1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCContext.h" 74 #include "llvm/MC/MCExpr.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCSymbolXCOFF.h" 77 #include "llvm/Support/AtomicOrdering.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CodeGen.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MachineValueType.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <list> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 102 #define DEBUG_TYPE "ppc-lowering" 103 104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 112 113 static cl::opt<bool> DisableSCO("disable-ppc-sco", 114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 115 116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 118 119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 120 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 121 122 STATISTIC(NumTailCalls, "Number of tail calls"); 123 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 124 125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 126 127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 128 129 // FIXME: Remove this once the bug has been fixed! 130 extern cl::opt<bool> ANDIGlueBug; 131 132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 133 const PPCSubtarget &STI) 134 : TargetLowering(TM), Subtarget(STI) { 135 // Use _setjmp/_longjmp instead of setjmp/longjmp. 136 setUseUnderscoreSetJmp(true); 137 setUseUnderscoreLongJmp(true); 138 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 170 171 // PowerPC has pre-inc load and store's. 172 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 177 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 182 if (!Subtarget.hasSPE()) { 183 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 185 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 187 } 188 189 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 190 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 191 for (MVT VT : ScalarIntVTs) { 192 setOperationAction(ISD::ADDC, VT, Legal); 193 setOperationAction(ISD::ADDE, VT, Legal); 194 setOperationAction(ISD::SUBC, VT, Legal); 195 setOperationAction(ISD::SUBE, VT, Legal); 196 } 197 198 if (Subtarget.useCRBits()) { 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 201 if (isPPC64 || Subtarget.hasFPCVT()) { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 203 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 204 isPPC64 ? MVT::i64 : MVT::i32); 205 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 206 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 207 isPPC64 ? MVT::i64 : MVT::i32); 208 } else { 209 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 210 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 211 } 212 213 // PowerPC does not support direct load/store of condition registers. 214 setOperationAction(ISD::LOAD, MVT::i1, Custom); 215 setOperationAction(ISD::STORE, MVT::i1, Custom); 216 217 // FIXME: Remove this once the ANDI glue bug is fixed: 218 if (ANDIGlueBug) 219 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 220 221 for (MVT VT : MVT::integer_valuetypes()) { 222 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 223 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 224 setTruncStoreAction(VT, MVT::i1, Expand); 225 } 226 227 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 228 } 229 230 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 231 // PPC (the libcall is not available). 232 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 233 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 234 235 // We do not currently implement these libm ops for PowerPC. 236 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 237 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 242 243 // PowerPC has no SREM/UREM instructions unless we are on P9 244 // On P9 we may use a hardware instruction to compute the remainder. 245 // The instructions are not legalized directly because in the cases where the 246 // result of both the remainder and the division is required it is more 247 // efficient to compute the remainder from the result of the division rather 248 // than use the remainder instruction. 249 if (Subtarget.isISA3_0()) { 250 setOperationAction(ISD::SREM, MVT::i32, Custom); 251 setOperationAction(ISD::UREM, MVT::i32, Custom); 252 setOperationAction(ISD::SREM, MVT::i64, Custom); 253 setOperationAction(ISD::UREM, MVT::i64, Custom); 254 } else { 255 setOperationAction(ISD::SREM, MVT::i32, Expand); 256 setOperationAction(ISD::UREM, MVT::i32, Expand); 257 setOperationAction(ISD::SREM, MVT::i64, Expand); 258 setOperationAction(ISD::UREM, MVT::i64, Expand); 259 } 260 261 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 262 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 263 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 265 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 267 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 269 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 270 271 // We don't support sin/cos/sqrt/fmod/pow 272 setOperationAction(ISD::FSIN , MVT::f64, Expand); 273 setOperationAction(ISD::FCOS , MVT::f64, Expand); 274 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 275 setOperationAction(ISD::FREM , MVT::f64, Expand); 276 setOperationAction(ISD::FPOW , MVT::f64, Expand); 277 setOperationAction(ISD::FSIN , MVT::f32, Expand); 278 setOperationAction(ISD::FCOS , MVT::f32, Expand); 279 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 280 setOperationAction(ISD::FREM , MVT::f32, Expand); 281 setOperationAction(ISD::FPOW , MVT::f32, Expand); 282 if (Subtarget.hasSPE()) { 283 setOperationAction(ISD::FMA , MVT::f64, Expand); 284 setOperationAction(ISD::FMA , MVT::f32, Expand); 285 } else { 286 setOperationAction(ISD::FMA , MVT::f64, Legal); 287 setOperationAction(ISD::FMA , MVT::f32, Legal); 288 } 289 290 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 291 292 // If we're enabling GP optimizations, use hardware square root 293 if (!Subtarget.hasFSQRT() && 294 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 295 Subtarget.hasFRE())) 296 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 297 298 if (!Subtarget.hasFSQRT() && 299 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 300 Subtarget.hasFRES())) 301 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 302 303 if (Subtarget.hasFCPSGN()) { 304 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 305 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 306 } else { 307 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 308 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 313 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 314 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 315 setOperationAction(ISD::FROUND, MVT::f64, Legal); 316 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FROUND, MVT::f32, Legal); 321 } 322 323 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 324 // to speed up scalar BSWAP64. 325 // CTPOP or CTTZ were introduced in P8/P9 respectively 326 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 327 if (Subtarget.hasP9Vector()) 328 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 329 else 330 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 331 if (Subtarget.isISA3_0()) { 332 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 333 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 334 } else { 335 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 336 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 337 } 338 339 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 340 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 341 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 342 } else { 343 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 344 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 345 } 346 347 // PowerPC does not have ROTR 348 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 349 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 350 351 if (!Subtarget.useCRBits()) { 352 // PowerPC does not have Select 353 setOperationAction(ISD::SELECT, MVT::i32, Expand); 354 setOperationAction(ISD::SELECT, MVT::i64, Expand); 355 setOperationAction(ISD::SELECT, MVT::f32, Expand); 356 setOperationAction(ISD::SELECT, MVT::f64, Expand); 357 } 358 359 // PowerPC wants to turn select_cc of FP into fsel when possible. 360 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 361 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 362 363 // PowerPC wants to optimize integer setcc a bit 364 if (!Subtarget.useCRBits()) 365 setOperationAction(ISD::SETCC, MVT::i32, Custom); 366 367 // PowerPC does not have BRCOND which requires SetCC 368 if (!Subtarget.useCRBits()) 369 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 370 371 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 372 373 if (Subtarget.hasSPE()) { 374 // SPE has built-in conversions 375 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 376 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 378 } else { 379 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 380 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 381 382 // PowerPC does not have [U|S]INT_TO_FP 383 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 384 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 385 } 386 387 if (Subtarget.hasDirectMove() && isPPC64) { 388 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 389 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 390 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 391 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 392 } else { 393 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 394 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 395 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 396 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 397 } 398 399 // We cannot sextinreg(i1). Expand to shifts. 400 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 401 402 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 403 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 404 // support continuation, user-level threading, and etc.. As a result, no 405 // other SjLj exception interfaces are implemented and please don't build 406 // your own exception handling based on them. 407 // LLVM/Clang supports zero-cost DWARF exception handling. 408 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 409 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 410 411 // We want to legalize GlobalAddress and ConstantPool nodes into the 412 // appropriate instructions to materialize the address. 413 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 414 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 415 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 416 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 417 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 418 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 419 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 420 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 421 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 422 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 423 424 // TRAP is legal. 425 setOperationAction(ISD::TRAP, MVT::Other, Legal); 426 427 // TRAMPOLINE is custom lowered. 428 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 429 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 430 431 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 432 setOperationAction(ISD::VASTART , MVT::Other, Custom); 433 434 if (Subtarget.is64BitELFABI()) { 435 // VAARG always uses double-word chunks, so promote anything smaller. 436 setOperationAction(ISD::VAARG, MVT::i1, Promote); 437 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 438 setOperationAction(ISD::VAARG, MVT::i8, Promote); 439 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 440 setOperationAction(ISD::VAARG, MVT::i16, Promote); 441 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 442 setOperationAction(ISD::VAARG, MVT::i32, Promote); 443 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 444 setOperationAction(ISD::VAARG, MVT::Other, Expand); 445 } else if (Subtarget.is32BitELFABI()) { 446 // VAARG is custom lowered with the 32-bit SVR4 ABI. 447 setOperationAction(ISD::VAARG, MVT::Other, Custom); 448 setOperationAction(ISD::VAARG, MVT::i64, Custom); 449 } else 450 setOperationAction(ISD::VAARG, MVT::Other, Expand); 451 452 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 453 if (Subtarget.is32BitELFABI()) 454 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 455 else 456 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 457 458 // Use the default implementation. 459 setOperationAction(ISD::VAEND , MVT::Other, Expand); 460 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 461 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 462 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 463 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 464 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 465 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 466 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 467 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 468 469 // We want to custom lower some of our intrinsics. 470 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 471 472 // To handle counter-based loop conditions. 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 474 475 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 476 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 477 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 478 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 479 480 // Comparisons that require checking two conditions. 481 if (Subtarget.hasSPE()) { 482 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 483 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 484 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 485 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 486 } 487 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 488 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 489 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 491 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 495 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 496 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 497 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 498 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 499 500 if (Subtarget.has64BitSupport()) { 501 // They also have instructions for converting between i64 and fp. 502 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 503 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 504 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 505 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 506 // This is just the low 32 bits of a (signed) fp->i64 conversion. 507 // We cannot do this with Promote because i64 is not a legal type. 508 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 509 510 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 511 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 512 } else { 513 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 514 if (Subtarget.hasSPE()) 515 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 516 else 517 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 518 } 519 520 // With the instructions enabled under FPCVT, we can do everything. 521 if (Subtarget.hasFPCVT()) { 522 if (Subtarget.has64BitSupport()) { 523 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 524 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 525 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 526 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 527 } 528 529 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 530 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 531 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 532 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 533 } 534 535 if (Subtarget.use64BitRegs()) { 536 // 64-bit PowerPC implementations can support i64 types directly 537 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 538 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 539 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 540 // 64-bit PowerPC wants to expand i128 shifts itself. 541 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 542 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 543 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 544 } else { 545 // 32-bit PowerPC wants to expand i64 shifts itself. 546 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 547 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 548 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 549 } 550 551 if (Subtarget.hasAltivec()) { 552 // First set operation action for all vector types to expand. Then we 553 // will selectively turn on ones that can be effectively codegen'd. 554 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 555 // add/sub are legal for all supported vector VT's. 556 setOperationAction(ISD::ADD, VT, Legal); 557 setOperationAction(ISD::SUB, VT, Legal); 558 559 // For v2i64, these are only valid with P8Vector. This is corrected after 560 // the loop. 561 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 562 setOperationAction(ISD::SMAX, VT, Legal); 563 setOperationAction(ISD::SMIN, VT, Legal); 564 setOperationAction(ISD::UMAX, VT, Legal); 565 setOperationAction(ISD::UMIN, VT, Legal); 566 } 567 else { 568 setOperationAction(ISD::SMAX, VT, Expand); 569 setOperationAction(ISD::SMIN, VT, Expand); 570 setOperationAction(ISD::UMAX, VT, Expand); 571 setOperationAction(ISD::UMIN, VT, Expand); 572 } 573 574 if (Subtarget.hasVSX()) { 575 setOperationAction(ISD::FMAXNUM, VT, Legal); 576 setOperationAction(ISD::FMINNUM, VT, Legal); 577 } 578 579 // Vector instructions introduced in P8 580 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 581 setOperationAction(ISD::CTPOP, VT, Legal); 582 setOperationAction(ISD::CTLZ, VT, Legal); 583 } 584 else { 585 setOperationAction(ISD::CTPOP, VT, Expand); 586 setOperationAction(ISD::CTLZ, VT, Expand); 587 } 588 589 // Vector instructions introduced in P9 590 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 591 setOperationAction(ISD::CTTZ, VT, Legal); 592 else 593 setOperationAction(ISD::CTTZ, VT, Expand); 594 595 // We promote all shuffles to v16i8. 596 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 597 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 598 599 // We promote all non-typed operations to v4i32. 600 setOperationAction(ISD::AND , VT, Promote); 601 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 602 setOperationAction(ISD::OR , VT, Promote); 603 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 604 setOperationAction(ISD::XOR , VT, Promote); 605 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 606 setOperationAction(ISD::LOAD , VT, Promote); 607 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 608 setOperationAction(ISD::SELECT, VT, Promote); 609 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 610 setOperationAction(ISD::VSELECT, VT, Legal); 611 setOperationAction(ISD::SELECT_CC, VT, Promote); 612 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 613 setOperationAction(ISD::STORE, VT, Promote); 614 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 615 616 // No other operations are legal. 617 setOperationAction(ISD::MUL , VT, Expand); 618 setOperationAction(ISD::SDIV, VT, Expand); 619 setOperationAction(ISD::SREM, VT, Expand); 620 setOperationAction(ISD::UDIV, VT, Expand); 621 setOperationAction(ISD::UREM, VT, Expand); 622 setOperationAction(ISD::FDIV, VT, Expand); 623 setOperationAction(ISD::FREM, VT, Expand); 624 setOperationAction(ISD::FNEG, VT, Expand); 625 setOperationAction(ISD::FSQRT, VT, Expand); 626 setOperationAction(ISD::FLOG, VT, Expand); 627 setOperationAction(ISD::FLOG10, VT, Expand); 628 setOperationAction(ISD::FLOG2, VT, Expand); 629 setOperationAction(ISD::FEXP, VT, Expand); 630 setOperationAction(ISD::FEXP2, VT, Expand); 631 setOperationAction(ISD::FSIN, VT, Expand); 632 setOperationAction(ISD::FCOS, VT, Expand); 633 setOperationAction(ISD::FABS, VT, Expand); 634 setOperationAction(ISD::FFLOOR, VT, Expand); 635 setOperationAction(ISD::FCEIL, VT, Expand); 636 setOperationAction(ISD::FTRUNC, VT, Expand); 637 setOperationAction(ISD::FRINT, VT, Expand); 638 setOperationAction(ISD::FNEARBYINT, VT, Expand); 639 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 640 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 641 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 642 setOperationAction(ISD::MULHU, VT, Expand); 643 setOperationAction(ISD::MULHS, VT, Expand); 644 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 645 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 646 setOperationAction(ISD::UDIVREM, VT, Expand); 647 setOperationAction(ISD::SDIVREM, VT, Expand); 648 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 649 setOperationAction(ISD::FPOW, VT, Expand); 650 setOperationAction(ISD::BSWAP, VT, Expand); 651 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 652 setOperationAction(ISD::ROTL, VT, Expand); 653 setOperationAction(ISD::ROTR, VT, Expand); 654 655 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 656 setTruncStoreAction(VT, InnerVT, Expand); 657 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 658 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 659 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 660 } 661 } 662 if (!Subtarget.hasP8Vector()) { 663 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 664 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 665 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 666 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 667 } 668 669 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 670 setOperationAction(ISD::ABS, VT, Custom); 671 672 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 673 // with merges, splats, etc. 674 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 675 676 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 677 // are cheap, so handle them before they get expanded to scalar. 678 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 679 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 680 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 681 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 682 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 683 684 setOperationAction(ISD::AND , MVT::v4i32, Legal); 685 setOperationAction(ISD::OR , MVT::v4i32, Legal); 686 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 687 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 688 setOperationAction(ISD::SELECT, MVT::v4i32, 689 Subtarget.useCRBits() ? Legal : Expand); 690 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 691 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 692 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 693 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 694 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 695 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 696 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 697 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 698 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 699 700 // Without hasP8Altivec set, v2i64 SMAX isn't available. 701 // But ABS custom lowering requires SMAX support. 702 if (!Subtarget.hasP8Altivec()) 703 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 704 705 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 706 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 707 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 708 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 709 710 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 711 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 712 713 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 714 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 715 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 716 } 717 718 if (Subtarget.hasP8Altivec()) 719 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 720 else 721 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 722 723 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 724 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 725 726 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 727 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 728 729 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 730 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 731 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 732 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 733 734 // Altivec does not contain unordered floating-point compare instructions 735 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 736 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 737 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 738 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 739 740 if (Subtarget.hasVSX()) { 741 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 742 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 743 if (Subtarget.hasP8Vector()) { 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 746 } 747 if (Subtarget.hasDirectMove() && isPPC64) { 748 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 749 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 750 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 751 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 753 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 754 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 755 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 756 } 757 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 758 759 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 760 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 761 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 762 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 763 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 764 765 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 766 767 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 768 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 769 770 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 771 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 772 773 // Share the Altivec comparison restrictions. 774 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 775 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 776 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 777 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 778 779 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 780 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 781 782 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 783 784 if (Subtarget.hasP8Vector()) 785 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 786 787 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 788 789 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 790 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 791 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 792 793 if (Subtarget.hasP8Altivec()) { 794 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 795 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 796 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 797 798 // 128 bit shifts can be accomplished via 3 instructions for SHL and 799 // SRL, but not for SRA because of the instructions available: 800 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 801 // doing 802 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 803 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 804 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 805 806 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 807 } 808 else { 809 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 810 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 811 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 812 813 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 814 815 // VSX v2i64 only supports non-arithmetic operations. 816 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 817 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 818 } 819 820 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 821 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 822 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 823 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 824 825 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 826 827 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 828 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 829 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 830 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 831 832 // Custom handling for partial vectors of integers converted to 833 // floating point. We already have optimal handling for v2i32 through 834 // the DAG combine, so those aren't necessary. 835 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 836 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 837 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 838 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 839 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 840 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 841 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 842 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 843 844 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 845 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 846 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 847 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 848 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 849 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 850 851 if (Subtarget.hasDirectMove()) 852 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 853 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 854 855 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 856 } 857 858 if (Subtarget.hasP8Altivec()) { 859 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 860 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 861 } 862 863 if (Subtarget.hasP9Vector()) { 864 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 865 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 866 867 // 128 bit shifts can be accomplished via 3 instructions for SHL and 868 // SRL, but not for SRA because of the instructions available: 869 // VS{RL} and VS{RL}O. 870 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 871 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 872 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 873 874 if (EnableQuadPrecision) { 875 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 876 setOperationAction(ISD::FADD, MVT::f128, Legal); 877 setOperationAction(ISD::FSUB, MVT::f128, Legal); 878 setOperationAction(ISD::FDIV, MVT::f128, Legal); 879 setOperationAction(ISD::FMUL, MVT::f128, Legal); 880 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 881 // No extending loads to f128 on PPC. 882 for (MVT FPT : MVT::fp_valuetypes()) 883 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 884 setOperationAction(ISD::FMA, MVT::f128, Legal); 885 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 886 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 887 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 888 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 889 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 890 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 891 892 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 893 setOperationAction(ISD::FRINT, MVT::f128, Legal); 894 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 895 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 896 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 897 setOperationAction(ISD::FROUND, MVT::f128, Legal); 898 899 setOperationAction(ISD::SELECT, MVT::f128, Expand); 900 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 901 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 902 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 903 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 904 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 905 // No implementation for these ops for PowerPC. 906 setOperationAction(ISD::FSIN , MVT::f128, Expand); 907 setOperationAction(ISD::FCOS , MVT::f128, Expand); 908 setOperationAction(ISD::FPOW, MVT::f128, Expand); 909 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 910 setOperationAction(ISD::FREM, MVT::f128, Expand); 911 } 912 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 913 914 } 915 916 if (Subtarget.hasP9Altivec()) { 917 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 918 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 919 } 920 } 921 922 if (Subtarget.hasQPX()) { 923 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 924 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 925 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 926 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 927 928 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 929 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 930 931 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 932 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 933 934 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 935 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 936 937 if (!Subtarget.useCRBits()) 938 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 939 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 940 941 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 942 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 943 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 944 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 945 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 947 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 948 949 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 950 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 951 952 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 953 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 954 955 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 956 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 957 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 958 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 959 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 960 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 961 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 962 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 963 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 964 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 965 966 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 967 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 968 969 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 970 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 971 972 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 973 974 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 975 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 976 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 977 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 978 979 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 980 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 981 982 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 983 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 984 985 if (!Subtarget.useCRBits()) 986 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 987 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 988 989 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 990 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 991 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 992 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 993 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 994 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 995 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 996 997 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 998 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 999 1000 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1001 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1002 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1003 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1004 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1005 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1006 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1007 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1008 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1009 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1010 1011 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1012 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1013 1014 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1015 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1016 1017 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1018 1019 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1020 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1021 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1022 1023 if (!Subtarget.useCRBits()) 1024 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1025 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1026 1027 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1028 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1029 1030 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1031 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1032 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1033 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1034 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1035 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1036 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1037 1038 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1039 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1040 1041 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1042 1043 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1044 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1045 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1046 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1047 1048 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1049 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1050 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1051 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1052 1053 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1054 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1055 1056 // These need to set FE_INEXACT, and so cannot be vectorized here. 1057 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1058 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1059 1060 if (TM.Options.UnsafeFPMath) { 1061 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1062 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1063 1064 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1065 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1066 } else { 1067 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1068 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1069 1070 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1071 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1072 } 1073 } 1074 1075 if (Subtarget.has64BitSupport()) 1076 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1077 1078 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1079 1080 if (!isPPC64) { 1081 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1082 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1083 } 1084 1085 setBooleanContents(ZeroOrOneBooleanContent); 1086 1087 if (Subtarget.hasAltivec()) { 1088 // Altivec instructions set fields to all zeros or all ones. 1089 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1090 } 1091 1092 if (!isPPC64) { 1093 // These libcalls are not available in 32-bit. 1094 setLibcallName(RTLIB::SHL_I128, nullptr); 1095 setLibcallName(RTLIB::SRL_I128, nullptr); 1096 setLibcallName(RTLIB::SRA_I128, nullptr); 1097 } 1098 1099 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1100 1101 // We have target-specific dag combine patterns for the following nodes: 1102 setTargetDAGCombine(ISD::ADD); 1103 setTargetDAGCombine(ISD::SHL); 1104 setTargetDAGCombine(ISD::SRA); 1105 setTargetDAGCombine(ISD::SRL); 1106 setTargetDAGCombine(ISD::MUL); 1107 setTargetDAGCombine(ISD::SINT_TO_FP); 1108 setTargetDAGCombine(ISD::BUILD_VECTOR); 1109 if (Subtarget.hasFPCVT()) 1110 setTargetDAGCombine(ISD::UINT_TO_FP); 1111 setTargetDAGCombine(ISD::LOAD); 1112 setTargetDAGCombine(ISD::STORE); 1113 setTargetDAGCombine(ISD::BR_CC); 1114 if (Subtarget.useCRBits()) 1115 setTargetDAGCombine(ISD::BRCOND); 1116 setTargetDAGCombine(ISD::BSWAP); 1117 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1118 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1119 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1120 1121 setTargetDAGCombine(ISD::SIGN_EXTEND); 1122 setTargetDAGCombine(ISD::ZERO_EXTEND); 1123 setTargetDAGCombine(ISD::ANY_EXTEND); 1124 1125 setTargetDAGCombine(ISD::TRUNCATE); 1126 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1127 1128 1129 if (Subtarget.useCRBits()) { 1130 setTargetDAGCombine(ISD::TRUNCATE); 1131 setTargetDAGCombine(ISD::SETCC); 1132 setTargetDAGCombine(ISD::SELECT_CC); 1133 } 1134 1135 // Use reciprocal estimates. 1136 if (TM.Options.UnsafeFPMath) { 1137 setTargetDAGCombine(ISD::FDIV); 1138 setTargetDAGCombine(ISD::FSQRT); 1139 } 1140 1141 if (Subtarget.hasP9Altivec()) { 1142 setTargetDAGCombine(ISD::ABS); 1143 setTargetDAGCombine(ISD::VSELECT); 1144 } 1145 1146 // Darwin long double math library functions have $LDBL128 appended. 1147 if (Subtarget.isDarwin()) { 1148 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1149 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1150 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1151 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1152 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1153 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1154 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1155 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1156 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1157 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1158 } 1159 1160 if (EnableQuadPrecision) { 1161 setLibcallName(RTLIB::LOG_F128, "logf128"); 1162 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1163 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1164 setLibcallName(RTLIB::EXP_F128, "expf128"); 1165 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1166 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1167 setLibcallName(RTLIB::COS_F128, "cosf128"); 1168 setLibcallName(RTLIB::POW_F128, "powf128"); 1169 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1170 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1171 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1172 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1173 } 1174 1175 // With 32 condition bits, we don't need to sink (and duplicate) compares 1176 // aggressively in CodeGenPrep. 1177 if (Subtarget.useCRBits()) { 1178 setHasMultipleConditionRegisters(); 1179 setJumpIsExpensive(); 1180 } 1181 1182 setMinFunctionAlignment(Align(4)); 1183 if (Subtarget.isDarwin()) 1184 setPrefFunctionAlignment(Align(16)); 1185 1186 switch (Subtarget.getDarwinDirective()) { 1187 default: break; 1188 case PPC::DIR_970: 1189 case PPC::DIR_A2: 1190 case PPC::DIR_E500: 1191 case PPC::DIR_E500mc: 1192 case PPC::DIR_E5500: 1193 case PPC::DIR_PWR4: 1194 case PPC::DIR_PWR5: 1195 case PPC::DIR_PWR5X: 1196 case PPC::DIR_PWR6: 1197 case PPC::DIR_PWR6X: 1198 case PPC::DIR_PWR7: 1199 case PPC::DIR_PWR8: 1200 case PPC::DIR_PWR9: 1201 setPrefLoopAlignment(Align(16)); 1202 setPrefFunctionAlignment(Align(16)); 1203 break; 1204 } 1205 1206 if (Subtarget.enableMachineScheduler()) 1207 setSchedulingPreference(Sched::Source); 1208 else 1209 setSchedulingPreference(Sched::Hybrid); 1210 1211 computeRegisterProperties(STI.getRegisterInfo()); 1212 1213 // The Freescale cores do better with aggressive inlining of memcpy and 1214 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1215 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1216 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1217 MaxStoresPerMemset = 32; 1218 MaxStoresPerMemsetOptSize = 16; 1219 MaxStoresPerMemcpy = 32; 1220 MaxStoresPerMemcpyOptSize = 8; 1221 MaxStoresPerMemmove = 32; 1222 MaxStoresPerMemmoveOptSize = 8; 1223 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1224 // The A2 also benefits from (very) aggressive inlining of memcpy and 1225 // friends. The overhead of a the function call, even when warm, can be 1226 // over one hundred cycles. 1227 MaxStoresPerMemset = 128; 1228 MaxStoresPerMemcpy = 128; 1229 MaxStoresPerMemmove = 128; 1230 MaxLoadsPerMemcmp = 128; 1231 } else { 1232 MaxLoadsPerMemcmp = 8; 1233 MaxLoadsPerMemcmpOptSize = 4; 1234 } 1235 } 1236 1237 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1238 /// the desired ByVal argument alignment. 1239 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1240 unsigned MaxMaxAlign) { 1241 if (MaxAlign == MaxMaxAlign) 1242 return; 1243 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1244 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1245 MaxAlign = 32; 1246 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1247 MaxAlign = 16; 1248 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1249 unsigned EltAlign = 0; 1250 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1251 if (EltAlign > MaxAlign) 1252 MaxAlign = EltAlign; 1253 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1254 for (auto *EltTy : STy->elements()) { 1255 unsigned EltAlign = 0; 1256 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1257 if (EltAlign > MaxAlign) 1258 MaxAlign = EltAlign; 1259 if (MaxAlign == MaxMaxAlign) 1260 break; 1261 } 1262 } 1263 } 1264 1265 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1266 /// function arguments in the caller parameter area. 1267 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1268 const DataLayout &DL) const { 1269 // Darwin passes everything on 4 byte boundary. 1270 if (Subtarget.isDarwin()) 1271 return 4; 1272 1273 // 16byte and wider vectors are passed on 16byte boundary. 1274 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1275 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1276 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1277 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1278 return Align; 1279 } 1280 1281 bool PPCTargetLowering::useSoftFloat() const { 1282 return Subtarget.useSoftFloat(); 1283 } 1284 1285 bool PPCTargetLowering::hasSPE() const { 1286 return Subtarget.hasSPE(); 1287 } 1288 1289 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1290 return VT.isScalarInteger(); 1291 } 1292 1293 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1294 switch ((PPCISD::NodeType)Opcode) { 1295 case PPCISD::FIRST_NUMBER: break; 1296 case PPCISD::FSEL: return "PPCISD::FSEL"; 1297 case PPCISD::FCFID: return "PPCISD::FCFID"; 1298 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1299 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1300 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1301 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1302 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1303 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1304 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1305 case PPCISD::FP_TO_UINT_IN_VSR: 1306 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1307 case PPCISD::FP_TO_SINT_IN_VSR: 1308 return "PPCISD::FP_TO_SINT_IN_VSR"; 1309 case PPCISD::FRE: return "PPCISD::FRE"; 1310 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1311 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1312 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1313 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1314 case PPCISD::VPERM: return "PPCISD::VPERM"; 1315 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1316 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1317 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1318 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1319 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1320 case PPCISD::CMPB: return "PPCISD::CMPB"; 1321 case PPCISD::Hi: return "PPCISD::Hi"; 1322 case PPCISD::Lo: return "PPCISD::Lo"; 1323 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1324 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1325 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1326 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1327 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1328 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1329 case PPCISD::SRL: return "PPCISD::SRL"; 1330 case PPCISD::SRA: return "PPCISD::SRA"; 1331 case PPCISD::SHL: return "PPCISD::SHL"; 1332 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1333 case PPCISD::CALL: return "PPCISD::CALL"; 1334 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1335 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1336 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1337 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1338 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1339 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1340 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1341 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1342 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1343 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1344 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1345 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1346 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1347 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1348 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1349 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1350 case PPCISD::VCMP: return "PPCISD::VCMP"; 1351 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1352 case PPCISD::LBRX: return "PPCISD::LBRX"; 1353 case PPCISD::STBRX: return "PPCISD::STBRX"; 1354 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1355 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1356 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1357 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1358 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1359 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1360 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1361 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1362 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1363 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1364 case PPCISD::ST_VSR_SCAL_INT: 1365 return "PPCISD::ST_VSR_SCAL_INT"; 1366 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1367 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1368 case PPCISD::BDZ: return "PPCISD::BDZ"; 1369 case PPCISD::MFFS: return "PPCISD::MFFS"; 1370 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1371 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1372 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1373 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1374 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1375 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1376 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1377 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1378 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1379 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1380 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1381 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1382 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1383 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1384 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1385 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1386 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1387 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1388 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1389 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1390 case PPCISD::SC: return "PPCISD::SC"; 1391 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1392 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1393 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1394 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1395 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1396 case PPCISD::VABSD: return "PPCISD::VABSD"; 1397 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1398 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1399 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1400 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1401 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1402 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1403 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1404 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1405 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1406 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1407 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1408 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1409 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1410 } 1411 return nullptr; 1412 } 1413 1414 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1415 EVT VT) const { 1416 if (!VT.isVector()) 1417 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1418 1419 if (Subtarget.hasQPX()) 1420 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1421 1422 return VT.changeVectorElementTypeToInteger(); 1423 } 1424 1425 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1426 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1427 return true; 1428 } 1429 1430 //===----------------------------------------------------------------------===// 1431 // Node matching predicates, for use by the tblgen matching code. 1432 //===----------------------------------------------------------------------===// 1433 1434 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1435 static bool isFloatingPointZero(SDValue Op) { 1436 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1437 return CFP->getValueAPF().isZero(); 1438 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1439 // Maybe this has already been legalized into the constant pool? 1440 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1441 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1442 return CFP->getValueAPF().isZero(); 1443 } 1444 return false; 1445 } 1446 1447 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1448 /// true if Op is undef or if it matches the specified value. 1449 static bool isConstantOrUndef(int Op, int Val) { 1450 return Op < 0 || Op == Val; 1451 } 1452 1453 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1454 /// VPKUHUM instruction. 1455 /// The ShuffleKind distinguishes between big-endian operations with 1456 /// two different inputs (0), either-endian operations with two identical 1457 /// inputs (1), and little-endian operations with two different inputs (2). 1458 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1459 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1460 SelectionDAG &DAG) { 1461 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1462 if (ShuffleKind == 0) { 1463 if (IsLE) 1464 return false; 1465 for (unsigned i = 0; i != 16; ++i) 1466 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1467 return false; 1468 } else if (ShuffleKind == 2) { 1469 if (!IsLE) 1470 return false; 1471 for (unsigned i = 0; i != 16; ++i) 1472 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1473 return false; 1474 } else if (ShuffleKind == 1) { 1475 unsigned j = IsLE ? 0 : 1; 1476 for (unsigned i = 0; i != 8; ++i) 1477 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1478 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1479 return false; 1480 } 1481 return true; 1482 } 1483 1484 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1485 /// VPKUWUM instruction. 1486 /// The ShuffleKind distinguishes between big-endian operations with 1487 /// two different inputs (0), either-endian operations with two identical 1488 /// inputs (1), and little-endian operations with two different inputs (2). 1489 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1490 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1491 SelectionDAG &DAG) { 1492 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1493 if (ShuffleKind == 0) { 1494 if (IsLE) 1495 return false; 1496 for (unsigned i = 0; i != 16; i += 2) 1497 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1498 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1499 return false; 1500 } else if (ShuffleKind == 2) { 1501 if (!IsLE) 1502 return false; 1503 for (unsigned i = 0; i != 16; i += 2) 1504 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1505 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1506 return false; 1507 } else if (ShuffleKind == 1) { 1508 unsigned j = IsLE ? 0 : 2; 1509 for (unsigned i = 0; i != 8; i += 2) 1510 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1511 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1512 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1513 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1514 return false; 1515 } 1516 return true; 1517 } 1518 1519 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1520 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1521 /// current subtarget. 1522 /// 1523 /// The ShuffleKind distinguishes between big-endian operations with 1524 /// two different inputs (0), either-endian operations with two identical 1525 /// inputs (1), and little-endian operations with two different inputs (2). 1526 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1527 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1528 SelectionDAG &DAG) { 1529 const PPCSubtarget& Subtarget = 1530 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1531 if (!Subtarget.hasP8Vector()) 1532 return false; 1533 1534 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1535 if (ShuffleKind == 0) { 1536 if (IsLE) 1537 return false; 1538 for (unsigned i = 0; i != 16; i += 4) 1539 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1540 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1541 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1542 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1543 return false; 1544 } else if (ShuffleKind == 2) { 1545 if (!IsLE) 1546 return false; 1547 for (unsigned i = 0; i != 16; i += 4) 1548 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1549 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1550 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1551 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1552 return false; 1553 } else if (ShuffleKind == 1) { 1554 unsigned j = IsLE ? 0 : 4; 1555 for (unsigned i = 0; i != 8; i += 4) 1556 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1557 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1558 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1559 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1560 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1561 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1562 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1563 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1564 return false; 1565 } 1566 return true; 1567 } 1568 1569 /// isVMerge - Common function, used to match vmrg* shuffles. 1570 /// 1571 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1572 unsigned LHSStart, unsigned RHSStart) { 1573 if (N->getValueType(0) != MVT::v16i8) 1574 return false; 1575 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1576 "Unsupported merge size!"); 1577 1578 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1579 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1580 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1581 LHSStart+j+i*UnitSize) || 1582 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1583 RHSStart+j+i*UnitSize)) 1584 return false; 1585 } 1586 return true; 1587 } 1588 1589 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1590 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1591 /// The ShuffleKind distinguishes between big-endian merges with two 1592 /// different inputs (0), either-endian merges with two identical inputs (1), 1593 /// and little-endian merges with two different inputs (2). For the latter, 1594 /// the input operands are swapped (see PPCInstrAltivec.td). 1595 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1596 unsigned ShuffleKind, SelectionDAG &DAG) { 1597 if (DAG.getDataLayout().isLittleEndian()) { 1598 if (ShuffleKind == 1) // unary 1599 return isVMerge(N, UnitSize, 0, 0); 1600 else if (ShuffleKind == 2) // swapped 1601 return isVMerge(N, UnitSize, 0, 16); 1602 else 1603 return false; 1604 } else { 1605 if (ShuffleKind == 1) // unary 1606 return isVMerge(N, UnitSize, 8, 8); 1607 else if (ShuffleKind == 0) // normal 1608 return isVMerge(N, UnitSize, 8, 24); 1609 else 1610 return false; 1611 } 1612 } 1613 1614 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1615 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1616 /// The ShuffleKind distinguishes between big-endian merges with two 1617 /// different inputs (0), either-endian merges with two identical inputs (1), 1618 /// and little-endian merges with two different inputs (2). For the latter, 1619 /// the input operands are swapped (see PPCInstrAltivec.td). 1620 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1621 unsigned ShuffleKind, SelectionDAG &DAG) { 1622 if (DAG.getDataLayout().isLittleEndian()) { 1623 if (ShuffleKind == 1) // unary 1624 return isVMerge(N, UnitSize, 8, 8); 1625 else if (ShuffleKind == 2) // swapped 1626 return isVMerge(N, UnitSize, 8, 24); 1627 else 1628 return false; 1629 } else { 1630 if (ShuffleKind == 1) // unary 1631 return isVMerge(N, UnitSize, 0, 0); 1632 else if (ShuffleKind == 0) // normal 1633 return isVMerge(N, UnitSize, 0, 16); 1634 else 1635 return false; 1636 } 1637 } 1638 1639 /** 1640 * Common function used to match vmrgew and vmrgow shuffles 1641 * 1642 * The indexOffset determines whether to look for even or odd words in 1643 * the shuffle mask. This is based on the of the endianness of the target 1644 * machine. 1645 * - Little Endian: 1646 * - Use offset of 0 to check for odd elements 1647 * - Use offset of 4 to check for even elements 1648 * - Big Endian: 1649 * - Use offset of 0 to check for even elements 1650 * - Use offset of 4 to check for odd elements 1651 * A detailed description of the vector element ordering for little endian and 1652 * big endian can be found at 1653 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1654 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1655 * compiler differences mean to you 1656 * 1657 * The mask to the shuffle vector instruction specifies the indices of the 1658 * elements from the two input vectors to place in the result. The elements are 1659 * numbered in array-access order, starting with the first vector. These vectors 1660 * are always of type v16i8, thus each vector will contain 16 elements of size 1661 * 8. More info on the shuffle vector can be found in the 1662 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1663 * Language Reference. 1664 * 1665 * The RHSStartValue indicates whether the same input vectors are used (unary) 1666 * or two different input vectors are used, based on the following: 1667 * - If the instruction uses the same vector for both inputs, the range of the 1668 * indices will be 0 to 15. In this case, the RHSStart value passed should 1669 * be 0. 1670 * - If the instruction has two different vectors then the range of the 1671 * indices will be 0 to 31. In this case, the RHSStart value passed should 1672 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1673 * to 31 specify elements in the second vector). 1674 * 1675 * \param[in] N The shuffle vector SD Node to analyze 1676 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1677 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1678 * vector to the shuffle_vector instruction 1679 * \return true iff this shuffle vector represents an even or odd word merge 1680 */ 1681 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1682 unsigned RHSStartValue) { 1683 if (N->getValueType(0) != MVT::v16i8) 1684 return false; 1685 1686 for (unsigned i = 0; i < 2; ++i) 1687 for (unsigned j = 0; j < 4; ++j) 1688 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1689 i*RHSStartValue+j+IndexOffset) || 1690 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1691 i*RHSStartValue+j+IndexOffset+8)) 1692 return false; 1693 return true; 1694 } 1695 1696 /** 1697 * Determine if the specified shuffle mask is suitable for the vmrgew or 1698 * vmrgow instructions. 1699 * 1700 * \param[in] N The shuffle vector SD Node to analyze 1701 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1702 * \param[in] ShuffleKind Identify the type of merge: 1703 * - 0 = big-endian merge with two different inputs; 1704 * - 1 = either-endian merge with two identical inputs; 1705 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1706 * little-endian merges). 1707 * \param[in] DAG The current SelectionDAG 1708 * \return true iff this shuffle mask 1709 */ 1710 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1711 unsigned ShuffleKind, SelectionDAG &DAG) { 1712 if (DAG.getDataLayout().isLittleEndian()) { 1713 unsigned indexOffset = CheckEven ? 4 : 0; 1714 if (ShuffleKind == 1) // Unary 1715 return isVMerge(N, indexOffset, 0); 1716 else if (ShuffleKind == 2) // swapped 1717 return isVMerge(N, indexOffset, 16); 1718 else 1719 return false; 1720 } 1721 else { 1722 unsigned indexOffset = CheckEven ? 0 : 4; 1723 if (ShuffleKind == 1) // Unary 1724 return isVMerge(N, indexOffset, 0); 1725 else if (ShuffleKind == 0) // Normal 1726 return isVMerge(N, indexOffset, 16); 1727 else 1728 return false; 1729 } 1730 return false; 1731 } 1732 1733 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1734 /// amount, otherwise return -1. 1735 /// The ShuffleKind distinguishes between big-endian operations with two 1736 /// different inputs (0), either-endian operations with two identical inputs 1737 /// (1), and little-endian operations with two different inputs (2). For the 1738 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1739 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1740 SelectionDAG &DAG) { 1741 if (N->getValueType(0) != MVT::v16i8) 1742 return -1; 1743 1744 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1745 1746 // Find the first non-undef value in the shuffle mask. 1747 unsigned i; 1748 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1749 /*search*/; 1750 1751 if (i == 16) return -1; // all undef. 1752 1753 // Otherwise, check to see if the rest of the elements are consecutively 1754 // numbered from this value. 1755 unsigned ShiftAmt = SVOp->getMaskElt(i); 1756 if (ShiftAmt < i) return -1; 1757 1758 ShiftAmt -= i; 1759 bool isLE = DAG.getDataLayout().isLittleEndian(); 1760 1761 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1762 // Check the rest of the elements to see if they are consecutive. 1763 for (++i; i != 16; ++i) 1764 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1765 return -1; 1766 } else if (ShuffleKind == 1) { 1767 // Check the rest of the elements to see if they are consecutive. 1768 for (++i; i != 16; ++i) 1769 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1770 return -1; 1771 } else 1772 return -1; 1773 1774 if (isLE) 1775 ShiftAmt = 16 - ShiftAmt; 1776 1777 return ShiftAmt; 1778 } 1779 1780 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1781 /// specifies a splat of a single element that is suitable for input to 1782 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1783 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1784 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1785 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1786 1787 // The consecutive indices need to specify an element, not part of two 1788 // different elements. So abandon ship early if this isn't the case. 1789 if (N->getMaskElt(0) % EltSize != 0) 1790 return false; 1791 1792 // This is a splat operation if each element of the permute is the same, and 1793 // if the value doesn't reference the second vector. 1794 unsigned ElementBase = N->getMaskElt(0); 1795 1796 // FIXME: Handle UNDEF elements too! 1797 if (ElementBase >= 16) 1798 return false; 1799 1800 // Check that the indices are consecutive, in the case of a multi-byte element 1801 // splatted with a v16i8 mask. 1802 for (unsigned i = 1; i != EltSize; ++i) 1803 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1804 return false; 1805 1806 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1807 if (N->getMaskElt(i) < 0) continue; 1808 for (unsigned j = 0; j != EltSize; ++j) 1809 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1810 return false; 1811 } 1812 return true; 1813 } 1814 1815 /// Check that the mask is shuffling N byte elements. Within each N byte 1816 /// element of the mask, the indices could be either in increasing or 1817 /// decreasing order as long as they are consecutive. 1818 /// \param[in] N the shuffle vector SD Node to analyze 1819 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1820 /// Word/DoubleWord/QuadWord). 1821 /// \param[in] StepLen the delta indices number among the N byte element, if 1822 /// the mask is in increasing/decreasing order then it is 1/-1. 1823 /// \return true iff the mask is shuffling N byte elements. 1824 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1825 int StepLen) { 1826 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1827 "Unexpected element width."); 1828 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1829 1830 unsigned NumOfElem = 16 / Width; 1831 unsigned MaskVal[16]; // Width is never greater than 16 1832 for (unsigned i = 0; i < NumOfElem; ++i) { 1833 MaskVal[0] = N->getMaskElt(i * Width); 1834 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1835 return false; 1836 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1837 return false; 1838 } 1839 1840 for (unsigned int j = 1; j < Width; ++j) { 1841 MaskVal[j] = N->getMaskElt(i * Width + j); 1842 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1843 return false; 1844 } 1845 } 1846 } 1847 1848 return true; 1849 } 1850 1851 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1852 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1853 if (!isNByteElemShuffleMask(N, 4, 1)) 1854 return false; 1855 1856 // Now we look at mask elements 0,4,8,12 1857 unsigned M0 = N->getMaskElt(0) / 4; 1858 unsigned M1 = N->getMaskElt(4) / 4; 1859 unsigned M2 = N->getMaskElt(8) / 4; 1860 unsigned M3 = N->getMaskElt(12) / 4; 1861 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1862 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1863 1864 // Below, let H and L be arbitrary elements of the shuffle mask 1865 // where H is in the range [4,7] and L is in the range [0,3]. 1866 // H, 1, 2, 3 or L, 5, 6, 7 1867 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1868 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1869 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1870 InsertAtByte = IsLE ? 12 : 0; 1871 Swap = M0 < 4; 1872 return true; 1873 } 1874 // 0, H, 2, 3 or 4, L, 6, 7 1875 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1876 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1877 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1878 InsertAtByte = IsLE ? 8 : 4; 1879 Swap = M1 < 4; 1880 return true; 1881 } 1882 // 0, 1, H, 3 or 4, 5, L, 7 1883 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1884 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1885 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1886 InsertAtByte = IsLE ? 4 : 8; 1887 Swap = M2 < 4; 1888 return true; 1889 } 1890 // 0, 1, 2, H or 4, 5, 6, L 1891 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1892 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1893 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1894 InsertAtByte = IsLE ? 