xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 // TODO - Remove this option if soft fp128 has been fully supported .
125 static cl::opt<bool>
126     EnableSoftFP128("enable-soft-fp128",
127                     cl::desc("temp option to enable soft fp128"), cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       // EFPU2 APU only supports f32
155       if (!Subtarget.hasEFPU2())
156         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
157     } else {
158       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
159       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
160     }
161   }
162 
163   // Match BITREVERSE to customized fast code sequence in the td file.
164   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
165   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
166 
167   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
168   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
169 
170   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
171   for (MVT VT : MVT::integer_valuetypes()) {
172     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
173     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
174   }
175 
176   if (Subtarget.isISA3_0()) {
177     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
178     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
179     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
180     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
181   } else {
182     // No extending loads from f16 or HW conversions back and forth.
183     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
184     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
185     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
186     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
187     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
188     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
189     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
190     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
191   }
192 
193   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
194 
195   // PowerPC has pre-inc load and store's.
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
199   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
200   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
204   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
205   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
206   if (!Subtarget.hasSPE()) {
207     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
209     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
210     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
211   }
212 
213   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
214   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
215   for (MVT VT : ScalarIntVTs) {
216     setOperationAction(ISD::ADDC, VT, Legal);
217     setOperationAction(ISD::ADDE, VT, Legal);
218     setOperationAction(ISD::SUBC, VT, Legal);
219     setOperationAction(ISD::SUBE, VT, Legal);
220   }
221 
222   if (Subtarget.useCRBits()) {
223     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
224 
225     if (isPPC64 || Subtarget.hasFPCVT()) {
226       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
227       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
228                         isPPC64 ? MVT::i64 : MVT::i32);
229       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
230       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
231                         isPPC64 ? MVT::i64 : MVT::i32);
232 
233       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
234       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
235                          isPPC64 ? MVT::i64 : MVT::i32);
236       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239 
240       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
241       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
242                         isPPC64 ? MVT::i64 : MVT::i32);
243       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
244       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
245                         isPPC64 ? MVT::i64 : MVT::i32);
246 
247       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
248       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
249                         isPPC64 ? MVT::i64 : MVT::i32);
250       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253     } else {
254       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
255       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
256       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
257       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
258     }
259 
260     // PowerPC does not support direct load/store of condition registers.
261     setOperationAction(ISD::LOAD, MVT::i1, Custom);
262     setOperationAction(ISD::STORE, MVT::i1, Custom);
263 
264     // FIXME: Remove this once the ANDI glue bug is fixed:
265     if (ANDIGlueBug)
266       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
267 
268     for (MVT VT : MVT::integer_valuetypes()) {
269       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
270       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
271       setTruncStoreAction(VT, MVT::i1, Expand);
272     }
273 
274     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
275   }
276 
277   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
278   // PPC (the libcall is not available).
279   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
280   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
281   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
282   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
283 
284   // We do not currently implement these libm ops for PowerPC.
285   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
286   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
287   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
288   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
289   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
290   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
291 
292   // PowerPC has no SREM/UREM instructions unless we are on P9
293   // On P9 we may use a hardware instruction to compute the remainder.
294   // When the result of both the remainder and the division is required it is
295   // more efficient to compute the remainder from the result of the division
296   // rather than use the remainder instruction. The instructions are legalized
297   // directly because the DivRemPairsPass performs the transformation at the IR
298   // level.
299   if (Subtarget.isISA3_0()) {
300     setOperationAction(ISD::SREM, MVT::i32, Legal);
301     setOperationAction(ISD::UREM, MVT::i32, Legal);
302     setOperationAction(ISD::SREM, MVT::i64, Legal);
303     setOperationAction(ISD::UREM, MVT::i64, Legal);
304   } else {
305     setOperationAction(ISD::SREM, MVT::i32, Expand);
306     setOperationAction(ISD::UREM, MVT::i32, Expand);
307     setOperationAction(ISD::SREM, MVT::i64, Expand);
308     setOperationAction(ISD::UREM, MVT::i64, Expand);
309   }
310 
311   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
312   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
313   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
314   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
315   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
316   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
317   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
318   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
319   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
320 
321   // Handle constrained floating-point operations of scalar.
322   // TODO: Handle SPE specific operation.
323   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
324   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
325   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
326   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
327   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
328   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
329 
330   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
331   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
332   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
333   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
334   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
335   if (Subtarget.hasVSX()) {
336     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
337     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
338   }
339 
340   if (Subtarget.hasFSQRT()) {
341     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
342     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
343   }
344 
345   if (Subtarget.hasFPRND()) {
346     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
347     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
348     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
349     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
350 
351     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
352     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
353     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
354     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
355   }
356 
357   // We don't support sin/cos/sqrt/fmod/pow
358   setOperationAction(ISD::FSIN , MVT::f64, Expand);
359   setOperationAction(ISD::FCOS , MVT::f64, Expand);
360   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
361   setOperationAction(ISD::FREM , MVT::f64, Expand);
362   setOperationAction(ISD::FPOW , MVT::f64, Expand);
363   setOperationAction(ISD::FSIN , MVT::f32, Expand);
364   setOperationAction(ISD::FCOS , MVT::f32, Expand);
365   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
366   setOperationAction(ISD::FREM , MVT::f32, Expand);
367   setOperationAction(ISD::FPOW , MVT::f32, Expand);
368   if (Subtarget.hasSPE()) {
369     setOperationAction(ISD::FMA  , MVT::f64, Expand);
370     setOperationAction(ISD::FMA  , MVT::f32, Expand);
371   } else {
372     setOperationAction(ISD::FMA  , MVT::f64, Legal);
373     setOperationAction(ISD::FMA  , MVT::f32, Legal);
374   }
375 
376   if (Subtarget.hasSPE())
377     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
378 
379   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
380 
381   // If we're enabling GP optimizations, use hardware square root
382   if (!Subtarget.hasFSQRT() &&
383       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
384         Subtarget.hasFRE()))
385     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
386 
387   if (!Subtarget.hasFSQRT() &&
388       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
389         Subtarget.hasFRES()))
390     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
391 
392   if (Subtarget.hasFCPSGN()) {
393     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
394     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
395   } else {
396     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
397     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
398   }
399 
400   if (Subtarget.hasFPRND()) {
401     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
402     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
403     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
404     setOperationAction(ISD::FROUND, MVT::f64, Legal);
405 
406     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
407     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
408     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
409     setOperationAction(ISD::FROUND, MVT::f32, Legal);
410   }
411 
412   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
413   // to speed up scalar BSWAP64.
414   // CTPOP or CTTZ were introduced in P8/P9 respectively
415   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
416   if (Subtarget.hasP9Vector())
417     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
418   else
419     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
420   if (Subtarget.isISA3_0()) {
421     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
422     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
423   } else {
424     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
425     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
426   }
427 
428   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
429     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
430     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
431   } else {
432     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
433     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
434   }
435 
436   // PowerPC does not have ROTR
437   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
438   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
439 
440   if (!Subtarget.useCRBits()) {
441     // PowerPC does not have Select
442     setOperationAction(ISD::SELECT, MVT::i32, Expand);
443     setOperationAction(ISD::SELECT, MVT::i64, Expand);
444     setOperationAction(ISD::SELECT, MVT::f32, Expand);
445     setOperationAction(ISD::SELECT, MVT::f64, Expand);
446   }
447 
448   // PowerPC wants to turn select_cc of FP into fsel when possible.
449   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
450   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
451 
452   // PowerPC wants to optimize integer setcc a bit
453   if (!Subtarget.useCRBits())
454     setOperationAction(ISD::SETCC, MVT::i32, Custom);
455 
456   if (Subtarget.hasFPU()) {
457     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
458     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
459     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
460 
461     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
462     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
463     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
464   }
465 
466   // PowerPC does not have BRCOND which requires SetCC
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
469 
470   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
471 
472   if (Subtarget.hasSPE()) {
473     // SPE has built-in conversions
474     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
475     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
476     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
477     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
478     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
479     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
480   } else {
481     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
482     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
483     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
484 
485     // PowerPC does not have [U|S]INT_TO_FP
486     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
487     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
488     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
489     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
490   }
491 
492   if (Subtarget.hasDirectMove() && isPPC64) {
493     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
494     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
495     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
496     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
497     if (TM.Options.UnsafeFPMath) {
498       setOperationAction(ISD::LRINT, MVT::f64, Legal);
499       setOperationAction(ISD::LRINT, MVT::f32, Legal);
500       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
501       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
502       setOperationAction(ISD::LROUND, MVT::f64, Legal);
503       setOperationAction(ISD::LROUND, MVT::f32, Legal);
504       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
505       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
506     }
507   } else {
508     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
509     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
510     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
511     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
512   }
513 
514   // We cannot sextinreg(i1).  Expand to shifts.
515   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
516 
517   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
518   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
519   // support continuation, user-level threading, and etc.. As a result, no
520   // other SjLj exception interfaces are implemented and please don't build
521   // your own exception handling based on them.
522   // LLVM/Clang supports zero-cost DWARF exception handling.
523   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
524   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
525 
526   // We want to legalize GlobalAddress and ConstantPool nodes into the
527   // appropriate instructions to materialize the address.
528   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
529   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
530   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
531   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
532   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
533   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
534   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
535   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
536   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
537   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
538 
539   // TRAP is legal.
540   setOperationAction(ISD::TRAP, MVT::Other, Legal);
541 
542   // TRAMPOLINE is custom lowered.
543   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
544   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
545 
546   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
547   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
548 
549   if (Subtarget.is64BitELFABI()) {
550     // VAARG always uses double-word chunks, so promote anything smaller.
551     setOperationAction(ISD::VAARG, MVT::i1, Promote);
552     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
553     setOperationAction(ISD::VAARG, MVT::i8, Promote);
554     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
555     setOperationAction(ISD::VAARG, MVT::i16, Promote);
556     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
557     setOperationAction(ISD::VAARG, MVT::i32, Promote);
558     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
559     setOperationAction(ISD::VAARG, MVT::Other, Expand);
560   } else if (Subtarget.is32BitELFABI()) {
561     // VAARG is custom lowered with the 32-bit SVR4 ABI.
562     setOperationAction(ISD::VAARG, MVT::Other, Custom);
563     setOperationAction(ISD::VAARG, MVT::i64, Custom);
564   } else
565     setOperationAction(ISD::VAARG, MVT::Other, Expand);
566 
567   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
568   if (Subtarget.is32BitELFABI())
569     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
570   else
571     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
572 
573   // Use the default implementation.
574   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
575   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
576   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
577   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
578   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
579   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
580   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
581   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
582   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
583 
584   // We want to custom lower some of our intrinsics.
585   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
586 
587   // To handle counter-based loop conditions.
588   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
589 
590   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
591   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
592   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
593   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
594 
595   // Comparisons that require checking two conditions.
596   if (Subtarget.hasSPE()) {
597     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
598     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
599     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
600     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
601   }
602   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
603   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
604   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
605   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
606   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
607   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
608   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
609   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
610   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
611   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
612   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
613   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
614 
615   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
616   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
617 
618   if (Subtarget.has64BitSupport()) {
619     // They also have instructions for converting between i64 and fp.
620     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
621     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
622     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
623     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
624     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
625     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
626     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
627     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
628     // This is just the low 32 bits of a (signed) fp->i64 conversion.
629     // We cannot do this with Promote because i64 is not a legal type.
630     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
631     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
632 
633     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
634       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
635       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
636     }
637   } else {
638     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
639     if (Subtarget.hasSPE()) {
640       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
641       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
642     } else {
643       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
644       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
645     }
646   }
647 
648   // With the instructions enabled under FPCVT, we can do everything.
649   if (Subtarget.hasFPCVT()) {
650     if (Subtarget.has64BitSupport()) {
651       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
652       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
653       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
654       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
655       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
656       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
657       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
658       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
659     }
660 
661     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
662     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
663     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
664     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
665     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
666     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
667     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
668     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
669   }
670 
671   if (Subtarget.use64BitRegs()) {
672     // 64-bit PowerPC implementations can support i64 types directly
673     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
674     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
675     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
676     // 64-bit PowerPC wants to expand i128 shifts itself.
677     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
678     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
679     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
680   } else {
681     // 32-bit PowerPC wants to expand i64 shifts itself.
682     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
683     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
684     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
685   }
686 
687   // PowerPC has better expansions for funnel shifts than the generic
688   // TargetLowering::expandFunnelShift.
689   if (Subtarget.has64BitSupport()) {
690     setOperationAction(ISD::FSHL, MVT::i64, Custom);
691     setOperationAction(ISD::FSHR, MVT::i64, Custom);
692   }
693   setOperationAction(ISD::FSHL, MVT::i32, Custom);
694   setOperationAction(ISD::FSHR, MVT::i32, Custom);
695 
696   if (Subtarget.hasVSX()) {
697     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
698     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
699     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
700     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
701   }
702 
703   if (Subtarget.hasAltivec()) {
704     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
705       setOperationAction(ISD::SADDSAT, VT, Legal);
706       setOperationAction(ISD::SSUBSAT, VT, Legal);
707       setOperationAction(ISD::UADDSAT, VT, Legal);
708       setOperationAction(ISD::USUBSAT, VT, Legal);
709     }
710     // First set operation action for all vector types to expand. Then we
711     // will selectively turn on ones that can be effectively codegen'd.
712     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
713       // add/sub are legal for all supported vector VT's.
714       setOperationAction(ISD::ADD, VT, Legal);
715       setOperationAction(ISD::SUB, VT, Legal);
716 
717       // For v2i64, these are only valid with P8Vector. This is corrected after
718       // the loop.
719       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
720         setOperationAction(ISD::SMAX, VT, Legal);
721         setOperationAction(ISD::SMIN, VT, Legal);
722         setOperationAction(ISD::UMAX, VT, Legal);
723         setOperationAction(ISD::UMIN, VT, Legal);
724       }
725       else {
726         setOperationAction(ISD::SMAX, VT, Expand);
727         setOperationAction(ISD::SMIN, VT, Expand);
728         setOperationAction(ISD::UMAX, VT, Expand);
729         setOperationAction(ISD::UMIN, VT, Expand);
730       }
731 
732       if (Subtarget.hasVSX()) {
733         setOperationAction(ISD::FMAXNUM, VT, Legal);
734         setOperationAction(ISD::FMINNUM, VT, Legal);
735       }
736 
737       // Vector instructions introduced in P8
738       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
739         setOperationAction(ISD::CTPOP, VT, Legal);
740         setOperationAction(ISD::CTLZ, VT, Legal);
741       }
742       else {
743         setOperationAction(ISD::CTPOP, VT, Expand);
744         setOperationAction(ISD::CTLZ, VT, Expand);
745       }
746 
747       // Vector instructions introduced in P9
748       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
749         setOperationAction(ISD::CTTZ, VT, Legal);
750       else
751         setOperationAction(ISD::CTTZ, VT, Expand);
752 
753       // We promote all shuffles to v16i8.
754       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
755       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
756 
757       // We promote all non-typed operations to v4i32.
758       setOperationAction(ISD::AND   , VT, Promote);
759       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
760       setOperationAction(ISD::OR    , VT, Promote);
761       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
762       setOperationAction(ISD::XOR   , VT, Promote);
763       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
764       setOperationAction(ISD::LOAD  , VT, Promote);
765       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
766       setOperationAction(ISD::SELECT, VT, Promote);
767       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
768       setOperationAction(ISD::VSELECT, VT, Legal);
769       setOperationAction(ISD::SELECT_CC, VT, Promote);
770       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
771       setOperationAction(ISD::STORE, VT, Promote);
772       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
773 
774       // No other operations are legal.
775       setOperationAction(ISD::MUL , VT, Expand);
776       setOperationAction(ISD::SDIV, VT, Expand);
777       setOperationAction(ISD::SREM, VT, Expand);
778       setOperationAction(ISD::UDIV, VT, Expand);
779       setOperationAction(ISD::UREM, VT, Expand);
780       setOperationAction(ISD::FDIV, VT, Expand);
781       setOperationAction(ISD::FREM, VT, Expand);
782       setOperationAction(ISD::FNEG, VT, Expand);
783       setOperationAction(ISD::FSQRT, VT, Expand);
784       setOperationAction(ISD::FLOG, VT, Expand);
785       setOperationAction(ISD::FLOG10, VT, Expand);
786       setOperationAction(ISD::FLOG2, VT, Expand);
787       setOperationAction(ISD::FEXP, VT, Expand);
788       setOperationAction(ISD::FEXP2, VT, Expand);
789       setOperationAction(ISD::FSIN, VT, Expand);
790       setOperationAction(ISD::FCOS, VT, Expand);
791       setOperationAction(ISD::FABS, VT, Expand);
792       setOperationAction(ISD::FFLOOR, VT, Expand);
793       setOperationAction(ISD::FCEIL,  VT, Expand);
794       setOperationAction(ISD::FTRUNC, VT, Expand);
795       setOperationAction(ISD::FRINT,  VT, Expand);
796       setOperationAction(ISD::FNEARBYINT, VT, Expand);
797       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
798       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
799       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
800       setOperationAction(ISD::MULHU, VT, Expand);
801       setOperationAction(ISD::MULHS, VT, Expand);
802       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
803       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
804       setOperationAction(ISD::UDIVREM, VT, Expand);
805       setOperationAction(ISD::SDIVREM, VT, Expand);
806       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
807       setOperationAction(ISD::FPOW, VT, Expand);
808       setOperationAction(ISD::BSWAP, VT, Expand);
809       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
810       setOperationAction(ISD::ROTL, VT, Expand);
811       setOperationAction(ISD::ROTR, VT, Expand);
812 
813       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
814         setTruncStoreAction(VT, InnerVT, Expand);
815         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
816         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
817         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
818       }
819     }
820     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
821     if (!Subtarget.hasP8Vector()) {
822       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
823       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
824       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
825       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
826     }
827 
828     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
829     // with merges, splats, etc.
830     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
831 
832     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
833     // are cheap, so handle them before they get expanded to scalar.
834     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
835     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
836     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
837     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
838     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
839 
840     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
841     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
842     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
843     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
844     setOperationAction(ISD::SELECT, MVT::v4i32,
845                        Subtarget.useCRBits() ? Legal : Expand);
846     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
847     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
848     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
849     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
850     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
851     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
852     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
853     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
854     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
855     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
856     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
857     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
858     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
859 
860     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
861     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
862     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
863     if (Subtarget.hasAltivec())
864       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
865         setOperationAction(ISD::ROTL, VT, Legal);
866     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
867     if (Subtarget.hasP8Altivec())
868       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
869 
870     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
871     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
872     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
873     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
874 
875     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
876     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
877 
878     if (Subtarget.hasVSX()) {
879       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
880       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
881     }
882 
883     if (Subtarget.hasP8Altivec())
884       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
885     else
886       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
887 
888     if (Subtarget.isISA3_1()) {
889       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
890       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
891       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
892       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
893       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
894       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
895       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
896       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
897       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
898       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
899       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
900       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
901       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
902       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
903       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
904       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
905       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
906       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
907     }
908 
909     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
910     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
911 
912     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
913     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
914 
915     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
916     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
917     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
918     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
919 
920     // Altivec does not contain unordered floating-point compare instructions
921     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
922     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
923     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
924     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
925 
926     if (Subtarget.hasVSX()) {
927       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
928       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
929       if (Subtarget.hasP8Vector()) {
930         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
931         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
932       }
933       if (Subtarget.hasDirectMove() && isPPC64) {
934         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
935         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
936         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
937         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
938         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
939         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
940         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
941         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
942       }
943       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
944 
945       // The nearbyint variants are not allowed to raise the inexact exception
946       // so we can only code-gen them with unsafe math.
947       if (TM.Options.UnsafeFPMath) {
948         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
949         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
950       }
951 
952       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
953       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
954       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
955       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
956       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
957       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
958       setOperationAction(ISD::FROUND, MVT::f64, Legal);
959       setOperationAction(ISD::FRINT, MVT::f64, Legal);
960 
961       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
962       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
963       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
964       setOperationAction(ISD::FROUND, MVT::f32, Legal);
965       setOperationAction(ISD::FRINT, MVT::f32, Legal);
966 
967       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
968       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
969 
970       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
971       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
972 
973       // Share the Altivec comparison restrictions.
974       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
975       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
976       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
977       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
978 
979       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
980       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
981 
982       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
983 
984       if (Subtarget.hasP8Vector())
985         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
986 
987       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
988 
989       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
990       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
991       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
992 
993       if (Subtarget.hasP8Altivec()) {
994         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
995         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
996         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
997 
998         // 128 bit shifts can be accomplished via 3 instructions for SHL and
999         // SRL, but not for SRA because of the instructions available:
1000         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1001         // doing
1002         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1003         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1004         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1005 
1006         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1007       }
1008       else {
1009         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1010         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1011         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1012 
1013         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1014 
1015         // VSX v2i64 only supports non-arithmetic operations.
