13359       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13360           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13361         return SDValue();
13362     } else if (ISD::isUnsignedIntSetCC(CC)) {
13363       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13364                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13365           !DAG.MaskedValueIsZero(N->getOperand(1),
13366                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13367         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13368                                              : SDValue());
13369     } else {
13370       // This is neither a signed nor an unsigned comparison, just make sure
13371       // that the high bits are equal.
13372       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13373       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13374 
13375       // We don't really care about what is known about the first bit (if
13376       // anything), so pretend that it is known zero for both to ensure they can
13377       // be compared as constants.
13378       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13379       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13380 
13381       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13382           Op1Known.getConstant() != Op2Known.getConstant())
13383         return SDValue();
13384     }
13385   }
13386 
13387   // We now know that the higher-order bits are irrelevant, we just need to
13388   // make sure that all of the intermediate operations are bit operations, and
13389   // all inputs are extensions.
13390   if (N->getOperand(0).getOpcode() != ISD::AND &&
13391       N->getOperand(0).getOpcode() != ISD::OR  &&
13392       N->getOperand(0).getOpcode() != ISD::XOR &&
13393       N->getOperand(0).getOpcode() != ISD::SELECT &&
13394       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13395       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13396       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13397       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13398       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13399     return SDValue();
13400 
13401   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13402       N->getOperand(1).getOpcode() != ISD::AND &&
13403       N->getOperand(1).getOpcode() != ISD::OR  &&
13404       N->getOperand(1).getOpcode() != ISD::XOR &&
13405       N->getOperand(1).getOpcode() != ISD::SELECT &&
13406       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13407       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13408       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13409       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13410       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13411     return SDValue();
13412 
13413   SmallVector<SDValue, 4> Inputs;
13414   SmallVector<SDValue, 8> BinOps, PromOps;
13415   SmallPtrSet<SDNode *, 16> Visited;
13416 
13417   for (unsigned i = 0; i < 2; ++i) {
13418     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13419           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13420           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13421           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13422         isa<ConstantSDNode>(N->getOperand(i)))
13423       Inputs.push_back(N->getOperand(i));
13424     else
13425       BinOps.push_back(N->getOperand(i));
13426 
13427     if (N->getOpcode() == ISD::TRUNCATE)
13428       break;
13429   }
13430 
13431   // Visit all inputs, collect all binary operations (and, or, xor and
13432   // select) that are all fed by extensions.
13433   while (!BinOps.empty()) {
13434     SDValue BinOp = BinOps.pop_back_val();
13435 
13436     if (!Visited.insert(BinOp.getNode()).second)
13437       continue;
13438 
13439     PromOps.push_back(BinOp);
13440 
13441     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13442       // The condition of the select is not promoted.
13443       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13444         continue;
13445       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13446         continue;
13447 
13448       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13449             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13450             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13451            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13452           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13453         Inputs.push_back(BinOp.getOperand(i));
13454       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13455                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13456                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13457                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13458                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13459                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13460                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13461                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13462                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13463         BinOps.push_back(BinOp.getOperand(i));
13464       } else {
13465         // We have an input that is not an extension or another binary
13466         // operation; we'll abort this transformation.
13467         return SDValue();
13468       }
13469     }
13470   }
13471 
13472   // Make sure that this is a self-contained cluster of operations (which
13473   // is not quite the same thing as saying that everything has only one
13474   // use).
13475   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13476     if (isa<ConstantSDNode>(Inputs[i]))
13477       continue;
13478 
13479     for (const SDNode *User : Inputs[i].getNode()->uses()) {
13480       if (User != N && !Visited.count(User))
13481         return SDValue();
13482 
13483       // Make sure that we're not going to promote the non-output-value
13484       // operand(s) or SELECT or SELECT_CC.
13485       // FIXME: Although we could sometimes handle this, and it does occur in
13486       // practice that one of the condition inputs to the select is also one of
13487       // the outputs, we currently can't deal with this.
13488       if (User->getOpcode() == ISD::SELECT) {
13489         if (User->getOperand(0) == Inputs[i])
13490           return SDValue();
13491       } else if (User->getOpcode() == ISD::SELECT_CC) {
13492         if (User->getOperand(0) == Inputs[i] ||
13493             User->getOperand(1) == Inputs[i])
13494           return SDValue();
13495       }
13496     }
13497   }
13498 
13499   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13500     for (const SDNode *User : PromOps[i].getNode()->uses()) {
13501       if (User != N && !Visited.count(User))
13502         return SDValue();
13503 
13504       // Make sure that we're not going to promote the non-output-value
13505       // operand(s) or SELECT or SELECT_CC.
13506       // FIXME: Although we could sometimes handle this, and it does occur in
13507       // practice that one of the condition inputs to the select is also one of
13508       // the outputs, we currently can't deal with this.
13509       if (User->getOpcode() == ISD::SELECT) {
13510         if (User->getOperand(0) == PromOps[i])
13511           return SDValue();
13512       } else if (User->getOpcode() == ISD::SELECT_CC) {
13513         if (User->getOperand(0) == PromOps[i] ||
13514             User->getOperand(1) == PromOps[i])
13515           return SDValue();
13516       }
13517     }
13518   }
13519 
13520   // Replace all inputs with the extension operand.
13521   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13522     // Constants may have users outside the cluster of to-be-promoted nodes,
13523     // and so we need to replace those as we do the promotions.
13524     if (isa<ConstantSDNode>(Inputs[i]))
13525       continue;
13526     else
13527       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13528   }
13529 
13530   std::list<HandleSDNode> PromOpHandles;
13531   for (auto &PromOp : PromOps)
13532     PromOpHandles.emplace_back(PromOp);
13533 
13534   // Replace all operations (these are all the same, but have a different
13535   // (i1) return type). DAG.getNode will validate that the types of
13536   // a binary operator match, so go through the list in reverse so that
13537   // we've likely promoted both operands first. Any intermediate truncations or
13538   // extensions disappear.
13539   while (!PromOpHandles.empty()) {
13540     SDValue PromOp = PromOpHandles.back().getValue();
13541     PromOpHandles.pop_back();
13542 
13543     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13544         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13545         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13546         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13547       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13548           PromOp.getOperand(0).getValueType() != MVT::i1) {
13549         // The operand is not yet ready (see comment below).
13550         PromOpHandles.emplace_front(PromOp);
13551         continue;
13552       }
13553 
13554       SDValue RepValue = PromOp.getOperand(0);
13555       if (isa<ConstantSDNode>(RepValue))
13556         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13557 
13558       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13559       continue;
13560     }
13561 
13562     unsigned C;
13563     switch (PromOp.getOpcode()) {
13564     default:             C = 0; break;
13565     case ISD::SELECT:    C = 1; break;
13566     case ISD::SELECT_CC: C = 2; break;
13567     }
13568 
13569     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13570          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13571         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13572          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13573       // The to-be-promoted operands of this node have not yet been
13574       // promoted (this should be rare because we're going through the
13575       // list backward, but if one of the operands has several users in
13576       // this cluster of to-be-promoted nodes, it is possible).
13577       PromOpHandles.emplace_front(PromOp);
13578       continue;
13579     }
13580 
13581     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13582                                 PromOp.getNode()->op_end());
13583 
13584     // If there are any constant inputs, make sure they're replaced now.
13585     for (unsigned i = 0; i < 2; ++i)
13586       if (isa<ConstantSDNode>(Ops[C+i]))
13587         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13588 
13589     DAG.ReplaceAllUsesOfValueWith(PromOp,
13590       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13591   }
13592 
13593   // Now we're left with the initial truncation itself.
13594   if (N->getOpcode() == ISD::TRUNCATE)
13595     return N->getOperand(0);
13596 
13597   // Otherwise, this is a comparison. The operands to be compared have just
13598   // changed type (to i1), but everything else is the same.
13599   return SDValue(N, 0);
13600 }
13601 
13602 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13603                                                   DAGCombinerInfo &DCI) const {
13604   SelectionDAG &DAG = DCI.DAG;
13605   SDLoc dl(N);
13606 
13607   // If we're tracking CR bits, we need to be careful that we don't have:
13608   //   zext(binary-ops(trunc(x), trunc(y)))
13609   // or
13610   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13611   // such that we're unnecessarily moving things into CR bits that can more
13612   // efficiently stay in GPRs. Note that if we're not certain that the high
13613   // bits are set as required by the final extension, we still may need to do
13614   // some masking to get the proper behavior.
13615 
13616   // This same functionality is important on PPC64 when dealing with
13617   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13618   // the return values of functions. Because it is so similar, it is handled
13619   // here as well.
13620 
13621   if (N->getValueType(0) != MVT::i32 &&
13622       N->getValueType(0) != MVT::i64)
13623     return SDValue();
13624 
13625   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13626         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13627     return SDValue();
13628 
13629   if (N->getOperand(0).getOpcode() != ISD::AND &&
13630       N->getOperand(0).getOpcode() != ISD::OR  &&
13631       N->getOperand(0).getOpcode() != ISD::XOR &&
13632       N->getOperand(0).getOpcode() != ISD::SELECT &&
13633       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13634     return SDValue();
13635 
13636   SmallVector<SDValue, 4> Inputs;
13637   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13638   SmallPtrSet<SDNode *, 16> Visited;
13639 
13640   // Visit all inputs, collect all binary operations (and, or, xor and
13641   // select) that are all fed by truncations.
13642   while (!BinOps.empty()) {
13643     SDValue BinOp = BinOps.pop_back_val();
13644 
13645     if (!Visited.insert(BinOp.getNode()).second)
13646       continue;
13647 
13648     PromOps.push_back(BinOp);
13649 
13650     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13651       // The condition of the select is not promoted.
13652       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13653         continue;
13654       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13655         continue;
13656 
13657       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13658           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13659         Inputs.push_back(BinOp.getOperand(i));
13660       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13661                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13662                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13663                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13664                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13665         BinOps.push_back(BinOp.getOperand(i));
13666       } else {
13667         // We have an input that is not a truncation or another binary
13668         // operation; we'll abort this transformation.
13669         return SDValue();
13670       }
13671     }
13672   }
13673 
13674   // The operands of a select that must be truncated when the select is
13675   // promoted because the operand is actually part of the to-be-promoted set.
13676   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13677 
13678   // Make sure that this is a self-contained cluster of operations (which
13679   // is not quite the same thing as saying that everything has only one
13680   // use).
13681   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13682     if (isa<ConstantSDNode>(Inputs[i]))
13683       continue;
13684 
13685     for (SDNode *User : Inputs[i].getNode()->uses()) {
13686       if (User != N && !Visited.count(User))
13687         return SDValue();
13688 
13689       // If we're going to promote the non-output-value operand(s) or SELECT or
13690       // SELECT_CC, record them for truncation.
13691       if (User->getOpcode() == ISD::SELECT) {
13692         if (User->getOperand(0) == Inputs[i])
13693           SelectTruncOp[0].insert(std::make_pair(User,
13694                                     User->getOperand(0).getValueType()));
13695       } else if (User->getOpcode() == ISD::SELECT_CC) {
13696         if (User->getOperand(0) == Inputs[i])
13697           SelectTruncOp[0].insert(std::make_pair(User,
13698                                     User->getOperand(0).getValueType()));
13699         if (User->getOperand(1) == Inputs[i])
13700           SelectTruncOp[1].insert(std::make_pair(User,
13701                                     User->getOperand(1).getValueType()));
13702       }
13703     }
13704   }
13705 
13706   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13707     for (SDNode *User : PromOps[i].getNode()->uses()) {
13708       if (User != N && !Visited.count(User))
13709         return SDValue();
13710 
13711       // If we're going to promote the non-output-value operand(s) or SELECT or
13712       // SELECT_CC, record them for truncation.
13713       if (User->getOpcode() == ISD::SELECT) {
13714         if (User->getOperand(0) == PromOps[i])
13715           SelectTruncOp[0].insert(std::make_pair(User,
13716                                     User->getOperand(0).getValueType()));
13717       } else if (User->getOpcode() == ISD::SELECT_CC) {
13718         if (User->getOperand(0) == PromOps[i])
13719           SelectTruncOp[0].insert(std::make_pair(User,
13720                                     User->getOperand(0).getValueType()));
13721         if (User->getOperand(1) == PromOps[i])
13722           SelectTruncOp[1].insert(std::make_pair(User,
13723                                     User->getOperand(1).getValueType()));
13724       }
13725     }
13726   }
13727 
13728   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13729   bool ReallyNeedsExt = false;
13730   if (N->getOpcode() != ISD::ANY_EXTEND) {
13731     // If all of the inputs are not already sign/zero extended, then
13732     // we'll still need to do that at the end.
13733     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13734       if (isa<ConstantSDNode>(Inputs[i]))
13735         continue;
13736 
13737       unsigned OpBits =
13738         Inputs[i].getOperand(0).getValueSizeInBits();
13739       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13740 
13741       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13742            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13743                                   APInt::getHighBitsSet(OpBits,
13744                                                         OpBits-PromBits))) ||
13745           (N->getOpcode() == ISD::SIGN_EXTEND &&
13746            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13747              (OpBits-(PromBits-1)))) {
13748         ReallyNeedsExt = true;
13749         break;
13750       }
13751     }
13752   }
13753 
13754   // Replace all inputs, either with the truncation operand, or a
13755   // truncation or extension to the final output type.
13756   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13757     // Constant inputs need to be replaced with the to-be-promoted nodes that
13758     // use them because they might have users outside of the cluster of
13759     // promoted nodes.
13760     if (isa<ConstantSDNode>(Inputs[i]))
13761       continue;
13762 
13763     SDValue InSrc = Inputs[i].getOperand(0);
13764     if (Inputs[i].getValueType() == N->getValueType(0))
13765       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13766     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13767       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13768         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13769     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13770       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13771         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13772     else
13773       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13774         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13775   }
13776 
13777   std::list<HandleSDNode> PromOpHandles;
13778   for (auto &PromOp : PromOps)
13779     PromOpHandles.emplace_back(PromOp);
13780 
13781   // Replace all operations (these are all the same, but have a different
13782   // (promoted) return type). DAG.getNode will validate that the types of
13783   // a binary operator match, so go through the list in reverse so that
13784   // we've likely promoted both operands first.
13785   while (!PromOpHandles.empty()) {
13786     SDValue PromOp = PromOpHandles.back().getValue();
13787     PromOpHandles.pop_back();
13788 
13789     unsigned C;
13790     switch (PromOp.getOpcode()) {
13791     default:             C = 0; break;
13792     case ISD::SELECT:    C = 1; break;
13793     case ISD::SELECT_CC: C = 2; break;
13794     }
13795 
13796     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13797          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13798         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13799          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13800       // The to-be-promoted operands of this node have not yet been
13801       // promoted (this should be rare because we're going through the
13802       // list backward, but if one of the operands has several users in
13803       // this cluster of to-be-promoted nodes, it is possible).
13804       PromOpHandles.emplace_front(PromOp);
13805       continue;
13806     }
13807 
13808     // For SELECT and SELECT_CC nodes, we do a similar check for any
13809     // to-be-promoted comparison inputs.
13810     if (PromOp.getOpcode() == ISD::SELECT ||
13811         PromOp.getOpcode() == ISD::SELECT_CC) {
13812       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13813            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13814           (SelectTruncOp[1].count(PromOp.getNode()) &&
13815            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13816         PromOpHandles.emplace_front(PromOp);
13817         continue;
13818       }
13819     }
13820 
13821     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13822                                 PromOp.getNode()->op_end());
13823 
13824     // If this node has constant inputs, then they'll need to be promoted here.
13825     for (unsigned i = 0; i < 2; ++i) {
13826       if (!isa<ConstantSDNode>(Ops[C+i]))
13827         continue;
13828       if (Ops[C+i].getValueType() == N->getValueType(0))
13829         continue;
13830 
13831       if (N->getOpcode() == ISD::SIGN_EXTEND)
13832         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13833       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13834         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13835       else
13836         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13837     }
13838 
13839     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13840     // truncate them again to the original value type.
13841     if (PromOp.getOpcode() == ISD::SELECT ||
13842         PromOp.getOpcode() == ISD::SELECT_CC) {
13843       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13844       if (SI0 != SelectTruncOp[0].end())
13845         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13846       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13847       if (SI1 != SelectTruncOp[1].end())
13848         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13849     }
13850 
13851     DAG.ReplaceAllUsesOfValueWith(PromOp,
13852       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13853   }
13854 
13855   // Now we're left with the initial extension itself.
13856   if (!ReallyNeedsExt)
13857     return N->getOperand(0);
13858 
13859   // To zero extend, just mask off everything except for the first bit (in the
13860   // i1 case).
13861   if (N->getOpcode() == ISD::ZERO_EXTEND)
13862     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13863                        DAG.getConstant(APInt::getLowBitsSet(
13864                                          N->getValueSizeInBits(0), PromBits),
13865                                        dl, N->getValueType(0)));
13866 
13867   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13868          "Invalid extension type");
13869   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13870   SDValue ShiftCst =
13871       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13872   return DAG.getNode(
13873       ISD::SRA, dl, N->getValueType(0),
13874       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13875       ShiftCst);
13876 }
13877 
13878 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13879                                         DAGCombinerInfo &DCI) const {
13880   assert(N->getOpcode() == ISD::SETCC &&
13881          "Should be called with a SETCC node");
13882 
13883   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13884   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13885     SDValue LHS = N->getOperand(0);
13886     SDValue RHS = N->getOperand(1);
13887 
13888     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13889     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13890         LHS.hasOneUse())
13891       std::swap(LHS, RHS);
13892 
13893     // x == 0-y --> x+y == 0
13894     // x != 0-y --> x+y != 0
13895     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13896         RHS.hasOneUse()) {
13897       SDLoc DL(N);
13898       SelectionDAG &DAG = DCI.DAG;
13899       EVT VT = N->getValueType(0);
13900       EVT OpVT = LHS.getValueType();
13901       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13902       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13903     }
13904   }
13905 
13906   return DAGCombineTruncBoolExt(N, DCI);
13907 }
13908 
13909 // Is this an extending load from an f32 to an f64?
13910 static bool isFPExtLoad(SDValue Op) {
13911   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13912     return LD->getExtensionType() == ISD::EXTLOAD &&
13913       Op.getValueType() == MVT::f64;
13914   return false;
13915 }
13916 
13917 /// Reduces the number of fp-to-int conversion when building a vector.
13918 ///
13919 /// If this vector is built out of floating to integer conversions,
13920 /// transform it to a vector built out of floating point values followed by a
13921 /// single floating to integer conversion of the vector.
13922 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13923 /// becomes (fptosi (build_vector ($A, $B, ...)))