0 : 12; 1895 Swap = M3 < 4; 1896 return true; 1897 } 1898 1899 // If both vector operands for the shuffle are the same vector, the mask will 1900 // contain only elements from the first one and the second one will be undef. 1901 if (N->getOperand(1).isUndef()) { 1902 ShiftElts = 0; 1903 Swap = true; 1904 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1905 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1906 InsertAtByte = IsLE ? 12 : 0; 1907 return true; 1908 } 1909 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1910 InsertAtByte = IsLE ? 8 : 4; 1911 return true; 1912 } 1913 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1914 InsertAtByte = IsLE ? 4 : 8; 1915 return true; 1916 } 1917 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1918 InsertAtByte = IsLE ? 0 : 12; 1919 return true; 1920 } 1921 } 1922 1923 return false; 1924 } 1925 1926 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1927 bool &Swap, bool IsLE) { 1928 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1929 // Ensure each byte index of the word is consecutive. 1930 if (!isNByteElemShuffleMask(N, 4, 1)) 1931 return false; 1932 1933 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1934 unsigned M0 = N->getMaskElt(0) / 4; 1935 unsigned M1 = N->getMaskElt(4) / 4; 1936 unsigned M2 = N->getMaskElt(8) / 4; 1937 unsigned M3 = N->getMaskElt(12) / 4; 1938 1939 // If both vector operands for the shuffle are the same vector, the mask will 1940 // contain only elements from the first one and the second one will be undef. 1941 if (N->getOperand(1).isUndef()) { 1942 assert(M0 < 4 && "Indexing into an undef vector?"); 1943 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1944 return false; 1945 1946 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1947 Swap = false; 1948 return true; 1949 } 1950 1951 // Ensure each word index of the ShuffleVector Mask is consecutive. 1952 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1953 return false; 1954 1955 if (IsLE) { 1956 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1957 // Input vectors don't need to be swapped if the leading element 1958 // of the result is one of the 3 left elements of the second vector 1959 // (or if there is no shift to be done at all). 1960 Swap = false; 1961 ShiftElts = (8 - M0) % 8; 1962 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1963 // Input vectors need to be swapped if the leading element 1964 // of the result is one of the 3 left elements of the first vector 1965 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1966 Swap = true; 1967 ShiftElts = (4 - M0) % 4; 1968 } 1969 1970 return true; 1971 } else { // BE 1972 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1973 // Input vectors don't need to be swapped if the leading element 1974 // of the result is one of the 4 elements of the first vector. 1975 Swap = false; 1976 ShiftElts = M0; 1977 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1978 // Input vectors need to be swapped if the leading element 1979 // of the result is one of the 4 elements of the right vector. 1980 Swap = true; 1981 ShiftElts = M0 - 4; 1982 } 1983 1984 return true; 1985 } 1986 } 1987 1988 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1989 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1990 1991 if (!isNByteElemShuffleMask(N, Width, -1)) 1992 return false; 1993 1994 for (int i = 0; i < 16; i += Width) 1995 if (N->getMaskElt(i) != i + Width - 1) 1996 return false; 1997 1998 return true; 1999 } 2000 2001 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2002 return isXXBRShuffleMaskHelper(N, 2); 2003 } 2004 2005 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2006 return isXXBRShuffleMaskHelper(N, 4); 2007 } 2008 2009 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2010 return isXXBRShuffleMaskHelper(N, 8); 2011 } 2012 2013 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2014 return isXXBRShuffleMaskHelper(N, 16); 2015 } 2016 2017 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2018 /// if the inputs to the instruction should be swapped and set \p DM to the 2019 /// value for the immediate. 2020 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2021 /// AND element 0 of the result comes from the first input (LE) or second input 2022 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2023 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2024 /// mask. 2025 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2026 bool &Swap, bool IsLE) { 2027 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2028 2029 // Ensure each byte index of the double word is consecutive. 2030 if (!isNByteElemShuffleMask(N, 8, 1)) 2031 return false; 2032 2033 unsigned M0 = N->getMaskElt(0) / 8; 2034 unsigned M1 = N->getMaskElt(8) / 8; 2035 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2036 2037 // If both vector operands for the shuffle are the same vector, the mask will 2038 // contain only elements from the first one and the second one will be undef. 2039 if (N->getOperand(1).isUndef()) { 2040 if ((M0 | M1) < 2) { 2041 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2042 Swap = false; 2043 return true; 2044 } else 2045 return false; 2046 } 2047 2048 if (IsLE) { 2049 if (M0 > 1 && M1 < 2) { 2050 Swap = false; 2051 } else if (M0 < 2 && M1 > 1) { 2052 M0 = (M0 + 2) % 4; 2053 M1 = (M1 + 2) % 4; 2054 Swap = true; 2055 } else 2056 return false; 2057 2058 // Note: if control flow comes here that means Swap is already set above 2059 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2060 return true; 2061 } else { // BE 2062 if (M0 < 2 && M1 > 1) { 2063 Swap = false; 2064 } else if (M0 > 1 && M1 < 2) { 2065 M0 = (M0 + 2) % 4; 2066 M1 = (M1 + 2) % 4; 2067 Swap = true; 2068 } else 2069 return false; 2070 2071 // Note: if control flow comes here that means Swap is already set above 2072 DM = (M0 << 1) + (M1 & 1); 2073 return true; 2074 } 2075 } 2076 2077 2078 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2079 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2080 /// elements are counted from the left of the vector register). 2081 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2082 SelectionDAG &DAG) { 2083 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2084 assert(isSplatShuffleMask(SVOp, EltSize)); 2085 if (DAG.getDataLayout().isLittleEndian()) 2086 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2087 else 2088 return SVOp->getMaskElt(0) / EltSize; 2089 } 2090 2091 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2092 /// by using a vspltis[bhw] instruction of the specified element size, return 2093 /// the constant being splatted. The ByteSize field indicates the number of 2094 /// bytes of each element [124] -> [bhw]. 2095 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2096 SDValue OpVal(nullptr, 0); 2097 2098 // If ByteSize of the splat is bigger than the element size of the 2099 // build_vector, then we have a case where we are checking for a splat where 2100 // multiple elements of the buildvector are folded together into a single 2101 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2102 unsigned EltSize = 16/N->getNumOperands(); 2103 if (EltSize < ByteSize) { 2104 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2105 SDValue UniquedVals[4]; 2106 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2107 2108 // See if all of the elements in the buildvector agree across. 2109 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2110 if (N->getOperand(i).isUndef()) continue; 2111 // If the element isn't a constant, bail fully out. 2112 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2113 2114 if (!UniquedVals[i&(Multiple-1)].getNode()) 2115 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2116 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2117 return SDValue(); // no match. 2118 } 2119 2120 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2121 // either constant or undef values that are identical for each chunk. See 2122 // if these chunks can form into a larger vspltis*. 2123 2124 // Check to see if all of the leading entries are either 0 or -1. If 2125 // neither, then this won't fit into the immediate field. 2126 bool LeadingZero = true; 2127 bool LeadingOnes = true; 2128 for (unsigned i = 0; i != Multiple-1; ++i) { 2129 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2130 2131 LeadingZero &= isNullConstant(UniquedVals[i]); 2132 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2133 } 2134 // Finally, check the least significant entry. 2135 if (LeadingZero) { 2136 if (!UniquedVals[Multiple-1].getNode()) 2137 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2138 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2139 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2140 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2141 } 2142 if (LeadingOnes) { 2143 if (!UniquedVals[Multiple-1].getNode()) 2144 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2145 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2146 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2147 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2148 } 2149 2150 return SDValue(); 2151 } 2152 2153 // Check to see if this buildvec has a single non-undef value in its elements. 2154 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2155 if (N->getOperand(i).isUndef()) continue; 2156 if (!OpVal.getNode()) 2157 OpVal = N->getOperand(i); 2158 else if (OpVal != N->getOperand(i)) 2159 return SDValue(); 2160 } 2161 2162 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2163 2164 unsigned ValSizeInBytes = EltSize; 2165 uint64_t Value = 0; 2166 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2167 Value = CN->getZExtValue(); 2168 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2169 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2170 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2171 } 2172 2173 // If the splat value is larger than the element value, then we can never do 2174 // this splat. The only case that we could fit the replicated bits into our 2175 // immediate field for would be zero, and we prefer to use vxor for it. 2176 if (ValSizeInBytes < ByteSize) return SDValue(); 2177 2178 // If the element value is larger than the splat value, check if it consists 2179 // of a repeated bit pattern of size ByteSize. 2180 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2181 return SDValue(); 2182 2183 // Properly sign extend the value. 2184 int MaskVal = SignExtend32(Value, ByteSize * 8); 2185 2186 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2187 if (MaskVal == 0) return SDValue(); 2188 2189 // Finally, if this value fits in a 5 bit sext field, return it 2190 if (SignExtend32<5>(MaskVal) == MaskVal) 2191 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2192 return SDValue(); 2193 } 2194 2195 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2196 /// amount, otherwise return -1. 2197 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2198 EVT VT = N->getValueType(0); 2199 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2200 return -1; 2201 2202 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2203 2204 // Find the first non-undef value in the shuffle mask. 2205 unsigned i; 2206 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2207 /*search*/; 2208 2209 if (i == 4) return -1; // all undef. 2210 2211 // Otherwise, check to see if the rest of the elements are consecutively 2212 // numbered from this value. 2213 unsigned ShiftAmt = SVOp->getMaskElt(i); 2214 if (ShiftAmt < i) return -1; 2215 ShiftAmt -= i; 2216 2217 // Check the rest of the elements to see if they are consecutive. 2218 for (++i; i != 4; ++i) 2219 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2220 return -1; 2221 2222 return ShiftAmt; 2223 } 2224 2225 //===----------------------------------------------------------------------===// 2226 // Addressing Mode Selection 2227 //===----------------------------------------------------------------------===// 2228 2229 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2230 /// or 64-bit immediate, and if the value can be accurately represented as a 2231 /// sign extension from a 16-bit value. If so, this returns true and the 2232 /// immediate. 2233 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2234 if (!isa<ConstantSDNode>(N)) 2235 return false; 2236 2237 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2238 if (N->getValueType(0) == MVT::i32) 2239 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2240 else 2241 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2242 } 2243 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2244 return isIntS16Immediate(Op.getNode(), Imm); 2245 } 2246 2247 2248 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2249 /// be represented as an indexed [r+r] operation. 2250 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2251 SDValue &Index, 2252 SelectionDAG &DAG) const { 2253 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2254 UI != E; ++UI) { 2255 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2256 if (Memop->getMemoryVT() == MVT::f64) { 2257 Base = N.getOperand(0); 2258 Index = N.getOperand(1); 2259 return true; 2260 } 2261 } 2262 } 2263 return false; 2264 } 2265 2266 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2267 /// can be represented as an indexed [r+r] operation. Returns false if it 2268 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2269 /// non-zero and N can be represented by a base register plus a signed 16-bit 2270 /// displacement, make a more precise judgement by checking (displacement % \p 2271 /// EncodingAlignment). 2272 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2273 SDValue &Index, SelectionDAG &DAG, 2274 unsigned EncodingAlignment) const { 2275 int16_t imm = 0; 2276 if (N.getOpcode() == ISD::ADD) { 2277 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2278 // SPE load/store can only handle 8-bit offsets. 2279 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2280 return true; 2281 if (isIntS16Immediate(N.getOperand(1), imm) && 2282 (!EncodingAlignment || !(imm % EncodingAlignment))) 2283 return false; // r+i 2284 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2285 return false; // r+i 2286 2287 Base = N.getOperand(0); 2288 Index = N.getOperand(1); 2289 return true; 2290 } else if (N.getOpcode() == ISD::OR) { 2291 if (isIntS16Immediate(N.getOperand(1), imm) && 2292 (!EncodingAlignment || !(imm % EncodingAlignment))) 2293 return false; // r+i can fold it if we can. 2294 2295 // If this is an or of disjoint bitfields, we can codegen this as an add 2296 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2297 // disjoint. 2298 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2299 2300 if (LHSKnown.Zero.getBoolValue()) { 2301 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2302 // If all of the bits are known zero on the LHS or RHS, the add won't 2303 // carry. 2304 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2305 Base = N.getOperand(0); 2306 Index = N.getOperand(1); 2307 return true; 2308 } 2309 } 2310 } 2311 2312 return false; 2313 } 2314 2315 // If we happen to be doing an i64 load or store into a stack slot that has 2316 // less than a 4-byte alignment, then the frame-index elimination may need to 2317 // use an indexed load or store instruction (because the offset may not be a 2318 // multiple of 4). The extra register needed to hold the offset comes from the 2319 // register scavenger, and it is possible that the scavenger will need to use 2320 // an emergency spill slot. As a result, we need to make sure that a spill slot 2321 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2322 // stack slot. 2323 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2324 // FIXME: This does not handle the LWA case. 2325 if (VT != MVT::i64) 2326 return; 2327 2328 // NOTE: We'll exclude negative FIs here, which come from argument 2329 // lowering, because there are no known test cases triggering this problem 2330 // using packed structures (or similar). We can remove this exclusion if 2331 // we find such a test case. The reason why this is so test-case driven is 2332 // because this entire 'fixup' is only to prevent crashes (from the 2333 // register scavenger) on not-really-valid inputs. For example, if we have: 2334 // %a = alloca i1 2335 // %b = bitcast i1* %a to i64* 2336 // store i64* a, i64 b 2337 // then the store should really be marked as 'align 1', but is not. If it 2338 // were marked as 'align 1' then the indexed form would have been 2339 // instruction-selected initially, and the problem this 'fixup' is preventing 2340 // won't happen regardless. 2341 if (FrameIdx < 0) 2342 return; 2343 2344 MachineFunction &MF = DAG.getMachineFunction(); 2345 MachineFrameInfo &MFI = MF.getFrameInfo(); 2346 2347 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2348 if (Align >= 4) 2349 return; 2350 2351 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2352 FuncInfo->setHasNonRISpills(); 2353 } 2354 2355 /// Returns true if the address N can be represented by a base register plus 2356 /// a signed 16-bit displacement [r+imm], and if it is not better 2357 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2358 /// displacements that are multiples of that value. 2359 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2360 SDValue &Base, 2361 SelectionDAG &DAG, 2362 unsigned EncodingAlignment) const { 2363 // FIXME dl should come from parent load or store, not from address 2364 SDLoc dl(N); 2365 // If this can be more profitably realized as r+r, fail. 2366 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2367 return false; 2368 2369 if (N.getOpcode() == ISD::ADD) { 2370 int16_t imm = 0; 2371 if (isIntS16Immediate(N.getOperand(1), imm) && 2372 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2373 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2374 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2375 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2376 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2377 } else { 2378 Base = N.getOperand(0); 2379 } 2380 return true; // [r+i] 2381 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2382 // Match LOAD (ADD (X, Lo(G))). 2383 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2384 && "Cannot handle constant offsets yet!"); 2385 Disp = N.getOperand(1).getOperand(0); // The global address. 2386 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2387 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2388 Disp.getOpcode() == ISD::TargetConstantPool || 2389 Disp.getOpcode() == ISD::TargetJumpTable); 2390 Base = N.getOperand(0); 2391 return true; // [&g+r] 2392 } 2393 } else if (N.getOpcode() == ISD::OR) { 2394 int16_t imm = 0; 2395 if (isIntS16Immediate(N.getOperand(1), imm) && 2396 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2397 // If this is an or of disjoint bitfields, we can codegen this as an add 2398 // (for better address arithmetic) if the LHS and RHS of the OR are 2399 // provably disjoint. 2400 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2401 2402 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2403 // If all of the bits are known zero on the LHS or RHS, the add won't 2404 // carry. 2405 if (FrameIndexSDNode *FI = 2406 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2407 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2408 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2409 } else { 2410 Base = N.getOperand(0); 2411 } 2412 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2413 return true; 2414 } 2415 } 2416 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2417 // Loading from a constant address. 2418 2419 // If this address fits entirely in a 16-bit sext immediate field, codegen 2420 // this as "d, 0" 2421 int16_t Imm; 2422 if (isIntS16Immediate(CN, Imm) && 2423 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2424 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2425 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2426 CN->getValueType(0)); 2427 return true; 2428 } 2429 2430 // Handle 32-bit sext immediates with LIS + addr mode. 2431 if ((CN->getValueType(0) == MVT::i32 || 2432 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2433 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2434 int Addr = (int)CN->getZExtValue(); 2435 2436 // Otherwise, break this down into an LIS + disp. 2437 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2438 2439 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2440 MVT::i32); 2441 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2442 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2443 return true; 2444 } 2445 } 2446 2447 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2448 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2449 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2450 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2451 } else 2452 Base = N; 2453 return true; // [r+0] 2454 } 2455 2456 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2457 /// represented as an indexed [r+r] operation. 2458 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2459 SDValue &Index, 2460 SelectionDAG &DAG) const { 2461 // Check to see if we can easily represent this as an [r+r] address. This 2462 // will fail if it thinks that the address is more profitably represented as 2463 // reg+imm, e.g. where imm = 0. 2464 if (SelectAddressRegReg(N, Base, Index, DAG)) 2465 return true; 2466 2467 // If the address is the result of an add, we will utilize the fact that the 2468 // address calculation includes an implicit add. However, we can reduce 2469 // register pressure if we do not materialize a constant just for use as the 2470 // index register. We only get rid of the add if it is not an add of a 2471 // value and a 16-bit signed constant and both have a single use. 2472 int16_t imm = 0; 2473 if (N.getOpcode() == ISD::ADD && 2474 (!isIntS16Immediate(N.getOperand(1), imm) || 2475 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2476 Base = N.getOperand(0); 2477 Index = N.getOperand(1); 2478 return true; 2479 } 2480 2481 // Otherwise, do it the hard way, using R0 as the base register. 2482 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2483 N.getValueType()); 2484 Index = N; 2485 return true; 2486 } 2487 2488 /// Returns true if we should use a direct load into vector instruction 2489 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2490 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2491 2492 // If there are any other uses other than scalar to vector, then we should 2493 // keep it as a scalar load -> direct move pattern to prevent multiple 2494 // loads. 2495 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2496 if (!LD) 2497 return false; 2498 2499 EVT MemVT = LD->getMemoryVT(); 2500 if (!MemVT.isSimple()) 2501 return false; 2502 switch(MemVT.getSimpleVT().SimpleTy) { 2503 case MVT::i64: 2504 break; 2505 case MVT::i32: 2506 if (!ST.hasP8Vector()) 2507 return false; 2508 break; 2509 case MVT::i16: 2510 case MVT::i8: 2511 if (!ST.hasP9Vector()) 2512 return false; 2513 break; 2514 default: 2515 return false; 2516 } 2517 2518 SDValue LoadedVal(N, 0); 2519 if (!LoadedVal.hasOneUse()) 2520 return false; 2521 2522 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2523 UI != UE; ++UI) 2524 if (UI.getUse().get().getResNo() == 0 && 2525 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2526 return false; 2527 2528 return true; 2529 } 2530 2531 /// getPreIndexedAddressParts - returns true by value, base pointer and 2532 /// offset pointer and addressing mode by reference if the node's address 2533 /// can be legally represented as pre-indexed load / store address. 2534 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2535 SDValue &Offset, 2536 ISD::MemIndexedMode &AM, 2537 SelectionDAG &DAG) const { 2538 if (DisablePPCPreinc) return false; 2539 2540 bool isLoad = true; 2541 SDValue Ptr; 2542 EVT VT; 2543 unsigned Alignment; 2544 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2545 Ptr = LD->getBasePtr(); 2546 VT = LD->getMemoryVT(); 2547 Alignment = LD->getAlignment(); 2548 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2549 Ptr = ST->getBasePtr(); 2550 VT = ST->getMemoryVT(); 2551 Alignment = ST->getAlignment(); 2552 isLoad = false; 2553 } else 2554 return false; 2555 2556 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2557 // instructions because we can fold these into a more efficient instruction 2558 // instead, (such as LXSD). 2559 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2560 return false; 2561 } 2562 2563 // PowerPC doesn't have preinc load/store instructions for vectors (except 2564 // for QPX, which does have preinc r+r forms). 2565 if (VT.isVector()) { 2566 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2567 return false; 2568 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2569 AM = ISD::PRE_INC; 2570 return true; 2571 } 2572 } 2573 2574 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2575 // Common code will reject creating a pre-inc form if the base pointer 2576 // is a frame index, or if N is a store and the base pointer is either 2577 // the same as or a predecessor of the value being stored. Check for 2578 // those situations here, and try with swapped Base/Offset instead. 2579 bool Swap = false; 2580 2581 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2582 Swap = true; 2583 else if (!isLoad) { 2584 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2585 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2586 Swap = true; 2587 } 2588 2589 if (Swap) 2590 std::swap(Base, Offset); 2591 2592 AM = ISD::PRE_INC; 2593 return true; 2594 } 2595 2596 // LDU/STU can only handle immediates that are a multiple of 4. 2597 if (VT != MVT::i64) { 2598 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2599 return false; 2600 } else { 2601 // LDU/STU need an address with at least 4-byte alignment. 2602 if (Alignment < 4) 2603 return false; 2604 2605 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2606 return false; 2607 } 2608 2609 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2610 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2611 // sext i32 to i64 when addr mode is r+i. 2612 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2613 LD->getExtensionType() == ISD::SEXTLOAD && 2614 isa<ConstantSDNode>(Offset)) 2615 return false; 2616 } 2617 2618 AM = ISD::PRE_INC; 2619 return true; 2620 } 2621 2622 //===----------------------------------------------------------------------===// 2623 // LowerOperation implementation 2624 //===----------------------------------------------------------------------===// 2625 2626 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2627 /// and LoOpFlags to the target MO flags. 2628 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2629 unsigned &HiOpFlags, unsigned &LoOpFlags, 2630 const GlobalValue *GV = nullptr) { 2631 HiOpFlags = PPCII::MO_HA; 2632 LoOpFlags = PPCII::MO_LO; 2633 2634 // Don't use the pic base if not in PIC relocation model. 2635 if (IsPIC) { 2636 HiOpFlags |= PPCII::MO_PIC_FLAG; 2637 LoOpFlags |= PPCII::MO_PIC_FLAG; 2638 } 2639 2640 // If this is a reference to a global value that requires a non-lazy-ptr, make 2641 // sure that instruction lowering adds it. 2642 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2643 HiOpFlags |= PPCII::MO_NLP_FLAG; 2644 LoOpFlags |= PPCII::MO_NLP_FLAG; 2645 2646 if (GV->hasHiddenVisibility()) { 2647 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2648 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2649 } 2650 } 2651 } 2652 2653 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2654 SelectionDAG &DAG) { 2655 SDLoc DL(HiPart); 2656 EVT PtrVT = HiPart.getValueType(); 2657 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2658 2659 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2660 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2661 2662 // With PIC, the first instruction is actually "GR+hi(&G)". 2663 if (isPIC) 2664 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2665 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2666 2667 // Generate non-pic code that has direct accesses to the constant pool. 2668 // The address of the global is just (hi(&g)+lo(&g)). 2669 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2670 } 2671 2672 static void setUsesTOCBasePtr(MachineFunction &MF) { 2673 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2674 FuncInfo->setUsesTOCBasePtr(); 2675 } 2676 2677 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2678 setUsesTOCBasePtr(DAG.getMachineFunction()); 2679 } 2680 2681 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2682 SDValue GA) const { 2683 const bool Is64Bit = Subtarget.isPPC64(); 2684 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2685 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2686 : Subtarget.isAIXABI() 2687 ? DAG.getRegister(PPC::R2, VT) 2688 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2689 SDValue Ops[] = { GA, Reg }; 2690 return DAG.getMemIntrinsicNode( 2691 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2692 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2693 MachineMemOperand::MOLoad); 2694 } 2695 2696 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2697 SelectionDAG &DAG) const { 2698 EVT PtrVT = Op.getValueType(); 2699 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2700 const Constant *C = CP->getConstVal(); 2701 2702 // 64-bit SVR4 ABI code is always position-independent. 2703 // The actual address of the GlobalValue is stored in the TOC. 2704 if (Subtarget.is64BitELFABI()) { 2705 setUsesTOCBasePtr(DAG); 2706 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2707 return getTOCEntry(DAG, SDLoc(CP), GA); 2708 } 2709 2710 unsigned MOHiFlag, MOLoFlag; 2711 bool IsPIC = isPositionIndependent(); 2712 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2713 2714 if (IsPIC && Subtarget.isSVR4ABI()) { 2715 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2716 PPCII::MO_PIC_FLAG); 2717 return getTOCEntry(DAG, SDLoc(CP), GA); 2718 } 2719 2720 SDValue CPIHi = 2721 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2722 SDValue CPILo = 2723 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2724 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2725 } 2726 2727 // For 64-bit PowerPC, prefer the more compact relative encodings. 2728 // This trades 32 bits per jump table entry for one or two instructions 2729 // on the jump site. 2730 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2731 if (isJumpTableRelative()) 2732 return MachineJumpTableInfo::EK_LabelDifference32; 2733 2734 return TargetLowering::getJumpTableEncoding(); 2735 } 2736 2737 bool PPCTargetLowering::isJumpTableRelative() const { 2738 if (Subtarget.isPPC64()) 2739 return true; 2740 return TargetLowering::isJumpTableRelative(); 2741 } 2742 2743 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2744 SelectionDAG &DAG) const { 2745 if (!Subtarget.isPPC64()) 2746 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2747 2748 switch (getTargetMachine().getCodeModel()) { 2749 case CodeModel::Small: 2750 case CodeModel::Medium: 2751 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2752 default: 2753 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2754 getPointerTy(DAG.getDataLayout())); 2755 } 2756 } 2757 2758 const MCExpr * 2759 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2760 unsigned JTI, 2761 MCContext &Ctx) const { 2762 if (!Subtarget.isPPC64()) 2763 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2764 2765 switch (getTargetMachine().getCodeModel()) { 2766 case CodeModel::Small: 2767 case CodeModel::Medium: 2768 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2769 default: 2770 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2771 } 2772 } 2773 2774 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2775 EVT PtrVT = Op.getValueType(); 2776 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2777 2778 // 64-bit SVR4 ABI code is always position-independent. 2779 // The actual address of the GlobalValue is stored in the TOC. 2780 if (Subtarget.is64BitELFABI()) { 2781 setUsesTOCBasePtr(DAG); 2782 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2783 return getTOCEntry(DAG, SDLoc(JT), GA); 2784 } 2785 2786 unsigned MOHiFlag, MOLoFlag; 2787 bool IsPIC = isPositionIndependent(); 2788 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2789 2790 if (IsPIC && Subtarget.isSVR4ABI()) { 2791 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2792 PPCII::MO_PIC_FLAG); 2793 return getTOCEntry(DAG, SDLoc(GA), GA); 2794 } 2795 2796 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2797 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2798 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2799 } 2800 2801 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2802 SelectionDAG &DAG) const { 2803 EVT PtrVT = Op.getValueType(); 2804 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2805 const BlockAddress *BA = BASDN->getBlockAddress(); 2806 2807 // 64-bit SVR4 ABI code is always position-independent. 2808 // The actual BlockAddress is stored in the TOC. 2809 if (Subtarget.is64BitELFABI()) { 2810 setUsesTOCBasePtr(DAG); 2811 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2812 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2813 } 2814 2815 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2816 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2817 return getTOCEntry( 2818 DAG, SDLoc(BASDN), 2819 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2820 2821 unsigned MOHiFlag, MOLoFlag; 2822 bool IsPIC = isPositionIndependent(); 2823 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2824 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2825 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2826 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2827 } 2828 2829 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2830 SelectionDAG &DAG) const { 2831 // FIXME: TLS addresses currently use medium model code sequences, 2832 // which is the most useful form. Eventually support for small and 2833 // large models could be added if users need it, at the cost of 2834 // additional complexity. 2835 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2836 if (DAG.getTarget().useEmulatedTLS()) 2837 return LowerToTLSEmulatedModel(GA, DAG); 2838 2839 SDLoc dl(GA); 2840 const GlobalValue *GV = GA->getGlobal(); 2841 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2842 bool is64bit = Subtarget.isPPC64(); 2843 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2844 PICLevel::Level picLevel = M->getPICLevel(); 2845 2846 const TargetMachine &TM = getTargetMachine(); 2847 TLSModel::Model Model = TM.getTLSModel(GV); 2848 2849 if (Model == TLSModel::LocalExec) { 2850 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2851 PPCII::MO_TPREL_HA); 2852 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2853 PPCII::MO_TPREL_LO); 2854 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2855 : DAG.getRegister(PPC::R2, MVT::i32); 2856 2857 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2858 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2859 } 2860 2861 if (Model == TLSModel::InitialExec) { 2862 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2863 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2864 PPCII::MO_TLS); 2865 SDValue GOTPtr; 2866 if (is64bit) { 2867 setUsesTOCBasePtr(DAG); 2868 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2869 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2870 PtrVT, GOTReg, TGA); 2871 } else { 2872 if (!TM.isPositionIndependent()) 2873 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2874 else if (picLevel == PICLevel::SmallPIC) 2875 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2876 else 2877 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2878 } 2879 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2880 PtrVT, TGA, GOTPtr); 2881 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2882 } 2883 2884 if (Model == TLSModel::GeneralDynamic) { 2885 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2886 SDValue GOTPtr; 2887 if (is64bit) { 2888 setUsesTOCBasePtr(DAG); 2889 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2890 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2891 GOTReg, TGA); 2892 } else { 2893 if (picLevel == PICLevel::SmallPIC) 2894 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2895 else 2896 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2897 } 2898 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2899 GOTPtr, TGA, TGA); 2900 } 2901 2902 if (Model == TLSModel::LocalDynamic) { 2903 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2904 SDValue GOTPtr; 2905 if (is64bit) { 2906 setUsesTOCBasePtr(DAG); 2907 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2908 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2909 GOTReg, TGA); 2910 } else { 2911 if (picLevel == PICLevel::SmallPIC) 2912 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2913 else 2914 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2915 } 2916 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2917 PtrVT, GOTPtr, TGA, TGA); 2918 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2919 PtrVT, TLSAddr, TGA); 2920 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2921 } 2922 2923 llvm_unreachable("Unknown TLS model!"); 2924 } 2925 2926 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2927 SelectionDAG &DAG) const { 2928 EVT PtrVT = Op.getValueType(); 2929 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2930 SDLoc DL(GSDN); 2931 const GlobalValue *GV = GSDN->getGlobal(); 2932 2933 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2934 // The actual address of the GlobalValue is stored in the TOC. 2935 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2936 setUsesTOCBasePtr(DAG); 2937 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2938 return getTOCEntry(DAG, DL, GA); 2939 } 2940 2941 unsigned MOHiFlag, MOLoFlag; 2942 bool IsPIC = isPositionIndependent(); 2943 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2944 2945 if (IsPIC && Subtarget.isSVR4ABI()) { 2946 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2947 GSDN->getOffset(), 2948 PPCII::MO_PIC_FLAG); 2949 return getTOCEntry(DAG, DL, GA); 2950 } 2951 2952 SDValue GAHi = 2953 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2954 SDValue GALo = 2955 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2956 2957 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2958 2959 // If the global reference is actually to a non-lazy-pointer, we have to do an 2960 // extra load to get the address of the global. 2961 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2962 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2963 return Ptr; 2964 } 2965 2966 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2967 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2968 SDLoc dl(Op); 2969 2970 if (Op.getValueType() == MVT::v2i64) { 2971 // When the operands themselves are v2i64 values, we need to do something 2972 // special because VSX has no underlying comparison operations for these. 2973 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2974 // Equality can be handled by casting to the legal type for Altivec 2975 // comparisons, everything else needs to be expanded. 2976 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2977 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2978 DAG.getSetCC(dl, MVT::v4i32, 2979 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2980 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2981 CC)); 2982 } 2983 2984 return SDValue(); 2985 } 2986 2987 // We handle most of these in the usual way. 2988 return Op; 2989 } 2990 2991 // If we're comparing for equality to zero, expose the fact that this is 2992 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2993 // fold the new nodes. 2994 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2995 return V; 2996 2997 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2998 // Leave comparisons against 0 and -1 alone for now, since they're usually 2999 // optimized. FIXME: revisit this when we can custom lower all setcc 3000 // optimizations. 3001 if (C->isAllOnesValue() || C->isNullValue()) 3002 return SDValue(); 3003 } 3004 3005 // If we have an integer seteq/setne, turn it into a compare against zero 3006 // by xor'ing the rhs with the lhs, which is faster than setting a 3007 // condition register, reading it back out, and masking the correct bit. The 3008 // normal approach here uses sub to do this instead of xor. Using xor exposes 3009 // the result to other bit-twiddling opportunities. 3010 EVT LHSVT = Op.getOperand(0).getValueType(); 3011 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3012 EVT VT = Op.getValueType(); 3013 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3014 Op.getOperand(1)); 3015 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3016 } 3017 return SDValue(); 3018 } 3019 3020 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3021 SDNode *Node = Op.getNode(); 3022 EVT VT = Node->getValueType(0); 3023 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3024 SDValue InChain = Node->getOperand(0); 3025 SDValue VAListPtr = Node->getOperand(1); 3026 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3027 SDLoc dl(Node); 3028 3029 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3030 3031 // gpr_index 3032 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3033 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3034 InChain = GprIndex.getValue(1); 3035 3036 if (VT == MVT::i64) { 3037 // Check if GprIndex is even 3038 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3039 DAG.getConstant(1, dl, MVT::i32)); 3040 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3041 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3042 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3043 DAG.getConstant(1, dl, MVT::i32)); 3044 // Align GprIndex to be even if it isn't 3045 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3046 GprIndex); 3047 } 3048 3049 // fpr index is 1 byte after gpr 3050 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3051 DAG.getConstant(1, dl, MVT::i32)); 3052 3053 // fpr 3054 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3055 FprPtr, MachinePointerInfo(SV), MVT::i8); 3056 InChain = FprIndex.getValue(1); 3057 3058 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3059 DAG.getConstant(8, dl, MVT::i32)); 3060 3061 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3062 DAG.getConstant(4, dl, MVT::i32)); 3063 3064 // areas 3065 SDValue OverflowArea = 3066 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3067 InChain = OverflowArea.getValue(1); 3068 3069 SDValue RegSaveArea = 3070 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3071 InChain = RegSaveArea.getValue(1); 3072 3073 // select overflow_area if index > 8 3074 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3075 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3076 3077 // adjustment constant gpr_index * 4/8 3078 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3079 VT.isInteger() ? GprIndex : FprIndex, 3080 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3081 MVT::i32)); 3082 3083 // OurReg = RegSaveArea + RegConstant 3084 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3085 RegConstant); 3086 3087 // Floating types are 32 bytes into RegSaveArea 3088 if (VT.isFloatingPoint()) 3089 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3090 DAG.getConstant(32, dl, MVT::i32)); 3091 3092 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3093 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3094 VT.isInteger() ? GprIndex : FprIndex, 3095 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3096 MVT::i32)); 3097 3098 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3099 VT.isInteger() ? VAListPtr : FprPtr, 3100 MachinePointerInfo(SV), MVT::i8); 3101 3102 // determine if we should load from reg_save_area or overflow_area 3103 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3104 3105 // increase overflow_area by 4/8 if gpr/fpr > 8 3106 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3107 DAG.getConstant(VT.isInteger() ? 4 : 8, 3108 dl, MVT::i32)); 3109 3110 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3111 OverflowAreaPlusN); 3112 3113 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3114 MachinePointerInfo(), MVT::i32); 3115 3116 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3117 } 3118 3119 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3120 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3121 3122 // We have to copy the entire va_list struct: 3123 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3124 return DAG.getMemcpy(Op.getOperand(0), Op, 3125 Op.getOperand(1), Op.getOperand(2), 3126 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3127 false, MachinePointerInfo(), MachinePointerInfo()); 3128 } 3129 3130 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3131 SelectionDAG &DAG) const { 3132 return Op.getOperand(0); 3133 } 3134 3135 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3136 SelectionDAG &DAG) const { 3137 SDValue Chain = Op.getOperand(0); 3138 SDValue Trmp = Op.getOperand(1); // trampoline 3139 SDValue FPtr = Op.getOperand(2); // nested function 3140 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3141 SDLoc dl(Op); 3142 3143 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3144 bool isPPC64 = (PtrVT == MVT::i64); 3145 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3146 3147 TargetLowering::ArgListTy Args; 3148 TargetLowering::ArgListEntry Entry; 3149 3150 Entry.Ty = IntPtrTy; 3151 Entry.Node = Trmp; Args.push_back(Entry); 3152 3153 // TrampSize == (isPPC64 ? 48 : 40); 3154 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3155 isPPC64 ? MVT::i64 : MVT::i32); 3156 Args.push_back(Entry); 3157 3158 Entry.Node = FPtr; Args.push_back(Entry); 3159 Entry.Node = Nest; Args.push_back(Entry); 3160 3161 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3162 TargetLowering::CallLoweringInfo CLI(DAG); 3163 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3164 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3165 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3166 3167 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3168 return CallResult.second; 3169 } 3170 3171 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3172 MachineFunction &MF = DAG.getMachineFunction(); 3173 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3174 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3175 3176 SDLoc dl(Op); 3177 3178 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3179 // vastart just stores the address of the VarArgsFrameIndex slot into the 3180 // memory location argument. 3181 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3182 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3183 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3184 MachinePointerInfo(SV)); 3185 } 3186 3187 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3188 // We suppose the given va_list is already allocated. 3189 // 3190 // typedef struct { 3191 // char gpr; /* index into the array of 8 GPRs 3192 // * stored in the register save area 3193 // * gpr=0 corresponds to r3, 3194 // * gpr=1 to r4, etc. 3195 // */ 3196 // char fpr; /* index into the array of 8 FPRs 3197 // * stored in the register save area 3198 // * fpr=0 corresponds to f1, 3199 // * fpr=1 to f2, etc. 3200 // */ 3201 // char *overflow_arg_area; 3202 // /* location on stack that holds 3203 // * the next overflow argument 3204 // */ 3205 // char *reg_save_area; 3206 // /* where r3:r10 and f1:f8 (if saved) 3207 // * are stored 3208 // */ 3209 // } va_list[1]; 3210 3211 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3212 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3213 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3214 PtrVT); 3215 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3216 PtrVT); 3217 3218 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3219 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3220 3221 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3222 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3223 3224 uint64_t FPROffset = 1; 3225 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3226 3227 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3228 3229 // Store first byte : number of int regs 3230 SDValue firstStore = 3231 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3232 MachinePointerInfo(SV), MVT::i8); 3233 uint64_t nextOffset = FPROffset; 3234 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3235 ConstFPROffset); 3236 3237 // Store second byte : number of float regs 3238 SDValue secondStore = 3239 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3240 MachinePointerInfo(SV, nextOffset), MVT::i8); 3241 nextOffset += StackOffset; 3242 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3243 3244 // Store second word : arguments given on stack 3245 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3246 MachinePointerInfo(SV, nextOffset)); 3247 nextOffset += FrameOffset; 3248 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3249 3250 // Store third word : arguments given in registers 3251 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3252 MachinePointerInfo(SV, nextOffset)); 3253 } 3254 3255 /// FPR - The set of FP registers that should be allocated for arguments 3256 /// on Darwin and AIX. 3257 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3258 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3259 PPC::F11, PPC::F12, PPC::F13}; 3260 3261 /// QFPR - The set of QPX registers that should be allocated for arguments. 3262 static const MCPhysReg QFPR[] = { 3263 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3264 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3265 3266 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3267 /// the stack. 3268 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3269 unsigned PtrByteSize) { 3270 unsigned ArgSize = ArgVT.getStoreSize(); 3271 if (Flags.isByVal()) 3272 ArgSize = Flags.getByValSize(); 3273 3274 // Round up to multiples of the pointer size, except for array members, 3275 // which are always packed. 3276 if (!Flags.isInConsecutiveRegs()) 3277 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3278 3279 return ArgSize; 3280 } 3281 3282 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3283 /// on the stack. 3284 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3285 ISD::ArgFlagsTy Flags, 3286 unsigned PtrByteSize) { 3287 unsigned Align = PtrByteSize; 3288 3289 // Altivec parameters are padded to a 16 byte boundary. 3290 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3291 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3292 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3293 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3294 Align = 16; 3295 // QPX vector types stored in double-precision are padded to a 32 byte 3296 // boundary. 3297 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3298 Align = 32; 3299 3300 // ByVal parameters are aligned as requested. 3301 if (Flags.isByVal()) { 3302 unsigned BVAlign = Flags.getByValAlign(); 3303 if (BVAlign > PtrByteSize) { 3304 if (BVAlign % PtrByteSize != 0) 3305 llvm_unreachable( 3306 "ByVal alignment is not a multiple of the pointer size"); 3307 3308 Align = BVAlign; 3309 } 3310 } 3311 3312 // Array members are always packed to their original alignment. 3313 if (Flags.isInConsecutiveRegs()) { 3314 // If the array member was split into multiple registers, the first 3315 // needs to be aligned to the size of the full type. (Except for 3316 // ppcf128, which is only aligned as its f64 components.) 3317 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3318 Align = OrigVT.getStoreSize(); 3319 else 3320 Align = ArgVT.getStoreSize(); 3321 } 3322 3323 return Align; 3324 } 3325 3326 /// CalculateStackSlotUsed - Return whether this argument will use its 3327 /// stack slot (instead of being passed in registers). ArgOffset, 3328 /// AvailableFPRs, and AvailableVRs must hold the current argument 3329 /// position, and will be updated to account for this argument. 3330 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3331 ISD::ArgFlagsTy Flags, 3332 unsigned PtrByteSize, 3333 unsigned LinkageSize, 3334 unsigned ParamAreaSize, 3335 unsigned &ArgOffset, 3336 unsigned &AvailableFPRs, 3337 unsigned &AvailableVRs, bool HasQPX) { 3338 bool UseMemory = false; 3339 3340 // Respect alignment of argument on the stack. 3341 unsigned Align = 3342 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3343 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3344 // If there's no space left in the argument save area, we must 3345 // use memory (this check also catches zero-sized arguments). 3346 if (ArgOffset >= LinkageSize + ParamAreaSize) 3347 UseMemory = true; 3348 3349 // Allocate argument on the stack. 3350 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3351 if (Flags.isInConsecutiveRegsLast()) 3352 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3353 // If we overran the argument save area, we must use memory 3354 // (this check catches arguments passed partially in memory) 3355 if (ArgOffset > LinkageSize + ParamAreaSize) 3356 UseMemory = true; 3357 3358 // However, if the argument is actually passed in an FPR or a VR, 3359 // we don't use memory after all. 3360 if (!Flags.isByVal()) { 3361 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3362 // QPX registers overlap with the scalar FP registers. 3363 (HasQPX && (ArgVT == MVT::v4f32 || 3364 ArgVT == MVT::v4f64 || 3365 ArgVT == MVT::v4i1))) 3366 if (AvailableFPRs > 0) { 3367 --AvailableFPRs; 3368 return false; 3369 } 3370 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3371 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3372 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3373 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3374 if (AvailableVRs > 0) { 3375 --AvailableVRs; 3376 return false; 3377 } 3378 } 3379 3380 return UseMemory; 3381 } 3382 3383 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3384 /// ensure minimum alignment required for target. 3385 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3386 unsigned NumBytes) { 3387 unsigned TargetAlign = Lowering->getStackAlignment(); 3388 unsigned AlignMask = TargetAlign - 1; 3389 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3390 return NumBytes; 3391 } 3392 3393 SDValue PPCTargetLowering::LowerFormalArguments( 3394 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3395 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3396 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3397 if (Subtarget.is64BitELFABI()) 3398 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3399 InVals); 3400 else if (Subtarget.is32BitELFABI()) 3401 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3402 InVals); 3403 3404 // FIXME: We are using this for both AIX and Darwin. We should add appropriate 3405 // AIX testing, and rename it appropriately. 3406 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3407 InVals); 3408 } 3409 3410 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3411 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3412 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3413 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3414 3415 // 32-bit SVR4 ABI Stack Frame Layout: 3416 // +-----------------------------------+ 3417 // +--> | Back chain | 3418 // | +-----------------------------------+ 3419 // | | Floating-point register save area | 3420 // | +-----------------------------------+ 3421 // | | General register save area | 3422 // | +-----------------------------------+ 3423 // | | CR save word | 3424 // | +-----------------------------------+ 3425 // | | VRSAVE save word | 3426 // | +-----------------------------------+ 3427 // | | Alignment padding | 3428 // | +-----------------------------------+ 3429 // | | Vector register save area | 3430 // | +-----------------------------------+ 3431 // | | Local variable space | 3432 // | +-----------------------------------+ 3433 // | | Parameter list area | 3434 // | +-----------------------------------+ 3435 // | | LR save word | 3436 // | +-----------------------------------+ 3437 // SP--> +--- | Back chain | 3438 // +-----------------------------------+ 3439 // 3440 // Specifications: 3441 // System V Application Binary Interface PowerPC Processor Supplement 3442 // AltiVec Technology Programming Interface Manual 3443 3444 MachineFunction &MF = DAG.getMachineFunction(); 3445 MachineFrameInfo &MFI = MF.getFrameInfo(); 3446 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3447 3448 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3449 // Potential tail calls could cause overwriting of argument stack slots. 3450 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3451 (CallConv == CallingConv::Fast)); 3452 unsigned PtrByteSize = 4; 3453 3454 // Assign locations to all of the incoming arguments. 3455 SmallVector<CCValAssign, 16> ArgLocs; 3456 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3457 *DAG.getContext()); 3458 3459 // Reserve space for the linkage area on the stack. 3460 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3461 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3462 if (useSoftFloat()) 3463 CCInfo.PreAnalyzeFormalArguments(Ins); 3464 3465 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3466 CCInfo.clearWasPPCF128(); 3467 3468 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3469 CCValAssign &VA = ArgLocs[i]; 3470 3471 // Arguments stored in registers. 3472 if (VA.isRegLoc()) { 3473 const TargetRegisterClass *RC; 3474 EVT ValVT = VA.getValVT(); 3475 3476 switch (ValVT.getSimpleVT().SimpleTy) { 3477 default: 3478 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3479 case MVT::i1: 3480 case MVT::i32: 3481 RC = &PPC::GPRCRegClass; 3482 break; 3483 case MVT::f32: 3484 if (Subtarget.hasP8Vector()) 3485 RC = &PPC::VSSRCRegClass; 3486 else if (Subtarget.hasSPE()) 3487 RC = &PPC::GPRCRegClass; 3488 else 3489 RC = &PPC::F4RCRegClass; 3490 break; 3491 case MVT::f64: 3492 if (Subtarget.hasVSX()) 3493 RC = &PPC::VSFRCRegClass; 3494 else if (Subtarget.hasSPE()) 3495 // SPE passes doubles in GPR pairs. 3496 RC = &PPC::GPRCRegClass; 3497 else 3498 RC = &PPC::F8RCRegClass; 3499 break; 3500 case MVT::v16i8: 3501 case MVT::v8i16: 3502 case MVT::v4i32: 3503 RC = &PPC::VRRCRegClass; 3504 break; 3505 case MVT::v4f32: 3506 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3507 break; 3508 case MVT::v2f64: 3509 case MVT::v2i64: 3510 RC = &PPC::VRRCRegClass; 3511 break; 3512 case MVT::v4f64: 3513 RC = &PPC::QFRCRegClass; 3514 break; 3515 case MVT::v4i1: 3516 RC = &PPC::QBRCRegClass; 3517 break; 3518 } 3519 3520 SDValue ArgValue; 3521 // Transform the arguments stored in physical registers into 3522 // virtual ones. 3523 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3524 assert(i + 1 < e && "No second half of double precision argument"); 3525 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3526 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3527 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3528 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3529 if (!Subtarget.isLittleEndian()) 3530 std::swap (ArgValueLo, ArgValueHi); 3531 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3532 ArgValueHi); 3533 } else { 3534 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3535 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3536 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3537 if (ValVT == MVT::i1) 3538 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3539 } 3540 3541 InVals.push_back(ArgValue); 3542 } else { 3543 // Argument stored in memory. 3544 assert(VA.isMemLoc()); 3545 3546 // Get the extended size of the argument type in stack 3547 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3548 // Get the actual size of the argument type 3549 unsigned ObjSize = VA.getValVT().getStoreSize(); 3550 unsigned ArgOffset = VA.getLocMemOffset(); 3551 // Stack objects in PPC32 are right justified. 3552 ArgOffset += ArgSize - ObjSize; 3553 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3554 3555 // Create load nodes to retrieve arguments from the stack. 3556 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3557 InVals.push_back( 3558 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3559 } 3560 } 3561 3562 // Assign locations to all of the incoming aggregate by value arguments. 3563 // Aggregates passed by value are stored in the local variable space of the 3564 // caller's stack frame, right above the parameter list area. 3565 SmallVector<CCValAssign, 16> ByValArgLocs; 3566 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3567 ByValArgLocs, *DAG.getContext()); 3568 3569 // Reserve stack space for the allocations in CCInfo. 3570 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3571 3572 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3573 3574 // Area that is at least reserved in the caller of this function. 3575 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3576 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3577 3578 // Set the size that is at least reserved in caller of this function. Tail 3579 // call optimized function's reserved stack space needs to be aligned so that 3580 // taking the difference between two stack areas will result in an aligned 3581 // stack. 3582 MinReservedArea = 3583 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3584 FuncInfo->setMinReservedArea(MinReservedArea); 3585 3586 SmallVector<SDValue, 8> MemOps; 3587 3588 // If the function takes variable number of arguments, make a frame index for 3589 // the start of the first vararg value... for expansion of llvm.va_start. 3590 if (isVarArg) { 3591 static const MCPhysReg GPArgRegs[] = { 3592 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3593 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3594 }; 3595 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3596 3597 static const MCPhysReg FPArgRegs[] = { 3598 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3599 PPC::F8 3600 }; 3601 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3602 3603 if (useSoftFloat() || hasSPE()) 3604 NumFPArgRegs = 0; 3605 3606 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3607 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3608 3609 // Make room for NumGPArgRegs and NumFPArgRegs. 3610 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3611 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3612 3613 FuncInfo->setVarArgsStackOffset( 3614 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3615 CCInfo.getNextStackOffset(), true)); 3616 3617 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3618 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3619 3620 // The fixed integer arguments of a variadic function are stored to the 3621 // VarArgsFrameIndex on the stack so that they may be loaded by 3622 // dereferencing the result of va_next. 3623 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3624 // Get an existing live-in vreg, or add a new one. 3625 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3626 if (!VReg) 3627 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3628 3629 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3630 SDValue Store = 3631 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3632 MemOps.push_back(Store); 3633 // Increment the address by four for the next argument to store 3634 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3635 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3636 } 3637 3638 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3639 // is set. 3640 // The double arguments are stored to the VarArgsFrameIndex 3641 // on the stack. 3642 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3643 // Get an existing live-in vreg, or add a new one. 3644 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3645 if (!VReg) 3646 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3647 3648 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3649 SDValue Store = 3650 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3651 MemOps.push_back(Store); 3652 // Increment the address by eight for the next argument to store 3653 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3654 PtrVT); 3655 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3656 } 3657 } 3658 3659 if (!MemOps.empty()) 3660 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3661 3662 return Chain; 3663 } 3664 3665 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3666 // value to MVT::i64 and then truncate to the correct register size. 3667 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3668 EVT ObjectVT, SelectionDAG &DAG, 3669 SDValue ArgVal, 3670 const SDLoc &dl) const { 3671 if (Flags.isSExt()) 3672 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3673 DAG.getValueType(ObjectVT)); 3674 else if (Flags.isZExt()) 3675 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3676 DAG.getValueType(ObjectVT)); 3677 3678 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3679 } 3680 3681 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3682 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3683 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3684 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3685 // TODO: add description of PPC stack frame format, or at least some docs. 3686 // 3687 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3688 bool isLittleEndian = Subtarget.isLittleEndian(); 3689 MachineFunction &MF = DAG.getMachineFunction(); 3690 MachineFrameInfo &MFI = MF.getFrameInfo(); 3691 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3692 3693 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3694 "fastcc not supported on varargs functions"); 3695 3696 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3697 // Potential tail calls could cause overwriting of argument stack slots. 3698 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3699 (CallConv == CallingConv::Fast)); 3700 unsigned PtrByteSize = 8; 3701 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3702 3703 static const MCPhysReg GPR[] = { 3704 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3705 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3706 }; 3707 static const MCPhysReg VR[] = { 3708 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3709 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3710 }; 3711 3712 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3713 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3714 const unsigned Num_VR_Regs = array_lengthof(VR); 3715 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3716 3717 // Do a first pass over the arguments to determine whether the ABI 3718 // guarantees that our caller has allocated the parameter save area 3719 // on its stack frame. In the ELFv1 ABI, this is always the case; 3720 // in the ELFv2 ABI, it is true if this is a vararg function or if 3721 // any parameter is located in a stack slot. 3722 3723 bool HasParameterArea = !isELFv2ABI || isVarArg; 3724 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3725 unsigned NumBytes = LinkageSize; 3726 unsigned AvailableFPRs = Num_FPR_Regs; 3727 unsigned AvailableVRs = Num_VR_Regs; 3728 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3729 if (Ins[i].Flags.isNest()) 3730 continue; 3731 3732 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3733 PtrByteSize, LinkageSize, ParamAreaSize, 3734 NumBytes, AvailableFPRs, AvailableVRs, 3735 Subtarget.hasQPX())) 3736 HasParameterArea = true; 3737 } 3738 3739 // Add DAG nodes to load the arguments or copy them out of registers. On 3740 // entry to a function on PPC, the arguments start after the linkage area, 3741 // although the first ones are often in registers. 3742 3743 unsigned ArgOffset = LinkageSize; 3744 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3745 unsigned &QFPR_idx = FPR_idx; 3746 SmallVector<SDValue, 8> MemOps; 3747 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3748 unsigned CurArgIdx = 0; 3749 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3750 SDValue ArgVal; 3751 bool needsLoad = false; 3752 EVT ObjectVT = Ins[ArgNo].VT; 3753 EVT OrigVT = Ins[ArgNo].ArgVT; 3754 unsigned ObjSize = ObjectVT.getStoreSize(); 3755 unsigned ArgSize = ObjSize; 3756 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3757 if (Ins[ArgNo].isOrigArg()) { 3758 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3759 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3760 } 3761 // We re-align the argument offset for each argument, except when using the 3762 // fast calling convention, when we need to make sure we do that only when 3763 // we'll actually use a stack slot. 3764 unsigned CurArgOffset, Align; 3765 auto ComputeArgOffset = [&]() { 3766 /* Respect alignment of argument on the stack. */ 3767 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3768 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3769 CurArgOffset = ArgOffset; 3770 }; 3771 3772 if (CallConv != CallingConv::Fast) { 3773 ComputeArgOffset(); 3774 3775 /* Compute GPR index associated with argument offset. */ 3776 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3777 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3778 } 3779 3780 // FIXME the codegen can be much improved in some cases. 3781 // We do not have to keep everything in memory. 3782 if (Flags.isByVal()) { 3783 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3784 3785 if (CallConv == CallingConv::Fast) 3786 ComputeArgOffset(); 3787 3788 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3789 ObjSize = Flags.getByValSize(); 3790 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3791 // Empty aggregate parameters do not take up registers. Examples: 3792 // struct { } a; 3793 // union { } b; 3794 // int c[0]; 3795 // etc. However, we have to provide a place-holder in InVals, so 3796 // pretend we have an 8-byte item at the current address for that 3797 // purpose. 3798 if (!ObjSize) { 3799 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3800 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3801 InVals.push_back(FIN); 3802 continue; 3803 } 3804 3805 // Create a stack object covering all stack doublewords occupied 3806 // by the argument. If the argument is (fully or partially) on 3807 // the stack, or if the argument is fully in registers but the 3808 // caller has allocated the parameter save anyway, we can refer 3809 // directly to the caller's stack frame. Otherwise, create a 3810 // local copy in our own frame. 3811 int FI; 3812 if (HasParameterArea || 3813 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3814 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3815 else 3816 FI = MFI.CreateStackObject(ArgSize, Align, false); 3817 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3818 3819 // Handle aggregates smaller than 8 bytes. 3820 if (ObjSize < PtrByteSize) { 3821 // The value of the object is its address, which differs from the 3822 // address of the enclosing doubleword on big-endian systems. 3823 SDValue Arg = FIN; 3824 if (!isLittleEndian) { 3825 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3826 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3827 } 3828 InVals.push_back(Arg); 3829 3830 if (GPR_idx != Num_GPR_Regs) { 3831 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3832 FuncInfo->addLiveInAttr(VReg, Flags); 3833 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3834 SDValue Store; 3835 3836 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3837 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3838 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3839 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3840 MachinePointerInfo(&*FuncArg), ObjType); 3841 } else { 3842 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3843 // store the whole register as-is to the parameter save area 3844 // slot. 3845 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3846 MachinePointerInfo(&*FuncArg)); 3847 } 3848 3849 MemOps.push_back(Store); 3850 } 3851 // Whether we copied from a register or not, advance the offset 3852 // into the parameter save area by a full doubleword. 3853 ArgOffset += PtrByteSize; 3854 continue; 3855 } 3856 3857 // The value of the object is its address, which is the address of 3858 // its first stack doubleword. 3859 InVals.push_back(FIN); 3860 3861 // Store whatever pieces of the object are in registers to memory. 