1016         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1017         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1018       }
1019 
1020       if (Subtarget.isISA3_1())
1021         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1022       else
1023         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1024 
1025       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1026       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1027       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1028       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1029 
1030       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1031 
1032       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1033       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1034       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1035       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1036       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1037       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1038       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1039       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1040 
1041       // Custom handling for partial vectors of integers converted to
1042       // floating point. We already have optimal handling for v2i32 through
1043       // the DAG combine, so those aren't necessary.
1044       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1045       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1046       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1047       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1048       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1049       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1050       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1051       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1052       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1053       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1054       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1055       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1056       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1057       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1058       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1059       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1060 
1061       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1062       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1063       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1064       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1065       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1066       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1067 
1068       if (Subtarget.hasDirectMove())
1069         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1070       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1071 
1072       // Handle constrained floating-point operations of vector.
1073       // The predictor is `hasVSX` because altivec instruction has
1074       // no exception but VSX vector instruction has.
1075       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1076       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1077       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1078       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1079       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1080       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1081       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1082       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1083       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1084       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1085       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1086       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1087       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1088 
1089       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1090       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1091       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1092       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1093       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1094       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1095       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1096       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1097       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1098       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1099       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1100       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1101       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1102 
1103       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1104     }
1105 
1106     if (Subtarget.hasP8Altivec()) {
1107       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1108       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1109     }
1110 
1111     if (Subtarget.hasP9Vector()) {
1112       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1113       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1114 
1115       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1116       // SRL, but not for SRA because of the instructions available:
1117       // VS{RL} and VS{RL}O.
1118       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1119       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1120       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1121 
1122       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1123       setOperationAction(ISD::FADD, MVT::f128, Legal);
1124       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1125       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1126       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1127       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1128       // No extending loads to f128 on PPC.
1129       for (MVT FPT : MVT::fp_valuetypes())
1130         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1131       setOperationAction(ISD::FMA, MVT::f128, Legal);
1132       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1133       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1134       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1135       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1136       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1137       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1138 
1139       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1140       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1141       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1142       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1143       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1144       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1145 
1146       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1147       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1148       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1149       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1150       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1151       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1152       // No implementation for these ops for PowerPC.
1153       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1154       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1155       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1156       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1157       setOperationAction(ISD::FREM, MVT::f128, Expand);
1158 
1159       // Handle constrained floating-point operations of fp128
1160       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1161       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1162       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1163       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1164       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1165       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1166       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1167       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1168       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1169       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1170       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1171       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1172       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1173       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1174       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1175       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1176       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1177       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1178       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1179       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1180     } else if (Subtarget.hasAltivec() && EnableSoftFP128) {
1181       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1182 
1183       for (MVT FPT : MVT::fp_valuetypes())
1184         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1185 
1186       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1187       setOperationAction(ISD::STORE, MVT::f128, Promote);
1188 
1189       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1190       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1191 
1192       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1193       // fp_to_uint and int_to_fp.
1194       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1195       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1196 
1197       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1198       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1199       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1200       setOperationAction(ISD::FABS, MVT::f128, Expand);
1201       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1202       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1203       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1204       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1205       setOperationAction(ISD::FREM, MVT::f128, Expand);
1206       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1207       setOperationAction(ISD::FMA, MVT::f128, Expand);
1208       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1209 
1210       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1211       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1212 
1213       // Expand the fp_extend if the target type is fp128.
1214       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1215       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1216 
1217       // Expand the fp_round if the source type is fp128.
1218       for (MVT VT : {MVT::f32, MVT::f64}) {
1219         setOperationAction(ISD::FP_ROUND, VT, Custom);
1220         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1221       }
1222     }
1223 
1224     if (Subtarget.hasP9Altivec()) {
1225       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1226       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1227 
1228       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1229       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1230       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1231       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1232       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1233       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1234       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1235     }
1236   }
1237 
1238   if (Subtarget.pairedVectorMemops()) {
1239     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1240     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1241     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1242   }
1243   if (Subtarget.hasMMA()) {
1244     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1245     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1246     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1247     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1248   }
1249 
1250   if (Subtarget.has64BitSupport())
1251     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1252 
1253   if (Subtarget.isISA3_1())
1254     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1255 
1256   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1257 
1258   if (!isPPC64) {
1259     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1260     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1261   }
1262 
1263   setBooleanContents(ZeroOrOneBooleanContent);
1264 
1265   if (Subtarget.hasAltivec()) {
1266     // Altivec instructions set fields to all zeros or all ones.
1267     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1268   }
1269 
1270   if (!isPPC64) {
1271     // These libcalls are not available in 32-bit.
1272     setLibcallName(RTLIB::SHL_I128, nullptr);
1273     setLibcallName(RTLIB::SRL_I128, nullptr);
1274     setLibcallName(RTLIB::SRA_I128, nullptr);
1275   }
1276 
1277   if (!isPPC64)
1278     setMaxAtomicSizeInBitsSupported(32);
1279 
1280   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1281 
1282   // We have target-specific dag combine patterns for the following nodes:
1283   setTargetDAGCombine(ISD::ADD);
1284   setTargetDAGCombine(ISD::SHL);
1285   setTargetDAGCombine(ISD::SRA);
1286   setTargetDAGCombine(ISD::SRL);
1287   setTargetDAGCombine(ISD::MUL);
1288   setTargetDAGCombine(ISD::FMA);
1289   setTargetDAGCombine(ISD::SINT_TO_FP);
1290   setTargetDAGCombine(ISD::BUILD_VECTOR);
1291   if (Subtarget.hasFPCVT())
1292     setTargetDAGCombine(ISD::UINT_TO_FP);
1293   setTargetDAGCombine(ISD::LOAD);
1294   setTargetDAGCombine(ISD::STORE);
1295   setTargetDAGCombine(ISD::BR_CC);
1296   if (Subtarget.useCRBits())
1297     setTargetDAGCombine(ISD::BRCOND);
1298   setTargetDAGCombine(ISD::BSWAP);
1299   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1300   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1301   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1302 
1303   setTargetDAGCombine(ISD::SIGN_EXTEND);
1304   setTargetDAGCombine(ISD::ZERO_EXTEND);
1305   setTargetDAGCombine(ISD::ANY_EXTEND);
1306 
1307   setTargetDAGCombine(ISD::TRUNCATE);
1308   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1309 
1310 
1311   if (Subtarget.useCRBits()) {
1312     setTargetDAGCombine(ISD::TRUNCATE);
1313     setTargetDAGCombine(ISD::SETCC);
1314     setTargetDAGCombine(ISD::SELECT_CC);
1315   }
1316 
1317   if (Subtarget.hasP9Altivec()) {
1318     setTargetDAGCombine(ISD::ABS);
1319     setTargetDAGCombine(ISD::VSELECT);
1320   }
1321 
1322   setLibcallName(RTLIB::LOG_F128, "logf128");
1323   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1324   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1325   setLibcallName(RTLIB::EXP_F128, "expf128");
1326   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1327   setLibcallName(RTLIB::SIN_F128, "sinf128");
1328   setLibcallName(RTLIB::COS_F128, "cosf128");
1329   setLibcallName(RTLIB::POW_F128, "powf128");
1330   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1331   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1332   setLibcallName(RTLIB::REM_F128, "fmodf128");
1333   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1334   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1335   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1336   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1337   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1338   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1339   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1340   setLibcallName(RTLIB::RINT_F128, "rintf128");
1341   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1342   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1343   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1344   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1345 
1346   // With 32 condition bits, we don't need to sink (and duplicate) compares
1347   // aggressively in CodeGenPrep.
1348   if (Subtarget.useCRBits()) {
1349     setHasMultipleConditionRegisters();
1350     setJumpIsExpensive();
1351   }
1352 
1353   setMinFunctionAlignment(Align(4));
1354 
1355   switch (Subtarget.getCPUDirective()) {
1356   default: break;
1357   case PPC::DIR_970:
1358   case PPC::DIR_A2:
1359   case PPC::DIR_E500:
1360   case PPC::DIR_E500mc:
1361   case PPC::DIR_E5500:
1362   case PPC::DIR_PWR4:
1363   case PPC::DIR_PWR5:
1364   case PPC::DIR_PWR5X:
1365   case PPC::DIR_PWR6:
1366   case PPC::DIR_PWR6X:
1367   case PPC::DIR_PWR7:
1368   case PPC::DIR_PWR8:
1369   case PPC::DIR_PWR9:
1370   case PPC::DIR_PWR10:
1371   case PPC::DIR_PWR_FUTURE:
1372     setPrefLoopAlignment(Align(16));
1373     setPrefFunctionAlignment(Align(16));
1374     break;
1375   }
1376 
1377   if (Subtarget.enableMachineScheduler())
1378     setSchedulingPreference(Sched::Source);
1379   else
1380     setSchedulingPreference(Sched::Hybrid);
1381 
1382   computeRegisterProperties(STI.getRegisterInfo());
1383 
1384   // The Freescale cores do better with aggressive inlining of memcpy and
1385   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1386   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1387       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1388     MaxStoresPerMemset = 32;
1389     MaxStoresPerMemsetOptSize = 16;
1390     MaxStoresPerMemcpy = 32;
1391     MaxStoresPerMemcpyOptSize = 8;
1392     MaxStoresPerMemmove = 32;
1393     MaxStoresPerMemmoveOptSize = 8;
1394   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1395     // The A2 also benefits from (very) aggressive inlining of memcpy and
1396     // friends. The overhead of a the function call, even when warm, can be
1397     // over one hundred cycles.
1398     MaxStoresPerMemset = 128;
1399     MaxStoresPerMemcpy = 128;
1400     MaxStoresPerMemmove = 128;
1401     MaxLoadsPerMemcmp = 128;
1402   } else {
1403     MaxLoadsPerMemcmp = 8;
1404     MaxLoadsPerMemcmpOptSize = 4;
1405   }
1406 
1407   IsStrictFPEnabled = true;
1408 
1409   // Let the subtarget (CPU) decide if a predictable select is more expensive
1410   // than the corresponding branch. This information is used in CGP to decide
1411   // when to convert selects into branches.
1412   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1413 }
1414 
1415 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1416 /// the desired ByVal argument alignment.
1417 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1418   if (MaxAlign == MaxMaxAlign)
1419     return;
1420   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1421     if (MaxMaxAlign >= 32 &&
1422         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1423       MaxAlign = Align(32);
1424     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1425              MaxAlign < 16)
1426       MaxAlign = Align(16);
1427   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1428     Align EltAlign;
1429     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1430     if (EltAlign > MaxAlign)
1431       MaxAlign = EltAlign;
1432   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1433     for (auto *EltTy : STy->elements()) {
1434       Align EltAlign;
1435       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1436       if (EltAlign > MaxAlign)
1437         MaxAlign = EltAlign;
1438       if (MaxAlign == MaxMaxAlign)
1439         break;
1440     }
1441   }
1442 }
1443 
1444 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1445 /// function arguments in the caller parameter area.
1446 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1447                                                   const DataLayout &DL) const {
1448   // 16byte and wider vectors are passed on 16byte boundary.
1449   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1450   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1451   if (Subtarget.hasAltivec())
1452     getMaxByValAlign(Ty, Alignment, Align(16));
1453   return Alignment.value();
1454 }
1455 
1456 bool PPCTargetLowering::useSoftFloat() const {
1457   return Subtarget.useSoftFloat();
1458 }
1459 
1460 bool PPCTargetLowering::hasSPE() const {
1461   return Subtarget.hasSPE();
1462 }
1463 
1464 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1465   return VT.isScalarInteger();
1466 }
1467 
1468 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1469   switch ((PPCISD::NodeType)Opcode) {
1470   case PPCISD::FIRST_NUMBER:    break;
1471   case PPCISD::FSEL:            return "PPCISD::FSEL";
1472   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1473   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1474   case PPCISD::FCFID:           return "PPCISD::FCFID";
1475   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1476   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1477   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1478   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1479   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1480   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1481   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1482   case PPCISD::FP_TO_UINT_IN_VSR:
1483                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1484   case PPCISD::FP_TO_SINT_IN_VSR:
1485                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1486   case PPCISD::FRE:             return "PPCISD::FRE";
1487   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1488   case PPCISD::FTSQRT:
1489     return "PPCISD::FTSQRT";
1490   case PPCISD::FSQRT:
1491     return "PPCISD::FSQRT";
1492   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1493   case PPCISD::VPERM:           return "PPCISD::VPERM";
1494   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1495   case PPCISD::XXSPLTI_SP_TO_DP:
1496     return "PPCISD::XXSPLTI_SP_TO_DP";
1497   case PPCISD::XXSPLTI32DX:
1498     return "PPCISD::XXSPLTI32DX";
1499   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1500   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1501   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1502   case PPCISD::CMPB:            return "PPCISD::CMPB";
1503   case PPCISD::Hi:              return "PPCISD::Hi";
1504   case PPCISD::Lo:              return "PPCISD::Lo";
1505   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1506   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1507   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1508   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1509   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1510   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1511   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1512   case PPCISD::SRL:             return "PPCISD::SRL";
1513   case PPCISD::SRA:             return "PPCISD::SRA";
1514   case PPCISD::SHL:             return "PPCISD::SHL";
1515   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1516   case PPCISD::CALL:            return "PPCISD::CALL";
1517   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1518   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1519   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1520   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1521   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1522   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1523   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1524   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1525   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1526   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1527   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1528   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1529   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1530   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1531   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1532   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1533     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1534   case PPCISD::ANDI_rec_1_EQ_BIT:
1535     return "PPCISD::ANDI_rec_1_EQ_BIT";
1536   case PPCISD::ANDI_rec_1_GT_BIT:
1537     return "PPCISD::ANDI_rec_1_GT_BIT";
1538   case PPCISD::VCMP:            return "PPCISD::VCMP";
1539   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1540   case PPCISD::LBRX:            return "PPCISD::LBRX";
1541   case PPCISD::STBRX:           return "PPCISD::STBRX";
1542   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1543   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1544   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1545   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1546   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1547   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1548   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1549   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1550   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1551   case PPCISD::ST_VSR_SCAL_INT:
1552                                 return "PPCISD::ST_VSR_SCAL_INT";
1553   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1554   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1555   case PPCISD::BDZ:             return "PPCISD::BDZ";
1556   case PPCISD::MFFS:            return "PPCISD::MFFS";
1557   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1558   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1559   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1560   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1561   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1562   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1563   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1564   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1565   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1566   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1567   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1568   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1569   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1570   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1571   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1572   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1573   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1574   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1575   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1576   case PPCISD::PADDI_DTPREL:
1577     return "PPCISD::PADDI_DTPREL";
1578   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1579   case PPCISD::SC:              return "PPCISD::SC";
1580   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1581   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1582   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1583   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1584   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1585   case PPCISD::VABSD:           return "PPCISD::VABSD";
1586   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1587   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1588   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1589   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1590   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1591   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1592   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1593   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1594     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1595   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1596     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1597   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1598   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1599   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1600   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1601   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1602   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1603   case PPCISD::STRICT_FADDRTZ:
1604     return "PPCISD::STRICT_FADDRTZ";
1605   case PPCISD::STRICT_FCTIDZ:
1606     return "PPCISD::STRICT_FCTIDZ";
1607   case PPCISD::STRICT_FCTIWZ:
1608     return "PPCISD::STRICT_FCTIWZ";
1609   case PPCISD::STRICT_FCTIDUZ:
1610     return "PPCISD::STRICT_FCTIDUZ";
1611   case PPCISD::STRICT_FCTIWUZ:
1612     return "PPCISD::STRICT_FCTIWUZ";
1613   case PPCISD::STRICT_FCFID:
1614     return "PPCISD::STRICT_FCFID";
1615   case PPCISD::STRICT_FCFIDU:
1616     return "PPCISD::STRICT_FCFIDU";
1617   case PPCISD::STRICT_FCFIDS:
1618     return "PPCISD::STRICT_FCFIDS";
1619   case PPCISD::STRICT_FCFIDUS:
1620     return "PPCISD::STRICT_FCFIDUS";
1621   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1622   }
1623   return nullptr;
1624 }
1625 
1626 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1627                                           EVT VT) const {
1628   if (!VT.isVector())
1629     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1630 
1631   return VT.changeVectorElementTypeToInteger();
1632 }
1633 
1634 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1635   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1636   return true;
1637 }
1638 
1639 //===----------------------------------------------------------------------===//
1640 // Node matching predicates, for use by the tblgen matching code.
1641 //===----------------------------------------------------------------------===//
1642 
1643 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1644 static bool isFloatingPointZero(SDValue Op) {
1645   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1646     return CFP->getValueAPF().isZero();
1647   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1648     // Maybe this has already been legalized into the constant pool?
1649     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1650       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1651         return CFP->getValueAPF().isZero();
1652   }
1653   return false;
1654 }
1655 
1656 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1657 /// true if Op is undef or if it matches the specified value.
1658 static bool isConstantOrUndef(int Op, int Val) {
1659   return Op < 0 || Op == Val;
1660 }
1661 
1662 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1663 /// VPKUHUM instruction.
1664 /// The ShuffleKind distinguishes between big-endian operations with
1665 /// two different inputs (0), either-endian operations with two identical
1666 /// inputs (1), and little-endian operations with two different inputs (2).
1667 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1668 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1669                                SelectionDAG &DAG) {
1670   bool IsLE = DAG.getDataLayout().isLittleEndian();
1671   if (ShuffleKind == 0) {
1672     if (IsLE)
1673       return false;
1674     for (unsigned i = 0; i != 16; ++i)
1675       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1676         return false;
1677   } else if (ShuffleKind == 2) {
1678     if (!IsLE)
1679       return false;
1680     for (unsigned i = 0; i != 16; ++i)
1681       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1682         return false;
1683   } else if (ShuffleKind == 1) {
1684     unsigned j = IsLE ? 0 : 1;
1685     for (unsigned i = 0; i != 8; ++i)
1686       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1687           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1688         return false;
1689   }
1690   return true;
1691 }
1692 
1693 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1694 /// VPKUWUM instruction.
1695 /// The ShuffleKind distinguishes between big-endian operations with
1696 /// two different inputs (0), either-endian operations with two identical
1697 /// inputs (1), and little-endian operations with two different inputs (2).
1698 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1699 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1700                                SelectionDAG &DAG) {
1701   bool IsLE = DAG.getDataLayout().isLittleEndian();
1702   if (ShuffleKind == 0) {
1703     if (IsLE)
1704       return false;
1705     for (unsigned i = 0; i != 16; i += 2)
1706       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1707           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1708         return false;
1709   } else if (ShuffleKind == 2) {
1710     if (!IsLE)
1711       return false;
1712     for (unsigned i = 0; i != 16; i += 2)
1713       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1714           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1715         return false;
1716   } else if (ShuffleKind == 1) {
1717     unsigned j = IsLE ? 0 : 2;
1718     for (unsigned i = 0; i != 8; i += 2)
1719       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1720           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1721           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1722           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1723         return false;
1724   }
1725   return true;
1726 }
1727 
1728 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1729 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1730 /// current subtarget.
1731 ///
1732 /// The ShuffleKind distinguishes between big-endian operations with
1733 /// two different inputs (0), either-endian operations with two identical
1734 /// inputs (1), and little-endian operations with two different inputs (2).
1735 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1736 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1737                                SelectionDAG &DAG) {
1738   const PPCSubtarget& Subtarget =
1739       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1740   if (!Subtarget.hasP8Vector())
1741     return false;
1742 
1743   bool IsLE = DAG.getDataLayout().isLittleEndian();
1744   if (ShuffleKind == 0) {
1745     if (IsLE)
1746       return false;
1747     for (unsigned i = 0; i != 16; i += 4)
1748       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1749           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1750           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1751           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1752         return false;
1753   } else if (ShuffleKind == 2) {
1754     if (!IsLE)
1755       return false;
1756     for (unsigned i = 0; i != 16; i += 4)
1757       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1758           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1759           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1760           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1761         return false;
1762   } else if (ShuffleKind == 1) {
1763     unsigned j = IsLE ? 0 : 4;
1764     for (unsigned i = 0; i != 8; i += 4)
1765       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1766           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1767           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1768           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1769           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1770           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1771           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1772           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1773         return false;
1774   }
1775   return true;
1776 }
1777 
1778 /// isVMerge - Common function, used to match vmrg* shuffles.