13924 SDValue PPCTargetLowering::
13925 combineElementTruncationToVectorTruncation(SDNode *N,
13926                                            DAGCombinerInfo &DCI) const {
13927   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13928          "Should be called with a BUILD_VECTOR node");
13929 
13930   SelectionDAG &DAG = DCI.DAG;
13931   SDLoc dl(N);
13932 
13933   SDValue FirstInput = N->getOperand(0);
13934   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13935          "The input operand must be an fp-to-int conversion.");
13936 
13937   // This combine happens after legalization so the fp_to_[su]i nodes are
13938   // already converted to PPCSISD nodes.
13939   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13940   if (FirstConversion == PPCISD::FCTIDZ ||
13941       FirstConversion == PPCISD::FCTIDUZ ||
13942       FirstConversion == PPCISD::FCTIWZ ||
13943       FirstConversion == PPCISD::FCTIWUZ) {
13944     bool IsSplat = true;
13945     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13946       FirstConversion == PPCISD::FCTIWUZ;
13947     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13948     SmallVector<SDValue, 4> Ops;
13949     EVT TargetVT = N->getValueType(0);
13950     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13951       SDValue NextOp = N->getOperand(i);
13952       if (NextOp.getOpcode() != PPCISD::MFVSR)
13953         return SDValue();
13954       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13955       if (NextConversion != FirstConversion)
13956         return SDValue();
13957       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13958       // This is not valid if the input was originally double precision. It is
13959       // also not profitable to do unless this is an extending load in which
13960       // case doing this combine will allow us to combine consecutive loads.
13961       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13962         return SDValue();
13963       if (N->getOperand(i) != FirstInput)
13964         IsSplat = false;
13965     }
13966 
13967     // If this is a splat, we leave it as-is since there will be only a single
13968     // fp-to-int conversion followed by a splat of the integer. This is better
13969     // for 32-bit and smaller ints and neutral for 64-bit ints.
13970     if (IsSplat)
13971       return SDValue();
13972 
13973     // Now that we know we have the right type of node, get its operands
13974     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13975       SDValue In = N->getOperand(i).getOperand(0);
13976       if (Is32Bit) {
13977         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13978         // here, we know that all inputs are extending loads so this is safe).
13979         if (In.isUndef())
13980           Ops.push_back(DAG.getUNDEF(SrcVT));
13981         else {
13982           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13983                                       MVT::f32, In.getOperand(0),
13984                                       DAG.getIntPtrConstant(1, dl));
13985           Ops.push_back(Trunc);
13986         }
13987       } else
13988         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13989     }
13990 
13991     unsigned Opcode;
13992     if (FirstConversion == PPCISD::FCTIDZ ||
13993         FirstConversion == PPCISD::FCTIWZ)
13994       Opcode = ISD::FP_TO_SINT;
13995     else
13996       Opcode = ISD::FP_TO_UINT;
13997 
13998     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13999     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
14000     return DAG.getNode(Opcode, dl, TargetVT, BV);
14001   }
14002   return SDValue();
14003 }
14004 
14005 /// Reduce the number of loads when building a vector.
14006 ///
14007 /// Building a vector out of multiple loads can be converted to a load
14008 /// of the vector type if the loads are consecutive. If the loads are
14009 /// consecutive but in descending order, a shuffle is added at the end
14010 /// to reorder the vector.
14011 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
14012   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14013          "Should be called with a BUILD_VECTOR node");
14014 
14015   SDLoc dl(N);
14016 
14017   // Return early for non byte-sized type, as they can't be consecutive.
14018   if (!N->getValueType(0).getVectorElementType().isByteSized())
14019     return SDValue();
14020 
14021   bool InputsAreConsecutiveLoads = true;
14022   bool InputsAreReverseConsecutive = true;
14023   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
14024   SDValue FirstInput = N->getOperand(0);
14025   bool IsRoundOfExtLoad = false;
14026 
14027   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
14028       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
14029     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
14030     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
14031   }
14032   // Not a build vector of (possibly fp_rounded) loads.
14033   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14034       N->getNumOperands() == 1)
14035     return SDValue();
14036 
14037   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14038     // If any inputs are fp_round(extload), they all must be.
14039     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14040       return SDValue();
14041 
14042     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14043       N->getOperand(i);
14044     if (NextInput.getOpcode() != ISD::LOAD)
14045       return SDValue();
14046 
14047     SDValue PreviousInput =
14048       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14049     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
14050     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
14051 
14052     // If any inputs are fp_round(extload), they all must be.
14053     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14054       return SDValue();
14055 
14056     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
14057       InputsAreConsecutiveLoads = false;
14058     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
14059       InputsAreReverseConsecutive = false;
14060 
14061     // Exit early if the loads are neither consecutive nor reverse consecutive.
14062     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14063       return SDValue();
14064   }
14065 
14066   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14067          "The loads cannot be both consecutive and reverse consecutive.");
14068 
14069   SDValue FirstLoadOp =
14070     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
14071   SDValue LastLoadOp =
14072     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
14073                        N->getOperand(N->getNumOperands()-1);
14074 
14075   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
14076   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
14077   if (InputsAreConsecutiveLoads) {
14078     assert(LD1 && "Input needs to be a LoadSDNode.");
14079     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
14080                        LD1->getBasePtr(), LD1->getPointerInfo(),
14081                        LD1->getAlignment());
14082   }
14083   if (InputsAreReverseConsecutive) {
14084     assert(LDL && "Input needs to be a LoadSDNode.");
14085     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
14086                                LDL->getBasePtr(), LDL->getPointerInfo(),
14087                                LDL->getAlignment());
14088     SmallVector<int, 16> Ops;
14089     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14090       Ops.push_back(i);
14091 
14092     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
14093                                 DAG.getUNDEF(N->getValueType(0)), Ops);
14094   }
14095   return SDValue();
14096 }
14097 
14098 // This function adds the required vector_shuffle needed to get
14099 // the elements of the vector extract in the correct position
14100 // as specified by the CorrectElems encoding.
14101 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14102                                       SDValue Input, uint64_t Elems,
14103                                       uint64_t CorrectElems) {
14104   SDLoc dl(N);
14105 
14106   unsigned NumElems = Input.getValueType().getVectorNumElements();
14107   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14108 
14109   // Knowing the element indices being extracted from the original
14110   // vector and the order in which they're being inserted, just put
14111   // them at element indices required for the instruction.
14112   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14113     if (DAG.getDataLayout().isLittleEndian())
14114       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14115     else
14116       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14117     CorrectElems = CorrectElems >> 8;
14118     Elems = Elems >> 8;
14119   }
14120 
14121   SDValue Shuffle =
14122       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14123                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14124 
14125   EVT VT = N->getValueType(0);
14126   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14127 
14128   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14129                                Input.getValueType().getVectorElementType(),
14130                                VT.getVectorNumElements());
14131   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14132                      DAG.getValueType(ExtVT));
14133 }
14134 
14135 // Look for build vector patterns where input operands come from sign
14136 // extended vector_extract elements of specific indices. If the correct indices
14137 // aren't used, add a vector shuffle to fix up the indices and create
14138 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14139 // during instruction selection.
14140 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14141   // This array encodes the indices that the vector sign extend instructions
14142   // extract from when extending from one type to another for both BE and LE.
14143   // The right nibble of each byte corresponds to the LE incides.
14144   // and the left nibble of each byte corresponds to the BE incides.
14145   // For example: 0x3074B8FC  byte->word
14146   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14147   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14148   // For example: 0x000070F8  byte->double word
14149   // For LE: the allowed indices are: 0x0,0x8
14150   // For BE: the allowed indices are: 0x7,0xF
14151   uint64_t TargetElems[] = {
14152       0x3074B8FC, // b->w
14153       0x000070F8, // b->d
14154       0x10325476, // h->w
14155       0x00003074, // h->d
14156       0x00001032, // w->d
14157   };
14158 
14159   uint64_t Elems = 0;
14160   int Index;
14161   SDValue Input;
14162 
14163   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14164     if (!Op)
14165       return false;
14166     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14167         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14168       return false;
14169 
14170     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14171     // of the right width.
14172     SDValue Extract = Op.getOperand(0);
14173     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14174       Extract = Extract.getOperand(0);
14175     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14176       return false;
14177 
14178     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14179     if (!ExtOp)
14180       return false;
14181 
14182     Index = ExtOp->getZExtValue();
14183     if (Input && Input != Extract.getOperand(0))
14184       return false;
14185 
14186     if (!Input)
14187       Input = Extract.getOperand(0);
14188 
14189     Elems = Elems << 8;
14190     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14191     Elems |= Index;
14192 
14193     return true;
14194   };
14195 
14196   // If the build vector operands aren't sign extended vector extracts,
14197   // of the same input vector, then return.
14198   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14199     if (!isSExtOfVecExtract(N->getOperand(i))) {
14200       return SDValue();
14201     }
14202   }
14203 
14204   // If the vector extract indicies are not correct, add the appropriate
14205   // vector_shuffle.
14206   int TgtElemArrayIdx;
14207   int InputSize = Input.getValueType().getScalarSizeInBits();
14208   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14209   if (InputSize + OutputSize == 40)
14210     TgtElemArrayIdx = 0;
14211   else if (InputSize + OutputSize == 72)
14212     TgtElemArrayIdx = 1;
14213   else if (InputSize + OutputSize == 48)
14214     TgtElemArrayIdx = 2;
14215   else if (InputSize + OutputSize == 80)
14216     TgtElemArrayIdx = 3;
14217   else if (InputSize + OutputSize == 96)
14218     TgtElemArrayIdx = 4;
14219   else
14220     return SDValue();
14221 
14222   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14223   CorrectElems = DAG.getDataLayout().isLittleEndian()
14224                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14225                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14226   if (Elems != CorrectElems) {
14227     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14228   }
14229 
14230   // Regular lowering will catch cases where a shuffle is not needed.
14231   return SDValue();
14232 }
14233 
14234 // Look for the pattern of a load from a narrow width to i128, feeding
14235 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14236 // (LXVRZX). This node represents a zero extending load that will be matched
14237 // to the Load VSX Vector Rightmost instructions.
14238 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14239   SDLoc DL(N);
14240 
14241   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14242   if (N->getValueType(0) != MVT::v1i128)
14243     return SDValue();
14244 
14245   SDValue Operand = N->getOperand(0);
14246   // Proceed with the transformation if the operand to the BUILD_VECTOR
14247   // is a load instruction.
14248   if (Operand.getOpcode() != ISD::LOAD)
14249     return SDValue();
14250 
14251   auto *LD = cast<LoadSDNode>(Operand);
14252   EVT MemoryType = LD->getMemoryVT();
14253 
14254   // This transformation is only valid if the we are loading either a byte,
14255   // halfword, word, or doubleword.
14256   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14257                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14258 
14259   // Ensure that the load from the narrow width is being zero extended to i128.
14260   if (!ValidLDType ||
14261       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14262        LD->getExtensionType() != ISD::EXTLOAD))
14263     return SDValue();
14264 
14265   SDValue LoadOps[] = {
14266       LD->getChain(), LD->getBasePtr(),
14267       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14268 
14269   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14270                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14271                                  LoadOps, MemoryType, LD->getMemOperand());
14272 }
14273 
14274 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14275                                                  DAGCombinerInfo &DCI) const {
14276   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14277          "Should be called with a BUILD_VECTOR node");
14278 
14279   SelectionDAG &DAG = DCI.DAG;
14280   SDLoc dl(N);
14281 
14282   if (!Subtarget.hasVSX())
14283     return SDValue();
14284 
14285   // The target independent DAG combiner will leave a build_vector of
14286   // float-to-int conversions intact. We can generate MUCH better code for
14287   // a float-to-int conversion of a vector of floats.
14288   SDValue FirstInput = N->getOperand(0);
14289   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14290     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14291     if (Reduced)
14292       return Reduced;
14293   }
14294 
14295   // If we're building a vector out of consecutive loads, just load that
14296   // vector type.
14297   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14298   if (Reduced)
14299     return Reduced;
14300 
14301   // If we're building a vector out of extended elements from another vector
14302   // we have P9 vector integer extend instructions. The code assumes legal
14303   // input types (i.e. it can't handle things like v4i16) so do not run before
14304   // legalization.
14305   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14306     Reduced = combineBVOfVecSExt(N, DAG);
14307     if (Reduced)
14308       return Reduced;
14309   }
14310 
14311   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14312   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14313   // is a load from <valid narrow width> to i128.
14314   if (Subtarget.isISA3_1()) {
14315     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14316     if (BVOfZLoad)
14317       return BVOfZLoad;
14318   }
14319 
14320   if (N->getValueType(0) != MVT::v2f64)
14321     return SDValue();
14322 
14323   // Looking for:
14324   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14325   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14326       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14327     return SDValue();
14328   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14329       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14330     return SDValue();
14331   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14332     return SDValue();
14333 
14334   SDValue Ext1 = FirstInput.getOperand(0);
14335   SDValue Ext2 = N->getOperand(1).getOperand(0);
14336   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14337      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14338     return SDValue();
14339 
14340   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14341   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14342   if (!Ext1Op || !Ext2Op)
14343     return SDValue();
14344   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14345       Ext1.getOperand(0) != Ext2.getOperand(0))
14346     return SDValue();
14347 
14348   int FirstElem = Ext1Op->getZExtValue();
14349   int SecondElem = Ext2Op->getZExtValue();
14350   int SubvecIdx;
14351   if (FirstElem == 0 && SecondElem == 1)
14352     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14353   else if (FirstElem == 2 && SecondElem == 3)
14354     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14355   else
14356     return SDValue();
14357 
14358   SDValue SrcVec = Ext1.getOperand(0);
14359   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14360     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14361   return DAG.getNode(NodeType, dl, MVT::v2f64,
14362                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14363 }
14364 
14365 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14366                                               DAGCombinerInfo &DCI) const {
14367   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14368           N->getOpcode() == ISD::UINT_TO_FP) &&
14369          "Need an int -> FP conversion node here");
14370 
14371   if (useSoftFloat() || !Subtarget.has64BitSupport())
14372     return SDValue();
14373 
14374   SelectionDAG &DAG = DCI.DAG;
14375   SDLoc dl(N);
14376   SDValue Op(N, 0);
14377 
14378   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14379   // from the hardware.
14380   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14381     return SDValue();
14382   if (!Op.getOperand(0).getValueType().isSimple())
14383     return SDValue();
14384   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14385       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14386     return SDValue();
14387 
14388   SDValue FirstOperand(Op.getOperand(0));
14389   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14390     (FirstOperand.getValueType() == MVT::i8 ||
14391      FirstOperand.getValueType() == MVT::i16);
14392   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14393     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14394     bool DstDouble = Op.getValueType() == MVT::f64;
14395     unsigned ConvOp = Signed ?
14396       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14397       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14398     SDValue WidthConst =
14399       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14400                             dl, false);
14401     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14402     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14403     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14404                                          DAG.getVTList(MVT::f64, MVT::Other),
14405                                          Ops, MVT::i8, LDN->getMemOperand());
14406 
14407     // For signed conversion, we need to sign-extend the value in the VSR
14408     if (Signed) {
14409       SDValue ExtOps[] = { Ld, WidthConst };
14410       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14411       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14412     } else
14413       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14414   }
14415 
14416 
14417   // For i32 intermediate values, unfortunately, the conversion functions
14418   // leave the upper 32 bits of the value are undefined. Within the set of
14419   // scalar instructions, we have no method for zero- or sign-extending the
14420   // value. Thus, we cannot handle i32 intermediate values here.
14421   if (Op.getOperand(0).getValueType() == MVT::i32)
14422     return SDValue();
14423 
14424   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14425          "UINT_TO_FP is supported only with FPCVT");
14426 
14427   // If we have FCFIDS, then use it when converting to single-precision.
14428   // Otherwise, convert to double-precision and then round.
14429   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14430                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14431                                                             : PPCISD::FCFIDS)
14432                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14433                                                             : PPCISD::FCFID);
14434   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14435                   ? MVT::f32
14436                   : MVT::f64;
14437 
14438   // If we're converting from a float, to an int, and back to a float again,
14439   // then we don't need the store/load pair at all.
14440   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14441        Subtarget.hasFPCVT()) ||
14442       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14443     SDValue Src = Op.getOperand(0).getOperand(0);
14444     if (Src.getValueType() == MVT::f32) {
14445       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14446       DCI.AddToWorklist(Src.getNode());
14447     } else if (Src.getValueType() != MVT::f64) {
14448       // Make sure that we don't pick up a ppc_fp128 source value.
14449       return SDValue();
14450     }
14451 
14452     unsigned FCTOp =
14453       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14454                                                         PPCISD::FCTIDUZ;
14455 
14456     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14457     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14458 
14459     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14460       FP = DAG.getNode(ISD::FP_ROUND, dl,
14461                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14462       DCI.AddToWorklist(FP.getNode());
14463     }
14464 
14465     return FP;
14466   }
14467 
14468   return SDValue();
14469 }
14470 
14471 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14472 // builtins) into loads with swaps.
14473 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14474                                               DAGCombinerInfo &DCI) const {
14475   SelectionDAG &DAG = DCI.DAG;
14476   SDLoc dl(N);
14477   SDValue Chain;
14478   SDValue Base;
14479   MachineMemOperand *MMO;
14480 
14481   switch (N->getOpcode()) {
14482   default:
14483     llvm_unreachable("Unexpected opcode for little endian VSX load");
14484   case ISD::LOAD: {
14485     LoadSDNode *LD = cast<LoadSDNode>(N);
14486     Chain = LD->getChain();
14487     Base = LD->getBasePtr();
14488     MMO = LD->getMemOperand();
14489     // If the MMO suggests this isn't a load of a full vector, leave
14490     // things alone.  For a built-in, we have to make the change for
14491     // correctness, so if there is a size problem that will be a bug.
14492     if (MMO->getSize() < 16)
14493       return SDValue();
14494     break;
14495   }
14496   case ISD::INTRINSIC_W_CHAIN: {
14497     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14498     Chain = Intrin->getChain();
14499     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14500     // us what we want. Get operand 2 instead.
14501     Base = Intrin->getOperand(2);
14502     MMO = Intrin->getMemOperand();
14503     break;
14504   }
14505   }
14506 
14507   MVT VecTy = N->getValueType(0).getSimpleVT();
14508 
14509   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14510   // aligned and the type is a vector with elements up to 4 bytes
14511   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14512       VecTy.getScalarSizeInBits() <= 32) {
14513     return SDValue();
14514   }
14515 
14516   SDValue LoadOps[] = { Chain, Base };
14517   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14518                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14519                                          LoadOps, MVT::v2f64, MMO);
14520 
14521   DCI.AddToWorklist(Load.getNode());
14522   Chain = Load.getValue(1);
14523   SDValue Swap = DAG.getNode(
14524       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14525   DCI.AddToWorklist(Swap.getNode());
14526 
14527   // Add a bitcast if the resulting load type doesn't match v2f64.