3862 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3863 if (GPR_idx == Num_GPR_Regs) 3864 break; 3865 3866 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3867 FuncInfo->addLiveInAttr(VReg, Flags); 3868 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3869 SDValue Addr = FIN; 3870 if (j) { 3871 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3872 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3873 } 3874 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3875 MachinePointerInfo(&*FuncArg, j)); 3876 MemOps.push_back(Store); 3877 ++GPR_idx; 3878 } 3879 ArgOffset += ArgSize; 3880 continue; 3881 } 3882 3883 switch (ObjectVT.getSimpleVT().SimpleTy) { 3884 default: llvm_unreachable("Unhandled argument type!"); 3885 case MVT::i1: 3886 case MVT::i32: 3887 case MVT::i64: 3888 if (Flags.isNest()) { 3889 // The 'nest' parameter, if any, is passed in R11. 3890 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3891 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3892 3893 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3894 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3895 3896 break; 3897 } 3898 3899 // These can be scalar arguments or elements of an integer array type 3900 // passed directly. Clang may use those instead of "byval" aggregate 3901 // types to avoid forcing arguments to memory unnecessarily. 3902 if (GPR_idx != Num_GPR_Regs) { 3903 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3904 FuncInfo->addLiveInAttr(VReg, Flags); 3905 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3906 3907 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3908 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3909 // value to MVT::i64 and then truncate to the correct register size. 3910 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3911 } else { 3912 if (CallConv == CallingConv::Fast) 3913 ComputeArgOffset(); 3914 3915 needsLoad = true; 3916 ArgSize = PtrByteSize; 3917 } 3918 if (CallConv != CallingConv::Fast || needsLoad) 3919 ArgOffset += 8; 3920 break; 3921 3922 case MVT::f32: 3923 case MVT::f64: 3924 // These can be scalar arguments or elements of a float array type 3925 // passed directly. The latter are used to implement ELFv2 homogenous 3926 // float aggregates. 3927 if (FPR_idx != Num_FPR_Regs) { 3928 unsigned VReg; 3929 3930 if (ObjectVT == MVT::f32) 3931 VReg = MF.addLiveIn(FPR[FPR_idx], 3932 Subtarget.hasP8Vector() 3933 ? &PPC::VSSRCRegClass 3934 : &PPC::F4RCRegClass); 3935 else 3936 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3937 ? &PPC::VSFRCRegClass 3938 : &PPC::F8RCRegClass); 3939 3940 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3941 ++FPR_idx; 3942 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3943 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3944 // once we support fp <-> gpr moves. 3945 3946 // This can only ever happen in the presence of f32 array types, 3947 // since otherwise we never run out of FPRs before running out 3948 // of GPRs. 3949 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3950 FuncInfo->addLiveInAttr(VReg, Flags); 3951 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3952 3953 if (ObjectVT == MVT::f32) { 3954 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3955 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3956 DAG.getConstant(32, dl, MVT::i32)); 3957 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3958 } 3959 3960 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3961 } else { 3962 if (CallConv == CallingConv::Fast) 3963 ComputeArgOffset(); 3964 3965 needsLoad = true; 3966 } 3967 3968 // When passing an array of floats, the array occupies consecutive 3969 // space in the argument area; only round up to the next doubleword 3970 // at the end of the array. Otherwise, each float takes 8 bytes. 3971 if (CallConv != CallingConv::Fast || needsLoad) { 3972 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3973 ArgOffset += ArgSize; 3974 if (Flags.isInConsecutiveRegsLast()) 3975 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3976 } 3977 break; 3978 case MVT::v4f32: 3979 case MVT::v4i32: 3980 case MVT::v8i16: 3981 case MVT::v16i8: 3982 case MVT::v2f64: 3983 case MVT::v2i64: 3984 case MVT::v1i128: 3985 case MVT::f128: 3986 if (!Subtarget.hasQPX()) { 3987 // These can be scalar arguments or elements of a vector array type 3988 // passed directly. The latter are used to implement ELFv2 homogenous 3989 // vector aggregates. 3990 if (VR_idx != Num_VR_Regs) { 3991 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3992 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3993 ++VR_idx; 3994 } else { 3995 if (CallConv == CallingConv::Fast) 3996 ComputeArgOffset(); 3997 needsLoad = true; 3998 } 3999 if (CallConv != CallingConv::Fast || needsLoad) 4000 ArgOffset += 16; 4001 break; 4002 } // not QPX 4003 4004 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4005 "Invalid QPX parameter type"); 4006 LLVM_FALLTHROUGH; 4007 4008 case MVT::v4f64: 4009 case MVT::v4i1: 4010 // QPX vectors are treated like their scalar floating-point subregisters 4011 // (except that they're larger). 4012 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4013 if (QFPR_idx != Num_QFPR_Regs) { 4014 const TargetRegisterClass *RC; 4015 switch (ObjectVT.getSimpleVT().SimpleTy) { 4016 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4017 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4018 default: RC = &PPC::QBRCRegClass; break; 4019 } 4020 4021 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4022 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4023 ++QFPR_idx; 4024 } else { 4025 if (CallConv == CallingConv::Fast) 4026 ComputeArgOffset(); 4027 needsLoad = true; 4028 } 4029 if (CallConv != CallingConv::Fast || needsLoad) 4030 ArgOffset += Sz; 4031 break; 4032 } 4033 4034 // We need to load the argument to a virtual register if we determined 4035 // above that we ran out of physical registers of the appropriate type. 4036 if (needsLoad) { 4037 if (ObjSize < ArgSize && !isLittleEndian) 4038 CurArgOffset += ArgSize - ObjSize; 4039 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4040 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4041 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4042 } 4043 4044 InVals.push_back(ArgVal); 4045 } 4046 4047 // Area that is at least reserved in the caller of this function. 4048 unsigned MinReservedArea; 4049 if (HasParameterArea) 4050 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4051 else 4052 MinReservedArea = LinkageSize; 4053 4054 // Set the size that is at least reserved in caller of this function. Tail 4055 // call optimized functions' reserved stack space needs to be aligned so that 4056 // taking the difference between two stack areas will result in an aligned 4057 // stack. 4058 MinReservedArea = 4059 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4060 FuncInfo->setMinReservedArea(MinReservedArea); 4061 4062 // If the function takes variable number of arguments, make a frame index for 4063 // the start of the first vararg value... for expansion of llvm.va_start. 4064 if (isVarArg) { 4065 int Depth = ArgOffset; 4066 4067 FuncInfo->setVarArgsFrameIndex( 4068 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4069 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4070 4071 // If this function is vararg, store any remaining integer argument regs 4072 // to their spots on the stack so that they may be loaded by dereferencing 4073 // the result of va_next. 4074 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4075 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4076 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4077 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4078 SDValue Store = 4079 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4080 MemOps.push_back(Store); 4081 // Increment the address by four for the next argument to store 4082 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4083 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4084 } 4085 } 4086 4087 if (!MemOps.empty()) 4088 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4089 4090 return Chain; 4091 } 4092 4093 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4094 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4095 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4096 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4097 // TODO: add description of PPC stack frame format, or at least some docs. 4098 // 4099 MachineFunction &MF = DAG.getMachineFunction(); 4100 MachineFrameInfo &MFI = MF.getFrameInfo(); 4101 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4102 4103 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4104 bool isPPC64 = PtrVT == MVT::i64; 4105 // Potential tail calls could cause overwriting of argument stack slots. 4106 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4107 (CallConv == CallingConv::Fast)); 4108 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4109 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4110 unsigned ArgOffset = LinkageSize; 4111 // Area that is at least reserved in caller of this function. 4112 unsigned MinReservedArea = ArgOffset; 4113 4114 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4115 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4116 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4117 }; 4118 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4119 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4120 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4121 }; 4122 static const MCPhysReg VR[] = { 4123 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4124 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4125 }; 4126 4127 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4128 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4129 const unsigned Num_VR_Regs = array_lengthof( VR); 4130 4131 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4132 4133 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4134 4135 // In 32-bit non-varargs functions, the stack space for vectors is after the 4136 // stack space for non-vectors. We do not use this space unless we have 4137 // too many vectors to fit in registers, something that only occurs in 4138 // constructed examples:), but we have to walk the arglist to figure 4139 // that out...for the pathological case, compute VecArgOffset as the 4140 // start of the vector parameter area. Computing VecArgOffset is the 4141 // entire point of the following loop. 4142 unsigned VecArgOffset = ArgOffset; 4143 if (!isVarArg && !isPPC64) { 4144 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4145 ++ArgNo) { 4146 EVT ObjectVT = Ins[ArgNo].VT; 4147 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4148 4149 if (Flags.isByVal()) { 4150 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4151 unsigned ObjSize = Flags.getByValSize(); 4152 unsigned ArgSize = 4153 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4154 VecArgOffset += ArgSize; 4155 continue; 4156 } 4157 4158 switch(ObjectVT.getSimpleVT().SimpleTy) { 4159 default: llvm_unreachable("Unhandled argument type!"); 4160 case MVT::i1: 4161 case MVT::i32: 4162 case MVT::f32: 4163 VecArgOffset += 4; 4164 break; 4165 case MVT::i64: // PPC64 4166 case MVT::f64: 4167 // FIXME: We are guaranteed to be !isPPC64 at this point. 4168 // Does MVT::i64 apply? 4169 VecArgOffset += 8; 4170 break; 4171 case MVT::v4f32: 4172 case MVT::v4i32: 4173 case MVT::v8i16: 4174 case MVT::v16i8: 4175 // Nothing to do, we're only looking at Nonvector args here. 4176 break; 4177 } 4178 } 4179 } 4180 // We've found where the vector parameter area in memory is. Skip the 4181 // first 12 parameters; these don't use that memory. 4182 VecArgOffset = ((VecArgOffset+15)/16)*16; 4183 VecArgOffset += 12*16; 4184 4185 // Add DAG nodes to load the arguments or copy them out of registers. On 4186 // entry to a function on PPC, the arguments start after the linkage area, 4187 // although the first ones are often in registers. 4188 4189 SmallVector<SDValue, 8> MemOps; 4190 unsigned nAltivecParamsAtEnd = 0; 4191 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4192 unsigned CurArgIdx = 0; 4193 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4194 SDValue ArgVal; 4195 bool needsLoad = false; 4196 EVT ObjectVT = Ins[ArgNo].VT; 4197 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4198 unsigned ArgSize = ObjSize; 4199 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4200 if (Ins[ArgNo].isOrigArg()) { 4201 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4202 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4203 } 4204 unsigned CurArgOffset = ArgOffset; 4205 4206 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4207 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4208 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4209 if (isVarArg || isPPC64) { 4210 MinReservedArea = ((MinReservedArea+15)/16)*16; 4211 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4212 Flags, 4213 PtrByteSize); 4214 } else nAltivecParamsAtEnd++; 4215 } else 4216 // Calculate min reserved area. 4217 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4218 Flags, 4219 PtrByteSize); 4220 4221 // FIXME the codegen can be much improved in some cases. 4222 // We do not have to keep everything in memory. 4223 if (Flags.isByVal()) { 4224 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4225 4226 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4227 ObjSize = Flags.getByValSize(); 4228 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4229 // Objects of size 1 and 2 are right justified, everything else is 4230 // left justified. This means the memory address is adjusted forwards. 4231 if (ObjSize==1 || ObjSize==2) { 4232 CurArgOffset = CurArgOffset + (4 - ObjSize); 4233 } 4234 // The value of the object is its address. 4235 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4236 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4237 InVals.push_back(FIN); 4238 if (ObjSize==1 || ObjSize==2) { 4239 if (GPR_idx != Num_GPR_Regs) { 4240 unsigned VReg; 4241 if (isPPC64) 4242 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4243 else 4244 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4245 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4246 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4247 SDValue Store = 4248 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4249 MachinePointerInfo(&*FuncArg), ObjType); 4250 MemOps.push_back(Store); 4251 ++GPR_idx; 4252 } 4253 4254 ArgOffset += PtrByteSize; 4255 4256 continue; 4257 } 4258 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4259 // Store whatever pieces of the object are in registers 4260 // to memory. ArgOffset will be the address of the beginning 4261 // of the object. 4262 if (GPR_idx != Num_GPR_Regs) { 4263 unsigned VReg; 4264 if (isPPC64) 4265 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4266 else 4267 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4268 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4269 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4270 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4271 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4272 MachinePointerInfo(&*FuncArg, j)); 4273 MemOps.push_back(Store); 4274 ++GPR_idx; 4275 ArgOffset += PtrByteSize; 4276 } else { 4277 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4278 break; 4279 } 4280 } 4281 continue; 4282 } 4283 4284 switch (ObjectVT.getSimpleVT().SimpleTy) { 4285 default: llvm_unreachable("Unhandled argument type!"); 4286 case MVT::i1: 4287 case MVT::i32: 4288 if (!isPPC64) { 4289 if (GPR_idx != Num_GPR_Regs) { 4290 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4291 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4292 4293 if (ObjectVT == MVT::i1) 4294 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4295 4296 ++GPR_idx; 4297 } else { 4298 needsLoad = true; 4299 ArgSize = PtrByteSize; 4300 } 4301 // All int arguments reserve stack space in the Darwin ABI. 4302 ArgOffset += PtrByteSize; 4303 break; 4304 } 4305 LLVM_FALLTHROUGH; 4306 case MVT::i64: // PPC64 4307 if (GPR_idx != Num_GPR_Regs) { 4308 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4309 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4310 4311 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4312 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4313 // value to MVT::i64 and then truncate to the correct register size. 4314 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4315 4316 ++GPR_idx; 4317 } else { 4318 needsLoad = true; 4319 ArgSize = PtrByteSize; 4320 } 4321 // All int arguments reserve stack space in the Darwin ABI. 4322 ArgOffset += 8; 4323 break; 4324 4325 case MVT::f32: 4326 case MVT::f64: 4327 // Every 4 bytes of argument space consumes one of the GPRs available for 4328 // argument passing. 4329 if (GPR_idx != Num_GPR_Regs) { 4330 ++GPR_idx; 4331 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4332 ++GPR_idx; 4333 } 4334 if (FPR_idx != Num_FPR_Regs) { 4335 unsigned VReg; 4336 4337 if (ObjectVT == MVT::f32) 4338 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4339 else 4340 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4341 4342 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4343 ++FPR_idx; 4344 } else { 4345 needsLoad = true; 4346 } 4347 4348 // All FP arguments reserve stack space in the Darwin ABI. 4349 ArgOffset += isPPC64 ? 8 : ObjSize; 4350 break; 4351 case MVT::v4f32: 4352 case MVT::v4i32: 4353 case MVT::v8i16: 4354 case MVT::v16i8: 4355 // Note that vector arguments in registers don't reserve stack space, 4356 // except in varargs functions. 4357 if (VR_idx != Num_VR_Regs) { 4358 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4359 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4360 if (isVarArg) { 4361 while ((ArgOffset % 16) != 0) { 4362 ArgOffset += PtrByteSize; 4363 if (GPR_idx != Num_GPR_Regs) 4364 GPR_idx++; 4365 } 4366 ArgOffset += 16; 4367 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4368 } 4369 ++VR_idx; 4370 } else { 4371 if (!isVarArg && !isPPC64) { 4372 // Vectors go after all the nonvectors. 4373 CurArgOffset = VecArgOffset; 4374 VecArgOffset += 16; 4375 } else { 4376 // Vectors are aligned. 4377 ArgOffset = ((ArgOffset+15)/16)*16; 4378 CurArgOffset = ArgOffset; 4379 ArgOffset += 16; 4380 } 4381 needsLoad = true; 4382 } 4383 break; 4384 } 4385 4386 // We need to load the argument to a virtual register if we determined above 4387 // that we ran out of physical registers of the appropriate type. 4388 if (needsLoad) { 4389 int FI = MFI.CreateFixedObject(ObjSize, 4390 CurArgOffset + (ArgSize - ObjSize), 4391 isImmutable); 4392 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4393 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4394 } 4395 4396 InVals.push_back(ArgVal); 4397 } 4398 4399 // Allow for Altivec parameters at the end, if needed. 4400 if (nAltivecParamsAtEnd) { 4401 MinReservedArea = ((MinReservedArea+15)/16)*16; 4402 MinReservedArea += 16*nAltivecParamsAtEnd; 4403 } 4404 4405 // Area that is at least reserved in the caller of this function. 4406 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4407 4408 // Set the size that is at least reserved in caller of this function. Tail 4409 // call optimized functions' reserved stack space needs to be aligned so that 4410 // taking the difference between two stack areas will result in an aligned 4411 // stack. 4412 MinReservedArea = 4413 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4414 FuncInfo->setMinReservedArea(MinReservedArea); 4415 4416 // If the function takes variable number of arguments, make a frame index for 4417 // the start of the first vararg value... for expansion of llvm.va_start. 4418 if (isVarArg) { 4419 int Depth = ArgOffset; 4420 4421 FuncInfo->setVarArgsFrameIndex( 4422 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4423 Depth, true)); 4424 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4425 4426 // If this function is vararg, store any remaining integer argument regs 4427 // to their spots on the stack so that they may be loaded by dereferencing 4428 // the result of va_next. 4429 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4430 unsigned VReg; 4431 4432 if (isPPC64) 4433 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4434 else 4435 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4436 4437 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4438 SDValue Store = 4439 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4440 MemOps.push_back(Store); 4441 // Increment the address by four for the next argument to store 4442 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4443 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4444 } 4445 } 4446 4447 if (!MemOps.empty()) 4448 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4449 4450 return Chain; 4451 } 4452 4453 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4454 /// adjusted to accommodate the arguments for the tailcall. 4455 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4456 unsigned ParamSize) { 4457 4458 if (!isTailCall) return 0; 4459 4460 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4461 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4462 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4463 // Remember only if the new adjustment is bigger. 4464 if (SPDiff < FI->getTailCallSPDelta()) 4465 FI->setTailCallSPDelta(SPDiff); 4466 4467 return SPDiff; 4468 } 4469 4470 static bool isFunctionGlobalAddress(SDValue Callee); 4471 4472 static bool 4473 callsShareTOCBase(const Function *Caller, SDValue Callee, 4474 const TargetMachine &TM) { 4475 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4476 // don't have enough information to determine if the caller and calle share 4477 // the same TOC base, so we have to pessimistically assume they don't for 4478 // correctness. 4479 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4480 if (!G) 4481 return false; 4482 4483 const GlobalValue *GV = G->getGlobal(); 4484 // The medium and large code models are expected to provide a sufficiently 4485 // large TOC to provide all data addressing needs of a module with a 4486 // single TOC. Since each module will be addressed with a single TOC then we 4487 // only need to check that caller and callee don't cross dso boundaries. 4488 if (CodeModel::Medium == TM.getCodeModel() || 4489 CodeModel::Large == TM.getCodeModel()) 4490 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4491 4492 // Otherwise we need to ensure callee and caller are in the same section, 4493 // since the linker may allocate multiple TOCs, and we don't know which 4494 // sections will belong to the same TOC base. 4495 4496 if (!GV->isStrongDefinitionForLinker()) 4497 return false; 4498 4499 // Any explicitly-specified sections and section prefixes must also match. 4500 // Also, if we're using -ffunction-sections, then each function is always in 4501 // a different section (the same is true for COMDAT functions). 4502 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4503 GV->getSection() != Caller->getSection()) 4504 return false; 4505 if (const auto *F = dyn_cast<Function>(GV)) { 4506 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4507 return false; 4508 } 4509 4510 // If the callee might be interposed, then we can't assume the ultimate call 4511 // target will be in the same section. Even in cases where we can assume that 4512 // interposition won't happen, in any case where the linker might insert a 4513 // stub to allow for interposition, we must generate code as though 4514 // interposition might occur. To understand why this matters, consider a 4515 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4516 // in the same section, but a is in a different module (i.e. has a different 4517 // TOC base pointer). If the linker allows for interposition between b and c, 4518 // then it will generate a stub for the call edge between b and c which will 4519 // save the TOC pointer into the designated stack slot allocated by b. If we 4520 // return true here, and therefore allow a tail call between b and c, that 4521 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4522 // pointer into the stack slot allocated by a (where the a -> b stub saved 4523 // a's TOC base pointer). If we're not considering a tail call, but rather, 4524 // whether a nop is needed after the call instruction in b, because the linker 4525 // will insert a stub, it might complain about a missing nop if we omit it 4526 // (although many don't complain in this case). 4527 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4528 return false; 4529 4530 return true; 4531 } 4532 4533 static bool 4534 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4535 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4536 assert(Subtarget.is64BitELFABI()); 4537 4538 const unsigned PtrByteSize = 8; 4539 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4540 4541 static const MCPhysReg GPR[] = { 4542 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4543 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4544 }; 4545 static const MCPhysReg VR[] = { 4546 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4547 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4548 }; 4549 4550 const unsigned NumGPRs = array_lengthof(GPR); 4551 const unsigned NumFPRs = 13; 4552 const unsigned NumVRs = array_lengthof(VR); 4553 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4554 4555 unsigned NumBytes = LinkageSize; 4556 unsigned AvailableFPRs = NumFPRs; 4557 unsigned AvailableVRs = NumVRs; 4558 4559 for (const ISD::OutputArg& Param : Outs) { 4560 if (Param.Flags.isNest()) continue; 4561 4562 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4563 PtrByteSize, LinkageSize, ParamAreaSize, 4564 NumBytes, AvailableFPRs, AvailableVRs, 4565 Subtarget.hasQPX())) 4566 return true; 4567 } 4568 return false; 4569 } 4570 4571 static bool 4572 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4573 if (CS.arg_size() != CallerFn->arg_size()) 4574 return false; 4575 4576 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4577 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4578 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4579 4580 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4581 const Value* CalleeArg = *CalleeArgIter; 4582 const Value* CallerArg = &(*CallerArgIter); 4583 if (CalleeArg == CallerArg) 4584 continue; 4585 4586 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4587 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4588 // } 4589 // 1st argument of callee is undef and has the same type as caller. 4590 if (CalleeArg->getType() == CallerArg->getType() && 4591 isa<UndefValue>(CalleeArg)) 4592 continue; 4593 4594 return false; 4595 } 4596 4597 return true; 4598 } 4599 4600 // Returns true if TCO is possible between the callers and callees 4601 // calling conventions. 4602 static bool 4603 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4604 CallingConv::ID CalleeCC) { 4605 // Tail calls are possible with fastcc and ccc. 4606 auto isTailCallableCC = [] (CallingConv::ID CC){ 4607 return CC == CallingConv::C || CC == CallingConv::Fast; 4608 }; 4609 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4610 return false; 4611 4612 // We can safely tail call both fastcc and ccc callees from a c calling 4613 // convention caller. If the caller is fastcc, we may have less stack space 4614 // than a non-fastcc caller with the same signature so disable tail-calls in 4615 // that case. 4616 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4617 } 4618 4619 bool 4620 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4621 SDValue Callee, 4622 CallingConv::ID CalleeCC, 4623 ImmutableCallSite CS, 4624 bool isVarArg, 4625 const SmallVectorImpl<ISD::OutputArg> &Outs, 4626 const SmallVectorImpl<ISD::InputArg> &Ins, 4627 SelectionDAG& DAG) const { 4628 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4629 4630 if (DisableSCO && !TailCallOpt) return false; 4631 4632 // Variadic argument functions are not supported. 4633 if (isVarArg) return false; 4634 4635 auto &Caller = DAG.getMachineFunction().getFunction(); 4636 // Check that the calling conventions are compatible for tco. 4637 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4638 return false; 4639 4640 // Caller contains any byval parameter is not supported. 4641 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4642 return false; 4643 4644 // Callee contains any byval parameter is not supported, too. 4645 // Note: This is a quick work around, because in some cases, e.g. 4646 // caller's stack size > callee's stack size, we are still able to apply 4647 // sibling call optimization. For example, gcc is able to do SCO for caller1 4648 // in the following example, but not for caller2. 4649 // struct test { 4650 // long int a; 4651 // char ary[56]; 4652 // } gTest; 4653 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4654 // b->a = v.a; 4655 // return 0; 4656 // } 4657 // void caller1(struct test a, struct test c, struct test *b) { 4658 // callee(gTest, b); } 4659 // void caller2(struct test *b) { callee(gTest, b); } 4660 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4661 return false; 4662 4663 // If callee and caller use different calling conventions, we cannot pass 4664 // parameters on stack since offsets for the parameter area may be different. 4665 if (Caller.getCallingConv() != CalleeCC && 4666 needStackSlotPassParameters(Subtarget, Outs)) 4667 return false; 4668 4669 // No TCO/SCO on indirect call because Caller have to restore its TOC 4670 if (!isFunctionGlobalAddress(Callee) && 4671 !isa<ExternalSymbolSDNode>(Callee)) 4672 return false; 4673 4674 // If the caller and callee potentially have different TOC bases then we 4675 // cannot tail call since we need to restore the TOC pointer after the call. 4676 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4677 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4678 return false; 4679 4680 // TCO allows altering callee ABI, so we don't have to check further. 4681 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4682 return true; 4683 4684 if (DisableSCO) return false; 4685 4686 // If callee use the same argument list that caller is using, then we can 4687 // apply SCO on this case. If it is not, then we need to check if callee needs 4688 // stack for passing arguments. 4689 if (!hasSameArgumentList(&Caller, CS) && 4690 needStackSlotPassParameters(Subtarget, Outs)) { 4691 return false; 4692 } 4693 4694 return true; 4695 } 4696 4697 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4698 /// for tail call optimization. Targets which want to do tail call 4699 /// optimization should implement this function. 4700 bool 4701 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4702 CallingConv::ID CalleeCC, 4703 bool isVarArg, 4704 const SmallVectorImpl<ISD::InputArg> &Ins, 4705 SelectionDAG& DAG) const { 4706 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4707 return false; 4708 4709 // Variable argument functions are not supported. 4710 if (isVarArg) 4711 return false; 4712 4713 MachineFunction &MF = DAG.getMachineFunction(); 4714 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4715 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4716 // Functions containing by val parameters are not supported. 4717 for (unsigned i = 0; i != Ins.size(); i++) { 4718 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4719 if (Flags.isByVal()) return false; 4720 } 4721 4722 // Non-PIC/GOT tail calls are supported. 4723 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4724 return true; 4725 4726 // At the moment we can only do local tail calls (in same module, hidden 4727 // or protected) if we are generating PIC. 4728 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4729 return G->getGlobal()->hasHiddenVisibility() 4730 || G->getGlobal()->hasProtectedVisibility(); 4731 } 4732 4733 return false; 4734 } 4735 4736 /// isCallCompatibleAddress - Return the immediate to use if the specified 4737 /// 32-bit value is representable in the immediate field of a BxA instruction. 4738 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4739 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4740 if (!C) return nullptr; 4741 4742 int Addr = C->getZExtValue(); 4743 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4744 SignExtend32<26>(Addr) != Addr) 4745 return nullptr; // Top 6 bits have to be sext of immediate. 4746 4747 return DAG 4748 .getConstant( 4749 (int)C->getZExtValue() >> 2, SDLoc(Op), 4750 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4751 .getNode(); 4752 } 4753 4754 namespace { 4755 4756 struct TailCallArgumentInfo { 4757 SDValue Arg; 4758 SDValue FrameIdxOp; 4759 int FrameIdx = 0; 4760 4761 TailCallArgumentInfo() = default; 4762 }; 4763 4764 } // end anonymous namespace 4765 4766 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4767 static void StoreTailCallArgumentsToStackSlot( 4768 SelectionDAG &DAG, SDValue Chain, 4769 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4770 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4771 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4772 SDValue Arg = TailCallArgs[i].Arg; 4773 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4774 int FI = TailCallArgs[i].FrameIdx; 4775 // Store relative to framepointer. 4776 MemOpChains.push_back(DAG.getStore( 4777 Chain, dl, Arg, FIN, 4778 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4779 } 4780 } 4781 4782 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4783 /// the appropriate stack slot for the tail call optimized function call. 4784 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4785 SDValue OldRetAddr, SDValue OldFP, 4786 int SPDiff, const SDLoc &dl) { 4787 if (SPDiff) { 4788 // Calculate the new stack slot for the return address. 4789 MachineFunction &MF = DAG.getMachineFunction(); 4790 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4791 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4792 bool isPPC64 = Subtarget.isPPC64(); 4793 int SlotSize = isPPC64 ? 8 : 4; 4794 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4795 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4796 NewRetAddrLoc, true); 4797 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4798 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4799 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4800 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4801 4802 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4803 // slot as the FP is never overwritten. 4804 if (Subtarget.isDarwinABI()) { 4805 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4806 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4807 true); 4808 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4809 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4810 MachinePointerInfo::getFixedStack( 4811 DAG.getMachineFunction(), NewFPIdx)); 4812 } 4813 } 4814 return Chain; 4815 } 4816 4817 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4818 /// the position of the argument. 4819 static void 4820 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4821 SDValue Arg, int SPDiff, unsigned ArgOffset, 4822 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4823 int Offset = ArgOffset + SPDiff; 4824 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4825 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4826 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4827 SDValue FIN = DAG.getFrameIndex(FI, VT); 4828 TailCallArgumentInfo Info; 4829 Info.Arg = Arg; 4830 Info.FrameIdxOp = FIN; 4831 Info.FrameIdx = FI; 4832 TailCallArguments.push_back(Info); 4833 } 4834 4835 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4836 /// stack slot. Returns the chain as result and the loaded frame pointers in 4837 /// LROpOut/FPOpout. Used when tail calling. 4838 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4839 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4840 SDValue &FPOpOut, const SDLoc &dl) const { 4841 if (SPDiff) { 4842 // Load the LR and FP stack slot for later adjusting. 4843 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4844 LROpOut = getReturnAddrFrameIndex(DAG); 4845 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4846 Chain = SDValue(LROpOut.getNode(), 1); 4847 4848 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4849 // slot as the FP is never overwritten. 4850 if (Subtarget.isDarwinABI()) { 4851 FPOpOut = getFramePointerFrameIndex(DAG); 4852 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4853 Chain = SDValue(FPOpOut.getNode(), 1); 4854 } 4855 } 4856 return Chain; 4857 } 4858 4859 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4860 /// by "Src" to address "Dst" of size "Size". Alignment information is 4861 /// specified by the specific parameter attribute. The copy will be passed as 4862 /// a byval function parameter. 4863 /// Sometimes what we are copying is the end of a larger object, the part that 4864 /// does not fit in registers. 4865 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4866 SDValue Chain, ISD::ArgFlagsTy Flags, 4867 SelectionDAG &DAG, const SDLoc &dl) { 4868 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4869 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4870 false, false, false, MachinePointerInfo(), 4871 MachinePointerInfo()); 4872 } 4873 4874 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4875 /// tail calls. 4876 static void LowerMemOpCallTo( 4877 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4878 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4879 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4880 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4881 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4882 if (!isTailCall) { 4883 if (isVector) { 4884 SDValue StackPtr; 4885 if (isPPC64) 4886 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4887 else 4888 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4889 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4890 DAG.getConstant(ArgOffset, dl, PtrVT)); 4891 } 4892 MemOpChains.push_back( 4893 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4894 // Calculate and remember argument location. 4895 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4896 TailCallArguments); 4897 } 4898 4899 static void 4900 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4901 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4902 SDValue FPOp, 4903 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4904 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4905 // might overwrite each other in case of tail call optimization. 4906 SmallVector<SDValue, 8> MemOpChains2; 4907 // Do not flag preceding copytoreg stuff together with the following stuff. 4908 InFlag = SDValue(); 4909 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4910 MemOpChains2, dl); 4911 if (!MemOpChains2.empty()) 4912 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4913 4914 // Store the return address to the appropriate stack slot. 4915 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4916 4917 // Emit callseq_end just before tailcall node. 4918 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4919 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4920 InFlag = Chain.getValue(1); 4921 } 4922 4923 // Is this global address that of a function that can be called by name? (as 4924 // opposed to something that must hold a descriptor for an indirect call). 4925 static bool isFunctionGlobalAddress(SDValue Callee) { 4926 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4927 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4928 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4929 return false; 4930 4931 return G->getGlobal()->getValueType()->isFunctionTy(); 4932 } 4933 4934 return false; 4935 } 4936 4937 static unsigned 4938 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4939 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4940 bool isPatchPoint, bool hasNest, 4941 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4942 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4943 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4944 bool isPPC64 = Subtarget.isPPC64(); 4945 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4946 bool is64BitELFv1ABI = isPPC64 && isSVR4ABI && !Subtarget.isELFv2ABI(); 4947 bool isAIXABI = Subtarget.isAIXABI(); 4948 4949 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4950 NodeTys.push_back(MVT::Other); // Returns a chain 4951 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4952 4953 unsigned CallOpc = PPCISD::CALL; 4954 4955 bool needIndirectCall = true; 4956 if (!isSVR4ABI || !isPPC64) 4957 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4958 // If this is an absolute destination address, use the munged value. 4959 Callee = SDValue(Dest, 0); 4960 needIndirectCall = false; 4961 } 4962 4963 // PC-relative references to external symbols should go through $stub, unless 4964 // we're building with the leopard linker or later, which automatically 4965 // synthesizes these stubs. 4966 const TargetMachine &TM = DAG.getTarget(); 4967 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4968 const GlobalValue *GV = nullptr; 4969 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4970 GV = G->getGlobal(); 4971 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4972 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 4973 // a static relocation model causes some versions of GNU LD (2.17.50, at 4974 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 4975 // built with secure-PLT. 4976 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64 && 4977 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 4978 4979 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4980 // every direct call is) turn it into a TargetGlobalAddress / 4981 // TargetExternalSymbol node so that legalize doesn't hack it. 4982 if (isFunctionGlobalAddress(Callee)) { 4983 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4984 4985 // A call to a TLS address is actually an indirect call to a 4986 // thread-specific pointer. 4987 unsigned OpFlags = 0; 4988 if (UsePlt) 4989 OpFlags = PPCII::MO_PLT; 4990 4991 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4992 Callee.getValueType(), 0, OpFlags); 4993 needIndirectCall = false; 4994 } 4995 4996 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4997 unsigned char OpFlags = 0; 4998 4999 if (UsePlt) 5000 OpFlags = PPCII::MO_PLT; 5001 5002 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 5003 OpFlags); 5004 needIndirectCall = false; 5005 } 5006 5007 if (isPatchPoint) { 5008 // We'll form an invalid direct call when lowering a patchpoint; the full 5009 // sequence for an indirect call is complicated, and many of the 5010 // instructions introduced might have side effects (and, thus, can't be 5011 // removed later). The call itself will be removed as soon as the 5012 // argument/return lowering is complete, so the fact that it has the wrong 5013 // kind of operands should not really matter. 5014 needIndirectCall = false; 5015 } 5016 5017 if (needIndirectCall) { 5018 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 5019 // to do the call, we can't use PPCISD::CALL. 5020 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 5021 5022 if (is64BitELFv1ABI) { 5023 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5024 // entry point, but to the function descriptor (the function entry point 5025 // address is part of the function descriptor though). 5026 // The function descriptor is a three doubleword structure with the 5027 // following fields: function entry point, TOC base address and 5028 // environment pointer. 5029 // Thus for a call through a function pointer, the following actions need 5030 // to be performed: 5031 // 1. Save the TOC of the caller in the TOC save area of its stack 5032 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5033 // 2. Load the address of the function entry point from the function 5034 // descriptor. 5035 // 3. Load the TOC of the callee from the function descriptor into r2. 5036 // 4. Load the environment pointer from the function descriptor into 5037 // r11. 5038 // 5. Branch to the function entry point address. 5039 // 6. On return of the callee, the TOC of the caller needs to be 5040 // restored (this is done in FinishCall()). 5041 // 5042 // The loads are scheduled at the beginning of the call sequence, and the 5043 // register copies are flagged together to ensure that no other 5044 // operations can be scheduled in between. E.g. without flagging the 5045 // copies together, a TOC access in the caller could be scheduled between 5046 // the assignment of the callee TOC and the branch to the callee, which 5047 // results in the TOC access going through the TOC of the callee instead 5048 // of going through the TOC of the caller, which leads to incorrect code. 5049 5050 // Load the address of the function entry point from the function 5051 // descriptor. 5052 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5053 if (LDChain.getValueType() == MVT::Glue) 5054 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5055 5056 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5057 ? (MachineMemOperand::MODereferenceable | 5058 MachineMemOperand::MOInvariant) 5059 : MachineMemOperand::MONone; 5060 5061 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5062 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5063 /* Alignment = */ 8, MMOFlags); 5064 5065 // Load environment pointer into r11. 5066 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5067 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5068 SDValue LoadEnvPtr = 5069 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5070 /* Alignment = */ 8, MMOFlags); 5071 5072 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5073 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5074 SDValue TOCPtr = 5075 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5076 /* Alignment = */ 8, MMOFlags); 5077 5078 setUsesTOCBasePtr(DAG); 5079 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5080 InFlag); 5081 Chain = TOCVal.getValue(0); 5082 InFlag = TOCVal.getValue(1); 5083 5084 // If the function call has an explicit 'nest' parameter, it takes the 5085 // place of the environment pointer. 5086 if (!hasNest) { 5087 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5088 InFlag); 5089 5090 Chain = EnvVal.getValue(0); 5091 InFlag = EnvVal.getValue(1); 5092 } 5093 5094 MTCTROps[0] = Chain; 5095 MTCTROps[1] = LoadFuncPtr; 5096 MTCTROps[2] = InFlag; 5097 } 5098 5099 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5100 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5101 InFlag = Chain.getValue(1); 5102 5103 NodeTys.clear(); 5104 NodeTys.push_back(MVT::Other); 5105 NodeTys.push_back(MVT::Glue); 5106 Ops.push_back(Chain); 5107 CallOpc = PPCISD::BCTRL; 5108 Callee.setNode(nullptr); 5109 // Add use of X11 (holding environment pointer) 5110 if (is64BitELFv1ABI && !hasNest) 5111 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5112 // Add CTR register as callee so a bctr can be emitted later. 5113 if (isTailCall) 5114 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5115 } 5116 5117 // If this is a direct call, pass the chain and the callee. 5118 if (Callee.getNode()) { 5119 Ops.push_back(Chain); 5120 Ops.push_back(Callee); 5121 } 5122 // If this is a tail call add stack pointer delta. 5123 if (isTailCall) 5124 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5125 5126 // Add argument registers to the end of the list so that they are known live 5127 // into the call. 5128 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5129 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5130 RegsToPass[i].second.getValueType())); 5131 5132 // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register 5133 // live into the call. 5134 // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT. 5135 if ((isSVR4ABI && isPPC64) || isAIXABI) { 5136 setUsesTOCBasePtr(DAG); 5137 5138 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5139 // no way to mark dependencies as implicit here. 5140 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5141 if (!isPatchPoint) 5142 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2 5143 : PPC::R2, PtrVT)); 5144 } 5145 5146 return CallOpc; 5147 } 5148 5149 SDValue PPCTargetLowering::LowerCallResult( 5150 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5151 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5152 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5153 SmallVector<CCValAssign, 16> RVLocs; 5154 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5155 *DAG.getContext()); 5156 5157 CCRetInfo.AnalyzeCallResult( 5158 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5159 ? RetCC_PPC_Cold 5160 : RetCC_PPC); 5161 5162 // Copy all of the result registers out of their specified physreg. 5163 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5164 CCValAssign &VA = RVLocs[i]; 5165 assert(VA.isRegLoc() && "Can only return in registers!"); 5166 5167 SDValue Val; 5168 5169 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5170 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5171 InFlag); 5172 Chain = Lo.getValue(1); 5173 InFlag = Lo.getValue(2); 5174 VA = RVLocs[++i]; // skip ahead to next loc 5175 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5176 InFlag); 5177 Chain = Hi.getValue(1); 5178 InFlag = Hi.getValue(2); 5179 if (!Subtarget.isLittleEndian()) 5180 std::swap (Lo, Hi); 5181 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5182 } else { 5183 Val = DAG.getCopyFromReg(Chain, dl, 5184 VA.getLocReg(), VA.getLocVT(), InFlag); 5185 Chain = Val.getValue(1); 5186 InFlag = Val.getValue(2); 5187 } 5188 5189 switch (VA.getLocInfo()) { 5190 default: llvm_unreachable("Unknown loc info!"); 5191 case CCValAssign::Full: break; 5192 case CCValAssign::AExt: 5193 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5194 break; 5195 case CCValAssign::ZExt: 5196 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5197 DAG.getValueType(VA.getValVT())); 5198 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5199 break; 5200 case CCValAssign::SExt: 5201 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5202 DAG.getValueType(VA.getValVT())); 5203 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5204 break; 5205 } 5206 5207 InVals.push_back(Val); 5208 } 5209 5210 return Chain; 5211 } 5212 5213 SDValue PPCTargetLowering::FinishCall( 5214 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5215 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5216 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5217 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5218 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5219 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5220 std::vector<EVT> NodeTys; 5221 SmallVector<SDValue, 8> Ops; 5222 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5223 SPDiff, isTailCall, isPatchPoint, hasNest, 5224 RegsToPass, Ops, NodeTys, CS, Subtarget); 5225 5226 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5227 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5228 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5229 5230 // When performing tail call optimization the callee pops its arguments off 5231 // the stack. Account for this here so these bytes can be pushed back on in 5232 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5233 int BytesCalleePops = 5234 (CallConv == CallingConv::Fast && 5235 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5236 5237 // Add a register mask operand representing the call-preserved registers. 5238 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5239 const uint32_t *Mask = 5240 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5241 assert(Mask && "Missing call preserved mask for calling convention"); 5242 Ops.push_back(DAG.getRegisterMask(Mask)); 5243 5244 if (InFlag.getNode()) 5245 Ops.push_back(InFlag); 5246 5247 // Emit tail call. 5248 if (isTailCall) { 5249 assert(((Callee.getOpcode() == ISD::Register && 5250 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5251 Callee.getOpcode() == ISD::TargetExternalSymbol || 5252 Callee.getOpcode() == ISD::TargetGlobalAddress || 5253 isa<ConstantSDNode>(Callee)) && 5254 "Expecting an global address, external symbol, absolute value or register"); 5255 5256 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5257 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5258 } 5259 5260 // Add a NOP immediately after the branch instruction when using the 64-bit 5261 // SVR4 or the AIX ABI. 5262 // At link time, if caller and callee are in a different module and 5263 // thus have a different TOC, the call will be replaced with a call to a stub 5264 // function which saves the current TOC, loads the TOC of the callee and 5265 // branches to the callee. The NOP will be replaced with a load instruction 5266 // which restores the TOC of the caller from the TOC save slot of the current 5267 // stack frame. If caller and callee belong to the same module (and have the 5268 // same TOC), the NOP will remain unchanged, or become some other NOP. 5269 5270 MachineFunction &MF = DAG.getMachineFunction(); 5271 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5272 if (!isTailCall && !isPatchPoint && 5273 ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) || 5274 Subtarget.isAIXABI())) { 5275 if (CallOpc == PPCISD::BCTRL) { 5276 if (Subtarget.isAIXABI()) 5277 report_fatal_error("Indirect call on AIX is not implemented."); 5278 5279 // This is a call through a function pointer. 5280 // Restore the caller TOC from the save area into R2. 5281 // See PrepareCall() for more information about calls through function 5282 // pointers in the 64-bit SVR4 ABI. 5283 // We are using a target-specific load with r2 hard coded, because the 5284 // result of a target-independent load would never go directly into r2, 5285 // since r2 is a reserved register (which prevents the register allocator 5286 // from allocating it), resulting in an additional register being 5287 // allocated and an unnecessary move instruction being generated. 5288 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5289 5290 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5291 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5292 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5293 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5294 5295 // The address needs to go after the chain input but before the flag (or 5296 // any other variadic arguments). 5297 Ops.insert(std::next(Ops.begin()), AddTOC); 5298 } else if (CallOpc == PPCISD::CALL && 5299 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5300 // Otherwise insert NOP for non-local calls. 5301 CallOpc = PPCISD::CALL_NOP; 5302 } 5303 } 5304 5305 if (Subtarget.isAIXABI() && isFunctionGlobalAddress(Callee)) { 5306 // On AIX, direct function calls reference the symbol for the function's 5307 // entry point, which is named by inserting a "." before the function's 5308 // C-linkage name. 5309 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5310 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5311 MCSymbol *S = Context.getOrCreateSymbol(Twine(".") + 5312 Twine(G->getGlobal()->getName())); 5313 Callee = DAG.getMCSymbol(S, PtrVT); 5314 // Replace the GlobalAddressSDNode Callee with the MCSymbolSDNode. 5315 Ops[1] = Callee; 5316 } 5317 5318 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5319 InFlag = Chain.getValue(1); 5320 5321 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5322 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5323 InFlag, dl); 5324 if (!Ins.empty()) 5325 InFlag = Chain.getValue(1); 5326 5327 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5328 Ins, dl, DAG, InVals); 5329 } 5330 5331 SDValue 5332 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5333 SmallVectorImpl<SDValue> &InVals) const { 5334 SelectionDAG &DAG = CLI.DAG; 5335 SDLoc &dl = CLI.DL; 5336 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5337 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5338 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5339 SDValue Chain = CLI.Chain; 5340 SDValue Callee = CLI.Callee; 5341 bool &isTailCall = CLI.IsTailCall; 5342 CallingConv::ID CallConv = CLI.CallConv; 5343 bool isVarArg = CLI.IsVarArg; 5344 bool isPatchPoint = CLI.IsPatchPoint; 5345 ImmutableCallSite CS = CLI.CS; 5346 5347 if (isTailCall) { 5348 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5349 isTailCall = false; 5350 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5351 isTailCall = 5352 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5353 isVarArg, Outs, Ins, DAG); 5354 else 5355 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5356 Ins, DAG); 5357 if (isTailCall) { 5358 ++NumTailCalls; 5359 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5360 ++NumSiblingCalls; 5361 5362 assert(isa<GlobalAddressSDNode>(Callee) && 5363 "Callee should be an llvm::Function object."); 5364 LLVM_DEBUG( 5365 const GlobalValue *GV = 5366 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5367 const unsigned Width = 5368 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5369 dbgs() << "TCO caller: " 5370 << left_justify(DAG.getMachineFunction().getName(), Width) 5371 << ", callee linkage: " << GV->getVisibility() << ", " 5372 << GV->getLinkage() << "\n"); 5373 } 5374 } 5375 5376 if (!isTailCall && CS && CS.isMustTailCall()) 5377 report_fatal_error("failed to perform tail call elimination on a call " 5378 "site marked musttail"); 5379 5380 // When long calls (i.e. indirect calls) are always used, calls are always 5381 // made via function pointer. If we have a function name, first translate it 5382 // into a pointer. 5383 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5384 !isTailCall) 5385 Callee = LowerGlobalAddress(Callee, DAG); 5386 5387 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5388 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5389 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5390 dl, DAG, InVals, CS); 5391 5392 if (Subtarget.isSVR4ABI()) 5393 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5394 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5395 dl, DAG, InVals, CS); 5396 5397 if (Subtarget.isAIXABI()) 5398 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5399 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5400 dl, DAG, InVals, CS); 5401 5402 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5403 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5404 dl, DAG, InVals, CS); 5405 } 5406 5407 SDValue PPCTargetLowering::LowerCall_32SVR4( 5408 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5409 bool isTailCall, bool isPatchPoint, 5410 const SmallVectorImpl<ISD::OutputArg> &Outs, 5411 const SmallVectorImpl<SDValue> &OutVals, 5412 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5413 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5414 ImmutableCallSite CS) const { 5415 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5416 // of the 32-bit SVR4 ABI stack frame layout. 5417 5418 assert((CallConv == CallingConv::C || 5419 CallConv == CallingConv::Cold || 5420 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5421 5422 unsigned PtrByteSize = 4; 5423 5424 MachineFunction &MF = DAG.getMachineFunction(); 5425 5426 // Mark this function as potentially containing a function that contains a 5427 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5428 // and restoring the callers stack pointer in this functions epilog. This is 5429 // done because by tail calling the called function might overwrite the value 5430 // in this function's (MF) stack pointer stack slot 0(SP). 5431 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5432 CallConv == CallingConv::Fast) 5433 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5434 5435 // Count how many bytes are to be pushed on the stack, including the linkage 5436 // area, parameter list area and the part of the local variable space which 5437 // contains copies of aggregates which are passed by value. 5438 5439 // Assign locations to all of the outgoing arguments. 5440 SmallVector<CCValAssign, 16> ArgLocs; 5441 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5442 5443 // Reserve space for the linkage area on the stack. 5444 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5445 PtrByteSize); 5446 if (useSoftFloat()) 5447 CCInfo.PreAnalyzeCallOperands(Outs); 5448 5449 if (isVarArg) { 5450 // Handle fixed and variable vector arguments differently. 5451 // Fixed vector arguments go into registers as long as registers are 5452 // available. Variable vector arguments always go into memory. 5453 unsigned NumArgs = Outs.size(); 5454 5455 for (unsigned i = 0; i != NumArgs; ++i) { 5456 MVT ArgVT = Outs[i].VT; 5457 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5458 bool Result; 5459 5460 if (Outs[i].IsFixed) { 5461 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5462 CCInfo); 5463 } else { 5464 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5465 ArgFlags, CCInfo); 5466 } 5467 5468 if (Result) { 5469 #ifndef NDEBUG 5470 errs() << "Call operand #" << i << " has unhandled type " 5471 << EVT(ArgVT).getEVTString() << "\n"; 5472 #endif 5473 llvm_unreachable(nullptr); 5474 } 5475 } 5476 } else { 5477 // All arguments are treated the same. 5478 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5479 } 5480 CCInfo.clearWasPPCF128(); 5481 5482 // Assign locations to all of the outgoing aggregate by value arguments. 5483 SmallVector<CCValAssign, 16> ByValArgLocs; 5484 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5485 5486 // Reserve stack space for the allocations in CCInfo. 5487 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5488 5489 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5490 5491 // Size of the linkage area, parameter list area and the part of the local 5492 // space variable where copies of aggregates which are passed by value are 5493 // stored. 5494 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5495 5496 // Calculate by how many bytes the stack has to be adjusted in case of tail 5497 // call optimization. 5498 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5499 5500 // Adjust the stack pointer for the new arguments... 5501 // These operations are automatically eliminated by the prolog/epilog pass 5502 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5503 SDValue CallSeqStart = Chain; 5504 5505 // Load the return address and frame pointer so it can be moved somewhere else 5506 // later. 5507 SDValue LROp, FPOp; 5508 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5509 5510 // Set up a copy of the stack pointer for use loading and storing any 5511 // arguments that may not fit in the registers available for argument 5512 // passing. 5513 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5514 5515 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5516 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5517 SmallVector<SDValue, 8> MemOpChains; 5518 5519 bool seenFloatArg = false; 5520 // Walk the register/memloc assignments, inserting copies/loads. 5521 // i - Tracks the index into the list of registers allocated for the call 5522 // RealArgIdx - Tracks the index into the list of actual function arguments 5523 // j - Tracks the index into the list of byval arguments 5524 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5525 i != e; 5526 ++i, ++RealArgIdx) { 5527 CCValAssign &VA = ArgLocs[i]; 5528 SDValue Arg = OutVals[RealArgIdx]; 5529 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5530 5531 if (Flags.isByVal()) { 5532 // Argument is an aggregate which is passed by value, thus we need to 5533 // create a copy of it in the local variable space of the current stack 5534 // frame (which is the stack frame of the caller) and pass the address of 5535 // this copy to the callee. 5536 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5537 CCValAssign &ByValVA = ByValArgLocs[j++]; 5538 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5539 5540 // Memory reserved in the local variable space of the callers stack frame. 5541 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5542 5543 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5544 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5545 StackPtr, PtrOff); 5546 5547 // Create a copy of the argument in the local area of the current 5548 // stack frame. 5549 SDValue MemcpyCall = 5550 CreateCopyOfByValArgument(Arg, PtrOff, 5551 CallSeqStart.getNode()->getOperand(0), 5552 Flags, DAG, dl); 5553 5554 // This must go outside the CALLSEQ_START..END. 5555 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5556 SDLoc(MemcpyCall)); 5557 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5558 NewCallSeqStart.getNode()); 5559 Chain = CallSeqStart = NewCallSeqStart; 5560 5561 // Pass the address of the aggregate copy on the stack either in a 5562 // physical register or in the parameter list area of the current stack 5563 // frame to the callee. 5564 Arg = PtrOff; 5565 } 5566 5567 // When useCRBits() is true, there can be i1 arguments. 5568 // It is because getRegisterType(MVT::i1) => MVT::i1, 5569 // and for other integer types getRegisterType() => MVT::i32. 5570 // Extend i1 and ensure callee will get i32. 5571 if (Arg.getValueType() == MVT::i1) 5572 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5573 dl, MVT::i32, Arg); 5574 5575 if (VA.isRegLoc()) { 5576 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5577 // Put argument in a physical register. 5578 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5579 bool IsLE = Subtarget.isLittleEndian(); 5580 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5581 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5582 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5583 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5584 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5585 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5586 SVal.getValue(0))); 5587 } else 5588 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5589 } else { 5590 // Put argument in the parameter list area of the current stack frame. 5591 assert(VA.isMemLoc()); 5592 unsigned LocMemOffset = VA.getLocMemOffset(); 5593 5594 if (!isTailCall) { 5595 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5596 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5597 StackPtr, PtrOff); 5598 5599 MemOpChains.push_back( 5600 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5601 } else { 5602 // Calculate and remember argument location. 5603 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5604 TailCallArguments); 5605 } 5606 } 5607 } 5608 5609 if (!MemOpChains.empty()) 5610 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5611 5612 // Build a sequence of copy-to-reg nodes chained together with token chain 5613 // and flag operands which copy the outgoing args into the appropriate regs. 5614 SDValue InFlag; 5615 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5616 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5617 RegsToPass[i].second, InFlag); 5618 InFlag = Chain.getValue(1); 5619 } 5620 5621 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5622 // registers. 5623 if (isVarArg) { 5624 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5625 SDValue Ops[] = { Chain, InFlag }; 5626 5627 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5628 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5629 5630 InFlag = Chain.getValue(1); 5631 } 5632 5633 if (isTailCall) 5634 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5635 TailCallArguments); 5636 5637 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5638 /* unused except on PPC64 ELFv1 */ false, DAG, 5639 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5640 NumBytes, Ins, InVals, CS); 5641 } 5642 5643 // Copy an argument into memory, being careful to do this outside the 5644 // call sequence for the call to which the argument belongs. 5645 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5646 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5647 SelectionDAG &DAG, const SDLoc &dl) const { 5648 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5649 CallSeqStart.getNode()->getOperand(0), 5650 Flags, DAG, dl); 5651 // The MEMCPY must go outside the CALLSEQ_START..END. 5652 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5653 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5654 SDLoc(MemcpyCall)); 5655 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5656 NewCallSeqStart.getNode()); 5657 return NewCallSeqStart; 5658 } 5659 5660 SDValue PPCTargetLowering::LowerCall_64SVR4( 5661 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5662 bool isTailCall, bool isPatchPoint, 5663 const SmallVectorImpl<ISD::OutputArg> &Outs, 5664 const SmallVectorImpl<SDValue> &OutVals, 5665 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5666 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5667 ImmutableCallSite CS) const { 5668 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5669 bool isLittleEndian = Subtarget.isLittleEndian(); 5670 unsigned NumOps = Outs.size(); 5671 bool hasNest = false; 5672 bool IsSibCall = false; 5673 5674 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5675 unsigned PtrByteSize = 8; 5676 5677 MachineFunction &MF = DAG.getMachineFunction(); 5678 5679 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5680 IsSibCall = true; 5681 5682 // Mark this function as potentially containing a function that contains a 5683 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5684 // and restoring the callers stack pointer in this functions epilog. This is 5685 // done because by tail calling the called function might overwrite the value 5686 // in this function's (MF) stack pointer stack slot 0(SP). 5687 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5688 CallConv == CallingConv::Fast) 5689 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5690 5691 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5692 "fastcc not supported on varargs functions"); 5693 5694 // Count how many bytes are to be pushed on the stack, including the linkage 5695 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5696 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5697 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5698 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5699 unsigned NumBytes = LinkageSize; 5700 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5701 unsigned &QFPR_idx = FPR_idx; 5702 5703 static const MCPhysReg GPR[] = { 5704 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5705 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5706 }; 5707 static const MCPhysReg VR[] = { 5708 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5709 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5710 }; 5711 5712 const unsigned NumGPRs = array_lengthof(GPR); 5713 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5714 const unsigned NumVRs = array_lengthof(VR); 5715 const unsigned NumQFPRs = NumFPRs; 5716 5717 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5718 // can be passed to the callee in registers. 5719 // For the fast calling convention, there is another check below. 5720 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5721 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5722 if (!HasParameterArea) { 5723 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5724 unsigned AvailableFPRs = NumFPRs; 5725 unsigned AvailableVRs = NumVRs; 5726 unsigned NumBytesTmp = NumBytes; 5727 for (unsigned i = 0; i != NumOps; ++i) { 5728 if (Outs[i].Flags.isNest()) continue; 5729 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5730 PtrByteSize, LinkageSize, ParamAreaSize, 5731 NumBytesTmp, AvailableFPRs, AvailableVRs, 5732 Subtarget.hasQPX())) 5733 HasParameterArea = true; 5734 } 5735 } 5736 5737 // When using the fast calling convention, we don't provide backing for 5738 // arguments that will be in registers. 5739 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5740 5741 // Avoid allocating parameter area for fastcc functions if all the arguments 5742 // can be passed in the registers. 