1779 ///
1780 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1781                      unsigned LHSStart, unsigned RHSStart) {
1782   if (N->getValueType(0) != MVT::v16i8)
1783     return false;
1784   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1785          "Unsupported merge size!");
1786 
1787   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1788     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1789       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1790                              LHSStart+j+i*UnitSize) ||
1791           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1792                              RHSStart+j+i*UnitSize))
1793         return false;
1794     }
1795   return true;
1796 }
1797 
1798 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1799 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1800 /// The ShuffleKind distinguishes between big-endian merges with two
1801 /// different inputs (0), either-endian merges with two identical inputs (1),
1802 /// and little-endian merges with two different inputs (2).  For the latter,
1803 /// the input operands are swapped (see PPCInstrAltivec.td).
1804 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1805                              unsigned ShuffleKind, SelectionDAG &DAG) {
1806   if (DAG.getDataLayout().isLittleEndian()) {
1807     if (ShuffleKind == 1) // unary
1808       return isVMerge(N, UnitSize, 0, 0);
1809     else if (ShuffleKind == 2) // swapped
1810       return isVMerge(N, UnitSize, 0, 16);
1811     else
1812       return false;
1813   } else {
1814     if (ShuffleKind == 1) // unary
1815       return isVMerge(N, UnitSize, 8, 8);
1816     else if (ShuffleKind == 0) // normal
1817       return isVMerge(N, UnitSize, 8, 24);
1818     else
1819       return false;
1820   }
1821 }
1822 
1823 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1824 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1825 /// The ShuffleKind distinguishes between big-endian merges with two
1826 /// different inputs (0), either-endian merges with two identical inputs (1),
1827 /// and little-endian merges with two different inputs (2).  For the latter,
1828 /// the input operands are swapped (see PPCInstrAltivec.td).
1829 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1830                              unsigned ShuffleKind, SelectionDAG &DAG) {
1831   if (DAG.getDataLayout().isLittleEndian()) {
1832     if (ShuffleKind == 1) // unary
1833       return isVMerge(N, UnitSize, 8, 8);
1834     else if (ShuffleKind == 2) // swapped
1835       return isVMerge(N, UnitSize, 8, 24);
1836     else
1837       return false;
1838   } else {
1839     if (ShuffleKind == 1) // unary
1840       return isVMerge(N, UnitSize, 0, 0);
1841     else if (ShuffleKind == 0) // normal
1842       return isVMerge(N, UnitSize, 0, 16);
1843     else
1844       return false;
1845   }
1846 }
1847 
1848 /**
1849  * Common function used to match vmrgew and vmrgow shuffles
1850  *
1851  * The indexOffset determines whether to look for even or odd words in
1852  * the shuffle mask. This is based on the of the endianness of the target
1853  * machine.
1854  *   - Little Endian:
1855  *     - Use offset of 0 to check for odd elements
1856  *     - Use offset of 4 to check for even elements
1857  *   - Big Endian:
1858  *     - Use offset of 0 to check for even elements
1859  *     - Use offset of 4 to check for odd elements
1860  * A detailed description of the vector element ordering for little endian and
1861  * big endian can be found at
1862  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1863  * Targeting your applications - what little endian and big endian IBM XL C/C++
1864  * compiler differences mean to you
1865  *
1866  * The mask to the shuffle vector instruction specifies the indices of the
1867  * elements from the two input vectors to place in the result. The elements are
1868  * numbered in array-access order, starting with the first vector. These vectors
1869  * are always of type v16i8, thus each vector will contain 16 elements of size
1870  * 8. More info on the shuffle vector can be found in the
1871  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1872  * Language Reference.
1873  *
1874  * The RHSStartValue indicates whether the same input vectors are used (unary)
1875  * or two different input vectors are used, based on the following:
1876  *   - If the instruction uses the same vector for both inputs, the range of the
1877  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1878  *     be 0.
1879  *   - If the instruction has two different vectors then the range of the
1880  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1881  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1882  *     to 31 specify elements in the second vector).
1883  *
1884  * \param[in] N The shuffle vector SD Node to analyze
1885  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1886  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1887  * vector to the shuffle_vector instruction
1888  * \return true iff this shuffle vector represents an even or odd word merge
1889  */
1890 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1891                      unsigned RHSStartValue) {
1892   if (N->getValueType(0) != MVT::v16i8)
1893     return false;
1894 
1895   for (unsigned i = 0; i < 2; ++i)
1896     for (unsigned j = 0; j < 4; ++j)
1897       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1898                              i*RHSStartValue+j+IndexOffset) ||
1899           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1900                              i*RHSStartValue+j+IndexOffset+8))
1901         return false;
1902   return true;
1903 }
1904 
1905 /**
1906  * Determine if the specified shuffle mask is suitable for the vmrgew or
1907  * vmrgow instructions.
1908  *
1909  * \param[in] N The shuffle vector SD Node to analyze
1910  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1911  * \param[in] ShuffleKind Identify the type of merge:
1912  *   - 0 = big-endian merge with two different inputs;
1913  *   - 1 = either-endian merge with two identical inputs;
1914  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1915  *     little-endian merges).
1916  * \param[in] DAG The current SelectionDAG
1917  * \return true iff this shuffle mask
1918  */
1919 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1920                               unsigned ShuffleKind, SelectionDAG &DAG) {
1921   if (DAG.getDataLayout().isLittleEndian()) {
1922     unsigned indexOffset = CheckEven ? 4 : 0;
1923     if (ShuffleKind == 1) // Unary
1924       return isVMerge(N, indexOffset, 0);
1925     else if (ShuffleKind == 2) // swapped
1926       return isVMerge(N, indexOffset, 16);
1927     else
1928       return false;
1929   }
1930   else {
1931     unsigned indexOffset = CheckEven ? 0 : 4;
1932     if (ShuffleKind == 1) // Unary
1933       return isVMerge(N, indexOffset, 0);
1934     else if (ShuffleKind == 0) // Normal
1935       return isVMerge(N, indexOffset, 16);
1936     else
1937       return false;
1938   }
1939   return false;
1940 }
1941 
1942 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1943 /// amount, otherwise return -1.
1944 /// The ShuffleKind distinguishes between big-endian operations with two
1945 /// different inputs (0), either-endian operations with two identical inputs
1946 /// (1), and little-endian operations with two different inputs (2).  For the
1947 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1948 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1949                              SelectionDAG &DAG) {
1950   if (N->getValueType(0) != MVT::v16i8)
1951     return -1;
1952 
1953   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1954 
1955   // Find the first non-undef value in the shuffle mask.
1956   unsigned i;
1957   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1958     /*search*/;
1959 
1960   if (i == 16) return -1;  // all undef.
1961 
1962   // Otherwise, check to see if the rest of the elements are consecutively
1963   // numbered from this value.
1964   unsigned ShiftAmt = SVOp->getMaskElt(i);
1965   if (ShiftAmt < i) return -1;
1966 
1967   ShiftAmt -= i;
1968   bool isLE = DAG.getDataLayout().isLittleEndian();
1969 
1970   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1971     // Check the rest of the elements to see if they are consecutive.
1972     for (++i; i != 16; ++i)
1973       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1974         return -1;
1975   } else if (ShuffleKind == 1) {
1976     // Check the rest of the elements to see if they are consecutive.
1977     for (++i; i != 16; ++i)
1978       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1979         return -1;
1980   } else
1981     return -1;
1982 
1983   if (isLE)
1984     ShiftAmt = 16 - ShiftAmt;
1985 
1986   return ShiftAmt;
1987 }
1988 
1989 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1990 /// specifies a splat of a single element that is suitable for input to
1991 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1992 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1993   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1994          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1995 
1996   // The consecutive indices need to specify an element, not part of two
1997   // different elements.  So abandon ship early if this isn't the case.
1998   if (N->getMaskElt(0) % EltSize != 0)
1999     return false;
2000 
2001   // This is a splat operation if each element of the permute is the same, and
2002   // if the value doesn't reference the second vector.
2003   unsigned ElementBase = N->getMaskElt(0);
2004 
2005   // FIXME: Handle UNDEF elements too!
2006   if (ElementBase >= 16)
2007     return false;
2008 
2009   // Check that the indices are consecutive, in the case of a multi-byte element
2010   // splatted with a v16i8 mask.
2011   for (unsigned i = 1; i != EltSize; ++i)
2012     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2013       return false;
2014 
2015   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2016     if (N->getMaskElt(i) < 0) continue;
2017     for (unsigned j = 0; j != EltSize; ++j)
2018       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2019         return false;
2020   }
2021   return true;
2022 }
2023 
2024 /// Check that the mask is shuffling N byte elements. Within each N byte
2025 /// element of the mask, the indices could be either in increasing or
2026 /// decreasing order as long as they are consecutive.
2027 /// \param[in] N the shuffle vector SD Node to analyze
2028 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2029 /// Word/DoubleWord/QuadWord).
2030 /// \param[in] StepLen the delta indices number among the N byte element, if
2031 /// the mask is in increasing/decreasing order then it is 1/-1.
2032 /// \return true iff the mask is shuffling N byte elements.
2033 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2034                                    int StepLen) {
2035   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2036          "Unexpected element width.");
2037   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2038 
2039   unsigned NumOfElem = 16 / Width;
2040   unsigned MaskVal[16]; //  Width is never greater than 16
2041   for (unsigned i = 0; i < NumOfElem; ++i) {
2042     MaskVal[0] = N->getMaskElt(i * Width);
2043     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2044       return false;
2045     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2046       return false;
2047     }
2048 
2049     for (unsigned int j = 1; j < Width; ++j) {
2050       MaskVal[j] = N->getMaskElt(i * Width + j);
2051       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2052         return false;
2053       }
2054     }
2055   }
2056 
2057   return true;
2058 }
2059 
2060 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2061                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2062   if (!isNByteElemShuffleMask(N, 4, 1))
2063     return false;
2064 
2065   // Now we look at mask elements 0,4,8,12
2066   unsigned M0 = N->getMaskElt(0) / 4;
2067   unsigned M1 = N->getMaskElt(4) / 4;
2068   unsigned M2 = N->getMaskElt(8) / 4;
2069   unsigned M3 = N->getMaskElt(12) / 4;
2070   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2071   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2072 
2073   // Below, let H and L be arbitrary elements of the shuffle mask
2074   // where H is in the range [4,7] and L is in the range [0,3].
2075   // H, 1, 2, 3 or L, 5, 6, 7
2076   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2077       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2078     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2079     InsertAtByte = IsLE ? 12 : 0;
2080     Swap = M0 < 4;
2081     return true;
2082   }
2083   // 0, H, 2, 3 or 4, L, 6, 7
2084   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2085       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2086     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2087     InsertAtByte = IsLE ? 8 : 4;
2088     Swap = M1 < 4;
2089     return true;
2090   }
2091   // 0, 1, H, 3 or 4, 5, L, 7
2092   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2093       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2094     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2095     InsertAtByte = IsLE ? 4 : 8;
2096     Swap = M2 < 4;
2097     return true;
2098   }
2099   // 0, 1, 2, H or 4, 5, 6, L
2100   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2101       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2102     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2103     InsertAtByte = IsLE ? 0 : 12;
2104     Swap = M3 < 4;
2105     return true;
2106   }
2107 
2108   // If both vector operands for the shuffle are the same vector, the mask will
2109   // contain only elements from the first one and the second one will be undef.
2110   if (N->getOperand(1).isUndef()) {
2111     ShiftElts = 0;
2112     Swap = true;
2113     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2114     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2115       InsertAtByte = IsLE ? 12 : 0;
2116       return true;
2117     }
2118     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2119       InsertAtByte = IsLE ? 8 : 4;
2120       return true;
2121     }
2122     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2123       InsertAtByte = IsLE ? 4 : 8;
2124       return true;
2125     }
2126     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2127       InsertAtByte = IsLE ? 0 : 12;
2128       return true;
2129     }
2130   }
2131 
2132   return false;
2133 }
2134 
2135 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2136                                bool &Swap, bool IsLE) {
2137   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2138   // Ensure each byte index of the word is consecutive.
2139   if (!isNByteElemShuffleMask(N, 4, 1))
2140     return false;
2141 
2142   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2143   unsigned M0 = N->getMaskElt(0) / 4;
2144   unsigned M1 = N->getMaskElt(4) / 4;
2145   unsigned M2 = N->getMaskElt(8) / 4;
2146   unsigned M3 = N->getMaskElt(12) / 4;
2147 
2148   // If both vector operands for the shuffle are the same vector, the mask will
2149   // contain only elements from the first one and the second one will be undef.
2150   if (N->getOperand(1).isUndef()) {
2151     assert(M0 < 4 && "Indexing into an undef vector?");
2152     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2153       return false;
2154 
2155     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2156     Swap = false;
2157     return true;
2158   }
2159 
2160   // Ensure each word index of the ShuffleVector Mask is consecutive.
2161   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2162     return false;
2163 
2164   if (IsLE) {
2165     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2166       // Input vectors don't need to be swapped if the leading element
2167       // of the result is one of the 3 left elements of the second vector
2168       // (or if there is no shift to be done at all).
2169       Swap = false;
2170       ShiftElts = (8 - M0) % 8;
2171     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2172       // Input vectors need to be swapped if the leading element
2173       // of the result is one of the 3 left elements of the first vector
2174       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2175       Swap = true;
2176       ShiftElts = (4 - M0) % 4;
2177     }
2178 
2179     return true;
2180   } else {                                          // BE
2181     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2182       // Input vectors don't need to be swapped if the leading element
2183       // of the result is one of the 4 elements of the first vector.
2184       Swap = false;
2185       ShiftElts = M0;
2186     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2187       // Input vectors need to be swapped if the leading element
2188       // of the result is one of the 4 elements of the right vector.
2189       Swap = true;
2190       ShiftElts = M0 - 4;
2191     }
2192 
2193     return true;
2194   }
2195 }
2196 
2197 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2198   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2199 
2200   if (!isNByteElemShuffleMask(N, Width, -1))
2201     return false;
2202 
2203   for (int i = 0; i < 16; i += Width)
2204     if (N->getMaskElt(i) != i + Width - 1)
2205       return false;
2206 
2207   return true;
2208 }
2209 
2210 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2211   return isXXBRShuffleMaskHelper(N, 2);
2212 }
2213 
2214 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2215   return isXXBRShuffleMaskHelper(N, 4);
2216 }
2217 
2218 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2219   return isXXBRShuffleMaskHelper(N, 8);
2220 }
2221 
2222 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2223   return isXXBRShuffleMaskHelper(N, 16);
2224 }
2225 
2226 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2227 /// if the inputs to the instruction should be swapped and set \p DM to the
2228 /// value for the immediate.
2229 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2230 /// AND element 0 of the result comes from the first input (LE) or second input
2231 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2232 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2233 /// mask.
2234 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2235                                bool &Swap, bool IsLE) {
2236   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2237 
2238   // Ensure each byte index of the double word is consecutive.
2239   if (!isNByteElemShuffleMask(N, 8, 1))
2240     return false;
2241 
2242   unsigned M0 = N->getMaskElt(0) / 8;
2243   unsigned M1 = N->getMaskElt(8) / 8;
2244   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2245 
2246   // If both vector operands for the shuffle are the same vector, the mask will
2247   // contain only elements from the first one and the second one will be undef.
2248   if (N->getOperand(1).isUndef()) {
2249     if ((M0 | M1) < 2) {
2250       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2251       Swap = false;
2252       return true;
2253     } else
2254       return false;
2255   }
2256 
2257   if (IsLE) {
2258     if (M0 > 1 && M1 < 2) {
2259       Swap = false;
2260     } else if (M0 < 2 && M1 > 1) {
2261       M0 = (M0 + 2) % 4;
2262       M1 = (M1 + 2) % 4;
2263       Swap = true;
2264     } else
2265       return false;
2266 
2267     // Note: if control flow comes here that means Swap is already set above
2268     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2269     return true;
2270   } else { // BE
2271     if (M0 < 2 && M1 > 1) {
2272       Swap = false;
2273     } else if (M0 > 1 && M1 < 2) {
2274       M0 = (M0 + 2) % 4;
2275       M1 = (M1 + 2) % 4;
2276       Swap = true;
2277     } else
2278       return false;
2279 
2280     // Note: if control flow comes here that means Swap is already set above
2281     DM = (M0 << 1) + (M1 & 1);
2282     return true;
2283   }
2284 }
2285 
2286 
2287 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2288 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2289 /// elements are counted from the left of the vector register).
2290 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2291                                          SelectionDAG &DAG) {
2292   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2293   assert(isSplatShuffleMask(SVOp, EltSize));
2294   if (DAG.getDataLayout().isLittleEndian())
2295     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2296   else
2297     return SVOp->getMaskElt(0) / EltSize;
2298 }
2299 
2300 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2301 /// by using a vspltis[bhw] instruction of the specified element size, return
2302 /// the constant being splatted.  The ByteSize field indicates the number of
2303 /// bytes of each element [124] -> [bhw].
2304 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2305   SDValue OpVal(nullptr, 0);
2306 
2307   // If ByteSize of the splat is bigger than the element size of the
2308   // build_vector, then we have a case where we are checking for a splat where
2309   // multiple elements of the buildvector are folded together into a single
2310   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2311   unsigned EltSize = 16/N->getNumOperands();
2312   if (EltSize < ByteSize) {
2313     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2314     SDValue UniquedVals[4];
2315     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2316 
2317     // See if all of the elements in the buildvector agree across.
2318     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2319       if (N->getOperand(i).isUndef()) continue;
2320       // If the element isn't a constant, bail fully out.
2321       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2322 
2323       if (!UniquedVals[i&(Multiple-1)].getNode())
2324         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2325       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2326         return SDValue();  // no match.
2327     }
2328 
2329     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2330     // either constant or undef values that are identical for each chunk.  See
2331     // if these chunks can form into a larger vspltis*.
2332 
2333     // Check to see if all of the leading entries are either 0 or -1.  If
2334     // neither, then this won't fit into the immediate field.
2335     bool LeadingZero = true;
2336     bool LeadingOnes = true;
2337     for (unsigned i = 0; i != Multiple-1; ++i) {
2338       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2339 
2340       LeadingZero &= isNullConstant(UniquedVals[i]);
2341       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2342     }
2343     // Finally, check the least significant entry.
2344     if (LeadingZero) {
2345       if (!UniquedVals[Multiple-1].getNode())
2346         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2347       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2348       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2349         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2350     }
2351     if (LeadingOnes) {
2352       if (!UniquedVals[Multiple-1].getNode())
2353         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2354       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2355       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2356         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2357     }
2358 
2359     return SDValue();
2360   }
2361 
2362   // Check to see if this buildvec has a single non-undef value in its elements.
2363   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2364     if (N->getOperand(i).isUndef()) continue;
2365     if (!OpVal.getNode())
2366       OpVal = N->getOperand(i);
2367     else if (OpVal != N->getOperand(i))
2368       return SDValue();
2369   }
2370 
2371   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2372 
2373   unsigned ValSizeInBytes = EltSize;
2374   uint64_t Value = 0;
2375   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2376     Value = CN->getZExtValue();
2377   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2378     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2379     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2380   }
2381 
2382   // If the splat value is larger than the element value, then we can never do
2383   // this splat.  The only case that we could fit the replicated bits into our
2384   // immediate field for would be zero, and we prefer to use vxor for it.
2385   if (ValSizeInBytes < ByteSize) return SDValue();
2386 
2387   // If the element value is larger than the splat value, check if it consists
2388   // of a repeated bit pattern of size ByteSize.
2389   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2390     return SDValue();
2391 
2392   // Properly sign extend the value.
2393   int MaskVal = SignExtend32(Value, ByteSize * 8);
2394 
2395   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2396   if (MaskVal == 0) return SDValue();
2397 
2398   // Finally, if this value fits in a 5 bit sext field, return it
2399   if (SignExtend32<5>(MaskVal) == MaskVal)
2400     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2401   return SDValue();
2402 }
2403 
2404 //===----------------------------------------------------------------------===//
2405 //  Addressing Mode Selection
2406 //===----------------------------------------------------------------------===//
2407 
2408 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2409 /// or 64-bit immediate, and if the value can be accurately represented as a
2410 /// sign extension from a 16-bit value.  If so, this returns true and the
2411 /// immediate.
2412 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2413   if (!isa<ConstantSDNode>(N))
2414     return false;
2415 
2416   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2417   if (N->getValueType(0) == MVT::i32)
2418     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2419   else
2420     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2421 }
2422 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2423   return isIntS16Immediate(Op.getNode(), Imm);
2424 }
2425 
2426 
2427 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2428 /// be represented as an indexed [r+r] operation.