14528   if (VecTy != MVT::v2f64) {
14529     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14530     DCI.AddToWorklist(N.getNode());
14531     // Package {bitcast value, swap's chain} to match Load's shape.
14532     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14533                        N, Swap.getValue(1));
14534   }
14535 
14536   return Swap;
14537 }
14538 
14539 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14540 // builtins) into stores with swaps.
14541 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14542                                                DAGCombinerInfo &DCI) const {
14543   SelectionDAG &DAG = DCI.DAG;
14544   SDLoc dl(N);
14545   SDValue Chain;
14546   SDValue Base;
14547   unsigned SrcOpnd;
14548   MachineMemOperand *MMO;
14549 
14550   switch (N->getOpcode()) {
14551   default:
14552     llvm_unreachable("Unexpected opcode for little endian VSX store");
14553   case ISD::STORE: {
14554     StoreSDNode *ST = cast<StoreSDNode>(N);
14555     Chain = ST->getChain();
14556     Base = ST->getBasePtr();
14557     MMO = ST->getMemOperand();
14558     SrcOpnd = 1;
14559     // If the MMO suggests this isn't a store of a full vector, leave
14560     // things alone.  For a built-in, we have to make the change for
14561     // correctness, so if there is a size problem that will be a bug.
14562     if (MMO->getSize() < 16)
14563       return SDValue();
14564     break;
14565   }
14566   case ISD::INTRINSIC_VOID: {
14567     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14568     Chain = Intrin->getChain();
14569     // Intrin->getBasePtr() oddly does not get what we want.
14570     Base = Intrin->getOperand(3);
14571     MMO = Intrin->getMemOperand();
14572     SrcOpnd = 2;
14573     break;
14574   }
14575   }
14576 
14577   SDValue Src = N->getOperand(SrcOpnd);
14578   MVT VecTy = Src.getValueType().getSimpleVT();
14579 
14580   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14581   // aligned and the type is a vector with elements up to 4 bytes
14582   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14583       VecTy.getScalarSizeInBits() <= 32) {
14584     return SDValue();
14585   }
14586 
14587   // All stores are done as v2f64 and possible bit cast.
14588   if (VecTy != MVT::v2f64) {
14589     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14590     DCI.AddToWorklist(Src.getNode());
14591   }
14592 
14593   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14594                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14595   DCI.AddToWorklist(Swap.getNode());
14596   Chain = Swap.getValue(1);
14597   SDValue StoreOps[] = { Chain, Swap, Base };
14598   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14599                                           DAG.getVTList(MVT::Other),
14600                                           StoreOps, VecTy, MMO);
14601   DCI.AddToWorklist(Store.getNode());
14602   return Store;
14603 }
14604 
14605 // Handle DAG combine for STORE (FP_TO_INT F).
14606 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14607                                                DAGCombinerInfo &DCI) const {
14608 
14609   SelectionDAG &DAG = DCI.DAG;
14610   SDLoc dl(N);
14611   unsigned Opcode = N->getOperand(1).getOpcode();
14612 
14613   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14614          && "Not a FP_TO_INT Instruction!");
14615 
14616   SDValue Val = N->getOperand(1).getOperand(0);
14617   EVT Op1VT = N->getOperand(1).getValueType();
14618   EVT ResVT = Val.getValueType();
14619 
14620   if (!isTypeLegal(ResVT))
14621     return SDValue();
14622 
14623   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14624   bool ValidTypeForStoreFltAsInt =
14625         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14626          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14627 
14628   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14629     return SDValue();
14630 
14631   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14632       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14633     return SDValue();
14634 
14635   // Extend f32 values to f64
14636   if (ResVT.getScalarSizeInBits() == 32) {
14637     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14638     DCI.AddToWorklist(Val.getNode());
14639   }
14640 
14641   // Set signed or unsigned conversion opcode.
14642   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14643                           PPCISD::FP_TO_SINT_IN_VSR :
14644                           PPCISD::FP_TO_UINT_IN_VSR;
14645 
14646   Val = DAG.getNode(ConvOpcode,
14647                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14648   DCI.AddToWorklist(Val.getNode());
14649 
14650   // Set number of bytes being converted.
14651   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14652   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14653                     DAG.getIntPtrConstant(ByteSize, dl, false),
14654                     DAG.getValueType(Op1VT) };
14655 
14656   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14657           DAG.getVTList(MVT::Other), Ops,
14658           cast<StoreSDNode>(N)->getMemoryVT(),
14659           cast<StoreSDNode>(N)->getMemOperand());
14660 
14661   DCI.AddToWorklist(Val.getNode());
14662   return Val;
14663 }
14664 
14665 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14666   // Check that the source of the element keeps flipping
14667   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14668   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14669   for (int i = 1, e = Mask.size(); i < e; i++) {
14670     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14671       return false;
14672     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14673       return false;
14674     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14675   }
14676   return true;
14677 }
14678 
14679 static bool isSplatBV(SDValue Op) {
14680   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14681     return false;
14682   SDValue FirstOp;
14683 
14684   // Find first non-undef input.
14685   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14686     FirstOp = Op.getOperand(i);
14687     if (!FirstOp.isUndef())
14688       break;
14689   }
14690 
14691   // All inputs are undef or the same as the first non-undef input.
14692   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14693     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14694       return false;
14695   return true;
14696 }
14697 
14698 static SDValue isScalarToVec(SDValue Op) {
14699   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14700     return Op;
14701   if (Op.getOpcode() != ISD::BITCAST)
14702     return SDValue();
14703   Op = Op.getOperand(0);
14704   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14705     return Op;
14706   return SDValue();
14707 }
14708 
14709 // Fix up the shuffle mask to account for the fact that the result of
14710 // scalar_to_vector is not in lane zero. This just takes all values in
14711 // the ranges specified by the min/max indices and adds the number of
14712 // elements required to ensure each element comes from the respective
14713 // position in the valid lane.
14714 // On little endian, that's just the corresponding element in the other
14715 // half of the vector. On big endian, it is in the same half but right
14716 // justified rather than left justified in that half.
14717 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14718                                             int LHSMaxIdx, int RHSMinIdx,
14719                                             int RHSMaxIdx, int HalfVec,
14720                                             unsigned ValidLaneWidth,
14721                                             const PPCSubtarget &Subtarget) {
14722   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14723     int Idx = ShuffV[i];
14724     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14725       ShuffV[i] +=
14726           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14727   }
14728 }
14729 
14730 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14731 // the original is:
14732 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14733 // In such a case, just change the shuffle mask to extract the element
14734 // from the permuted index.
14735 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14736                                const PPCSubtarget &Subtarget) {
14737   SDLoc dl(OrigSToV);
14738   EVT VT = OrigSToV.getValueType();
14739   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14740          "Expecting a SCALAR_TO_VECTOR here");
14741   SDValue Input = OrigSToV.getOperand(0);
14742 
14743   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14744     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14745     SDValue OrigVector = Input.getOperand(0);
14746 
14747     // Can't handle non-const element indices or different vector types
14748     // for the input to the extract and the output of the scalar_to_vector.
14749     if (Idx && VT == OrigVector.getValueType()) {
14750       unsigned NumElts = VT.getVectorNumElements();
14751       assert(
14752           NumElts > 1 &&
14753           "Cannot produce a permuted scalar_to_vector for one element vector");
14754       SmallVector<int, 16> NewMask(NumElts, -1);
14755       unsigned ResultInElt = NumElts / 2;
14756       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14757       NewMask[ResultInElt] = Idx->getZExtValue();
14758       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14759     }
14760   }
14761   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14762                      OrigSToV.getOperand(0));
14763 }
14764 
14765 // On little endian subtargets, combine shuffles such as:
14766 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14767 // into:
14768 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14769 // because the latter can be matched to a single instruction merge.
14770 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14771 // to put the value into element zero. Adjust the shuffle mask so that the
14772 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14773 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14774 // nodes with elements smaller than doubleword because all the ways
14775 // of getting scalar data into a vector register put the value in the
14776 // rightmost element of the left half of the vector.
14777 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14778                                                 SelectionDAG &DAG) const {
14779   SDValue LHS = SVN->getOperand(0);
14780   SDValue RHS = SVN->getOperand(1);
14781   auto Mask = SVN->getMask();
14782   int NumElts = LHS.getValueType().getVectorNumElements();
14783   SDValue Res(SVN, 0);
14784   SDLoc dl(SVN);
14785   bool IsLittleEndian = Subtarget.isLittleEndian();
14786 
14787   // On big endian targets this is only useful for subtargets with direct moves.
14788   // On little endian targets it would be useful for all subtargets with VSX.
14789   // However adding special handling for LE subtargets without direct moves
14790   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14791   // which includes direct moves.
14792   if (!Subtarget.hasDirectMove())
14793     return Res;
14794 
14795   // If this is not a shuffle of a shuffle and the first element comes from
14796   // the second vector, canonicalize to the commuted form. This will make it
14797   // more likely to match one of the single instruction patterns.
14798   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14799       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14800     std::swap(LHS, RHS);
14801     Res = DAG.getCommutedVectorShuffle(*SVN);
14802     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14803   }
14804 
14805   // Adjust the shuffle mask if either input vector comes from a
14806   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14807   // form (to prevent the need for a swap).
14808   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14809   SDValue SToVLHS = isScalarToVec(LHS);
14810   SDValue SToVRHS = isScalarToVec(RHS);
14811   if (SToVLHS || SToVRHS) {
14812     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14813                             : SToVRHS.getValueType().getVectorNumElements();
14814     int NumEltsOut = ShuffV.size();
14815     // The width of the "valid lane" (i.e. the lane that contains the value that
14816     // is vectorized) needs to be expressed in terms of the number of elements
14817     // of the shuffle. It is thereby the ratio of the values before and after
14818     // any bitcast.
14819     unsigned ValidLaneWidth =
14820         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14821                       LHS.getValueType().getScalarSizeInBits()
14822                 : SToVRHS.getValueType().getScalarSizeInBits() /
14823                       RHS.getValueType().getScalarSizeInBits();
14824 
14825     // Initially assume that neither input is permuted. These will be adjusted
14826     // accordingly if either input is.
14827     int LHSMaxIdx = -1;
14828     int RHSMinIdx = -1;
14829     int RHSMaxIdx = -1;
14830     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14831 
14832     // Get the permuted scalar to vector nodes for the source(s) that come from
14833     // ISD::SCALAR_TO_VECTOR.
14834     // On big endian systems, this only makes sense for element sizes smaller
14835     // than 64 bits since for 64-bit elements, all instructions already put
14836     // the value into element zero. Since scalar size of LHS and RHS may differ
14837     // after isScalarToVec, this should be checked using their own sizes.
14838     if (SToVLHS) {
14839       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14840         return Res;
14841       // Set up the values for the shuffle vector fixup.
14842       LHSMaxIdx = NumEltsOut / NumEltsIn;
14843       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14844       if (SToVLHS.getValueType() != LHS.getValueType())
14845         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14846       LHS = SToVLHS;
14847     }
14848     if (SToVRHS) {
14849       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14850         return Res;
14851       RHSMinIdx = NumEltsOut;
14852       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14853       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14854       if (SToVRHS.getValueType() != RHS.getValueType())
14855         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14856       RHS = SToVRHS;
14857     }
14858 
14859     // Fix up the shuffle mask to reflect where the desired element actually is.
14860     // The minimum and maximum indices that correspond to element zero for both
14861     // the LHS and RHS are computed and will control which shuffle mask entries
14862     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14863     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14864     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14865                                     HalfVec, ValidLaneWidth, Subtarget);
14866     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14867 
14868     // We may have simplified away the shuffle. We won't be able to do anything
14869     // further with it here.
14870     if (!isa<ShuffleVectorSDNode>(Res))
14871       return Res;
14872     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14873   }
14874 
14875   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14876   // The common case after we commuted the shuffle is that the RHS is a splat
14877   // and we have elements coming in from the splat at indices that are not
14878   // conducive to using a merge.
14879   // Example:
14880   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14881   if (!isSplatBV(TheSplat))
14882     return Res;
14883 
14884   // We are looking for a mask such that all even elements are from
14885   // one vector and all odd elements from the other.
14886   if (!isAlternatingShuffMask(Mask, NumElts))
14887     return Res;
14888 
14889   // Adjust the mask so we are pulling in the same index from the splat
14890   // as the index from the interesting vector in consecutive elements.
14891   if (IsLittleEndian) {
14892     // Example (even elements from first vector):
14893     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14894     if (Mask[0] < NumElts)
14895       for (int i = 1, e = Mask.size(); i < e; i += 2)
14896         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14897     // Example (odd elements from first vector):
14898     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14899     else
14900       for (int i = 0, e = Mask.size(); i < e; i += 2)
14901         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14902   } else {
14903     // Example (even elements from first vector):
14904     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14905     if (Mask[0] < NumElts)
14906       for (int i = 0, e = Mask.size(); i < e; i += 2)
14907         ShuffV[i] = ShuffV[i + 1] - NumElts;
14908     // Example (odd elements from first vector):
14909     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14910     else
14911       for (int i = 1, e = Mask.size(); i < e; i += 2)
14912         ShuffV[i] = ShuffV[i - 1] - NumElts;
14913   }
14914 
14915   // If the RHS has undefs, we need to remove them since we may have created
14916   // a shuffle that adds those instead of the splat value.
14917   SDValue SplatVal =
14918       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14919   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14920 
14921   if (IsLittleEndian)
14922     RHS = TheSplat;
14923   else
14924     LHS = TheSplat;
14925   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14926 }
14927 
14928 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14929                                                 LSBaseSDNode *LSBase,
14930                                                 DAGCombinerInfo &DCI) const {
14931   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14932         "Not a reverse memop pattern!");
14933 
14934   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14935     auto Mask = SVN->getMask();
14936     int i = 0;
14937     auto I = Mask.rbegin();
14938     auto E = Mask.rend();
14939 
14940     for (; I != E; ++I) {
14941       if (*I != i)
14942         return false;
14943       i++;
14944     }
14945     return true;
14946   };
14947 
14948   SelectionDAG &DAG = DCI.DAG;
14949   EVT VT = SVN->getValueType(0);
14950 
14951   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14952     return SDValue();
14953 
14954   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14955   // See comment in PPCVSXSwapRemoval.cpp.
14956   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14957   if (!Subtarget.hasP9Vector())
14958     return SDValue();
14959 
14960   if(!IsElementReverse(SVN))
14961     return SDValue();
14962 
14963   if (LSBase->getOpcode() == ISD::LOAD) {
14964     // If the load return value 0 has more than one user except the
14965     // shufflevector instruction, it is not profitable to replace the
14966     // shufflevector with a reverse load.
14967     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14968          UI != UE; ++UI)
14969       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14970         return SDValue();
14971 
14972     SDLoc dl(LSBase);
14973     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14974     return DAG.getMemIntrinsicNode(
14975         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14976         LSBase->getMemoryVT(), LSBase->getMemOperand());
14977   }
14978 
14979   if (LSBase->getOpcode() == ISD::STORE) {
14980     // If there are other uses of the shuffle, the swap cannot be avoided.
14981     // Forcing the use of an X-Form (since swapped stores only have
14982     // X-Forms) without removing the swap is unprofitable.
14983     if (!SVN->hasOneUse())
14984       return SDValue();
14985 
14986     SDLoc dl(LSBase);
14987     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14988                           LSBase->getBasePtr()};
14989     return DAG.getMemIntrinsicNode(
14990         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14991         LSBase->getMemoryVT(), LSBase->getMemOperand());
14992   }
14993 
14994   llvm_unreachable("Expected a load or store node here");
14995 }
14996 
14997 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14998                                              DAGCombinerInfo &DCI) const {
14999   SelectionDAG &DAG = DCI.DAG;
15000   SDLoc dl(N);
15001   switch (N->getOpcode()) {
15002   default: break;
15003   case ISD::ADD:
15004     return combineADD(N, DCI);
15005   case ISD::SHL:
15006     return combineSHL(N, DCI);
15007   case ISD::SRA:
15008     return combineSRA(N, DCI);
15009   case ISD::SRL:
15010     return combineSRL(N, DCI);
15011   case ISD::MUL:
15012     return combineMUL(N, DCI);
15013   case ISD::FMA:
15014   case PPCISD::FNMSUB:
15015     return combineFMALike(N, DCI);
15016   case PPCISD::SHL:
15017     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
15018         return N->getOperand(0);
15019     break;
15020   case PPCISD::SRL:
15021     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
15022         return N->getOperand(0);
15023     break;
15024   case PPCISD::SRA:
15025     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
15026       if (C->isZero() ||  //  0 >>s V -> 0.
15027           C->isAllOnes()) // -1 >>s V -> -1.
15028         return N->getOperand(0);
15029     }
15030     break;
15031   case ISD::SIGN_EXTEND:
15032   case ISD::ZERO_EXTEND:
15033   case ISD::ANY_EXTEND:
15034     return DAGCombineExtBoolTrunc(N, DCI);
15035   case ISD::TRUNCATE:
15036     return combineTRUNCATE(N, DCI);
15037   case ISD::SETCC:
15038     if (SDValue CSCC = combineSetCC(N, DCI))
15039       return CSCC;
15040     LLVM_FALLTHROUGH;
15041   case ISD::SELECT_CC:
15042     return DAGCombineTruncBoolExt(N, DCI);
15043   case ISD::SINT_TO_FP:
15044   case ISD::UINT_TO_FP:
15045     return combineFPToIntToFP(N, DCI);
15046   case ISD::VECTOR_SHUFFLE:
15047     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15048       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15049       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15050     }
15051     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15052   case ISD::STORE: {
15053 
15054     EVT Op1VT = N->getOperand(1).getValueType();
15055     unsigned Opcode = N->getOperand(1).getOpcode();
15056 
15057     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15058       SDValue Val= combineStoreFPToInt(N, DCI);
15059       if (Val)
15060         return Val;
15061     }
15062 
15063     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15064       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15065       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15066       if (Val)
15067         return Val;
15068     }
15069 
15070     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15071     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15072         N->getOperand(1).getNode()->hasOneUse() &&
15073         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15074          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15075 
15076       // STBRX can only handle simple types and it makes no sense to store less
15077       // two bytes in byte-reversed order.
15078       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15079       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15080         break;
15081 
15082       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15083       // Do an any-extend to 32-bits if this is a half-word input.
15084       if (BSwapOp.getValueType() == MVT::i16)
15085         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15086 
15087       // If the type of BSWAP operand is wider than stored memory width
15088       // it need to be shifted to the right side before STBRX.