5743 if (CallConv == CallingConv::Fast) 5744 HasParameterArea = false; 5745 5746 // Add up all the space actually used. 5747 for (unsigned i = 0; i != NumOps; ++i) { 5748 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5749 EVT ArgVT = Outs[i].VT; 5750 EVT OrigVT = Outs[i].ArgVT; 5751 5752 if (Flags.isNest()) 5753 continue; 5754 5755 if (CallConv == CallingConv::Fast) { 5756 if (Flags.isByVal()) { 5757 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5758 if (NumGPRsUsed > NumGPRs) 5759 HasParameterArea = true; 5760 } else { 5761 switch (ArgVT.getSimpleVT().SimpleTy) { 5762 default: llvm_unreachable("Unexpected ValueType for argument!"); 5763 case MVT::i1: 5764 case MVT::i32: 5765 case MVT::i64: 5766 if (++NumGPRsUsed <= NumGPRs) 5767 continue; 5768 break; 5769 case MVT::v4i32: 5770 case MVT::v8i16: 5771 case MVT::v16i8: 5772 case MVT::v2f64: 5773 case MVT::v2i64: 5774 case MVT::v1i128: 5775 case MVT::f128: 5776 if (++NumVRsUsed <= NumVRs) 5777 continue; 5778 break; 5779 case MVT::v4f32: 5780 // When using QPX, this is handled like a FP register, otherwise, it 5781 // is an Altivec register. 5782 if (Subtarget.hasQPX()) { 5783 if (++NumFPRsUsed <= NumFPRs) 5784 continue; 5785 } else { 5786 if (++NumVRsUsed <= NumVRs) 5787 continue; 5788 } 5789 break; 5790 case MVT::f32: 5791 case MVT::f64: 5792 case MVT::v4f64: // QPX 5793 case MVT::v4i1: // QPX 5794 if (++NumFPRsUsed <= NumFPRs) 5795 continue; 5796 break; 5797 } 5798 HasParameterArea = true; 5799 } 5800 } 5801 5802 /* Respect alignment of argument on the stack. */ 5803 unsigned Align = 5804 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5805 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5806 5807 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5808 if (Flags.isInConsecutiveRegsLast()) 5809 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5810 } 5811 5812 unsigned NumBytesActuallyUsed = NumBytes; 5813 5814 // In the old ELFv1 ABI, 5815 // the prolog code of the callee may store up to 8 GPR argument registers to 5816 // the stack, allowing va_start to index over them in memory if its varargs. 5817 // Because we cannot tell if this is needed on the caller side, we have to 5818 // conservatively assume that it is needed. As such, make sure we have at 5819 // least enough stack space for the caller to store the 8 GPRs. 5820 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5821 // really requires memory operands, e.g. a vararg function. 5822 if (HasParameterArea) 5823 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5824 else 5825 NumBytes = LinkageSize; 5826 5827 // Tail call needs the stack to be aligned. 5828 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5829 CallConv == CallingConv::Fast) 5830 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5831 5832 int SPDiff = 0; 5833 5834 // Calculate by how many bytes the stack has to be adjusted in case of tail 5835 // call optimization. 5836 if (!IsSibCall) 5837 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5838 5839 // To protect arguments on the stack from being clobbered in a tail call, 5840 // force all the loads to happen before doing any other lowering. 5841 if (isTailCall) 5842 Chain = DAG.getStackArgumentTokenFactor(Chain); 5843 5844 // Adjust the stack pointer for the new arguments... 5845 // These operations are automatically eliminated by the prolog/epilog pass 5846 if (!IsSibCall) 5847 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5848 SDValue CallSeqStart = Chain; 5849 5850 // Load the return address and frame pointer so it can be move somewhere else 5851 // later. 5852 SDValue LROp, FPOp; 5853 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5854 5855 // Set up a copy of the stack pointer for use loading and storing any 5856 // arguments that may not fit in the registers available for argument 5857 // passing. 5858 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5859 5860 // Figure out which arguments are going to go in registers, and which in 5861 // memory. Also, if this is a vararg function, floating point operations 5862 // must be stored to our stack, and loaded into integer regs as well, if 5863 // any integer regs are available for argument passing. 5864 unsigned ArgOffset = LinkageSize; 5865 5866 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5867 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5868 5869 SmallVector<SDValue, 8> MemOpChains; 5870 for (unsigned i = 0; i != NumOps; ++i) { 5871 SDValue Arg = OutVals[i]; 5872 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5873 EVT ArgVT = Outs[i].VT; 5874 EVT OrigVT = Outs[i].ArgVT; 5875 5876 // PtrOff will be used to store the current argument to the stack if a 5877 // register cannot be found for it. 5878 SDValue PtrOff; 5879 5880 // We re-align the argument offset for each argument, except when using the 5881 // fast calling convention, when we need to make sure we do that only when 5882 // we'll actually use a stack slot. 5883 auto ComputePtrOff = [&]() { 5884 /* Respect alignment of argument on the stack. */ 5885 unsigned Align = 5886 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5887 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5888 5889 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5890 5891 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5892 }; 5893 5894 if (CallConv != CallingConv::Fast) { 5895 ComputePtrOff(); 5896 5897 /* Compute GPR index associated with argument offset. */ 5898 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5899 GPR_idx = std::min(GPR_idx, NumGPRs); 5900 } 5901 5902 // Promote integers to 64-bit values. 5903 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5904 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5905 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5906 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5907 } 5908 5909 // FIXME memcpy is used way more than necessary. Correctness first. 5910 // Note: "by value" is code for passing a structure by value, not 5911 // basic types. 5912 if (Flags.isByVal()) { 5913 // Note: Size includes alignment padding, so 5914 // struct x { short a; char b; } 5915 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5916 // These are the proper values we need for right-justifying the 5917 // aggregate in a parameter register. 5918 unsigned Size = Flags.getByValSize(); 5919 5920 // An empty aggregate parameter takes up no storage and no 5921 // registers. 5922 if (Size == 0) 5923 continue; 5924 5925 if (CallConv == CallingConv::Fast) 5926 ComputePtrOff(); 5927 5928 // All aggregates smaller than 8 bytes must be passed right-justified. 5929 if (Size==1 || Size==2 || Size==4) { 5930 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5931 if (GPR_idx != NumGPRs) { 5932 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5933 MachinePointerInfo(), VT); 5934 MemOpChains.push_back(Load.getValue(1)); 5935 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5936 5937 ArgOffset += PtrByteSize; 5938 continue; 5939 } 5940 } 5941 5942 if (GPR_idx == NumGPRs && Size < 8) { 5943 SDValue AddPtr = PtrOff; 5944 if (!isLittleEndian) { 5945 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5946 PtrOff.getValueType()); 5947 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5948 } 5949 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5950 CallSeqStart, 5951 Flags, DAG, dl); 5952 ArgOffset += PtrByteSize; 5953 continue; 5954 } 5955 // Copy entire object into memory. There are cases where gcc-generated 5956 // code assumes it is there, even if it could be put entirely into 5957 // registers. (This is not what the doc says.) 5958 5959 // FIXME: The above statement is likely due to a misunderstanding of the 5960 // documents. All arguments must be copied into the parameter area BY 5961 // THE CALLEE in the event that the callee takes the address of any 5962 // formal argument. That has not yet been implemented. However, it is 5963 // reasonable to use the stack area as a staging area for the register 5964 // load. 5965 5966 // Skip this for small aggregates, as we will use the same slot for a 5967 // right-justified copy, below. 5968 if (Size >= 8) 5969 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5970 CallSeqStart, 5971 Flags, DAG, dl); 5972 5973 // When a register is available, pass a small aggregate right-justified. 5974 if (Size < 8 && GPR_idx != NumGPRs) { 5975 // The easiest way to get this right-justified in a register 5976 // is to copy the structure into the rightmost portion of a 5977 // local variable slot, then load the whole slot into the 5978 // register. 5979 // FIXME: The memcpy seems to produce pretty awful code for 5980 // small aggregates, particularly for packed ones. 5981 // FIXME: It would be preferable to use the slot in the 5982 // parameter save area instead of a new local variable. 5983 SDValue AddPtr = PtrOff; 5984 if (!isLittleEndian) { 5985 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5986 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5987 } 5988 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5989 CallSeqStart, 5990 Flags, DAG, dl); 5991 5992 // Load the slot into the register. 5993 SDValue Load = 5994 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5995 MemOpChains.push_back(Load.getValue(1)); 5996 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5997 5998 // Done with this argument. 5999 ArgOffset += PtrByteSize; 6000 continue; 6001 } 6002 6003 // For aggregates larger than PtrByteSize, copy the pieces of the 6004 // object that fit into registers from the parameter save area. 6005 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6006 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6007 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6008 if (GPR_idx != NumGPRs) { 6009 SDValue Load = 6010 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6011 MemOpChains.push_back(Load.getValue(1)); 6012 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6013 ArgOffset += PtrByteSize; 6014 } else { 6015 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6016 break; 6017 } 6018 } 6019 continue; 6020 } 6021 6022 switch (Arg.getSimpleValueType().SimpleTy) { 6023 default: llvm_unreachable("Unexpected ValueType for argument!"); 6024 case MVT::i1: 6025 case MVT::i32: 6026 case MVT::i64: 6027 if (Flags.isNest()) { 6028 // The 'nest' parameter, if any, is passed in R11. 6029 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6030 hasNest = true; 6031 break; 6032 } 6033 6034 // These can be scalar arguments or elements of an integer array type 6035 // passed directly. Clang may use those instead of "byval" aggregate 6036 // types to avoid forcing arguments to memory unnecessarily. 6037 if (GPR_idx != NumGPRs) { 6038 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6039 } else { 6040 if (CallConv == CallingConv::Fast) 6041 ComputePtrOff(); 6042 6043 assert(HasParameterArea && 6044 "Parameter area must exist to pass an argument in memory."); 6045 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6046 true, isTailCall, false, MemOpChains, 6047 TailCallArguments, dl); 6048 if (CallConv == CallingConv::Fast) 6049 ArgOffset += PtrByteSize; 6050 } 6051 if (CallConv != CallingConv::Fast) 6052 ArgOffset += PtrByteSize; 6053 break; 6054 case MVT::f32: 6055 case MVT::f64: { 6056 // These can be scalar arguments or elements of a float array type 6057 // passed directly. The latter are used to implement ELFv2 homogenous 6058 // float aggregates. 6059 6060 // Named arguments go into FPRs first, and once they overflow, the 6061 // remaining arguments go into GPRs and then the parameter save area. 6062 // Unnamed arguments for vararg functions always go to GPRs and 6063 // then the parameter save area. For now, put all arguments to vararg 6064 // routines always in both locations (FPR *and* GPR or stack slot). 6065 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6066 bool NeededLoad = false; 6067 6068 // First load the argument into the next available FPR. 6069 if (FPR_idx != NumFPRs) 6070 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6071 6072 // Next, load the argument into GPR or stack slot if needed. 6073 if (!NeedGPROrStack) 6074 ; 6075 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6076 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6077 // once we support fp <-> gpr moves. 6078 6079 // In the non-vararg case, this can only ever happen in the 6080 // presence of f32 array types, since otherwise we never run 6081 // out of FPRs before running out of GPRs. 6082 SDValue ArgVal; 6083 6084 // Double values are always passed in a single GPR. 6085 if (Arg.getValueType() != MVT::f32) { 6086 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6087 6088 // Non-array float values are extended and passed in a GPR. 6089 } else if (!Flags.isInConsecutiveRegs()) { 6090 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6091 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6092 6093 // If we have an array of floats, we collect every odd element 6094 // together with its predecessor into one GPR. 6095 } else if (ArgOffset % PtrByteSize != 0) { 6096 SDValue Lo, Hi; 6097 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6098 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6099 if (!isLittleEndian) 6100 std::swap(Lo, Hi); 6101 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6102 6103 // The final element, if even, goes into the first half of a GPR. 6104 } else if (Flags.isInConsecutiveRegsLast()) { 6105 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6106 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6107 if (!isLittleEndian) 6108 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6109 DAG.getConstant(32, dl, MVT::i32)); 6110 6111 // Non-final even elements are skipped; they will be handled 6112 // together the with subsequent argument on the next go-around. 6113 } else 6114 ArgVal = SDValue(); 6115 6116 if (ArgVal.getNode()) 6117 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6118 } else { 6119 if (CallConv == CallingConv::Fast) 6120 ComputePtrOff(); 6121 6122 // Single-precision floating-point values are mapped to the 6123 // second (rightmost) word of the stack doubleword. 6124 if (Arg.getValueType() == MVT::f32 && 6125 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6126 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6127 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6128 } 6129 6130 assert(HasParameterArea && 6131 "Parameter area must exist to pass an argument in memory."); 6132 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6133 true, isTailCall, false, MemOpChains, 6134 TailCallArguments, dl); 6135 6136 NeededLoad = true; 6137 } 6138 // When passing an array of floats, the array occupies consecutive 6139 // space in the argument area; only round up to the next doubleword 6140 // at the end of the array. Otherwise, each float takes 8 bytes. 6141 if (CallConv != CallingConv::Fast || NeededLoad) { 6142 ArgOffset += (Arg.getValueType() == MVT::f32 && 6143 Flags.isInConsecutiveRegs()) ? 4 : 8; 6144 if (Flags.isInConsecutiveRegsLast()) 6145 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6146 } 6147 break; 6148 } 6149 case MVT::v4f32: 6150 case MVT::v4i32: 6151 case MVT::v8i16: 6152 case MVT::v16i8: 6153 case MVT::v2f64: 6154 case MVT::v2i64: 6155 case MVT::v1i128: 6156 case MVT::f128: 6157 if (!Subtarget.hasQPX()) { 6158 // These can be scalar arguments or elements of a vector array type 6159 // passed directly. The latter are used to implement ELFv2 homogenous 6160 // vector aggregates. 6161 6162 // For a varargs call, named arguments go into VRs or on the stack as 6163 // usual; unnamed arguments always go to the stack or the corresponding 6164 // GPRs when within range. For now, we always put the value in both 6165 // locations (or even all three). 6166 if (isVarArg) { 6167 assert(HasParameterArea && 6168 "Parameter area must exist if we have a varargs call."); 6169 // We could elide this store in the case where the object fits 6170 // entirely in R registers. Maybe later. 6171 SDValue Store = 6172 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6173 MemOpChains.push_back(Store); 6174 if (VR_idx != NumVRs) { 6175 SDValue Load = 6176 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6177 MemOpChains.push_back(Load.getValue(1)); 6178 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6179 } 6180 ArgOffset += 16; 6181 for (unsigned i=0; i<16; i+=PtrByteSize) { 6182 if (GPR_idx == NumGPRs) 6183 break; 6184 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6185 DAG.getConstant(i, dl, PtrVT)); 6186 SDValue Load = 6187 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6188 MemOpChains.push_back(Load.getValue(1)); 6189 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6190 } 6191 break; 6192 } 6193 6194 // Non-varargs Altivec params go into VRs or on the stack. 6195 if (VR_idx != NumVRs) { 6196 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6197 } else { 6198 if (CallConv == CallingConv::Fast) 6199 ComputePtrOff(); 6200 6201 assert(HasParameterArea && 6202 "Parameter area must exist to pass an argument in memory."); 6203 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6204 true, isTailCall, true, MemOpChains, 6205 TailCallArguments, dl); 6206 if (CallConv == CallingConv::Fast) 6207 ArgOffset += 16; 6208 } 6209 6210 if (CallConv != CallingConv::Fast) 6211 ArgOffset += 16; 6212 break; 6213 } // not QPX 6214 6215 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6216 "Invalid QPX parameter type"); 6217 6218 LLVM_FALLTHROUGH; 6219 case MVT::v4f64: 6220 case MVT::v4i1: { 6221 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6222 if (isVarArg) { 6223 assert(HasParameterArea && 6224 "Parameter area must exist if we have a varargs call."); 6225 // We could elide this store in the case where the object fits 6226 // entirely in R registers. Maybe later. 6227 SDValue Store = 6228 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6229 MemOpChains.push_back(Store); 6230 if (QFPR_idx != NumQFPRs) { 6231 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6232 PtrOff, MachinePointerInfo()); 6233 MemOpChains.push_back(Load.getValue(1)); 6234 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6235 } 6236 ArgOffset += (IsF32 ? 16 : 32); 6237 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6238 if (GPR_idx == NumGPRs) 6239 break; 6240 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6241 DAG.getConstant(i, dl, PtrVT)); 6242 SDValue Load = 6243 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6244 MemOpChains.push_back(Load.getValue(1)); 6245 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6246 } 6247 break; 6248 } 6249 6250 // Non-varargs QPX params go into registers or on the stack. 6251 if (QFPR_idx != NumQFPRs) { 6252 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6253 } else { 6254 if (CallConv == CallingConv::Fast) 6255 ComputePtrOff(); 6256 6257 assert(HasParameterArea && 6258 "Parameter area must exist to pass an argument in memory."); 6259 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6260 true, isTailCall, true, MemOpChains, 6261 TailCallArguments, dl); 6262 if (CallConv == CallingConv::Fast) 6263 ArgOffset += (IsF32 ? 16 : 32); 6264 } 6265 6266 if (CallConv != CallingConv::Fast) 6267 ArgOffset += (IsF32 ? 16 : 32); 6268 break; 6269 } 6270 } 6271 } 6272 6273 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6274 "mismatch in size of parameter area"); 6275 (void)NumBytesActuallyUsed; 6276 6277 if (!MemOpChains.empty()) 6278 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6279 6280 // Check if this is an indirect call (MTCTR/BCTRL). 6281 // See PrepareCall() for more information about calls through function 6282 // pointers in the 64-bit SVR4 ABI. 6283 if (!isTailCall && !isPatchPoint && 6284 !isFunctionGlobalAddress(Callee) && 6285 !isa<ExternalSymbolSDNode>(Callee)) { 6286 // Load r2 into a virtual register and store it to the TOC save area. 6287 setUsesTOCBasePtr(DAG); 6288 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6289 // TOC save area offset. 6290 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6291 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6292 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6293 Chain = DAG.getStore( 6294 Val.getValue(1), dl, Val, AddPtr, 6295 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6296 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6297 // This does not mean the MTCTR instruction must use R12; it's easier 6298 // to model this as an extra parameter, so do that. 6299 if (isELFv2ABI && !isPatchPoint) 6300 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6301 } 6302 6303 // Build a sequence of copy-to-reg nodes chained together with token chain 6304 // and flag operands which copy the outgoing args into the appropriate regs. 6305 SDValue InFlag; 6306 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6307 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6308 RegsToPass[i].second, InFlag); 6309 InFlag = Chain.getValue(1); 6310 } 6311 6312 if (isTailCall && !IsSibCall) 6313 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6314 TailCallArguments); 6315 6316 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6317 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6318 SPDiff, NumBytes, Ins, InVals, CS); 6319 } 6320 6321 SDValue PPCTargetLowering::LowerCall_Darwin( 6322 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6323 bool isTailCall, bool isPatchPoint, 6324 const SmallVectorImpl<ISD::OutputArg> &Outs, 6325 const SmallVectorImpl<SDValue> &OutVals, 6326 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6327 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6328 ImmutableCallSite CS) const { 6329 unsigned NumOps = Outs.size(); 6330 6331 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6332 bool isPPC64 = PtrVT == MVT::i64; 6333 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6334 6335 MachineFunction &MF = DAG.getMachineFunction(); 6336 6337 // Mark this function as potentially containing a function that contains a 6338 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6339 // and restoring the callers stack pointer in this functions epilog. This is 6340 // done because by tail calling the called function might overwrite the value 6341 // in this function's (MF) stack pointer stack slot 0(SP). 6342 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6343 CallConv == CallingConv::Fast) 6344 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6345 6346 // Count how many bytes are to be pushed on the stack, including the linkage 6347 // area, and parameter passing area. We start with 24/48 bytes, which is 6348 // prereserved space for [SP][CR][LR][3 x unused]. 6349 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6350 unsigned NumBytes = LinkageSize; 6351 6352 // Add up all the space actually used. 6353 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6354 // they all go in registers, but we must reserve stack space for them for 6355 // possible use by the caller. In varargs or 64-bit calls, parameters are 6356 // assigned stack space in order, with padding so Altivec parameters are 6357 // 16-byte aligned. 6358 unsigned nAltivecParamsAtEnd = 0; 6359 for (unsigned i = 0; i != NumOps; ++i) { 6360 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6361 EVT ArgVT = Outs[i].VT; 6362 // Varargs Altivec parameters are padded to a 16 byte boundary. 6363 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6364 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6365 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6366 if (!isVarArg && !isPPC64) { 6367 // Non-varargs Altivec parameters go after all the non-Altivec 6368 // parameters; handle those later so we know how much padding we need. 6369 nAltivecParamsAtEnd++; 6370 continue; 6371 } 6372 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6373 NumBytes = ((NumBytes+15)/16)*16; 6374 } 6375 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6376 } 6377 6378 // Allow for Altivec parameters at the end, if needed. 6379 if (nAltivecParamsAtEnd) { 6380 NumBytes = ((NumBytes+15)/16)*16; 6381 NumBytes += 16*nAltivecParamsAtEnd; 6382 } 6383 6384 // The prolog code of the callee may store up to 8 GPR argument registers to 6385 // the stack, allowing va_start to index over them in memory if its varargs. 6386 // Because we cannot tell if this is needed on the caller side, we have to 6387 // conservatively assume that it is needed. As such, make sure we have at 6388 // least enough stack space for the caller to store the 8 GPRs. 6389 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6390 6391 // Tail call needs the stack to be aligned. 6392 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6393 CallConv == CallingConv::Fast) 6394 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6395 6396 // Calculate by how many bytes the stack has to be adjusted in case of tail 6397 // call optimization. 6398 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6399 6400 // To protect arguments on the stack from being clobbered in a tail call, 6401 // force all the loads to happen before doing any other lowering. 6402 if (isTailCall) 6403 Chain = DAG.getStackArgumentTokenFactor(Chain); 6404 6405 // Adjust the stack pointer for the new arguments... 6406 // These operations are automatically eliminated by the prolog/epilog pass 6407 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6408 SDValue CallSeqStart = Chain; 6409 6410 // Load the return address and frame pointer so it can be move somewhere else 6411 // later. 6412 SDValue LROp, FPOp; 6413 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6414 6415 // Set up a copy of the stack pointer for use loading and storing any 6416 // arguments that may not fit in the registers available for argument 6417 // passing. 6418 SDValue StackPtr; 6419 if (isPPC64) 6420 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6421 else 6422 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6423 6424 // Figure out which arguments are going to go in registers, and which in 6425 // memory. Also, if this is a vararg function, floating point operations 6426 // must be stored to our stack, and loaded into integer regs as well, if 6427 // any integer regs are available for argument passing. 6428 unsigned ArgOffset = LinkageSize; 6429 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6430 6431 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6432 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6433 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6434 }; 6435 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6436 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6437 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6438 }; 6439 static const MCPhysReg VR[] = { 6440 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6441 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6442 }; 6443 const unsigned NumGPRs = array_lengthof(GPR_32); 6444 const unsigned NumFPRs = 13; 6445 const unsigned NumVRs = array_lengthof(VR); 6446 6447 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6448 6449 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6450 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6451 6452 SmallVector<SDValue, 8> MemOpChains; 6453 for (unsigned i = 0; i != NumOps; ++i) { 6454 SDValue Arg = OutVals[i]; 6455 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6456 6457 // PtrOff will be used to store the current argument to the stack if a 6458 // register cannot be found for it. 6459 SDValue PtrOff; 6460 6461 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6462 6463 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6464 6465 // On PPC64, promote integers to 64-bit values. 6466 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6467 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6468 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6469 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6470 } 6471 6472 // FIXME memcpy is used way more than necessary. Correctness first. 6473 // Note: "by value" is code for passing a structure by value, not 6474 // basic types. 6475 if (Flags.isByVal()) { 6476 unsigned Size = Flags.getByValSize(); 6477 // Very small objects are passed right-justified. Everything else is 6478 // passed left-justified. 6479 if (Size==1 || Size==2) { 6480 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6481 if (GPR_idx != NumGPRs) { 6482 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6483 MachinePointerInfo(), VT); 6484 MemOpChains.push_back(Load.getValue(1)); 6485 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6486 6487 ArgOffset += PtrByteSize; 6488 } else { 6489 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6490 PtrOff.getValueType()); 6491 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6492 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6493 CallSeqStart, 6494 Flags, DAG, dl); 6495 ArgOffset += PtrByteSize; 6496 } 6497 continue; 6498 } 6499 // Copy entire object into memory. There are cases where gcc-generated 6500 // code assumes it is there, even if it could be put entirely into 6501 // registers. (This is not what the doc says.) 6502 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6503 CallSeqStart, 6504 Flags, DAG, dl); 6505 6506 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6507 // copy the pieces of the object that fit into registers from the 6508 // parameter save area. 6509 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6510 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6511 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6512 if (GPR_idx != NumGPRs) { 6513 SDValue Load = 6514 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6515 MemOpChains.push_back(Load.getValue(1)); 6516 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6517 ArgOffset += PtrByteSize; 6518 } else { 6519 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6520 break; 6521 } 6522 } 6523 continue; 6524 } 6525 6526 switch (Arg.getSimpleValueType().SimpleTy) { 6527 default: llvm_unreachable("Unexpected ValueType for argument!"); 6528 case MVT::i1: 6529 case MVT::i32: 6530 case MVT::i64: 6531 if (GPR_idx != NumGPRs) { 6532 if (Arg.getValueType() == MVT::i1) 6533 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6534 6535 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6536 } else { 6537 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6538 isPPC64, isTailCall, false, MemOpChains, 6539 TailCallArguments, dl); 6540 } 6541 ArgOffset += PtrByteSize; 6542 break; 6543 case MVT::f32: 6544 case MVT::f64: 6545 if (FPR_idx != NumFPRs) { 6546 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6547 6548 if (isVarArg) { 6549 SDValue Store = 6550 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6551 MemOpChains.push_back(Store); 6552 6553 // Float varargs are always shadowed in available integer registers 6554 if (GPR_idx != NumGPRs) { 6555 SDValue Load = 6556 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6557 MemOpChains.push_back(Load.getValue(1)); 6558 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6559 } 6560 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6561 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6562 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6563 SDValue Load = 6564 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6565 MemOpChains.push_back(Load.getValue(1)); 6566 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6567 } 6568 } else { 6569 // If we have any FPRs remaining, we may also have GPRs remaining. 6570 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6571 // GPRs. 6572 if (GPR_idx != NumGPRs) 6573 ++GPR_idx; 6574 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6575 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6576 ++GPR_idx; 6577 } 6578 } else 6579 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6580 isPPC64, isTailCall, false, MemOpChains, 6581 TailCallArguments, dl); 6582 if (isPPC64) 6583 ArgOffset += 8; 6584 else 6585 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6586 break; 6587 case MVT::v4f32: 6588 case MVT::v4i32: 6589 case MVT::v8i16: 6590 case MVT::v16i8: 6591 if (isVarArg) { 6592 // These go aligned on the stack, or in the corresponding R registers 6593 // when within range. The Darwin PPC ABI doc claims they also go in 6594 // V registers; in fact gcc does this only for arguments that are 6595 // prototyped, not for those that match the ... We do it for all 6596 // arguments, seems to work. 6597 while (ArgOffset % 16 !=0) { 6598 ArgOffset += PtrByteSize; 6599 if (GPR_idx != NumGPRs) 6600 GPR_idx++; 6601 } 6602 // We could elide this store in the case where the object fits 6603 // entirely in R registers. Maybe later. 6604 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6605 DAG.getConstant(ArgOffset, dl, PtrVT)); 6606 SDValue Store = 6607 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6608 MemOpChains.push_back(Store); 6609 if (VR_idx != NumVRs) { 6610 SDValue Load = 6611 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6612 MemOpChains.push_back(Load.getValue(1)); 6613 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6614 } 6615 ArgOffset += 16; 6616 for (unsigned i=0; i<16; i+=PtrByteSize) { 6617 if (GPR_idx == NumGPRs) 6618 break; 6619 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6620 DAG.getConstant(i, dl, PtrVT)); 6621 SDValue Load = 6622 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6623 MemOpChains.push_back(Load.getValue(1)); 6624 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6625 } 6626 break; 6627 } 6628 6629 // Non-varargs Altivec params generally go in registers, but have 6630 // stack space allocated at the end. 6631 if (VR_idx != NumVRs) { 6632 // Doesn't have GPR space allocated. 6633 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6634 } else if (nAltivecParamsAtEnd==0) { 6635 // We are emitting Altivec params in order. 6636 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6637 isPPC64, isTailCall, true, MemOpChains, 6638 TailCallArguments, dl); 6639 ArgOffset += 16; 6640 } 6641 break; 6642 } 6643 } 6644 // If all Altivec parameters fit in registers, as they usually do, 6645 // they get stack space following the non-Altivec parameters. We 6646 // don't track this here because nobody below needs it. 6647 // If there are more Altivec parameters than fit in registers emit 6648 // the stores here. 6649 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6650 unsigned j = 0; 6651 // Offset is aligned; skip 1st 12 params which go in V registers. 6652 ArgOffset = ((ArgOffset+15)/16)*16; 6653 ArgOffset += 12*16; 6654 for (unsigned i = 0; i != NumOps; ++i) { 6655 SDValue Arg = OutVals[i]; 6656 EVT ArgType = Outs[i].VT; 6657 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6658 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6659 if (++j > NumVRs) { 6660 SDValue PtrOff; 6661 // We are emitting Altivec params in order. 6662 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6663 isPPC64, isTailCall, true, MemOpChains, 6664 TailCallArguments, dl); 6665 ArgOffset += 16; 6666 } 6667 } 6668 } 6669 } 6670 6671 if (!MemOpChains.empty()) 6672 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6673 6674 // On Darwin, R12 must contain the address of an indirect callee. This does 6675 // not mean the MTCTR instruction must use R12; it's easier to model this as 6676 // an extra parameter, so do that. 6677 if (!isTailCall && 6678 !isFunctionGlobalAddress(Callee) && 6679 !isa<ExternalSymbolSDNode>(Callee) && 6680 !isBLACompatibleAddress(Callee, DAG)) 6681 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6682 PPC::R12), Callee)); 6683 6684 // Build a sequence of copy-to-reg nodes chained together with token chain 6685 // and flag operands which copy the outgoing args into the appropriate regs. 6686 SDValue InFlag; 6687 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6688 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6689 RegsToPass[i].second, InFlag); 6690 InFlag = Chain.getValue(1); 6691 } 6692 6693 if (isTailCall) 6694 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6695 TailCallArguments); 6696 6697 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6698 /* unused except on PPC64 ELFv1 */ false, DAG, 6699 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6700 NumBytes, Ins, InVals, CS); 6701 } 6702 6703 6704 SDValue PPCTargetLowering::LowerCall_AIX( 6705 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6706 bool isTailCall, bool isPatchPoint, 6707 const SmallVectorImpl<ISD::OutputArg> &Outs, 6708 const SmallVectorImpl<SDValue> &OutVals, 6709 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6710 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6711 ImmutableCallSite CS) const { 6712 6713 assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && 6714 "Unimplemented calling convention!"); 6715 if (isVarArg || isPatchPoint) 6716 report_fatal_error("This call type is unimplemented on AIX."); 6717 6718 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6719 bool isPPC64 = PtrVT == MVT::i64; 6720 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6721 unsigned NumOps = Outs.size(); 6722 6723 6724 // Count how many bytes are to be pushed on the stack, including the linkage 6725 // area, parameter list area. 6726 // On XCOFF, we start with 24/48, which is reserved space for 6727 // [SP][CR][LR][2 x reserved][TOC]. 6728 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6729 6730 // The prolog code of the callee may store up to 8 GPR argument registers to 6731 // the stack, allowing va_start to index over them in memory if the callee 6732 // is variadic. 6733 // Because we cannot tell if this is needed on the caller side, we have to 6734 // conservatively assume that it is needed. As such, make sure we have at 6735 // least enough stack space for the caller to store the 8 GPRs. 6736 unsigned NumBytes = LinkageSize + 8 * PtrByteSize; 6737 6738 // Adjust the stack pointer for the new arguments... 6739 // These operations are automatically eliminated by the prolog/epilog 6740 // inserter pass. 6741 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6742 SDValue CallSeqStart = Chain; 6743 6744 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6745 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6746 PPC::R7, PPC::R8, PPC::R9, PPC::R10 6747 }; 6748 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6749 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6750 PPC::X7, PPC::X8, PPC::X9, PPC::X10 6751 }; 6752 6753 const unsigned NumGPRs = isPPC64 ? array_lengthof(GPR_64) 6754 : array_lengthof(GPR_32); 6755 const unsigned NumFPRs = array_lengthof(FPR); 6756 assert(NumFPRs == 13 && "Only FPR 1-13 could be used for parameter passing " 6757 "on AIX"); 6758 6759 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6760 unsigned GPR_idx = 0, FPR_idx = 0; 6761 6762 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6763 6764 if (isTailCall) 6765 report_fatal_error("Handling of tail call is unimplemented!"); 6766 int SPDiff = 0; 6767 6768 for (unsigned i = 0; i != NumOps; ++i) { 6769 SDValue Arg = OutVals[i]; 6770 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6771 6772 // Promote integers if needed. 6773 if (Arg.getValueType() == MVT::i1 || 6774 (isPPC64 && Arg.getValueType() == MVT::i32)) { 6775 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6776 Arg = DAG.getNode(ExtOp, dl, PtrVT, Arg); 6777 } 6778 6779 // Note: "by value" is code for passing a structure by value, not 6780 // basic types. 6781 if (Flags.isByVal()) 6782 report_fatal_error("Passing structure by value is unimplemented!"); 6783 6784 switch (Arg.getSimpleValueType().SimpleTy) { 6785 default: llvm_unreachable("Unexpected ValueType for argument!"); 6786 case MVT::i1: 6787 case MVT::i32: 6788 case MVT::i64: 6789 if (GPR_idx != NumGPRs) 6790 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6791 else 6792 report_fatal_error("Handling of placing parameters on the stack is " 6793 "unimplemented!"); 6794 break; 6795 case MVT::f32: 6796 case MVT::f64: 6797 if (FPR_idx != NumFPRs) { 6798 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6799 6800 // If we have any FPRs remaining, we may also have GPRs remaining. 6801 // Args passed in FPRs consume 1 or 2 (f64 in 32 bit mode) available 6802 // GPRs. 6803 if (GPR_idx != NumGPRs) 6804 ++GPR_idx; 6805 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64) 6806 ++GPR_idx; 6807 } else 6808 report_fatal_error("Handling of placing parameters on the stack is " 6809 "unimplemented!"); 6810 break; 6811 case MVT::v4f32: 6812 case MVT::v4i32: 6813 case MVT::v8i16: 6814 case MVT::v16i8: 6815 case MVT::v2f64: 6816 case MVT::v2i64: 6817 case MVT::v1i128: 6818 case MVT::f128: 6819 case MVT::v4f64: 6820 case MVT::v4i1: 6821 report_fatal_error("Handling of this parameter type is unimplemented!"); 6822 } 6823 } 6824 6825 if (!isFunctionGlobalAddress(Callee) && 6826 !isa<ExternalSymbolSDNode>(Callee)) 6827 report_fatal_error("Handling of indirect call is unimplemented!"); 6828 6829 // Build a sequence of copy-to-reg nodes chained together with token chain 6830 // and flag operands which copy the outgoing args into the appropriate regs. 6831 SDValue InFlag; 6832 for (auto Reg : RegsToPass) { 6833 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 6834 InFlag = Chain.getValue(1); 6835 } 6836 6837 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6838 /* unused except on PPC64 ELFv1 */ false, DAG, 6839 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6840 NumBytes, Ins, InVals, CS); 6841 } 6842 6843 bool 6844 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6845 MachineFunction &MF, bool isVarArg, 6846 const SmallVectorImpl<ISD::OutputArg> &Outs, 6847 LLVMContext &Context) const { 6848 SmallVector<CCValAssign, 16> RVLocs; 6849 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6850 return CCInfo.CheckReturn( 6851 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6852 ? RetCC_PPC_Cold 6853 : RetCC_PPC); 6854 } 6855 6856 SDValue 6857 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6858 bool isVarArg, 6859 const SmallVectorImpl<ISD::OutputArg> &Outs, 6860 const SmallVectorImpl<SDValue> &OutVals, 6861 const SDLoc &dl, SelectionDAG &DAG) const { 6862 SmallVector<CCValAssign, 16> RVLocs; 6863 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6864 *DAG.getContext()); 6865 CCInfo.AnalyzeReturn(Outs, 6866 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6867 ? RetCC_PPC_Cold 6868 : RetCC_PPC); 6869 6870 SDValue Flag; 6871 SmallVector<SDValue, 4> RetOps(1, Chain); 6872 6873 // Copy the result values into the output registers. 6874 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 6875 CCValAssign &VA = RVLocs[i]; 6876 assert(VA.isRegLoc() && "Can only return in registers!"); 6877 6878 SDValue Arg = OutVals[RealResIdx]; 6879 6880 switch (VA.getLocInfo()) { 6881 default: llvm_unreachable("Unknown loc info!"); 6882 case CCValAssign::Full: break; 6883 case CCValAssign::AExt: 6884 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6885 break; 6886 case CCValAssign::ZExt: 6887 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6888 break; 6889 case CCValAssign::SExt: 6890 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6891 break; 6892 } 6893 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 6894 bool isLittleEndian = Subtarget.isLittleEndian(); 6895 // Legalize ret f64 -> ret 2 x i32. 6896 SDValue SVal = 6897 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6898 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 6899 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6900 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6901 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6902 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 6903 Flag = Chain.getValue(1); 6904 VA = RVLocs[++i]; // skip ahead to next loc 6905 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6906 } else 6907 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6908 Flag = Chain.getValue(1); 6909 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6910 } 6911 6912 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6913 const MCPhysReg *I = 6914 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6915 if (I) { 6916 for (; *I; ++I) { 6917 6918 if (PPC::G8RCRegClass.contains(*I)) 6919 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6920 else if (PPC::F8RCRegClass.contains(*I)) 6921 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6922 else if (PPC::CRRCRegClass.contains(*I)) 6923 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6924 else if (PPC::VRRCRegClass.contains(*I)) 6925 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6926 else 6927 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6928 } 6929 } 6930 6931 RetOps[0] = Chain; // Update chain. 6932 6933 // Add the flag if we have it. 6934 if (Flag.getNode()) 6935 RetOps.push_back(Flag); 6936 6937 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6938 } 6939 6940 SDValue 6941 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6942 SelectionDAG &DAG) const { 6943 SDLoc dl(Op); 6944 6945 // Get the correct type for integers. 6946 EVT IntVT = Op.getValueType(); 6947 6948 // Get the inputs. 6949 SDValue Chain = Op.getOperand(0); 6950 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6951 // Build a DYNAREAOFFSET node. 6952 SDValue Ops[2] = {Chain, FPSIdx}; 6953 SDVTList VTs = DAG.getVTList(IntVT); 6954 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6955 } 6956 6957 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6958 SelectionDAG &DAG) const { 6959 // When we pop the dynamic allocation we need to restore the SP link. 6960 SDLoc dl(Op); 6961 6962 // Get the correct type for pointers. 6963 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6964 6965 // Construct the stack pointer operand. 6966 bool isPPC64 = Subtarget.isPPC64(); 6967 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6968 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6969 6970 // Get the operands for the STACKRESTORE. 6971 SDValue Chain = Op.getOperand(0); 6972 SDValue SaveSP = Op.getOperand(1); 6973 6974 // Load the old link SP. 6975 SDValue LoadLinkSP = 6976 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6977 6978 // Restore the stack pointer. 6979 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6980 6981 // Store the old link SP. 6982 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6983 } 6984 6985 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6986 MachineFunction &MF = DAG.getMachineFunction(); 6987 bool isPPC64 = Subtarget.isPPC64(); 6988 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6989 6990 // Get current frame pointer save index. The users of this index will be 6991 // primarily DYNALLOC instructions. 6992 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6993 int RASI = FI->getReturnAddrSaveIndex(); 6994 6995 // If the frame pointer save index hasn't been defined yet. 6996 if (!RASI) { 6997 // Find out what the fix offset of the frame pointer save area. 6998 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6999 // Allocate the frame index for frame pointer save area. 7000 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7001 // Save the result. 7002 FI->setReturnAddrSaveIndex(RASI); 7003 } 7004 return DAG.getFrameIndex(RASI, PtrVT); 7005 } 7006 7007 SDValue 7008 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7009 MachineFunction &MF = DAG.getMachineFunction(); 7010 bool isPPC64 = Subtarget.isPPC64(); 7011 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7012 7013 // Get current frame pointer save index. The users of this index will be 7014 // primarily DYNALLOC instructions. 7015 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7016 int FPSI = FI->getFramePointerSaveIndex(); 7017 7018 // If the frame pointer save index hasn't been defined yet. 7019 if (!FPSI) { 7020 // Find out what the fix offset of the frame pointer save area. 7021 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7022 // Allocate the frame index for frame pointer save area. 7023 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7024 // Save the result. 7025 FI->setFramePointerSaveIndex(FPSI); 7026 } 7027 return DAG.getFrameIndex(FPSI, PtrVT); 7028 } 7029 7030 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7031 SelectionDAG &DAG) const { 7032 // Get the inputs. 7033 SDValue Chain = Op.getOperand(0); 7034 SDValue Size = Op.getOperand(1); 7035 SDLoc dl(Op); 7036 7037 // Get the correct type for pointers. 7038 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7039 // Negate the size. 7040 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7041 DAG.getConstant(0, dl, PtrVT), Size); 7042 // Construct a node for the frame pointer save index. 7043 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7044 // Build a DYNALLOC node. 7045 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7046 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7047 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7048 } 7049 7050 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7051 SelectionDAG &DAG) const { 7052 MachineFunction &MF = DAG.getMachineFunction(); 7053 7054 bool isPPC64 = Subtarget.isPPC64(); 7055 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7056 7057 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7058 return DAG.getFrameIndex(FI, PtrVT); 7059 } 7060 7061 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7062 SelectionDAG &DAG) const { 7063 SDLoc DL(Op); 7064 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7065 DAG.getVTList(MVT::i32, MVT::Other), 7066 Op.getOperand(0), Op.getOperand(1)); 7067 } 7068 7069 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7070 SelectionDAG &DAG) const { 7071 SDLoc DL(Op); 7072 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7073 Op.getOperand(0), Op.getOperand(1)); 7074 } 7075 7076 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7077 if (Op.getValueType().isVector()) 7078 return LowerVectorLoad(Op, DAG); 7079 7080 assert(Op.getValueType() == MVT::i1 && 7081 "Custom lowering only for i1 loads"); 7082 7083 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7084 7085 SDLoc dl(Op); 7086 LoadSDNode *LD = cast<LoadSDNode>(Op); 7087 7088 SDValue Chain = LD->getChain(); 7089 SDValue BasePtr = LD->getBasePtr(); 7090 MachineMemOperand *MMO = LD->getMemOperand(); 7091 7092 SDValue NewLD = 7093 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7094 BasePtr, MVT::i8, MMO); 7095 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7096 7097 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7098 return DAG.getMergeValues(Ops, dl); 7099 } 7100 7101 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7102 if (Op.getOperand(1).getValueType().isVector()) 7103 return LowerVectorStore(Op, DAG); 7104 7105 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7106 "Custom lowering only for i1 stores"); 7107 7108 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7109 7110 SDLoc dl(Op); 7111 StoreSDNode *ST = cast<StoreSDNode>(Op); 7112 7113 SDValue Chain = ST->getChain(); 7114 SDValue BasePtr = ST->getBasePtr(); 7115 SDValue Value = ST->getValue(); 7116 MachineMemOperand *MMO = ST->getMemOperand(); 7117 7118 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7119 Value); 7120 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7121 } 7122 7123 // FIXME: Remove this once the ANDI glue bug is fixed: 7124 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7125 assert(Op.getValueType() == MVT::i1 && 7126 "Custom lowering only for i1 results"); 7127 7128 SDLoc DL(Op); 7129 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7130 Op.getOperand(0)); 7131 } 7132 7133 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7134 SelectionDAG &DAG) const { 7135 7136 // Implements a vector truncate that fits in a vector register as a shuffle. 7137 // We want to legalize vector truncates down to where the source fits in 7138 // a vector register (and target is therefore smaller than vector register 7139 // size). At that point legalization will try to custom lower the sub-legal 7140 // result and get here - where we can contain the truncate as a single target 7141 // operation. 7142 7143 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7144 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7145 // 7146 // We will implement it for big-endian ordering as this (where x denotes 7147 // undefined): 7148 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7149 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7150 // 7151 // The same operation in little-endian ordering will be: 7152 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7153 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7154 7155 assert(Op.getValueType().isVector() && "Vector type expected."); 7156 7157 SDLoc DL(Op); 7158 SDValue N1 = Op.getOperand(0); 7159 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7160 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7161 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7162 7163 EVT TrgVT = Op.getValueType(); 7164 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7165 EVT EltVT = TrgVT.getVectorElementType(); 7166 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7167 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7168 7169 // First list the elements we want to keep. 7170 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7171 SmallVector<int, 16> ShuffV; 7172 if (Subtarget.isLittleEndian()) 7173 for (unsigned i = 0; i < TrgNumElts; ++i) 7174 ShuffV.push_back(i * SizeMult); 7175 else 7176 for (unsigned i = 1; i <= TrgNumElts; ++i) 7177 ShuffV.push_back(i * SizeMult - 1); 7178 7179 // Populate the remaining elements with undefs. 7180 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7181 // ShuffV.push_back(i + WideNumElts); 7182 ShuffV.push_back(WideNumElts + 1); 7183 7184 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7185 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7186 } 7187 7188 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7189 /// possible. 7190 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7191 // Not FP? Not a fsel. 7192 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7193 !Op.getOperand(2).getValueType().isFloatingPoint()) 7194 return Op; 7195 7196 // We might be able to do better than this under some circumstances, but in 7197 // general, fsel-based lowering of select is a finite-math-only optimization. 7198 // For more information, see section F.3 of the 2.06 ISA specification. 7199 if (!DAG.getTarget().Options.NoInfsFPMath || 7200 !DAG.getTarget().Options.NoNaNsFPMath) 7201 return Op; 7202 // TODO: Propagate flags from the select rather than global settings. 7203 SDNodeFlags Flags; 7204 Flags.setNoInfs(true); 7205 Flags.setNoNaNs(true); 7206 7207 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7208 7209 EVT ResVT = Op.getValueType(); 7210 EVT CmpVT = Op.getOperand(0).getValueType(); 7211 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7212 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7213 SDLoc dl(Op); 7214 7215 // If the RHS of the comparison is a 0.0, we don't need to do the 7216 // subtraction at all. 7217 SDValue Sel1; 7218 if (isFloatingPointZero(RHS)) 7219 switch (CC) { 7220 default: break; // SETUO etc aren't handled by fsel. 7221 case ISD::SETNE: 7222 std::swap(TV, FV); 7223 LLVM_FALLTHROUGH; 7224 case ISD::SETEQ: 7225 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7226 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7227 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7228 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7229 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7230 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7231 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7232 case ISD::SETULT: 7233 case ISD::SETLT: 7234 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7235 LLVM_FALLTHROUGH; 7236 case ISD::SETOGE: 7237 case ISD::SETGE: 7238 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7239 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7240 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7241 case ISD::SETUGT: 7242 case ISD::SETGT: 7243 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7244 LLVM_FALLTHROUGH; 7245 case ISD::SETOLE: 7246 case ISD::SETLE: 7247 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7248 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7249 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7250 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7251 } 7252 7253 SDValue Cmp; 7254 switch (CC) { 7255 default: break; // SETUO etc aren't handled by fsel. 7256 case ISD::SETNE: 7257 std::swap(TV, FV); 7258 LLVM_FALLTHROUGH; 7259 case ISD::SETEQ: 7260 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7261 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7262 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7263 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7264 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7265 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7266 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7267 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7268 case ISD::SETULT: 7269 case ISD::SETLT: 7270 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7271 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7272 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7273 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7274 case ISD::SETOGE: 7275 case ISD::SETGE: 7276 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7277 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7278 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7279 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7280 case ISD::SETUGT: 7281 case ISD::SETGT: 7282 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7283 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7284 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7285 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7286 case ISD::SETOLE: 7287 case ISD::SETLE: 7288 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7289 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7290 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7291 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7292 } 7293 return Op; 7294 } 7295 7296 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7297 SelectionDAG &DAG, 7298 const SDLoc &dl) const { 7299 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7300 SDValue Src = Op.getOperand(0); 7301 if (Src.getValueType() == MVT::f32) 7302 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7303 7304 SDValue Tmp; 7305 switch (Op.getSimpleValueType().SimpleTy) { 7306 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7307 case MVT::i32: 7308 Tmp = DAG.getNode( 7309 Op.getOpcode() == ISD::FP_TO_SINT 7310 ? PPCISD::FCTIWZ 7311 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7312 dl, MVT::f64, Src); 7313 break; 7314 case MVT::i64: 7315 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7316 "i64 FP_TO_UINT is supported only with FPCVT"); 7317 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7318 PPCISD::FCTIDUZ, 7319 dl, MVT::f64, Src); 7320 break; 7321 } 7322 7323 // Convert the FP value to an int value through memory. 7324 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7325 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7326 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7327 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7328 MachinePointerInfo MPI = 7329 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7330 7331 // Emit a store to the stack slot. 7332 SDValue Chain; 7333 if (i32Stack) { 7334 MachineFunction &MF = DAG.getMachineFunction(); 7335 MachineMemOperand *MMO = 7336 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7337 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7338 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7339 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7340 } else 7341 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7342 7343 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7344 // add in a bias on big endian. 7345 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7346 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7347 DAG.getConstant(4, dl, FIPtr.getValueType())); 7348 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7349 } 7350 7351 RLI.Chain = Chain; 7352 RLI.Ptr = FIPtr; 7353 RLI.MPI = MPI; 7354 } 7355 7356 /// Custom lowers floating point to integer conversions to use 7357 /// the direct move instructions available in ISA 2.07 to avoid the 7358 /// need for load/store combinations. 7359 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7360 SelectionDAG &DAG, 7361 const SDLoc &dl) const { 7362 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7363 SDValue Src = Op.getOperand(0); 7364 7365 if (Src.getValueType() == MVT::f32) 7366 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7367 7368 SDValue Tmp; 7369 switch (Op.getSimpleValueType().SimpleTy) { 7370 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7371 case MVT::i32: 7372 Tmp = DAG.getNode( 7373 Op.getOpcode() == ISD::FP_TO_SINT 7374 ? PPCISD::FCTIWZ 7375 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7376 dl, MVT::f64, Src); 7377 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7378 break; 7379 case MVT::i64: 7380 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7381 "i64 FP_TO_UINT is supported only with FPCVT"); 7382 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7383 PPCISD::FCTIDUZ, 7384 dl, MVT::f64, Src); 7385 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7386 break; 7387 } 7388 return Tmp; 7389 } 7390 7391 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7392 const SDLoc &dl) const { 7393 7394 // FP to INT conversions are legal for f128. 7395 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7396 return Op; 7397 7398 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7399 // PPC (the libcall is not available). 7400 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7401 if (Op.getValueType() == MVT::i32) { 7402 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7403 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7404 MVT::f64, Op.getOperand(0), 7405 DAG.getIntPtrConstant(0, dl)); 7406 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7407 MVT::f64, Op.getOperand(0), 7408 DAG.getIntPtrConstant(1, dl)); 7409 7410 // Add the two halves of the long double in round-to-zero mode. 7411 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7412 7413 // Now use a smaller FP_TO_SINT. 7414 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7415 } 7416 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7417 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7418 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7419 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7420 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7421 // FIXME: generated code sucks. 7422 // TODO: Are there fast-math-flags to propagate to this FSUB? 7423 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7424 Op.getOperand(0), Tmp); 7425 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7426 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7427 DAG.getConstant(0x80000000, dl, MVT::i32)); 7428 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7429 Op.getOperand(0)); 7430 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7431 ISD::SETGE); 7432 } 7433 } 7434 7435 return SDValue(); 7436 } 7437 7438 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7439 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7440 7441 ReuseLoadInfo RLI; 7442 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7443 7444 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7445 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7446 } 7447 7448 // We're trying to insert a regular store, S, and then a load, L. If the 7449 // incoming value, O, is a load, we might just be able to have our load use the 7450 // address used by O. However, we don't know if anything else will store to 7451 // that address before we can load from it. To prevent this situation, we need 7452 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7453 // the same chain operand as O, we create a token factor from the chain results 7454 // of O and L, and we replace all uses of O's chain result with that token 7455 // factor (see spliceIntoChain below for this last part). 7456 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7457 ReuseLoadInfo &RLI, 7458 SelectionDAG &DAG, 7459 ISD::LoadExtType ET) const { 7460 SDLoc dl(Op); 7461 if (ET == ISD::NON_EXTLOAD && 7462 (Op.getOpcode() == ISD::FP_TO_UINT || 7463 Op.getOpcode() == ISD::FP_TO_SINT) && 7464 isOperationLegalOrCustom(Op.getOpcode(), 7465 Op.getOperand(0).getValueType())) { 7466 7467 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7468 return true; 7469 } 7470 7471 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7472 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7473 LD->isNonTemporal()) 7474 return false; 7475 if (LD->getMemoryVT() != MemVT) 7476 return false; 7477 7478 RLI.Ptr = LD->getBasePtr(); 7479 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7480 assert(LD->getAddressingMode() == ISD::PRE_INC && 7481 "Non-pre-inc AM on PPC?"); 7482 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7483 LD->getOffset()); 7484 } 7485 7486 RLI.Chain = LD->getChain(); 7487 RLI.MPI = LD->getPointerInfo(); 7488 RLI.IsDereferenceable = LD->isDereferenceable(); 7489 RLI.IsInvariant = LD->isInvariant(); 7490 RLI.Alignment = LD->getAlignment(); 7491 RLI.AAInfo = LD->getAAInfo(); 7492 RLI.Ranges = LD->getRanges(); 7493 7494 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7495 return true; 7496 } 7497 7498 // Given the head of the old chain, ResChain, insert a token factor containing 7499 // it and NewResChain, and make users of ResChain now be users of that token 7500 // factor. 7501 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7502 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7503 SDValue NewResChain, 7504 SelectionDAG &DAG) const { 7505 if (!ResChain) 7506 return; 7507 7508 SDLoc dl(NewResChain); 7509 7510 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7511 NewResChain, DAG.getUNDEF(MVT::Other)); 7512 assert(TF.getNode() != NewResChain.getNode() && 7513 "A new TF really is required here"); 7514 7515 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7516 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7517 } 7518 7519 /// Analyze profitability of direct move 7520 /// prefer float load to int load plus direct move 7521 /// when there is no integer use of int load 7522 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7523 SDNode *Origin = Op.getOperand(0).getNode(); 7524 if (Origin->getOpcode() != ISD::LOAD) 7525 return true; 7526 7527 // If there is no LXSIBZX/LXSIHZX, like Power8, 7528 // prefer direct move if the memory size is 1 or 2 bytes. 7529 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7530 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7531 return true; 7532 7533 for (SDNode::use_iterator UI = Origin->use_begin(), 7534 UE = Origin->use_end(); 7535 UI != UE; ++UI) { 7536 7537 // Only look at the users of the loaded value. 7538 if (UI.getUse().get().getResNo() != 0) 7539 continue; 7540 7541 if (UI->getOpcode() != ISD::SINT_TO_FP && 7542 UI->getOpcode() != ISD::UINT_TO_FP) 7543 return true; 7544 } 7545 7546 return false; 7547 } 7548 7549 /// Custom lowers integer to floating point conversions to use 7550 /// the direct move instructions available in ISA 2.07 to avoid the 7551 /// need for load/store combinations. 7552 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7553 SelectionDAG &DAG, 7554 const SDLoc &dl) const { 7555 assert((Op.getValueType() == MVT::f32 || 7556 Op.getValueType() == MVT::f64) && 7557 "Invalid floating point type as target of conversion"); 7558 assert(Subtarget.hasFPCVT() && 7559 "Int to FP conversions with direct moves require FPCVT"); 7560 SDValue FP; 7561 SDValue Src = Op.getOperand(0); 7562 bool SinglePrec = Op.getValueType() == MVT::f32; 7563 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7564 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7565 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7566 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7567 7568 if (WordInt) { 7569 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7570 dl, MVT::f64, Src); 7571 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7572 } 7573 else { 7574 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7575 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7576 } 7577 7578 return FP; 7579 } 7580 7581 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7582 7583 EVT VecVT = Vec.getValueType(); 7584 assert(VecVT.isVector() && "Expected a vector type."); 7585 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7586 7587 EVT EltVT = VecVT.getVectorElementType(); 7588 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7589 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7590 7591 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7592 SmallVector<SDValue, 16> Ops(NumConcat); 7593 Ops[0] = Vec; 7594 SDValue UndefVec = DAG.getUNDEF(VecVT); 7595 for (unsigned i = 1; i < NumConcat; ++i) 7596 Ops[i] = UndefVec; 7597 7598 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7599 } 7600 7601 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7602 const SDLoc &dl) const { 7603 7604 unsigned Opc = Op.getOpcode(); 7605 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7606 "Unexpected conversion type"); 7607 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7608 "Supports conversions to v2f64/v4f32 only."); 7609 7610 bool SignedConv = Opc == ISD::SINT_TO_FP; 7611 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7612 7613 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7614 EVT WideVT = Wide.getValueType(); 7615 unsigned WideNumElts = WideVT.getVectorNumElements(); 7616 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7617 7618 SmallVector<int, 16> ShuffV; 7619 for (unsigned i = 0; i < WideNumElts; ++i) 7620 ShuffV.push_back(i + WideNumElts); 7621 7622 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7623 int SaveElts = FourEltRes ? 4 : 2; 7624 if (Subtarget.isLittleEndian()) 7625 for (int i = 0; i < SaveElts; i++) 7626 ShuffV[i * Stride] = i; 7627 else 7628 for (int i = 1; i <= SaveElts; i++) 7629 ShuffV[i * Stride - 1] = i - 1; 7630 7631 SDValue ShuffleSrc2 = 7632 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7633 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7634 unsigned ExtendOp = 7635 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7636 7637 SDValue Extend; 7638 if (!Subtarget.hasP9Altivec() && SignedConv) { 7639 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7640 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7641 DAG.getValueType(Op.getOperand(0).getValueType())); 7642 } else 7643 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7644 7645 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7646 } 7647 7648 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7649 SelectionDAG &DAG) const { 7650 SDLoc dl(Op); 7651 7652 EVT InVT = Op.getOperand(0).getValueType(); 7653 EVT OutVT = Op.getValueType(); 7654 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7655 isOperationCustom(Op.getOpcode(), InVT)) 7656 return LowerINT_TO_FPVector(Op, DAG, dl); 7657 7658 // Conversions to f128 are legal. 7659 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7660 return Op; 7661 7662 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7663 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7664 return SDValue(); 7665 7666 SDValue Value = Op.getOperand(0); 7667 // The values are now known to be -1 (false) or 1 (true). To convert this 7668 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7669 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7670 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7671 7672 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7673 7674 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7675 7676 if (Op.getValueType() != MVT::v4f64) 7677 Value = DAG.getNode(ISD::FP_ROUND, dl, 7678 Op.getValueType(), Value, 7679 DAG.getIntPtrConstant(1, dl)); 7680 return Value; 7681 } 7682 7683 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7684 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7685 return SDValue(); 7686 7687 if (Op.getOperand(0).getValueType() == MVT::i1) 7688 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7689 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7690 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7691 7692 // If we have direct moves, we can do all the conversion, skip the store/load 7693 // however, without FPCVT we can't do most conversions. 