2429 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2430                                                SDValue &Index,
2431                                                SelectionDAG &DAG) const {
2432   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2433       UI != E; ++UI) {
2434     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2435       if (Memop->getMemoryVT() == MVT::f64) {
2436           Base = N.getOperand(0);
2437           Index = N.getOperand(1);
2438           return true;
2439       }
2440     }
2441   }
2442   return false;
2443 }
2444 
2445 /// isIntS34Immediate - This method tests if value of node given can be
2446 /// accurately represented as a sign extension from a 34-bit value.  If so,
2447 /// this returns true and the immediate.
2448 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2449   if (!isa<ConstantSDNode>(N))
2450     return false;
2451 
2452   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2453   return isInt<34>(Imm);
2454 }
2455 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2456   return isIntS34Immediate(Op.getNode(), Imm);
2457 }
2458 
2459 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2460 /// can be represented as an indexed [r+r] operation.  Returns false if it
2461 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2462 /// non-zero and N can be represented by a base register plus a signed 16-bit
2463 /// displacement, make a more precise judgement by checking (displacement % \p
2464 /// EncodingAlignment).
2465 bool PPCTargetLowering::SelectAddressRegReg(
2466     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2467     MaybeAlign EncodingAlignment) const {
2468   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2469   // a [pc+imm].
2470   if (SelectAddressPCRel(N, Base))
2471     return false;
2472 
2473   int16_t Imm = 0;
2474   if (N.getOpcode() == ISD::ADD) {
2475     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2476     // SPE load/store can only handle 8-bit offsets.
2477     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2478         return true;
2479     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2480         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2481       return false; // r+i
2482     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2483       return false;    // r+i
2484 
2485     Base = N.getOperand(0);
2486     Index = N.getOperand(1);
2487     return true;
2488   } else if (N.getOpcode() == ISD::OR) {
2489     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2490         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2491       return false; // r+i can fold it if we can.
2492 
2493     // If this is an or of disjoint bitfields, we can codegen this as an add
2494     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2495     // disjoint.
2496     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2497 
2498     if (LHSKnown.Zero.getBoolValue()) {
2499       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2500       // If all of the bits are known zero on the LHS or RHS, the add won't
2501       // carry.
2502       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2503         Base = N.getOperand(0);
2504         Index = N.getOperand(1);
2505         return true;
2506       }
2507     }
2508   }
2509 
2510   return false;
2511 }
2512 
2513 // If we happen to be doing an i64 load or store into a stack slot that has
2514 // less than a 4-byte alignment, then the frame-index elimination may need to
2515 // use an indexed load or store instruction (because the offset may not be a
2516 // multiple of 4). The extra register needed to hold the offset comes from the
2517 // register scavenger, and it is possible that the scavenger will need to use
2518 // an emergency spill slot. As a result, we need to make sure that a spill slot
2519 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2520 // stack slot.
2521 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2522   // FIXME: This does not handle the LWA case.
2523   if (VT != MVT::i64)
2524     return;
2525 
2526   // NOTE: We'll exclude negative FIs here, which come from argument
2527   // lowering, because there are no known test cases triggering this problem
2528   // using packed structures (or similar). We can remove this exclusion if
2529   // we find such a test case. The reason why this is so test-case driven is
2530   // because this entire 'fixup' is only to prevent crashes (from the
2531   // register scavenger) on not-really-valid inputs. For example, if we have:
2532   //   %a = alloca i1
2533   //   %b = bitcast i1* %a to i64*
2534   //   store i64* a, i64 b
2535   // then the store should really be marked as 'align 1', but is not. If it
2536   // were marked as 'align 1' then the indexed form would have been
2537   // instruction-selected initially, and the problem this 'fixup' is preventing
2538   // won't happen regardless.
2539   if (FrameIdx < 0)
2540     return;
2541 
2542   MachineFunction &MF = DAG.getMachineFunction();
2543   MachineFrameInfo &MFI = MF.getFrameInfo();
2544 
2545   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2546     return;
2547 
2548   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2549   FuncInfo->setHasNonRISpills();
2550 }
2551 
2552 /// Returns true if the address N can be represented by a base register plus
2553 /// a signed 16-bit displacement [r+imm], and if it is not better
2554 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2555 /// displacements that are multiples of that value.
2556 bool PPCTargetLowering::SelectAddressRegImm(
2557     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2558     MaybeAlign EncodingAlignment) const {
2559   // FIXME dl should come from parent load or store, not from address
2560   SDLoc dl(N);
2561 
2562   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2563   // a [pc+imm].
2564   if (SelectAddressPCRel(N, Base))
2565     return false;
2566 
2567   // If this can be more profitably realized as r+r, fail.
2568   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2569     return false;
2570 
2571   if (N.getOpcode() == ISD::ADD) {
2572     int16_t imm = 0;
2573     if (isIntS16Immediate(N.getOperand(1), imm) &&
2574         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2575       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2576       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2577         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2578         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2579       } else {
2580         Base = N.getOperand(0);
2581       }
2582       return true; // [r+i]
2583     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2584       // Match LOAD (ADD (X, Lo(G))).
2585       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2586              && "Cannot handle constant offsets yet!");
2587       Disp = N.getOperand(1).getOperand(0);  // The global address.
2588       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2589              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2590              Disp.getOpcode() == ISD::TargetConstantPool ||
2591              Disp.getOpcode() == ISD::TargetJumpTable);
2592       Base = N.getOperand(0);
2593       return true;  // [&g+r]
2594     }
2595   } else if (N.getOpcode() == ISD::OR) {
2596     int16_t imm = 0;
2597     if (isIntS16Immediate(N.getOperand(1), imm) &&
2598         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2599       // If this is an or of disjoint bitfields, we can codegen this as an add
2600       // (for better address arithmetic) if the LHS and RHS of the OR are
2601       // provably disjoint.
2602       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2603 
2604       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2605         // If all of the bits are known zero on the LHS or RHS, the add won't
2606         // carry.
2607         if (FrameIndexSDNode *FI =
2608               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2609           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2610           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2611         } else {
2612           Base = N.getOperand(0);
2613         }
2614         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2615         return true;
2616       }
2617     }
2618   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2619     // Loading from a constant address.
2620 
2621     // If this address fits entirely in a 16-bit sext immediate field, codegen
2622     // this as "d, 0"
2623     int16_t Imm;
2624     if (isIntS16Immediate(CN, Imm) &&
2625         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2626       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2627       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2628                              CN->getValueType(0));
2629       return true;
2630     }
2631 
2632     // Handle 32-bit sext immediates with LIS + addr mode.
2633     if ((CN->getValueType(0) == MVT::i32 ||
2634          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2635         (!EncodingAlignment ||
2636          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2637       int Addr = (int)CN->getZExtValue();
2638 
2639       // Otherwise, break this down into an LIS + disp.
2640       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2641 
2642       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2643                                    MVT::i32);
2644       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2645       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2646       return true;
2647     }
2648   }
2649 
2650   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2651   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2652     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2653     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2654   } else
2655     Base = N;
2656   return true;      // [r+0]
2657 }
2658 
2659 /// Similar to the 16-bit case but for instructions that take a 34-bit
2660 /// displacement field (prefixed loads/stores).
2661 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2662                                               SDValue &Base,
2663                                               SelectionDAG &DAG) const {
2664   // Only on 64-bit targets.
2665   if (N.getValueType() != MVT::i64)
2666     return false;
2667 
2668   SDLoc dl(N);
2669   int64_t Imm = 0;
2670 
2671   if (N.getOpcode() == ISD::ADD) {
2672     if (!isIntS34Immediate(N.getOperand(1), Imm))
2673       return false;
2674     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2675     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2676       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2677     else
2678       Base = N.getOperand(0);
2679     return true;
2680   }
2681 
2682   if (N.getOpcode() == ISD::OR) {
2683     if (!isIntS34Immediate(N.getOperand(1), Imm))
2684       return false;
2685     // If this is an or of disjoint bitfields, we can codegen this as an add
2686     // (for better address arithmetic) if the LHS and RHS of the OR are
2687     // provably disjoint.
2688     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2689     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2690       return false;
2691     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2692       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2693     else
2694       Base = N.getOperand(0);
2695     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2696     return true;
2697   }
2698 
2699   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2700     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2701     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2702     return true;
2703   }
2704 
2705   return false;
2706 }
2707 
2708 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2709 /// represented as an indexed [r+r] operation.
2710 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2711                                                 SDValue &Index,
2712                                                 SelectionDAG &DAG) const {
2713   // Check to see if we can easily represent this as an [r+r] address.  This
2714   // will fail if it thinks that the address is more profitably represented as
2715   // reg+imm, e.g. where imm = 0.
2716   if (SelectAddressRegReg(N, Base, Index, DAG))
2717     return true;
2718 
2719   // If the address is the result of an add, we will utilize the fact that the
2720   // address calculation includes an implicit add.  However, we can reduce
2721   // register pressure if we do not materialize a constant just for use as the
2722   // index register.  We only get rid of the add if it is not an add of a
2723   // value and a 16-bit signed constant and both have a single use.
2724   int16_t imm = 0;
2725   if (N.getOpcode() == ISD::ADD &&
2726       (!isIntS16Immediate(N.getOperand(1), imm) ||
2727        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2728     Base = N.getOperand(0);
2729     Index = N.getOperand(1);
2730     return true;
2731   }
2732 
2733   // Otherwise, do it the hard way, using R0 as the base register.
2734   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2735                          N.getValueType());
2736   Index = N;
2737   return true;
2738 }
2739 
2740 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2741   Ty *PCRelCand = dyn_cast<Ty>(N);
2742   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2743 }
2744 
2745 /// Returns true if this address is a PC Relative address.
2746 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2747 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2748 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2749   // This is a materialize PC Relative node. Always select this as PC Relative.
2750   Base = N;
2751   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2752     return true;
2753   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2754       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2755       isValidPCRelNode<JumpTableSDNode>(N) ||
2756       isValidPCRelNode<BlockAddressSDNode>(N))
2757     return true;
2758   return false;
2759 }
2760 
2761 /// Returns true if we should use a direct load into vector instruction
2762 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2763 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2764 
2765   // If there are any other uses other than scalar to vector, then we should
2766   // keep it as a scalar load -> direct move pattern to prevent multiple
2767   // loads.
2768   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2769   if (!LD)
2770     return false;
2771 
2772   EVT MemVT = LD->getMemoryVT();
2773   if (!MemVT.isSimple())
2774     return false;
2775   switch(MemVT.getSimpleVT().SimpleTy) {
2776   case MVT::i64:
2777     break;
2778   case MVT::i32:
2779     if (!ST.hasP8Vector())
2780       return false;
2781     break;
2782   case MVT::i16:
2783   case MVT::i8:
2784     if (!ST.hasP9Vector())
2785       return false;
2786     break;
2787   default:
2788     return false;
2789   }
2790 
2791   SDValue LoadedVal(N, 0);
2792   if (!LoadedVal.hasOneUse())
2793     return false;
2794 
2795   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2796        UI != UE; ++UI)
2797     if (UI.getUse().get().getResNo() == 0 &&
2798         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2799         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2800       return false;
2801 
2802   return true;
2803 }
2804 
2805 /// getPreIndexedAddressParts - returns true by value, base pointer and
2806 /// offset pointer and addressing mode by reference if the node's address
2807 /// can be legally represented as pre-indexed load / store address.
2808 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2809                                                   SDValue &Offset,
2810                                                   ISD::MemIndexedMode &AM,
2811                                                   SelectionDAG &DAG) const {
2812   if (DisablePPCPreinc) return false;
2813 
2814   bool isLoad = true;
2815   SDValue Ptr;
2816   EVT VT;
2817   unsigned Alignment;
2818   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2819     Ptr = LD->getBasePtr();
2820     VT = LD->getMemoryVT();
2821     Alignment = LD->getAlignment();
2822   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2823     Ptr = ST->getBasePtr();
2824     VT  = ST->getMemoryVT();
2825     Alignment = ST->getAlignment();
2826     isLoad = false;
2827   } else
2828     return false;
2829 
2830   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2831   // instructions because we can fold these into a more efficient instruction
2832   // instead, (such as LXSD).
2833   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2834     return false;
2835   }
2836 
2837   // PowerPC doesn't have preinc load/store instructions for vectors
2838   if (VT.isVector())
2839     return false;
2840 
2841   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2842     // Common code will reject creating a pre-inc form if the base pointer
2843     // is a frame index, or if N is a store and the base pointer is either
2844     // the same as or a predecessor of the value being stored.  Check for
2845     // those situations here, and try with swapped Base/Offset instead.
2846     bool Swap = false;
2847 
2848     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2849       Swap = true;
2850     else if (!isLoad) {
2851       SDValue Val = cast<StoreSDNode>(N)->getValue();
2852       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2853         Swap = true;
2854     }
2855 
2856     if (Swap)
2857       std::swap(Base, Offset);
2858 
2859     AM = ISD::PRE_INC;
2860     return true;
2861   }
2862 
2863   // LDU/STU can only handle immediates that are a multiple of 4.
2864   if (VT != MVT::i64) {
2865     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2866       return false;
2867   } else {
2868     // LDU/STU need an address with at least 4-byte alignment.
2869     if (Alignment < 4)
2870       return false;
2871 
2872     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2873       return false;
2874   }
2875 
2876   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2877     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2878     // sext i32 to i64 when addr mode is r+i.
2879     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2880         LD->getExtensionType() == ISD::SEXTLOAD &&
2881         isa<ConstantSDNode>(Offset))
2882       return false;
2883   }
2884 
2885   AM = ISD::PRE_INC;
2886   return true;
2887 }
2888 
2889 //===----------------------------------------------------------------------===//
2890 //  LowerOperation implementation
2891 //===----------------------------------------------------------------------===//
2892 
2893 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2894 /// and LoOpFlags to the target MO flags.
2895 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2896                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2897                                const GlobalValue *GV = nullptr) {
2898   HiOpFlags = PPCII::MO_HA;
2899   LoOpFlags = PPCII::MO_LO;
2900 
2901   // Don't use the pic base if not in PIC relocation model.
2902   if (IsPIC) {
2903     HiOpFlags |= PPCII::MO_PIC_FLAG;
2904     LoOpFlags |= PPCII::MO_PIC_FLAG;
2905   }
2906 }
2907 
2908 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2909                              SelectionDAG &DAG) {
2910   SDLoc DL(HiPart);
2911   EVT PtrVT = HiPart.getValueType();
2912   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2913 
2914   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2915   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2916 
2917   // With PIC, the first instruction is actually "GR+hi(&G)".
2918   if (isPIC)
2919     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2920                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2921 
2922   // Generate non-pic code that has direct accesses to the constant pool.
2923   // The address of the global is just (hi(&g)+lo(&g)).
2924   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2925 }
2926 
2927 static void setUsesTOCBasePtr(MachineFunction &MF) {
2928   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2929   FuncInfo->setUsesTOCBasePtr();
2930 }
2931 
2932 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2933   setUsesTOCBasePtr(DAG.getMachineFunction());
2934 }
2935 
2936 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2937                                        SDValue GA) const {
2938   const bool Is64Bit = Subtarget.isPPC64();
2939   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2940   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2941                         : Subtarget.isAIXABI()
2942                               ? DAG.getRegister(PPC::R2, VT)
2943                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2944   SDValue Ops[] = { GA, Reg };
2945   return DAG.getMemIntrinsicNode(
2946       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2947       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2948       MachineMemOperand::MOLoad);
2949 }
2950 
2951 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2952                                              SelectionDAG &DAG) const {
2953   EVT PtrVT = Op.getValueType();
2954   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2955   const Constant *C = CP->getConstVal();
2956 
2957   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2958   // The actual address of the GlobalValue is stored in the TOC.
2959   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2960     if (Subtarget.isUsingPCRelativeCalls()) {
2961       SDLoc DL(CP);
2962       EVT Ty = getPointerTy(DAG.getDataLayout());
2963       SDValue ConstPool = DAG.getTargetConstantPool(
2964           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2965       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2966     }
2967     setUsesTOCBasePtr(DAG);
2968     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2969     return getTOCEntry(DAG, SDLoc(CP), GA);
2970   }
2971 
2972   unsigned MOHiFlag, MOLoFlag;
2973   bool IsPIC = isPositionIndependent();
2974   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2975 
2976   if (IsPIC && Subtarget.isSVR4ABI()) {
2977     SDValue GA =
2978         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2979     return getTOCEntry(DAG, SDLoc(CP), GA);
2980   }
2981 
2982   SDValue CPIHi =
2983       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2984   SDValue CPILo =
2985       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2986   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2987 }
2988 
2989 // For 64-bit PowerPC, prefer the more compact relative encodings.
2990 // This trades 32 bits per jump table entry for one or two instructions
2991 // on the jump site.
2992 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2993   if (isJumpTableRelative())
2994     return MachineJumpTableInfo::EK_LabelDifference32;
2995 
2996   return TargetLowering::getJumpTableEncoding();
2997 }
2998 
2999 bool PPCTargetLowering::isJumpTableRelative() const {
3000   if (UseAbsoluteJumpTables)
3001     return false;
3002   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3003     return true;
3004   return TargetLowering::isJumpTableRelative();
3005 }
3006 
3007 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3008                                                     SelectionDAG &DAG) const {
3009   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3010     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3011 
3012   switch (getTargetMachine().getCodeModel()) {
3013   case CodeModel::Small:
3014   case CodeModel::Medium:
3015     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3016   default:
3017     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3018                        getPointerTy(DAG.getDataLayout()));
3019   }
3020 }
3021 
3022 const MCExpr *
3023 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3024                                                 unsigned JTI,
3025                                                 MCContext &Ctx) const {
3026   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3027     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3028 
3029   switch (getTargetMachine().getCodeModel()) {
3030   case CodeModel::Small:
3031   case CodeModel::Medium:
3032     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3033   default:
3034     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3035   }
3036 }
3037 
3038 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3039   EVT PtrVT = Op.getValueType();
3040   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3041 
3042   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3043   if (Subtarget.isUsingPCRelativeCalls()) {
3044     SDLoc DL(JT);
3045     EVT Ty = getPointerTy(DAG.getDataLayout());
3046     SDValue GA =
3047         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3048     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3049     return MatAddr;
3050   }
3051 
3052   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3053   // The actual address of the GlobalValue is stored in the TOC.
3054   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3055     setUsesTOCBasePtr(DAG);
3056     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3057     return getTOCEntry(DAG, SDLoc(JT), GA);
3058   }
3059 
3060   unsigned MOHiFlag, MOLoFlag;
3061   bool IsPIC = isPositionIndependent();
3062   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3063 
3064   if (IsPIC && Subtarget.isSVR4ABI()) {
3065     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3066                                         PPCII::MO_PIC_FLAG);
3067     return getTOCEntry(DAG, SDLoc(GA), GA);
3068   }
3069 
3070   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3071   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3072   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3073 }
3074 
3075 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3076                                              SelectionDAG &DAG) const {
3077   EVT PtrVT = Op.getValueType();
3078   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3079   const BlockAddress *BA = BASDN->getBlockAddress();
3080 
3081   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3082   if (Subtarget.isUsingPCRelativeCalls()) {
3083     SDLoc DL(BASDN);
3084     EVT Ty = getPointerTy(DAG.getDataLayout());
3085     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3086                                            PPCII::MO_PCREL_FLAG);
3087     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3088     return MatAddr;
3089   }
3090 
3091   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3092   // The actual BlockAddress is stored in the TOC.
3093   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3094     setUsesTOCBasePtr(DAG);
3095     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3096     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3097   }
3098 
3099   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3100   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3101     return getTOCEntry(
3102         DAG, SDLoc(BASDN),
3103         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3104 
3105   unsigned MOHiFlag, MOLoFlag;
3106   bool IsPIC = isPositionIndependent();
3107   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3108   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3109   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3110   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3111 }
3112 
3113 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3114                                               SelectionDAG &DAG) const {
3115   // FIXME: TLS addresses currently use medium model code sequences,
3116   // which is the most useful form.  Eventually support for small and
3117   // large models could be added if users need it, at the cost of
3118   // additional complexity.