15089       if (Op1VT.bitsGT(mVT)) {
15090         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15091         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15092                               DAG.getConstant(Shift, dl, MVT::i32));
15093         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15094         if (Op1VT == MVT::i64)
15095           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15096       }
15097 
15098       SDValue Ops[] = {
15099         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15100       };
15101       return
15102         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15103                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15104                                 cast<StoreSDNode>(N)->getMemOperand());
15105     }
15106 
15107     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15108     // So it can increase the chance of CSE constant construction.
15109     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15110         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15111       // Need to sign-extended to 64-bits to handle negative values.
15112       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15113       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15114                                     MemVT.getSizeInBits());
15115       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15116 
15117       // DAG.getTruncStore() can't be used here because it doesn't accept
15118       // the general (base + offset) addressing mode.
15119       // So we use UpdateNodeOperands and setTruncatingStore instead.
15120       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15121                              N->getOperand(3));
15122       cast<StoreSDNode>(N)->setTruncatingStore(true);
15123       return SDValue(N, 0);
15124     }
15125 
15126     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15127     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15128     if (Op1VT.isSimple()) {
15129       MVT StoreVT = Op1VT.getSimpleVT();
15130       if (Subtarget.needsSwapsForVSXMemOps() &&
15131           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15132            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15133         return expandVSXStoreForLE(N, DCI);
15134     }
15135     break;
15136   }
15137   case ISD::LOAD: {
15138     LoadSDNode *LD = cast<LoadSDNode>(N);
15139     EVT VT = LD->getValueType(0);
15140 
15141     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15142     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15143     if (VT.isSimple()) {
15144       MVT LoadVT = VT.getSimpleVT();
15145       if (Subtarget.needsSwapsForVSXMemOps() &&
15146           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15147            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15148         return expandVSXLoadForLE(N, DCI);
15149     }
15150 
15151     // We sometimes end up with a 64-bit integer load, from which we extract
15152     // two single-precision floating-point numbers. This happens with
15153     // std::complex<float>, and other similar structures, because of the way we
15154     // canonicalize structure copies. However, if we lack direct moves,
15155     // then the final bitcasts from the extracted integer values to the
15156     // floating-point numbers turn into store/load pairs. Even with direct moves,
15157     // just loading the two floating-point numbers is likely better.
15158     auto ReplaceTwoFloatLoad = [&]() {
15159       if (VT != MVT::i64)
15160         return false;
15161 
15162       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15163           LD->isVolatile())
15164         return false;
15165 
15166       //  We're looking for a sequence like this:
15167       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15168       //      t16: i64 = srl t13, Constant:i32<32>
15169       //    t17: i32 = truncate t16
15170       //  t18: f32 = bitcast t17
15171       //    t19: i32 = truncate t13
15172       //  t20: f32 = bitcast t19
15173 
15174       if (!LD->hasNUsesOfValue(2, 0))
15175         return false;
15176 
15177       auto UI = LD->use_begin();
15178       while (UI.getUse().getResNo() != 0) ++UI;
15179       SDNode *Trunc = *UI++;
15180       while (UI.getUse().getResNo() != 0) ++UI;
15181       SDNode *RightShift = *UI;
15182       if (Trunc->getOpcode() != ISD::TRUNCATE)
15183         std::swap(Trunc, RightShift);
15184 
15185       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15186           Trunc->getValueType(0) != MVT::i32 ||
15187           !Trunc->hasOneUse())
15188         return false;
15189       if (RightShift->getOpcode() != ISD::SRL ||
15190           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15191           RightShift->getConstantOperandVal(1) != 32 ||
15192           !RightShift->hasOneUse())
15193         return false;
15194 
15195       SDNode *Trunc2 = *RightShift->use_begin();
15196       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15197           Trunc2->getValueType(0) != MVT::i32 ||
15198           !Trunc2->hasOneUse())
15199         return false;
15200 
15201       SDNode *Bitcast = *Trunc->use_begin();
15202       SDNode *Bitcast2 = *Trunc2->use_begin();
15203 
15204       if (Bitcast->getOpcode() != ISD::BITCAST ||
15205           Bitcast->getValueType(0) != MVT::f32)
15206         return false;
15207       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15208           Bitcast2->getValueType(0) != MVT::f32)
15209         return false;
15210 
15211       if (Subtarget.isLittleEndian())
15212         std::swap(Bitcast, Bitcast2);
15213 
15214       // Bitcast has the second float (in memory-layout order) and Bitcast2
15215       // has the first one.
15216 
15217       SDValue BasePtr = LD->getBasePtr();
15218       if (LD->isIndexed()) {
15219         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15220                "Non-pre-inc AM on PPC?");
15221         BasePtr =
15222           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15223                       LD->getOffset());
15224       }
15225 
15226       auto MMOFlags =
15227           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15228       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15229                                       LD->getPointerInfo(), LD->getAlignment(),
15230                                       MMOFlags, LD->getAAInfo());
15231       SDValue AddPtr =
15232         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15233                     BasePtr, DAG.getIntPtrConstant(4, dl));
15234       SDValue FloatLoad2 = DAG.getLoad(
15235           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15236           LD->getPointerInfo().getWithOffset(4),
15237           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
15238 
15239       if (LD->isIndexed()) {
15240         // Note that DAGCombine should re-form any pre-increment load(s) from
15241         // what is produced here if that makes sense.
15242         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15243       }
15244 
15245       DCI.CombineTo(Bitcast2, FloatLoad);
15246       DCI.CombineTo(Bitcast, FloatLoad2);
15247 
15248       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15249                                     SDValue(FloatLoad2.getNode(), 1));
15250       return true;
15251     };
15252 
15253     if (ReplaceTwoFloatLoad())
15254       return SDValue(N, 0);
15255 
15256     EVT MemVT = LD->getMemoryVT();
15257     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15258     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15259     if (LD->isUnindexed() && VT.isVector() &&
15260         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15261           // P8 and later hardware should just use LOAD.
15262           !Subtarget.hasP8Vector() &&
15263           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15264            VT == MVT::v4f32))) &&
15265         LD->getAlign() < ABIAlignment) {
15266       // This is a type-legal unaligned Altivec load.
15267       SDValue Chain = LD->getChain();
15268       SDValue Ptr = LD->getBasePtr();
15269       bool isLittleEndian = Subtarget.isLittleEndian();
15270 
15271       // This implements the loading of unaligned vectors as described in
15272       // the venerable Apple Velocity Engine overview. Specifically:
15273       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15274       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15275       //
15276       // The general idea is to expand a sequence of one or more unaligned
15277       // loads into an alignment-based permutation-control instruction (lvsl
15278       // or lvsr), a series of regular vector loads (which always truncate
15279       // their input address to an aligned address), and a series of
15280       // permutations.  The results of these permutations are the requested
15281       // loaded values.  The trick is that the last "extra" load is not taken
15282       // from the address you might suspect (sizeof(vector) bytes after the
15283       // last requested load), but rather sizeof(vector) - 1 bytes after the
15284       // last requested vector. The point of this is to avoid a page fault if
15285       // the base address happened to be aligned. This works because if the
15286       // base address is aligned, then adding less than a full vector length
15287       // will cause the last vector in the sequence to be (re)loaded.
15288       // Otherwise, the next vector will be fetched as you might suspect was
15289       // necessary.
15290 
15291       // We might be able to reuse the permutation generation from
15292       // a different base address offset from this one by an aligned amount.
15293       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15294       // optimization later.
15295       Intrinsic::ID Intr, IntrLD, IntrPerm;
15296       MVT PermCntlTy, PermTy, LDTy;
15297       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15298                             : Intrinsic::ppc_altivec_lvsl;
15299       IntrLD = Intrinsic::ppc_altivec_lvx;
15300       IntrPerm = Intrinsic::ppc_altivec_vperm;
15301       PermCntlTy = MVT::v16i8;
15302       PermTy = MVT::v4i32;
15303       LDTy = MVT::v4i32;
15304 
15305       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15306 
15307       // Create the new MMO for the new base load. It is like the original MMO,
15308       // but represents an area in memory almost twice the vector size centered
15309       // on the original address. If the address is unaligned, we might start
15310       // reading up to (sizeof(vector)-1) bytes below the address of the
15311       // original unaligned load.
15312       MachineFunction &MF = DAG.getMachineFunction();
15313       MachineMemOperand *BaseMMO =
15314         MF.getMachineMemOperand(LD->getMemOperand(),
15315                                 -(long)MemVT.getStoreSize()+1,
15316                                 2*MemVT.getStoreSize()-1);
15317 
15318       // Create the new base load.
15319       SDValue LDXIntID =
15320           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15321       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15322       SDValue BaseLoad =
15323         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15324                                 DAG.getVTList(PermTy, MVT::Other),
15325                                 BaseLoadOps, LDTy, BaseMMO);
15326 
15327       // Note that the value of IncOffset (which is provided to the next
15328       // load's pointer info offset value, and thus used to calculate the
15329       // alignment), and the value of IncValue (which is actually used to
15330       // increment the pointer value) are different! This is because we
15331       // require the next load to appear to be aligned, even though it
15332       // is actually offset from the base pointer by a lesser amount.
15333       int IncOffset = VT.getSizeInBits() / 8;
15334       int IncValue = IncOffset;
15335 
15336       // Walk (both up and down) the chain looking for another load at the real
15337       // (aligned) offset (the alignment of the other load does not matter in
15338       // this case). If found, then do not use the offset reduction trick, as
15339       // that will prevent the loads from being later combined (as they would
15340       // otherwise be duplicates).
15341       if (!findConsecutiveLoad(LD, DAG))
15342         --IncValue;
15343 
15344       SDValue Increment =
15345           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15346       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15347 
15348       MachineMemOperand *ExtraMMO =
15349         MF.getMachineMemOperand(LD->getMemOperand(),
15350                                 1, 2*MemVT.getStoreSize()-1);
15351       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15352       SDValue ExtraLoad =
15353         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15354                                 DAG.getVTList(PermTy, MVT::Other),
15355                                 ExtraLoadOps, LDTy, ExtraMMO);
15356 
15357       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15358         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15359 
15360       // Because vperm has a big-endian bias, we must reverse the order
15361       // of the input vectors and complement the permute control vector
15362       // when generating little endian code.  We have already handled the
15363       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15364       // and ExtraLoad here.
15365       SDValue Perm;
15366       if (isLittleEndian)
15367         Perm = BuildIntrinsicOp(IntrPerm,
15368                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15369       else
15370         Perm = BuildIntrinsicOp(IntrPerm,
15371                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15372 
15373       if (VT != PermTy)
15374         Perm = Subtarget.hasAltivec()
15375                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15376                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15377                                  DAG.getTargetConstant(1, dl, MVT::i64));
15378                                // second argument is 1 because this rounding
15379                                // is always exact.
15380 
15381       // The output of the permutation is our loaded result, the TokenFactor is
15382       // our new chain.
15383       DCI.CombineTo(N, Perm, TF);
15384       return SDValue(N, 0);
15385     }
15386     }
15387     break;
15388     case ISD::INTRINSIC_WO_CHAIN: {
15389       bool isLittleEndian = Subtarget.isLittleEndian();
15390       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15391       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15392                                            : Intrinsic::ppc_altivec_lvsl);
15393       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15394         SDValue Add = N->getOperand(1);
15395 
15396         int Bits = 4 /* 16 byte alignment */;
15397 
15398         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15399                                   APInt::getAllOnes(Bits /* alignment */)
15400                                       .zext(Add.getScalarValueSizeInBits()))) {
15401           SDNode *BasePtr = Add->getOperand(0).getNode();
15402           for (SDNode *U : BasePtr->uses()) {
15403             if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15404                 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15405               // We've found another LVSL/LVSR, and this address is an aligned
15406               // multiple of that one. The results will be the same, so use the
15407               // one we've just found instead.
15408 
15409               return SDValue(U, 0);
15410             }
15411           }
15412         }
15413 
15414         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15415           SDNode *BasePtr = Add->getOperand(0).getNode();
15416           for (SDNode *U : BasePtr->uses()) {
15417             if (U->getOpcode() == ISD::ADD &&
15418                 isa<ConstantSDNode>(U->getOperand(1)) &&
15419                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15420                  cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15421                         (1ULL << Bits) ==
15422                     0) {
15423               SDNode *OtherAdd = U;
15424               for (SDNode *V : OtherAdd->uses()) {
15425                 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15426                     cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15427                         IID) {
15428                   return SDValue(V, 0);
15429                 }
15430               }
15431             }
15432           }
15433         }
15434       }
15435 
15436       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15437       // Expose the vabsduw/h/b opportunity for down stream
15438       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15439           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15440            IID == Intrinsic::ppc_altivec_vmaxsh ||
15441            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15442         SDValue V1 = N->getOperand(1);
15443         SDValue V2 = N->getOperand(2);
15444         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15445              V1.getSimpleValueType() == MVT::v8i16 ||
15446              V1.getSimpleValueType() == MVT::v16i8) &&
15447             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15448           // (0-a, a)
15449           if (V1.getOpcode() == ISD::SUB &&
15450               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15451               V1.getOperand(1) == V2) {
15452             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15453           }
15454           // (a, 0-a)
15455           if (V2.getOpcode() == ISD::SUB &&
15456               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15457               V2.getOperand(1) == V1) {
15458             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15459           }
15460           // (x-y, y-x)
15461           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15462               V1.getOperand(0) == V2.getOperand(1) &&
15463               V1.getOperand(1) == V2.getOperand(0)) {
15464             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15465           }
15466         }
15467       }
15468     }
15469 
15470     break;
15471   case ISD::INTRINSIC_W_CHAIN:
15472     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15473     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15474     if (Subtarget.needsSwapsForVSXMemOps()) {
15475       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15476       default:
15477         break;
15478       case Intrinsic::ppc_vsx_lxvw4x:
15479       case Intrinsic::ppc_vsx_lxvd2x:
15480         return expandVSXLoadForLE(N, DCI);
15481       }
15482     }
15483     break;
15484   case ISD::INTRINSIC_VOID:
15485     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15486     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15487     if (Subtarget.needsSwapsForVSXMemOps()) {
15488       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15489       default:
15490         break;
15491       case Intrinsic::ppc_vsx_stxvw4x:
15492       case Intrinsic::ppc_vsx_stxvd2x:
15493         return expandVSXStoreForLE(N, DCI);
15494       }
15495     }
15496     break;
15497   case ISD::BSWAP: {
15498     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15499     // For subtargets without LDBRX, we can still do better than the default
15500     // expansion even for 64-bit BSWAP (LOAD).
15501     bool Is64BitBswapOn64BitTgt =
15502         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15503     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15504                                N->getOperand(0).hasOneUse();
15505     if (IsSingleUseNormalLd &&
15506         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15507          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15508       SDValue Load = N->getOperand(0);
15509       LoadSDNode *LD = cast<LoadSDNode>(Load);
15510       // Create the byte-swapping load.
15511       SDValue Ops[] = {
15512         LD->getChain(),    // Chain
15513         LD->getBasePtr(),  // Ptr
15514         DAG.getValueType(N->getValueType(0)) // VT
15515       };
15516       SDValue BSLoad =
15517         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15518                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15519                                               MVT::i64 : MVT::i32, MVT::Other),
15520                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15521 
15522       // If this is an i16 load, insert the truncate.
15523       SDValue ResVal = BSLoad;
15524       if (N->getValueType(0) == MVT::i16)
15525         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15526 
15527       // First, combine the bswap away.  This makes the value produced by the
15528       // load dead.
15529       DCI.CombineTo(N, ResVal);
15530 
15531       // Next, combine the load away, we give it a bogus result value but a real
15532       // chain result.  The result value is dead because the bswap is dead.
15533       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15534 
15535       // Return N so it doesn't get rechecked!
15536       return SDValue(N, 0);
15537     }
15538     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15539     // before legalization so that the BUILD_PAIR is handled correctly.
15540     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15541         !IsSingleUseNormalLd)
15542       return SDValue();
15543     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15544 
15545     // Can't split volatile or atomic loads.
15546     if (!LD->isSimple())
15547       return SDValue();
15548     SDValue BasePtr = LD->getBasePtr();
15549     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15550                              LD->getPointerInfo(), LD->getAlignment());
15551     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15552     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15553                           DAG.getIntPtrConstant(4, dl));
15554     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15555         LD->getMemOperand(), 4, 4);
15556     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15557     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15558     SDValue Res;
15559     if (Subtarget.isLittleEndian())
15560       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15561     else
15562       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15563     SDValue TF =
15564         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15565                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15566     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15567     return Res;
15568   }
15569   case PPCISD::VCMP:
15570     // If a VCMP_rec node already exists with exactly the same operands as this
15571     // node, use its result instead of this node (VCMP_rec computes both a CR6
15572     // and a normal output).
15573     //
15574     if (!N->getOperand(0).hasOneUse() &&
15575         !N->getOperand(1).hasOneUse() &&
15576         !N->getOperand(2).hasOneUse()) {
15577 
15578       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15579       SDNode *VCMPrecNode = nullptr;
15580 
15581       SDNode *LHSN = N->getOperand(0).getNode();
15582       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15583            UI != E; ++UI)
15584         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15585             UI->getOperand(1) == N->getOperand(1) &&
15586             UI->getOperand(2) == N->getOperand(2) &&
15587             UI->getOperand(0) == N->getOperand(0)) {
15588           VCMPrecNode = *UI;
15589           break;
15590         }
15591 
15592       // If there is no VCMP_rec node, or if the flag value has a single use,
15593       // don't transform this.
15594       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15595         break;
15596 
15597       // Look at the (necessarily single) use of the flag value.  If it has a
15598       // chain, this transformation is more complex.  Note that multiple things
15599       // could use the value result, which we should ignore.
15600       SDNode *FlagUser = nullptr;
15601       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15602            FlagUser == nullptr; ++UI) {
15603         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15604         SDNode *User = *UI;
15605         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15606           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15607             FlagUser = User;
15608             break;
15609           }
15610         }
15611       }
15612 
15613       // If the user is a MFOCRF instruction, we know this is safe.
15614       // Otherwise we give up for right now.
15615       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15616         return SDValue(VCMPrecNode, 0);
15617     }
15618     break;
15619   case ISD::BRCOND: {
15620     SDValue Cond = N->getOperand(1);
15621     SDValue Target = N->getOperand(2);
15622 
15623     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15624         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15625           Intrinsic::loop_decrement) {
15626 
15627       // We now need to make the intrinsic dead (it cannot be instruction
15628       // selected).