7694 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7695 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7696 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7697 7698 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7699 "UINT_TO_FP is supported only with FPCVT"); 7700 7701 // If we have FCFIDS, then use it when converting to single-precision. 7702 // Otherwise, convert to double-precision and then round. 7703 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7704 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7705 : PPCISD::FCFIDS) 7706 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7707 : PPCISD::FCFID); 7708 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7709 ? MVT::f32 7710 : MVT::f64; 7711 7712 if (Op.getOperand(0).getValueType() == MVT::i64) { 7713 SDValue SINT = Op.getOperand(0); 7714 // When converting to single-precision, we actually need to convert 7715 // to double-precision first and then round to single-precision. 7716 // To avoid double-rounding effects during that operation, we have 7717 // to prepare the input operand. Bits that might be truncated when 7718 // converting to double-precision are replaced by a bit that won't 7719 // be lost at this stage, but is below the single-precision rounding 7720 // position. 7721 // 7722 // However, if -enable-unsafe-fp-math is in effect, accept double 7723 // rounding to avoid the extra overhead. 7724 if (Op.getValueType() == MVT::f32 && 7725 !Subtarget.hasFPCVT() && 7726 !DAG.getTarget().Options.UnsafeFPMath) { 7727 7728 // Twiddle input to make sure the low 11 bits are zero. (If this 7729 // is the case, we are guaranteed the value will fit into the 53 bit 7730 // mantissa of an IEEE double-precision value without rounding.) 7731 // If any of those low 11 bits were not zero originally, make sure 7732 // bit 12 (value 2048) is set instead, so that the final rounding 7733 // to single-precision gets the correct result. 7734 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7735 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7736 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7737 Round, DAG.getConstant(2047, dl, MVT::i64)); 7738 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7739 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7740 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7741 7742 // However, we cannot use that value unconditionally: if the magnitude 7743 // of the input value is small, the bit-twiddling we did above might 7744 // end up visibly changing the output. Fortunately, in that case, we 7745 // don't need to twiddle bits since the original input will convert 7746 // exactly to double-precision floating-point already. Therefore, 7747 // construct a conditional to use the original value if the top 11 7748 // bits are all sign-bit copies, and use the rounded value computed 7749 // above otherwise. 7750 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7751 SINT, DAG.getConstant(53, dl, MVT::i32)); 7752 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7753 Cond, DAG.getConstant(1, dl, MVT::i64)); 7754 Cond = DAG.getSetCC(dl, MVT::i32, 7755 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7756 7757 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7758 } 7759 7760 ReuseLoadInfo RLI; 7761 SDValue Bits; 7762 7763 MachineFunction &MF = DAG.getMachineFunction(); 7764 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7765 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7766 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7767 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7768 } else if (Subtarget.hasLFIWAX() && 7769 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7770 MachineMemOperand *MMO = 7771 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7772 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7773 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7774 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7775 DAG.getVTList(MVT::f64, MVT::Other), 7776 Ops, MVT::i32, MMO); 7777 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7778 } else if (Subtarget.hasFPCVT() && 7779 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7780 MachineMemOperand *MMO = 7781 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7782 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7783 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7784 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7785 DAG.getVTList(MVT::f64, MVT::Other), 7786 Ops, MVT::i32, MMO); 7787 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7788 } else if (((Subtarget.hasLFIWAX() && 7789 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7790 (Subtarget.hasFPCVT() && 7791 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7792 SINT.getOperand(0).getValueType() == MVT::i32) { 7793 MachineFrameInfo &MFI = MF.getFrameInfo(); 7794 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7795 7796 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7797 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7798 7799 SDValue Store = 7800 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7801 MachinePointerInfo::getFixedStack( 7802 DAG.getMachineFunction(), FrameIdx)); 7803 7804 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7805 "Expected an i32 store"); 7806 7807 RLI.Ptr = FIdx; 7808 RLI.Chain = Store; 7809 RLI.MPI = 7810 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7811 RLI.Alignment = 4; 7812 7813 MachineMemOperand *MMO = 7814 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7815 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7816 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7817 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7818 PPCISD::LFIWZX : PPCISD::LFIWAX, 7819 dl, DAG.getVTList(MVT::f64, MVT::Other), 7820 Ops, MVT::i32, MMO); 7821 } else 7822 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7823 7824 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7825 7826 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7827 FP = DAG.getNode(ISD::FP_ROUND, dl, 7828 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7829 return FP; 7830 } 7831 7832 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7833 "Unhandled INT_TO_FP type in custom expander!"); 7834 // Since we only generate this in 64-bit mode, we can take advantage of 7835 // 64-bit registers. In particular, sign extend the input value into the 7836 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7837 // then lfd it and fcfid it. 7838 MachineFunction &MF = DAG.getMachineFunction(); 7839 MachineFrameInfo &MFI = MF.getFrameInfo(); 7840 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7841 7842 SDValue Ld; 7843 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7844 ReuseLoadInfo RLI; 7845 bool ReusingLoad; 7846 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7847 DAG))) { 7848 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7849 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7850 7851 SDValue Store = 7852 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7853 MachinePointerInfo::getFixedStack( 7854 DAG.getMachineFunction(), FrameIdx)); 7855 7856 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7857 "Expected an i32 store"); 7858 7859 RLI.Ptr = FIdx; 7860 RLI.Chain = Store; 7861 RLI.MPI = 7862 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7863 RLI.Alignment = 4; 7864 } 7865 7866 MachineMemOperand *MMO = 7867 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7868 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7869 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7870 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7871 PPCISD::LFIWZX : PPCISD::LFIWAX, 7872 dl, DAG.getVTList(MVT::f64, MVT::Other), 7873 Ops, MVT::i32, MMO); 7874 if (ReusingLoad) 7875 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7876 } else { 7877 assert(Subtarget.isPPC64() && 7878 "i32->FP without LFIWAX supported only on PPC64"); 7879 7880 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7881 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7882 7883 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7884 Op.getOperand(0)); 7885 7886 // STD the extended value into the stack slot. 7887 SDValue Store = DAG.getStore( 7888 DAG.getEntryNode(), dl, Ext64, FIdx, 7889 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7890 7891 // Load the value as a double. 7892 Ld = DAG.getLoad( 7893 MVT::f64, dl, Store, FIdx, 7894 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7895 } 7896 7897 // FCFID it and return it. 7898 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7899 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7900 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7901 DAG.getIntPtrConstant(0, dl)); 7902 return FP; 7903 } 7904 7905 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7906 SelectionDAG &DAG) const { 7907 SDLoc dl(Op); 7908 /* 7909 The rounding mode is in bits 30:31 of FPSR, and has the following 7910 settings: 7911 00 Round to nearest 7912 01 Round to 0 7913 10 Round to +inf 7914 11 Round to -inf 7915 7916 FLT_ROUNDS, on the other hand, expects the following: 7917 -1 Undefined 7918 0 Round to 0 7919 1 Round to nearest 7920 2 Round to +inf 7921 3 Round to -inf 7922 7923 To perform the conversion, we do: 7924 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7925 */ 7926 7927 MachineFunction &MF = DAG.getMachineFunction(); 7928 EVT VT = Op.getValueType(); 7929 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7930 7931 // Save FP Control Word to register 7932 EVT NodeTys[] = { 7933 MVT::f64, // return register 7934 MVT::Glue // unused in this context 7935 }; 7936 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7937 7938 // Save FP register to stack slot 7939 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7940 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7941 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7942 MachinePointerInfo()); 7943 7944 // Load FP Control Word from low 32 bits of stack slot. 7945 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7946 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7947 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7948 7949 // Transform as necessary 7950 SDValue CWD1 = 7951 DAG.getNode(ISD::AND, dl, MVT::i32, 7952 CWD, DAG.getConstant(3, dl, MVT::i32)); 7953 SDValue CWD2 = 7954 DAG.getNode(ISD::SRL, dl, MVT::i32, 7955 DAG.getNode(ISD::AND, dl, MVT::i32, 7956 DAG.getNode(ISD::XOR, dl, MVT::i32, 7957 CWD, DAG.getConstant(3, dl, MVT::i32)), 7958 DAG.getConstant(3, dl, MVT::i32)), 7959 DAG.getConstant(1, dl, MVT::i32)); 7960 7961 SDValue RetVal = 7962 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7963 7964 return DAG.getNode((VT.getSizeInBits() < 16 ? 7965 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7966 } 7967 7968 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7969 EVT VT = Op.getValueType(); 7970 unsigned BitWidth = VT.getSizeInBits(); 7971 SDLoc dl(Op); 7972 assert(Op.getNumOperands() == 3 && 7973 VT == Op.getOperand(1).getValueType() && 7974 "Unexpected SHL!"); 7975 7976 // Expand into a bunch of logical ops. Note that these ops 7977 // depend on the PPC behavior for oversized shift amounts. 7978 SDValue Lo = Op.getOperand(0); 7979 SDValue Hi = Op.getOperand(1); 7980 SDValue Amt = Op.getOperand(2); 7981 EVT AmtVT = Amt.getValueType(); 7982 7983 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7984 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7985 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7986 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7987 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7988 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7989 DAG.getConstant(-BitWidth, dl, AmtVT)); 7990 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7991 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7992 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7993 SDValue OutOps[] = { OutLo, OutHi }; 7994 return DAG.getMergeValues(OutOps, dl); 7995 } 7996 7997 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7998 EVT VT = Op.getValueType(); 7999 SDLoc dl(Op); 8000 unsigned BitWidth = VT.getSizeInBits(); 8001 assert(Op.getNumOperands() == 3 && 8002 VT == Op.getOperand(1).getValueType() && 8003 "Unexpected SRL!"); 8004 8005 // Expand into a bunch of logical ops. Note that these ops 8006 // depend on the PPC behavior for oversized shift amounts. 8007 SDValue Lo = Op.getOperand(0); 8008 SDValue Hi = Op.getOperand(1); 8009 SDValue Amt = Op.getOperand(2); 8010 EVT AmtVT = Amt.getValueType(); 8011 8012 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8013 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8014 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8015 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8016 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8017 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8018 DAG.getConstant(-BitWidth, dl, AmtVT)); 8019 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8020 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8021 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8022 SDValue OutOps[] = { OutLo, OutHi }; 8023 return DAG.getMergeValues(OutOps, dl); 8024 } 8025 8026 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8027 SDLoc dl(Op); 8028 EVT VT = Op.getValueType(); 8029 unsigned BitWidth = VT.getSizeInBits(); 8030 assert(Op.getNumOperands() == 3 && 8031 VT == Op.getOperand(1).getValueType() && 8032 "Unexpected SRA!"); 8033 8034 // Expand into a bunch of logical ops, followed by a select_cc. 8035 SDValue Lo = Op.getOperand(0); 8036 SDValue Hi = Op.getOperand(1); 8037 SDValue Amt = Op.getOperand(2); 8038 EVT AmtVT = Amt.getValueType(); 8039 8040 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8041 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8042 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8043 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8044 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8045 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8046 DAG.getConstant(-BitWidth, dl, AmtVT)); 8047 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8048 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8049 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8050 Tmp4, Tmp6, ISD::SETLE); 8051 SDValue OutOps[] = { OutLo, OutHi }; 8052 return DAG.getMergeValues(OutOps, dl); 8053 } 8054 8055 //===----------------------------------------------------------------------===// 8056 // Vector related lowering. 8057 // 8058 8059 /// BuildSplatI - Build a canonical splati of Val with an element size of 8060 /// SplatSize. Cast the result to VT. 8061 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8062 SelectionDAG &DAG, const SDLoc &dl) { 8063 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 8064 8065 static const MVT VTys[] = { // canonical VT to use for each size. 8066 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8067 }; 8068 8069 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8070 8071 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8072 if (Val == -1) 8073 SplatSize = 1; 8074 8075 EVT CanonicalVT = VTys[SplatSize-1]; 8076 8077 // Build a canonical splat for this value. 8078 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8079 } 8080 8081 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8082 /// specified intrinsic ID. 8083 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8084 const SDLoc &dl, EVT DestVT = MVT::Other) { 8085 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8086 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8087 DAG.getConstant(IID, dl, MVT::i32), Op); 8088 } 8089 8090 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8091 /// specified intrinsic ID. 8092 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8093 SelectionDAG &DAG, const SDLoc &dl, 8094 EVT DestVT = MVT::Other) { 8095 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8096 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8097 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8098 } 8099 8100 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8101 /// specified intrinsic ID. 8102 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8103 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8104 EVT DestVT = MVT::Other) { 8105 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8106 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8107 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8108 } 8109 8110 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8111 /// amount. The result has the specified value type. 8112 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8113 SelectionDAG &DAG, const SDLoc &dl) { 8114 // Force LHS/RHS to be the right type. 8115 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8116 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8117 8118 int Ops[16]; 8119 for (unsigned i = 0; i != 16; ++i) 8120 Ops[i] = i + Amt; 8121 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8122 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8123 } 8124 8125 /// Do we have an efficient pattern in a .td file for this node? 8126 /// 8127 /// \param V - pointer to the BuildVectorSDNode being matched 8128 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8129 /// 8130 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8131 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8132 /// the opposite is true (expansion is beneficial) are: 8133 /// - The node builds a vector out of integers that are not 32 or 64-bits 8134 /// - The node builds a vector out of constants 8135 /// - The node is a "load-and-splat" 8136 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8137 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8138 bool HasDirectMove, 8139 bool HasP8Vector) { 8140 EVT VecVT = V->getValueType(0); 8141 bool RightType = VecVT == MVT::v2f64 || 8142 (HasP8Vector && VecVT == MVT::v4f32) || 8143 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8144 if (!RightType) 8145 return false; 8146 8147 bool IsSplat = true; 8148 bool IsLoad = false; 8149 SDValue Op0 = V->getOperand(0); 8150 8151 // This function is called in a block that confirms the node is not a constant 8152 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8153 // different constants. 8154 if (V->isConstant()) 8155 return false; 8156 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8157 if (V->getOperand(i).isUndef()) 8158 return false; 8159 // We want to expand nodes that represent load-and-splat even if the 8160 // loaded value is a floating point truncation or conversion to int. 8161 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8162 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8163 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8164 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8165 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8166 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8167 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8168 IsLoad = true; 8169 // If the operands are different or the input is not a load and has more 8170 // uses than just this BV node, then it isn't a splat. 8171 if (V->getOperand(i) != Op0 || 8172 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8173 IsSplat = false; 8174 } 8175 return !(IsSplat && IsLoad); 8176 } 8177 8178 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8179 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8180 8181 SDLoc dl(Op); 8182 SDValue Op0 = Op->getOperand(0); 8183 8184 if (!EnableQuadPrecision || 8185 (Op.getValueType() != MVT::f128 ) || 8186 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8187 (Op0.getOperand(0).getValueType() != MVT::i64) || 8188 (Op0.getOperand(1).getValueType() != MVT::i64)) 8189 return SDValue(); 8190 8191 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8192 Op0.getOperand(1)); 8193 } 8194 8195 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8196 const SDValue *InputLoad = &Op; 8197 if (InputLoad->getOpcode() == ISD::BITCAST) 8198 InputLoad = &InputLoad->getOperand(0); 8199 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8200 InputLoad = &InputLoad->getOperand(0); 8201 if (InputLoad->getOpcode() != ISD::LOAD) 8202 return nullptr; 8203 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8204 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8205 } 8206 8207 // If this is a case we can't handle, return null and let the default 8208 // expansion code take care of it. If we CAN select this case, and if it 8209 // selects to a single instruction, return Op. Otherwise, if we can codegen 8210 // this case more efficiently than a constant pool load, lower it to the 8211 // sequence of ops that should be used. 8212 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8213 SelectionDAG &DAG) const { 8214 SDLoc dl(Op); 8215 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8216 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8217 8218 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8219 // We first build an i32 vector, load it into a QPX register, 8220 // then convert it to a floating-point vector and compare it 8221 // to a zero vector to get the boolean result. 8222 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8223 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8224 MachinePointerInfo PtrInfo = 8225 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8226 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8227 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8228 8229 assert(BVN->getNumOperands() == 4 && 8230 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8231 8232 bool IsConst = true; 8233 for (unsigned i = 0; i < 4; ++i) { 8234 if (BVN->getOperand(i).isUndef()) continue; 8235 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8236 IsConst = false; 8237 break; 8238 } 8239 } 8240 8241 if (IsConst) { 8242 Constant *One = 8243 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8244 Constant *NegOne = 8245 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8246 8247 Constant *CV[4]; 8248 for (unsigned i = 0; i < 4; ++i) { 8249 if (BVN->getOperand(i).isUndef()) 8250 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8251 else if (isNullConstant(BVN->getOperand(i))) 8252 CV[i] = NegOne; 8253 else 8254 CV[i] = One; 8255 } 8256 8257 Constant *CP = ConstantVector::get(CV); 8258 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8259 16 /* alignment */); 8260 8261 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8262 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8263 return DAG.getMemIntrinsicNode( 8264 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8265 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8266 } 8267 8268 SmallVector<SDValue, 4> Stores; 8269 for (unsigned i = 0; i < 4; ++i) { 8270 if (BVN->getOperand(i).isUndef()) continue; 8271 8272 unsigned Offset = 4*i; 8273 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8274 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8275 8276 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8277 if (StoreSize > 4) { 8278 Stores.push_back( 8279 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8280 PtrInfo.getWithOffset(Offset), MVT::i32)); 8281 } else { 8282 SDValue StoreValue = BVN->getOperand(i); 8283 if (StoreSize < 4) 8284 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8285 8286 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8287 PtrInfo.getWithOffset(Offset))); 8288 } 8289 } 8290 8291 SDValue StoreChain; 8292 if (!Stores.empty()) 8293 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8294 else 8295 StoreChain = DAG.getEntryNode(); 8296 8297 // Now load from v4i32 into the QPX register; this will extend it to 8298 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8299 // is typed as v4f64 because the QPX register integer states are not 8300 // explicitly represented. 8301 8302 SDValue Ops[] = {StoreChain, 8303 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8304 FIdx}; 8305 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8306 8307 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8308 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8309 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8310 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8311 LoadedVect); 8312 8313 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8314 8315 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8316 } 8317 8318 // All other QPX vectors are handled by generic code. 8319 if (Subtarget.hasQPX()) 8320 return SDValue(); 8321 8322 // Check if this is a splat of a constant value. 8323 APInt APSplatBits, APSplatUndef; 8324 unsigned SplatBitSize; 8325 bool HasAnyUndefs; 8326 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8327 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8328 SplatBitSize > 32) { 8329 8330 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8331 // Handle load-and-splat patterns as we have instructions that will do this 8332 // in one go. 8333 if (InputLoad && DAG.isSplatValue(Op, true)) { 8334 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8335 8336 // We have handling for 4 and 8 byte elements. 8337 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8338 8339 // Checking for a single use of this load, we have to check for vector 8340 // width (128 bits) / ElementSize uses (since each operand of the 8341 // BUILD_VECTOR is a separate use of the value. 8342 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8343 ((Subtarget.hasVSX() && ElementSize == 64) || 8344 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8345 SDValue Ops[] = { 8346 LD->getChain(), // Chain 8347 LD->getBasePtr(), // Ptr 8348 DAG.getValueType(Op.getValueType()) // VT 8349 }; 8350 return 8351 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8352 DAG.getVTList(Op.getValueType(), MVT::Other), 8353 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8354 } 8355 } 8356 8357 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8358 // lowered to VSX instructions under certain conditions. 8359 // Without VSX, there is no pattern more efficient than expanding the node. 8360 if (Subtarget.hasVSX() && 8361 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8362 Subtarget.hasP8Vector())) 8363 return Op; 8364 return SDValue(); 8365 } 8366 8367 unsigned SplatBits = APSplatBits.getZExtValue(); 8368 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8369 unsigned SplatSize = SplatBitSize / 8; 8370 8371 // First, handle single instruction cases. 8372 8373 // All zeros? 8374 if (SplatBits == 0) { 8375 // Canonicalize all zero vectors to be v4i32. 8376 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8377 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8378 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8379 } 8380 return Op; 8381 } 8382 8383 // We have XXSPLTIB for constant splats one byte wide 8384 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8385 // This is a splat of 1-byte elements with some elements potentially undef. 8386 // Rather than trying to match undef in the SDAG patterns, ensure that all 8387 // elements are the same constant. 8388 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8389 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8390 dl, MVT::i32)); 8391 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8392 if (Op.getValueType() != MVT::v16i8) 8393 return DAG.getBitcast(Op.getValueType(), NewBV); 8394 return NewBV; 8395 } 8396 8397 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8398 // detect that constant splats like v8i16: 0xABAB are really just splats 8399 // of a 1-byte constant. In this case, we need to convert the node to a 8400 // splat of v16i8 and a bitcast. 8401 if (Op.getValueType() != MVT::v16i8) 8402 return DAG.getBitcast(Op.getValueType(), 8403 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8404 8405 return Op; 8406 } 8407 8408 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8409 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8410 (32-SplatBitSize)); 8411 if (SextVal >= -16 && SextVal <= 15) 8412 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8413 8414 // Two instruction sequences. 8415 8416 // If this value is in the range [-32,30] and is even, use: 8417 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8418 // If this value is in the range [17,31] and is odd, use: 8419 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8420 // If this value is in the range [-31,-17] and is odd, use: 8421 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8422 // Note the last two are three-instruction sequences. 8423 if (SextVal >= -32 && SextVal <= 31) { 8424 // To avoid having these optimizations undone by constant folding, 8425 // we convert to a pseudo that will be expanded later into one of 8426 // the above forms. 8427 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8428 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8429 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8430 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8431 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8432 if (VT == Op.getValueType()) 8433 return RetVal; 8434 else 8435 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8436 } 8437 8438 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8439 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8440 // for fneg/fabs. 8441 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8442 // Make -1 and vspltisw -1: 8443 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8444 8445 // Make the VSLW intrinsic, computing 0x8000_0000. 8446 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8447 OnesV, DAG, dl); 8448 8449 // xor by OnesV to invert it. 8450 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8451 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8452 } 8453 8454 // Check to see if this is a wide variety of vsplti*, binop self cases. 8455 static const signed char SplatCsts[] = { 8456 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8457 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8458 }; 8459 8460 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8461 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8462 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8463 int i = SplatCsts[idx]; 8464 8465 // Figure out what shift amount will be used by altivec if shifted by i in 8466 // this splat size. 8467 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8468 8469 // vsplti + shl self. 8470 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8471 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8472 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8473 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8474 Intrinsic::ppc_altivec_vslw 8475 }; 8476 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8477 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8478 } 8479 8480 // vsplti + srl self. 8481 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8482 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8483 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8484 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8485 Intrinsic::ppc_altivec_vsrw 8486 }; 8487 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8488 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8489 } 8490 8491 // vsplti + sra self. 8492 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8493 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8494 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8495 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8496 Intrinsic::ppc_altivec_vsraw 8497 }; 8498 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8499 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8500 } 8501 8502 // vsplti + rol self. 8503 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8504 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8505 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8506 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8507 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8508 Intrinsic::ppc_altivec_vrlw 8509 }; 8510 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8511 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8512 } 8513 8514 // t = vsplti c, result = vsldoi t, t, 1 8515 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8516 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8517 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8518 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8519 } 8520 // t = vsplti c, result = vsldoi t, t, 2 8521 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8522 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8523 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8524 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8525 } 8526 // t = vsplti c, result = vsldoi t, t, 3 8527 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8528 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8529 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8530 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8531 } 8532 } 8533 8534 return SDValue(); 8535 } 8536 8537 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8538 /// the specified operations to build the shuffle. 8539 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8540 SDValue RHS, SelectionDAG &DAG, 8541 const SDLoc &dl) { 8542 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8543 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8544 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8545 8546 enum { 8547 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8548 OP_VMRGHW, 8549 OP_VMRGLW, 8550 OP_VSPLTISW0, 8551 OP_VSPLTISW1, 8552 OP_VSPLTISW2, 8553 OP_VSPLTISW3, 8554 OP_VSLDOI4, 8555 OP_VSLDOI8, 8556 OP_VSLDOI12 8557 }; 8558 8559 if (OpNum == OP_COPY) { 8560 if (LHSID == (1*9+2)*9+3) return LHS; 8561 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8562 return RHS; 8563 } 8564 8565 SDValue OpLHS, OpRHS; 8566 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8567 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8568 8569 int ShufIdxs[16]; 8570 switch (OpNum) { 8571 default: llvm_unreachable("Unknown i32 permute!"); 8572 case OP_VMRGHW: 8573 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8574 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8575 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8576 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8577 break; 8578 case OP_VMRGLW: 8579 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8580 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8581 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8582 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8583 break; 8584 case OP_VSPLTISW0: 8585 for (unsigned i = 0; i != 16; ++i) 8586 ShufIdxs[i] = (i&3)+0; 8587 break; 8588 case OP_VSPLTISW1: 8589 for (unsigned i = 0; i != 16; ++i) 8590 ShufIdxs[i] = (i&3)+4; 8591 break; 8592 case OP_VSPLTISW2: 8593 for (unsigned i = 0; i != 16; ++i) 8594 ShufIdxs[i] = (i&3)+8; 8595 break; 8596 case OP_VSPLTISW3: 8597 for (unsigned i = 0; i != 16; ++i) 8598 ShufIdxs[i] = (i&3)+12; 8599 break; 8600 case OP_VSLDOI4: 8601 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8602 case OP_VSLDOI8: 8603 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8604 case OP_VSLDOI12: 8605 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8606 } 8607 EVT VT = OpLHS.getValueType(); 8608 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8609 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8610 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8611 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8612 } 8613 8614 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8615 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8616 /// SDValue. 8617 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8618 SelectionDAG &DAG) const { 8619 const unsigned BytesInVector = 16; 8620 bool IsLE = Subtarget.isLittleEndian(); 8621 SDLoc dl(N); 8622 SDValue V1 = N->getOperand(0); 8623 SDValue V2 = N->getOperand(1); 8624 unsigned ShiftElts = 0, InsertAtByte = 0; 8625 bool Swap = false; 8626 8627 // Shifts required to get the byte we want at element 7. 8628 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8629 0, 15, 14, 13, 12, 11, 10, 9}; 8630 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8631 1, 2, 3, 4, 5, 6, 7, 8}; 8632 8633 ArrayRef<int> Mask = N->getMask(); 8634 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8635 8636 // For each mask element, find out if we're just inserting something 8637 // from V2 into V1 or vice versa. 8638 // Possible permutations inserting an element from V2 into V1: 8639 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8640 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8641 // ... 8642 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8643 // Inserting from V1 into V2 will be similar, except mask range will be 8644 // [16,31]. 8645 8646 bool FoundCandidate = false; 8647 // If both vector operands for the shuffle are the same vector, the mask 8648 // will contain only elements from the first one and the second one will be 8649 // undef. 8650 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8651 // Go through the mask of half-words to find an element that's being moved 8652 // from one vector to the other. 8653 for (unsigned i = 0; i < BytesInVector; ++i) { 8654 unsigned CurrentElement = Mask[i]; 8655 // If 2nd operand is undefined, we should only look for element 7 in the 8656 // Mask. 8657 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8658 continue; 8659 8660 bool OtherElementsInOrder = true; 8661 // Examine the other elements in the Mask to see if they're in original 8662 // order. 8663 for (unsigned j = 0; j < BytesInVector; ++j) { 8664 if (j == i) 8665 continue; 8666 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8667 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8668 // in which we always assume we're always picking from the 1st operand. 8669 int MaskOffset = 8670 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8671 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8672 OtherElementsInOrder = false; 8673 break; 8674 } 8675 } 8676 // If other elements are in original order, we record the number of shifts 8677 // we need to get the element we want into element 7. Also record which byte 8678 // in the vector we should insert into. 8679 if (OtherElementsInOrder) { 8680 // If 2nd operand is undefined, we assume no shifts and no swapping. 8681 if (V2.isUndef()) { 8682 ShiftElts = 0; 8683 Swap = false; 8684 } else { 8685 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8686 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8687 : BigEndianShifts[CurrentElement & 0xF]; 8688 Swap = CurrentElement < BytesInVector; 8689 } 8690 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8691 FoundCandidate = true; 8692 break; 8693 } 8694 } 8695 8696 if (!FoundCandidate) 8697 return SDValue(); 8698 8699 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8700 // optionally with VECSHL if shift is required. 8701 if (Swap) 8702 std::swap(V1, V2); 8703 if (V2.isUndef()) 8704 V2 = V1; 8705 if (ShiftElts) { 8706 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8707 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8708 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8709 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8710 } 8711 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8712 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8713 } 8714 8715 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8716 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8717 /// SDValue. 8718 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8719 SelectionDAG &DAG) const { 8720 const unsigned NumHalfWords = 8; 8721 const unsigned BytesInVector = NumHalfWords * 2; 8722 // Check that the shuffle is on half-words. 8723 if (!isNByteElemShuffleMask(N, 2, 1)) 8724 return SDValue(); 8725 8726 bool IsLE = Subtarget.isLittleEndian(); 8727 SDLoc dl(N); 8728 SDValue V1 = N->getOperand(0); 8729 SDValue V2 = N->getOperand(1); 8730 unsigned ShiftElts = 0, InsertAtByte = 0; 8731 bool Swap = false; 8732 8733 // Shifts required to get the half-word we want at element 3. 8734 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8735 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8736 8737 uint32_t Mask = 0; 8738 uint32_t OriginalOrderLow = 0x1234567; 8739 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8740 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8741 // 32-bit space, only need 4-bit nibbles per element. 8742 for (unsigned i = 0; i < NumHalfWords; ++i) { 8743 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8744 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8745 } 8746 8747 // For each mask element, find out if we're just inserting something 8748 // from V2 into V1 or vice versa. Possible permutations inserting an element 8749 // from V2 into V1: 8750 // X, 1, 2, 3, 4, 5, 6, 7 8751 // 0, X, 2, 3, 4, 5, 6, 7 8752 // 0, 1, X, 3, 4, 5, 6, 7 8753 // 0, 1, 2, X, 4, 5, 6, 7 8754 // 0, 1, 2, 3, X, 5, 6, 7 8755 // 0, 1, 2, 3, 4, X, 6, 7 8756 // 0, 1, 2, 3, 4, 5, X, 7 8757 // 0, 1, 2, 3, 4, 5, 6, X 8758 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8759 8760 bool FoundCandidate = false; 8761 // Go through the mask of half-words to find an element that's being moved 8762 // from one vector to the other. 8763 for (unsigned i = 0; i < NumHalfWords; ++i) { 8764 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8765 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8766 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8767 uint32_t TargetOrder = 0x0; 8768 8769 // If both vector operands for the shuffle are the same vector, the mask 8770 // will contain only elements from the first one and the second one will be 8771 // undef. 8772 if (V2.isUndef()) { 8773 ShiftElts = 0; 8774 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8775 TargetOrder = OriginalOrderLow; 8776 Swap = false; 8777 // Skip if not the correct element or mask of other elements don't equal 8778 // to our expected order. 8779 if (MaskOneElt == VINSERTHSrcElem && 8780 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8781 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8782 FoundCandidate = true; 8783 break; 8784 } 8785 } else { // If both operands are defined. 8786 // Target order is [8,15] if the current mask is between [0,7]. 8787 TargetOrder = 8788 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8789 // Skip if mask of other elements don't equal our expected order. 8790 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8791 // We only need the last 3 bits for the number of shifts. 8792 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8793 : BigEndianShifts[MaskOneElt & 0x7]; 8794 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8795 Swap = MaskOneElt < NumHalfWords; 8796 FoundCandidate = true; 8797 break; 8798 } 8799 } 8800 } 8801 8802 if (!FoundCandidate) 8803 return SDValue(); 8804 8805 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8806 // optionally with VECSHL if shift is required. 8807 if (Swap) 8808 std::swap(V1, V2); 8809 if (V2.isUndef()) 8810 V2 = V1; 8811 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8812 if (ShiftElts) { 8813 // Double ShiftElts because we're left shifting on v16i8 type. 8814 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8815 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8816 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8817 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8818 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8819 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8820 } 8821 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8822 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8823 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8824 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8825 } 8826 8827 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8828 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8829 /// return the code it can be lowered into. Worst case, it can always be 8830 /// lowered into a vperm. 8831 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8832 SelectionDAG &DAG) const { 8833 SDLoc dl(Op); 8834 SDValue V1 = Op.getOperand(0); 8835 SDValue V2 = Op.getOperand(1); 8836 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8837 EVT VT = Op.getValueType(); 8838 bool isLittleEndian = Subtarget.isLittleEndian(); 8839 8840 unsigned ShiftElts, InsertAtByte; 8841 bool Swap = false; 8842 8843 // If this is a load-and-splat, we can do that with a single instruction 8844 // in some cases. However if the load has multiple uses, we don't want to 8845 // combine it because that will just produce multiple loads. 8846 const SDValue *InputLoad = getNormalLoadInput(V1); 8847 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 8848 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 8849 InputLoad->hasOneUse()) { 8850 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 8851 int SplatIdx = 8852 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 8853 8854 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8855 // For 4-byte load-and-splat, we need Power9. 8856 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 8857 uint64_t Offset = 0; 8858 if (IsFourByte) 8859 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 8860 else 8861 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 8862 SDValue BasePtr = LD->getBasePtr(); 8863 if (Offset != 0) 8864 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 8865 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 8866 SDValue Ops[] = { 8867 LD->getChain(), // Chain 8868 BasePtr, // BasePtr 8869 DAG.getValueType(Op.getValueType()) // VT 8870 }; 8871 SDVTList VTL = 8872 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 8873 SDValue LdSplt = 8874 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 8875 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8876 if (LdSplt.getValueType() != SVOp->getValueType(0)) 8877 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 8878 return LdSplt; 8879 } 8880 } 8881 if (Subtarget.hasP9Vector() && 8882 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8883 isLittleEndian)) { 8884 if (Swap) 8885 std::swap(V1, V2); 8886 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8887 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8888 if (ShiftElts) { 8889 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8890 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8891 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8892 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8893 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8894 } 8895 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8896 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8897 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8898 } 8899 8900 if (Subtarget.hasP9Altivec()) { 8901 SDValue NewISDNode; 8902 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8903 return NewISDNode; 8904 8905 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8906 return NewISDNode; 8907 } 8908 8909 if (Subtarget.hasVSX() && 8910 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8911 if (Swap) 8912 std::swap(V1, V2); 8913 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8914 SDValue Conv2 = 8915 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8916 8917 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8918 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8919 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8920 } 8921 8922 if (Subtarget.hasVSX() && 8923 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8924 if (Swap) 8925 std::swap(V1, V2); 8926 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8927 SDValue Conv2 = 8928 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8929 8930 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8931 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8932 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8933 } 8934 8935 if (Subtarget.hasP9Vector()) { 8936 if (PPC::isXXBRHShuffleMask(SVOp)) { 8937 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8938 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8939 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8940 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8941 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8942 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8943 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8944 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8945 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8946 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8947 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8948 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8949 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8950 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8951 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8952 } 8953 } 8954 8955 if (Subtarget.hasVSX()) { 8956 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8957 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 8958 8959 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8960 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8961 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8962 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8963 } 8964 8965 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8966 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8967 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8968 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8969 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8970 } 8971 } 8972 8973 if (Subtarget.hasQPX()) { 8974 if (VT.getVectorNumElements() != 4) 8975 return SDValue(); 8976 8977 if (V2.isUndef()) V2 = V1; 8978 8979 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8980 if (AlignIdx != -1) { 8981 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8982 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8983 } else if (SVOp->isSplat()) { 8984 int SplatIdx = SVOp->getSplatIndex(); 8985 if (SplatIdx >= 4) { 8986 std::swap(V1, V2); 8987 SplatIdx -= 4; 8988 } 8989 8990 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8991 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8992 } 8993 8994 // Lower this into a qvgpci/qvfperm pair. 8995 8996 // Compute the qvgpci literal 8997 unsigned idx = 0; 8998 for (unsigned i = 0; i < 4; ++i) { 8999 int m = SVOp->getMaskElt(i); 9000 unsigned mm = m >= 0 ? (unsigned) m : i; 9001 idx |= mm << (3-i)*3; 9002 } 9003 9004 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9005 DAG.getConstant(idx, dl, MVT::i32)); 9006 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9007 } 9008 9009 // Cases that are handled by instructions that take permute immediates 9010 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9011 // selected by the instruction selector. 9012 if (V2.isUndef()) { 9013 if (PPC::isSplatShuffleMask(SVOp, 1) || 9014 PPC::isSplatShuffleMask(SVOp, 2) || 9015 PPC::isSplatShuffleMask(SVOp, 4) || 9016 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9017 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9018 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9019 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9020 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9021 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9022 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9023 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9024 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9025 (Subtarget.hasP8Altivec() && ( 9026 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9027 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9028 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9029 return Op; 9030 } 9031 } 9032 9033 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9034 // and produce a fixed permutation. If any of these match, do not lower to 9035 // VPERM. 9036 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9037 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9038 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9039 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9040 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9041 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9042 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9043 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9044 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9045 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9046 (Subtarget.hasP8Altivec() && ( 9047 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9048 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9049 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9050 return Op; 9051 9052 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9053 // perfect shuffle table to emit an optimal matching sequence. 9054 ArrayRef<int> PermMask = SVOp->getMask(); 9055 9056 unsigned PFIndexes[4]; 9057 bool isFourElementShuffle = true; 9058 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9059 unsigned EltNo = 8; // Start out undef. 9060 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9061 if (PermMask[i*4+j] < 0) 9062 continue; // Undef, ignore it. 9063 9064 unsigned ByteSource = PermMask[i*4+j]; 9065 if ((ByteSource & 3) != j) { 9066 isFourElementShuffle = false; 9067 break; 9068 } 9069 9070 if (EltNo == 8) { 9071 EltNo = ByteSource/4; 9072 } else if (EltNo != ByteSource/4) { 9073 isFourElementShuffle = false; 9074 break; 9075 } 9076 } 9077 PFIndexes[i] = EltNo; 9078 } 9079 9080 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9081 // perfect shuffle vector to determine if it is cost effective to do this as 9082 // discrete instructions, or whether we should use a vperm. 9083 // For now, we skip this for little endian until such time as we have a 9084 // little-endian perfect shuffle table. 9085 if (isFourElementShuffle && !isLittleEndian) { 9086 // Compute the index in the perfect shuffle table. 9087 unsigned PFTableIndex = 9088 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9089 9090 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9091 unsigned Cost = (PFEntry >> 30); 9092 9093 // Determining when to avoid vperm is tricky. Many things affect the cost 9094 // of vperm, particularly how many times the perm mask needs to be computed. 9095 // For example, if the perm mask can be hoisted out of a loop or is already 9096 // used (perhaps because there are multiple permutes with the same shuffle 9097 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9098 // the loop requires an extra register. 9099 // 9100 // As a compromise, we only emit discrete instructions if the shuffle can be 9101 // generated in 3 or fewer operations. When we have loop information 9102 // available, if this block is within a loop, we should avoid using vperm 9103 // for 3-operation perms and use a constant pool load instead. 9104 if (Cost < 3) 9105 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9106 } 9107 9108 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9109 // vector that will get spilled to the constant pool. 9110 if (V2.isUndef()) V2 = V1; 9111 9112 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9113 // that it is in input element units, not in bytes. Convert now. 9114 9115 // For little endian, the order of the input vectors is reversed, and 9116 // the permutation mask is complemented with respect to 31. This is 9117 // necessary to produce proper semantics with the big-endian-biased vperm 9118 // instruction. 9119 EVT EltVT = V1.getValueType().getVectorElementType(); 9120 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9121 9122 SmallVector<SDValue, 16> ResultMask; 9123 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9124 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9125 9126 for (unsigned j = 0; j != BytesPerElement; ++j) 9127 if (isLittleEndian) 9128 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9129 dl, MVT::i32)); 9130 else 9131 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9132 MVT::i32)); 9133 } 9134 9135 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9136 if (isLittleEndian) 9137 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9138 V2, V1, VPermMask); 9139 else 9140 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9141 V1, V2, VPermMask); 9142 } 9143 9144 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9145 /// vector comparison. If it is, return true and fill in Opc/isDot with 9146 /// information about the intrinsic. 9147 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9148 bool &isDot, const PPCSubtarget &Subtarget) { 9149 unsigned IntrinsicID = 9150 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9151 CompareOpc = -1; 9152 isDot = false; 9153 switch (IntrinsicID) { 9154 default: 9155 return false; 9156 // Comparison predicates. 9157 case Intrinsic::ppc_altivec_vcmpbfp_p: 9158 CompareOpc = 966; 9159 isDot = true; 9160 break; 9161 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9162 CompareOpc = 198; 9163 isDot = true; 9164 break; 9165 case Intrinsic::ppc_altivec_vcmpequb_p: 9166 CompareOpc = 6; 9167 isDot = true; 9168 break; 9169 case Intrinsic::ppc_altivec_vcmpequh_p: 9170 CompareOpc = 70; 9171 isDot = true; 9172 break; 9173 case Intrinsic::ppc_altivec_vcmpequw_p: 9174 CompareOpc = 134; 9175 isDot = true; 9176 break; 9177 case Intrinsic::ppc_altivec_vcmpequd_p: 9178 if (Subtarget.hasP8Altivec()) { 9179 CompareOpc = 199; 9180 isDot = true; 9181 } else 9182 return false; 9183 break; 9184 case Intrinsic::ppc_altivec_vcmpneb_p: 9185 case Intrinsic::ppc_altivec_vcmpneh_p: 9186 case Intrinsic::ppc_altivec_vcmpnew_p: 9187 case Intrinsic::ppc_altivec_vcmpnezb_p: 9188 case Intrinsic::ppc_altivec_vcmpnezh_p: 9189 case Intrinsic::ppc_altivec_vcmpnezw_p: 9190 if (Subtarget.hasP9Altivec()) { 9191 switch (IntrinsicID) { 9192 default: 9193 llvm_unreachable("Unknown comparison intrinsic."); 9194 case Intrinsic::ppc_altivec_vcmpneb_p: 9195 CompareOpc = 7; 9196 break; 9197 case Intrinsic::ppc_altivec_vcmpneh_p: 9198 CompareOpc = 71; 9199 break; 9200 case Intrinsic::ppc_altivec_vcmpnew_p: 9201 CompareOpc = 135; 9202 break; 9203 case Intrinsic::ppc_altivec_vcmpnezb_p: 9204 CompareOpc = 263; 9205 break; 9206 case Intrinsic::ppc_altivec_vcmpnezh_p: 9207 CompareOpc = 327; 9208 break; 9209 case Intrinsic::ppc_altivec_vcmpnezw_p: 9210 CompareOpc = 391; 9211 break; 9212 } 9213 isDot = true; 9214 } else 9215 return false; 9216 break; 9217 case Intrinsic::ppc_altivec_vcmpgefp_p: 9218 CompareOpc = 454; 9219 isDot = true; 9220 break; 9221 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9222 CompareOpc = 710; 9223 isDot = true; 9224 break; 9225 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9226 CompareOpc = 774; 9227 isDot = true; 9228 break; 9229 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9230 CompareOpc = 838; 9231 isDot = true; 9232 break; 9233 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9234 CompareOpc = 902; 9235 isDot = true; 9236 break; 9237 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9238 if (Subtarget.hasP8Altivec()) { 9239 CompareOpc = 967; 9240 isDot = true; 9241 } else 9242 return false; 9243 break; 9244 case Intrinsic::ppc_altivec_vcmpgtub_p: 9245 CompareOpc = 518; 9246 isDot = true; 9247 break; 9248 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9249 CompareOpc = 582; 9250 isDot = true; 9251 break; 9252 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9253 CompareOpc = 646; 9254 isDot = true; 9255 break; 9256 case Intrinsic::ppc_altivec_vcmpgtud_p: 9257 if (Subtarget.hasP8Altivec()) { 9258 CompareOpc = 711; 9259 isDot = true; 9260 } else 9261 return false; 9262 break; 9263 9264 // VSX predicate comparisons use the same infrastructure 9265 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9266 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9267 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9268 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9269 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9270 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9271 if (Subtarget.hasVSX()) { 9272 switch (IntrinsicID) { 9273 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9274 CompareOpc = 99; 9275 break; 9276 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9277 CompareOpc = 115; 9278 break; 9279 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9280 CompareOpc = 107; 9281 break; 9282 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9283 CompareOpc = 67; 9284 break; 9285 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9286 CompareOpc = 83; 9287 break; 9288 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9289 CompareOpc = 75; 9290 break; 9291 } 9292 isDot = true; 9293 } else 9294 return false; 9295 break; 9296 9297 // Normal Comparisons. 9298 case Intrinsic::ppc_altivec_vcmpbfp: 9299 CompareOpc = 966; 9300 break; 9301 case Intrinsic::ppc_altivec_vcmpeqfp: 9302 CompareOpc = 198; 9303 break; 9304 case Intrinsic::ppc_altivec_vcmpequb: 9305 CompareOpc = 6; 9306 break; 9307 case Intrinsic::ppc_altivec_vcmpequh: 9308 CompareOpc = 70; 9309 break; 9310 case Intrinsic::ppc_altivec_vcmpequw: 9311 CompareOpc = 134; 9312 break; 9313 case Intrinsic::ppc_altivec_vcmpequd: 9314 if (Subtarget.hasP8Altivec()) 9315 CompareOpc = 199; 9316 else 9317 return false; 9318 break; 9319 case Intrinsic::ppc_altivec_vcmpneb: 9320 case Intrinsic::ppc_altivec_vcmpneh: 9321 case Intrinsic::ppc_altivec_vcmpnew: 9322 case Intrinsic::ppc_altivec_vcmpnezb: 9323 case Intrinsic::ppc_altivec_vcmpnezh: 9324 case Intrinsic::ppc_altivec_vcmpnezw: 9325 if (Subtarget.hasP9Altivec()) 9326 switch (IntrinsicID) { 9327 default: 9328 llvm_unreachable("Unknown comparison intrinsic."); 9329 case Intrinsic::ppc_altivec_vcmpneb: 9330 CompareOpc = 7; 9331 break; 9332 case Intrinsic::ppc_altivec_vcmpneh: 9333 CompareOpc = 71; 9334 break; 9335 case Intrinsic::ppc_altivec_vcmpnew: 9336 CompareOpc = 135; 9337 break; 9338 case Intrinsic::ppc_altivec_vcmpnezb: 9339 CompareOpc = 263; 9340 break; 9341 case Intrinsic::ppc_altivec_vcmpnezh: 9342 CompareOpc = 327; 9343 break; 9344 case Intrinsic::ppc_altivec_vcmpnezw: 9345 CompareOpc = 391; 9346 break; 9347 } 9348 else 9349 return false; 9350 break; 9351 case Intrinsic::ppc_altivec_vcmpgefp: 9352 CompareOpc = 454; 9353 break; 9354 case Intrinsic::ppc_altivec_vcmpgtfp: 9355 CompareOpc = 710; 9356 break; 9357 case Intrinsic::ppc_altivec_vcmpgtsb: 9358 CompareOpc = 774; 9359 break; 9360 case Intrinsic::ppc_altivec_vcmpgtsh: 9361 CompareOpc = 838; 9362 break; 9363 case Intrinsic::ppc_altivec_vcmpgtsw: 9364 CompareOpc = 902; 9365 break; 9366 case Intrinsic::ppc_altivec_vcmpgtsd: 9367 if (Subtarget.hasP8Altivec()) 9368 CompareOpc = 967; 9369 else 9370 return false; 9371 break; 9372 case Intrinsic::ppc_altivec_vcmpgtub: 9373 CompareOpc = 518; 9374 break; 9375 case Intrinsic::ppc_altivec_vcmpgtuh: 9376 CompareOpc = 582; 9377 break; 9378 case Intrinsic::ppc_altivec_vcmpgtuw: 9379 CompareOpc = 646; 9380 break; 9381 case Intrinsic::ppc_altivec_vcmpgtud: 9382 if (Subtarget.hasP8Altivec()) 9383 CompareOpc = 711; 9384 else 9385 return false; 9386 break; 9387 } 9388 return true; 9389 } 9390 9391 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9392 /// lower, do it, otherwise return null. 9393 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9394 SelectionDAG &DAG) const { 9395 unsigned IntrinsicID = 9396 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9397 9398 SDLoc dl(Op); 9399 9400 if (IntrinsicID == Intrinsic::thread_pointer) { 9401 // Reads the thread pointer register, used for __builtin_thread_pointer. 9402 if (Subtarget.isPPC64()) 9403 return DAG.getRegister(PPC::X13, MVT::i64); 9404 return DAG.getRegister(PPC::R2, MVT::i32); 9405 } 9406 9407 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9408 // opcode number of the comparison. 9409 int CompareOpc; 9410 bool isDot; 9411 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9412 return SDValue(); // Don't custom lower most intrinsics. 9413 9414 // If this is a non-dot comparison, make the VCMP node and we are done. 9415 if (!isDot) { 9416 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9417 Op.getOperand(1), Op.getOperand(2), 9418 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9419 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9420 } 9421 9422 // Create the PPCISD altivec 'dot' comparison node. 9423 SDValue Ops[] = { 9424 Op.getOperand(2), // LHS 9425 Op.getOperand(3), // RHS 9426 DAG.getConstant(CompareOpc, dl, MVT::i32) 9427 }; 9428 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9429 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9430 9431 // Now that we have the comparison, emit a copy from the CR to a GPR. 9432 // This is flagged to the above dot comparison. 9433 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9434 DAG.getRegister(PPC::CR6, MVT::i32), 9435 CompNode.getValue(1)); 9436 9437 // Unpack the result based on how the target uses it. 9438 unsigned BitNo; // Bit # of CR6. 9439 bool InvertBit; // Invert result? 9440 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9441 default: // Can't happen, don't crash on invalid number though. 9442 case 0: // Return the value of the EQ bit of CR6. 9443 BitNo = 0; InvertBit = false; 9444 break; 9445 case 1: // Return the inverted value of the EQ bit of CR6. 9446 BitNo = 0; InvertBit = true; 9447 break; 9448 case 2: // Return the value of the LT bit of CR6. 9449 BitNo = 2; InvertBit = false; 9450 break; 9451 case 3: // Return the inverted value of the LT bit of CR6. 9452 BitNo = 2; InvertBit = true; 9453 break; 9454 } 9455 9456 // Shift the bit into the low position. 9457 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9458 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9459 // Isolate the bit. 9460 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9461 DAG.getConstant(1, dl, MVT::i32)); 9462 9463 // If we are supposed to, toggle the bit. 9464 if (InvertBit) 9465 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9466 DAG.getConstant(1, dl, MVT::i32)); 9467 return Flags; 9468 } 9469 9470 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9471 SelectionDAG &DAG) const { 9472 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9473 // the beginning of the argument list. 9474 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9475 SDLoc DL(Op); 9476 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9477 case Intrinsic::ppc_cfence: { 9478 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9479 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9480 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9481 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9482 Op.getOperand(ArgStart + 1)), 9483 Op.getOperand(0)), 9484 0); 9485 } 9486 default: 9487 break; 9488 } 9489 return SDValue(); 9490 } 9491 9492 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9493 // Check for a DIV with the same operands as this REM. 9494 for (auto UI : Op.getOperand(1)->uses()) { 9495 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9496 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9497 if (UI->getOperand(0) == Op.getOperand(0) && 9498 UI->getOperand(1) == Op.getOperand(1)) 9499 return SDValue(); 9500 } 9501 return Op; 9502 } 9503 9504 // Lower scalar BSWAP64 to xxbrd. 9505 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9506 SDLoc dl(Op); 9507 // MTVSRDD 9508 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9509 Op.getOperand(0)); 9510 // XXBRD 9511 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9512 // MFVSRD 9513 int VectorIndex = 0; 9514 if (Subtarget.isLittleEndian()) 9515 VectorIndex = 1; 9516 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9517 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9518 return Op; 9519 } 9520 9521 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9522 // compared to a value that is atomically loaded (atomic loads zero-extend). 9523 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9524 SelectionDAG &DAG) const { 9525 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9526 "Expecting an atomic compare-and-swap here."); 9527 SDLoc dl(Op); 9528 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9529 EVT MemVT = AtomicNode->getMemoryVT(); 9530 if (MemVT.getSizeInBits() >= 32) 9531 return Op; 9532 9533 SDValue CmpOp = Op.getOperand(2); 9534 // If this is already correctly zero-extended, leave it alone. 9535 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9536 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9537 return Op; 9538 9539 // Clear the high bits of the compare operand. 9540 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9541 SDValue NewCmpOp = 9542 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9543 DAG.getConstant(MaskVal, dl, MVT::i32)); 9544 9545 // Replace the existing compare operand with the properly zero-extended one. 9546 SmallVector<SDValue, 4> Ops; 9547 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9548 Ops.push_back(AtomicNode->getOperand(i)); 9549 Ops[2] = NewCmpOp; 9550 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9551 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9552 auto NodeTy = 9553 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9554 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9555 } 9556 9557 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9558 SelectionDAG &DAG) const { 9559 SDLoc dl(Op); 9560 // Create a stack slot that is 16-byte aligned. 9561 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9562 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9563 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9564 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9565 9566 // Store the input value into Value#0 of the stack slot. 9567 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9568 MachinePointerInfo()); 9569 // Load it out. 9570 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9571 } 9572 9573 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9574 SelectionDAG &DAG) const { 9575 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9576 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9577 9578 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9579 // We have legal lowering for constant indices but not for variable ones. 9580 if (!C) 9581 return SDValue(); 9582 9583 EVT VT = Op.getValueType(); 9584 SDLoc dl(Op); 9585 SDValue V1 = Op.getOperand(0); 9586 SDValue V2 = Op.getOperand(1); 9587 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9588 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9589 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9590 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9591 unsigned InsertAtElement = C->getZExtValue(); 9592 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9593 if (Subtarget.isLittleEndian()) { 9594 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9595 } 9596 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9597 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9598 } 9599 return Op; 9600 } 9601 9602 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9603 SelectionDAG &DAG) const { 9604 SDLoc dl(Op); 9605 SDNode *N = Op.getNode(); 9606 9607 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9608 "Unknown extract_vector_elt type"); 9609 9610 SDValue Value = N->getOperand(0); 9611 9612 // The first part of this is like the store lowering except that we don't 9613 // need to track the chain. 9614 9615 // The values are now known to be -1 (false) or 1 (true). To convert this 9616 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9617 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9618 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9619 9620 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9621 // understand how to form the extending load. 9622 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9623 9624 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9625 9626 // Now convert to an integer and store. 