3119   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3120   if (DAG.getTarget().useEmulatedTLS())
3121     return LowerToTLSEmulatedModel(GA, DAG);
3122 
3123   SDLoc dl(GA);
3124   const GlobalValue *GV = GA->getGlobal();
3125   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3126   bool is64bit = Subtarget.isPPC64();
3127   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3128   PICLevel::Level picLevel = M->getPICLevel();
3129 
3130   const TargetMachine &TM = getTargetMachine();
3131   TLSModel::Model Model = TM.getTLSModel(GV);
3132 
3133   if (Model == TLSModel::LocalExec) {
3134     if (Subtarget.isUsingPCRelativeCalls()) {
3135       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3136       SDValue TGA = DAG.getTargetGlobalAddress(
3137           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3138       SDValue MatAddr =
3139           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3140       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3141     }
3142 
3143     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3144                                                PPCII::MO_TPREL_HA);
3145     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3146                                                PPCII::MO_TPREL_LO);
3147     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3148                              : DAG.getRegister(PPC::R2, MVT::i32);
3149 
3150     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3151     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3152   }
3153 
3154   if (Model == TLSModel::InitialExec) {
3155     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3156     SDValue TGA = DAG.getTargetGlobalAddress(
3157         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3158     SDValue TGATLS = DAG.getTargetGlobalAddress(
3159         GV, dl, PtrVT, 0,
3160         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3161     SDValue TPOffset;
3162     if (IsPCRel) {
3163       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3164       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3165                              MachinePointerInfo());
3166     } else {
3167       SDValue GOTPtr;
3168       if (is64bit) {
3169         setUsesTOCBasePtr(DAG);
3170         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3171         GOTPtr =
3172             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3173       } else {
3174         if (!TM.isPositionIndependent())
3175           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3176         else if (picLevel == PICLevel::SmallPIC)
3177           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3178         else
3179           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3180       }
3181       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3182     }
3183     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3184   }
3185 
3186   if (Model == TLSModel::GeneralDynamic) {
3187     if (Subtarget.isUsingPCRelativeCalls()) {
3188       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3189                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3190       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3191     }
3192 
3193     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3194     SDValue GOTPtr;
3195     if (is64bit) {
3196       setUsesTOCBasePtr(DAG);
3197       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3198       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3199                                    GOTReg, TGA);
3200     } else {
3201       if (picLevel == PICLevel::SmallPIC)
3202         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3203       else
3204         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3205     }
3206     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3207                        GOTPtr, TGA, TGA);
3208   }
3209 
3210   if (Model == TLSModel::LocalDynamic) {
3211     if (Subtarget.isUsingPCRelativeCalls()) {
3212       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3213                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3214       SDValue MatPCRel =
3215           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3216       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3217     }
3218 
3219     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3220     SDValue GOTPtr;
3221     if (is64bit) {
3222       setUsesTOCBasePtr(DAG);
3223       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3224       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3225                            GOTReg, TGA);
3226     } else {
3227       if (picLevel == PICLevel::SmallPIC)
3228         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3229       else
3230         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3231     }
3232     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3233                                   PtrVT, GOTPtr, TGA, TGA);
3234     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3235                                       PtrVT, TLSAddr, TGA);
3236     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3237   }
3238 
3239   llvm_unreachable("Unknown TLS model!");
3240 }
3241 
3242 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3243                                               SelectionDAG &DAG) const {
3244   EVT PtrVT = Op.getValueType();
3245   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3246   SDLoc DL(GSDN);
3247   const GlobalValue *GV = GSDN->getGlobal();
3248 
3249   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3250   // The actual address of the GlobalValue is stored in the TOC.
3251   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3252     if (Subtarget.isUsingPCRelativeCalls()) {
3253       EVT Ty = getPointerTy(DAG.getDataLayout());
3254       if (isAccessedAsGotIndirect(Op)) {
3255         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3256                                                 PPCII::MO_PCREL_FLAG |
3257                                                     PPCII::MO_GOT_FLAG);
3258         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3259         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3260                                    MachinePointerInfo());
3261         return Load;
3262       } else {
3263         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3264                                                 PPCII::MO_PCREL_FLAG);
3265         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3266       }
3267     }
3268     setUsesTOCBasePtr(DAG);
3269     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3270     return getTOCEntry(DAG, DL, GA);
3271   }
3272 
3273   unsigned MOHiFlag, MOLoFlag;
3274   bool IsPIC = isPositionIndependent();
3275   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3276 
3277   if (IsPIC && Subtarget.isSVR4ABI()) {
3278     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3279                                             GSDN->getOffset(),
3280                                             PPCII::MO_PIC_FLAG);
3281     return getTOCEntry(DAG, DL, GA);
3282   }
3283 
3284   SDValue GAHi =
3285     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3286   SDValue GALo =
3287     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3288 
3289   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3290 }
3291 
3292 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3293   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3294   SDLoc dl(Op);
3295 
3296   if (Op.getValueType() == MVT::v2i64) {
3297     // When the operands themselves are v2i64 values, we need to do something
3298     // special because VSX has no underlying comparison operations for these.
3299     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3300       // Equality can be handled by casting to the legal type for Altivec
3301       // comparisons, everything else needs to be expanded.
3302       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3303         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3304                  DAG.getSetCC(dl, MVT::v4i32,
3305                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3306                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3307                    CC));
3308       }
3309 
3310       return SDValue();
3311     }
3312 
3313     // We handle most of these in the usual way.
3314     return Op;
3315   }
3316 
3317   // If we're comparing for equality to zero, expose the fact that this is
3318   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3319   // fold the new nodes.
3320   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3321     return V;
3322 
3323   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3324     // Leave comparisons against 0 and -1 alone for now, since they're usually
3325     // optimized.  FIXME: revisit this when we can custom lower all setcc
3326     // optimizations.
3327     if (C->isAllOnesValue() || C->isNullValue())
3328       return SDValue();
3329   }
3330 
3331   // If we have an integer seteq/setne, turn it into a compare against zero
3332   // by xor'ing the rhs with the lhs, which is faster than setting a
3333   // condition register, reading it back out, and masking the correct bit.  The
3334   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3335   // the result to other bit-twiddling opportunities.
3336   EVT LHSVT = Op.getOperand(0).getValueType();
3337   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3338     EVT VT = Op.getValueType();
3339     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3340                                 Op.getOperand(1));
3341     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3342   }
3343   return SDValue();
3344 }
3345 
3346 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3347   SDNode *Node = Op.getNode();
3348   EVT VT = Node->getValueType(0);
3349   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3350   SDValue InChain = Node->getOperand(0);
3351   SDValue VAListPtr = Node->getOperand(1);
3352   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3353   SDLoc dl(Node);
3354 
3355   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3356 
3357   // gpr_index
3358   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3359                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3360   InChain = GprIndex.getValue(1);
3361 
3362   if (VT == MVT::i64) {
3363     // Check if GprIndex is even
3364     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3365                                  DAG.getConstant(1, dl, MVT::i32));
3366     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3367                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3368     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3369                                           DAG.getConstant(1, dl, MVT::i32));
3370     // Align GprIndex to be even if it isn't
3371     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3372                            GprIndex);
3373   }
3374 
3375   // fpr index is 1 byte after gpr
3376   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3377                                DAG.getConstant(1, dl, MVT::i32));
3378 
3379   // fpr
3380   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3381                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3382   InChain = FprIndex.getValue(1);
3383 
3384   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3385                                        DAG.getConstant(8, dl, MVT::i32));
3386 
3387   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3388                                         DAG.getConstant(4, dl, MVT::i32));
3389 
3390   // areas
3391   SDValue OverflowArea =
3392       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3393   InChain = OverflowArea.getValue(1);
3394 
3395   SDValue RegSaveArea =
3396       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3397   InChain = RegSaveArea.getValue(1);
3398 
3399   // select overflow_area if index > 8
3400   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3401                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3402 
3403   // adjustment constant gpr_index * 4/8
3404   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3405                                     VT.isInteger() ? GprIndex : FprIndex,
3406                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3407                                                     MVT::i32));
3408 
3409   // OurReg = RegSaveArea + RegConstant
3410   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3411                                RegConstant);
3412 
3413   // Floating types are 32 bytes into RegSaveArea
3414   if (VT.isFloatingPoint())
3415     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3416                          DAG.getConstant(32, dl, MVT::i32));
3417 
3418   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3419   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3420                                    VT.isInteger() ? GprIndex : FprIndex,
3421                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3422                                                    MVT::i32));
3423 
3424   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3425                               VT.isInteger() ? VAListPtr : FprPtr,
3426                               MachinePointerInfo(SV), MVT::i8);
3427 
3428   // determine if we should load from reg_save_area or overflow_area
3429   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3430 
3431   // increase overflow_area by 4/8 if gpr/fpr > 8
3432   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3433                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3434                                           dl, MVT::i32));
3435 
3436   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3437                              OverflowAreaPlusN);
3438 
3439   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3440                               MachinePointerInfo(), MVT::i32);
3441 
3442   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3443 }
3444 
3445 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3446   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3447 
3448   // We have to copy the entire va_list struct:
3449   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3450   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3451                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3452                        false, true, false, MachinePointerInfo(),
3453                        MachinePointerInfo());
3454 }
3455 
3456 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3457                                                   SelectionDAG &DAG) const {
3458   if (Subtarget.isAIXABI())
3459     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3460 
3461   return Op.getOperand(0);
3462 }
3463 
3464 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3465                                                 SelectionDAG &DAG) const {
3466   if (Subtarget.isAIXABI())
3467     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3468 
3469   SDValue Chain = Op.getOperand(0);
3470   SDValue Trmp = Op.getOperand(1); // trampoline
3471   SDValue FPtr = Op.getOperand(2); // nested function
3472   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3473   SDLoc dl(Op);
3474 
3475   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3476   bool isPPC64 = (PtrVT == MVT::i64);
3477   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3478 
3479   TargetLowering::ArgListTy Args;
3480   TargetLowering::ArgListEntry Entry;
3481 
3482   Entry.Ty = IntPtrTy;
3483   Entry.Node = Trmp; Args.push_back(Entry);
3484 
3485   // TrampSize == (isPPC64 ? 48 : 40);
3486   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3487                                isPPC64 ? MVT::i64 : MVT::i32);
3488   Args.push_back(Entry);
3489 
3490   Entry.Node = FPtr; Args.push_back(Entry);
3491   Entry.Node = Nest; Args.push_back(Entry);
3492 
3493   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3494   TargetLowering::CallLoweringInfo CLI(DAG);
3495   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3496       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3497       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3498 
3499   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3500   return CallResult.second;
3501 }
3502 
3503 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3504   MachineFunction &MF = DAG.getMachineFunction();
3505   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3506   EVT PtrVT = getPointerTy(MF.getDataLayout());
3507 
3508   SDLoc dl(Op);
3509 
3510   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3511     // vastart just stores the address of the VarArgsFrameIndex slot into the
3512     // memory location argument.
3513     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3514     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3515     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3516                         MachinePointerInfo(SV));
3517   }
3518 
3519   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3520   // We suppose the given va_list is already allocated.
3521   //
3522   // typedef struct {
3523   //  char gpr;     /* index into the array of 8 GPRs
3524   //                 * stored in the register save area
3525   //                 * gpr=0 corresponds to r3,
3526   //                 * gpr=1 to r4, etc.
3527   //                 */
3528   //  char fpr;     /* index into the array of 8 FPRs
3529   //                 * stored in the register save area
3530   //                 * fpr=0 corresponds to f1,
3531   //                 * fpr=1 to f2, etc.
3532   //                 */
3533   //  char *overflow_arg_area;
3534   //                /* location on stack that holds
3535   //                 * the next overflow argument
3536   //                 */
3537   //  char *reg_save_area;
3538   //               /* where r3:r10 and f1:f8 (if saved)
3539   //                * are stored
3540   //                */
3541   // } va_list[1];
3542 
3543   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3544   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3545   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3546                                             PtrVT);
3547   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3548                                  PtrVT);
3549 
3550   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3551   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3552 
3553   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3554   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3555 
3556   uint64_t FPROffset = 1;
3557   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3558 
3559   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3560 
3561   // Store first byte : number of int regs
3562   SDValue firstStore =
3563       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3564                         MachinePointerInfo(SV), MVT::i8);
3565   uint64_t nextOffset = FPROffset;
3566   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3567                                   ConstFPROffset);
3568 
3569   // Store second byte : number of float regs
3570   SDValue secondStore =
3571       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3572                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3573   nextOffset += StackOffset;
3574   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3575 
3576   // Store second word : arguments given on stack
3577   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3578                                     MachinePointerInfo(SV, nextOffset));
3579   nextOffset += FrameOffset;
3580   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3581 
3582   // Store third word : arguments given in registers
3583   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3584                       MachinePointerInfo(SV, nextOffset));
3585 }
3586 
3587 /// FPR - The set of FP registers that should be allocated for arguments
3588 /// on Darwin and AIX.
3589 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3590                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3591                                 PPC::F11, PPC::F12, PPC::F13};
3592 
3593 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3594 /// the stack.
3595 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3596                                        unsigned PtrByteSize) {
3597   unsigned ArgSize = ArgVT.getStoreSize();
3598   if (Flags.isByVal())
3599     ArgSize = Flags.getByValSize();
3600 
3601   // Round up to multiples of the pointer size, except for array members,
3602   // which are always packed.
3603   if (!Flags.isInConsecutiveRegs())
3604     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3605 
3606   return ArgSize;
3607 }
3608 
3609 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3610 /// on the stack.
3611 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3612                                          ISD::ArgFlagsTy Flags,
3613                                          unsigned PtrByteSize) {
3614   Align Alignment(PtrByteSize);
3615 
3616   // Altivec parameters are padded to a 16 byte boundary.
3617   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3618       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3619       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3620       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3621     Alignment = Align(16);
3622 
3623   // ByVal parameters are aligned as requested.
3624   if (Flags.isByVal()) {
3625     auto BVAlign = Flags.getNonZeroByValAlign();
3626     if (BVAlign > PtrByteSize) {
3627       if (BVAlign.value() % PtrByteSize != 0)
3628         llvm_unreachable(
3629             "ByVal alignment is not a multiple of the pointer size");
3630 
3631       Alignment = BVAlign;
3632     }
3633   }
3634 
3635   // Array members are always packed to their original alignment.
3636   if (Flags.isInConsecutiveRegs()) {
3637     // If the array member was split into multiple registers, the first
3638     // needs to be aligned to the size of the full type.  (Except for
3639     // ppcf128, which is only aligned as its f64 components.)
3640     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3641       Alignment = Align(OrigVT.getStoreSize());
3642     else
3643       Alignment = Align(ArgVT.getStoreSize());
3644   }
3645 
3646   return Alignment;
3647 }
3648 
3649 /// CalculateStackSlotUsed - Return whether this argument will use its
3650 /// stack slot (instead of being passed in registers).  ArgOffset,
3651 /// AvailableFPRs, and AvailableVRs must hold the current argument
3652 /// position, and will be updated to account for this argument.
3653 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3654                                    unsigned PtrByteSize, unsigned LinkageSize,
3655                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3656                                    unsigned &AvailableFPRs,
3657                                    unsigned &AvailableVRs) {
3658   bool UseMemory = false;
3659 
3660   // Respect alignment of argument on the stack.
3661   Align Alignment =
3662       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3663   ArgOffset = alignTo(ArgOffset, Alignment);
3664   // If there's no space left in the argument save area, we must
3665   // use memory (this check also catches zero-sized arguments).
3666   if (ArgOffset >= LinkageSize + ParamAreaSize)
3667     UseMemory = true;
3668 
3669   // Allocate argument on the stack.
3670   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3671   if (Flags.isInConsecutiveRegsLast())
3672     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3673   // If we overran the argument save area, we must use memory
3674   // (this check catches arguments passed partially in memory)
3675   if (ArgOffset > LinkageSize + ParamAreaSize)
3676     UseMemory = true;
3677 
3678   // However, if the argument is actually passed in an FPR or a VR,
3679   // we don't use memory after all.
3680   if (!Flags.isByVal()) {
3681     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3682       if (AvailableFPRs > 0) {
3683         --AvailableFPRs;
3684         return false;
3685       }
3686     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3687         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3688         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3689         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3690       if (AvailableVRs > 0) {
3691         --AvailableVRs;
3692         return false;
3693       }
3694   }
3695 
3696   return UseMemory;
3697 }
3698 
3699 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3700 /// ensure minimum alignment required for target.
3701 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3702                                      unsigned NumBytes) {
3703   return alignTo(NumBytes, Lowering->getStackAlign());
3704 }
3705 
3706 SDValue PPCTargetLowering::LowerFormalArguments(
3707     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3708     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3709     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3710   if (Subtarget.isAIXABI())
3711     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3712                                     InVals);
3713   if (Subtarget.is64BitELFABI())
3714     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3715                                        InVals);
3716   assert(Subtarget.is32BitELFABI());
3717   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3718                                      InVals);
3719 }
3720 
3721 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3722     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3723     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3724     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3725 
3726   // 32-bit SVR4 ABI Stack Frame Layout:
3727   //              +-----------------------------------+
3728   //        +-->  |            Back chain             |
3729   //        |     +-----------------------------------+
3730   //        |     | Floating-point register save area |
3731   //        |     +-----------------------------------+
3732   //        |     |    General register save area     |
3733   //        |     +-----------------------------------+
3734   //        |     |          CR save word             |
3735   //        |     +-----------------------------------+
3736   //        |     |         VRSAVE save word          |
3737   //        |     +-----------------------------------+
3738   //        |     |         Alignment padding         |
3739   //        |     +-----------------------------------+
3740   //        |     |     Vector register save area     |
3741   //        |     +-----------------------------------+
3742   //        |     |       Local variable space        |
3743   //        |     +-----------------------------------+
3744   //        |     |        Parameter list area        |
3745   //        |     +-----------------------------------+
3746   //        |     |           LR save word            |
3747   //        |     +-----------------------------------+
3748   // SP-->  +---  |            Back chain             |
3749   //              +-----------------------------------+
3750   //
3751   // Specifications:
3752   //   System V Application Binary Interface PowerPC Processor Supplement
3753   //   AltiVec Technology Programming Interface Manual
3754 
3755   MachineFunction &MF = DAG.getMachineFunction();
3756   MachineFrameInfo &MFI = MF.getFrameInfo();
3757   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3758 
3759   EVT PtrVT = getPointerTy(MF.getDataLayout());
3760   // Potential tail calls could cause overwriting of argument stack slots.
3761   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3762                        (CallConv == CallingConv::Fast));
3763   const Align PtrAlign(4);
3764 
3765   // Assign locations to all of the incoming arguments.
3766   SmallVector<CCValAssign, 16> ArgLocs;
3767   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3768                  *DAG.getContext());
3769 
3770   // Reserve space for the linkage area on the stack.
3771   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3772   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3773   if (useSoftFloat())
3774     CCInfo.PreAnalyzeFormalArguments(Ins);
3775 
3776   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3777   CCInfo.clearWasPPCF128();
3778 
3779   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3780     CCValAssign &VA = ArgLocs[i];
3781 
3782     // Arguments stored in registers.
3783     if (VA.isRegLoc()) {
3784       const TargetRegisterClass *RC;
3785       EVT ValVT = VA.getValVT();
3786 
3787       switch (ValVT.getSimpleVT().SimpleTy) {
3788         default:
3789           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3790         case MVT::i1:
3791         case MVT::i32:
3792           RC = &PPC::GPRCRegClass;
3793           break;
3794         case MVT::f32:
3795           if (Subtarget.hasP8Vector())
3796             RC = &PPC::VSSRCRegClass;
3797           else if (Subtarget.hasSPE())
3798             RC = &PPC::GPRCRegClass;
3799           else
3800             RC = &PPC::F4RCRegClass;
3801           break;
3802         case MVT::f64:
3803           if (Subtarget.hasVSX())
3804             RC = &PPC::VSFRCRegClass;
3805           else if (Subtarget.hasSPE())
3806             // SPE passes doubles in GPR pairs.
3807             RC = &PPC::GPRCRegClass;
3808           else
3809             RC = &PPC::F8RCRegClass;
3810           break;
3811         case MVT::v16i8:
3812         case MVT::v8i16:
3813         case MVT::v4i32:
3814           RC = &PPC::VRRCRegClass;
3815           break;
3816         case MVT::v4f32:
3817           RC = &PPC::VRRCRegClass;
3818           break;
3819         case MVT::v2f64:
3820         case MVT::v2i64:
3821           RC = &PPC::VRRCRegClass;
3822           break;
3823       }
3824 
3825       SDValue ArgValue;
3826       // Transform the arguments stored in physical registers into
3827       // virtual ones.
3828       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3829         assert(i + 1 < e && "No second half of double precision argument");
3830         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3831         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3832         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3833         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3834         if (!Subtarget.isLittleEndian())
3835           std::swap (ArgValueLo, ArgValueHi);
3836         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3837                                ArgValueHi);
3838       } else {
3839         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3840         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3841                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3842         if (ValVT == MVT::i1)
3843           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3844       }
3845 
3846       InVals.push_back(ArgValue);
3847     } else {
3848       // Argument stored in memory.