15629       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15630       assert(Cond.getNode()->hasOneUse() &&
15631              "Counter decrement has more than one use");
15632 
15633       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15634                          N->getOperand(0), Target);
15635     }
15636   }
15637   break;
15638   case ISD::BR_CC: {
15639     // If this is a branch on an altivec predicate comparison, lower this so
15640     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15641     // lowering is done pre-legalize, because the legalizer lowers the predicate
15642     // compare down to code that is difficult to reassemble.
15643     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15644     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15645 
15646     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15647     // value. If so, pass-through the AND to get to the intrinsic.
15648     if (LHS.getOpcode() == ISD::AND &&
15649         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15650         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15651           Intrinsic::loop_decrement &&
15652         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15653         !isNullConstant(LHS.getOperand(1)))
15654       LHS = LHS.getOperand(0);
15655 
15656     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15657         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15658           Intrinsic::loop_decrement &&
15659         isa<ConstantSDNode>(RHS)) {
15660       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15661              "Counter decrement comparison is not EQ or NE");
15662 
15663       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15664       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15665                     (CC == ISD::SETNE && !Val);
15666 
15667       // We now need to make the intrinsic dead (it cannot be instruction
15668       // selected).
15669       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15670       assert(LHS.getNode()->hasOneUse() &&
15671              "Counter decrement has more than one use");
15672 
15673       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15674                          N->getOperand(0), N->getOperand(4));
15675     }
15676 
15677     int CompareOpc;
15678     bool isDot;
15679 
15680     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15681         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15682         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15683       assert(isDot && "Can't compare against a vector result!");
15684 
15685       // If this is a comparison against something other than 0/1, then we know
15686       // that the condition is never/always true.
15687       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15688       if (Val != 0 && Val != 1) {
15689         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15690           return N->getOperand(0);
15691         // Always !=, turn it into an unconditional branch.
15692         return DAG.getNode(ISD::BR, dl, MVT::Other,
15693                            N->getOperand(0), N->getOperand(4));
15694       }
15695 
15696       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15697 
15698       // Create the PPCISD altivec 'dot' comparison node.
15699       SDValue Ops[] = {
15700         LHS.getOperand(2),  // LHS of compare
15701         LHS.getOperand(3),  // RHS of compare
15702         DAG.getConstant(CompareOpc, dl, MVT::i32)
15703       };
15704       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15705       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15706 
15707       // Unpack the result based on how the target uses it.
15708       PPC::Predicate CompOpc;
15709       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15710       default:  // Can't happen, don't crash on invalid number though.
15711       case 0:   // Branch on the value of the EQ bit of CR6.
15712         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15713         break;
15714       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15715         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15716         break;
15717       case 2:   // Branch on the value of the LT bit of CR6.
15718         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15719         break;
15720       case 3:   // Branch on the inverted value of the LT bit of CR6.
15721         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15722         break;
15723       }
15724 
15725       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15726                          DAG.getConstant(CompOpc, dl, MVT::i32),
15727                          DAG.getRegister(PPC::CR6, MVT::i32),
15728                          N->getOperand(4), CompNode.getValue(1));
15729     }
15730     break;
15731   }
15732   case ISD::BUILD_VECTOR:
15733     return DAGCombineBuildVector(N, DCI);
15734   case ISD::ABS:
15735     return combineABS(N, DCI);
15736   case ISD::VSELECT:
15737     return combineVSelect(N, DCI);
15738   }
15739 
15740   return SDValue();
15741 }
15742 
15743 SDValue
15744 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15745                                  SelectionDAG &DAG,
15746                                  SmallVectorImpl<SDNode *> &Created) const {
15747   // fold (sdiv X, pow2)
15748   EVT VT = N->getValueType(0);
15749   if (VT == MVT::i64 && !Subtarget.isPPC64())
15750     return SDValue();
15751   if ((VT != MVT::i32 && VT != MVT::i64) ||
15752       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
15753     return SDValue();
15754 
15755   SDLoc DL(N);
15756   SDValue N0 = N->getOperand(0);
15757 
15758   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
15759   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15760   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15761 
15762   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15763   Created.push_back(Op.getNode());
15764 
15765   if (IsNegPow2) {
15766     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15767     Created.push_back(Op.getNode());
15768   }
15769 
15770   return Op;
15771 }
15772 
15773 //===----------------------------------------------------------------------===//
15774 // Inline Assembly Support
15775 //===----------------------------------------------------------------------===//
15776 
15777 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15778                                                       KnownBits &Known,
15779                                                       const APInt &DemandedElts,
15780                                                       const SelectionDAG &DAG,
15781                                                       unsigned Depth) const {
15782   Known.resetAll();
15783   switch (Op.getOpcode()) {
15784   default: break;
15785   case PPCISD::LBRX: {
15786     // lhbrx is known to have the top bits cleared out.
15787     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15788       Known.Zero = 0xFFFF0000;
15789     break;
15790   }
15791   case ISD::INTRINSIC_WO_CHAIN: {
15792     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15793     default: break;
15794     case Intrinsic::ppc_altivec_vcmpbfp_p:
15795     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15796     case Intrinsic::ppc_altivec_vcmpequb_p:
15797     case Intrinsic::ppc_altivec_vcmpequh_p:
15798     case Intrinsic::ppc_altivec_vcmpequw_p:
15799     case Intrinsic::ppc_altivec_vcmpequd_p:
15800     case Intrinsic::ppc_altivec_vcmpequq_p:
15801     case Intrinsic::ppc_altivec_vcmpgefp_p:
15802     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15803     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15804     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15805     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15806     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15807     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15808     case Intrinsic::ppc_altivec_vcmpgtub_p:
15809     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15810     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15811     case Intrinsic::ppc_altivec_vcmpgtud_p:
15812     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15813       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15814       break;
15815     }
15816     break;
15817   }
15818   case ISD::INTRINSIC_W_CHAIN: {
15819     switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
15820     default:
15821       break;
15822     case Intrinsic::ppc_load2r:
15823       // Top bits are cleared for load2r (which is the same as lhbrx).
15824       Known.Zero = 0xFFFF0000;
15825       break;
15826     }
15827     break;
15828   }
15829   }
15830 }
15831 
15832 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15833   switch (Subtarget.getCPUDirective()) {
15834   default: break;
15835   case PPC::DIR_970:
15836   case PPC::DIR_PWR4:
15837   case PPC::DIR_PWR5:
15838   case PPC::DIR_PWR5X:
15839   case PPC::DIR_PWR6:
15840   case PPC::DIR_PWR6X:
15841   case PPC::DIR_PWR7:
15842   case PPC::DIR_PWR8:
15843   case PPC::DIR_PWR9:
15844   case PPC::DIR_PWR10:
15845   case PPC::DIR_PWR_FUTURE: {
15846     if (!ML)
15847       break;
15848 
15849     if (!DisableInnermostLoopAlign32) {
15850       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15851       // so that we can decrease cache misses and branch-prediction misses.
15852       // Actual alignment of the loop will depend on the hotness check and other
15853       // logic in alignBlocks.
15854       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15855         return Align(32);
15856     }
15857 
15858     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15859 
15860     // For small loops (between 5 and 8 instructions), align to a 32-byte
15861     // boundary so that the entire loop fits in one instruction-cache line.
15862     uint64_t LoopSize = 0;
15863     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15864       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15865         LoopSize += TII->getInstSizeInBytes(*J);
15866         if (LoopSize > 32)
15867           break;
15868       }
15869 
15870     if (LoopSize > 16 && LoopSize <= 32)
15871       return Align(32);
15872 
15873     break;
15874   }
15875   }
15876 
15877   return TargetLowering::getPrefLoopAlignment(ML);
15878 }
15879 
15880 /// getConstraintType - Given a constraint, return the type of
15881 /// constraint it is for this target.
15882 PPCTargetLowering::ConstraintType
15883 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15884   if (Constraint.size() == 1) {
15885     switch (Constraint[0]) {
15886     default: break;
15887     case 'b':
15888     case 'r':
15889     case 'f':
15890     case 'd':
15891     case 'v':
15892     case 'y':
15893       return C_RegisterClass;
15894     case 'Z':
15895       // FIXME: While Z does indicate a memory constraint, it specifically
15896       // indicates an r+r address (used in conjunction with the 'y' modifier
15897       // in the replacement string). Currently, we're forcing the base
15898       // register to be r0 in the asm printer (which is interpreted as zero)
15899       // and forming the complete address in the second register. This is
15900       // suboptimal.
15901       return C_Memory;
15902     }
15903   } else if (Constraint == "wc") { // individual CR bits.
15904     return C_RegisterClass;
15905   } else if (Constraint == "wa" || Constraint == "wd" ||
15906              Constraint == "wf" || Constraint == "ws" ||
15907              Constraint == "wi" || Constraint == "ww") {
15908     return C_RegisterClass; // VSX registers.
15909   }
15910   return TargetLowering::getConstraintType(Constraint);
15911 }
15912 
15913 /// Examine constraint type and operand type and determine a weight value.
15914 /// This object must already have been set up with the operand type
15915 /// and the current alternative constraint selected.
15916 TargetLowering::ConstraintWeight
15917 PPCTargetLowering::getSingleConstraintMatchWeight(
15918     AsmOperandInfo &info, const char *constraint) const {
15919   ConstraintWeight weight = CW_Invalid;
15920   Value *CallOperandVal = info.CallOperandVal;
15921     // If we don't have a value, we can't do a match,
15922     // but allow it at the lowest weight.
15923   if (!CallOperandVal)
15924     return CW_Default;
15925   Type *type = CallOperandVal->getType();
15926 
15927   // Look at the constraint type.
15928   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15929     return CW_Register; // an individual CR bit.
15930   else if ((StringRef(constraint) == "wa" ||
15931             StringRef(constraint) == "wd" ||
15932             StringRef(constraint) == "wf") &&
15933            type->isVectorTy())
15934     return CW_Register;
15935   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15936     return CW_Register; // just hold 64-bit integers data.
15937   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15938     return CW_Register;
15939   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15940     return CW_Register;
15941 
15942   switch (*constraint) {
15943   default:
15944     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15945     break;
15946   case 'b':
15947     if (type->isIntegerTy())
15948       weight = CW_Register;
15949     break;
15950   case 'f':
15951     if (type->isFloatTy())
15952       weight = CW_Register;
15953     break;
15954   case 'd':
15955     if (type->isDoubleTy())
15956       weight = CW_Register;
15957     break;
15958   case 'v':
15959     if (type->isVectorTy())
15960       weight = CW_Register;
15961     break;
15962   case 'y':
15963     weight = CW_Register;
15964     break;
15965   case 'Z':
15966     weight = CW_Memory;
15967     break;
15968   }
15969   return weight;
15970 }
15971 
15972 std::pair<unsigned, const TargetRegisterClass *>
15973 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15974                                                 StringRef Constraint,
15975                                                 MVT VT) const {
15976   if (Constraint.size() == 1) {
15977     // GCC RS6000 Constraint Letters
15978     switch (Constraint[0]) {
15979     case 'b':   // R1-R31
15980       if (VT == MVT::i64 && Subtarget.isPPC64())
15981         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15982       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15983     case 'r':   // R0-R31
15984       if (VT == MVT::i64 && Subtarget.isPPC64())
15985         return std::make_pair(0U, &PPC::G8RCRegClass);
15986       return std::make_pair(0U, &PPC::GPRCRegClass);
15987     // 'd' and 'f' constraints are both defined to be "the floating point
15988     // registers", where one is for 32-bit and the other for 64-bit. We don't
15989     // really care overly much here so just give them all the same reg classes.
15990     case 'd':
15991     case 'f':
15992       if (Subtarget.hasSPE()) {
15993         if (VT == MVT::f32 || VT == MVT::i32)
15994           return std::make_pair(0U, &PPC::GPRCRegClass);
15995         if (VT == MVT::f64 || VT == MVT::i64)
15996           return std::make_pair(0U, &PPC::SPERCRegClass);
15997       } else {
15998         if (VT == MVT::f32 || VT == MVT::i32)
15999           return std::make_pair(0U, &PPC::F4RCRegClass);
16000         if (VT == MVT::f64 || VT == MVT::i64)
16001           return std::make_pair(0U, &PPC::F8RCRegClass);
16002       }
16003       break;
16004     case 'v':
16005       if (Subtarget.hasAltivec() && VT.isVector())
16006         return std::make_pair(0U, &PPC::VRRCRegClass);
16007       else if (Subtarget.hasVSX())
16008         // Scalars in Altivec registers only make sense with VSX.
16009         return std::make_pair(0U, &PPC::VFRCRegClass);
16010       break;
16011     case 'y':   // crrc
16012       return std::make_pair(0U, &PPC::CRRCRegClass);
16013     }
16014   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
16015     // An individual CR bit.
16016     return std::make_pair(0U, &PPC::CRBITRCRegClass);
16017   } else if ((Constraint == "wa" || Constraint == "wd" ||
16018              Constraint == "wf" || Constraint == "wi") &&
16019              Subtarget.hasVSX()) {
16020     // A VSX register for either a scalar (FP) or vector. There is no
16021     // support for single precision scalars on subtargets prior to Power8.
16022     if (VT.isVector())
16023       return std::make_pair(0U, &PPC::VSRCRegClass);
16024     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16025       return std::make_pair(0U, &PPC::VSSRCRegClass);
16026     return std::make_pair(0U, &PPC::VSFRCRegClass);
16027   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
16028     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16029       return std::make_pair(0U, &PPC::VSSRCRegClass);
16030     else
16031       return std::make_pair(0U, &PPC::VSFRCRegClass);
16032   } else if (Constraint == "lr") {
16033     if (VT == MVT::i64)
16034       return std::make_pair(0U, &PPC::LR8RCRegClass);
16035     else
16036       return std::make_pair(0U, &PPC::LRRCRegClass);
16037   }
16038 
16039   // Handle special cases of physical registers that are not properly handled
16040   // by the base class.
16041   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16042     // If we name a VSX register, we can't defer to the base class because it
16043     // will not recognize the correct register (their names will be VSL{0-31}
16044     // and V{0-31} so they won't match). So we match them here.
16045     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16046       int VSNum = atoi(Constraint.data() + 3);
16047       assert(VSNum >= 0 && VSNum <= 63 &&
16048              "Attempted to access a vsr out of range");
16049       if (VSNum < 32)
16050         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16051       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16052     }
16053 
16054     // For float registers, we can't defer to the base class as it will match
16055     // the SPILLTOVSRRC class.
16056     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16057       int RegNum = atoi(Constraint.data() + 2);
16058       if (RegNum > 31 || RegNum < 0)
16059         report_fatal_error("Invalid floating point register number");
16060       if (VT == MVT::f32 || VT == MVT::i32)
16061         return Subtarget.hasSPE()
16062                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16063                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16064       if (VT == MVT::f64 || VT == MVT::i64)
16065         return Subtarget.hasSPE()
16066                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16067                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16068     }
16069   }
16070 
16071   std::pair<unsigned, const TargetRegisterClass *> R =
16072       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16073 
16074   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16075   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16076   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16077   // register.
16078   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16079   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16080   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16081       PPC::GPRCRegClass.contains(R.first))
16082     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16083                             PPC::sub_32, &PPC::G8RCRegClass),
16084                           &PPC::G8RCRegClass);
16085 
16086   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16087   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16088     R.first = PPC::CR0;
16089     R.second = &PPC::CRRCRegClass;
16090   }
16091   // FIXME: This warning should ideally be emitted in the front end.
16092   const auto &TM = getTargetMachine();
16093   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16094     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16095          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16096         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16097       errs() << "warning: vector registers 20 to 32 are reserved in the "
16098                 "default AIX AltiVec ABI and cannot be used\n";
16099   }
16100 
16101   return R;
16102 }
16103 
16104 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16105 /// vector.  If it is invalid, don't add anything to Ops.
16106 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16107                                                      std::string &Constraint,
16108                                                      std::vector<SDValue>&Ops,
16109                                                      SelectionDAG &DAG) const {
16110   SDValue Result;
16111 
16112   // Only support length 1 constraints.
16113   if (Constraint.length() > 1) return;
16114 
16115   char Letter = Constraint[0];
16116   switch (Letter) {
16117   default: break;
16118   case 'I':
16119   case 'J':
16120   case 'K':
16121   case 'L':
16122   case 'M':
16123   case 'N':
16124   case 'O':
16125   case 'P': {
16126     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16127     if (!CST) return; // Must be an immediate to match.
16128     SDLoc dl(Op);
16129     int64_t Value = CST->getSExtValue();
16130     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16131                          // numbers are printed as such.
16132     switch (Letter) {
16133     default: llvm_unreachable("Unknown constraint letter!");
16134     case 'I':  // "I" is a signed 16-bit constant.
16135       if (isInt<16>(Value))
16136         Result = DAG.getTargetConstant(Value, dl, TCVT);
16137       break;
16138     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16139       if (isShiftedUInt<16, 16>(Value))
16140         Result = DAG.getTargetConstant(Value, dl, TCVT);
16141       break;
16142     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16143       if (isShiftedInt<16, 16>(Value))
16144         Result = DAG.getTargetConstant(Value, dl, TCVT);
16145       break;
16146     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16147       if (isUInt<16>(Value))
16148         Result = DAG.getTargetConstant(Value, dl, TCVT);
16149       break;
16150     case 'M':  // "M" is a constant that is greater than 31.
16151       if (Value > 31)
16152         Result = DAG.getTargetConstant(Value, dl, TCVT);
16153       break;
16154     case 'N':  // "N" is a positive constant that is an exact power of two.
16155       if (Value > 0 && isPowerOf2_64(Value))
16156         Result = DAG.getTargetConstant(Value, dl, TCVT);
16157       break;
16158     case 'O':  // "O" is the constant zero.
16159       if (Value == 0)
16160         Result = DAG.getTargetConstant(Value, dl, TCVT);
16161       break;
16162     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16163       if (isInt<16>(-Value))
16164         Result = DAG.getTargetConstant(Value, dl, TCVT);
16165       break;
16166     }
16167     break;
16168   }
16169   }
16170 
16171   if (Result.getNode()) {
16172     Ops.push_back(Result);
16173     return;
16174   }
16175 
16176   // Handle standard constraint letters.
16177   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16178 }
16179 
16180 // isLegalAddressingMode - Return true if the addressing mode represented
16181 // by AM is legal for this target, for a load/store of the specified type.
16182 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16183                                               const AddrMode &AM, Type *Ty,
16184                                               unsigned AS,
16185                                               Instruction *I) const {
16186   // Vector type r+i form is supported since power9 as DQ form. We don't check
16187   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16188   // imm form is preferred and the offset can be adjusted to use imm form later
16189   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16190   // max offset to check legal addressing mode, we should be a little aggressive
16191   // to contain other offsets for that LSRUse.