9627 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9628 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9629 Value); 9630 9631 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9632 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9633 MachinePointerInfo PtrInfo = 9634 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9635 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9636 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9637 9638 SDValue StoreChain = DAG.getEntryNode(); 9639 SDValue Ops[] = {StoreChain, 9640 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9641 Value, FIdx}; 9642 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9643 9644 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9645 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9646 9647 // Extract the value requested. 9648 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9649 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9650 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9651 9652 SDValue IntVal = 9653 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9654 9655 if (!Subtarget.useCRBits()) 9656 return IntVal; 9657 9658 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9659 } 9660 9661 /// Lowering for QPX v4i1 loads 9662 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9663 SelectionDAG &DAG) const { 9664 SDLoc dl(Op); 9665 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9666 SDValue LoadChain = LN->getChain(); 9667 SDValue BasePtr = LN->getBasePtr(); 9668 9669 if (Op.getValueType() == MVT::v4f64 || 9670 Op.getValueType() == MVT::v4f32) { 9671 EVT MemVT = LN->getMemoryVT(); 9672 unsigned Alignment = LN->getAlignment(); 9673 9674 // If this load is properly aligned, then it is legal. 9675 if (Alignment >= MemVT.getStoreSize()) 9676 return Op; 9677 9678 EVT ScalarVT = Op.getValueType().getScalarType(), 9679 ScalarMemVT = MemVT.getScalarType(); 9680 unsigned Stride = ScalarMemVT.getStoreSize(); 9681 9682 SDValue Vals[4], LoadChains[4]; 9683 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9684 SDValue Load; 9685 if (ScalarVT != ScalarMemVT) 9686 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9687 BasePtr, 9688 LN->getPointerInfo().getWithOffset(Idx * Stride), 9689 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9690 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9691 else 9692 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9693 LN->getPointerInfo().getWithOffset(Idx * Stride), 9694 MinAlign(Alignment, Idx * Stride), 9695 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9696 9697 if (Idx == 0 && LN->isIndexed()) { 9698 assert(LN->getAddressingMode() == ISD::PRE_INC && 9699 "Unknown addressing mode on vector load"); 9700 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9701 LN->getAddressingMode()); 9702 } 9703 9704 Vals[Idx] = Load; 9705 LoadChains[Idx] = Load.getValue(1); 9706 9707 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9708 DAG.getConstant(Stride, dl, 9709 BasePtr.getValueType())); 9710 } 9711 9712 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9713 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9714 9715 if (LN->isIndexed()) { 9716 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9717 return DAG.getMergeValues(RetOps, dl); 9718 } 9719 9720 SDValue RetOps[] = { Value, TF }; 9721 return DAG.getMergeValues(RetOps, dl); 9722 } 9723 9724 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9725 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9726 9727 // To lower v4i1 from a byte array, we load the byte elements of the 9728 // vector and then reuse the BUILD_VECTOR logic. 9729 9730 SDValue VectElmts[4], VectElmtChains[4]; 9731 for (unsigned i = 0; i < 4; ++i) { 9732 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9733 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9734 9735 VectElmts[i] = DAG.getExtLoad( 9736 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9737 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9738 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9739 VectElmtChains[i] = VectElmts[i].getValue(1); 9740 } 9741 9742 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9743 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9744 9745 SDValue RVals[] = { Value, LoadChain }; 9746 return DAG.getMergeValues(RVals, dl); 9747 } 9748 9749 /// Lowering for QPX v4i1 stores 9750 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9751 SelectionDAG &DAG) const { 9752 SDLoc dl(Op); 9753 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9754 SDValue StoreChain = SN->getChain(); 9755 SDValue BasePtr = SN->getBasePtr(); 9756 SDValue Value = SN->getValue(); 9757 9758 if (Value.getValueType() == MVT::v4f64 || 9759 Value.getValueType() == MVT::v4f32) { 9760 EVT MemVT = SN->getMemoryVT(); 9761 unsigned Alignment = SN->getAlignment(); 9762 9763 // If this store is properly aligned, then it is legal. 9764 if (Alignment >= MemVT.getStoreSize()) 9765 return Op; 9766 9767 EVT ScalarVT = Value.getValueType().getScalarType(), 9768 ScalarMemVT = MemVT.getScalarType(); 9769 unsigned Stride = ScalarMemVT.getStoreSize(); 9770 9771 SDValue Stores[4]; 9772 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9773 SDValue Ex = DAG.getNode( 9774 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9775 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9776 SDValue Store; 9777 if (ScalarVT != ScalarMemVT) 9778 Store = 9779 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9780 SN->getPointerInfo().getWithOffset(Idx * Stride), 9781 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9782 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9783 else 9784 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9785 SN->getPointerInfo().getWithOffset(Idx * Stride), 9786 MinAlign(Alignment, Idx * Stride), 9787 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9788 9789 if (Idx == 0 && SN->isIndexed()) { 9790 assert(SN->getAddressingMode() == ISD::PRE_INC && 9791 "Unknown addressing mode on vector store"); 9792 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9793 SN->getAddressingMode()); 9794 } 9795 9796 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9797 DAG.getConstant(Stride, dl, 9798 BasePtr.getValueType())); 9799 Stores[Idx] = Store; 9800 } 9801 9802 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9803 9804 if (SN->isIndexed()) { 9805 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9806 return DAG.getMergeValues(RetOps, dl); 9807 } 9808 9809 return TF; 9810 } 9811 9812 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9813 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9814 9815 // The values are now known to be -1 (false) or 1 (true). To convert this 9816 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9817 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9818 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9819 9820 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9821 // understand how to form the extending load. 9822 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9823 9824 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9825 9826 // Now convert to an integer and store. 9827 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9828 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9829 Value); 9830 9831 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9832 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9833 MachinePointerInfo PtrInfo = 9834 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9835 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9836 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9837 9838 SDValue Ops[] = {StoreChain, 9839 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9840 Value, FIdx}; 9841 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9842 9843 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9844 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9845 9846 // Move data into the byte array. 9847 SDValue Loads[4], LoadChains[4]; 9848 for (unsigned i = 0; i < 4; ++i) { 9849 unsigned Offset = 4*i; 9850 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9851 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9852 9853 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9854 PtrInfo.getWithOffset(Offset)); 9855 LoadChains[i] = Loads[i].getValue(1); 9856 } 9857 9858 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9859 9860 SDValue Stores[4]; 9861 for (unsigned i = 0; i < 4; ++i) { 9862 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9863 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9864 9865 Stores[i] = DAG.getTruncStore( 9866 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9867 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9868 SN->getAAInfo()); 9869 } 9870 9871 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9872 9873 return StoreChain; 9874 } 9875 9876 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9877 SDLoc dl(Op); 9878 if (Op.getValueType() == MVT::v4i32) { 9879 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9880 9881 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9882 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9883 9884 SDValue RHSSwap = // = vrlw RHS, 16 9885 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9886 9887 // Shrinkify inputs to v8i16. 9888 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9889 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9890 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9891 9892 // Low parts multiplied together, generating 32-bit results (we ignore the 9893 // top parts). 9894 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9895 LHS, RHS, DAG, dl, MVT::v4i32); 9896 9897 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9898 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9899 // Shift the high parts up 16 bits. 9900 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9901 Neg16, DAG, dl); 9902 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9903 } else if (Op.getValueType() == MVT::v8i16) { 9904 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9905 9906 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9907 9908 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9909 LHS, RHS, Zero, DAG, dl); 9910 } else if (Op.getValueType() == MVT::v16i8) { 9911 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9912 bool isLittleEndian = Subtarget.isLittleEndian(); 9913 9914 // Multiply the even 8-bit parts, producing 16-bit sums. 9915 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9916 LHS, RHS, DAG, dl, MVT::v8i16); 9917 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9918 9919 // Multiply the odd 8-bit parts, producing 16-bit sums. 9920 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9921 LHS, RHS, DAG, dl, MVT::v8i16); 9922 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9923 9924 // Merge the results together. Because vmuleub and vmuloub are 9925 // instructions with a big-endian bias, we must reverse the 9926 // element numbering and reverse the meaning of "odd" and "even" 9927 // when generating little endian code. 9928 int Ops[16]; 9929 for (unsigned i = 0; i != 8; ++i) { 9930 if (isLittleEndian) { 9931 Ops[i*2 ] = 2*i; 9932 Ops[i*2+1] = 2*i+16; 9933 } else { 9934 Ops[i*2 ] = 2*i+1; 9935 Ops[i*2+1] = 2*i+1+16; 9936 } 9937 } 9938 if (isLittleEndian) 9939 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9940 else 9941 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9942 } else { 9943 llvm_unreachable("Unknown mul to lower!"); 9944 } 9945 } 9946 9947 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9948 9949 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9950 9951 EVT VT = Op.getValueType(); 9952 assert(VT.isVector() && 9953 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9954 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9955 VT == MVT::v16i8) && 9956 "Unexpected vector element type!"); 9957 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9958 "Current subtarget doesn't support smax v2i64!"); 9959 9960 // For vector abs, it can be lowered to: 9961 // abs x 9962 // ==> 9963 // y = -x 9964 // smax(x, y) 9965 9966 SDLoc dl(Op); 9967 SDValue X = Op.getOperand(0); 9968 SDValue Zero = DAG.getConstant(0, dl, VT); 9969 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9970 9971 // SMAX patch https://reviews.llvm.org/D47332 9972 // hasn't landed yet, so use intrinsic first here. 9973 // TODO: Should use SMAX directly once SMAX patch landed 9974 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9975 if (VT == MVT::v2i64) 9976 BifID = Intrinsic::ppc_altivec_vmaxsd; 9977 else if (VT == MVT::v8i16) 9978 BifID = Intrinsic::ppc_altivec_vmaxsh; 9979 else if (VT == MVT::v16i8) 9980 BifID = Intrinsic::ppc_altivec_vmaxsb; 9981 9982 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9983 } 9984 9985 // Custom lowering for fpext vf32 to v2f64 9986 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 9987 9988 assert(Op.getOpcode() == ISD::FP_EXTEND && 9989 "Should only be called for ISD::FP_EXTEND"); 9990 9991 // We only want to custom lower an extend from v2f32 to v2f64. 9992 if (Op.getValueType() != MVT::v2f64 || 9993 Op.getOperand(0).getValueType() != MVT::v2f32) 9994 return SDValue(); 9995 9996 SDLoc dl(Op); 9997 SDValue Op0 = Op.getOperand(0); 9998 9999 switch (Op0.getOpcode()) { 10000 default: 10001 return SDValue(); 10002 case ISD::EXTRACT_SUBVECTOR: { 10003 assert(Op0.getNumOperands() == 2 && 10004 isa<ConstantSDNode>(Op0->getOperand(1)) && 10005 "Node should have 2 operands with second one being a constant!"); 10006 10007 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10008 return SDValue(); 10009 10010 // Custom lower is only done for high or low doubleword. 10011 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10012 if (Idx % 2 != 0) 10013 return SDValue(); 10014 10015 // Since input is v4f32, at this point Idx is either 0 or 2. 10016 // Shift to get the doubleword position we want. 10017 int DWord = Idx >> 1; 10018 10019 // High and low word positions are different on little endian. 10020 if (Subtarget.isLittleEndian()) 10021 DWord ^= 0x1; 10022 10023 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10024 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10025 } 10026 case ISD::FADD: 10027 case ISD::FMUL: 10028 case ISD::FSUB: { 10029 SDValue NewLoad[2]; 10030 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10031 // Ensure both input are loads. 10032 SDValue LdOp = Op0.getOperand(i); 10033 if (LdOp.getOpcode() != ISD::LOAD) 10034 return SDValue(); 10035 // Generate new load node. 10036 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10037 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10038 NewLoad[i] = DAG.getMemIntrinsicNode( 10039 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10040 LD->getMemoryVT(), LD->getMemOperand()); 10041 } 10042 SDValue NewOp = 10043 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10044 NewLoad[1], Op0.getNode()->getFlags()); 10045 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10046 DAG.getConstant(0, dl, MVT::i32)); 10047 } 10048 case ISD::LOAD: { 10049 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10050 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10051 SDValue NewLd = DAG.getMemIntrinsicNode( 10052 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10053 LD->getMemoryVT(), LD->getMemOperand()); 10054 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10055 DAG.getConstant(0, dl, MVT::i32)); 10056 } 10057 } 10058 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10059 } 10060 10061 /// LowerOperation - Provide custom lowering hooks for some operations. 10062 /// 10063 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10064 switch (Op.getOpcode()) { 10065 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10066 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10067 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10068 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10069 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10070 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10071 case ISD::SETCC: return LowerSETCC(Op, DAG); 10072 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10073 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10074 10075 // Variable argument lowering. 10076 case ISD::VASTART: return LowerVASTART(Op, DAG); 10077 case ISD::VAARG: return LowerVAARG(Op, DAG); 10078 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10079 10080 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10081 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10082 case ISD::GET_DYNAMIC_AREA_OFFSET: 10083 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10084 10085 // Exception handling lowering. 10086 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10087 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10088 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10089 10090 case ISD::LOAD: return LowerLOAD(Op, DAG); 10091 case ISD::STORE: return LowerSTORE(Op, DAG); 10092 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10093 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10094 case ISD::FP_TO_UINT: 10095 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10096 case ISD::UINT_TO_FP: 10097 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10098 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10099 10100 // Lower 64-bit shifts. 10101 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10102 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10103 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10104 10105 // Vector-related lowering. 10106 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10107 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10108 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10109 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10110 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10111 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10112 case ISD::MUL: return LowerMUL(Op, DAG); 10113 case ISD::ABS: return LowerABS(Op, DAG); 10114 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10115 10116 // For counter-based loop handling. 10117 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10118 10119 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10120 10121 // Frame & Return address. 10122 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10123 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10124 10125 case ISD::INTRINSIC_VOID: 10126 return LowerINTRINSIC_VOID(Op, DAG); 10127 case ISD::SREM: 10128 case ISD::UREM: 10129 return LowerREM(Op, DAG); 10130 case ISD::BSWAP: 10131 return LowerBSWAP(Op, DAG); 10132 case ISD::ATOMIC_CMP_SWAP: 10133 return LowerATOMIC_CMP_SWAP(Op, DAG); 10134 } 10135 } 10136 10137 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10138 SmallVectorImpl<SDValue>&Results, 10139 SelectionDAG &DAG) const { 10140 SDLoc dl(N); 10141 switch (N->getOpcode()) { 10142 default: 10143 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10144 case ISD::READCYCLECOUNTER: { 10145 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10146 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10147 10148 Results.push_back(RTB); 10149 Results.push_back(RTB.getValue(1)); 10150 Results.push_back(RTB.getValue(2)); 10151 break; 10152 } 10153 case ISD::INTRINSIC_W_CHAIN: { 10154 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10155 Intrinsic::loop_decrement) 10156 break; 10157 10158 assert(N->getValueType(0) == MVT::i1 && 10159 "Unexpected result type for CTR decrement intrinsic"); 10160 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10161 N->getValueType(0)); 10162 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10163 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10164 N->getOperand(1)); 10165 10166 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10167 Results.push_back(NewInt.getValue(1)); 10168 break; 10169 } 10170 case ISD::VAARG: { 10171 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10172 return; 10173 10174 EVT VT = N->getValueType(0); 10175 10176 if (VT == MVT::i64) { 10177 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10178 10179 Results.push_back(NewNode); 10180 Results.push_back(NewNode.getValue(1)); 10181 } 10182 return; 10183 } 10184 case ISD::FP_TO_SINT: 10185 case ISD::FP_TO_UINT: 10186 // LowerFP_TO_INT() can only handle f32 and f64. 10187 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10188 return; 10189 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10190 return; 10191 case ISD::TRUNCATE: { 10192 EVT TrgVT = N->getValueType(0); 10193 EVT OpVT = N->getOperand(0).getValueType(); 10194 if (TrgVT.isVector() && 10195 isOperationCustom(N->getOpcode(), TrgVT) && 10196 OpVT.getSizeInBits() <= 128 && 10197 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10198 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10199 return; 10200 } 10201 case ISD::BITCAST: 10202 // Don't handle bitcast here. 10203 return; 10204 } 10205 } 10206 10207 //===----------------------------------------------------------------------===// 10208 // Other Lowering Code 10209 //===----------------------------------------------------------------------===// 10210 10211 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10212 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10213 Function *Func = Intrinsic::getDeclaration(M, Id); 10214 return Builder.CreateCall(Func, {}); 10215 } 10216 10217 // The mappings for emitLeading/TrailingFence is taken from 10218 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10219 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10220 Instruction *Inst, 10221 AtomicOrdering Ord) const { 10222 if (Ord == AtomicOrdering::SequentiallyConsistent) 10223 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10224 if (isReleaseOrStronger(Ord)) 10225 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10226 return nullptr; 10227 } 10228 10229 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10230 Instruction *Inst, 10231 AtomicOrdering Ord) const { 10232 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10233 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10234 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10235 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10236 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10237 return Builder.CreateCall( 10238 Intrinsic::getDeclaration( 10239 Builder.GetInsertBlock()->getParent()->getParent(), 10240 Intrinsic::ppc_cfence, {Inst->getType()}), 10241 {Inst}); 10242 // FIXME: Can use isync for rmw operation. 10243 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10244 } 10245 return nullptr; 10246 } 10247 10248 MachineBasicBlock * 10249 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10250 unsigned AtomicSize, 10251 unsigned BinOpcode, 10252 unsigned CmpOpcode, 10253 unsigned CmpPred) const { 10254 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10255 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10256 10257 auto LoadMnemonic = PPC::LDARX; 10258 auto StoreMnemonic = PPC::STDCX; 10259 switch (AtomicSize) { 10260 default: 10261 llvm_unreachable("Unexpected size of atomic entity"); 10262 case 1: 10263 LoadMnemonic = PPC::LBARX; 10264 StoreMnemonic = PPC::STBCX; 10265 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10266 break; 10267 case 2: 10268 LoadMnemonic = PPC::LHARX; 10269 StoreMnemonic = PPC::STHCX; 10270 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10271 break; 10272 case 4: 10273 LoadMnemonic = PPC::LWARX; 10274 StoreMnemonic = PPC::STWCX; 10275 break; 10276 case 8: 10277 LoadMnemonic = PPC::LDARX; 10278 StoreMnemonic = PPC::STDCX; 10279 break; 10280 } 10281 10282 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10283 MachineFunction *F = BB->getParent(); 10284 MachineFunction::iterator It = ++BB->getIterator(); 10285 10286 Register dest = MI.getOperand(0).getReg(); 10287 Register ptrA = MI.getOperand(1).getReg(); 10288 Register ptrB = MI.getOperand(2).getReg(); 10289 Register incr = MI.getOperand(3).getReg(); 10290 DebugLoc dl = MI.getDebugLoc(); 10291 10292 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10293 MachineBasicBlock *loop2MBB = 10294 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10295 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10296 F->insert(It, loopMBB); 10297 if (CmpOpcode) 10298 F->insert(It, loop2MBB); 10299 F->insert(It, exitMBB); 10300 exitMBB->splice(exitMBB->begin(), BB, 10301 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10302 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10303 10304 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10305 Register TmpReg = (!BinOpcode) ? incr : 10306 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10307 : &PPC::GPRCRegClass); 10308 10309 // thisMBB: 10310 // ... 10311 // fallthrough --> loopMBB 10312 BB->addSuccessor(loopMBB); 10313 10314 // loopMBB: 10315 // l[wd]arx dest, ptr 10316 // add r0, dest, incr 10317 // st[wd]cx. r0, ptr 10318 // bne- loopMBB 10319 // fallthrough --> exitMBB 10320 10321 // For max/min... 10322 // loopMBB: 10323 // l[wd]arx dest, ptr 10324 // cmpl?[wd] incr, dest 10325 // bgt exitMBB 10326 // loop2MBB: 10327 // st[wd]cx. dest, ptr 10328 // bne- loopMBB 10329 // fallthrough --> exitMBB 10330 10331 BB = loopMBB; 10332 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10333 .addReg(ptrA).addReg(ptrB); 10334 if (BinOpcode) 10335 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10336 if (CmpOpcode) { 10337 // Signed comparisons of byte or halfword values must be sign-extended. 10338 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10339 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10340 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10341 ExtReg).addReg(dest); 10342 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10343 .addReg(incr).addReg(ExtReg); 10344 } else 10345 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10346 .addReg(incr).addReg(dest); 10347 10348 BuildMI(BB, dl, TII->get(PPC::BCC)) 10349 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10350 BB->addSuccessor(loop2MBB); 10351 BB->addSuccessor(exitMBB); 10352 BB = loop2MBB; 10353 } 10354 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10355 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10356 BuildMI(BB, dl, TII->get(PPC::BCC)) 10357 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10358 BB->addSuccessor(loopMBB); 10359 BB->addSuccessor(exitMBB); 10360 10361 // exitMBB: 10362 // ... 10363 BB = exitMBB; 10364 return BB; 10365 } 10366 10367 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10368 MachineInstr &MI, MachineBasicBlock *BB, 10369 bool is8bit, // operation 10370 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10371 // If we support part-word atomic mnemonics, just use them 10372 if (Subtarget.hasPartwordAtomics()) 10373 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10374 CmpPred); 10375 10376 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10377 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10378 // In 64 bit mode we have to use 64 bits for addresses, even though the 10379 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10380 // registers without caring whether they're 32 or 64, but here we're 10381 // doing actual arithmetic on the addresses. 10382 bool is64bit = Subtarget.isPPC64(); 10383 bool isLittleEndian = Subtarget.isLittleEndian(); 10384 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10385 10386 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10387 MachineFunction *F = BB->getParent(); 10388 MachineFunction::iterator It = ++BB->getIterator(); 10389 10390 Register dest = MI.getOperand(0).getReg(); 10391 Register ptrA = MI.getOperand(1).getReg(); 10392 Register ptrB = MI.getOperand(2).getReg(); 10393 Register incr = MI.getOperand(3).getReg(); 10394 DebugLoc dl = MI.getDebugLoc(); 10395 10396 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10397 MachineBasicBlock *loop2MBB = 10398 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10399 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10400 F->insert(It, loopMBB); 10401 if (CmpOpcode) 10402 F->insert(It, loop2MBB); 10403 F->insert(It, exitMBB); 10404 exitMBB->splice(exitMBB->begin(), BB, 10405 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10406 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10407 10408 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10409 const TargetRegisterClass *RC = 10410 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10411 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10412 10413 Register PtrReg = RegInfo.createVirtualRegister(RC); 10414 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10415 Register ShiftReg = 10416 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10417 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10418 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10419 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10420 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10421 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10422 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10423 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10424 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10425 Register Ptr1Reg; 10426 Register TmpReg = 10427 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10428 10429 // thisMBB: 10430 // ... 10431 // fallthrough --> loopMBB 10432 BB->addSuccessor(loopMBB); 10433 10434 // The 4-byte load must be aligned, while a char or short may be 10435 // anywhere in the word. Hence all this nasty bookkeeping code. 10436 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10437 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10438 // xori shift, shift1, 24 [16] 10439 // rlwinm ptr, ptr1, 0, 0, 29 10440 // slw incr2, incr, shift 10441 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10442 // slw mask, mask2, shift 10443 // loopMBB: 10444 // lwarx tmpDest, ptr 10445 // add tmp, tmpDest, incr2 10446 // andc tmp2, tmpDest, mask 10447 // and tmp3, tmp, mask 10448 // or tmp4, tmp3, tmp2 10449 // stwcx. tmp4, ptr 10450 // bne- loopMBB 10451 // fallthrough --> exitMBB 10452 // srw dest, tmpDest, shift 10453 if (ptrA != ZeroReg) { 10454 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10455 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10456 .addReg(ptrA) 10457 .addReg(ptrB); 10458 } else { 10459 Ptr1Reg = ptrB; 10460 } 10461 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10462 // mode. 10463 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10464 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10465 .addImm(3) 10466 .addImm(27) 10467 .addImm(is8bit ? 28 : 27); 10468 if (!isLittleEndian) 10469 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10470 .addReg(Shift1Reg) 10471 .addImm(is8bit ? 24 : 16); 10472 if (is64bit) 10473 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10474 .addReg(Ptr1Reg) 10475 .addImm(0) 10476 .addImm(61); 10477 else 10478 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10479 .addReg(Ptr1Reg) 10480 .addImm(0) 10481 .addImm(0) 10482 .addImm(29); 10483 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10484 if (is8bit) 10485 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10486 else { 10487 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10488 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10489 .addReg(Mask3Reg) 10490 .addImm(65535); 10491 } 10492 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10493 .addReg(Mask2Reg) 10494 .addReg(ShiftReg); 10495 10496 BB = loopMBB; 10497 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10498 .addReg(ZeroReg) 10499 .addReg(PtrReg); 10500 if (BinOpcode) 10501 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10502 .addReg(Incr2Reg) 10503 .addReg(TmpDestReg); 10504 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10505 .addReg(TmpDestReg) 10506 .addReg(MaskReg); 10507 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10508 if (CmpOpcode) { 10509 // For unsigned comparisons, we can directly compare the shifted values. 10510 // For signed comparisons we shift and sign extend. 10511 Register SReg = RegInfo.createVirtualRegister(GPRC); 10512 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10513 .addReg(TmpDestReg) 10514 .addReg(MaskReg); 10515 unsigned ValueReg = SReg; 10516 unsigned CmpReg = Incr2Reg; 10517 if (CmpOpcode == PPC::CMPW) { 10518 ValueReg = RegInfo.createVirtualRegister(GPRC); 10519 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10520 .addReg(SReg) 10521 .addReg(ShiftReg); 10522 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10523 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10524 .addReg(ValueReg); 10525 ValueReg = ValueSReg; 10526 CmpReg = incr; 10527 } 10528 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10529 .addReg(CmpReg) 10530 .addReg(ValueReg); 10531 BuildMI(BB, dl, TII->get(PPC::BCC)) 10532 .addImm(CmpPred) 10533 .addReg(PPC::CR0) 10534 .addMBB(exitMBB); 10535 BB->addSuccessor(loop2MBB); 10536 BB->addSuccessor(exitMBB); 10537 BB = loop2MBB; 10538 } 10539 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10540 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10541 .addReg(Tmp4Reg) 10542 .addReg(ZeroReg) 10543 .addReg(PtrReg); 10544 BuildMI(BB, dl, TII->get(PPC::BCC)) 10545 .addImm(PPC::PRED_NE) 10546 .addReg(PPC::CR0) 10547 .addMBB(loopMBB); 10548 BB->addSuccessor(loopMBB); 10549 BB->addSuccessor(exitMBB); 10550 10551 // exitMBB: 10552 // ... 10553 BB = exitMBB; 10554 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10555 .addReg(TmpDestReg) 10556 .addReg(ShiftReg); 10557 return BB; 10558 } 10559 10560 llvm::MachineBasicBlock * 10561 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10562 MachineBasicBlock *MBB) const { 10563 DebugLoc DL = MI.getDebugLoc(); 10564 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10565 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10566 10567 MachineFunction *MF = MBB->getParent(); 10568 MachineRegisterInfo &MRI = MF->getRegInfo(); 10569 10570 const BasicBlock *BB = MBB->getBasicBlock(); 10571 MachineFunction::iterator I = ++MBB->getIterator(); 10572 10573 Register DstReg = MI.getOperand(0).getReg(); 10574 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10575 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10576 Register mainDstReg = MRI.createVirtualRegister(RC); 10577 Register restoreDstReg = MRI.createVirtualRegister(RC); 10578 10579 MVT PVT = getPointerTy(MF->getDataLayout()); 10580 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10581 "Invalid Pointer Size!"); 10582 // For v = setjmp(buf), we generate 10583 // 10584 // thisMBB: 10585 // SjLjSetup mainMBB 10586 // bl mainMBB 10587 // v_restore = 1 10588 // b sinkMBB 10589 // 10590 // mainMBB: 10591 // buf[LabelOffset] = LR 10592 // v_main = 0 10593 // 10594 // sinkMBB: 10595 // v = phi(main, restore) 10596 // 10597 10598 MachineBasicBlock *thisMBB = MBB; 10599 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10600 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10601 MF->insert(I, mainMBB); 10602 MF->insert(I, sinkMBB); 10603 10604 MachineInstrBuilder MIB; 10605 10606 // Transfer the remainder of BB and its successor edges to sinkMBB. 10607 sinkMBB->splice(sinkMBB->begin(), MBB, 10608 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10609 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10610 10611 // Note that the structure of the jmp_buf used here is not compatible 10612 // with that used by libc, and is not designed to be. Specifically, it 10613 // stores only those 'reserved' registers that LLVM does not otherwise 10614 // understand how to spill. Also, by convention, by the time this 10615 // intrinsic is called, Clang has already stored the frame address in the 10616 // first slot of the buffer and stack address in the third. Following the 10617 // X86 target code, we'll store the jump address in the second slot. We also 10618 // need to save the TOC pointer (R2) to handle jumps between shared 10619 // libraries, and that will be stored in the fourth slot. The thread 10620 // identifier (R13) is not affected. 10621 10622 // thisMBB: 10623 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10624 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10625 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10626 10627 // Prepare IP either in reg. 10628 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10629 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10630 Register BufReg = MI.getOperand(1).getReg(); 10631 10632 if (Subtarget.is64BitELFABI()) { 10633 setUsesTOCBasePtr(*MBB->getParent()); 10634 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10635 .addReg(PPC::X2) 10636 .addImm(TOCOffset) 10637 .addReg(BufReg) 10638 .cloneMemRefs(MI); 10639 } 10640 10641 // Naked functions never have a base pointer, and so we use r1. For all 10642 // other functions, this decision must be delayed until during PEI. 10643 unsigned BaseReg; 10644 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10645 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10646 else 10647 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10648 10649 MIB = BuildMI(*thisMBB, MI, DL, 10650 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10651 .addReg(BaseReg) 10652 .addImm(BPOffset) 10653 .addReg(BufReg) 10654 .cloneMemRefs(MI); 10655 10656 // Setup 10657 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10658 MIB.addRegMask(TRI->getNoPreservedMask()); 10659 10660 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10661 10662 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10663 .addMBB(mainMBB); 10664 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10665 10666 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10667 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10668 10669 // mainMBB: 10670 // mainDstReg = 0 10671 MIB = 10672 BuildMI(mainMBB, DL, 10673 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10674 10675 // Store IP 10676 if (Subtarget.isPPC64()) { 10677 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10678 .addReg(LabelReg) 10679 .addImm(LabelOffset) 10680 .addReg(BufReg); 10681 } else { 10682 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10683 .addReg(LabelReg) 10684 .addImm(LabelOffset) 10685 .addReg(BufReg); 10686 } 10687 MIB.cloneMemRefs(MI); 10688 10689 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10690 mainMBB->addSuccessor(sinkMBB); 10691 10692 // sinkMBB: 10693 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10694 TII->get(PPC::PHI), DstReg) 10695 .addReg(mainDstReg).addMBB(mainMBB) 10696 .addReg(restoreDstReg).addMBB(thisMBB); 10697 10698 MI.eraseFromParent(); 10699 return sinkMBB; 10700 } 10701 10702 MachineBasicBlock * 10703 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10704 MachineBasicBlock *MBB) const { 10705 DebugLoc DL = MI.getDebugLoc(); 10706 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10707 10708 MachineFunction *MF = MBB->getParent(); 10709 MachineRegisterInfo &MRI = MF->getRegInfo(); 10710 10711 MVT PVT = getPointerTy(MF->getDataLayout()); 10712 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10713 "Invalid Pointer Size!"); 10714 10715 const TargetRegisterClass *RC = 10716 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10717 Register Tmp = MRI.createVirtualRegister(RC); 10718 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10719 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10720 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10721 unsigned BP = 10722 (PVT == MVT::i64) 10723 ? PPC::X30 10724 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10725 : PPC::R30); 10726 10727 MachineInstrBuilder MIB; 10728 10729 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10730 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10731 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10732 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10733 10734 Register BufReg = MI.getOperand(0).getReg(); 10735 10736 // Reload FP (the jumped-to function may not have had a 10737 // frame pointer, and if so, then its r31 will be restored 10738 // as necessary). 10739 if (PVT == MVT::i64) { 10740 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10741 .addImm(0) 10742 .addReg(BufReg); 10743 } else { 10744 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10745 .addImm(0) 10746 .addReg(BufReg); 10747 } 10748 MIB.cloneMemRefs(MI); 10749 10750 // Reload IP 10751 if (PVT == MVT::i64) { 10752 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10753 .addImm(LabelOffset) 10754 .addReg(BufReg); 10755 } else { 10756 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10757 .addImm(LabelOffset) 10758 .addReg(BufReg); 10759 } 10760 MIB.cloneMemRefs(MI); 10761 10762 // Reload SP 10763 if (PVT == MVT::i64) { 10764 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10765 .addImm(SPOffset) 10766 .addReg(BufReg); 10767 } else { 10768 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10769 .addImm(SPOffset) 10770 .addReg(BufReg); 10771 } 10772 MIB.cloneMemRefs(MI); 10773 10774 // Reload BP 10775 if (PVT == MVT::i64) { 10776 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10777 .addImm(BPOffset) 10778 .addReg(BufReg); 10779 } else { 10780 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10781 .addImm(BPOffset) 10782 .addReg(BufReg); 10783 } 10784 MIB.cloneMemRefs(MI); 10785 10786 // Reload TOC 10787 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10788 setUsesTOCBasePtr(*MBB->getParent()); 10789 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10790 .addImm(TOCOffset) 10791 .addReg(BufReg) 10792 .cloneMemRefs(MI); 10793 } 10794 10795 // Jump 10796 BuildMI(*MBB, MI, DL, 10797 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10798 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10799 10800 MI.eraseFromParent(); 10801 return MBB; 10802 } 10803 10804 MachineBasicBlock * 10805 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10806 MachineBasicBlock *BB) const { 10807 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10808 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10809 if (Subtarget.is64BitELFABI() && 10810 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10811 // Call lowering should have added an r2 operand to indicate a dependence 10812 // on the TOC base pointer value. It can't however, because there is no 10813 // way to mark the dependence as implicit there, and so the stackmap code 10814 // will confuse it with a regular operand. Instead, add the dependence 10815 // here. 10816 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10817 } 10818 10819 return emitPatchPoint(MI, BB); 10820 } 10821 10822 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10823 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10824 return emitEHSjLjSetJmp(MI, BB); 10825 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10826 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10827 return emitEHSjLjLongJmp(MI, BB); 10828 } 10829 10830 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10831 10832 // To "insert" these instructions we actually have to insert their 10833 // control-flow patterns. 10834 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10835 MachineFunction::iterator It = ++BB->getIterator(); 10836 10837 MachineFunction *F = BB->getParent(); 10838 10839 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10840 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10841 MI.getOpcode() == PPC::SELECT_I8) { 10842 SmallVector<MachineOperand, 2> Cond; 10843 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10844 MI.getOpcode() == PPC::SELECT_CC_I8) 10845 Cond.push_back(MI.getOperand(4)); 10846 else 10847 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10848 Cond.push_back(MI.getOperand(1)); 10849 10850 DebugLoc dl = MI.getDebugLoc(); 10851 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10852 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10853 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10854 MI.getOpcode() == PPC::SELECT_CC_I8 || 10855 MI.getOpcode() == PPC::SELECT_CC_F4 || 10856 MI.getOpcode() == PPC::SELECT_CC_F8 || 10857 MI.getOpcode() == PPC::SELECT_CC_F16 || 10858 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10859 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10860 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10861 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10862 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10863 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10864 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10865 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10866 MI.getOpcode() == PPC::SELECT_CC_SPE || 10867 MI.getOpcode() == PPC::SELECT_I4 || 10868 MI.getOpcode() == PPC::SELECT_I8 || 10869 MI.getOpcode() == PPC::SELECT_F4 || 10870 MI.getOpcode() == PPC::SELECT_F8 || 10871 MI.getOpcode() == PPC::SELECT_F16 || 10872 MI.getOpcode() == PPC::SELECT_QFRC || 10873 MI.getOpcode() == PPC::SELECT_QSRC || 10874 MI.getOpcode() == PPC::SELECT_QBRC || 10875 MI.getOpcode() == PPC::SELECT_SPE || 10876 MI.getOpcode() == PPC::SELECT_SPE4 || 10877 MI.getOpcode() == PPC::SELECT_VRRC || 10878 MI.getOpcode() == PPC::SELECT_VSFRC || 10879 MI.getOpcode() == PPC::SELECT_VSSRC || 10880 MI.getOpcode() == PPC::SELECT_VSRC) { 10881 // The incoming instruction knows the destination vreg to set, the 10882 // condition code register to branch on, the true/false values to 10883 // select between, and a branch opcode to use. 10884 10885 // thisMBB: 10886 // ... 10887 // TrueVal = ... 10888 // cmpTY ccX, r1, r2 10889 // bCC copy1MBB 10890 // fallthrough --> copy0MBB 10891 MachineBasicBlock *thisMBB = BB; 10892 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10893 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10894 DebugLoc dl = MI.getDebugLoc(); 10895 F->insert(It, copy0MBB); 10896 F->insert(It, sinkMBB); 10897 10898 // Transfer the remainder of BB and its successor edges to sinkMBB. 10899 sinkMBB->splice(sinkMBB->begin(), BB, 10900 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10901 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10902 10903 // Next, add the true and fallthrough blocks as its successors. 10904 BB->addSuccessor(copy0MBB); 10905 BB->addSuccessor(sinkMBB); 10906 10907 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10908 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10909 MI.getOpcode() == PPC::SELECT_F16 || 10910 MI.getOpcode() == PPC::SELECT_SPE4 || 10911 MI.getOpcode() == PPC::SELECT_SPE || 10912 MI.getOpcode() == PPC::SELECT_QFRC || 10913 MI.getOpcode() == PPC::SELECT_QSRC || 10914 MI.getOpcode() == PPC::SELECT_QBRC || 10915 MI.getOpcode() == PPC::SELECT_VRRC || 10916 MI.getOpcode() == PPC::SELECT_VSFRC || 10917 MI.getOpcode() == PPC::SELECT_VSSRC || 10918 MI.getOpcode() == PPC::SELECT_VSRC) { 10919 BuildMI(BB, dl, TII->get(PPC::BC)) 10920 .addReg(MI.getOperand(1).getReg()) 10921 .addMBB(sinkMBB); 10922 } else { 10923 unsigned SelectPred = MI.getOperand(4).getImm(); 10924 BuildMI(BB, dl, TII->get(PPC::BCC)) 10925 .addImm(SelectPred) 10926 .addReg(MI.getOperand(1).getReg()) 10927 .addMBB(sinkMBB); 10928 } 10929 10930 // copy0MBB: 10931 // %FalseValue = ... 10932 // # fallthrough to sinkMBB 10933 BB = copy0MBB; 10934 10935 // Update machine-CFG edges 10936 BB->addSuccessor(sinkMBB); 10937 10938 // sinkMBB: 10939 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10940 // ... 10941 BB = sinkMBB; 10942 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10943 .addReg(MI.getOperand(3).getReg()) 10944 .addMBB(copy0MBB) 10945 .addReg(MI.getOperand(2).getReg()) 10946 .addMBB(thisMBB); 10947 } else if (MI.getOpcode() == PPC::ReadTB) { 10948 // To read the 64-bit time-base register on a 32-bit target, we read the 10949 // two halves. Should the counter have wrapped while it was being read, we 10950 // need to try again. 10951 // ... 10952 // readLoop: 10953 // mfspr Rx,TBU # load from TBU 10954 // mfspr Ry,TB # load from TB 10955 // mfspr Rz,TBU # load from TBU 10956 // cmpw crX,Rx,Rz # check if 'old'='new' 10957 // bne readLoop # branch if they're not equal 10958 // ... 10959 10960 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10961 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10962 DebugLoc dl = MI.getDebugLoc(); 10963 F->insert(It, readMBB); 10964 F->insert(It, sinkMBB); 10965 10966 // Transfer the remainder of BB and its successor edges to sinkMBB. 10967 sinkMBB->splice(sinkMBB->begin(), BB, 10968 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10969 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10970 10971 BB->addSuccessor(readMBB); 10972 BB = readMBB; 10973 10974 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10975 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10976 Register LoReg = MI.getOperand(0).getReg(); 10977 Register HiReg = MI.getOperand(1).getReg(); 10978 10979 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10980 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10981 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10982 10983 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10984 10985 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10986 .addReg(HiReg) 10987 .addReg(ReadAgainReg); 10988 BuildMI(BB, dl, TII->get(PPC::BCC)) 10989 .addImm(PPC::PRED_NE) 10990 .addReg(CmpReg) 10991 .addMBB(readMBB); 10992 10993 BB->addSuccessor(readMBB); 10994 BB->addSuccessor(sinkMBB); 10995 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10996 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10997 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10998 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10999 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11000 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11001 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11002 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11003 11004 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11005 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11006 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11007 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11008 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11009 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11010 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11011 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11012 11013 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11014 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11015 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11016 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11017 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11018 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11019 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11020 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11021 11022 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11023 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11024 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11025 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11026 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11027 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11028 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11029 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11030 11031 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11032 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11033 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11034 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11035 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11036 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11037 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11038 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11039 11040 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11041 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11042 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11043 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11044 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11045 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11046 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11047 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11048 11049 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11050 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11051 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11052 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11053 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11054 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11055 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11056 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11057 11058 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11059 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11060 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11061 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11062 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11063 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11064 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11065 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11066 11067 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11068 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11069 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11070 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11071 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11072 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11073 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11074 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11075 11076 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11077 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11078 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11079 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11080 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11081 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11082 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11083 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11084 11085 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11086 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11087 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11088 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11089 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11090 BB = EmitAtomicBinary(MI, BB, 4, 0); 11091 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11092 BB = EmitAtomicBinary(MI, BB, 8, 0); 11093 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11094 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11095 (Subtarget.hasPartwordAtomics() && 11096 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11097 (Subtarget.hasPartwordAtomics() && 11098 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11099 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11100 11101 auto LoadMnemonic = PPC::LDARX; 11102 auto StoreMnemonic = PPC::STDCX; 11103 switch (MI.getOpcode()) { 11104 default: 11105 llvm_unreachable("Compare and swap of unknown size"); 11106 case PPC::ATOMIC_CMP_SWAP_I8: 11107 LoadMnemonic = PPC::LBARX; 11108 StoreMnemonic = PPC::STBCX; 11109 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11110 break; 11111 case PPC::ATOMIC_CMP_SWAP_I16: 11112 LoadMnemonic = PPC::LHARX; 11113 StoreMnemonic = PPC::STHCX; 11114 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11115 break; 11116 case PPC::ATOMIC_CMP_SWAP_I32: 11117 LoadMnemonic = PPC::LWARX; 11118 StoreMnemonic = PPC::STWCX; 11119 break; 11120 case PPC::ATOMIC_CMP_SWAP_I64: 11121 LoadMnemonic = PPC::LDARX; 11122 StoreMnemonic = PPC::STDCX; 11123 break; 11124 } 11125 Register dest = MI.getOperand(0).getReg(); 11126 Register ptrA = MI.getOperand(1).getReg(); 11127 Register ptrB = MI.getOperand(2).getReg(); 11128 Register oldval = MI.getOperand(3).getReg(); 11129 Register newval = MI.getOperand(4).getReg(); 11130 DebugLoc dl = MI.getDebugLoc(); 11131 11132 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11133 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11134 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11135 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11136 F->insert(It, loop1MBB); 11137 F->insert(It, loop2MBB); 11138 F->insert(It, midMBB); 11139 F->insert(It, exitMBB); 11140 exitMBB->splice(exitMBB->begin(), BB, 11141 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11142 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11143 11144 // thisMBB: 11145 // ... 11146 // fallthrough --> loopMBB 11147 BB->addSuccessor(loop1MBB); 11148 11149 // loop1MBB: 11150 // l[bhwd]arx dest, ptr 11151 // cmp[wd] dest, oldval 11152 // bne- midMBB 11153 // loop2MBB: 11154 // st[bhwd]cx. newval, ptr 11155 // bne- loopMBB 11156 // b exitBB 11157 // midMBB: 11158 // st[bhwd]cx. dest, ptr 11159 // exitBB: 11160 BB = loop1MBB; 11161 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11162 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11163 .addReg(oldval) 11164 .addReg(dest); 11165 BuildMI(BB, dl, TII->get(PPC::BCC)) 11166 .addImm(PPC::PRED_NE) 11167 .addReg(PPC::CR0) 11168 .addMBB(midMBB); 11169 BB->addSuccessor(loop2MBB); 11170 BB->addSuccessor(midMBB); 11171 11172 BB = loop2MBB; 11173 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11174 .addReg(newval) 11175 .addReg(ptrA) 11176 .addReg(ptrB); 11177 BuildMI(BB, dl, TII->get(PPC::BCC)) 11178 .addImm(PPC::PRED_NE) 11179 .addReg(PPC::CR0) 11180 .addMBB(loop1MBB); 11181 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11182 BB->addSuccessor(loop1MBB); 11183 BB->addSuccessor(exitMBB); 11184 11185 BB = midMBB; 11186 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11187 .addReg(dest) 11188 .addReg(ptrA) 11189 .addReg(ptrB); 11190 BB->addSuccessor(exitMBB); 11191 11192 // exitMBB: 11193 // ... 11194 BB = exitMBB; 11195 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11196 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11197 // We must use 64-bit registers for addresses when targeting 64-bit, 11198 // since we're actually doing arithmetic on them. Other registers 11199 // can be 32-bit. 11200 bool is64bit = Subtarget.isPPC64(); 11201 bool isLittleEndian = Subtarget.isLittleEndian(); 11202 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11203 11204 Register dest = MI.getOperand(0).getReg(); 11205 Register ptrA = MI.getOperand(1).getReg(); 11206 Register ptrB = MI.getOperand(2).getReg(); 11207 Register oldval = MI.getOperand(3).getReg(); 11208 Register newval = MI.getOperand(4).getReg(); 11209 DebugLoc dl = MI.getDebugLoc(); 11210 11211 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11212 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11213 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11214 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11215 F->insert(It, loop1MBB); 11216 F->insert(It, loop2MBB); 11217 F->insert(It, midMBB); 11218 F->insert(It, exitMBB); 11219 exitMBB->splice(exitMBB->begin(), BB, 11220 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11221 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11222 11223 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11224 const TargetRegisterClass *RC = 11225 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11226 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11227 11228 Register PtrReg = RegInfo.createVirtualRegister(RC); 11229 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11230 Register ShiftReg = 11231 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11232 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11233 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11234 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11235 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11236 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11237 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11238 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11239 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11240 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11241 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11242 Register Ptr1Reg; 11243 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11244 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11245 // thisMBB: 11246 // ... 11247 // fallthrough --> loopMBB 11248 BB->addSuccessor(loop1MBB); 11249 11250 // The 4-byte load must be aligned, while a char or short may be 11251 // anywhere in the word. Hence all this nasty bookkeeping code. 11252 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11253 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11254 // xori shift, shift1, 24 [16] 11255 // rlwinm ptr, ptr1, 0, 0, 29 11256 // slw newval2, newval, shift 11257 // slw oldval2, oldval,shift 11258 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11259 // slw mask, mask2, shift 11260 // and newval3, newval2, mask 11261 // and oldval3, oldval2, mask 11262 // loop1MBB: 11263 // lwarx tmpDest, ptr 11264 // and tmp, tmpDest, mask 11265 // cmpw tmp, oldval3 11266 // bne- midMBB 11267 // loop2MBB: 11268 // andc tmp2, tmpDest, mask 11269 // or tmp4, tmp2, newval3 11270 // stwcx. tmp4, ptr 11271 // bne- loop1MBB 11272 // b exitBB 11273 // midMBB: 11274 // stwcx. tmpDest, ptr 11275 // exitBB: 11276 // srw dest, tmpDest, shift 11277 if (ptrA != ZeroReg) { 11278 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11279 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11280 .addReg(ptrA) 11281 .addReg(ptrB); 11282 } else { 11283 Ptr1Reg = ptrB; 11284 } 11285 11286 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11287 // mode. 11288 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11289 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11290 .addImm(3) 11291 .addImm(27) 11292 .addImm(is8bit ? 28 : 27); 11293 if (!isLittleEndian) 11294 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11295 .addReg(Shift1Reg) 11296 .addImm(is8bit ? 24 : 16); 11297 if (is64bit) 11298 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11299 .addReg(Ptr1Reg) 11300 .addImm(0) 11301 .addImm(61); 11302 else 11303 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11304 .addReg(Ptr1Reg) 11305 .addImm(0) 11306 .addImm(0) 11307 .addImm(29); 11308 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11309 .addReg(newval) 11310 .addReg(ShiftReg); 11311 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11312 .addReg(oldval) 11313 .addReg(ShiftReg); 11314 if (is8bit) 11315 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11316 else { 11317 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11318 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11319 .addReg(Mask3Reg) 11320 .addImm(65535); 11321 } 11322 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11323 .addReg(Mask2Reg) 11324 .addReg(ShiftReg); 11325 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11326 .addReg(NewVal2Reg) 11327 .addReg(MaskReg); 11328 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11329 .addReg(OldVal2Reg) 11330 .addReg(MaskReg); 11331 11332 BB = loop1MBB; 11333 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11334 .addReg(ZeroReg) 11335 .addReg(PtrReg); 11336 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11337 .addReg(TmpDestReg) 11338 .addReg(MaskReg); 11339 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11340 .addReg(TmpReg) 11341 .addReg(OldVal3Reg); 11342 BuildMI(BB, dl, TII->get(PPC::BCC)) 11343 .addImm(PPC::PRED_NE) 11344 .addReg(PPC::CR0) 11345 .addMBB(midMBB); 11346 BB->addSuccessor(loop2MBB); 11347 BB->addSuccessor(midMBB); 11348 11349 BB = loop2MBB; 11350 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11351 .addReg(TmpDestReg) 11352 .addReg(MaskReg); 11353 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11354 .addReg(Tmp2Reg) 11355 .addReg(NewVal3Reg); 11356 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11357 .addReg(Tmp4Reg) 11358 .addReg(ZeroReg) 11359 .addReg(PtrReg); 11360 BuildMI(BB, dl, TII->get(PPC::BCC)) 11361 .addImm(PPC::PRED_NE) 11362 .addReg(PPC::CR0) 11363 .addMBB(loop1MBB); 11364 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11365 BB->addSuccessor(loop1MBB); 11366 BB->addSuccessor(exitMBB); 11367 11368 BB = midMBB; 11369 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11370 .addReg(TmpDestReg) 11371 .addReg(ZeroReg) 11372 .addReg(PtrReg); 11373 BB->addSuccessor(exitMBB); 11374 11375 // exitMBB: 11376 // ... 11377 BB = exitMBB; 11378 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11379 .addReg(TmpReg) 11380 .addReg(ShiftReg); 11381 } else if (MI.getOpcode() == PPC::FADDrtz) { 11382 // This pseudo performs an FADD with rounding mode temporarily forced 11383 // to round-to-zero. We emit this via custom inserter since the FPSCR 11384 // is not modeled at the SelectionDAG level. 11385 Register Dest = MI.getOperand(0).getReg(); 11386 Register Src1 = MI.getOperand(1).getReg(); 11387 Register Src2 = MI.getOperand(2).getReg(); 11388 DebugLoc dl = MI.getDebugLoc(); 11389 11390 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11391 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11392 11393 // Save FPSCR value. 11394 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11395 11396 // Set rounding mode to round-to-zero. 11397 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11398 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11399 11400 // Perform addition. 11401 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11402 11403 // Restore FPSCR value. 11404 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11405 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11406 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11407 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11408 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11409 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11410 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11411 ? PPC::ANDIo8 11412 : PPC::ANDIo; 11413 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11414 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11415 11416 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11417 Register Dest = RegInfo.createVirtualRegister( 11418 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11419 11420 DebugLoc dl = MI.getDebugLoc(); 11421 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11422 .addReg(MI.getOperand(1).getReg()) 11423 .addImm(1); 11424 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11425 MI.getOperand(0).getReg()) 11426 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11427 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11428 DebugLoc Dl = MI.getDebugLoc(); 11429 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11430 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11431 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11432 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11433 MI.getOperand(0).getReg()) 11434 .addReg(CRReg); 11435 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11436 DebugLoc Dl = MI.getDebugLoc(); 11437 unsigned Imm = MI.getOperand(1).getImm(); 11438 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11439 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11440 MI.getOperand(0).getReg()) 11441 .addReg(PPC::CR0EQ); 11442 } else if (MI.getOpcode() == PPC::SETRNDi) { 11443 DebugLoc dl = MI.getDebugLoc(); 11444 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11445 11446 // Save FPSCR value. 11447 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11448 11449 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11450 // the following settings: 11451 // 00 Round to nearest 11452 // 01 Round to 0 11453 // 10 Round to +inf 11454 // 11 Round to -inf 11455 11456 // When the operand is immediate, using the two least significant bits of 11457 // the immediate to set the bits 62:63 of FPSCR. 11458 unsigned Mode = MI.getOperand(1).getImm(); 11459 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11460 .addImm(31); 11461 11462 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11463 .addImm(30); 11464 } else if (MI.getOpcode() == PPC::SETRND) { 11465 DebugLoc dl = MI.getDebugLoc(); 11466 11467 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11468 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11469 // If the target doesn't have DirectMove, we should use stack to do the 11470 // conversion, because the target doesn't have the instructions like mtvsrd 11471 // or mfvsrd to do this conversion directly. 11472 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11473 if (Subtarget.hasDirectMove()) { 11474 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11475 .addReg(SrcReg); 11476 } else { 11477 // Use stack to do the register copy. 11478 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11479 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11480 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11481 if (RC == &PPC::F8RCRegClass) { 11482 // Copy register from F8RCRegClass to G8RCRegclass. 11483 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11484 "Unsupported RegClass."); 11485 11486 StoreOp = PPC::STFD; 11487 LoadOp = PPC::LD; 11488 } else { 11489 // Copy register from G8RCRegClass to F8RCRegclass. 11490 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11491 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11492 "Unsupported RegClass."); 11493 } 11494 11495 MachineFrameInfo &MFI = F->getFrameInfo(); 11496 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11497 11498 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11499 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11500 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11501 MFI.getObjectAlignment(FrameIdx)); 11502 11503 // Store the SrcReg into the stack. 11504 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11505 .addReg(SrcReg) 11506 .addImm(0) 11507 .addFrameIndex(FrameIdx) 11508 .addMemOperand(MMOStore); 11509 11510 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11511 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11512 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11513 MFI.getObjectAlignment(FrameIdx)); 11514 11515 // Load from the stack where SrcReg is stored, and save to DestReg, 11516 // so we have done the RegClass conversion from RegClass::SrcReg to 11517 // RegClass::DestReg. 11518 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11519 .addImm(0) 11520 .addFrameIndex(FrameIdx) 11521 .addMemOperand(MMOLoad); 11522 } 11523 }; 11524 11525 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11526 11527 // Save FPSCR value. 11528 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11529 11530 // When the operand is gprc register, use two least significant bits of the 11531 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11532 // 11533 // copy OldFPSCRTmpReg, OldFPSCRReg 11534 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11535 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11536 // copy NewFPSCRReg, NewFPSCRTmpReg 11537 // mtfsf 255, NewFPSCRReg 11538 MachineOperand SrcOp = MI.getOperand(1); 11539 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11540 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11541 11542 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11543 11544 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11545 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11546 11547 // The first operand of INSERT_SUBREG should be a register which has 11548 // subregisters, we only care about its RegClass, so we should use an 11549 // IMPLICIT_DEF register. 11550 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11551 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11552 .addReg(ImDefReg) 11553 .add(SrcOp) 11554 .addImm(1); 11555 11556 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11557 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11558 .addReg(OldFPSCRTmpReg) 11559 .addReg(ExtSrcReg) 11560 .addImm(0) 11561 .addImm(62); 11562 11563 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11564 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11565 11566 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11567 // bits of FPSCR. 