3849       assert(VA.isMemLoc());
3850 
3851       // Get the extended size of the argument type in stack
3852       unsigned ArgSize = VA.getLocVT().getStoreSize();
3853       // Get the actual size of the argument type
3854       unsigned ObjSize = VA.getValVT().getStoreSize();
3855       unsigned ArgOffset = VA.getLocMemOffset();
3856       // Stack objects in PPC32 are right justified.
3857       ArgOffset += ArgSize - ObjSize;
3858       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3859 
3860       // Create load nodes to retrieve arguments from the stack.
3861       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3862       InVals.push_back(
3863           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3864     }
3865   }
3866 
3867   // Assign locations to all of the incoming aggregate by value arguments.
3868   // Aggregates passed by value are stored in the local variable space of the
3869   // caller's stack frame, right above the parameter list area.
3870   SmallVector<CCValAssign, 16> ByValArgLocs;
3871   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3872                       ByValArgLocs, *DAG.getContext());
3873 
3874   // Reserve stack space for the allocations in CCInfo.
3875   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3876 
3877   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3878 
3879   // Area that is at least reserved in the caller of this function.
3880   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3881   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3882 
3883   // Set the size that is at least reserved in caller of this function.  Tail
3884   // call optimized function's reserved stack space needs to be aligned so that
3885   // taking the difference between two stack areas will result in an aligned
3886   // stack.
3887   MinReservedArea =
3888       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3889   FuncInfo->setMinReservedArea(MinReservedArea);
3890 
3891   SmallVector<SDValue, 8> MemOps;
3892 
3893   // If the function takes variable number of arguments, make a frame index for
3894   // the start of the first vararg value... for expansion of llvm.va_start.
3895   if (isVarArg) {
3896     static const MCPhysReg GPArgRegs[] = {
3897       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3898       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3899     };
3900     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3901 
3902     static const MCPhysReg FPArgRegs[] = {
3903       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3904       PPC::F8
3905     };
3906     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3907 
3908     if (useSoftFloat() || hasSPE())
3909        NumFPArgRegs = 0;
3910 
3911     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3912     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3913 
3914     // Make room for NumGPArgRegs and NumFPArgRegs.
3915     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3916                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3917 
3918     FuncInfo->setVarArgsStackOffset(
3919       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3920                             CCInfo.getNextStackOffset(), true));
3921 
3922     FuncInfo->setVarArgsFrameIndex(
3923         MFI.CreateStackObject(Depth, Align(8), false));
3924     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3925 
3926     // The fixed integer arguments of a variadic function are stored to the
3927     // VarArgsFrameIndex on the stack so that they may be loaded by
3928     // dereferencing the result of va_next.
3929     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3930       // Get an existing live-in vreg, or add a new one.
3931       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3932       if (!VReg)
3933         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3934 
3935       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3936       SDValue Store =
3937           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3938       MemOps.push_back(Store);
3939       // Increment the address by four for the next argument to store
3940       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3941       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3942     }
3943 
3944     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3945     // is set.
3946     // The double arguments are stored to the VarArgsFrameIndex
3947     // on the stack.
3948     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3949       // Get an existing live-in vreg, or add a new one.
3950       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3951       if (!VReg)
3952         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3953 
3954       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3955       SDValue Store =
3956           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3957       MemOps.push_back(Store);
3958       // Increment the address by eight for the next argument to store
3959       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3960                                          PtrVT);
3961       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3962     }
3963   }
3964 
3965   if (!MemOps.empty())
3966     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3967 
3968   return Chain;
3969 }
3970 
3971 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3972 // value to MVT::i64 and then truncate to the correct register size.
3973 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3974                                              EVT ObjectVT, SelectionDAG &DAG,
3975                                              SDValue ArgVal,
3976                                              const SDLoc &dl) const {
3977   if (Flags.isSExt())
3978     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3979                          DAG.getValueType(ObjectVT));
3980   else if (Flags.isZExt())
3981     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3982                          DAG.getValueType(ObjectVT));
3983 
3984   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3985 }
3986 
3987 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3988     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3989     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3990     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3991   // TODO: add description of PPC stack frame format, or at least some docs.
3992   //
3993   bool isELFv2ABI = Subtarget.isELFv2ABI();
3994   bool isLittleEndian = Subtarget.isLittleEndian();
3995   MachineFunction &MF = DAG.getMachineFunction();
3996   MachineFrameInfo &MFI = MF.getFrameInfo();
3997   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3998 
3999   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4000          "fastcc not supported on varargs functions");
4001 
4002   EVT PtrVT = getPointerTy(MF.getDataLayout());
4003   // Potential tail calls could cause overwriting of argument stack slots.
4004   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4005                        (CallConv == CallingConv::Fast));
4006   unsigned PtrByteSize = 8;
4007   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4008 
4009   static const MCPhysReg GPR[] = {
4010     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4011     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4012   };
4013   static const MCPhysReg VR[] = {
4014     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4015     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4016   };
4017 
4018   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4019   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4020   const unsigned Num_VR_Regs  = array_lengthof(VR);
4021 
4022   // Do a first pass over the arguments to determine whether the ABI
4023   // guarantees that our caller has allocated the parameter save area
4024   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4025   // in the ELFv2 ABI, it is true if this is a vararg function or if
4026   // any parameter is located in a stack slot.
4027 
4028   bool HasParameterArea = !isELFv2ABI || isVarArg;
4029   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4030   unsigned NumBytes = LinkageSize;
4031   unsigned AvailableFPRs = Num_FPR_Regs;
4032   unsigned AvailableVRs = Num_VR_Regs;
4033   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4034     if (Ins[i].Flags.isNest())
4035       continue;
4036 
4037     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4038                                PtrByteSize, LinkageSize, ParamAreaSize,
4039                                NumBytes, AvailableFPRs, AvailableVRs))
4040       HasParameterArea = true;
4041   }
4042 
4043   // Add DAG nodes to load the arguments or copy them out of registers.  On
4044   // entry to a function on PPC, the arguments start after the linkage area,
4045   // although the first ones are often in registers.
4046 
4047   unsigned ArgOffset = LinkageSize;
4048   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4049   SmallVector<SDValue, 8> MemOps;
4050   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4051   unsigned CurArgIdx = 0;
4052   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4053     SDValue ArgVal;
4054     bool needsLoad = false;
4055     EVT ObjectVT = Ins[ArgNo].VT;
4056     EVT OrigVT = Ins[ArgNo].ArgVT;
4057     unsigned ObjSize = ObjectVT.getStoreSize();
4058     unsigned ArgSize = ObjSize;
4059     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4060     if (Ins[ArgNo].isOrigArg()) {
4061       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4062       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4063     }
4064     // We re-align the argument offset for each argument, except when using the
4065     // fast calling convention, when we need to make sure we do that only when
4066     // we'll actually use a stack slot.
4067     unsigned CurArgOffset;
4068     Align Alignment;
4069     auto ComputeArgOffset = [&]() {
4070       /* Respect alignment of argument on the stack.  */
4071       Alignment =
4072           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4073       ArgOffset = alignTo(ArgOffset, Alignment);
4074       CurArgOffset = ArgOffset;
4075     };
4076 
4077     if (CallConv != CallingConv::Fast) {
4078       ComputeArgOffset();
4079 
4080       /* Compute GPR index associated with argument offset.  */
4081       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4082       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4083     }
4084 
4085     // FIXME the codegen can be much improved in some cases.
4086     // We do not have to keep everything in memory.
4087     if (Flags.isByVal()) {
4088       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4089 
4090       if (CallConv == CallingConv::Fast)
4091         ComputeArgOffset();
4092 
4093       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4094       ObjSize = Flags.getByValSize();
4095       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4096       // Empty aggregate parameters do not take up registers.  Examples:
4097       //   struct { } a;
4098       //   union  { } b;
4099       //   int c[0];
4100       // etc.  However, we have to provide a place-holder in InVals, so
4101       // pretend we have an 8-byte item at the current address for that
4102       // purpose.
4103       if (!ObjSize) {
4104         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4105         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4106         InVals.push_back(FIN);
4107         continue;
4108       }
4109 
4110       // Create a stack object covering all stack doublewords occupied
4111       // by the argument.  If the argument is (fully or partially) on
4112       // the stack, or if the argument is fully in registers but the
4113       // caller has allocated the parameter save anyway, we can refer
4114       // directly to the caller's stack frame.  Otherwise, create a
4115       // local copy in our own frame.
4116       int FI;
4117       if (HasParameterArea ||
4118           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4119         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4120       else
4121         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4122       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4123 
4124       // Handle aggregates smaller than 8 bytes.
4125       if (ObjSize < PtrByteSize) {
4126         // The value of the object is its address, which differs from the
4127         // address of the enclosing doubleword on big-endian systems.
4128         SDValue Arg = FIN;
4129         if (!isLittleEndian) {
4130           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4131           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4132         }
4133         InVals.push_back(Arg);
4134 
4135         if (GPR_idx != Num_GPR_Regs) {
4136           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4137           FuncInfo->addLiveInAttr(VReg, Flags);
4138           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4139           SDValue Store;
4140 
4141           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4142             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4143                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4144             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4145                                       MachinePointerInfo(&*FuncArg), ObjType);
4146           } else {
4147             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4148             // store the whole register as-is to the parameter save area
4149             // slot.
4150             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4151                                  MachinePointerInfo(&*FuncArg));
4152           }
4153 
4154           MemOps.push_back(Store);
4155         }
4156         // Whether we copied from a register or not, advance the offset
4157         // into the parameter save area by a full doubleword.
4158         ArgOffset += PtrByteSize;
4159         continue;
4160       }
4161 
4162       // The value of the object is its address, which is the address of
4163       // its first stack doubleword.
4164       InVals.push_back(FIN);
4165 
4166       // Store whatever pieces of the object are in registers to memory.
4167       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4168         if (GPR_idx == Num_GPR_Regs)
4169           break;
4170 
4171         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4172         FuncInfo->addLiveInAttr(VReg, Flags);
4173         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4174         SDValue Addr = FIN;
4175         if (j) {
4176           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4177           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4178         }
4179         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4180                                      MachinePointerInfo(&*FuncArg, j));
4181         MemOps.push_back(Store);
4182         ++GPR_idx;
4183       }
4184       ArgOffset += ArgSize;
4185       continue;
4186     }
4187 
4188     switch (ObjectVT.getSimpleVT().SimpleTy) {
4189     default: llvm_unreachable("Unhandled argument type!");
4190     case MVT::i1:
4191     case MVT::i32:
4192     case MVT::i64:
4193       if (Flags.isNest()) {
4194         // The 'nest' parameter, if any, is passed in R11.
4195         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4196         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4197 
4198         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4199           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4200 
4201         break;
4202       }
4203 
4204       // These can be scalar arguments or elements of an integer array type
4205       // passed directly.  Clang may use those instead of "byval" aggregate
4206       // types to avoid forcing arguments to memory unnecessarily.
4207       if (GPR_idx != Num_GPR_Regs) {
4208         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4209         FuncInfo->addLiveInAttr(VReg, Flags);
4210         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4211 
4212         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4213           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4214           // value to MVT::i64 and then truncate to the correct register size.
4215           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4216       } else {
4217         if (CallConv == CallingConv::Fast)
4218           ComputeArgOffset();
4219 
4220         needsLoad = true;
4221         ArgSize = PtrByteSize;
4222       }
4223       if (CallConv != CallingConv::Fast || needsLoad)
4224         ArgOffset += 8;
4225       break;
4226 
4227     case MVT::f32:
4228     case MVT::f64:
4229       // These can be scalar arguments or elements of a float array type
4230       // passed directly.  The latter are used to implement ELFv2 homogenous
4231       // float aggregates.
4232       if (FPR_idx != Num_FPR_Regs) {
4233         unsigned VReg;
4234 
4235         if (ObjectVT == MVT::f32)
4236           VReg = MF.addLiveIn(FPR[FPR_idx],
4237                               Subtarget.hasP8Vector()
4238                                   ? &PPC::VSSRCRegClass
4239                                   : &PPC::F4RCRegClass);
4240         else
4241           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4242                                                 ? &PPC::VSFRCRegClass
4243                                                 : &PPC::F8RCRegClass);
4244 
4245         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4246         ++FPR_idx;
4247       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4248         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4249         // once we support fp <-> gpr moves.
4250 
4251         // This can only ever happen in the presence of f32 array types,
4252         // since otherwise we never run out of FPRs before running out
4253         // of GPRs.
4254         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4255         FuncInfo->addLiveInAttr(VReg, Flags);
4256         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4257 
4258         if (ObjectVT == MVT::f32) {
4259           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4260             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4261                                  DAG.getConstant(32, dl, MVT::i32));
4262           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4263         }
4264 
4265         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4266       } else {
4267         if (CallConv == CallingConv::Fast)
4268           ComputeArgOffset();
4269 
4270         needsLoad = true;
4271       }
4272 
4273       // When passing an array of floats, the array occupies consecutive
4274       // space in the argument area; only round up to the next doubleword
4275       // at the end of the array.  Otherwise, each float takes 8 bytes.
4276       if (CallConv != CallingConv::Fast || needsLoad) {
4277         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4278         ArgOffset += ArgSize;
4279         if (Flags.isInConsecutiveRegsLast())
4280           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4281       }
4282       break;
4283     case MVT::v4f32:
4284     case MVT::v4i32:
4285     case MVT::v8i16:
4286     case MVT::v16i8:
4287     case MVT::v2f64:
4288     case MVT::v2i64:
4289     case MVT::v1i128:
4290     case MVT::f128:
4291       // These can be scalar arguments or elements of a vector array type
4292       // passed directly.  The latter are used to implement ELFv2 homogenous
4293       // vector aggregates.
4294       if (VR_idx != Num_VR_Regs) {
4295         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4296         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4297         ++VR_idx;
4298       } else {
4299         if (CallConv == CallingConv::Fast)
4300           ComputeArgOffset();
4301         needsLoad = true;
4302       }
4303       if (CallConv != CallingConv::Fast || needsLoad)
4304         ArgOffset += 16;
4305       break;
4306     }
4307 
4308     // We need to load the argument to a virtual register if we determined
4309     // above that we ran out of physical registers of the appropriate type.
4310     if (needsLoad) {
4311       if (ObjSize < ArgSize && !isLittleEndian)
4312         CurArgOffset += ArgSize - ObjSize;
4313       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4314       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4315       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4316     }
4317 
4318     InVals.push_back(ArgVal);
4319   }
4320 
4321   // Area that is at least reserved in the caller of this function.
4322   unsigned MinReservedArea;
4323   if (HasParameterArea)
4324     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4325   else
4326     MinReservedArea = LinkageSize;
4327 
4328   // Set the size that is at least reserved in caller of this function.  Tail
4329   // call optimized functions' reserved stack space needs to be aligned so that
4330   // taking the difference between two stack areas will result in an aligned
4331   // stack.
4332   MinReservedArea =
4333       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4334   FuncInfo->setMinReservedArea(MinReservedArea);
4335 
4336   // If the function takes variable number of arguments, make a frame index for
4337   // the start of the first vararg value... for expansion of llvm.va_start.
4338   // On ELFv2ABI spec, it writes:
4339   // C programs that are intended to be *portable* across different compilers
4340   // and architectures must use the header file <stdarg.h> to deal with variable
4341   // argument lists.
4342   if (isVarArg && MFI.hasVAStart()) {
4343     int Depth = ArgOffset;
4344 
4345     FuncInfo->setVarArgsFrameIndex(
4346       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4347     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4348 
4349     // If this function is vararg, store any remaining integer argument regs
4350     // to their spots on the stack so that they may be loaded by dereferencing
4351     // the result of va_next.
4352     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4353          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4354       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4355       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4356       SDValue Store =
4357           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4358       MemOps.push_back(Store);
4359       // Increment the address by four for the next argument to store
4360       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4361       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4362     }
4363   }
4364 
4365   if (!MemOps.empty())
4366     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4367 
4368   return Chain;
4369 }
4370 
4371 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4372 /// adjusted to accommodate the arguments for the tailcall.
4373 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4374                                    unsigned ParamSize) {
4375 
4376   if (!isTailCall) return 0;
4377 
4378   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4379   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4380   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4381   // Remember only if the new adjustment is bigger.
4382   if (SPDiff < FI->getTailCallSPDelta())
4383     FI->setTailCallSPDelta(SPDiff);
4384 
4385   return SPDiff;
4386 }
4387 
4388 static bool isFunctionGlobalAddress(SDValue Callee);
4389 
4390 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4391                               const TargetMachine &TM) {
4392   // It does not make sense to call callsShareTOCBase() with a caller that
4393   // is PC Relative since PC Relative callers do not have a TOC.
4394 #ifndef NDEBUG
4395   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4396   assert(!STICaller->isUsingPCRelativeCalls() &&
4397          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4398 #endif
4399 
4400   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4401   // don't have enough information to determine if the caller and callee share
4402   // the same  TOC base, so we have to pessimistically assume they don't for
4403   // correctness.
4404   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4405   if (!G)
4406     return false;
4407 
4408   const GlobalValue *GV = G->getGlobal();
4409 
4410   // If the callee is preemptable, then the static linker will use a plt-stub
4411   // which saves the toc to the stack, and needs a nop after the call
4412   // instruction to convert to a toc-restore.
4413   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4414     return false;
4415 
4416   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4417   // We may need a TOC restore in the situation where the caller requires a
4418   // valid TOC but the callee is PC Relative and does not.
4419   const Function *F = dyn_cast<Function>(GV);
4420   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4421 
4422   // If we have an Alias we can try to get the function from there.
4423   if (Alias) {
4424     const GlobalObject *GlobalObj = Alias->getBaseObject();
4425     F = dyn_cast<Function>(GlobalObj);
4426   }
4427 
4428   // If we still have no valid function pointer we do not have enough
4429   // information to determine if the callee uses PC Relative calls so we must
4430   // assume that it does.
4431   if (!F)
4432     return false;
4433 
4434   // If the callee uses PC Relative we cannot guarantee that the callee won't
4435   // clobber the TOC of the caller and so we must assume that the two
4436   // functions do not share a TOC base.
4437   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4438   if (STICallee->isUsingPCRelativeCalls())
4439     return false;
4440 
4441   // If the GV is not a strong definition then we need to assume it can be
4442   // replaced by another function at link time. The function that replaces
4443   // it may not share the same TOC as the caller since the callee may be
4444   // replaced by a PC Relative version of the same function.
4445   if (!GV->isStrongDefinitionForLinker())
4446     return false;
4447 
4448   // The medium and large code models are expected to provide a sufficiently
4449   // large TOC to provide all data addressing needs of a module with a
4450   // single TOC.
4451   if (CodeModel::Medium == TM.getCodeModel() ||
4452       CodeModel::Large == TM.getCodeModel())
4453     return true;
4454 
4455   // Any explicitly-specified sections and section prefixes must also match.
4456   // Also, if we're using -ffunction-sections, then each function is always in
4457   // a different section (the same is true for COMDAT functions).
4458   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4459       GV->getSection() != Caller->getSection())
4460     return false;
4461   if (const auto *F = dyn_cast<Function>(GV)) {
4462     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4463       return false;
4464   }
4465 
4466   return true;
4467 }
4468 
4469 static bool
4470 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4471                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4472   assert(Subtarget.is64BitELFABI());
4473 
4474   const unsigned PtrByteSize = 8;
4475   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4476 
4477   static const MCPhysReg GPR[] = {
4478     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4479     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4480   };
4481   static const MCPhysReg VR[] = {
4482     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4483     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4484   };
4485 
4486   const unsigned NumGPRs = array_lengthof(GPR);
4487   const unsigned NumFPRs = 13;
4488   const unsigned NumVRs = array_lengthof(VR);
4489   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4490 
4491   unsigned NumBytes = LinkageSize;
4492   unsigned AvailableFPRs = NumFPRs;
4493   unsigned AvailableVRs = NumVRs;
4494 
4495   for (const ISD::OutputArg& Param : Outs) {
4496     if (Param.Flags.isNest()) continue;
4497 
4498     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4499                                LinkageSize, ParamAreaSize, NumBytes,
4500                                AvailableFPRs, AvailableVRs))
4501       return true;
4502   }
4503   return false;
4504 }
4505 
4506 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4507   if (CB.arg_size() != CallerFn->arg_size())
4508     return false;
4509 
4510   auto CalleeArgIter = CB.arg_begin();
4511   auto CalleeArgEnd = CB.arg_end();
4512   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4513 
4514   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4515     const Value* CalleeArg = *CalleeArgIter;
4516     const Value* CallerArg = &(*CallerArgIter);
4517     if (CalleeArg == CallerArg)
4518       continue;
4519 
4520     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4521     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4522     //      }
4523     // 1st argument of callee is undef and has the same type as caller.