16192   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16193     return false;
16194 
16195   // PPC allows a sign-extended 16-bit immediate field.
16196   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16197     return false;
16198 
16199   // No global is ever allowed as a base.
16200   if (AM.BaseGV)
16201     return false;
16202 
16203   // PPC only support r+r,
16204   switch (AM.Scale) {
16205   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16206     break;
16207   case 1:
16208     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16209       return false;
16210     // Otherwise we have r+r or r+i.
16211     break;
16212   case 2:
16213     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16214       return false;
16215     // Allow 2*r as r+r.
16216     break;
16217   default:
16218     // No other scales are supported.
16219     return false;
16220   }
16221 
16222   return true;
16223 }
16224 
16225 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16226                                            SelectionDAG &DAG) const {
16227   MachineFunction &MF = DAG.getMachineFunction();
16228   MachineFrameInfo &MFI = MF.getFrameInfo();
16229   MFI.setReturnAddressIsTaken(true);
16230 
16231   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16232     return SDValue();
16233 
16234   SDLoc dl(Op);
16235   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16236 
16237   // Make sure the function does not optimize away the store of the RA to
16238   // the stack.
16239   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16240   FuncInfo->setLRStoreRequired();
16241   bool isPPC64 = Subtarget.isPPC64();
16242   auto PtrVT = getPointerTy(MF.getDataLayout());
16243 
16244   if (Depth > 0) {
16245     // The link register (return address) is saved in the caller's frame
16246     // not the callee's stack frame. So we must get the caller's frame
16247     // address and load the return address at the LR offset from there.
16248     SDValue FrameAddr =
16249         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16250                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16251     SDValue Offset =
16252         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16253                         isPPC64 ? MVT::i64 : MVT::i32);
16254     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16255                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16256                        MachinePointerInfo());
16257   }
16258 
16259   // Just load the return address off the stack.
16260   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16261   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16262                      MachinePointerInfo());
16263 }
16264 
16265 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16266                                           SelectionDAG &DAG) const {
16267   SDLoc dl(Op);
16268   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16269 
16270   MachineFunction &MF = DAG.getMachineFunction();
16271   MachineFrameInfo &MFI = MF.getFrameInfo();
16272   MFI.setFrameAddressIsTaken(true);
16273 
16274   EVT PtrVT = getPointerTy(MF.getDataLayout());
16275   bool isPPC64 = PtrVT == MVT::i64;
16276 
16277   // Naked functions never have a frame pointer, and so we use r1. For all
16278   // other functions, this decision must be delayed until during PEI.
16279   unsigned FrameReg;
16280   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16281     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16282   else
16283     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16284 
16285   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16286                                          PtrVT);
16287   while (Depth--)
16288     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16289                             FrameAddr, MachinePointerInfo());
16290   return FrameAddr;
16291 }
16292 
16293 // FIXME? Maybe this could be a TableGen attribute on some registers and
16294 // this table could be generated automatically from RegInfo.
16295 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16296                                               const MachineFunction &MF) const {
16297   bool isPPC64 = Subtarget.isPPC64();
16298 
16299   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16300   if (!is64Bit && VT != LLT::scalar(32))
16301     report_fatal_error("Invalid register global variable type");
16302 
16303   Register Reg = StringSwitch<Register>(RegName)
16304                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16305                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16306                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16307                      .Default(Register());
16308 
16309   if (Reg)
16310     return Reg;
16311   report_fatal_error("Invalid register name global variable");
16312 }
16313 
16314 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16315   // 32-bit SVR4 ABI access everything as got-indirect.
16316   if (Subtarget.is32BitELFABI())
16317     return true;
16318 
16319   // AIX accesses everything indirectly through the TOC, which is similar to
16320   // the GOT.
16321   if (Subtarget.isAIXABI())
16322     return true;
16323 
16324   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16325   // If it is small or large code model, module locals are accessed
16326   // indirectly by loading their address from .toc/.got.
16327   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16328     return true;
16329 
16330   // JumpTable and BlockAddress are accessed as got-indirect.
16331   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16332     return true;
16333 
16334   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16335     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16336 
16337   return false;
16338 }
16339 
16340 bool
16341 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16342   // The PowerPC target isn't yet aware of offsets.
16343   return false;
16344 }
16345 
16346 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16347                                            const CallInst &I,
16348                                            MachineFunction &MF,
16349                                            unsigned Intrinsic) const {
16350   switch (Intrinsic) {
16351   case Intrinsic::ppc_atomicrmw_xchg_i128:
16352   case Intrinsic::ppc_atomicrmw_add_i128:
16353   case Intrinsic::ppc_atomicrmw_sub_i128:
16354   case Intrinsic::ppc_atomicrmw_nand_i128:
16355   case Intrinsic::ppc_atomicrmw_and_i128:
16356   case Intrinsic::ppc_atomicrmw_or_i128:
16357   case Intrinsic::ppc_atomicrmw_xor_i128:
16358   case Intrinsic::ppc_cmpxchg_i128:
16359     Info.opc = ISD::INTRINSIC_W_CHAIN;
16360     Info.memVT = MVT::i128;
16361     Info.ptrVal = I.getArgOperand(0);
16362     Info.offset = 0;
16363     Info.align = Align(16);
16364     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16365                  MachineMemOperand::MOVolatile;
16366     return true;
16367   case Intrinsic::ppc_atomic_load_i128:
16368     Info.opc = ISD::INTRINSIC_W_CHAIN;
16369     Info.memVT = MVT::i128;
16370     Info.ptrVal = I.getArgOperand(0);
16371     Info.offset = 0;
16372     Info.align = Align(16);
16373     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16374     return true;
16375   case Intrinsic::ppc_atomic_store_i128:
16376     Info.opc = ISD::INTRINSIC_VOID;
16377     Info.memVT = MVT::i128;
16378     Info.ptrVal = I.getArgOperand(2);
16379     Info.offset = 0;
16380     Info.align = Align(16);
16381     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16382     return true;
16383   case Intrinsic::ppc_altivec_lvx:
16384   case Intrinsic::ppc_altivec_lvxl:
16385   case Intrinsic::ppc_altivec_lvebx:
16386   case Intrinsic::ppc_altivec_lvehx:
16387   case Intrinsic::ppc_altivec_lvewx:
16388   case Intrinsic::ppc_vsx_lxvd2x:
16389   case Intrinsic::ppc_vsx_lxvw4x:
16390   case Intrinsic::ppc_vsx_lxvd2x_be:
16391   case Intrinsic::ppc_vsx_lxvw4x_be:
16392   case Intrinsic::ppc_vsx_lxvl:
16393   case Intrinsic::ppc_vsx_lxvll: {
16394     EVT VT;
16395     switch (Intrinsic) {
16396     case Intrinsic::ppc_altivec_lvebx:
16397       VT = MVT::i8;
16398       break;
16399     case Intrinsic::ppc_altivec_lvehx:
16400       VT = MVT::i16;
16401       break;
16402     case Intrinsic::ppc_altivec_lvewx:
16403       VT = MVT::i32;
16404       break;
16405     case Intrinsic::ppc_vsx_lxvd2x:
16406     case Intrinsic::ppc_vsx_lxvd2x_be:
16407       VT = MVT::v2f64;
16408       break;
16409     default:
16410       VT = MVT::v4i32;
16411       break;
16412     }
16413 
16414     Info.opc = ISD::INTRINSIC_W_CHAIN;
16415     Info.memVT = VT;
16416     Info.ptrVal = I.getArgOperand(0);
16417     Info.offset = -VT.getStoreSize()+1;
16418     Info.size = 2*VT.getStoreSize()-1;
16419     Info.align = Align(1);
16420     Info.flags = MachineMemOperand::MOLoad;
16421     return true;
16422   }
16423   case Intrinsic::ppc_altivec_stvx:
16424   case Intrinsic::ppc_altivec_stvxl:
16425   case Intrinsic::ppc_altivec_stvebx:
16426   case Intrinsic::ppc_altivec_stvehx:
16427   case Intrinsic::ppc_altivec_stvewx:
16428   case Intrinsic::ppc_vsx_stxvd2x:
16429   case Intrinsic::ppc_vsx_stxvw4x:
16430   case Intrinsic::ppc_vsx_stxvd2x_be:
16431   case Intrinsic::ppc_vsx_stxvw4x_be:
16432   case Intrinsic::ppc_vsx_stxvl:
16433   case Intrinsic::ppc_vsx_stxvll: {
16434     EVT VT;
16435     switch (Intrinsic) {
16436     case Intrinsic::ppc_altivec_stvebx:
16437       VT = MVT::i8;
16438       break;
16439     case Intrinsic::ppc_altivec_stvehx:
16440       VT = MVT::i16;
16441       break;
16442     case Intrinsic::ppc_altivec_stvewx:
16443       VT = MVT::i32;
16444       break;
16445     case Intrinsic::ppc_vsx_stxvd2x:
16446     case Intrinsic::ppc_vsx_stxvd2x_be:
16447       VT = MVT::v2f64;
16448       break;
16449     default:
16450       VT = MVT::v4i32;
16451       break;
16452     }
16453 
16454     Info.opc = ISD::INTRINSIC_VOID;
16455     Info.memVT = VT;
16456     Info.ptrVal = I.getArgOperand(1);
16457     Info.offset = -VT.getStoreSize()+1;
16458     Info.size = 2*VT.getStoreSize()-1;
16459     Info.align = Align(1);
16460     Info.flags = MachineMemOperand::MOStore;
16461     return true;
16462   }
16463   default:
16464     break;
16465   }
16466 
16467   return false;
16468 }
16469 
16470 /// It returns EVT::Other if the type should be determined using generic
16471 /// target-independent logic.
16472 EVT PPCTargetLowering::getOptimalMemOpType(
16473     const MemOp &Op, const AttributeList &FuncAttributes) const {
16474   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16475     // We should use Altivec/VSX loads and stores when available. For unaligned
16476     // addresses, unaligned VSX loads are only fast starting with the P8.
16477     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16478         (Op.isAligned(Align(16)) ||
16479          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16480       return MVT::v4i32;
16481   }
16482 
16483   if (Subtarget.isPPC64()) {
16484     return MVT::i64;
16485   }
16486 
16487   return MVT::i32;
16488 }
16489 
16490 /// Returns true if it is beneficial to convert a load of a constant
16491 /// to just the constant itself.
16492 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16493                                                           Type *Ty) const {
16494   assert(Ty->isIntegerTy());
16495 
16496   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16497   return !(BitSize == 0 || BitSize > 64);
16498 }
16499 
16500 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16501   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16502     return false;
16503   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16504   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16505   return NumBits1 == 64 && NumBits2 == 32;
16506 }
16507 
16508 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16509   if (!VT1.isInteger() || !VT2.isInteger())
16510     return false;
16511   unsigned NumBits1 = VT1.getSizeInBits();
16512   unsigned NumBits2 = VT2.getSizeInBits();
16513   return NumBits1 == 64 && NumBits2 == 32;
16514 }
16515 
16516 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16517   // Generally speaking, zexts are not free, but they are free when they can be
16518   // folded with other operations.
16519   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16520     EVT MemVT = LD->getMemoryVT();
16521     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16522          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16523         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16524          LD->getExtensionType() == ISD::ZEXTLOAD))
16525       return true;
16526   }
16527 
16528   // FIXME: Add other cases...
16529   //  - 32-bit shifts with a zext to i64
16530   //  - zext after ctlz, bswap, etc.
16531   //  - zext after and by a constant mask
16532 
16533   return TargetLowering::isZExtFree(Val, VT2);
16534 }
16535 
16536 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16537   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16538          "invalid fpext types");
16539   // Extending to float128 is not free.
16540   if (DestVT == MVT::f128)
16541     return false;
16542   return true;
16543 }
16544 
16545 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16546   return isInt<16>(Imm) || isUInt<16>(Imm);
16547 }
16548 
16549 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16550   return isInt<16>(Imm) || isUInt<16>(Imm);
16551 }
16552 
16553 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16554                                                        MachineMemOperand::Flags,
16555                                                        bool *Fast) const {
16556   if (DisablePPCUnaligned)
16557     return false;
16558 
16559   // PowerPC supports unaligned memory access for simple non-vector types.
16560   // Although accessing unaligned addresses is not as efficient as accessing
16561   // aligned addresses, it is generally more efficient than manual expansion,
16562   // and generally only traps for software emulation when crossing page
16563   // boundaries.
16564 
16565   if (!VT.isSimple())
16566     return false;
16567 
16568   if (VT.isFloatingPoint() && !VT.isVector() &&
16569       !Subtarget.allowsUnalignedFPAccess())
16570     return false;
16571 
16572   if (VT.getSimpleVT().isVector()) {
16573     if (Subtarget.hasVSX()) {
16574       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16575           VT != MVT::v4f32 && VT != MVT::v4i32)
16576         return false;
16577     } else {
16578       return false;
16579     }
16580   }
16581 
16582   if (VT == MVT::ppcf128)
16583     return false;
16584 
16585   if (Fast)
16586     *Fast = true;
16587 
16588   return true;
16589 }
16590 
16591 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16592                                                SDValue C) const {
16593   // Check integral scalar types.
16594   if (!VT.isScalarInteger())
16595     return false;
16596   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16597     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16598       return false;
16599     // This transformation will generate >= 2 operations. But the following
16600     // cases will generate <= 2 instructions during ISEL. So exclude them.
16601     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16602     // HW instruction, ie. MULLI
16603     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16604     // instruction is needed than case 1, ie. MULLI and RLDICR
16605     int64_t Imm = ConstNode->getSExtValue();
16606     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16607     Imm >>= Shift;
16608     if (isInt<16>(Imm))
16609       return false;
16610     uint64_t UImm = static_cast<uint64_t>(Imm);
16611     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16612         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16613       return true;
16614   }
16615   return false;
16616 }
16617 
16618 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16619                                                    EVT VT) const {
16620   return isFMAFasterThanFMulAndFAdd(
16621       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16622 }
16623 
16624 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16625                                                    Type *Ty) const {
16626   if (Subtarget.hasSPE())
16627     return false;
16628   switch (Ty->getScalarType()->getTypeID()) {
16629   case Type::FloatTyID:
16630   case Type::DoubleTyID:
16631     return true;
16632   case Type::FP128TyID:
16633     return Subtarget.hasP9Vector();
16634   default:
16635     return false;
16636   }
16637 }
16638 
16639 // FIXME: add more patterns which are not profitable to hoist.
16640 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16641   if (!I->hasOneUse())
16642     return true;
16643 
16644   Instruction *User = I->user_back();
16645   assert(User && "A single use instruction with no uses.");
16646 
16647   switch (I->getOpcode()) {
16648   case Instruction::FMul: {
16649     // Don't break FMA, PowerPC prefers FMA.
16650     if (User->getOpcode() != Instruction::FSub &&
16651         User->getOpcode() != Instruction::FAdd)
16652       return true;
16653 
16654     const TargetOptions &Options = getTargetMachine().Options;
16655     const Function *F = I->getFunction();
16656     const DataLayout &DL = F->getParent()->getDataLayout();
16657     Type *Ty = User->getOperand(0)->getType();
16658 
16659     return !(
16660         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16661         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16662         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16663   }
16664   case Instruction::Load: {
16665     // Don't break "store (load float*)" pattern, this pattern will be combined
16666     // to "store (load int32)" in later InstCombine pass. See function
16667     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16668     // cycles than loading a 32 bit integer.
16669     LoadInst *LI = cast<LoadInst>(I);
16670     // For the loads that combineLoadToOperationType does nothing, like
16671     // ordered load, it should be profitable to hoist them.
16672     // For swifterror load, it can only be used for pointer to pointer type, so
16673     // later type check should get rid of this case.
16674     if (!LI->isUnordered())
16675       return true;
16676 
16677     if (User->getOpcode() != Instruction::Store)
16678       return true;
16679 
16680     if (I->getType()->getTypeID() != Type::FloatTyID)
16681       return true;
16682 
16683     return false;
16684   }
16685   default:
16686     return true;
16687   }
16688   return true;
16689 }
16690 
16691 const MCPhysReg *
16692 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16693   // LR is a callee-save register, but we must treat it as clobbered by any call
16694   // site. Hence we include LR in the scratch registers, which are in turn added
16695   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16696   // to CTR, which is used by any indirect call.
16697   static const MCPhysReg ScratchRegs[] = {
16698     PPC::X12, PPC::LR8, PPC::CTR8, 0
16699   };
16700 
16701   return ScratchRegs;
16702 }
16703 
16704 Register PPCTargetLowering::getExceptionPointerRegister(
16705     const Constant *PersonalityFn) const {
16706   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16707 }
16708 
16709 Register PPCTargetLowering::getExceptionSelectorRegister(
16710     const Constant *PersonalityFn) const {
16711   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16712 }
16713 
16714 bool
16715 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16716                      EVT VT , unsigned DefinedValues) const {
16717   if (VT == MVT::v2i64)
16718     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16719 
16720   if (Subtarget.hasVSX())
16721     return true;
16722 
16723   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16724 }
16725 
16726 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16727   if (DisableILPPref || Subtarget.enableMachineScheduler())
16728     return TargetLowering::getSchedulingPreference(N);
16729 
16730   return Sched::ILP;
16731 }
16732 
16733 // Create a fast isel object.
16734 FastISel *
16735 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16736                                   const TargetLibraryInfo *LibInfo) const {
16737   return PPC::createFastISel(FuncInfo, LibInfo);
16738 }
16739 
16740 // 'Inverted' means the FMA opcode after negating one multiplicand.
16741 // For example, (fma -a b c) = (fnmsub a b c)
16742 static unsigned invertFMAOpcode(unsigned Opc) {
16743   switch (Opc) {
16744   default:
16745     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16746   case ISD::FMA:
16747     return PPCISD::FNMSUB;
16748   case PPCISD::FNMSUB:
16749     return ISD::FMA;
16750   }
16751 }
16752 
16753 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16754                                                 bool LegalOps, bool OptForSize,
16755                                                 NegatibleCost &Cost,
16756                                                 unsigned Depth) const {
16757   if (Depth > SelectionDAG::MaxRecursionDepth)
16758     return SDValue();
16759 
16760   unsigned Opc = Op.getOpcode();
16761   EVT VT = Op.getValueType();
16762   SDNodeFlags Flags = Op.getNode()->getFlags();
16763 
16764   switch (Opc) {
16765   case PPCISD::FNMSUB:
16766     if (!Op.hasOneUse() || !isTypeLegal(VT))
16767       break;
16768 
16769     const TargetOptions &Options = getTargetMachine().Options;
16770     SDValue N0 = Op.getOperand(0);
16771     SDValue N1 = Op.getOperand(1);
16772     SDValue N2 = Op.getOperand(2);
16773     SDLoc Loc(Op);
16774 
16775     NegatibleCost N2Cost = NegatibleCost::Expensive;
16776     SDValue NegN2 =
16777         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16778 
16779     if (!NegN2)
16780       return SDValue();
16781 
16782     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16783     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16784     // These transformations may change sign of zeroes. For example,
16785     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16786     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16787       // Try and choose the cheaper one to negate.