11568 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11569 .addImm(255) 11570 .addReg(NewFPSCRReg) 11571 .addImm(0) 11572 .addImm(0); 11573 } else { 11574 llvm_unreachable("Unexpected instr type to insert"); 11575 } 11576 11577 MI.eraseFromParent(); // The pseudo instruction is gone now. 11578 return BB; 11579 } 11580 11581 //===----------------------------------------------------------------------===// 11582 // Target Optimization Hooks 11583 //===----------------------------------------------------------------------===// 11584 11585 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11586 // For the estimates, convergence is quadratic, so we essentially double the 11587 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11588 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11589 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11590 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11591 if (VT.getScalarType() == MVT::f64) 11592 RefinementSteps++; 11593 return RefinementSteps; 11594 } 11595 11596 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11597 int Enabled, int &RefinementSteps, 11598 bool &UseOneConstNR, 11599 bool Reciprocal) const { 11600 EVT VT = Operand.getValueType(); 11601 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11602 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11603 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11604 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11605 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11606 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11607 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11608 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11609 11610 // The Newton-Raphson computation with a single constant does not provide 11611 // enough accuracy on some CPUs. 11612 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11613 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11614 } 11615 return SDValue(); 11616 } 11617 11618 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11619 int Enabled, 11620 int &RefinementSteps) const { 11621 EVT VT = Operand.getValueType(); 11622 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11623 (VT == MVT::f64 && Subtarget.hasFRE()) || 11624 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11625 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11626 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11627 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11628 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11629 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11630 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11631 } 11632 return SDValue(); 11633 } 11634 11635 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11636 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11637 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11638 // enabled for division), this functionality is redundant with the default 11639 // combiner logic (once the division -> reciprocal/multiply transformation 11640 // has taken place). As a result, this matters more for older cores than for 11641 // newer ones. 11642 11643 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11644 // reciprocal if there are two or more FDIVs (for embedded cores with only 11645 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11646 switch (Subtarget.getDarwinDirective()) { 11647 default: 11648 return 3; 11649 case PPC::DIR_440: 11650 case PPC::DIR_A2: 11651 case PPC::DIR_E500: 11652 case PPC::DIR_E500mc: 11653 case PPC::DIR_E5500: 11654 return 2; 11655 } 11656 } 11657 11658 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11659 // collapsed, and so we need to look through chains of them. 11660 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11661 int64_t& Offset, SelectionDAG &DAG) { 11662 if (DAG.isBaseWithConstantOffset(Loc)) { 11663 Base = Loc.getOperand(0); 11664 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11665 11666 // The base might itself be a base plus an offset, and if so, accumulate 11667 // that as well. 11668 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11669 } 11670 } 11671 11672 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11673 unsigned Bytes, int Dist, 11674 SelectionDAG &DAG) { 11675 if (VT.getSizeInBits() / 8 != Bytes) 11676 return false; 11677 11678 SDValue BaseLoc = Base->getBasePtr(); 11679 if (Loc.getOpcode() == ISD::FrameIndex) { 11680 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11681 return false; 11682 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11683 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11684 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11685 int FS = MFI.getObjectSize(FI); 11686 int BFS = MFI.getObjectSize(BFI); 11687 if (FS != BFS || FS != (int)Bytes) return false; 11688 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11689 } 11690 11691 SDValue Base1 = Loc, Base2 = BaseLoc; 11692 int64_t Offset1 = 0, Offset2 = 0; 11693 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11694 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11695 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11696 return true; 11697 11698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11699 const GlobalValue *GV1 = nullptr; 11700 const GlobalValue *GV2 = nullptr; 11701 Offset1 = 0; 11702 Offset2 = 0; 11703 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11704 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11705 if (isGA1 && isGA2 && GV1 == GV2) 11706 return Offset1 == (Offset2 + Dist*Bytes); 11707 return false; 11708 } 11709 11710 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11711 // not enforce equality of the chain operands. 11712 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11713 unsigned Bytes, int Dist, 11714 SelectionDAG &DAG) { 11715 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11716 EVT VT = LS->getMemoryVT(); 11717 SDValue Loc = LS->getBasePtr(); 11718 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11719 } 11720 11721 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11722 EVT VT; 11723 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11724 default: return false; 11725 case Intrinsic::ppc_qpx_qvlfd: 11726 case Intrinsic::ppc_qpx_qvlfda: 11727 VT = MVT::v4f64; 11728 break; 11729 case Intrinsic::ppc_qpx_qvlfs: 11730 case Intrinsic::ppc_qpx_qvlfsa: 11731 VT = MVT::v4f32; 11732 break; 11733 case Intrinsic::ppc_qpx_qvlfcd: 11734 case Intrinsic::ppc_qpx_qvlfcda: 11735 VT = MVT::v2f64; 11736 break; 11737 case Intrinsic::ppc_qpx_qvlfcs: 11738 case Intrinsic::ppc_qpx_qvlfcsa: 11739 VT = MVT::v2f32; 11740 break; 11741 case Intrinsic::ppc_qpx_qvlfiwa: 11742 case Intrinsic::ppc_qpx_qvlfiwz: 11743 case Intrinsic::ppc_altivec_lvx: 11744 case Intrinsic::ppc_altivec_lvxl: 11745 case Intrinsic::ppc_vsx_lxvw4x: 11746 case Intrinsic::ppc_vsx_lxvw4x_be: 11747 VT = MVT::v4i32; 11748 break; 11749 case Intrinsic::ppc_vsx_lxvd2x: 11750 case Intrinsic::ppc_vsx_lxvd2x_be: 11751 VT = MVT::v2f64; 11752 break; 11753 case Intrinsic::ppc_altivec_lvebx: 11754 VT = MVT::i8; 11755 break; 11756 case Intrinsic::ppc_altivec_lvehx: 11757 VT = MVT::i16; 11758 break; 11759 case Intrinsic::ppc_altivec_lvewx: 11760 VT = MVT::i32; 11761 break; 11762 } 11763 11764 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11765 } 11766 11767 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11768 EVT VT; 11769 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11770 default: return false; 11771 case Intrinsic::ppc_qpx_qvstfd: 11772 case Intrinsic::ppc_qpx_qvstfda: 11773 VT = MVT::v4f64; 11774 break; 11775 case Intrinsic::ppc_qpx_qvstfs: 11776 case Intrinsic::ppc_qpx_qvstfsa: 11777 VT = MVT::v4f32; 11778 break; 11779 case Intrinsic::ppc_qpx_qvstfcd: 11780 case Intrinsic::ppc_qpx_qvstfcda: 11781 VT = MVT::v2f64; 11782 break; 11783 case Intrinsic::ppc_qpx_qvstfcs: 11784 case Intrinsic::ppc_qpx_qvstfcsa: 11785 VT = MVT::v2f32; 11786 break; 11787 case Intrinsic::ppc_qpx_qvstfiw: 11788 case Intrinsic::ppc_qpx_qvstfiwa: 11789 case Intrinsic::ppc_altivec_stvx: 11790 case Intrinsic::ppc_altivec_stvxl: 11791 case Intrinsic::ppc_vsx_stxvw4x: 11792 VT = MVT::v4i32; 11793 break; 11794 case Intrinsic::ppc_vsx_stxvd2x: 11795 VT = MVT::v2f64; 11796 break; 11797 case Intrinsic::ppc_vsx_stxvw4x_be: 11798 VT = MVT::v4i32; 11799 break; 11800 case Intrinsic::ppc_vsx_stxvd2x_be: 11801 VT = MVT::v2f64; 11802 break; 11803 case Intrinsic::ppc_altivec_stvebx: 11804 VT = MVT::i8; 11805 break; 11806 case Intrinsic::ppc_altivec_stvehx: 11807 VT = MVT::i16; 11808 break; 11809 case Intrinsic::ppc_altivec_stvewx: 11810 VT = MVT::i32; 11811 break; 11812 } 11813 11814 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11815 } 11816 11817 return false; 11818 } 11819 11820 // Return true is there is a nearyby consecutive load to the one provided 11821 // (regardless of alignment). We search up and down the chain, looking though 11822 // token factors and other loads (but nothing else). As a result, a true result 11823 // indicates that it is safe to create a new consecutive load adjacent to the 11824 // load provided. 11825 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11826 SDValue Chain = LD->getChain(); 11827 EVT VT = LD->getMemoryVT(); 11828 11829 SmallSet<SDNode *, 16> LoadRoots; 11830 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11831 SmallSet<SDNode *, 16> Visited; 11832 11833 // First, search up the chain, branching to follow all token-factor operands. 11834 // If we find a consecutive load, then we're done, otherwise, record all 11835 // nodes just above the top-level loads and token factors. 11836 while (!Queue.empty()) { 11837 SDNode *ChainNext = Queue.pop_back_val(); 11838 if (!Visited.insert(ChainNext).second) 11839 continue; 11840 11841 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11842 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11843 return true; 11844 11845 if (!Visited.count(ChainLD->getChain().getNode())) 11846 Queue.push_back(ChainLD->getChain().getNode()); 11847 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11848 for (const SDUse &O : ChainNext->ops()) 11849 if (!Visited.count(O.getNode())) 11850 Queue.push_back(O.getNode()); 11851 } else 11852 LoadRoots.insert(ChainNext); 11853 } 11854 11855 // Second, search down the chain, starting from the top-level nodes recorded 11856 // in the first phase. These top-level nodes are the nodes just above all 11857 // loads and token factors. Starting with their uses, recursively look though 11858 // all loads (just the chain uses) and token factors to find a consecutive 11859 // load. 11860 Visited.clear(); 11861 Queue.clear(); 11862 11863 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11864 IE = LoadRoots.end(); I != IE; ++I) { 11865 Queue.push_back(*I); 11866 11867 while (!Queue.empty()) { 11868 SDNode *LoadRoot = Queue.pop_back_val(); 11869 if (!Visited.insert(LoadRoot).second) 11870 continue; 11871 11872 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11873 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11874 return true; 11875 11876 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11877 UE = LoadRoot->use_end(); UI != UE; ++UI) 11878 if (((isa<MemSDNode>(*UI) && 11879 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11880 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11881 Queue.push_back(*UI); 11882 } 11883 } 11884 11885 return false; 11886 } 11887 11888 /// This function is called when we have proved that a SETCC node can be replaced 11889 /// by subtraction (and other supporting instructions) so that the result of 11890 /// comparison is kept in a GPR instead of CR. This function is purely for 11891 /// codegen purposes and has some flags to guide the codegen process. 11892 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11893 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11894 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11895 11896 // Zero extend the operands to the largest legal integer. Originally, they 11897 // must be of a strictly smaller size. 11898 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11899 DAG.getConstant(Size, DL, MVT::i32)); 11900 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11901 DAG.getConstant(Size, DL, MVT::i32)); 11902 11903 // Swap if needed. Depends on the condition code. 11904 if (Swap) 11905 std::swap(Op0, Op1); 11906 11907 // Subtract extended integers. 11908 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11909 11910 // Move the sign bit to the least significant position and zero out the rest. 11911 // Now the least significant bit carries the result of original comparison. 11912 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11913 DAG.getConstant(Size - 1, DL, MVT::i32)); 11914 auto Final = Shifted; 11915 11916 // Complement the result if needed. Based on the condition code. 11917 if (Complement) 11918 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11919 DAG.getConstant(1, DL, MVT::i64)); 11920 11921 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11922 } 11923 11924 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11925 DAGCombinerInfo &DCI) const { 11926 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11927 11928 SelectionDAG &DAG = DCI.DAG; 11929 SDLoc DL(N); 11930 11931 // Size of integers being compared has a critical role in the following 11932 // analysis, so we prefer to do this when all types are legal. 11933 if (!DCI.isAfterLegalizeDAG()) 11934 return SDValue(); 11935 11936 // If all users of SETCC extend its value to a legal integer type 11937 // then we replace SETCC with a subtraction 11938 for (SDNode::use_iterator UI = N->use_begin(), 11939 UE = N->use_end(); UI != UE; ++UI) { 11940 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11941 return SDValue(); 11942 } 11943 11944 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11945 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11946 11947 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11948 11949 if (OpSize < Size) { 11950 switch (CC) { 11951 default: break; 11952 case ISD::SETULT: 11953 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11954 case ISD::SETULE: 11955 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11956 case ISD::SETUGT: 11957 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11958 case ISD::SETUGE: 11959 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11960 } 11961 } 11962 11963 return SDValue(); 11964 } 11965 11966 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11967 DAGCombinerInfo &DCI) const { 11968 SelectionDAG &DAG = DCI.DAG; 11969 SDLoc dl(N); 11970 11971 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11972 // If we're tracking CR bits, we need to be careful that we don't have: 11973 // trunc(binary-ops(zext(x), zext(y))) 11974 // or 11975 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11976 // such that we're unnecessarily moving things into GPRs when it would be 11977 // better to keep them in CR bits. 11978 11979 // Note that trunc here can be an actual i1 trunc, or can be the effective 11980 // truncation that comes from a setcc or select_cc. 11981 if (N->getOpcode() == ISD::TRUNCATE && 11982 N->getValueType(0) != MVT::i1) 11983 return SDValue(); 11984 11985 if (N->getOperand(0).getValueType() != MVT::i32 && 11986 N->getOperand(0).getValueType() != MVT::i64) 11987 return SDValue(); 11988 11989 if (N->getOpcode() == ISD::SETCC || 11990 N->getOpcode() == ISD::SELECT_CC) { 11991 // If we're looking at a comparison, then we need to make sure that the 11992 // high bits (all except for the first) don't matter the result. 11993 ISD::CondCode CC = 11994 cast<CondCodeSDNode>(N->getOperand( 11995 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11996 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11997 11998 if (ISD::isSignedIntSetCC(CC)) { 11999 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12000 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12001 return SDValue(); 12002 } else if (ISD::isUnsignedIntSetCC(CC)) { 12003 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12004 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12005 !DAG.MaskedValueIsZero(N->getOperand(1), 12006 APInt::getHighBitsSet(OpBits, OpBits-1))) 12007 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12008 : SDValue()); 12009 } else { 12010 // This is neither a signed nor an unsigned comparison, just make sure 12011 // that the high bits are equal. 12012 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12013 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12014 12015 // We don't really care about what is known about the first bit (if 12016 // anything), so clear it in all masks prior to comparing them. 12017 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12018 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12019 12020 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12021 return SDValue(); 12022 } 12023 } 12024 12025 // We now know that the higher-order bits are irrelevant, we just need to 12026 // make sure that all of the intermediate operations are bit operations, and 12027 // all inputs are extensions. 12028 if (N->getOperand(0).getOpcode() != ISD::AND && 12029 N->getOperand(0).getOpcode() != ISD::OR && 12030 N->getOperand(0).getOpcode() != ISD::XOR && 12031 N->getOperand(0).getOpcode() != ISD::SELECT && 12032 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12033 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12034 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12035 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12036 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12037 return SDValue(); 12038 12039 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12040 N->getOperand(1).getOpcode() != ISD::AND && 12041 N->getOperand(1).getOpcode() != ISD::OR && 12042 N->getOperand(1).getOpcode() != ISD::XOR && 12043 N->getOperand(1).getOpcode() != ISD::SELECT && 12044 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12045 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12046 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12047 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12048 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12049 return SDValue(); 12050 12051 SmallVector<SDValue, 4> Inputs; 12052 SmallVector<SDValue, 8> BinOps, PromOps; 12053 SmallPtrSet<SDNode *, 16> Visited; 12054 12055 for (unsigned i = 0; i < 2; ++i) { 12056 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12057 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12058 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12059 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12060 isa<ConstantSDNode>(N->getOperand(i))) 12061 Inputs.push_back(N->getOperand(i)); 12062 else 12063 BinOps.push_back(N->getOperand(i)); 12064 12065 if (N->getOpcode() == ISD::TRUNCATE) 12066 break; 12067 } 12068 12069 // Visit all inputs, collect all binary operations (and, or, xor and 12070 // select) that are all fed by extensions. 12071 while (!BinOps.empty()) { 12072 SDValue BinOp = BinOps.back(); 12073 BinOps.pop_back(); 12074 12075 if (!Visited.insert(BinOp.getNode()).second) 12076 continue; 12077 12078 PromOps.push_back(BinOp); 12079 12080 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12081 // The condition of the select is not promoted. 12082 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12083 continue; 12084 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12085 continue; 12086 12087 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12088 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12089 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12090 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12091 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12092 Inputs.push_back(BinOp.getOperand(i)); 12093 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12094 BinOp.getOperand(i).getOpcode() == ISD::OR || 12095 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12096 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12097 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12098 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12099 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12100 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12101 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12102 BinOps.push_back(BinOp.getOperand(i)); 12103 } else { 12104 // We have an input that is not an extension or another binary 12105 // operation; we'll abort this transformation. 12106 return SDValue(); 12107 } 12108 } 12109 } 12110 12111 // Make sure that this is a self-contained cluster of operations (which 12112 // is not quite the same thing as saying that everything has only one 12113 // use). 12114 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12115 if (isa<ConstantSDNode>(Inputs[i])) 12116 continue; 12117 12118 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12119 UE = Inputs[i].getNode()->use_end(); 12120 UI != UE; ++UI) { 12121 SDNode *User = *UI; 12122 if (User != N && !Visited.count(User)) 12123 return SDValue(); 12124 12125 // Make sure that we're not going to promote the non-output-value 12126 // operand(s) or SELECT or SELECT_CC. 12127 // FIXME: Although we could sometimes handle this, and it does occur in 12128 // practice that one of the condition inputs to the select is also one of 12129 // the outputs, we currently can't deal with this. 12130 if (User->getOpcode() == ISD::SELECT) { 12131 if (User->getOperand(0) == Inputs[i]) 12132 return SDValue(); 12133 } else if (User->getOpcode() == ISD::SELECT_CC) { 12134 if (User->getOperand(0) == Inputs[i] || 12135 User->getOperand(1) == Inputs[i]) 12136 return SDValue(); 12137 } 12138 } 12139 } 12140 12141 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12142 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12143 UE = PromOps[i].getNode()->use_end(); 12144 UI != UE; ++UI) { 12145 SDNode *User = *UI; 12146 if (User != N && !Visited.count(User)) 12147 return SDValue(); 12148 12149 // Make sure that we're not going to promote the non-output-value 12150 // operand(s) or SELECT or SELECT_CC. 12151 // FIXME: Although we could sometimes handle this, and it does occur in 12152 // practice that one of the condition inputs to the select is also one of 12153 // the outputs, we currently can't deal with this. 12154 if (User->getOpcode() == ISD::SELECT) { 12155 if (User->getOperand(0) == PromOps[i]) 12156 return SDValue(); 12157 } else if (User->getOpcode() == ISD::SELECT_CC) { 12158 if (User->getOperand(0) == PromOps[i] || 12159 User->getOperand(1) == PromOps[i]) 12160 return SDValue(); 12161 } 12162 } 12163 } 12164 12165 // Replace all inputs with the extension operand. 12166 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12167 // Constants may have users outside the cluster of to-be-promoted nodes, 12168 // and so we need to replace those as we do the promotions. 12169 if (isa<ConstantSDNode>(Inputs[i])) 12170 continue; 12171 else 12172 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12173 } 12174 12175 std::list<HandleSDNode> PromOpHandles; 12176 for (auto &PromOp : PromOps) 12177 PromOpHandles.emplace_back(PromOp); 12178 12179 // Replace all operations (these are all the same, but have a different 12180 // (i1) return type). DAG.getNode will validate that the types of 12181 // a binary operator match, so go through the list in reverse so that 12182 // we've likely promoted both operands first. Any intermediate truncations or 12183 // extensions disappear. 12184 while (!PromOpHandles.empty()) { 12185 SDValue PromOp = PromOpHandles.back().getValue(); 12186 PromOpHandles.pop_back(); 12187 12188 if (PromOp.getOpcode() == ISD::TRUNCATE || 12189 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12190 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12191 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12192 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12193 PromOp.getOperand(0).getValueType() != MVT::i1) { 12194 // The operand is not yet ready (see comment below). 12195 PromOpHandles.emplace_front(PromOp); 12196 continue; 12197 } 12198 12199 SDValue RepValue = PromOp.getOperand(0); 12200 if (isa<ConstantSDNode>(RepValue)) 12201 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12202 12203 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12204 continue; 12205 } 12206 12207 unsigned C; 12208 switch (PromOp.getOpcode()) { 12209 default: C = 0; break; 12210 case ISD::SELECT: C = 1; break; 12211 case ISD::SELECT_CC: C = 2; break; 12212 } 12213 12214 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12215 PromOp.getOperand(C).getValueType() != MVT::i1) || 12216 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12217 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12218 // The to-be-promoted operands of this node have not yet been 12219 // promoted (this should be rare because we're going through the 12220 // list backward, but if one of the operands has several users in 12221 // this cluster of to-be-promoted nodes, it is possible). 12222 PromOpHandles.emplace_front(PromOp); 12223 continue; 12224 } 12225 12226 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12227 PromOp.getNode()->op_end()); 12228 12229 // If there are any constant inputs, make sure they're replaced now. 12230 for (unsigned i = 0; i < 2; ++i) 12231 if (isa<ConstantSDNode>(Ops[C+i])) 12232 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12233 12234 DAG.ReplaceAllUsesOfValueWith(PromOp, 12235 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12236 } 12237 12238 // Now we're left with the initial truncation itself. 12239 if (N->getOpcode() == ISD::TRUNCATE) 12240 return N->getOperand(0); 12241 12242 // Otherwise, this is a comparison. The operands to be compared have just 12243 // changed type (to i1), but everything else is the same. 12244 return SDValue(N, 0); 12245 } 12246 12247 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12248 DAGCombinerInfo &DCI) const { 12249 SelectionDAG &DAG = DCI.DAG; 12250 SDLoc dl(N); 12251 12252 // If we're tracking CR bits, we need to be careful that we don't have: 12253 // zext(binary-ops(trunc(x), trunc(y))) 12254 // or 12255 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12256 // such that we're unnecessarily moving things into CR bits that can more 12257 // efficiently stay in GPRs. Note that if we're not certain that the high 12258 // bits are set as required by the final extension, we still may need to do 12259 // some masking to get the proper behavior. 12260 12261 // This same functionality is important on PPC64 when dealing with 12262 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12263 // the return values of functions. Because it is so similar, it is handled 12264 // here as well. 12265 12266 if (N->getValueType(0) != MVT::i32 && 12267 N->getValueType(0) != MVT::i64) 12268 return SDValue(); 12269 12270 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12271 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12272 return SDValue(); 12273 12274 if (N->getOperand(0).getOpcode() != ISD::AND && 12275 N->getOperand(0).getOpcode() != ISD::OR && 12276 N->getOperand(0).getOpcode() != ISD::XOR && 12277 N->getOperand(0).getOpcode() != ISD::SELECT && 12278 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12279 return SDValue(); 12280 12281 SmallVector<SDValue, 4> Inputs; 12282 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12283 SmallPtrSet<SDNode *, 16> Visited; 12284 12285 // Visit all inputs, collect all binary operations (and, or, xor and 12286 // select) that are all fed by truncations. 12287 while (!BinOps.empty()) { 12288 SDValue BinOp = BinOps.back(); 12289 BinOps.pop_back(); 12290 12291 if (!Visited.insert(BinOp.getNode()).second) 12292 continue; 12293 12294 PromOps.push_back(BinOp); 12295 12296 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12297 // The condition of the select is not promoted. 12298 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12299 continue; 12300 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12301 continue; 12302 12303 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12304 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12305 Inputs.push_back(BinOp.getOperand(i)); 12306 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12307 BinOp.getOperand(i).getOpcode() == ISD::OR || 12308 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12309 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12310 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12311 BinOps.push_back(BinOp.getOperand(i)); 12312 } else { 12313 // We have an input that is not a truncation or another binary 12314 // operation; we'll abort this transformation. 12315 return SDValue(); 12316 } 12317 } 12318 } 12319 12320 // The operands of a select that must be truncated when the select is 12321 // promoted because the operand is actually part of the to-be-promoted set. 12322 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12323 12324 // Make sure that this is a self-contained cluster of operations (which 12325 // is not quite the same thing as saying that everything has only one 12326 // use). 12327 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12328 if (isa<ConstantSDNode>(Inputs[i])) 12329 continue; 12330 12331 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12332 UE = Inputs[i].getNode()->use_end(); 12333 UI != UE; ++UI) { 12334 SDNode *User = *UI; 12335 if (User != N && !Visited.count(User)) 12336 return SDValue(); 12337 12338 // If we're going to promote the non-output-value operand(s) or SELECT or 12339 // SELECT_CC, record them for truncation. 12340 if (User->getOpcode() == ISD::SELECT) { 12341 if (User->getOperand(0) == Inputs[i]) 12342 SelectTruncOp[0].insert(std::make_pair(User, 12343 User->getOperand(0).getValueType())); 12344 } else if (User->getOpcode() == ISD::SELECT_CC) { 12345 if (User->getOperand(0) == Inputs[i]) 12346 SelectTruncOp[0].insert(std::make_pair(User, 12347 User->getOperand(0).getValueType())); 12348 if (User->getOperand(1) == Inputs[i]) 12349 SelectTruncOp[1].insert(std::make_pair(User, 12350 User->getOperand(1).getValueType())); 12351 } 12352 } 12353 } 12354 12355 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12356 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12357 UE = PromOps[i].getNode()->use_end(); 12358 UI != UE; ++UI) { 12359 SDNode *User = *UI; 12360 if (User != N && !Visited.count(User)) 12361 return SDValue(); 12362 12363 // If we're going to promote the non-output-value operand(s) or SELECT or 12364 // SELECT_CC, record them for truncation. 12365 if (User->getOpcode() == ISD::SELECT) { 12366 if (User->getOperand(0) == PromOps[i]) 12367 SelectTruncOp[0].insert(std::make_pair(User, 12368 User->getOperand(0).getValueType())); 12369 } else if (User->getOpcode() == ISD::SELECT_CC) { 12370 if (User->getOperand(0) == PromOps[i]) 12371 SelectTruncOp[0].insert(std::make_pair(User, 12372 User->getOperand(0).getValueType())); 12373 if (User->getOperand(1) == PromOps[i]) 12374 SelectTruncOp[1].insert(std::make_pair(User, 12375 User->getOperand(1).getValueType())); 12376 } 12377 } 12378 } 12379 12380 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12381 bool ReallyNeedsExt = false; 12382 if (N->getOpcode() != ISD::ANY_EXTEND) { 12383 // If all of the inputs are not already sign/zero extended, then 12384 // we'll still need to do that at the end. 12385 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12386 if (isa<ConstantSDNode>(Inputs[i])) 12387 continue; 12388 12389 unsigned OpBits = 12390 Inputs[i].getOperand(0).getValueSizeInBits(); 12391 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12392 12393 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12394 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12395 APInt::getHighBitsSet(OpBits, 12396 OpBits-PromBits))) || 12397 (N->getOpcode() == ISD::SIGN_EXTEND && 12398 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12399 (OpBits-(PromBits-1)))) { 12400 ReallyNeedsExt = true; 12401 break; 12402 } 12403 } 12404 } 12405 12406 // Replace all inputs, either with the truncation operand, or a 12407 // truncation or extension to the final output type. 12408 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12409 // Constant inputs need to be replaced with the to-be-promoted nodes that 12410 // use them because they might have users outside of the cluster of 12411 // promoted nodes. 12412 if (isa<ConstantSDNode>(Inputs[i])) 12413 continue; 12414 12415 SDValue InSrc = Inputs[i].getOperand(0); 12416 if (Inputs[i].getValueType() == N->getValueType(0)) 12417 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12418 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12419 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12420 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12421 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12422 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12423 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12424 else 12425 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12426 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12427 } 12428 12429 std::list<HandleSDNode> PromOpHandles; 12430 for (auto &PromOp : PromOps) 12431 PromOpHandles.emplace_back(PromOp); 12432 12433 // Replace all operations (these are all the same, but have a different 12434 // (promoted) return type). DAG.getNode will validate that the types of 12435 // a binary operator match, so go through the list in reverse so that 12436 // we've likely promoted both operands first. 12437 while (!PromOpHandles.empty()) { 12438 SDValue PromOp = PromOpHandles.back().getValue(); 12439 PromOpHandles.pop_back(); 12440 12441 unsigned C; 12442 switch (PromOp.getOpcode()) { 12443 default: C = 0; break; 12444 case ISD::SELECT: C = 1; break; 12445 case ISD::SELECT_CC: C = 2; break; 12446 } 12447 12448 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12449 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12450 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12451 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12452 // The to-be-promoted operands of this node have not yet been 12453 // promoted (this should be rare because we're going through the 12454 // list backward, but if one of the operands has several users in 12455 // this cluster of to-be-promoted nodes, it is possible). 12456 PromOpHandles.emplace_front(PromOp); 12457 continue; 12458 } 12459 12460 // For SELECT and SELECT_CC nodes, we do a similar check for any 12461 // to-be-promoted comparison inputs. 12462 if (PromOp.getOpcode() == ISD::SELECT || 12463 PromOp.getOpcode() == ISD::SELECT_CC) { 12464 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12465 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12466 (SelectTruncOp[1].count(PromOp.getNode()) && 12467 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12468 PromOpHandles.emplace_front(PromOp); 12469 continue; 12470 } 12471 } 12472 12473 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12474 PromOp.getNode()->op_end()); 12475 12476 // If this node has constant inputs, then they'll need to be promoted here. 12477 for (unsigned i = 0; i < 2; ++i) { 12478 if (!isa<ConstantSDNode>(Ops[C+i])) 12479 continue; 12480 if (Ops[C+i].getValueType() == N->getValueType(0)) 12481 continue; 12482 12483 if (N->getOpcode() == ISD::SIGN_EXTEND) 12484 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12485 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12486 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12487 else 12488 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12489 } 12490 12491 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12492 // truncate them again to the original value type. 12493 if (PromOp.getOpcode() == ISD::SELECT || 12494 PromOp.getOpcode() == ISD::SELECT_CC) { 12495 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12496 if (SI0 != SelectTruncOp[0].end()) 12497 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12498 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12499 if (SI1 != SelectTruncOp[1].end()) 12500 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12501 } 12502 12503 DAG.ReplaceAllUsesOfValueWith(PromOp, 12504 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12505 } 12506 12507 // Now we're left with the initial extension itself. 12508 if (!ReallyNeedsExt) 12509 return N->getOperand(0); 12510 12511 // To zero extend, just mask off everything except for the first bit (in the 12512 // i1 case). 12513 if (N->getOpcode() == ISD::ZERO_EXTEND) 12514 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12515 DAG.getConstant(APInt::getLowBitsSet( 12516 N->getValueSizeInBits(0), PromBits), 12517 dl, N->getValueType(0))); 12518 12519 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12520 "Invalid extension type"); 12521 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12522 SDValue ShiftCst = 12523 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12524 return DAG.getNode( 12525 ISD::SRA, dl, N->getValueType(0), 12526 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12527 ShiftCst); 12528 } 12529 12530 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12531 DAGCombinerInfo &DCI) const { 12532 assert(N->getOpcode() == ISD::SETCC && 12533 "Should be called with a SETCC node"); 12534 12535 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12536 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12537 SDValue LHS = N->getOperand(0); 12538 SDValue RHS = N->getOperand(1); 12539 12540 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12541 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12542 LHS.hasOneUse()) 12543 std::swap(LHS, RHS); 12544 12545 // x == 0-y --> x+y == 0 12546 // x != 0-y --> x+y != 0 12547 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12548 RHS.hasOneUse()) { 12549 SDLoc DL(N); 12550 SelectionDAG &DAG = DCI.DAG; 12551 EVT VT = N->getValueType(0); 12552 EVT OpVT = LHS.getValueType(); 12553 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12554 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12555 } 12556 } 12557 12558 return DAGCombineTruncBoolExt(N, DCI); 12559 } 12560 12561 // Is this an extending load from an f32 to an f64? 12562 static bool isFPExtLoad(SDValue Op) { 12563 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12564 return LD->getExtensionType() == ISD::EXTLOAD && 12565 Op.getValueType() == MVT::f64; 12566 return false; 12567 } 12568 12569 /// Reduces the number of fp-to-int conversion when building a vector. 12570 /// 12571 /// If this vector is built out of floating to integer conversions, 12572 /// transform it to a vector built out of floating point values followed by a 12573 /// single floating to integer conversion of the vector. 12574 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12575 /// becomes (fptosi (build_vector ($A, $B, ...))) 12576 SDValue PPCTargetLowering:: 12577 combineElementTruncationToVectorTruncation(SDNode *N, 12578 DAGCombinerInfo &DCI) const { 12579 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12580 "Should be called with a BUILD_VECTOR node"); 12581 12582 SelectionDAG &DAG = DCI.DAG; 12583 SDLoc dl(N); 12584 12585 SDValue FirstInput = N->getOperand(0); 12586 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12587 "The input operand must be an fp-to-int conversion."); 12588 12589 // This combine happens after legalization so the fp_to_[su]i nodes are 12590 // already converted to PPCSISD nodes. 12591 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12592 if (FirstConversion == PPCISD::FCTIDZ || 12593 FirstConversion == PPCISD::FCTIDUZ || 12594 FirstConversion == PPCISD::FCTIWZ || 12595 FirstConversion == PPCISD::FCTIWUZ) { 12596 bool IsSplat = true; 12597 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12598 FirstConversion == PPCISD::FCTIWUZ; 12599 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12600 SmallVector<SDValue, 4> Ops; 12601 EVT TargetVT = N->getValueType(0); 12602 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12603 SDValue NextOp = N->getOperand(i); 12604 if (NextOp.getOpcode() != PPCISD::MFVSR) 12605 return SDValue(); 12606 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12607 if (NextConversion != FirstConversion) 12608 return SDValue(); 12609 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12610 // This is not valid if the input was originally double precision. It is 12611 // also not profitable to do unless this is an extending load in which 12612 // case doing this combine will allow us to combine consecutive loads. 12613 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12614 return SDValue(); 12615 if (N->getOperand(i) != FirstInput) 12616 IsSplat = false; 12617 } 12618 12619 // If this is a splat, we leave it as-is since there will be only a single 12620 // fp-to-int conversion followed by a splat of the integer. This is better 12621 // for 32-bit and smaller ints and neutral for 64-bit ints. 12622 if (IsSplat) 12623 return SDValue(); 12624 12625 // Now that we know we have the right type of node, get its operands 12626 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12627 SDValue In = N->getOperand(i).getOperand(0); 12628 if (Is32Bit) { 12629 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12630 // here, we know that all inputs are extending loads so this is safe). 12631 if (In.isUndef()) 12632 Ops.push_back(DAG.getUNDEF(SrcVT)); 12633 else { 12634 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12635 MVT::f32, In.getOperand(0), 12636 DAG.getIntPtrConstant(1, dl)); 12637 Ops.push_back(Trunc); 12638 } 12639 } else 12640 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12641 } 12642 12643 unsigned Opcode; 12644 if (FirstConversion == PPCISD::FCTIDZ || 12645 FirstConversion == PPCISD::FCTIWZ) 12646 Opcode = ISD::FP_TO_SINT; 12647 else 12648 Opcode = ISD::FP_TO_UINT; 12649 12650 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12651 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12652 return DAG.getNode(Opcode, dl, TargetVT, BV); 12653 } 12654 return SDValue(); 12655 } 12656 12657 /// Reduce the number of loads when building a vector. 12658 /// 12659 /// Building a vector out of multiple loads can be converted to a load 12660 /// of the vector type if the loads are consecutive. If the loads are 12661 /// consecutive but in descending order, a shuffle is added at the end 12662 /// to reorder the vector. 12663 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12664 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12665 "Should be called with a BUILD_VECTOR node"); 12666 12667 SDLoc dl(N); 12668 12669 // Return early for non byte-sized type, as they can't be consecutive. 12670 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12671 return SDValue(); 12672 12673 bool InputsAreConsecutiveLoads = true; 12674 bool InputsAreReverseConsecutive = true; 12675 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12676 SDValue FirstInput = N->getOperand(0); 12677 bool IsRoundOfExtLoad = false; 12678 12679 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12680 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12681 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12682 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12683 } 12684 // Not a build vector of (possibly fp_rounded) loads. 12685 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12686 N->getNumOperands() == 1) 12687 return SDValue(); 12688 12689 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12690 // If any inputs are fp_round(extload), they all must be. 12691 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12692 return SDValue(); 12693 12694 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12695 N->getOperand(i); 12696 if (NextInput.getOpcode() != ISD::LOAD) 12697 return SDValue(); 12698 12699 SDValue PreviousInput = 12700 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12701 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12702 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12703 12704 // If any inputs are fp_round(extload), they all must be. 12705 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12706 return SDValue(); 12707 12708 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12709 InputsAreConsecutiveLoads = false; 12710 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12711 InputsAreReverseConsecutive = false; 12712 12713 // Exit early if the loads are neither consecutive nor reverse consecutive. 12714 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12715 return SDValue(); 12716 } 12717 12718 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12719 "The loads cannot be both consecutive and reverse consecutive."); 12720 12721 SDValue FirstLoadOp = 12722 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12723 SDValue LastLoadOp = 12724 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12725 N->getOperand(N->getNumOperands()-1); 12726 12727 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12728 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12729 if (InputsAreConsecutiveLoads) { 12730 assert(LD1 && "Input needs to be a LoadSDNode."); 12731 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12732 LD1->getBasePtr(), LD1->getPointerInfo(), 12733 LD1->getAlignment()); 12734 } 12735 if (InputsAreReverseConsecutive) { 12736 assert(LDL && "Input needs to be a LoadSDNode."); 12737 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12738 LDL->getBasePtr(), LDL->getPointerInfo(), 12739 LDL->getAlignment()); 12740 SmallVector<int, 16> Ops; 12741 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12742 Ops.push_back(i); 12743 12744 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12745 DAG.getUNDEF(N->getValueType(0)), Ops); 12746 } 12747 return SDValue(); 12748 } 12749 12750 // This function adds the required vector_shuffle needed to get 12751 // the elements of the vector extract in the correct position 12752 // as specified by the CorrectElems encoding. 12753 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12754 SDValue Input, uint64_t Elems, 12755 uint64_t CorrectElems) { 12756 SDLoc dl(N); 12757 12758 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12759 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12760 12761 // Knowing the element indices being extracted from the original 12762 // vector and the order in which they're being inserted, just put 12763 // them at element indices required for the instruction. 12764 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12765 if (DAG.getDataLayout().isLittleEndian()) 12766 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12767 else 12768 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12769 CorrectElems = CorrectElems >> 8; 12770 Elems = Elems >> 8; 12771 } 12772 12773 SDValue Shuffle = 12774 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12775 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12776 12777 EVT Ty = N->getValueType(0); 12778 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12779 return BV; 12780 } 12781 12782 // Look for build vector patterns where input operands come from sign 12783 // extended vector_extract elements of specific indices. If the correct indices 12784 // aren't used, add a vector shuffle to fix up the indices and create a new 12785 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12786 // during instruction selection. 12787 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12788 // This array encodes the indices that the vector sign extend instructions 12789 // extract from when extending from one type to another for both BE and LE. 12790 // The right nibble of each byte corresponds to the LE incides. 12791 // and the left nibble of each byte corresponds to the BE incides. 12792 // For example: 0x3074B8FC byte->word 12793 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12794 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12795 // For example: 0x000070F8 byte->double word 12796 // For LE: the allowed indices are: 0x0,0x8 12797 // For BE: the allowed indices are: 0x7,0xF 12798 uint64_t TargetElems[] = { 12799 0x3074B8FC, // b->w 12800 0x000070F8, // b->d 12801 0x10325476, // h->w 12802 0x00003074, // h->d 12803 0x00001032, // w->d 12804 }; 12805 12806 uint64_t Elems = 0; 12807 int Index; 12808 SDValue Input; 12809 12810 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12811 if (!Op) 12812 return false; 12813 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12814 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12815 return false; 12816 12817 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12818 // of the right width. 12819 SDValue Extract = Op.getOperand(0); 12820 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12821 Extract = Extract.getOperand(0); 12822 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12823 return false; 12824 12825 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12826 if (!ExtOp) 12827 return false; 12828 12829 Index = ExtOp->getZExtValue(); 12830 if (Input && Input != Extract.getOperand(0)) 12831 return false; 12832 12833 if (!Input) 12834 Input = Extract.getOperand(0); 12835 12836 Elems = Elems << 8; 12837 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12838 Elems |= Index; 12839 12840 return true; 12841 }; 12842 12843 // If the build vector operands aren't sign extended vector extracts, 12844 // of the same input vector, then return. 12845 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12846 if (!isSExtOfVecExtract(N->getOperand(i))) { 12847 return SDValue(); 12848 } 12849 } 12850 12851 // If the vector extract indicies are not correct, add the appropriate 12852 // vector_shuffle. 12853 int TgtElemArrayIdx; 12854 int InputSize = Input.getValueType().getScalarSizeInBits(); 12855 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12856 if (InputSize + OutputSize == 40) 12857 TgtElemArrayIdx = 0; 12858 else if (InputSize + OutputSize == 72) 12859 TgtElemArrayIdx = 1; 12860 else if (InputSize + OutputSize == 48) 12861 TgtElemArrayIdx = 2; 12862 else if (InputSize + OutputSize == 80) 12863 TgtElemArrayIdx = 3; 12864 else if (InputSize + OutputSize == 96) 12865 TgtElemArrayIdx = 4; 12866 else 12867 return SDValue(); 12868 12869 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12870 CorrectElems = DAG.getDataLayout().isLittleEndian() 12871 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12872 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12873 if (Elems != CorrectElems) { 12874 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12875 } 12876 12877 // Regular lowering will catch cases where a shuffle is not needed. 12878 return SDValue(); 12879 } 12880 12881 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12882 DAGCombinerInfo &DCI) const { 12883 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12884 "Should be called with a BUILD_VECTOR node"); 12885 12886 SelectionDAG &DAG = DCI.DAG; 12887 SDLoc dl(N); 12888 12889 if (!Subtarget.hasVSX()) 12890 return SDValue(); 12891 12892 // The target independent DAG combiner will leave a build_vector of 12893 // float-to-int conversions intact. We can generate MUCH better code for 12894 // a float-to-int conversion of a vector of floats. 12895 SDValue FirstInput = N->getOperand(0); 12896 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12897 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12898 if (Reduced) 12899 return Reduced; 12900 } 12901 12902 // If we're building a vector out of consecutive loads, just load that 12903 // vector type. 12904 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12905 if (Reduced) 12906 return Reduced; 12907 12908 // If we're building a vector out of extended elements from another vector 12909 // we have P9 vector integer extend instructions. The code assumes legal 12910 // input types (i.e. it can't handle things like v4i16) so do not run before 12911 // legalization. 12912 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12913 Reduced = combineBVOfVecSExt(N, DAG); 12914 if (Reduced) 12915 return Reduced; 12916 } 12917 12918 12919 if (N->getValueType(0) != MVT::v2f64) 12920 return SDValue(); 12921 12922 // Looking for: 12923 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12924 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12925 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12926 return SDValue(); 12927 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12928 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12929 return SDValue(); 12930 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12931 return SDValue(); 12932 12933 SDValue Ext1 = FirstInput.getOperand(0); 12934 SDValue Ext2 = N->getOperand(1).getOperand(0); 12935 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12936 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12937 return SDValue(); 12938 12939 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12940 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12941 if (!Ext1Op || !Ext2Op) 12942 return SDValue(); 12943 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 12944 Ext1.getOperand(0) != Ext2.getOperand(0)) 12945 return SDValue(); 12946 12947 int FirstElem = Ext1Op->getZExtValue(); 12948 int SecondElem = Ext2Op->getZExtValue(); 12949 int SubvecIdx; 12950 if (FirstElem == 0 && SecondElem == 1) 12951 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12952 else if (FirstElem == 2 && SecondElem == 3) 12953 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12954 else 12955 return SDValue(); 12956 12957 SDValue SrcVec = Ext1.getOperand(0); 12958 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12959 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12960 return DAG.getNode(NodeType, dl, MVT::v2f64, 12961 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12962 } 12963 12964 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12965 DAGCombinerInfo &DCI) const { 12966 assert((N->getOpcode() == ISD::SINT_TO_FP || 12967 N->getOpcode() == ISD::UINT_TO_FP) && 12968 "Need an int -> FP conversion node here"); 12969 12970 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12971 return SDValue(); 12972 12973 SelectionDAG &DAG = DCI.DAG; 12974 SDLoc dl(N); 12975 SDValue Op(N, 0); 12976 12977 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12978 // from the hardware. 12979 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12980 return SDValue(); 12981 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12982 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12983 return SDValue(); 12984 12985 SDValue FirstOperand(Op.getOperand(0)); 12986 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12987 (FirstOperand.getValueType() == MVT::i8 || 12988 FirstOperand.getValueType() == MVT::i16); 12989 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12990 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12991 bool DstDouble = Op.getValueType() == MVT::f64; 12992 unsigned ConvOp = Signed ? 12993 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12994 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12995 SDValue WidthConst = 12996 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12997 dl, false); 12998 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12999 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13000 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13001 DAG.getVTList(MVT::f64, MVT::Other), 13002 Ops, MVT::i8, LDN->getMemOperand()); 13003 13004 // For signed conversion, we need to sign-extend the value in the VSR 13005 if (Signed) { 13006 SDValue ExtOps[] = { Ld, WidthConst }; 13007 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13008 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13009 } else 13010 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13011 } 13012 13013 13014 // For i32 intermediate values, unfortunately, the conversion functions 13015 // leave the upper 32 bits of the value are undefined. Within the set of 13016 // scalar instructions, we have no method for zero- or sign-extending the 13017 // value. Thus, we cannot handle i32 intermediate values here. 13018 if (Op.getOperand(0).getValueType() == MVT::i32) 13019 return SDValue(); 13020 13021 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13022 "UINT_TO_FP is supported only with FPCVT"); 13023 13024 // If we have FCFIDS, then use it when converting to single-precision. 13025 // Otherwise, convert to double-precision and then round. 13026 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13027 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13028 : PPCISD::FCFIDS) 13029 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13030 : PPCISD::FCFID); 13031 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13032 ? MVT::f32 13033 : MVT::f64; 13034 13035 // If we're converting from a float, to an int, and back to a float again, 13036 // then we don't need the store/load pair at all. 13037 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13038 Subtarget.hasFPCVT()) || 13039 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13040 SDValue Src = Op.getOperand(0).getOperand(0); 13041 if (Src.getValueType() == MVT::f32) { 13042 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13043 DCI.AddToWorklist(Src.getNode()); 13044 } else if (Src.getValueType() != MVT::f64) { 13045 // Make sure that we don't pick up a ppc_fp128 source value. 13046 return SDValue(); 13047 } 13048 13049 unsigned FCTOp = 13050 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13051 PPCISD::FCTIDUZ; 13052 13053 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13054 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13055 13056 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13057 FP = DAG.getNode(ISD::FP_ROUND, dl, 13058 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13059 DCI.AddToWorklist(FP.getNode()); 13060 } 13061 13062 return FP; 13063 } 13064 13065 return SDValue(); 13066 } 13067 13068 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13069 // builtins) into loads with swaps. 13070 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13071 DAGCombinerInfo &DCI) const { 13072 SelectionDAG &DAG = DCI.DAG; 13073 SDLoc dl(N); 13074 SDValue Chain; 13075 SDValue Base; 13076 MachineMemOperand *MMO; 13077 13078 switch (N->getOpcode()) { 13079 default: 13080 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13081 case ISD::LOAD: { 13082 LoadSDNode *LD = cast<LoadSDNode>(N); 13083 Chain = LD->getChain(); 13084 Base = LD->getBasePtr(); 13085 MMO = LD->getMemOperand(); 13086 // If the MMO suggests this isn't a load of a full vector, leave 13087 // things alone. For a built-in, we have to make the change for 13088 // correctness, so if there is a size problem that will be a bug. 13089 if (MMO->getSize() < 16) 13090 return SDValue(); 13091 break; 13092 } 13093 case ISD::INTRINSIC_W_CHAIN: { 13094 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13095 Chain = Intrin->getChain(); 13096 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13097 // us what we want. Get operand 2 instead. 13098 Base = Intrin->getOperand(2); 13099 MMO = Intrin->getMemOperand(); 13100 break; 13101 } 13102 } 13103 13104 MVT VecTy = N->getValueType(0).getSimpleVT(); 13105 13106 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13107 // aligned and the type is a vector with elements up to 4 bytes 13108 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13109 && VecTy.getScalarSizeInBits() <= 32 ) { 13110 return SDValue(); 13111 } 13112 13113 SDValue LoadOps[] = { Chain, Base }; 13114 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13115 DAG.getVTList(MVT::v2f64, MVT::Other), 13116 LoadOps, MVT::v2f64, MMO); 13117 13118 DCI.AddToWorklist(Load.getNode()); 13119 Chain = Load.getValue(1); 13120 SDValue Swap = DAG.getNode( 13121 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13122 DCI.AddToWorklist(Swap.getNode()); 13123 13124 // Add a bitcast if the resulting load type doesn't match v2f64. 13125 if (VecTy != MVT::v2f64) { 13126 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13127 DCI.AddToWorklist(N.getNode()); 13128 // Package {bitcast value, swap's chain} to match Load's shape. 13129 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13130 N, Swap.getValue(1)); 13131 } 13132 13133 return Swap; 13134 } 13135 13136 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13137 // builtins) into stores with swaps. 13138 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13139 DAGCombinerInfo &DCI) const { 13140 SelectionDAG &DAG = DCI.DAG; 13141 SDLoc dl(N); 13142 SDValue Chain; 13143 SDValue Base; 13144 unsigned SrcOpnd; 13145 MachineMemOperand *MMO; 13146 13147 switch (N->getOpcode()) { 13148 default: 13149 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13150 case ISD::STORE: { 13151 StoreSDNode *ST = cast<StoreSDNode>(N); 13152 Chain = ST->getChain(); 13153 Base = ST->getBasePtr(); 13154 MMO = ST->getMemOperand(); 13155 SrcOpnd = 1; 13156 // If the MMO suggests this isn't a store of a full vector, leave 13157 // things alone. For a built-in, we have to make the change for 13158 // correctness, so if there is a size problem that will be a bug. 13159 if (MMO->getSize() < 16) 13160 return SDValue(); 13161 break; 13162 } 13163 case ISD::INTRINSIC_VOID: { 13164 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13165 Chain = Intrin->getChain(); 13166 // Intrin->getBasePtr() oddly does not get what we want. 13167 Base = Intrin->getOperand(3); 13168 MMO = Intrin->getMemOperand(); 13169 SrcOpnd = 2; 13170 break; 13171 } 13172 } 13173 13174 SDValue Src = N->getOperand(SrcOpnd); 13175 MVT VecTy = Src.getValueType().getSimpleVT(); 13176 13177 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13178 // aligned and the type is a vector with elements up to 4 bytes 13179 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13180 && VecTy.getScalarSizeInBits() <= 32 ) { 13181 return SDValue(); 13182 } 13183 13184 // All stores are done as v2f64 and possible bit cast. 13185 if (VecTy != MVT::v2f64) { 13186 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13187 DCI.AddToWorklist(Src.getNode()); 13188 } 13189 13190 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13191 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13192 DCI.AddToWorklist(Swap.getNode()); 13193 Chain = Swap.getValue(1); 13194 SDValue StoreOps[] = { Chain, Swap, Base }; 13195 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13196 DAG.getVTList(MVT::Other), 13197 StoreOps, VecTy, MMO); 13198 DCI.AddToWorklist(Store.getNode()); 13199 return Store; 13200 } 13201 13202 // Handle DAG combine for STORE (FP_TO_INT F). 13203 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13204 DAGCombinerInfo &DCI) const { 13205 13206 SelectionDAG &DAG = DCI.DAG; 13207 SDLoc dl(N); 13208 unsigned Opcode = N->getOperand(1).getOpcode(); 13209 13210 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13211 && "Not a FP_TO_INT Instruction!"); 13212 13213 SDValue Val = N->getOperand(1).getOperand(0); 13214 EVT Op1VT = N->getOperand(1).getValueType(); 13215 EVT ResVT = Val.getValueType(); 13216 13217 // Floating point types smaller than 32 bits are not legal on Power. 13218 if (ResVT.getScalarSizeInBits() < 32) 13219 return SDValue(); 13220 13221 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13222 bool ValidTypeForStoreFltAsInt = 13223 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13224 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13225 13226 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13227 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13228 return SDValue(); 13229 13230 // Extend f32 values to f64 13231 if (ResVT.getScalarSizeInBits() == 32) { 13232 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13233 DCI.AddToWorklist(Val.getNode()); 13234 } 13235 13236 // Set signed or unsigned conversion opcode. 13237 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13238 PPCISD::FP_TO_SINT_IN_VSR : 13239 PPCISD::FP_TO_UINT_IN_VSR; 13240 13241 Val = DAG.getNode(ConvOpcode, 13242 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13243 DCI.AddToWorklist(Val.getNode()); 13244 13245 // Set number of bytes being converted. 13246 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13247 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13248 DAG.getIntPtrConstant(ByteSize, dl, false), 13249 DAG.getValueType(Op1VT) }; 13250 13251 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13252 DAG.getVTList(MVT::Other), Ops, 13253 cast<StoreSDNode>(N)->getMemoryVT(), 13254 cast<StoreSDNode>(N)->getMemOperand()); 13255 13256 DCI.AddToWorklist(Val.getNode()); 13257 return Val; 13258 } 13259 13260 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13261 LSBaseSDNode *LSBase, 13262 DAGCombinerInfo &DCI) const { 13263 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13264 "Not a reverse memop pattern!"); 13265 13266 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13267 auto Mask = SVN->getMask(); 13268 int i = 0; 13269 auto I = Mask.rbegin(); 13270 auto E = Mask.rend(); 13271 13272 for (; I != E; ++I) { 13273 if (*I != i) 13274 return false; 13275 i++; 13276 } 13277 return true; 13278 }; 13279 13280 SelectionDAG &DAG = DCI.DAG; 13281 EVT VT = SVN->getValueType(0); 13282 13283 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13284 return SDValue(); 13285 13286 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13287 // See comment in PPCVSXSwapRemoval.cpp. 13288 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13289 if (!Subtarget.hasP9Vector()) 13290 return SDValue(); 13291 13292 if(!IsElementReverse(SVN)) 13293 return SDValue(); 13294 13295 if (LSBase->getOpcode() == ISD::LOAD) { 13296 SDLoc dl(SVN); 13297 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13298 return DAG.getMemIntrinsicNode( 13299 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13300 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13301 } 13302 13303 if (LSBase->getOpcode() == ISD::STORE) { 13304 SDLoc dl(LSBase); 13305 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13306 LSBase->getBasePtr()}; 13307 return DAG.getMemIntrinsicNode( 13308 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13309 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13310 } 13311 13312 llvm_unreachable("Expected a load or store node here"); 13313 } 13314 13315 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13316 DAGCombinerInfo &DCI) const { 13317 SelectionDAG &DAG = DCI.DAG; 13318 SDLoc dl(N); 13319 switch (N->getOpcode()) { 13320 default: break; 13321 case ISD::ADD: 13322 return combineADD(N, DCI); 13323 case ISD::SHL: 13324 return combineSHL(N, DCI); 13325 case ISD::SRA: 13326 return combineSRA(N, DCI); 13327 case ISD::SRL: 13328 return combineSRL(N, DCI); 13329 case ISD::MUL: 13330 return combineMUL(N, DCI); 13331 case PPCISD::SHL: 13332 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13333 return N->getOperand(0); 13334 break; 13335 case PPCISD::SRL: 13336 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13337 return N->getOperand(0); 13338 break; 13339 case PPCISD::SRA: 13340 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13341 if (C->isNullValue() || // 0 >>s V -> 0. 13342 C->isAllOnesValue()) // -1 >>s V -> -1. 13343 return N->getOperand(0); 13344 } 13345 break; 13346 case ISD::SIGN_EXTEND: 13347 case ISD::ZERO_EXTEND: 13348 case ISD::ANY_EXTEND: 13349 return DAGCombineExtBoolTrunc(N, DCI); 13350 case ISD::TRUNCATE: 13351 return combineTRUNCATE(N, DCI); 13352 case ISD::SETCC: 13353 if (SDValue CSCC = combineSetCC(N, DCI)) 13354 return CSCC; 13355 LLVM_FALLTHROUGH; 13356 case ISD::SELECT_CC: 13357 return DAGCombineTruncBoolExt(N, DCI); 13358 case ISD::SINT_TO_FP: 13359 case ISD::UINT_TO_FP: 13360 return combineFPToIntToFP(N, DCI); 13361 case ISD::VECTOR_SHUFFLE: 13362 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13363 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13364 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13365 } 13366 break; 13367 case ISD::STORE: { 13368 13369 EVT Op1VT = N->getOperand(1).getValueType(); 13370 unsigned Opcode = N->getOperand(1).getOpcode(); 13371 13372 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13373 SDValue Val= combineStoreFPToInt(N, DCI); 13374 if (Val) 13375 return Val; 13376 } 13377 13378 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13379 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13380 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13381 if (Val) 13382 return Val; 13383 } 13384 13385 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13386 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13387 N->getOperand(1).getNode()->hasOneUse() && 13388 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13389 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13390 13391 // STBRX can only handle simple types and it makes no sense to store less 13392 // two bytes in byte-reversed order. 13393 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13394 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13395 break; 13396 13397 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13398 // Do an any-extend to 32-bits if this is a half-word input. 13399 if (BSwapOp.getValueType() == MVT::i16) 13400 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13401 13402 // If the type of BSWAP operand is wider than stored memory width 13403 // it need to be shifted to the right side before STBRX. 13404 if (Op1VT.bitsGT(mVT)) { 13405 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13406 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13407 DAG.getConstant(Shift, dl, MVT::i32)); 13408 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13409 if (Op1VT == MVT::i64) 13410 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13411 } 13412 13413 SDValue Ops[] = { 13414 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13415 }; 13416 return 13417 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13418 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13419 cast<StoreSDNode>(N)->getMemOperand()); 13420 } 13421 13422 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13423 // So it can increase the chance of CSE constant construction. 13424 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13425 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13426 // Need to sign-extended to 64-bits to handle negative values. 13427 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13428 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13429 MemVT.getSizeInBits()); 13430 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13431 13432 // DAG.getTruncStore() can't be used here because it doesn't accept 13433 // the general (base + offset) addressing mode. 13434 // So we use UpdateNodeOperands and setTruncatingStore instead. 13435 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13436 N->getOperand(3)); 13437 cast<StoreSDNode>(N)->setTruncatingStore(true); 13438 return SDValue(N, 0); 13439 } 13440 13441 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13442 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13443 if (Op1VT.isSimple()) { 13444 MVT StoreVT = Op1VT.getSimpleVT(); 13445 if (Subtarget.needsSwapsForVSXMemOps() && 13446 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13447 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13448 return expandVSXStoreForLE(N, DCI); 13449 } 13450 break; 13451 } 13452 case ISD::LOAD: { 13453 LoadSDNode *LD = cast<LoadSDNode>(N); 13454 EVT VT = LD->getValueType(0); 13455 13456 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13457 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13458 if (VT.isSimple()) { 13459 MVT LoadVT = VT.getSimpleVT(); 13460 if (Subtarget.needsSwapsForVSXMemOps() && 13461 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13462 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13463 return expandVSXLoadForLE(N, DCI); 13464 } 13465 13466 // We sometimes end up with a 64-bit integer load, from which we extract 13467 // two single-precision floating-point numbers. This happens with 13468 // std::complex<float>, and other similar structures, because of the way we 13469 // canonicalize structure copies. However, if we lack direct moves, 13470 // then the final bitcasts from the extracted integer values to the 13471 // floating-point numbers turn into store/load pairs. Even with direct moves, 13472 // just loading the two floating-point numbers is likely better. 