4524     if (CalleeArg->getType() == CallerArg->getType() &&
4525         isa<UndefValue>(CalleeArg))
4526       continue;
4527 
4528     return false;
4529   }
4530 
4531   return true;
4532 }
4533 
4534 // Returns true if TCO is possible between the callers and callees
4535 // calling conventions.
4536 static bool
4537 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4538                                     CallingConv::ID CalleeCC) {
4539   // Tail calls are possible with fastcc and ccc.
4540   auto isTailCallableCC  = [] (CallingConv::ID CC){
4541       return  CC == CallingConv::C || CC == CallingConv::Fast;
4542   };
4543   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4544     return false;
4545 
4546   // We can safely tail call both fastcc and ccc callees from a c calling
4547   // convention caller. If the caller is fastcc, we may have less stack space
4548   // than a non-fastcc caller with the same signature so disable tail-calls in
4549   // that case.
4550   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4551 }
4552 
4553 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4554     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4555     const SmallVectorImpl<ISD::OutputArg> &Outs,
4556     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4557   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4558 
4559   if (DisableSCO && !TailCallOpt) return false;
4560 
4561   // Variadic argument functions are not supported.
4562   if (isVarArg) return false;
4563 
4564   auto &Caller = DAG.getMachineFunction().getFunction();
4565   // Check that the calling conventions are compatible for tco.
4566   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4567     return false;
4568 
4569   // Caller contains any byval parameter is not supported.
4570   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4571     return false;
4572 
4573   // Callee contains any byval parameter is not supported, too.
4574   // Note: This is a quick work around, because in some cases, e.g.
4575   // caller's stack size > callee's stack size, we are still able to apply
4576   // sibling call optimization. For example, gcc is able to do SCO for caller1
4577   // in the following example, but not for caller2.
4578   //   struct test {
4579   //     long int a;
4580   //     char ary[56];
4581   //   } gTest;
4582   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4583   //     b->a = v.a;
4584   //     return 0;
4585   //   }
4586   //   void caller1(struct test a, struct test c, struct test *b) {
4587   //     callee(gTest, b); }
4588   //   void caller2(struct test *b) { callee(gTest, b); }
4589   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4590     return false;
4591 
4592   // If callee and caller use different calling conventions, we cannot pass
4593   // parameters on stack since offsets for the parameter area may be different.
4594   if (Caller.getCallingConv() != CalleeCC &&
4595       needStackSlotPassParameters(Subtarget, Outs))
4596     return false;
4597 
4598   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4599   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4600   // callee potentially have different TOC bases then we cannot tail call since
4601   // we need to restore the TOC pointer after the call.
4602   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4603   // We cannot guarantee this for indirect calls or calls to external functions.
4604   // When PC-Relative addressing is used, the concept of the TOC is no longer
4605   // applicable so this check is not required.
4606   // Check first for indirect calls.
4607   if (!Subtarget.isUsingPCRelativeCalls() &&
4608       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4609     return false;
4610 
4611   // Check if we share the TOC base.
4612   if (!Subtarget.isUsingPCRelativeCalls() &&
4613       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4614     return false;
4615 
4616   // TCO allows altering callee ABI, so we don't have to check further.
4617   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4618     return true;
4619 
4620   if (DisableSCO) return false;
4621 
4622   // If callee use the same argument list that caller is using, then we can
4623   // apply SCO on this case. If it is not, then we need to check if callee needs
4624   // stack for passing arguments.
4625   // PC Relative tail calls may not have a CallBase.
4626   // If there is no CallBase we cannot verify if we have the same argument
4627   // list so assume that we don't have the same argument list.
4628   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4629       needStackSlotPassParameters(Subtarget, Outs))
4630     return false;
4631   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4632     return false;
4633 
4634   return true;
4635 }
4636 
4637 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4638 /// for tail call optimization. Targets which want to do tail call
4639 /// optimization should implement this function.
4640 bool
4641 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4642                                                      CallingConv::ID CalleeCC,
4643                                                      bool isVarArg,
4644                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4645                                                      SelectionDAG& DAG) const {
4646   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4647     return false;
4648 
4649   // Variable argument functions are not supported.
4650   if (isVarArg)
4651     return false;
4652 
4653   MachineFunction &MF = DAG.getMachineFunction();
4654   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4655   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4656     // Functions containing by val parameters are not supported.
4657     for (unsigned i = 0; i != Ins.size(); i++) {
4658        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4659        if (Flags.isByVal()) return false;
4660     }
4661 
4662     // Non-PIC/GOT tail calls are supported.
4663     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4664       return true;
4665 
4666     // At the moment we can only do local tail calls (in same module, hidden
4667     // or protected) if we are generating PIC.
4668     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4669       return G->getGlobal()->hasHiddenVisibility()
4670           || G->getGlobal()->hasProtectedVisibility();
4671   }
4672 
4673   return false;
4674 }
4675 
4676 /// isCallCompatibleAddress - Return the immediate to use if the specified
4677 /// 32-bit value is representable in the immediate field of a BxA instruction.
4678 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4679   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4680   if (!C) return nullptr;
4681 
4682   int Addr = C->getZExtValue();
4683   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4684       SignExtend32<26>(Addr) != Addr)
4685     return nullptr;  // Top 6 bits have to be sext of immediate.
4686 
4687   return DAG
4688       .getConstant(
4689           (int)C->getZExtValue() >> 2, SDLoc(Op),
4690           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4691       .getNode();
4692 }
4693 
4694 namespace {
4695 
4696 struct TailCallArgumentInfo {
4697   SDValue Arg;
4698   SDValue FrameIdxOp;
4699   int FrameIdx = 0;
4700 
4701   TailCallArgumentInfo() = default;
4702 };
4703 
4704 } // end anonymous namespace
4705 
4706 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4707 static void StoreTailCallArgumentsToStackSlot(
4708     SelectionDAG &DAG, SDValue Chain,
4709     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4710     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4711   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4712     SDValue Arg = TailCallArgs[i].Arg;
4713     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4714     int FI = TailCallArgs[i].FrameIdx;
4715     // Store relative to framepointer.
4716     MemOpChains.push_back(DAG.getStore(
4717         Chain, dl, Arg, FIN,
4718         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4719   }
4720 }
4721 
4722 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4723 /// the appropriate stack slot for the tail call optimized function call.
4724 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4725                                              SDValue OldRetAddr, SDValue OldFP,
4726                                              int SPDiff, const SDLoc &dl) {
4727   if (SPDiff) {
4728     // Calculate the new stack slot for the return address.
4729     MachineFunction &MF = DAG.getMachineFunction();
4730     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4731     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4732     bool isPPC64 = Subtarget.isPPC64();
4733     int SlotSize = isPPC64 ? 8 : 4;
4734     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4735     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4736                                                          NewRetAddrLoc, true);
4737     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4738     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4739     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4740                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4741   }
4742   return Chain;
4743 }
4744 
4745 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4746 /// the position of the argument.
4747 static void
4748 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4749                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4750                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4751   int Offset = ArgOffset + SPDiff;
4752   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4753   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4754   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4755   SDValue FIN = DAG.getFrameIndex(FI, VT);
4756   TailCallArgumentInfo Info;
4757   Info.Arg = Arg;
4758   Info.FrameIdxOp = FIN;
4759   Info.FrameIdx = FI;
4760   TailCallArguments.push_back(Info);
4761 }
4762 
4763 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4764 /// stack slot. Returns the chain as result and the loaded frame pointers in
4765 /// LROpOut/FPOpout. Used when tail calling.
4766 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4767     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4768     SDValue &FPOpOut, const SDLoc &dl) const {
4769   if (SPDiff) {
4770     // Load the LR and FP stack slot for later adjusting.
4771     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4772     LROpOut = getReturnAddrFrameIndex(DAG);
4773     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4774     Chain = SDValue(LROpOut.getNode(), 1);
4775   }
4776   return Chain;
4777 }
4778 
4779 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4780 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4781 /// specified by the specific parameter attribute. The copy will be passed as
4782 /// a byval function parameter.
4783 /// Sometimes what we are copying is the end of a larger object, the part that
4784 /// does not fit in registers.
4785 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4786                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4787                                          SelectionDAG &DAG, const SDLoc &dl) {
4788   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4789   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4790                        Flags.getNonZeroByValAlign(), false, false, false,
4791                        MachinePointerInfo(), MachinePointerInfo());
4792 }
4793 
4794 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4795 /// tail calls.
4796 static void LowerMemOpCallTo(
4797     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4798     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4799     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4800     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4801   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4802   if (!isTailCall) {
4803     if (isVector) {
4804       SDValue StackPtr;
4805       if (isPPC64)
4806         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4807       else
4808         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4809       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4810                            DAG.getConstant(ArgOffset, dl, PtrVT));
4811     }
4812     MemOpChains.push_back(
4813         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4814     // Calculate and remember argument location.
4815   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4816                                   TailCallArguments);
4817 }
4818 
4819 static void
4820 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4821                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4822                 SDValue FPOp,
4823                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4824   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4825   // might overwrite each other in case of tail call optimization.
4826   SmallVector<SDValue, 8> MemOpChains2;
4827   // Do not flag preceding copytoreg stuff together with the following stuff.
4828   InFlag = SDValue();
4829   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4830                                     MemOpChains2, dl);
4831   if (!MemOpChains2.empty())
4832     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4833 
4834   // Store the return address to the appropriate stack slot.
4835   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4836 
4837   // Emit callseq_end just before tailcall node.
4838   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4839                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4840   InFlag = Chain.getValue(1);
4841 }
4842 
4843 // Is this global address that of a function that can be called by name? (as
4844 // opposed to something that must hold a descriptor for an indirect call).
4845 static bool isFunctionGlobalAddress(SDValue Callee) {
4846   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4847     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4848         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4849       return false;
4850 
4851     return G->getGlobal()->getValueType()->isFunctionTy();
4852   }
4853 
4854   return false;
4855 }
4856 
4857 SDValue PPCTargetLowering::LowerCallResult(
4858     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4859     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4860     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4861   SmallVector<CCValAssign, 16> RVLocs;
4862   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4863                     *DAG.getContext());
4864 
4865   CCRetInfo.AnalyzeCallResult(
4866       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4867                ? RetCC_PPC_Cold
4868                : RetCC_PPC);
4869 
4870   // Copy all of the result registers out of their specified physreg.
4871   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4872     CCValAssign &VA = RVLocs[i];
4873     assert(VA.isRegLoc() && "Can only return in registers!");
4874 
4875     SDValue Val;
4876 
4877     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
4878       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4879                                       InFlag);
4880       Chain = Lo.getValue(1);
4881       InFlag = Lo.getValue(2);
4882       VA = RVLocs[++i]; // skip ahead to next loc
4883       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4884                                       InFlag);
4885       Chain = Hi.getValue(1);
4886       InFlag = Hi.getValue(2);
4887       if (!Subtarget.isLittleEndian())
4888         std::swap (Lo, Hi);
4889       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
4890     } else {
4891       Val = DAG.getCopyFromReg(Chain, dl,
4892                                VA.getLocReg(), VA.getLocVT(), InFlag);
4893       Chain = Val.getValue(1);
4894       InFlag = Val.getValue(2);
4895     }
4896 
4897     switch (VA.getLocInfo()) {
4898     default: llvm_unreachable("Unknown loc info!");
4899     case CCValAssign::Full: break;
4900     case CCValAssign::AExt:
4901       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4902       break;
4903     case CCValAssign::ZExt:
4904       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4905                         DAG.getValueType(VA.getValVT()));
4906       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4907       break;
4908     case CCValAssign::SExt:
4909       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4910                         DAG.getValueType(VA.getValVT()));
4911       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4912       break;
4913     }
4914 
4915     InVals.push_back(Val);
4916   }
4917 
4918   return Chain;
4919 }
4920 
4921 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
4922                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
4923   // PatchPoint calls are not indirect.
4924   if (isPatchPoint)
4925     return false;
4926 
4927   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
4928     return false;
4929 
4930   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
4931   // becuase the immediate function pointer points to a descriptor instead of
4932   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
4933   // pointer immediate points to the global entry point, while the BLA would
4934   // need to jump to the local entry point (see rL211174).
4935   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
4936       isBLACompatibleAddress(Callee, DAG))
4937     return false;
4938 
4939   return true;
4940 }
4941 
4942 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
4943 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
4944   return Subtarget.isAIXABI() ||
4945          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
4946 }
4947 
4948 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
4949                               const Function &Caller,
4950                               const SDValue &Callee,
4951                               const PPCSubtarget &Subtarget,
4952                               const TargetMachine &TM) {
4953   if (CFlags.IsTailCall)
4954     return PPCISD::TC_RETURN;
4955 
4956   // This is a call through a function pointer.
4957   if (CFlags.IsIndirect) {
4958     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
4959     // indirect calls. The save of the caller's TOC pointer to the stack will be
4960     // inserted into the DAG as part of call lowering. The restore of the TOC
4961     // pointer is modeled by using a pseudo instruction for the call opcode that
4962     // represents the 2 instruction sequence of an indirect branch and link,
4963     // immediately followed by a load of the TOC pointer from the the stack save
4964     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
4965     // as it is not saved or used.
4966     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
4967                                                : PPCISD::BCTRL;
4968   }
4969 
4970   if (Subtarget.isUsingPCRelativeCalls()) {
4971     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
4972     return PPCISD::CALL_NOTOC;
4973   }
4974 
4975   // The ABIs that maintain a TOC pointer accross calls need to have a nop
4976   // immediately following the call instruction if the caller and callee may
4977   // have different TOC bases. At link time if the linker determines the calls
4978   // may not share a TOC base, the call is redirected to a trampoline inserted
4979   // by the linker. The trampoline will (among other things) save the callers
4980   // TOC pointer at an ABI designated offset in the linkage area and the linker
4981   // will rewrite the nop to be a load of the TOC pointer from the linkage area
4982   // into gpr2.
4983   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
4984     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
4985                                                   : PPCISD::CALL_NOP;
4986 
4987   return PPCISD::CALL;
4988 }
4989 
4990 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
4991                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
4992   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
4993     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
4994       return SDValue(Dest, 0);
4995 
4996   // Returns true if the callee is local, and false otherwise.
4997   auto isLocalCallee = [&]() {
4998     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4999     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5000     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5001 
5002     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5003            !dyn_cast_or_null<GlobalIFunc>(GV);
5004   };
5005 
5006   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5007   // a static relocation model causes some versions of GNU LD (2.17.50, at
5008   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5009   // built with secure-PLT.
5010   bool UsePlt =
5011       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5012       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5013 
5014   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5015     const TargetMachine &TM = Subtarget.getTargetMachine();
5016     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5017     MCSymbolXCOFF *S =
5018         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5019 
5020     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5021     return DAG.getMCSymbol(S, PtrVT);
5022   };
5023 
5024   if (isFunctionGlobalAddress(Callee)) {
5025     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5026 
5027     if (Subtarget.isAIXABI()) {
5028       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5029       return getAIXFuncEntryPointSymbolSDNode(GV);
5030     }
5031     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5032                                       UsePlt ? PPCII::MO_PLT : 0);
5033   }
5034 
5035   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5036     const char *SymName = S->getSymbol();
5037     if (Subtarget.isAIXABI()) {
5038       // If there exists a user-declared function whose name is the same as the
5039       // ExternalSymbol's, then we pick up the user-declared version.
5040       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5041       if (const Function *F =
5042               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5043         return getAIXFuncEntryPointSymbolSDNode(F);
5044 
5045       // On AIX, direct function calls reference the symbol for the function's
5046       // entry point, which is named by prepending a "." before the function's
5047       // C-linkage name. A Qualname is returned here because an external
5048       // function entry point is a csect with XTY_ER property.
5049       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5050         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5051         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5052             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5053             SectionKind::getMetadata());
5054         return Sec->getQualNameSymbol();
5055       };
5056 
5057       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5058     }
5059     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5060                                        UsePlt ? PPCII::MO_PLT : 0);
5061   }
5062 
5063   // No transformation needed.
5064   assert(Callee.getNode() && "What no callee?");
5065   return Callee;
5066 }
5067 
5068 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5069   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5070          "Expected a CALLSEQ_STARTSDNode.");
5071 
5072   // The last operand is the chain, except when the node has glue. If the node
5073   // has glue, then the last operand is the glue, and the chain is the second
5074   // last operand.
5075   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5076   if (LastValue.getValueType() != MVT::Glue)
5077     return LastValue;
5078 
5079   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5080 }
5081 
5082 // Creates the node that moves a functions address into the count register
5083 // to prepare for an indirect call instruction.
5084 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5085                                 SDValue &Glue, SDValue &Chain,
5086                                 const SDLoc &dl) {
5087   SDValue MTCTROps[] = {Chain, Callee, Glue};
5088   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5089   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5090                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5091   // The glue is the second value produced.
5092   Glue = Chain.getValue(1);
5093 }
5094 
5095 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5096                                           SDValue &Glue, SDValue &Chain,
5097                                           SDValue CallSeqStart,
5098                                           const CallBase *CB, const SDLoc &dl,
5099                                           bool hasNest,
5100                                           const PPCSubtarget &Subtarget) {
5101   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5102   // entry point, but to the function descriptor (the function entry point
5103   // address is part of the function descriptor though).
5104   // The function descriptor is a three doubleword structure with the
5105   // following fields: function entry point, TOC base address and
5106   // environment pointer.
5107   // Thus for a call through a function pointer, the following actions need
5108   // to be performed:
5109   //   1. Save the TOC of the caller in the TOC save area of its stack
5110   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5111   //   2. Load the address of the function entry point from the function
5112   //      descriptor.
5113   //   3. Load the TOC of the callee from the function descriptor into r2.
5114   //   4. Load the environment pointer from the function descriptor into
5115   //      r11.
5116   //   5. Branch to the function entry point address.
5117   //   6. On return of the callee, the TOC of the caller needs to be
5118   //      restored (this is done in FinishCall()).
5119   //
5120   // The loads are scheduled at the beginning of the call sequence, and the
5121   // register copies are flagged together to ensure that no other
5122   // operations can be scheduled in between. E.g. without flagging the
5123   // copies together, a TOC access in the caller could be scheduled between
5124   // the assignment of the callee TOC and the branch to the callee, which leads
5125   // to incorrect code.
5126 
5127   // Start by loading the function address from the descriptor.
5128   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5129   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5130                       ? (MachineMemOperand::MODereferenceable |
5131                          MachineMemOperand::MOInvariant)
5132                       : MachineMemOperand::MONone;
5133 
5134   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5135 
5136   // Registers used in building the DAG.
5137   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5138   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5139 
5140   // Offsets of descriptor members.
5141   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5142   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5143 
5144   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5145   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5146 
5147   // One load for the functions entry point address.
5148   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5149                                     Alignment, MMOFlags);
5150 
5151   // One for loading the TOC anchor for the module that contains the called
5152   // function.
5153   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5154   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5155   SDValue TOCPtr =
5156       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5157                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5158 
5159   // One for loading the environment pointer.
5160   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5161   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5162   SDValue LoadEnvPtr =
5163       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5164                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5165 
5166 
5167   // Then copy the newly loaded TOC anchor to the TOC pointer.
5168   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5169   Chain = TOCVal.getValue(0);
5170   Glue = TOCVal.getValue(1);
5171 
5172   // If the function call has an explicit 'nest' parameter, it takes the
5173   // place of the environment pointer.
5174   assert((!hasNest || !Subtarget.isAIXABI()) &&
5175          "Nest parameter is not supported on AIX.");
5176   if (!hasNest) {
5177     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5178     Chain = EnvVal.getValue(0);
5179     Glue = EnvVal.getValue(1);
5180   }
5181 
5182   // The rest of the indirect call sequence is the same as the non-descriptor
5183   // DAG.
5184   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5185 }
5186 
5187 static void
5188 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5189                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5190                   SelectionDAG &DAG,
5191                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5192                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5193                   const PPCSubtarget &Subtarget) {
5194   const bool IsPPC64 = Subtarget.isPPC64();
5195   // MVT for a general purpose register.
5196   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5197 
5198   // First operand is always the chain.
5199   Ops.push_back(Chain);
5200 
5201   // If it's a direct call pass the callee as the second operand.
5202   if (!CFlags.IsIndirect)
5203     Ops.push_back(Callee);
5204   else {
5205     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5206 
5207     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5208     // on the stack (this would have been done in `LowerCall_64SVR4` or
5209     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5210     // represents both the indirect branch and a load that restores the TOC
5211     // pointer from the linkage area. The operand for the TOC restore is an add
5212     // of the TOC save offset to the stack pointer. This must be the second
5213     // operand: after the chain input but before any other variadic arguments.