16788       NegatibleCost N0Cost = NegatibleCost::Expensive;
16789       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16790                                            N0Cost, Depth + 1);
16791 
16792       NegatibleCost N1Cost = NegatibleCost::Expensive;
16793       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16794                                            N1Cost, Depth + 1);
16795 
16796       if (NegN0 && N0Cost <= N1Cost) {
16797         Cost = std::min(N0Cost, N2Cost);
16798         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16799       } else if (NegN1) {
16800         Cost = std::min(N1Cost, N2Cost);
16801         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16802       }
16803     }
16804 
16805     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16806     if (isOperationLegal(ISD::FMA, VT)) {
16807       Cost = N2Cost;
16808       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16809     }
16810 
16811     break;
16812   }
16813 
16814   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16815                                               Cost, Depth);
16816 }
16817 
16818 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16819 bool PPCTargetLowering::useLoadStackGuardNode() const {
16820   if (!Subtarget.isTargetLinux())
16821     return TargetLowering::useLoadStackGuardNode();
16822   return true;
16823 }
16824 
16825 // Override to disable global variable loading on Linux and insert AIX canary
16826 // word declaration.
16827 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16828   if (Subtarget.isAIXABI()) {
16829     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16830                         Type::getInt8PtrTy(M.getContext()));
16831     return;
16832   }
16833   if (!Subtarget.isTargetLinux())
16834     return TargetLowering::insertSSPDeclarations(M);
16835 }
16836 
16837 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16838   if (Subtarget.isAIXABI())
16839     return M.getGlobalVariable(AIXSSPCanaryWordName);
16840   return TargetLowering::getSDagStackGuard(M);
16841 }
16842 
16843 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16844                                      bool ForCodeSize) const {
16845   if (!VT.isSimple() || !Subtarget.hasVSX())
16846     return false;
16847 
16848   switch(VT.getSimpleVT().SimpleTy) {
16849   default:
16850     // For FP types that are currently not supported by PPC backend, return
16851     // false. Examples: f16, f80.
16852     return false;
16853   case MVT::f32:
16854   case MVT::f64:
16855     if (Subtarget.hasPrefixInstrs()) {
16856       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16857       return true;
16858     }
16859     LLVM_FALLTHROUGH;
16860   case MVT::ppcf128:
16861     return Imm.isPosZero();
16862   }
16863 }
16864 
16865 // For vector shift operation op, fold
16866 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16867 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16868                                   SelectionDAG &DAG) {
16869   SDValue N0 = N->getOperand(0);
16870   SDValue N1 = N->getOperand(1);
16871   EVT VT = N0.getValueType();
16872   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16873   unsigned Opcode = N->getOpcode();
16874   unsigned TargetOpcode;
16875 
16876   switch (Opcode) {
16877   default:
16878     llvm_unreachable("Unexpected shift operation");
16879   case ISD::SHL:
16880     TargetOpcode = PPCISD::SHL;
16881     break;
16882   case ISD::SRL:
16883     TargetOpcode = PPCISD::SRL;
16884     break;
16885   case ISD::SRA:
16886     TargetOpcode = PPCISD::SRA;
16887     break;
16888   }
16889 
16890   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16891       N1->getOpcode() == ISD::AND)
16892     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16893       if (Mask->getZExtValue() == OpSizeInBits - 1)
16894         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16895 
16896   return SDValue();
16897 }
16898 
16899 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16900   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16901     return Value;
16902 
16903   SDValue N0 = N->getOperand(0);
16904   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16905   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16906       N0.getOpcode() != ISD::SIGN_EXTEND ||
16907       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16908       N->getValueType(0) != MVT::i64)
16909     return SDValue();
16910 
16911   // We can't save an operation here if the value is already extended, and
16912   // the existing shift is easier to combine.
16913   SDValue ExtsSrc = N0.getOperand(0);
16914   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16915       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16916     return SDValue();
16917 
16918   SDLoc DL(N0);
16919   SDValue ShiftBy = SDValue(CN1, 0);
16920   // We want the shift amount to be i32 on the extswli, but the shift could
16921   // have an i64.
16922   if (ShiftBy.getValueType() == MVT::i64)
16923     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16924 
16925   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16926                          ShiftBy);
16927 }
16928 
16929 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16930   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16931     return Value;
16932 
16933   return SDValue();
16934 }
16935 
16936 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16937   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16938     return Value;
16939 
16940   return SDValue();
16941 }
16942 
16943 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16944 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16945 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16946 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16947 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16948                                  const PPCSubtarget &Subtarget) {
16949   if (!Subtarget.isPPC64())
16950     return SDValue();
16951 
16952   SDValue LHS = N->getOperand(0);
16953   SDValue RHS = N->getOperand(1);
16954 
16955   auto isZextOfCompareWithConstant = [](SDValue Op) {
16956     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16957         Op.getValueType() != MVT::i64)
16958       return false;
16959 
16960     SDValue Cmp = Op.getOperand(0);
16961     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16962         Cmp.getOperand(0).getValueType() != MVT::i64)
16963       return false;
16964 
16965     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16966       int64_t NegConstant = 0 - Constant->getSExtValue();
16967       // Due to the limitations of the addi instruction,
16968       // -C is required to be [-32768, 32767].
16969       return isInt<16>(NegConstant);
16970     }
16971 
16972     return false;
16973   };
16974 
16975   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16976   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16977 
16978   // If there is a pattern, canonicalize a zext operand to the RHS.
16979   if (LHSHasPattern && !RHSHasPattern)
16980     std::swap(LHS, RHS);
16981   else if (!LHSHasPattern && !RHSHasPattern)
16982     return SDValue();
16983 
16984   SDLoc DL(N);
16985   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16986   SDValue Cmp = RHS.getOperand(0);
16987   SDValue Z = Cmp.getOperand(0);
16988   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
16989   int64_t NegConstant = 0 - Constant->getSExtValue();
16990 
16991   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16992   default: break;
16993   case ISD::SETNE: {
16994     //                                 when C == 0
16995     //                             --> addze X, (addic Z, -1).carry
16996     //                            /
16997     // add X, (zext(setne Z, C))--
16998     //                            \    when -32768 <= -C <= 32767 && C != 0
16999     //                             --> addze X, (addic (addi Z, -C), -1).carry
17000     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17001                               DAG.getConstant(NegConstant, DL, MVT::i64));
17002     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17003     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17004                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
17005     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17006                        SDValue(Addc.getNode(), 1));
17007     }
17008   case ISD::SETEQ: {
17009     //                                 when C == 0
17010     //                             --> addze X, (subfic Z, 0).carry
17011     //                            /
17012     // add X, (zext(sete  Z, C))--
17013     //                            \    when -32768 <= -C <= 32767 && C != 0
17014     //                             --> addze X, (subfic (addi Z, -C), 0).carry
17015     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17016                               DAG.getConstant(NegConstant, DL, MVT::i64));
17017     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17018     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17019                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
17020     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17021                        SDValue(Subc.getNode(), 1));
17022     }
17023   }
17024 
17025   return SDValue();
17026 }
17027 
17028 // Transform
17029 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
17030 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
17031 // In this case both C1 and C2 must be known constants.
17032 // C1+C2 must fit into a 34 bit signed integer.
17033 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17034                                           const PPCSubtarget &Subtarget) {
17035   if (!Subtarget.isUsingPCRelativeCalls())
17036     return SDValue();
17037 
17038   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17039   // If we find that node try to cast the Global Address and the Constant.
17040   SDValue LHS = N->getOperand(0);
17041   SDValue RHS = N->getOperand(1);
17042 
17043   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17044     std::swap(LHS, RHS);
17045 
17046   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17047     return SDValue();
17048 
17049   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17050   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17051   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17052 
17053   // Check that both casts succeeded.
17054   if (!GSDN || !ConstNode)
17055     return SDValue();
17056 
17057   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17058   SDLoc DL(GSDN);
17059 
17060   // The signed int offset needs to fit in 34 bits.
17061   if (!isInt<34>(NewOffset))
17062     return SDValue();
17063 
17064   // The new global address is a copy of the old global address except
17065   // that it has the updated Offset.
17066   SDValue GA =
17067       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17068                                  NewOffset, GSDN->getTargetFlags());
17069   SDValue MatPCRel =
17070       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17071   return MatPCRel;
17072 }
17073 
17074 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17075   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17076     return Value;
17077 
17078   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17079     return Value;
17080 
17081   return SDValue();
17082 }
17083 
17084 // Detect TRUNCATE operations on bitcasts of float128 values.
17085 // What we are looking for here is the situtation where we extract a subset
17086 // of bits from a 128 bit float.
17087 // This can be of two forms:
17088 // 1) BITCAST of f128 feeding TRUNCATE
17089 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17090 // The reason this is required is because we do not have a legal i128 type
17091 // and so we want to prevent having to store the f128 and then reload part
17092 // of it.
17093 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17094                                            DAGCombinerInfo &DCI) const {
17095   // If we are using CRBits then try that first.
17096   if (Subtarget.useCRBits()) {
17097     // Check if CRBits did anything and return that if it did.
17098     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17099       return CRTruncValue;
17100   }
17101 
17102   SDLoc dl(N);
17103   SDValue Op0 = N->getOperand(0);
17104 
17105   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17106   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17107     EVT VT = N->getValueType(0);
17108     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17109       return SDValue();
17110     SDValue Sub = Op0.getOperand(0);
17111     if (Sub.getOpcode() == ISD::SUB) {
17112       SDValue SubOp0 = Sub.getOperand(0);
17113       SDValue SubOp1 = Sub.getOperand(1);
17114       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17115           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17116         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17117                                SubOp1.getOperand(0),
17118                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17119       }
17120     }
17121   }
17122 
17123   // Looking for a truncate of i128 to i64.
17124   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17125     return SDValue();
17126 
17127   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17128 
17129   // SRL feeding TRUNCATE.
17130   if (Op0.getOpcode() == ISD::SRL) {
17131     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17132     // The right shift has to be by 64 bits.
17133     if (!ConstNode || ConstNode->getZExtValue() != 64)
17134       return SDValue();
17135 
17136     // Switch the element number to extract.
17137     EltToExtract = EltToExtract ? 0 : 1;
17138     // Update Op0 past the SRL.
17139     Op0 = Op0.getOperand(0);
17140   }
17141 
17142   // BITCAST feeding a TRUNCATE possibly via SRL.
17143   if (Op0.getOpcode() == ISD::BITCAST &&
17144       Op0.getValueType() == MVT::i128 &&
17145       Op0.getOperand(0).getValueType() == MVT::f128) {
17146     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17147     return DCI.DAG.getNode(
17148         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17149         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17150   }
17151   return SDValue();
17152 }
17153 
17154 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17155   SelectionDAG &DAG = DCI.DAG;
17156 
17157   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17158   if (!ConstOpOrElement)
17159     return SDValue();
17160 
17161   // An imul is usually smaller than the alternative sequence for legal type.
17162   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17163       isOperationLegal(ISD::MUL, N->getValueType(0)))
17164     return SDValue();
17165 
17166   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17167     switch (this->Subtarget.getCPUDirective()) {
17168     default:
17169       // TODO: enhance the condition for subtarget before pwr8
17170       return false;
17171     case PPC::DIR_PWR8:
17172       //  type        mul     add    shl
17173       // scalar        4       1      1
17174       // vector        7       2      2
17175       return true;
17176     case PPC::DIR_PWR9:
17177     case PPC::DIR_PWR10:
17178     case PPC::DIR_PWR_FUTURE:
17179       //  type        mul     add    shl
17180       // scalar        5       2      2
17181       // vector        7       2      2
17182 
17183       // The cycle RATIO of related operations are showed as a table above.
17184       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17185       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17186       // are 4, it is always profitable; but for 3 instrs patterns
17187       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17188       // So we should only do it for vector type.
17189       return IsAddOne && IsNeg ? VT.isVector() : true;
17190     }
17191   };
17192 
17193   EVT VT = N->getValueType(0);
17194   SDLoc DL(N);
17195 
17196   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17197   bool IsNeg = MulAmt.isNegative();
17198   APInt MulAmtAbs = MulAmt.abs();
17199 
17200   if ((MulAmtAbs - 1).isPowerOf2()) {
17201     // (mul x, 2^N + 1) => (add (shl x, N), x)
17202     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17203 
17204     if (!IsProfitable(IsNeg, true, VT))
17205       return SDValue();
17206 
17207     SDValue Op0 = N->getOperand(0);
17208     SDValue Op1 =
17209         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17210                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17211     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17212 
17213     if (!IsNeg)
17214       return Res;
17215 
17216     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17217   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17218     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17219     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17220 
17221     if (!IsProfitable(IsNeg, false, VT))
17222       return SDValue();
17223 
17224     SDValue Op0 = N->getOperand(0);
17225     SDValue Op1 =
17226         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17227                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17228 
17229     if (!IsNeg)
17230       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17231     else
17232       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17233 
17234   } else {
17235     return SDValue();
17236   }
17237 }
17238 
17239 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17240 // in combiner since we need to check SD flags and other subtarget features.
17241 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17242                                           DAGCombinerInfo &DCI) const {
17243   SDValue N0 = N->getOperand(0);
17244   SDValue N1 = N->getOperand(1);
17245   SDValue N2 = N->getOperand(2);
17246   SDNodeFlags Flags = N->getFlags();
17247   EVT VT = N->getValueType(0);
17248   SelectionDAG &DAG = DCI.DAG;
17249   const TargetOptions &Options = getTargetMachine().Options;
17250   unsigned Opc = N->getOpcode();
17251   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17252   bool LegalOps = !DCI.isBeforeLegalizeOps();
17253   SDLoc Loc(N);
17254 
17255   if (!isOperationLegal(ISD::FMA, VT))
17256     return SDValue();
17257 
17258   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17259   // since (fnmsub a b c)=-0 while c-ab=+0.
17260   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17261     return SDValue();
17262 
17263   // (fma (fneg a) b c) => (fnmsub a b c)
17264   // (fnmsub (fneg a) b c) => (fma a b c)
17265   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17266     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17267 
17268   // (fma a (fneg b) c) => (fnmsub a b c)
17269   // (fnmsub a (fneg b) c) => (fma a b c)
17270   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17271     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17272 
17273   return SDValue();
17274 }
17275 
17276 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17277   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17278   if (!Subtarget.is64BitELFABI())
17279     return false;
17280 
17281   // If not a tail call then no need to proceed.
17282   if (!CI->isTailCall())
17283     return false;
17284 
17285   // If sibling calls have been disabled and tail-calls aren't guaranteed
17286   // there is no reason to duplicate.
17287   auto &TM = getTargetMachine();
17288   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17289     return false;
17290 
17291   // Can't tail call a function called indirectly, or if it has variadic args.
17292   const Function *Callee = CI->getCalledFunction();
17293   if (!Callee || Callee->isVarArg())
17294     return false;
17295 
17296   // Make sure the callee and caller calling conventions are eligible for tco.
17297   const Function *Caller = CI->getParent()->getParent();
17298   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17299                                            CI->getCallingConv()))
17300       return false;
17301 
17302   // If the function is local then we have a good chance at tail-calling it
17303   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17304 }
17305 
17306 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17307   if (!Subtarget.hasVSX())
17308     return false;
17309   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17310     return true;
17311   return VT == MVT::f32 || VT == MVT::f64 ||
17312     VT == MVT::v4f32 || VT == MVT::v2f64;
17313 }
17314 
17315 bool PPCTargetLowering::
17316 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17317   const Value *Mask = AndI.getOperand(1);
17318   // If the mask is suitable for andi. or andis. we should sink the and.
17319   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17320     // Can't handle constants wider than 64-bits.
17321     if (CI->getBitWidth() > 64)
17322       return false;
17323     int64_t ConstVal = CI->getZExtValue();
17324     return isUInt<16>(ConstVal) ||
17325       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17326   }
17327 
17328   // For non-constant masks, we can always use the record-form and.
17329   return true;
17330 }
17331 
17332 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17333 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17334 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17335 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17336 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17337 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17338   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17339   assert(Subtarget.hasP9Altivec() &&
17340          "Only combine this when P9 altivec supported!");
17341   EVT VT = N->getValueType(0);
17342   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17343     return SDValue();
17344 
17345   SelectionDAG &DAG = DCI.DAG;
17346   SDLoc dl(N);
17347   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17348     // Even for signed integers, if it's known to be positive (as signed
17349     // integer) due to zero-extended inputs.
17350     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17351     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17352     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17353          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17354         (SubOpcd1 == ISD::ZERO_EXTEND ||
17355          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17356       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17357                          N->getOperand(0)->getOperand(0),
17358                          N->getOperand(0)->getOperand(1),
17359                          DAG.getTargetConstant(0, dl, MVT::i32));
17360     }
17361 
17362     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17363     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17364         N->getOperand(0).hasOneUse()) {
17365       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17366                          N->getOperand(0)->getOperand(0),
17367                          N->getOperand(0)->getOperand(1),
17368                          DAG.getTargetConstant(1, dl, MVT::i32));
17369     }
17370   }
17371 
17372   return SDValue();
17373 }
17374 
17375 // For type v4i32/v8ii16/v16i8, transform
17376 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17377 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17378 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17379 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17380 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17381                                           DAGCombinerInfo &DCI) const {
17382   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17383   assert(Subtarget.hasP9Altivec() &&
17384          "Only combine this when P9 altivec supported!");
17385 
17386   SelectionDAG &DAG = DCI.DAG;
17387   SDLoc dl(N);
17388   SDValue Cond = N->getOperand(0);
17389   SDValue TrueOpnd = N->getOperand(1);
17390   SDValue FalseOpnd = N->getOperand(2);
17391   EVT VT = N->getOperand(1).getValueType();
17392 
17393   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17394       FalseOpnd.getOpcode() != ISD::SUB)
17395     return SDValue();
17396 
17397   // ABSD only available for type v4i32/v8i16/v16i8
17398   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17399     return SDValue();
17400 
17401   // At least to save one more dependent computation
17402   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17403     return SDValue();
17404 
17405   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17406 
17407   // Can only handle unsigned comparison here
17408   switch (CC) {
17409   default:
17410     return SDValue();
17411   case ISD::SETUGT:
17412   case ISD::SETUGE:
17413     break;
17414   case ISD::SETULT:
17415   case ISD::SETULE:
17416     std::swap(TrueOpnd, FalseOpnd);
17417     break;
17418   }
17419 
17420   SDValue CmpOpnd1 = Cond.getOperand(0);
17421   SDValue CmpOpnd2 = Cond.getOperand(1);
17422 
17423   // SETCC CmpOpnd1 CmpOpnd2 cond
17424   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17425   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17426   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17427       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17428       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17429       FalseOpnd.getOperand(1) == CmpOpnd1) {
17430     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17431                        CmpOpnd1, CmpOpnd2,
17432                        DAG.getTargetConstant(0, dl, MVT::i32));
17433   }
17434 
17435   return SDValue();
17436 }
17437 
17438 /// getAddrModeForFlags - Based on the set of address flags, select the most
17439 /// optimal instruction format to match by.