13473 auto ReplaceTwoFloatLoad = [&]() { 13474 if (VT != MVT::i64) 13475 return false; 13476 13477 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13478 LD->isVolatile()) 13479 return false; 13480 13481 // We're looking for a sequence like this: 13482 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13483 // t16: i64 = srl t13, Constant:i32<32> 13484 // t17: i32 = truncate t16 13485 // t18: f32 = bitcast t17 13486 // t19: i32 = truncate t13 13487 // t20: f32 = bitcast t19 13488 13489 if (!LD->hasNUsesOfValue(2, 0)) 13490 return false; 13491 13492 auto UI = LD->use_begin(); 13493 while (UI.getUse().getResNo() != 0) ++UI; 13494 SDNode *Trunc = *UI++; 13495 while (UI.getUse().getResNo() != 0) ++UI; 13496 SDNode *RightShift = *UI; 13497 if (Trunc->getOpcode() != ISD::TRUNCATE) 13498 std::swap(Trunc, RightShift); 13499 13500 if (Trunc->getOpcode() != ISD::TRUNCATE || 13501 Trunc->getValueType(0) != MVT::i32 || 13502 !Trunc->hasOneUse()) 13503 return false; 13504 if (RightShift->getOpcode() != ISD::SRL || 13505 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13506 RightShift->getConstantOperandVal(1) != 32 || 13507 !RightShift->hasOneUse()) 13508 return false; 13509 13510 SDNode *Trunc2 = *RightShift->use_begin(); 13511 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13512 Trunc2->getValueType(0) != MVT::i32 || 13513 !Trunc2->hasOneUse()) 13514 return false; 13515 13516 SDNode *Bitcast = *Trunc->use_begin(); 13517 SDNode *Bitcast2 = *Trunc2->use_begin(); 13518 13519 if (Bitcast->getOpcode() != ISD::BITCAST || 13520 Bitcast->getValueType(0) != MVT::f32) 13521 return false; 13522 if (Bitcast2->getOpcode() != ISD::BITCAST || 13523 Bitcast2->getValueType(0) != MVT::f32) 13524 return false; 13525 13526 if (Subtarget.isLittleEndian()) 13527 std::swap(Bitcast, Bitcast2); 13528 13529 // Bitcast has the second float (in memory-layout order) and Bitcast2 13530 // has the first one. 13531 13532 SDValue BasePtr = LD->getBasePtr(); 13533 if (LD->isIndexed()) { 13534 assert(LD->getAddressingMode() == ISD::PRE_INC && 13535 "Non-pre-inc AM on PPC?"); 13536 BasePtr = 13537 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13538 LD->getOffset()); 13539 } 13540 13541 auto MMOFlags = 13542 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13543 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13544 LD->getPointerInfo(), LD->getAlignment(), 13545 MMOFlags, LD->getAAInfo()); 13546 SDValue AddPtr = 13547 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13548 BasePtr, DAG.getIntPtrConstant(4, dl)); 13549 SDValue FloatLoad2 = DAG.getLoad( 13550 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13551 LD->getPointerInfo().getWithOffset(4), 13552 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13553 13554 if (LD->isIndexed()) { 13555 // Note that DAGCombine should re-form any pre-increment load(s) from 13556 // what is produced here if that makes sense. 13557 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13558 } 13559 13560 DCI.CombineTo(Bitcast2, FloatLoad); 13561 DCI.CombineTo(Bitcast, FloatLoad2); 13562 13563 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13564 SDValue(FloatLoad2.getNode(), 1)); 13565 return true; 13566 }; 13567 13568 if (ReplaceTwoFloatLoad()) 13569 return SDValue(N, 0); 13570 13571 EVT MemVT = LD->getMemoryVT(); 13572 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13573 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13574 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13575 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13576 if (LD->isUnindexed() && VT.isVector() && 13577 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13578 // P8 and later hardware should just use LOAD. 13579 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13580 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13581 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13582 LD->getAlignment() >= ScalarABIAlignment)) && 13583 LD->getAlignment() < ABIAlignment) { 13584 // This is a type-legal unaligned Altivec or QPX load. 13585 SDValue Chain = LD->getChain(); 13586 SDValue Ptr = LD->getBasePtr(); 13587 bool isLittleEndian = Subtarget.isLittleEndian(); 13588 13589 // This implements the loading of unaligned vectors as described in 13590 // the venerable Apple Velocity Engine overview. Specifically: 13591 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13592 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13593 // 13594 // The general idea is to expand a sequence of one or more unaligned 13595 // loads into an alignment-based permutation-control instruction (lvsl 13596 // or lvsr), a series of regular vector loads (which always truncate 13597 // their input address to an aligned address), and a series of 13598 // permutations. The results of these permutations are the requested 13599 // loaded values. The trick is that the last "extra" load is not taken 13600 // from the address you might suspect (sizeof(vector) bytes after the 13601 // last requested load), but rather sizeof(vector) - 1 bytes after the 13602 // last requested vector. The point of this is to avoid a page fault if 13603 // the base address happened to be aligned. This works because if the 13604 // base address is aligned, then adding less than a full vector length 13605 // will cause the last vector in the sequence to be (re)loaded. 13606 // Otherwise, the next vector will be fetched as you might suspect was 13607 // necessary. 13608 13609 // We might be able to reuse the permutation generation from 13610 // a different base address offset from this one by an aligned amount. 13611 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13612 // optimization later. 13613 Intrinsic::ID Intr, IntrLD, IntrPerm; 13614 MVT PermCntlTy, PermTy, LDTy; 13615 if (Subtarget.hasAltivec()) { 13616 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13617 Intrinsic::ppc_altivec_lvsl; 13618 IntrLD = Intrinsic::ppc_altivec_lvx; 13619 IntrPerm = Intrinsic::ppc_altivec_vperm; 13620 PermCntlTy = MVT::v16i8; 13621 PermTy = MVT::v4i32; 13622 LDTy = MVT::v4i32; 13623 } else { 13624 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13625 Intrinsic::ppc_qpx_qvlpcls; 13626 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13627 Intrinsic::ppc_qpx_qvlfs; 13628 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13629 PermCntlTy = MVT::v4f64; 13630 PermTy = MVT::v4f64; 13631 LDTy = MemVT.getSimpleVT(); 13632 } 13633 13634 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13635 13636 // Create the new MMO for the new base load. It is like the original MMO, 13637 // but represents an area in memory almost twice the vector size centered 13638 // on the original address. If the address is unaligned, we might start 13639 // reading up to (sizeof(vector)-1) bytes below the address of the 13640 // original unaligned load. 13641 MachineFunction &MF = DAG.getMachineFunction(); 13642 MachineMemOperand *BaseMMO = 13643 MF.getMachineMemOperand(LD->getMemOperand(), 13644 -(long)MemVT.getStoreSize()+1, 13645 2*MemVT.getStoreSize()-1); 13646 13647 // Create the new base load. 13648 SDValue LDXIntID = 13649 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13650 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13651 SDValue BaseLoad = 13652 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13653 DAG.getVTList(PermTy, MVT::Other), 13654 BaseLoadOps, LDTy, BaseMMO); 13655 13656 // Note that the value of IncOffset (which is provided to the next 13657 // load's pointer info offset value, and thus used to calculate the 13658 // alignment), and the value of IncValue (which is actually used to 13659 // increment the pointer value) are different! This is because we 13660 // require the next load to appear to be aligned, even though it 13661 // is actually offset from the base pointer by a lesser amount. 13662 int IncOffset = VT.getSizeInBits() / 8; 13663 int IncValue = IncOffset; 13664 13665 // Walk (both up and down) the chain looking for another load at the real 13666 // (aligned) offset (the alignment of the other load does not matter in 13667 // this case). If found, then do not use the offset reduction trick, as 13668 // that will prevent the loads from being later combined (as they would 13669 // otherwise be duplicates). 13670 if (!findConsecutiveLoad(LD, DAG)) 13671 --IncValue; 13672 13673 SDValue Increment = 13674 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13675 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13676 13677 MachineMemOperand *ExtraMMO = 13678 MF.getMachineMemOperand(LD->getMemOperand(), 13679 1, 2*MemVT.getStoreSize()-1); 13680 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13681 SDValue ExtraLoad = 13682 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13683 DAG.getVTList(PermTy, MVT::Other), 13684 ExtraLoadOps, LDTy, ExtraMMO); 13685 13686 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13687 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13688 13689 // Because vperm has a big-endian bias, we must reverse the order 13690 // of the input vectors and complement the permute control vector 13691 // when generating little endian code. We have already handled the 13692 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13693 // and ExtraLoad here. 13694 SDValue Perm; 13695 if (isLittleEndian) 13696 Perm = BuildIntrinsicOp(IntrPerm, 13697 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13698 else 13699 Perm = BuildIntrinsicOp(IntrPerm, 13700 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13701 13702 if (VT != PermTy) 13703 Perm = Subtarget.hasAltivec() ? 13704 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13705 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13706 DAG.getTargetConstant(1, dl, MVT::i64)); 13707 // second argument is 1 because this rounding 13708 // is always exact. 13709 13710 // The output of the permutation is our loaded result, the TokenFactor is 13711 // our new chain. 13712 DCI.CombineTo(N, Perm, TF); 13713 return SDValue(N, 0); 13714 } 13715 } 13716 break; 13717 case ISD::INTRINSIC_WO_CHAIN: { 13718 bool isLittleEndian = Subtarget.isLittleEndian(); 13719 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13720 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13721 : Intrinsic::ppc_altivec_lvsl); 13722 if ((IID == Intr || 13723 IID == Intrinsic::ppc_qpx_qvlpcld || 13724 IID == Intrinsic::ppc_qpx_qvlpcls) && 13725 N->getOperand(1)->getOpcode() == ISD::ADD) { 13726 SDValue Add = N->getOperand(1); 13727 13728 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13729 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13730 13731 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13732 APInt::getAllOnesValue(Bits /* alignment */) 13733 .zext(Add.getScalarValueSizeInBits()))) { 13734 SDNode *BasePtr = Add->getOperand(0).getNode(); 13735 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13736 UE = BasePtr->use_end(); 13737 UI != UE; ++UI) { 13738 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13739 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13740 // We've found another LVSL/LVSR, and this address is an aligned 13741 // multiple of that one. The results will be the same, so use the 13742 // one we've just found instead. 13743 13744 return SDValue(*UI, 0); 13745 } 13746 } 13747 } 13748 13749 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13750 SDNode *BasePtr = Add->getOperand(0).getNode(); 13751 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13752 UE = BasePtr->use_end(); UI != UE; ++UI) { 13753 if (UI->getOpcode() == ISD::ADD && 13754 isa<ConstantSDNode>(UI->getOperand(1)) && 13755 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13756 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13757 (1ULL << Bits) == 0) { 13758 SDNode *OtherAdd = *UI; 13759 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13760 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13761 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13762 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13763 return SDValue(*VI, 0); 13764 } 13765 } 13766 } 13767 } 13768 } 13769 } 13770 13771 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13772 // Expose the vabsduw/h/b opportunity for down stream 13773 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13774 (IID == Intrinsic::ppc_altivec_vmaxsw || 13775 IID == Intrinsic::ppc_altivec_vmaxsh || 13776 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13777 SDValue V1 = N->getOperand(1); 13778 SDValue V2 = N->getOperand(2); 13779 if ((V1.getSimpleValueType() == MVT::v4i32 || 13780 V1.getSimpleValueType() == MVT::v8i16 || 13781 V1.getSimpleValueType() == MVT::v16i8) && 13782 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13783 // (0-a, a) 13784 if (V1.getOpcode() == ISD::SUB && 13785 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13786 V1.getOperand(1) == V2) { 13787 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13788 } 13789 // (a, 0-a) 13790 if (V2.getOpcode() == ISD::SUB && 13791 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13792 V2.getOperand(1) == V1) { 13793 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13794 } 13795 // (x-y, y-x) 13796 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13797 V1.getOperand(0) == V2.getOperand(1) && 13798 V1.getOperand(1) == V2.getOperand(0)) { 13799 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13800 } 13801 } 13802 } 13803 } 13804 13805 break; 13806 case ISD::INTRINSIC_W_CHAIN: 13807 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13808 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13809 if (Subtarget.needsSwapsForVSXMemOps()) { 13810 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13811 default: 13812 break; 13813 case Intrinsic::ppc_vsx_lxvw4x: 13814 case Intrinsic::ppc_vsx_lxvd2x: 13815 return expandVSXLoadForLE(N, DCI); 13816 } 13817 } 13818 break; 13819 case ISD::INTRINSIC_VOID: 13820 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13821 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13822 if (Subtarget.needsSwapsForVSXMemOps()) { 13823 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13824 default: 13825 break; 13826 case Intrinsic::ppc_vsx_stxvw4x: 13827 case Intrinsic::ppc_vsx_stxvd2x: 13828 return expandVSXStoreForLE(N, DCI); 13829 } 13830 } 13831 break; 13832 case ISD::BSWAP: 13833 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13834 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13835 N->getOperand(0).hasOneUse() && 13836 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13837 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13838 N->getValueType(0) == MVT::i64))) { 13839 SDValue Load = N->getOperand(0); 13840 LoadSDNode *LD = cast<LoadSDNode>(Load); 13841 // Create the byte-swapping load. 13842 SDValue Ops[] = { 13843 LD->getChain(), // Chain 13844 LD->getBasePtr(), // Ptr 13845 DAG.getValueType(N->getValueType(0)) // VT 13846 }; 13847 SDValue BSLoad = 13848 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13849 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13850 MVT::i64 : MVT::i32, MVT::Other), 13851 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13852 13853 // If this is an i16 load, insert the truncate. 13854 SDValue ResVal = BSLoad; 13855 if (N->getValueType(0) == MVT::i16) 13856 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13857 13858 // First, combine the bswap away. This makes the value produced by the 13859 // load dead. 13860 DCI.CombineTo(N, ResVal); 13861 13862 // Next, combine the load away, we give it a bogus result value but a real 13863 // chain result. The result value is dead because the bswap is dead. 13864 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13865 13866 // Return N so it doesn't get rechecked! 13867 return SDValue(N, 0); 13868 } 13869 break; 13870 case PPCISD::VCMP: 13871 // If a VCMPo node already exists with exactly the same operands as this 13872 // node, use its result instead of this node (VCMPo computes both a CR6 and 13873 // a normal output). 13874 // 13875 if (!N->getOperand(0).hasOneUse() && 13876 !N->getOperand(1).hasOneUse() && 13877 !N->getOperand(2).hasOneUse()) { 13878 13879 // Scan all of the users of the LHS, looking for VCMPo's that match. 13880 SDNode *VCMPoNode = nullptr; 13881 13882 SDNode *LHSN = N->getOperand(0).getNode(); 13883 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13884 UI != E; ++UI) 13885 if (UI->getOpcode() == PPCISD::VCMPo && 13886 UI->getOperand(1) == N->getOperand(1) && 13887 UI->getOperand(2) == N->getOperand(2) && 13888 UI->getOperand(0) == N->getOperand(0)) { 13889 VCMPoNode = *UI; 13890 break; 13891 } 13892 13893 // If there is no VCMPo node, or if the flag value has a single use, don't 13894 // transform this. 13895 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13896 break; 13897 13898 // Look at the (necessarily single) use of the flag value. If it has a 13899 // chain, this transformation is more complex. Note that multiple things 13900 // could use the value result, which we should ignore. 13901 SDNode *FlagUser = nullptr; 13902 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13903 FlagUser == nullptr; ++UI) { 13904 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13905 SDNode *User = *UI; 13906 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13907 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13908 FlagUser = User; 13909 break; 13910 } 13911 } 13912 } 13913 13914 // If the user is a MFOCRF instruction, we know this is safe. 13915 // Otherwise we give up for right now. 13916 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13917 return SDValue(VCMPoNode, 0); 13918 } 13919 break; 13920 case ISD::BRCOND: { 13921 SDValue Cond = N->getOperand(1); 13922 SDValue Target = N->getOperand(2); 13923 13924 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13925 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13926 Intrinsic::loop_decrement) { 13927 13928 // We now need to make the intrinsic dead (it cannot be instruction 13929 // selected). 13930 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13931 assert(Cond.getNode()->hasOneUse() && 13932 "Counter decrement has more than one use"); 13933 13934 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13935 N->getOperand(0), Target); 13936 } 13937 } 13938 break; 13939 case ISD::BR_CC: { 13940 // If this is a branch on an altivec predicate comparison, lower this so 13941 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13942 // lowering is done pre-legalize, because the legalizer lowers the predicate 13943 // compare down to code that is difficult to reassemble. 13944 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13945 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13946 13947 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13948 // value. If so, pass-through the AND to get to the intrinsic. 13949 if (LHS.getOpcode() == ISD::AND && 13950 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13951 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13952 Intrinsic::loop_decrement && 13953 isa<ConstantSDNode>(LHS.getOperand(1)) && 13954 !isNullConstant(LHS.getOperand(1))) 13955 LHS = LHS.getOperand(0); 13956 13957 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13958 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13959 Intrinsic::loop_decrement && 13960 isa<ConstantSDNode>(RHS)) { 13961 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13962 "Counter decrement comparison is not EQ or NE"); 13963 13964 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13965 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13966 (CC == ISD::SETNE && !Val); 13967 13968 // We now need to make the intrinsic dead (it cannot be instruction 13969 // selected). 13970 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13971 assert(LHS.getNode()->hasOneUse() && 13972 "Counter decrement has more than one use"); 13973 13974 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13975 N->getOperand(0), N->getOperand(4)); 13976 } 13977 13978 int CompareOpc; 13979 bool isDot; 13980 13981 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13982 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13983 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13984 assert(isDot && "Can't compare against a vector result!"); 13985 13986 // If this is a comparison against something other than 0/1, then we know 13987 // that the condition is never/always true. 13988 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13989 if (Val != 0 && Val != 1) { 13990 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13991 return N->getOperand(0); 13992 // Always !=, turn it into an unconditional branch. 13993 return DAG.getNode(ISD::BR, dl, MVT::Other, 13994 N->getOperand(0), N->getOperand(4)); 13995 } 13996 13997 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13998 13999 // Create the PPCISD altivec 'dot' comparison node. 14000 SDValue Ops[] = { 14001 LHS.getOperand(2), // LHS of compare 14002 LHS.getOperand(3), // RHS of compare 14003 DAG.getConstant(CompareOpc, dl, MVT::i32) 14004 }; 14005 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14006 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14007 14008 // Unpack the result based on how the target uses it. 14009 PPC::Predicate CompOpc; 14010 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14011 default: // Can't happen, don't crash on invalid number though. 14012 case 0: // Branch on the value of the EQ bit of CR6. 14013 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14014 break; 14015 case 1: // Branch on the inverted value of the EQ bit of CR6. 14016 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14017 break; 14018 case 2: // Branch on the value of the LT bit of CR6. 14019 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14020 break; 14021 case 3: // Branch on the inverted value of the LT bit of CR6. 14022 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14023 break; 14024 } 14025 14026 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14027 DAG.getConstant(CompOpc, dl, MVT::i32), 14028 DAG.getRegister(PPC::CR6, MVT::i32), 14029 N->getOperand(4), CompNode.getValue(1)); 14030 } 14031 break; 14032 } 14033 case ISD::BUILD_VECTOR: 14034 return DAGCombineBuildVector(N, DCI); 14035 case ISD::ABS: 14036 return combineABS(N, DCI); 14037 case ISD::VSELECT: 14038 return combineVSelect(N, DCI); 14039 } 14040 14041 return SDValue(); 14042 } 14043 14044 SDValue 14045 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14046 SelectionDAG &DAG, 14047 SmallVectorImpl<SDNode *> &Created) const { 14048 // fold (sdiv X, pow2) 14049 EVT VT = N->getValueType(0); 14050 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14051 return SDValue(); 14052 if ((VT != MVT::i32 && VT != MVT::i64) || 14053 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14054 return SDValue(); 14055 14056 SDLoc DL(N); 14057 SDValue N0 = N->getOperand(0); 14058 14059 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14060 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14061 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14062 14063 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14064 Created.push_back(Op.getNode()); 14065 14066 if (IsNegPow2) { 14067 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14068 Created.push_back(Op.getNode()); 14069 } 14070 14071 return Op; 14072 } 14073 14074 //===----------------------------------------------------------------------===// 14075 // Inline Assembly Support 14076 //===----------------------------------------------------------------------===// 14077 14078 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14079 KnownBits &Known, 14080 const APInt &DemandedElts, 14081 const SelectionDAG &DAG, 14082 unsigned Depth) const { 14083 Known.resetAll(); 14084 switch (Op.getOpcode()) { 14085 default: break; 14086 case PPCISD::LBRX: { 14087 // lhbrx is known to have the top bits cleared out. 14088 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14089 Known.Zero = 0xFFFF0000; 14090 break; 14091 } 14092 case ISD::INTRINSIC_WO_CHAIN: { 14093 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14094 default: break; 14095 case Intrinsic::ppc_altivec_vcmpbfp_p: 14096 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14097 case Intrinsic::ppc_altivec_vcmpequb_p: 14098 case Intrinsic::ppc_altivec_vcmpequh_p: 14099 case Intrinsic::ppc_altivec_vcmpequw_p: 14100 case Intrinsic::ppc_altivec_vcmpequd_p: 14101 case Intrinsic::ppc_altivec_vcmpgefp_p: 14102 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14103 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14104 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14105 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14106 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14107 case Intrinsic::ppc_altivec_vcmpgtub_p: 14108 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14109 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14110 case Intrinsic::ppc_altivec_vcmpgtud_p: 14111 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14112 break; 14113 } 14114 } 14115 } 14116 } 14117 14118 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14119 switch (Subtarget.getDarwinDirective()) { 14120 default: break; 14121 case PPC::DIR_970: 14122 case PPC::DIR_PWR4: 14123 case PPC::DIR_PWR5: 14124 case PPC::DIR_PWR5X: 14125 case PPC::DIR_PWR6: 14126 case PPC::DIR_PWR6X: 14127 case PPC::DIR_PWR7: 14128 case PPC::DIR_PWR8: 14129 case PPC::DIR_PWR9: { 14130 if (!ML) 14131 break; 14132 14133 if (!DisableInnermostLoopAlign32) { 14134 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14135 // so that we can decrease cache misses and branch-prediction misses. 14136 // Actual alignment of the loop will depend on the hotness check and other 14137 // logic in alignBlocks. 14138 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14139 return Align(32); 14140 } 14141 14142 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14143 14144 // For small loops (between 5 and 8 instructions), align to a 32-byte 14145 // boundary so that the entire loop fits in one instruction-cache line. 14146 uint64_t LoopSize = 0; 14147 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14148 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14149 LoopSize += TII->getInstSizeInBytes(*J); 14150 if (LoopSize > 32) 14151 break; 14152 } 14153 14154 if (LoopSize > 16 && LoopSize <= 32) 14155 return Align(32); 14156 14157 break; 14158 } 14159 } 14160 14161 return TargetLowering::getPrefLoopAlignment(ML); 14162 } 14163 14164 /// getConstraintType - Given a constraint, return the type of 14165 /// constraint it is for this target. 14166 PPCTargetLowering::ConstraintType 14167 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14168 if (Constraint.size() == 1) { 14169 switch (Constraint[0]) { 14170 default: break; 14171 case 'b': 14172 case 'r': 14173 case 'f': 14174 case 'd': 14175 case 'v': 14176 case 'y': 14177 return C_RegisterClass; 14178 case 'Z': 14179 // FIXME: While Z does indicate a memory constraint, it specifically 14180 // indicates an r+r address (used in conjunction with the 'y' modifier 14181 // in the replacement string). Currently, we're forcing the base 14182 // register to be r0 in the asm printer (which is interpreted as zero) 14183 // and forming the complete address in the second register. This is 14184 // suboptimal. 14185 return C_Memory; 14186 } 14187 } else if (Constraint == "wc") { // individual CR bits. 14188 return C_RegisterClass; 14189 } else if (Constraint == "wa" || Constraint == "wd" || 14190 Constraint == "wf" || Constraint == "ws" || 14191 Constraint == "wi" || Constraint == "ww") { 14192 return C_RegisterClass; // VSX registers. 14193 } 14194 return TargetLowering::getConstraintType(Constraint); 14195 } 14196 14197 /// Examine constraint type and operand type and determine a weight value. 14198 /// This object must already have been set up with the operand type 14199 /// and the current alternative constraint selected. 14200 TargetLowering::ConstraintWeight 14201 PPCTargetLowering::getSingleConstraintMatchWeight( 14202 AsmOperandInfo &info, const char *constraint) const { 14203 ConstraintWeight weight = CW_Invalid; 14204 Value *CallOperandVal = info.CallOperandVal; 14205 // If we don't have a value, we can't do a match, 14206 // but allow it at the lowest weight. 14207 if (!CallOperandVal) 14208 return CW_Default; 14209 Type *type = CallOperandVal->getType(); 14210 14211 // Look at the constraint type. 14212 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14213 return CW_Register; // an individual CR bit. 14214 else if ((StringRef(constraint) == "wa" || 14215 StringRef(constraint) == "wd" || 14216 StringRef(constraint) == "wf") && 14217 type->isVectorTy()) 14218 return CW_Register; 14219 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14220 return CW_Register; // just hold 64-bit integers data. 14221 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14222 return CW_Register; 14223 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14224 return CW_Register; 14225 14226 switch (*constraint) { 14227 default: 14228 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14229 break; 14230 case 'b': 14231 if (type->isIntegerTy()) 14232 weight = CW_Register; 14233 break; 14234 case 'f': 14235 if (type->isFloatTy()) 14236 weight = CW_Register; 14237 break; 14238 case 'd': 14239 if (type->isDoubleTy()) 14240 weight = CW_Register; 14241 break; 14242 case 'v': 14243 if (type->isVectorTy()) 14244 weight = CW_Register; 14245 break; 14246 case 'y': 14247 weight = CW_Register; 14248 break; 14249 case 'Z': 14250 weight = CW_Memory; 14251 break; 14252 } 14253 return weight; 14254 } 14255 14256 std::pair<unsigned, const TargetRegisterClass *> 14257 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14258 StringRef Constraint, 14259 MVT VT) const { 14260 if (Constraint.size() == 1) { 14261 // GCC RS6000 Constraint Letters 14262 switch (Constraint[0]) { 14263 case 'b': // R1-R31 14264 if (VT == MVT::i64 && Subtarget.isPPC64()) 14265 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14266 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14267 case 'r': // R0-R31 14268 if (VT == MVT::i64 && Subtarget.isPPC64()) 14269 return std::make_pair(0U, &PPC::G8RCRegClass); 14270 return std::make_pair(0U, &PPC::GPRCRegClass); 14271 // 'd' and 'f' constraints are both defined to be "the floating point 14272 // registers", where one is for 32-bit and the other for 64-bit. We don't 14273 // really care overly much here so just give them all the same reg classes. 14274 case 'd': 14275 case 'f': 14276 if (Subtarget.hasSPE()) { 14277 if (VT == MVT::f32 || VT == MVT::i32) 14278 return std::make_pair(0U, &PPC::GPRCRegClass); 14279 if (VT == MVT::f64 || VT == MVT::i64) 14280 return std::make_pair(0U, &PPC::SPERCRegClass); 14281 } else { 14282 if (VT == MVT::f32 || VT == MVT::i32) 14283 return std::make_pair(0U, &PPC::F4RCRegClass); 14284 if (VT == MVT::f64 || VT == MVT::i64) 14285 return std::make_pair(0U, &PPC::F8RCRegClass); 14286 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14287 return std::make_pair(0U, &PPC::QFRCRegClass); 14288 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14289 return std::make_pair(0U, &PPC::QSRCRegClass); 14290 } 14291 break; 14292 case 'v': 14293 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14294 return std::make_pair(0U, &PPC::QFRCRegClass); 14295 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14296 return std::make_pair(0U, &PPC::QSRCRegClass); 14297 if (Subtarget.hasAltivec()) 14298 return std::make_pair(0U, &PPC::VRRCRegClass); 14299 break; 14300 case 'y': // crrc 14301 return std::make_pair(0U, &PPC::CRRCRegClass); 14302 } 14303 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14304 // An individual CR bit. 14305 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14306 } else if ((Constraint == "wa" || Constraint == "wd" || 14307 Constraint == "wf" || Constraint == "wi") && 14308 Subtarget.hasVSX()) { 14309 return std::make_pair(0U, &PPC::VSRCRegClass); 14310 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14311 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14312 return std::make_pair(0U, &PPC::VSSRCRegClass); 14313 else 14314 return std::make_pair(0U, &PPC::VSFRCRegClass); 14315 } 14316 14317 std::pair<unsigned, const TargetRegisterClass *> R = 14318 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14319 14320 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14321 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14322 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14323 // register. 14324 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14325 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14326 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14327 PPC::GPRCRegClass.contains(R.first)) 14328 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14329 PPC::sub_32, &PPC::G8RCRegClass), 14330 &PPC::G8RCRegClass); 14331 14332 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14333 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14334 R.first = PPC::CR0; 14335 R.second = &PPC::CRRCRegClass; 14336 } 14337 14338 return R; 14339 } 14340 14341 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14342 /// vector. If it is invalid, don't add anything to Ops. 14343 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14344 std::string &Constraint, 14345 std::vector<SDValue>&Ops, 14346 SelectionDAG &DAG) const { 14347 SDValue Result; 14348 14349 // Only support length 1 constraints. 14350 if (Constraint.length() > 1) return; 14351 14352 char Letter = Constraint[0]; 14353 switch (Letter) { 14354 default: break; 14355 case 'I': 14356 case 'J': 14357 case 'K': 14358 case 'L': 14359 case 'M': 14360 case 'N': 14361 case 'O': 14362 case 'P': { 14363 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14364 if (!CST) return; // Must be an immediate to match. 14365 SDLoc dl(Op); 14366 int64_t Value = CST->getSExtValue(); 14367 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14368 // numbers are printed as such. 14369 switch (Letter) { 14370 default: llvm_unreachable("Unknown constraint letter!"); 14371 case 'I': // "I" is a signed 16-bit constant. 14372 if (isInt<16>(Value)) 14373 Result = DAG.getTargetConstant(Value, dl, TCVT); 14374 break; 14375 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14376 if (isShiftedUInt<16, 16>(Value)) 14377 Result = DAG.getTargetConstant(Value, dl, TCVT); 14378 break; 14379 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14380 if (isShiftedInt<16, 16>(Value)) 14381 Result = DAG.getTargetConstant(Value, dl, TCVT); 14382 break; 14383 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14384 if (isUInt<16>(Value)) 14385 Result = DAG.getTargetConstant(Value, dl, TCVT); 14386 break; 14387 case 'M': // "M" is a constant that is greater than 31. 14388 if (Value > 31) 14389 Result = DAG.getTargetConstant(Value, dl, TCVT); 14390 break; 14391 case 'N': // "N" is a positive constant that is an exact power of two. 14392 if (Value > 0 && isPowerOf2_64(Value)) 14393 Result = DAG.getTargetConstant(Value, dl, TCVT); 14394 break; 14395 case 'O': // "O" is the constant zero. 14396 if (Value == 0) 14397 Result = DAG.getTargetConstant(Value, dl, TCVT); 14398 break; 14399 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14400 if (isInt<16>(-Value)) 14401 Result = DAG.getTargetConstant(Value, dl, TCVT); 14402 break; 14403 } 14404 break; 14405 } 14406 } 14407 14408 if (Result.getNode()) { 14409 Ops.push_back(Result); 14410 return; 14411 } 14412 14413 // Handle standard constraint letters. 14414 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14415 } 14416 14417 // isLegalAddressingMode - Return true if the addressing mode represented 14418 // by AM is legal for this target, for a load/store of the specified type. 14419 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14420 const AddrMode &AM, Type *Ty, 14421 unsigned AS, Instruction *I) const { 14422 // PPC does not allow r+i addressing modes for vectors! 14423 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14424 return false; 14425 14426 // PPC allows a sign-extended 16-bit immediate field. 14427 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14428 return false; 14429 14430 // No global is ever allowed as a base. 14431 if (AM.BaseGV) 14432 return false; 14433 14434 // PPC only support r+r, 14435 switch (AM.Scale) { 14436 case 0: // "r+i" or just "i", depending on HasBaseReg. 14437 break; 14438 case 1: 14439 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14440 return false; 14441 // Otherwise we have r+r or r+i. 14442 break; 14443 case 2: 14444 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14445 return false; 14446 // Allow 2*r as r+r. 14447 break; 14448 default: 14449 // No other scales are supported. 14450 return false; 14451 } 14452 14453 return true; 14454 } 14455 14456 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14457 SelectionDAG &DAG) const { 14458 MachineFunction &MF = DAG.getMachineFunction(); 14459 MachineFrameInfo &MFI = MF.getFrameInfo(); 14460 MFI.setReturnAddressIsTaken(true); 14461 14462 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14463 return SDValue(); 14464 14465 SDLoc dl(Op); 14466 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14467 14468 // Make sure the function does not optimize away the store of the RA to 14469 // the stack. 14470 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14471 FuncInfo->setLRStoreRequired(); 14472 bool isPPC64 = Subtarget.isPPC64(); 14473 auto PtrVT = getPointerTy(MF.getDataLayout()); 14474 14475 if (Depth > 0) { 14476 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14477 SDValue Offset = 14478 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14479 isPPC64 ? MVT::i64 : MVT::i32); 14480 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14481 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14482 MachinePointerInfo()); 14483 } 14484 14485 // Just load the return address off the stack. 14486 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14487 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14488 MachinePointerInfo()); 14489 } 14490 14491 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14492 SelectionDAG &DAG) const { 14493 SDLoc dl(Op); 14494 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14495 14496 MachineFunction &MF = DAG.getMachineFunction(); 14497 MachineFrameInfo &MFI = MF.getFrameInfo(); 14498 MFI.setFrameAddressIsTaken(true); 14499 14500 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14501 bool isPPC64 = PtrVT == MVT::i64; 14502 14503 // Naked functions never have a frame pointer, and so we use r1. For all 14504 // other functions, this decision must be delayed until during PEI. 14505 unsigned FrameReg; 14506 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14507 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14508 else 14509 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14510 14511 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14512 PtrVT); 14513 while (Depth--) 14514 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14515 FrameAddr, MachinePointerInfo()); 14516 return FrameAddr; 14517 } 14518 14519 // FIXME? Maybe this could be a TableGen attribute on some registers and 14520 // this table could be generated automatically from RegInfo. 14521 Register PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14522 const MachineFunction &MF) const { 14523 bool isPPC64 = Subtarget.isPPC64(); 14524 bool IsDarwinABI = Subtarget.isDarwinABI(); 14525 14526 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14527 (!isPPC64 && VT != MVT::i32)) 14528 report_fatal_error("Invalid register global variable type"); 14529 14530 bool is64Bit = isPPC64 && VT == MVT::i64; 14531 Register Reg = StringSwitch<Register>(RegName) 14532 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14533 .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2) 14534 .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() : 14535 (is64Bit ? PPC::X13 : PPC::R13)) 14536 .Default(Register()); 14537 14538 if (Reg) 14539 return Reg; 14540 report_fatal_error("Invalid register name global variable"); 14541 } 14542 14543 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14544 // 32-bit SVR4 ABI access everything as got-indirect. 14545 if (Subtarget.is32BitELFABI()) 14546 return true; 14547 14548 // AIX accesses everything indirectly through the TOC, which is similar to 14549 // the GOT. 14550 if (Subtarget.isAIXABI()) 14551 return true; 14552 14553 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14554 // If it is small or large code model, module locals are accessed 14555 // indirectly by loading their address from .toc/.got. 14556 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14557 return true; 14558 14559 // JumpTable and BlockAddress are accessed as got-indirect. 14560 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14561 return true; 14562 14563 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 14564 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 14565 14566 return false; 14567 } 14568 14569 bool 14570 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14571 // The PowerPC target isn't yet aware of offsets. 14572 return false; 14573 } 14574 14575 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14576 const CallInst &I, 14577 MachineFunction &MF, 14578 unsigned Intrinsic) const { 14579 switch (Intrinsic) { 14580 case Intrinsic::ppc_qpx_qvlfd: 14581 case Intrinsic::ppc_qpx_qvlfs: 14582 case Intrinsic::ppc_qpx_qvlfcd: 14583 case Intrinsic::ppc_qpx_qvlfcs: 14584 case Intrinsic::ppc_qpx_qvlfiwa: 14585 case Intrinsic::ppc_qpx_qvlfiwz: 14586 case Intrinsic::ppc_altivec_lvx: 14587 case Intrinsic::ppc_altivec_lvxl: 14588 case Intrinsic::ppc_altivec_lvebx: 14589 case Intrinsic::ppc_altivec_lvehx: 14590 case Intrinsic::ppc_altivec_lvewx: 14591 case Intrinsic::ppc_vsx_lxvd2x: 14592 case Intrinsic::ppc_vsx_lxvw4x: { 14593 EVT VT; 14594 switch (Intrinsic) { 14595 case Intrinsic::ppc_altivec_lvebx: 14596 VT = MVT::i8; 14597 break; 14598 case Intrinsic::ppc_altivec_lvehx: 14599 VT = MVT::i16; 14600 break; 14601 case Intrinsic::ppc_altivec_lvewx: 14602 VT = MVT::i32; 14603 break; 14604 case Intrinsic::ppc_vsx_lxvd2x: 14605 VT = MVT::v2f64; 14606 break; 14607 case Intrinsic::ppc_qpx_qvlfd: 14608 VT = MVT::v4f64; 14609 break; 14610 case Intrinsic::ppc_qpx_qvlfs: 14611 VT = MVT::v4f32; 14612 break; 14613 case Intrinsic::ppc_qpx_qvlfcd: 14614 VT = MVT::v2f64; 14615 break; 14616 case Intrinsic::ppc_qpx_qvlfcs: 14617 VT = MVT::v2f32; 14618 break; 14619 default: 14620 VT = MVT::v4i32; 14621 break; 14622 } 14623 14624 Info.opc = ISD::INTRINSIC_W_CHAIN; 14625 Info.memVT = VT; 14626 Info.ptrVal = I.getArgOperand(0); 14627 Info.offset = -VT.getStoreSize()+1; 14628 Info.size = 2*VT.getStoreSize()-1; 14629 Info.align = Align::None(); 14630 Info.flags = MachineMemOperand::MOLoad; 14631 return true; 14632 } 14633 case Intrinsic::ppc_qpx_qvlfda: 14634 case Intrinsic::ppc_qpx_qvlfsa: 14635 case Intrinsic::ppc_qpx_qvlfcda: 14636 case Intrinsic::ppc_qpx_qvlfcsa: 14637 case Intrinsic::ppc_qpx_qvlfiwaa: 14638 case Intrinsic::ppc_qpx_qvlfiwza: { 14639 EVT VT; 14640 switch (Intrinsic) { 14641 case Intrinsic::ppc_qpx_qvlfda: 14642 VT = MVT::v4f64; 14643 break; 14644 case Intrinsic::ppc_qpx_qvlfsa: 14645 VT = MVT::v4f32; 14646 break; 14647 case Intrinsic::ppc_qpx_qvlfcda: 14648 VT = MVT::v2f64; 14649 break; 14650 case Intrinsic::ppc_qpx_qvlfcsa: 14651 VT = MVT::v2f32; 14652 break; 14653 default: 14654 VT = MVT::v4i32; 14655 break; 14656 } 14657 14658 Info.opc = ISD::INTRINSIC_W_CHAIN; 14659 Info.memVT = VT; 14660 Info.ptrVal = I.getArgOperand(0); 14661 Info.offset = 0; 14662 Info.size = VT.getStoreSize(); 14663 Info.align = Align::None(); 14664 Info.flags = MachineMemOperand::MOLoad; 14665 return true; 14666 } 14667 case Intrinsic::ppc_qpx_qvstfd: 14668 case Intrinsic::ppc_qpx_qvstfs: 14669 case Intrinsic::ppc_qpx_qvstfcd: 14670 case Intrinsic::ppc_qpx_qvstfcs: 14671 case Intrinsic::ppc_qpx_qvstfiw: 14672 case Intrinsic::ppc_altivec_stvx: 14673 case Intrinsic::ppc_altivec_stvxl: 14674 case Intrinsic::ppc_altivec_stvebx: 14675 case Intrinsic::ppc_altivec_stvehx: 14676 case Intrinsic::ppc_altivec_stvewx: 14677 case Intrinsic::ppc_vsx_stxvd2x: 14678 case Intrinsic::ppc_vsx_stxvw4x: { 14679 EVT VT; 14680 switch (Intrinsic) { 14681 case Intrinsic::ppc_altivec_stvebx: 14682 VT = MVT::i8; 14683 break; 14684 case Intrinsic::ppc_altivec_stvehx: 14685 VT = MVT::i16; 14686 break; 14687 case Intrinsic::ppc_altivec_stvewx: 14688 VT = MVT::i32; 14689 break; 14690 case Intrinsic::ppc_vsx_stxvd2x: 14691 VT = MVT::v2f64; 14692 break; 14693 case Intrinsic::ppc_qpx_qvstfd: 14694 VT = MVT::v4f64; 14695 break; 14696 case Intrinsic::ppc_qpx_qvstfs: 14697 VT = MVT::v4f32; 14698 break; 14699 case Intrinsic::ppc_qpx_qvstfcd: 14700 VT = MVT::v2f64; 14701 break; 14702 case Intrinsic::ppc_qpx_qvstfcs: 14703 VT = MVT::v2f32; 14704 break; 14705 default: 14706 VT = MVT::v4i32; 14707 break; 14708 } 14709 14710 Info.opc = ISD::INTRINSIC_VOID; 14711 Info.memVT = VT; 14712 Info.ptrVal = I.getArgOperand(1); 14713 Info.offset = -VT.getStoreSize()+1; 14714 Info.size = 2*VT.getStoreSize()-1; 14715 Info.align = Align::None(); 14716 Info.flags = MachineMemOperand::MOStore; 14717 return true; 14718 } 14719 case Intrinsic::ppc_qpx_qvstfda: 14720 case Intrinsic::ppc_qpx_qvstfsa: 14721 case Intrinsic::ppc_qpx_qvstfcda: 14722 case Intrinsic::ppc_qpx_qvstfcsa: 14723 case Intrinsic::ppc_qpx_qvstfiwa: { 14724 EVT VT; 14725 switch (Intrinsic) { 14726 case Intrinsic::ppc_qpx_qvstfda: 14727 VT = MVT::v4f64; 14728 break; 14729 case Intrinsic::ppc_qpx_qvstfsa: 14730 VT = MVT::v4f32; 14731 break; 14732 case Intrinsic::ppc_qpx_qvstfcda: 14733 VT = MVT::v2f64; 14734 break; 14735 case Intrinsic::ppc_qpx_qvstfcsa: 14736 VT = MVT::v2f32; 14737 break; 14738 default: 14739 VT = MVT::v4i32; 14740 break; 14741 } 14742 14743 Info.opc = ISD::INTRINSIC_VOID; 14744 Info.memVT = VT; 14745 Info.ptrVal = I.getArgOperand(1); 14746 Info.offset = 0; 14747 Info.size = VT.getStoreSize(); 14748 Info.align = Align::None(); 14749 Info.flags = MachineMemOperand::MOStore; 14750 return true; 14751 } 14752 default: 14753 break; 14754 } 14755 14756 return false; 14757 } 14758 14759 /// getOptimalMemOpType - Returns the target specific optimal type for load 14760 /// and store operations as a result of memset, memcpy, and memmove 14761 /// lowering. If DstAlign is zero that means it's safe to destination 14762 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14763 /// means there isn't a need to check it against alignment requirement, 14764 /// probably because the source does not need to be loaded. If 'IsMemset' is 14765 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14766 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14767 /// source is constant so it does not need to be loaded. 14768 /// It returns EVT::Other if the type should be determined using generic 14769 /// target-independent logic. 14770 EVT PPCTargetLowering::getOptimalMemOpType( 14771 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14772 bool ZeroMemset, bool MemcpyStrSrc, 14773 const AttributeList &FuncAttributes) const { 14774 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14775 // When expanding a memset, require at least two QPX instructions to cover 14776 // the cost of loading the value to be stored from the constant pool. 14777 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14778 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14779 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 14780 return MVT::v4f64; 14781 } 14782 14783 // We should use Altivec/VSX loads and stores when available. For unaligned 14784 // addresses, unaligned VSX loads are only fast starting with the P8. 14785 if (Subtarget.hasAltivec() && Size >= 16 && 14786 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14787 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14788 return MVT::v4i32; 14789 } 14790 14791 if (Subtarget.isPPC64()) { 14792 return MVT::i64; 14793 } 14794 14795 return MVT::i32; 14796 } 14797 14798 /// Returns true if it is beneficial to convert a load of a constant 14799 /// to just the constant itself. 14800 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14801 Type *Ty) const { 14802 assert(Ty->isIntegerTy()); 14803 14804 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14805 return !(BitSize == 0 || BitSize > 64); 14806 } 14807 14808 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14809 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14810 return false; 14811 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14812 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14813 return NumBits1 == 64 && NumBits2 == 32; 14814 } 14815 14816 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14817 if (!VT1.isInteger() || !VT2.isInteger()) 14818 return false; 14819 unsigned NumBits1 = VT1.getSizeInBits(); 14820 unsigned NumBits2 = VT2.getSizeInBits(); 14821 return NumBits1 == 64 && NumBits2 == 32; 14822 } 14823 14824 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14825 // Generally speaking, zexts are not free, but they are free when they can be 14826 // folded with other operations. 14827 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14828 EVT MemVT = LD->getMemoryVT(); 14829 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14830 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14831 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14832 LD->getExtensionType() == ISD::ZEXTLOAD)) 14833 return true; 14834 } 14835 14836 // FIXME: Add other cases... 14837 // - 32-bit shifts with a zext to i64 14838 // - zext after ctlz, bswap, etc. 14839 // - zext after and by a constant mask 14840 14841 return TargetLowering::isZExtFree(Val, VT2); 14842 } 14843 14844 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14845 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14846 "invalid fpext types"); 14847 // Extending to float128 is not free. 14848 if (DestVT == MVT::f128) 14849 return false; 14850 return true; 14851 } 14852 14853 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14854 return isInt<16>(Imm) || isUInt<16>(Imm); 14855 } 14856 14857 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14858 return isInt<16>(Imm) || isUInt<16>(Imm); 14859 } 14860 14861 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14862 unsigned, 14863 unsigned, 14864 MachineMemOperand::Flags, 14865 bool *Fast) const { 14866 if (DisablePPCUnaligned) 14867 return false; 14868 14869 // PowerPC supports unaligned memory access for simple non-vector types. 14870 // Although accessing unaligned addresses is not as efficient as accessing 14871 // aligned addresses, it is generally more efficient than manual expansion, 14872 // and generally only traps for software emulation when crossing page 14873 // boundaries. 14874 14875 if (!VT.isSimple()) 14876 return false; 14877 14878 if (VT.getSimpleVT().isVector()) { 14879 if (Subtarget.hasVSX()) { 14880 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14881 VT != MVT::v4f32 && VT != MVT::v4i32) 14882 return false; 14883 } else { 14884 return false; 14885 } 14886 } 14887 14888 if (VT == MVT::ppcf128) 14889 return false; 14890 14891 if (Fast) 14892 *Fast = true; 14893 14894 return true; 14895 } 14896 14897 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14898 VT = VT.getScalarType(); 14899 14900 if (!VT.isSimple()) 14901 return false; 14902 14903 switch (VT.getSimpleVT().SimpleTy) { 14904 case MVT::f32: 14905 case MVT::f64: 14906 return true; 14907 case MVT::f128: 14908 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14909 default: 14910 break; 14911 } 14912 14913 return false; 14914 } 14915 14916 const MCPhysReg * 14917 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14918 // LR is a callee-save register, but we must treat it as clobbered by any call 14919 // site. Hence we include LR in the scratch registers, which are in turn added 14920 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14921 // to CTR, which is used by any indirect call. 14922 static const MCPhysReg ScratchRegs[] = { 14923 PPC::X12, PPC::LR8, PPC::CTR8, 0 14924 }; 14925 14926 return ScratchRegs; 14927 } 14928 14929 unsigned PPCTargetLowering::getExceptionPointerRegister( 14930 const Constant *PersonalityFn) const { 14931 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14932 } 14933 14934 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14935 const Constant *PersonalityFn) const { 14936 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14937 } 14938 14939 bool 14940 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14941 EVT VT , unsigned DefinedValues) const { 14942 if (VT == MVT::v2i64) 14943 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14944 14945 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14946 return true; 14947 14948 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14949 } 14950 14951 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14952 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14953 return TargetLowering::getSchedulingPreference(N); 14954 14955 return Sched::ILP; 14956 } 14957 14958 // Create a fast isel object. 14959 FastISel * 14960 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14961 const TargetLibraryInfo *LibInfo) const { 14962 return PPC::createFastISel(FuncInfo, LibInfo); 14963 } 14964 14965 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14966 if (Subtarget.isDarwinABI()) return; 14967 if (!Subtarget.isPPC64()) return; 14968 14969 // Update IsSplitCSR in PPCFunctionInfo 14970 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14971 PFI->setIsSplitCSR(true); 14972 } 14973 14974 void PPCTargetLowering::insertCopiesSplitCSR( 14975 MachineBasicBlock *Entry, 14976 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14977 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14978 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14979 if (!IStart) 14980 return; 14981 14982 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14983 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14984 MachineBasicBlock::iterator MBBI = Entry->begin(); 14985 for (const MCPhysReg *I = IStart; *I; ++I) { 14986 const TargetRegisterClass *RC = nullptr; 14987 if (PPC::G8RCRegClass.contains(*I)) 14988 RC = &PPC::G8RCRegClass; 14989 else if (PPC::F8RCRegClass.contains(*I)) 14990 RC = &PPC::F8RCRegClass; 14991 else if (PPC::CRRCRegClass.contains(*I)) 14992 RC = &PPC::CRRCRegClass; 14993 else if (PPC::VRRCRegClass.contains(*I)) 14994 RC = &PPC::VRRCRegClass; 14995 else 14996 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14997 14998 Register NewVR = MRI->createVirtualRegister(RC); 14999 // Create copy from CSR to a virtual register. 15000 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15001 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15002 // nounwind. If we want to generalize this later, we may need to emit 15003 // CFI pseudo-instructions. 15004 assert(Entry->getParent()->getFunction().hasFnAttribute( 15005 Attribute::NoUnwind) && 15006 "Function should be nounwind in insertCopiesSplitCSR!"); 15007 Entry->addLiveIn(*I); 15008 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15009 .addReg(*I); 15010 15011 // Insert the copy-back instructions right before the terminator. 15012 for (auto *Exit : Exits) 15013 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15014 TII->get(TargetOpcode::COPY), *I) 15015 .addReg(NewVR); 15016 } 15017 } 15018 15019 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15020 bool PPCTargetLowering::useLoadStackGuardNode() const { 15021 if (!Subtarget.isTargetLinux()) 15022 return TargetLowering::useLoadStackGuardNode(); 15023 return true; 15024 } 15025 15026 // Override to disable global variable loading on Linux. 15027 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15028 if (!Subtarget.isTargetLinux()) 15029 return TargetLowering::insertSSPDeclarations(M); 15030 } 15031 15032 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15033 bool ForCodeSize) const { 15034 if (!VT.isSimple() || !Subtarget.hasVSX()) 15035 return false; 15036 15037 switch(VT.getSimpleVT().SimpleTy) { 15038 default: 15039 // For FP types that are currently not supported by PPC backend, return 15040 // false. Examples: f16, f80. 15041 return false; 15042 case MVT::f32: 15043 case MVT::f64: 15044 case MVT::ppcf128: 15045 return Imm.isPosZero(); 15046 } 15047 } 15048 15049 // For vector shift operation op, fold 15050 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15051 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15052 SelectionDAG &DAG) { 15053 SDValue N0 = N->getOperand(0); 15054 SDValue N1 = N->getOperand(1); 15055 EVT VT = N0.getValueType(); 15056 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15057 unsigned Opcode = N->getOpcode(); 15058 unsigned TargetOpcode; 15059 15060 switch (Opcode) { 15061 default: 15062 llvm_unreachable("Unexpected shift operation"); 15063 case ISD::SHL: 15064 TargetOpcode = PPCISD::SHL; 15065 break; 15066 case ISD::SRL: 15067 TargetOpcode = PPCISD::SRL; 15068 break; 15069 case ISD::SRA: 15070 TargetOpcode = PPCISD::SRA; 15071 break; 15072 } 15073 15074 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15075 N1->getOpcode() == ISD::AND) 15076 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15077 if (Mask->getZExtValue() == OpSizeInBits - 1) 15078 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15079 15080 return SDValue(); 15081 } 15082 15083 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15084 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15085 return Value; 15086 15087 SDValue N0 = N->getOperand(0); 15088 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15089 if (!Subtarget.isISA3_0() || 15090 N0.getOpcode() != ISD::SIGN_EXTEND || 15091 N0.getOperand(0).getValueType() != MVT::i32 || 15092 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15093 return SDValue(); 15094 15095 // We can't save an operation here if the value is already extended, and 15096 // the existing shift is easier to combine. 15097 SDValue ExtsSrc = N0.getOperand(0); 15098 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15099 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15100 return SDValue(); 15101 15102 SDLoc DL(N0); 15103 SDValue ShiftBy = SDValue(CN1, 0); 15104 // We want the shift amount to be i32 on the extswli, but the shift could 15105 // have an i64. 15106 if (ShiftBy.getValueType() == MVT::i64) 15107 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15108 15109 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15110 ShiftBy); 15111 } 15112 15113 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15114 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15115 return Value; 15116 15117 return SDValue(); 15118 } 15119 15120 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15121 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15122 return Value; 15123 15124 return SDValue(); 15125 } 15126 15127 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15128 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15129 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15130 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15131 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15132 const PPCSubtarget &Subtarget) { 15133 if (!Subtarget.isPPC64()) 15134 return SDValue(); 15135 15136 SDValue LHS = N->getOperand(0); 15137 SDValue RHS = N->getOperand(1); 15138 15139 auto isZextOfCompareWithConstant = [](SDValue Op) { 15140 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15141 Op.getValueType() != MVT::i64) 15142 return false; 15143 15144 SDValue Cmp = Op.getOperand(0); 15145 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15146 Cmp.getOperand(0).getValueType() != MVT::i64) 15147 return false; 15148 15149 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15150 int64_t NegConstant = 0 - Constant->getSExtValue(); 15151 // Due to the limitations of the addi instruction, 15152 // -C is required to be [-32768, 32767]. 15153 return isInt<16>(NegConstant); 15154 } 15155 15156 return false; 15157 }; 15158 15159 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15160 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15161 15162 // If there is a pattern, canonicalize a zext operand to the RHS. 15163 if (LHSHasPattern && !RHSHasPattern) 15164 std::swap(LHS, RHS); 15165 else if (!LHSHasPattern && !RHSHasPattern) 15166 return SDValue(); 15167 15168 SDLoc DL(N); 15169 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15170 SDValue Cmp = RHS.getOperand(0); 15171 SDValue Z = Cmp.getOperand(0); 15172 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15173 15174 assert(Constant && "Constant Should not be a null pointer."); 15175 int64_t NegConstant = 0 - Constant->getSExtValue(); 15176 15177 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15178 default: break; 15179 case ISD::SETNE: { 15180 // when C == 0 15181 // --> addze X, (addic Z, -1).carry 15182 // / 15183 // add X, (zext(setne Z, C))-- 15184 // \ when -32768 <= -C <= 32767 && C != 0 15185 // --> addze X, (addic (addi Z, -C), -1).carry 15186 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15187 DAG.getConstant(NegConstant, DL, MVT::i64)); 15188 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15189 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15190 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15191 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15192 SDValue(Addc.getNode(), 1)); 15193 } 15194 case ISD::SETEQ: { 15195 // when C == 0 15196 // --> addze X, (subfic Z, 0).carry 15197 // / 15198 // add X, (zext(sete Z, C))-- 15199 // \ when -32768 <= -C <= 32767 && C != 0 15200 // --> addze X, (subfic (addi Z, -C), 0).carry 15201 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15202 DAG.getConstant(NegConstant, DL, MVT::i64)); 15203 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15204 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15205 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15206 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15207 SDValue(Subc.getNode(), 1)); 15208 } 15209 } 15210 15211 return SDValue(); 15212 } 15213 15214 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15215 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15216 return Value; 15217 15218 return SDValue(); 15219 } 15220 15221 // Detect TRUNCATE operations on bitcasts of float128 values. 15222 // What we are looking for here is the situtation where we extract a subset 15223 // of bits from a 128 bit float. 15224 // This can be of two forms: 15225 // 1) BITCAST of f128 feeding TRUNCATE 15226 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15227 // The reason this is required is because we do not have a legal i128 type 15228 // and so we want to prevent having to store the f128 and then reload part 15229 // of it. 15230 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15231 DAGCombinerInfo &DCI) const { 15232 // If we are using CRBits then try that first. 15233 if (Subtarget.useCRBits()) { 15234 // Check if CRBits did anything and return that if it did. 15235 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15236 return CRTruncValue; 15237 } 15238 15239 SDLoc dl(N); 15240 SDValue Op0 = N->getOperand(0); 15241 15242 // Looking for a truncate of i128 to i64. 15243 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15244 return SDValue(); 15245 15246 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15247 15248 // SRL feeding TRUNCATE. 15249 if (Op0.getOpcode() == ISD::SRL) { 15250 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15251 // The right shift has to be by 64 bits. 15252 if (!ConstNode || ConstNode->getZExtValue() != 64) 15253 return SDValue(); 15254 15255 // Switch the element number to extract. 15256 EltToExtract = EltToExtract ? 0 : 1; 15257 // Update Op0 past the SRL. 15258 Op0 = Op0.getOperand(0); 15259 } 15260 15261 // BITCAST feeding a TRUNCATE possibly via SRL. 15262 if (Op0.getOpcode() == ISD::BITCAST && 15263 Op0.getValueType() == MVT::i128 && 15264 Op0.getOperand(0).getValueType() == MVT::f128) { 15265 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15266 return DCI.DAG.getNode( 15267 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15268 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15269 } 15270 return SDValue(); 15271 } 15272 15273 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15274 SelectionDAG &DAG = DCI.DAG; 15275 15276 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15277 if (!ConstOpOrElement) 15278 return SDValue(); 15279 15280 // An imul is usually smaller than the alternative sequence for legal type. 15281 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15282 isOperationLegal(ISD::MUL, N->getValueType(0))) 15283 return SDValue(); 15284 15285 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15286 switch (this->Subtarget.getDarwinDirective()) { 15287 default: 15288 // TODO: enhance the condition for subtarget before pwr8 15289 return false; 15290 case PPC::DIR_PWR8: 15291 // type mul add shl 15292 // scalar 4 1 1 15293 // vector 7 2 2 15294 return true; 15295 case PPC::DIR_PWR9: 15296 // type mul add shl 15297 // scalar 5 2 2 15298 // vector 7 2 2 15299 15300 // The cycle RATIO of related operations are showed as a table above. 15301 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15302 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15303 // are 4, it is always profitable; but for 3 instrs patterns 15304 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15305 // So we should only do it for vector type. 15306 return IsAddOne && IsNeg ? VT.isVector() : true; 15307 } 15308 }; 15309 15310 EVT VT = N->getValueType(0); 15311 SDLoc DL(N); 15312 15313 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15314 bool IsNeg = MulAmt.isNegative(); 15315 APInt MulAmtAbs = MulAmt.abs(); 15316 15317 if ((MulAmtAbs - 1).isPowerOf2()) { 15318 // (mul x, 2^N + 1) => (add (shl x, N), x) 15319 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15320 15321 if (!IsProfitable(IsNeg, true, VT)) 15322 return SDValue(); 15323 15324 SDValue Op0 = N->getOperand(0); 15325 SDValue Op1 = 15326 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15327 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15328 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15329 15330 if (!IsNeg) 15331 return Res; 15332 15333 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15334 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15335 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15336 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15337 15338 if (!IsProfitable(IsNeg, false, VT)) 15339 return SDValue(); 15340 15341 SDValue Op0 = N->getOperand(0); 15342 SDValue Op1 = 15343 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15344 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15345 15346 if (!IsNeg) 15347 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15348 else 15349 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15350 15351 } else { 15352 return SDValue(); 15353 } 15354 } 15355 15356 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15357 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15358 if (!Subtarget.is64BitELFABI()) 15359 return false; 15360 15361 // If not a tail call then no need to proceed. 15362 if (!CI->isTailCall()) 15363 return false; 15364 15365 // If tail calls are disabled for the caller then we are done. 15366 const Function *Caller = CI->getParent()->getParent(); 15367 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15368 if (Attr.getValueAsString() == "true") 15369 return false; 15370 15371 // If sibling calls have been disabled and tail-calls aren't guaranteed 15372 // there is no reason to duplicate. 15373 auto &TM = getTargetMachine(); 15374 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15375 return false; 15376 15377 // Can't tail call a function called indirectly, or if it has variadic args. 15378 const Function *Callee = CI->getCalledFunction(); 15379 if (!Callee || Callee->isVarArg()) 15380 return false; 15381 15382 // Make sure the callee and caller calling conventions are eligible for tco. 15383 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15384 CI->getCallingConv())) 15385 return false; 15386 15387 // If the function is local then we have a good chance at tail-calling it 15388 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15389 } 15390 15391 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15392 if (!Subtarget.hasVSX()) 15393 return false; 15394 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15395 return true; 15396 return VT == MVT::f32 || VT == MVT::f64 || 15397 VT == MVT::v4f32 || VT == MVT::v2f64; 15398 } 15399 15400 bool PPCTargetLowering:: 15401 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15402 const Value *Mask = AndI.getOperand(1); 15403 // If the mask is suitable for andi. or andis. we should sink the and. 15404 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15405 // Can't handle constants wider than 64-bits. 15406 if (CI->getBitWidth() > 64) 15407 return false; 15408 int64_t ConstVal = CI->getZExtValue(); 15409 return isUInt<16>(ConstVal) || 15410 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15411 } 15412 15413 // For non-constant masks, we can always use the record-form and. 15414 return true; 15415 } 15416 15417 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15418 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15419 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15420 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15421 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15422 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15423 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15424 assert(Subtarget.hasP9Altivec() && 15425 "Only combine this when P9 altivec supported!"); 15426 EVT VT = N->getValueType(0); 15427 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15428 return SDValue(); 15429 15430 SelectionDAG &DAG = DCI.DAG; 15431 SDLoc dl(N); 15432 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15433 // Even for signed integers, if it's known to be positive (as signed 15434 // integer) due to zero-extended inputs. 15435 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15436 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15437 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15438 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15439 (SubOpcd1 == ISD::ZERO_EXTEND || 15440 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15441 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15442 N->getOperand(0)->getOperand(0), 15443 N->getOperand(0)->getOperand(1), 15444 DAG.getTargetConstant(0, dl, MVT::i32)); 15445 } 15446 15447 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15448 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15449 N->getOperand(0).hasOneUse()) { 15450 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15451 N->getOperand(0)->getOperand(0), 15452 N->getOperand(0)->getOperand(1), 15453 DAG.getTargetConstant(1, dl, MVT::i32)); 15454 } 15455 } 15456 15457 return SDValue(); 15458 } 15459 15460 // For type v4i32/v8ii16/v16i8, transform 15461 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15462 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15463 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15464 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15465 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15466 DAGCombinerInfo &DCI) const { 15467 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15468 assert(Subtarget.hasP9Altivec() && 15469 "Only combine this when P9 altivec supported!"); 15470 15471 SelectionDAG &DAG = DCI.DAG; 15472 SDLoc dl(N); 15473 SDValue Cond = N->getOperand(0); 15474 SDValue TrueOpnd = N->getOperand(1); 15475 SDValue FalseOpnd = N->getOperand(2); 15476 EVT VT = N->getOperand(1).getValueType(); 15477 15478 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15479 FalseOpnd.getOpcode() != ISD::SUB) 15480 return SDValue(); 15481 15482 // ABSD only available for type v4i32/v8i16/v16i8 15483 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15484 return SDValue(); 15485 15486 // At least to save one more dependent computation 15487 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15488 return SDValue(); 15489 15490 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15491 15492 // Can only handle unsigned comparison here 15493 switch (CC) { 15494 default: 15495 return SDValue(); 15496 case ISD::SETUGT: 15497 case ISD::SETUGE: 15498 break; 15499 case ISD::SETULT: 15500 case ISD::SETULE: 15501 std::swap(TrueOpnd, FalseOpnd); 15502 break; 15503 } 15504 15505 SDValue CmpOpnd1 = Cond.getOperand(0); 15506 SDValue CmpOpnd2 = Cond.getOperand(1); 15507 15508 // SETCC CmpOpnd1 CmpOpnd2 cond 15509 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15510 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15511 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15512 TrueOpnd.getOperand(1) == CmpOpnd2 && 15513 FalseOpnd.getOperand(0) == CmpOpnd2 && 15514 FalseOpnd.getOperand(1) == CmpOpnd1) { 15515 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15516 CmpOpnd1, CmpOpnd2, 15517 DAG.getTargetConstant(0, dl, MVT::i32)); 15518 } 15519 15520 return SDValue(); 15521 } 15522