17440 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17441   // This is not a node we should be handling here.
17442   if (Flags == PPC::MOF_None)
17443     return PPC::AM_None;
17444   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17445   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17446     if ((Flags & FlagSet) == FlagSet)
17447       return PPC::AM_DForm;
17448   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17449     if ((Flags & FlagSet) == FlagSet)
17450       return PPC::AM_DSForm;
17451   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17452     if ((Flags & FlagSet) == FlagSet)
17453       return PPC::AM_DQForm;
17454   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17455     if ((Flags & FlagSet) == FlagSet)
17456       return PPC::AM_PrefixDForm;
17457   // If no other forms are selected, return an X-Form as it is the most
17458   // general addressing mode.
17459   return PPC::AM_XForm;
17460 }
17461 
17462 /// Set alignment flags based on whether or not the Frame Index is aligned.
17463 /// Utilized when computing flags for address computation when selecting
17464 /// load and store instructions.
17465 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17466                                SelectionDAG &DAG) {
17467   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17468   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17469   if (!FI)
17470     return;
17471   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17472   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17473   // If this is (add $FI, $S16Imm), the alignment flags are already set
17474   // based on the immediate. We just need to clear the alignment flags
17475   // if the FI alignment is weaker.
17476   if ((FrameIndexAlign % 4) != 0)
17477     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17478   if ((FrameIndexAlign % 16) != 0)
17479     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17480   // If the address is a plain FrameIndex, set alignment flags based on
17481   // FI alignment.
17482   if (!IsAdd) {
17483     if ((FrameIndexAlign % 4) == 0)
17484       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17485     if ((FrameIndexAlign % 16) == 0)
17486       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17487   }
17488 }
17489 
17490 /// Given a node, compute flags that are used for address computation when
17491 /// selecting load and store instructions. The flags computed are stored in
17492 /// FlagSet. This function takes into account whether the node is a constant,
17493 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17494 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17495                                               SelectionDAG &DAG) {
17496   // Set the alignment flags for the node depending on if the node is
17497   // 4-byte or 16-byte aligned.
17498   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17499     if ((Imm & 0x3) == 0)
17500       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17501     if ((Imm & 0xf) == 0)
17502       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17503   };
17504 
17505   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17506     // All 32-bit constants can be computed as LIS + Disp.
17507     const APInt &ConstImm = CN->getAPIntValue();
17508     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17509       FlagSet |= PPC::MOF_AddrIsSImm32;
17510       SetAlignFlagsForImm(ConstImm.getZExtValue());
17511       setAlignFlagsForFI(N, FlagSet, DAG);
17512     }
17513     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17514       FlagSet |= PPC::MOF_RPlusSImm34;
17515     else // Let constant materialization handle large constants.
17516       FlagSet |= PPC::MOF_NotAddNorCst;
17517   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17518     // This address can be represented as an addition of:
17519     // - Register + Imm16 (possibly a multiple of 4/16)
17520     // - Register + Imm34
17521     // - Register + PPCISD::Lo
17522     // - Register + Register
17523     // In any case, we won't have to match this as Base + Zero.
17524     SDValue RHS = N.getOperand(1);
17525     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17526       const APInt &ConstImm = CN->getAPIntValue();
17527       if (ConstImm.isSignedIntN(16)) {
17528         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17529         SetAlignFlagsForImm(ConstImm.getZExtValue());
17530         setAlignFlagsForFI(N, FlagSet, DAG);
17531       }
17532       if (ConstImm.isSignedIntN(34))
17533         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17534       else
17535         FlagSet |= PPC::MOF_RPlusR; // Register.
17536     } else if (RHS.getOpcode() == PPCISD::Lo &&
17537                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17538       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17539     else
17540       FlagSet |= PPC::MOF_RPlusR;
17541   } else { // The address computation is not a constant or an addition.
17542     setAlignFlagsForFI(N, FlagSet, DAG);
17543     FlagSet |= PPC::MOF_NotAddNorCst;
17544   }
17545 }
17546 
17547 static bool isPCRelNode(SDValue N) {
17548   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17549       isValidPCRelNode<ConstantPoolSDNode>(N) ||
17550       isValidPCRelNode<GlobalAddressSDNode>(N) ||
17551       isValidPCRelNode<JumpTableSDNode>(N) ||
17552       isValidPCRelNode<BlockAddressSDNode>(N));
17553 }
17554 
17555 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17556 /// the address flags of the load/store instruction that is to be matched.
17557 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17558                                            SelectionDAG &DAG) const {
17559   unsigned FlagSet = PPC::MOF_None;
17560 
17561   // Compute subtarget flags.
17562   if (!Subtarget.hasP9Vector())
17563     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17564   else {
17565     FlagSet |= PPC::MOF_SubtargetP9;
17566     if (Subtarget.hasPrefixInstrs())
17567       FlagSet |= PPC::MOF_SubtargetP10;
17568   }
17569   if (Subtarget.hasSPE())
17570     FlagSet |= PPC::MOF_SubtargetSPE;
17571 
17572   // Check if we have a PCRel node and return early.
17573   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17574     return FlagSet;
17575 
17576   // If the node is the paired load/store intrinsics, compute flags for
17577   // address computation and return early.
17578   unsigned ParentOp = Parent->getOpcode();
17579   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17580                                (ParentOp == ISD::INTRINSIC_VOID))) {
17581     unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17582     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17583       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17584                              ? Parent->getOperand(2)
17585                              : Parent->getOperand(3);
17586       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17587       FlagSet |= PPC::MOF_Vector;
17588       return FlagSet;
17589     }
17590   }
17591 
17592   // Mark this as something we don't want to handle here if it is atomic
17593   // or pre-increment instruction.
17594   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17595     if (LSB->isIndexed())
17596       return PPC::MOF_None;
17597 
17598   // Compute in-memory type flags. This is based on if there are scalars,
17599   // floats or vectors.
17600   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17601   assert(MN && "Parent should be a MemSDNode!");
17602   EVT MemVT = MN->getMemoryVT();
17603   unsigned Size = MemVT.getSizeInBits();
17604   if (MemVT.isScalarInteger()) {
17605     assert(Size <= 128 &&
17606            "Not expecting scalar integers larger than 16 bytes!");
17607     if (Size < 32)
17608       FlagSet |= PPC::MOF_SubWordInt;
17609     else if (Size == 32)
17610       FlagSet |= PPC::MOF_WordInt;
17611     else
17612       FlagSet |= PPC::MOF_DoubleWordInt;
17613   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17614     if (Size == 128)
17615       FlagSet |= PPC::MOF_Vector;
17616     else if (Size == 256) {
17617       assert(Subtarget.pairedVectorMemops() &&
17618              "256-bit vectors are only available when paired vector memops is "
17619              "enabled!");
17620       FlagSet |= PPC::MOF_Vector;
17621     } else
17622       llvm_unreachable("Not expecting illegal vectors!");
17623   } else { // Floating point type: can be scalar, f128 or vector types.
17624     if (Size == 32 || Size == 64)
17625       FlagSet |= PPC::MOF_ScalarFloat;
17626     else if (MemVT == MVT::f128 || MemVT.isVector())
17627       FlagSet |= PPC::MOF_Vector;
17628     else
17629       llvm_unreachable("Not expecting illegal scalar floats!");
17630   }
17631 
17632   // Compute flags for address computation.
17633   computeFlagsForAddressComputation(N, FlagSet, DAG);
17634 
17635   // Compute type extension flags.
17636   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17637     switch (LN->getExtensionType()) {
17638     case ISD::SEXTLOAD:
17639       FlagSet |= PPC::MOF_SExt;
17640       break;
17641     case ISD::EXTLOAD:
17642     case ISD::ZEXTLOAD:
17643       FlagSet |= PPC::MOF_ZExt;
17644       break;
17645     case ISD::NON_EXTLOAD:
17646       FlagSet |= PPC::MOF_NoExt;
17647       break;
17648     }
17649   } else
17650     FlagSet |= PPC::MOF_NoExt;
17651 
17652   // For integers, no extension is the same as zero extension.
17653   // We set the extension mode to zero extension so we don't have
17654   // to add separate entries in AddrModesMap for loads and stores.
17655   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17656     FlagSet |= PPC::MOF_ZExt;
17657     FlagSet &= ~PPC::MOF_NoExt;
17658   }
17659 
17660   // If we don't have prefixed instructions, 34-bit constants should be
17661   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17662   bool IsNonP1034BitConst =
17663       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17664        FlagSet) == PPC::MOF_RPlusSImm34;
17665   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17666       IsNonP1034BitConst)
17667     FlagSet |= PPC::MOF_NotAddNorCst;
17668 
17669   return FlagSet;
17670 }
17671 
17672 /// SelectForceXFormMode - Given the specified address, force it to be
17673 /// represented as an indexed [r+r] operation (an XForm instruction).
17674 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17675                                                       SDValue &Base,
17676                                                       SelectionDAG &DAG) const {
17677 
17678   PPC::AddrMode Mode = PPC::AM_XForm;
17679   int16_t ForceXFormImm = 0;
17680   if (provablyDisjointOr(DAG, N) &&
17681       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17682     Disp = N.getOperand(0);
17683     Base = N.getOperand(1);
17684     return Mode;
17685   }
17686 
17687   // If the address is the result of an add, we will utilize the fact that the
17688   // address calculation includes an implicit add.  However, we can reduce
17689   // register pressure if we do not materialize a constant just for use as the
17690   // index register.  We only get rid of the add if it is not an add of a
17691   // value and a 16-bit signed constant and both have a single use.
17692   if (N.getOpcode() == ISD::ADD &&
17693       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17694        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17695     Disp = N.getOperand(0);
17696     Base = N.getOperand(1);
17697     return Mode;
17698   }
17699 
17700   // Otherwise, use R0 as the base register.
17701   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17702                          N.getValueType());
17703   Base = N;
17704 
17705   return Mode;
17706 }
17707 
17708 bool PPCTargetLowering::splitValueIntoRegisterParts(
17709     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
17710     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
17711   EVT ValVT = Val.getValueType();
17712   // If we are splitting a scalar integer into f64 parts (i.e. so they
17713   // can be placed into VFRC registers), we need to zero extend and
17714   // bitcast the values. This will ensure the value is placed into a
17715   // VSR using direct moves or stack operations as needed.
17716   if (PartVT == MVT::f64 &&
17717       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
17718     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
17719     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
17720     Parts[0] = Val;
17721     return true;
17722   }
17723   return false;
17724 }
17725 
17726 // If we happen to match to an aligned D-Form, check if the Frame Index is
17727 // adequately aligned. If it is not, reset the mode to match to X-Form.
17728 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17729                                    PPC::AddrMode &Mode) {
17730   if (!isa<FrameIndexSDNode>(N))
17731     return;
17732   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17733       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17734     Mode = PPC::AM_XForm;
17735 }
17736 
17737 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17738 /// compute the address flags of the node, get the optimal address mode based
17739 /// on the flags, and set the Base and Disp based on the address mode.
17740 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17741                                                        SDValue N, SDValue &Disp,
17742                                                        SDValue &Base,
17743                                                        SelectionDAG &DAG,
17744                                                        MaybeAlign Align) const {
17745   SDLoc DL(Parent);
17746 
17747   // Compute the address flags.
17748   unsigned Flags = computeMOFlags(Parent, N, DAG);
17749 
17750   // Get the optimal address mode based on the Flags.
17751   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17752 
17753   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17754   // Select an X-Form load if it is not.
17755   setXFormForUnalignedFI(N, Flags, Mode);
17756 
17757   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
17758   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
17759     assert(Subtarget.isUsingPCRelativeCalls() &&
17760            "Must be using PC-Relative calls when a valid PC-Relative node is "
17761            "present!");
17762     Mode = PPC::AM_PCRel;
17763   }
17764 
17765   // Set Base and Disp accordingly depending on the address mode.
17766   switch (Mode) {
17767   case PPC::AM_DForm:
17768   case PPC::AM_DSForm:
17769   case PPC::AM_DQForm: {
17770     // This is a register plus a 16-bit immediate. The base will be the
17771     // register and the displacement will be the immediate unless it
17772     // isn't sufficiently aligned.
17773     if (Flags & PPC::MOF_RPlusSImm16) {
17774       SDValue Op0 = N.getOperand(0);
17775       SDValue Op1 = N.getOperand(1);
17776       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17777       if (!Align || isAligned(*Align, Imm)) {
17778         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17779         Base = Op0;
17780         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17781           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17782           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17783         }
17784         break;
17785       }
17786     }
17787     // This is a register plus the @lo relocation. The base is the register
17788     // and the displacement is the global address.
17789     else if (Flags & PPC::MOF_RPlusLo) {
17790       Disp = N.getOperand(1).getOperand(0); // The global address.
17791       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17792              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17793              Disp.getOpcode() == ISD::TargetConstantPool ||
17794              Disp.getOpcode() == ISD::TargetJumpTable);
17795       Base = N.getOperand(0);
17796       break;
17797     }
17798     // This is a constant address at most 32 bits. The base will be
17799     // zero or load-immediate-shifted and the displacement will be
17800     // the low 16 bits of the address.
17801     else if (Flags & PPC::MOF_AddrIsSImm32) {
17802       auto *CN = cast<ConstantSDNode>(N);
17803       EVT CNType = CN->getValueType(0);
17804       uint64_t CNImm = CN->getZExtValue();
17805       // If this address fits entirely in a 16-bit sext immediate field, codegen
17806       // this as "d, 0".
17807       int16_t Imm;
17808       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17809         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17810         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17811                                CNType);
17812         break;
17813       }
17814       // Handle 32-bit sext immediate with LIS + Addr mode.
17815       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17816           (!Align || isAligned(*Align, CNImm))) {
17817         int32_t Addr = (int32_t)CNImm;
17818         // Otherwise, break this down into LIS + Disp.
17819         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17820         Base =
17821             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17822         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17823         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17824         break;
17825       }
17826     }
17827     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17828     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17829     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17830       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17831       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17832     } else
17833       Base = N;
17834     break;
17835   }
17836   case PPC::AM_PrefixDForm: {
17837     int64_t Imm34 = 0;
17838     unsigned Opcode = N.getOpcode();
17839     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
17840         (isIntS34Immediate(N.getOperand(1), Imm34))) {
17841       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
17842       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17843       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
17844         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17845       else
17846         Base = N.getOperand(0);
17847     } else if (isIntS34Immediate(N, Imm34)) {
17848       // The address is a 34-bit signed immediate.
17849       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17850       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
17851     }
17852     break;
17853   }
17854   case PPC::AM_PCRel: {
17855     // When selecting PC-Relative instructions, "Base" is not utilized as
17856     // we select the address as [PC+imm].
17857     Disp = N;
17858     break;
17859   }
17860   case PPC::AM_None:
17861     break;
17862   default: { // By default, X-Form is always available to be selected.
17863     // When a frame index is not aligned, we also match by XForm.
17864     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17865     Base = FI ? N : N.getOperand(1);
17866     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17867                                 N.getValueType())
17868               : N.getOperand(0);
17869     break;
17870   }
17871   }
17872   return Mode;
17873 }
17874 
17875 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17876                                                  bool Return,
17877                                                  bool IsVarArg) const {
17878   switch (CC) {
17879   case CallingConv::Cold:
17880     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
17881   default:
17882     return CC_PPC64_ELF_FIS;
17883   }
17884 }
17885 
17886 TargetLowering::AtomicExpansionKind
17887 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
17888   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
17889   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17890     return AtomicExpansionKind::MaskedIntrinsic;
17891   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
17892 }
17893 
17894 TargetLowering::AtomicExpansionKind
17895 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
17896   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
17897   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17898     return AtomicExpansionKind::MaskedIntrinsic;
17899   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
17900 }
17901 
17902 static Intrinsic::ID
17903 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
17904   switch (BinOp) {
17905   default:
17906     llvm_unreachable("Unexpected AtomicRMW BinOp");
17907   case AtomicRMWInst::Xchg:
17908     return Intrinsic::ppc_atomicrmw_xchg_i128;
17909   case AtomicRMWInst::Add:
17910     return Intrinsic::ppc_atomicrmw_add_i128;
17911   case AtomicRMWInst::Sub:
17912     return Intrinsic::ppc_atomicrmw_sub_i128;
17913   case AtomicRMWInst::And:
17914     return Intrinsic::ppc_atomicrmw_and_i128;
17915   case AtomicRMWInst::Or:
17916     return Intrinsic::ppc_atomicrmw_or_i128;
17917   case AtomicRMWInst::Xor:
17918     return Intrinsic::ppc_atomicrmw_xor_i128;
17919   case AtomicRMWInst::Nand:
17920     return Intrinsic::ppc_atomicrmw_nand_i128;
17921   }
17922 }
17923 
17924 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
17925     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
17926     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
17927   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17928          "Only support quadword now");
17929   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17930   Type *ValTy = AlignedAddr->getType()->getPointerElementType();
17931   assert(ValTy->getPrimitiveSizeInBits() == 128);
17932   Function *RMW = Intrinsic::getDeclaration(
17933       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
17934   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17935   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
17936   Value *IncrHi =
17937       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
17938   Value *Addr =
17939       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17940   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
17941   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17942   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17943   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17944   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17945   return Builder.CreateOr(
17946       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17947 }
17948 
17949 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
17950     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
17951     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
17952   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17953          "Only support quadword now");
17954   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17955   Type *ValTy = AlignedAddr->getType()->getPointerElementType();
17956   assert(ValTy->getPrimitiveSizeInBits() == 128);
17957   Function *IntCmpXchg =
17958       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
17959   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17960   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
17961   Value *CmpHi =
17962       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
17963   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
17964   Value *NewHi =
17965       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
17966   Value *Addr =
17967       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17968   emitLeadingFence(Builder, CI, Ord);
17969   Value *LoHi =
17970       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
17971   emitTrailingFence(Builder, CI, Ord);
17972   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17973   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17974   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17975   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17976   return Builder.CreateOr(
17977       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17978 }
17979