5214     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5215     // saved or used.
5216     if (isTOCSaveRestoreRequired(Subtarget)) {
5217       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5218 
5219       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5220       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5221       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5222       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5223       Ops.push_back(AddTOC);
5224     }
5225 
5226     // Add the register used for the environment pointer.
5227     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5228       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5229                                     RegVT));
5230 
5231 
5232     // Add CTR register as callee so a bctr can be emitted later.
5233     if (CFlags.IsTailCall)
5234       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5235   }
5236 
5237   // If this is a tail call add stack pointer delta.
5238   if (CFlags.IsTailCall)
5239     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5240 
5241   // Add argument registers to the end of the list so that they are known live
5242   // into the call.
5243   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5244     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5245                                   RegsToPass[i].second.getValueType()));
5246 
5247   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5248   // no way to mark dependencies as implicit here.
5249   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5250   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5251        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5252     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5253 
5254   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5255   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5256     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5257 
5258   // Add a register mask operand representing the call-preserved registers.
5259   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5260   const uint32_t *Mask =
5261       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5262   assert(Mask && "Missing call preserved mask for calling convention");
5263   Ops.push_back(DAG.getRegisterMask(Mask));
5264 
5265   // If the glue is valid, it is the last operand.
5266   if (Glue.getNode())
5267     Ops.push_back(Glue);
5268 }
5269 
5270 SDValue PPCTargetLowering::FinishCall(
5271     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5272     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5273     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5274     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5275     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5276 
5277   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5278       Subtarget.isAIXABI())
5279     setUsesTOCBasePtr(DAG);
5280 
5281   unsigned CallOpc =
5282       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5283                     Subtarget, DAG.getTarget());
5284 
5285   if (!CFlags.IsIndirect)
5286     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5287   else if (Subtarget.usesFunctionDescriptors())
5288     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5289                                   dl, CFlags.HasNest, Subtarget);
5290   else
5291     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5292 
5293   // Build the operand list for the call instruction.
5294   SmallVector<SDValue, 8> Ops;
5295   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5296                     SPDiff, Subtarget);
5297 
5298   // Emit tail call.
5299   if (CFlags.IsTailCall) {
5300     // Indirect tail call when using PC Relative calls do not have the same
5301     // constraints.
5302     assert(((Callee.getOpcode() == ISD::Register &&
5303              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5304             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5305             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5306             isa<ConstantSDNode>(Callee) ||
5307             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5308            "Expecting a global address, external symbol, absolute value, "
5309            "register or an indirect tail call when PC Relative calls are "
5310            "used.");
5311     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5312     assert(CallOpc == PPCISD::TC_RETURN &&
5313            "Unexpected call opcode for a tail call.");
5314     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5315     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5316   }
5317 
5318   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5319   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5320   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5321   Glue = Chain.getValue(1);
5322 
5323   // When performing tail call optimization the callee pops its arguments off
5324   // the stack. Account for this here so these bytes can be pushed back on in
5325   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5326   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5327                          getTargetMachine().Options.GuaranteedTailCallOpt)
5328                             ? NumBytes
5329                             : 0;
5330 
5331   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5332                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5333                              Glue, dl);
5334   Glue = Chain.getValue(1);
5335 
5336   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5337                          DAG, InVals);
5338 }
5339 
5340 SDValue
5341 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5342                              SmallVectorImpl<SDValue> &InVals) const {
5343   SelectionDAG &DAG                     = CLI.DAG;
5344   SDLoc &dl                             = CLI.DL;
5345   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5346   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5347   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5348   SDValue Chain                         = CLI.Chain;
5349   SDValue Callee                        = CLI.Callee;
5350   bool &isTailCall                      = CLI.IsTailCall;
5351   CallingConv::ID CallConv              = CLI.CallConv;
5352   bool isVarArg                         = CLI.IsVarArg;
5353   bool isPatchPoint                     = CLI.IsPatchPoint;
5354   const CallBase *CB                    = CLI.CB;
5355 
5356   if (isTailCall) {
5357     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5358       isTailCall = false;
5359     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5360       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5361           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5362     else
5363       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5364                                                      Ins, DAG);
5365     if (isTailCall) {
5366       ++NumTailCalls;
5367       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5368         ++NumSiblingCalls;
5369 
5370       // PC Relative calls no longer guarantee that the callee is a Global
5371       // Address Node. The callee could be an indirect tail call in which
5372       // case the SDValue for the callee could be a load (to load the address
5373       // of a function pointer) or it may be a register copy (to move the
5374       // address of the callee from a function parameter into a virtual
5375       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5376       assert((Subtarget.isUsingPCRelativeCalls() ||
5377               isa<GlobalAddressSDNode>(Callee)) &&
5378              "Callee should be an llvm::Function object.");
5379 
5380       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5381                         << "\nTCO callee: ");
5382       LLVM_DEBUG(Callee.dump());
5383     }
5384   }
5385 
5386   if (!isTailCall && CB && CB->isMustTailCall())
5387     report_fatal_error("failed to perform tail call elimination on a call "
5388                        "site marked musttail");
5389 
5390   // When long calls (i.e. indirect calls) are always used, calls are always
5391   // made via function pointer. If we have a function name, first translate it
5392   // into a pointer.
5393   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5394       !isTailCall)
5395     Callee = LowerGlobalAddress(Callee, DAG);
5396 
5397   CallFlags CFlags(
5398       CallConv, isTailCall, isVarArg, isPatchPoint,
5399       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5400       // hasNest
5401       Subtarget.is64BitELFABI() &&
5402           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5403       CLI.NoMerge);
5404 
5405   if (Subtarget.isAIXABI())
5406     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5407                          InVals, CB);
5408 
5409   assert(Subtarget.isSVR4ABI());
5410   if (Subtarget.isPPC64())
5411     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5412                             InVals, CB);
5413   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5414                           InVals, CB);
5415 }
5416 
5417 SDValue PPCTargetLowering::LowerCall_32SVR4(
5418     SDValue Chain, SDValue Callee, CallFlags CFlags,
5419     const SmallVectorImpl<ISD::OutputArg> &Outs,
5420     const SmallVectorImpl<SDValue> &OutVals,
5421     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5422     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5423     const CallBase *CB) const {
5424   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5425   // of the 32-bit SVR4 ABI stack frame layout.
5426 
5427   const CallingConv::ID CallConv = CFlags.CallConv;
5428   const bool IsVarArg = CFlags.IsVarArg;
5429   const bool IsTailCall = CFlags.IsTailCall;
5430 
5431   assert((CallConv == CallingConv::C ||
5432           CallConv == CallingConv::Cold ||
5433           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5434 
5435   const Align PtrAlign(4);
5436 
5437   MachineFunction &MF = DAG.getMachineFunction();
5438 
5439   // Mark this function as potentially containing a function that contains a
5440   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5441   // and restoring the callers stack pointer in this functions epilog. This is
5442   // done because by tail calling the called function might overwrite the value
5443   // in this function's (MF) stack pointer stack slot 0(SP).
5444   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5445       CallConv == CallingConv::Fast)
5446     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5447 
5448   // Count how many bytes are to be pushed on the stack, including the linkage
5449   // area, parameter list area and the part of the local variable space which
5450   // contains copies of aggregates which are passed by value.
5451 
5452   // Assign locations to all of the outgoing arguments.
5453   SmallVector<CCValAssign, 16> ArgLocs;
5454   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5455 
5456   // Reserve space for the linkage area on the stack.
5457   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5458                        PtrAlign);
5459   if (useSoftFloat())
5460     CCInfo.PreAnalyzeCallOperands(Outs);
5461 
5462   if (IsVarArg) {
5463     // Handle fixed and variable vector arguments differently.
5464     // Fixed vector arguments go into registers as long as registers are
5465     // available. Variable vector arguments always go into memory.
5466     unsigned NumArgs = Outs.size();
5467 
5468     for (unsigned i = 0; i != NumArgs; ++i) {
5469       MVT ArgVT = Outs[i].VT;
5470       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5471       bool Result;
5472 
5473       if (Outs[i].IsFixed) {
5474         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5475                                CCInfo);
5476       } else {
5477         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5478                                       ArgFlags, CCInfo);
5479       }
5480 
5481       if (Result) {
5482 #ifndef NDEBUG
5483         errs() << "Call operand #" << i << " has unhandled type "
5484              << EVT(ArgVT).getEVTString() << "\n";
5485 #endif
5486         llvm_unreachable(nullptr);
5487       }
5488     }
5489   } else {
5490     // All arguments are treated the same.
5491     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5492   }
5493   CCInfo.clearWasPPCF128();
5494 
5495   // Assign locations to all of the outgoing aggregate by value arguments.
5496   SmallVector<CCValAssign, 16> ByValArgLocs;
5497   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5498 
5499   // Reserve stack space for the allocations in CCInfo.
5500   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5501 
5502   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5503 
5504   // Size of the linkage area, parameter list area and the part of the local
5505   // space variable where copies of aggregates which are passed by value are
5506   // stored.
5507   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5508 
5509   // Calculate by how many bytes the stack has to be adjusted in case of tail
5510   // call optimization.
5511   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5512 
5513   // Adjust the stack pointer for the new arguments...
5514   // These operations are automatically eliminated by the prolog/epilog pass
5515   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5516   SDValue CallSeqStart = Chain;
5517 
5518   // Load the return address and frame pointer so it can be moved somewhere else
5519   // later.
5520   SDValue LROp, FPOp;
5521   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5522 
5523   // Set up a copy of the stack pointer for use loading and storing any
5524   // arguments that may not fit in the registers available for argument
5525   // passing.
5526   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5527 
5528   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5529   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5530   SmallVector<SDValue, 8> MemOpChains;
5531 
5532   bool seenFloatArg = false;
5533   // Walk the register/memloc assignments, inserting copies/loads.
5534   // i - Tracks the index into the list of registers allocated for the call
5535   // RealArgIdx - Tracks the index into the list of actual function arguments
5536   // j - Tracks the index into the list of byval arguments
5537   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5538        i != e;
5539        ++i, ++RealArgIdx) {
5540     CCValAssign &VA = ArgLocs[i];
5541     SDValue Arg = OutVals[RealArgIdx];
5542     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5543 
5544     if (Flags.isByVal()) {
5545       // Argument is an aggregate which is passed by value, thus we need to
5546       // create a copy of it in the local variable space of the current stack
5547       // frame (which is the stack frame of the caller) and pass the address of
5548       // this copy to the callee.
5549       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5550       CCValAssign &ByValVA = ByValArgLocs[j++];
5551       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5552 
5553       // Memory reserved in the local variable space of the callers stack frame.
5554       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5555 
5556       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5557       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5558                            StackPtr, PtrOff);
5559 
5560       // Create a copy of the argument in the local area of the current
5561       // stack frame.
5562       SDValue MemcpyCall =
5563         CreateCopyOfByValArgument(Arg, PtrOff,
5564                                   CallSeqStart.getNode()->getOperand(0),
5565                                   Flags, DAG, dl);
5566 
5567       // This must go outside the CALLSEQ_START..END.
5568       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5569                                                      SDLoc(MemcpyCall));
5570       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5571                              NewCallSeqStart.getNode());
5572       Chain = CallSeqStart = NewCallSeqStart;
5573 
5574       // Pass the address of the aggregate copy on the stack either in a
5575       // physical register or in the parameter list area of the current stack
5576       // frame to the callee.
5577       Arg = PtrOff;
5578     }
5579 
5580     // When useCRBits() is true, there can be i1 arguments.
5581     // It is because getRegisterType(MVT::i1) => MVT::i1,
5582     // and for other integer types getRegisterType() => MVT::i32.
5583     // Extend i1 and ensure callee will get i32.
5584     if (Arg.getValueType() == MVT::i1)
5585       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5586                         dl, MVT::i32, Arg);
5587 
5588     if (VA.isRegLoc()) {
5589       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5590       // Put argument in a physical register.
5591       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5592         bool IsLE = Subtarget.isLittleEndian();
5593         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5594                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5595         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5596         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5597                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5598         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5599                              SVal.getValue(0)));
5600       } else
5601         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5602     } else {
5603       // Put argument in the parameter list area of the current stack frame.
5604       assert(VA.isMemLoc());
5605       unsigned LocMemOffset = VA.getLocMemOffset();
5606 
5607       if (!IsTailCall) {
5608         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5609         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5610                              StackPtr, PtrOff);
5611 
5612         MemOpChains.push_back(
5613             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5614       } else {
5615         // Calculate and remember argument location.
5616         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5617                                  TailCallArguments);
5618       }
5619     }
5620   }
5621 
5622   if (!MemOpChains.empty())
5623     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5624 
5625   // Build a sequence of copy-to-reg nodes chained together with token chain
5626   // and flag operands which copy the outgoing args into the appropriate regs.
5627   SDValue InFlag;
5628   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5629     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5630                              RegsToPass[i].second, InFlag);
5631     InFlag = Chain.getValue(1);
5632   }
5633 
5634   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5635   // registers.
5636   if (IsVarArg) {
5637     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5638     SDValue Ops[] = { Chain, InFlag };
5639 
5640     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5641                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5642 
5643     InFlag = Chain.getValue(1);
5644   }
5645 
5646   if (IsTailCall)
5647     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5648                     TailCallArguments);
5649 
5650   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5651                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5652 }
5653 
5654 // Copy an argument into memory, being careful to do this outside the
5655 // call sequence for the call to which the argument belongs.
5656 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5657     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5658     SelectionDAG &DAG, const SDLoc &dl) const {
5659   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5660                         CallSeqStart.getNode()->getOperand(0),
5661                         Flags, DAG, dl);
5662   // The MEMCPY must go outside the CALLSEQ_START..END.
5663   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5664   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5665                                                  SDLoc(MemcpyCall));
5666   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5667                          NewCallSeqStart.getNode());
5668   return NewCallSeqStart;
5669 }
5670 
5671 SDValue PPCTargetLowering::LowerCall_64SVR4(
5672     SDValue Chain, SDValue Callee, CallFlags CFlags,
5673     const SmallVectorImpl<ISD::OutputArg> &Outs,
5674     const SmallVectorImpl<SDValue> &OutVals,
5675     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5676     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5677     const CallBase *CB) const {
5678   bool isELFv2ABI = Subtarget.isELFv2ABI();
5679   bool isLittleEndian = Subtarget.isLittleEndian();
5680   unsigned NumOps = Outs.size();
5681   bool IsSibCall = false;
5682   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5683 
5684   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5685   unsigned PtrByteSize = 8;
5686 
5687   MachineFunction &MF = DAG.getMachineFunction();
5688 
5689   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5690     IsSibCall = true;
5691 
5692   // Mark this function as potentially containing a function that contains a
5693   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5694   // and restoring the callers stack pointer in this functions epilog. This is
5695   // done because by tail calling the called function might overwrite the value
5696   // in this function's (MF) stack pointer stack slot 0(SP).
5697   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5698     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5699 
5700   assert(!(IsFastCall && CFlags.IsVarArg) &&
5701          "fastcc not supported on varargs functions");
5702 
5703   // Count how many bytes are to be pushed on the stack, including the linkage
5704   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5705   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5706   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5707   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5708   unsigned NumBytes = LinkageSize;
5709   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5710 
5711   static const MCPhysReg GPR[] = {
5712     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5713     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5714   };
5715   static const MCPhysReg VR[] = {
5716     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5717     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5718   };
5719 
5720   const unsigned NumGPRs = array_lengthof(GPR);
5721   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5722   const unsigned NumVRs  = array_lengthof(VR);
5723 
5724   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5725   // can be passed to the callee in registers.
5726   // For the fast calling convention, there is another check below.
5727   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5728   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5729   if (!HasParameterArea) {
5730     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5731     unsigned AvailableFPRs = NumFPRs;
5732     unsigned AvailableVRs = NumVRs;
5733     unsigned NumBytesTmp = NumBytes;
5734     for (unsigned i = 0; i != NumOps; ++i) {
5735       if (Outs[i].Flags.isNest()) continue;
5736       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5737                                  PtrByteSize, LinkageSize, ParamAreaSize,
5738                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5739         HasParameterArea = true;
5740     }
5741   }
5742 
5743   // When using the fast calling convention, we don't provide backing for
5744   // arguments that will be in registers.
5745   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5746 
5747   // Avoid allocating parameter area for fastcc functions if all the arguments
5748   // can be passed in the registers.
5749   if (IsFastCall)
5750     HasParameterArea = false;
5751 
5752   // Add up all the space actually used.
5753   for (unsigned i = 0; i != NumOps; ++i) {
5754     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5755     EVT ArgVT = Outs[i].VT;
5756     EVT OrigVT = Outs[i].ArgVT;
5757 
5758     if (Flags.isNest())
5759       continue;
5760 
5761     if (IsFastCall) {
5762       if (Flags.isByVal()) {
5763         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5764         if (NumGPRsUsed > NumGPRs)
5765           HasParameterArea = true;
5766       } else {
5767         switch (ArgVT.getSimpleVT().SimpleTy) {
5768         default: llvm_unreachable("Unexpected ValueType for argument!");
5769         case MVT::i1:
5770         case MVT::i32:
5771         case MVT::i64:
5772           if (++NumGPRsUsed <= NumGPRs)
5773             continue;
5774           break;
5775         case MVT::v4i32:
5776         case MVT::v8i16:
5777         case MVT::v16i8:
5778         case MVT::v2f64:
5779         case MVT::v2i64:
5780         case MVT::v1i128:
5781         case MVT::f128:
5782           if (++NumVRsUsed <= NumVRs)
5783             continue;
5784           break;
5785         case MVT::v4f32:
5786           if (++NumVRsUsed <= NumVRs)
5787             continue;
5788           break;
5789         case MVT::f32:
5790         case MVT::f64:
5791           if (++NumFPRsUsed <= NumFPRs)
5792             continue;
5793           break;
5794         }
5795         HasParameterArea = true;
5796       }
5797     }
5798 
5799     /* Respect alignment of argument on the stack.  */
5800     auto Alignement =
5801         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5802     NumBytes = alignTo(NumBytes, Alignement);
5803 
5804     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5805     if (Flags.isInConsecutiveRegsLast())
5806       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5807   }
5808 
5809   unsigned NumBytesActuallyUsed = NumBytes;
5810 
5811   // In the old ELFv1 ABI,
5812   // the prolog code of the callee may store up to 8 GPR argument registers to
5813   // the stack, allowing va_start to index over them in memory if its varargs.
5814   // Because we cannot tell if this is needed on the caller side, we have to
5815   // conservatively assume that it is needed.  As such, make sure we have at
5816   // least enough stack space for the caller to store the 8 GPRs.
5817   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5818   // really requires memory operands, e.g. a vararg function.
5819   if (HasParameterArea)
5820     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5821   else
5822     NumBytes = LinkageSize;
5823 
5824   // Tail call needs the stack to be aligned.
5825   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5826     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5827 
5828   int SPDiff = 0;
5829 
5830   // Calculate by how many bytes the stack has to be adjusted in case of tail
5831   // call optimization.
5832   if (!IsSibCall)
5833     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
5834 
5835   // To protect arguments on the stack from being clobbered in a tail call,
5836   // force all the loads to happen before doing any other lowering.
5837   if (CFlags.IsTailCall)
5838     Chain = DAG.getStackArgumentTokenFactor(Chain);
5839 
5840   // Adjust the stack pointer for the new arguments...
5841   // These operations are automatically eliminated by the prolog/epilog pass
5842   if (!IsSibCall)
5843     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5844   SDValue CallSeqStart = Chain;
5845 
5846   // Load the return address and frame pointer so it can be move somewhere else
5847   // later.
5848   SDValue LROp, FPOp;
5849   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5850 
5851   // Set up a copy of the stack pointer for use loading and storing any
5852   // arguments that may not fit in the registers available for argument
5853   // passing.
5854   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5855 
5856   // Figure out which arguments are going to go in registers, and which in
5857   // memory.  Also, if this is a vararg function, floating point operations
5858   // must be stored to our stack, and loaded into integer regs as well, if
5859   // any integer regs are available for argument passing.
5860   unsigned ArgOffset = LinkageSize;
5861 
5862   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5863   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5864 
5865   SmallVector<SDValue, 8> MemOpChains;
5866   for (unsigned i = 0; i != NumOps; ++i) {
5867     SDValue Arg = OutVals[i];
5868     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5869     EVT ArgVT = Outs[i].VT;
5870     EVT OrigVT = Outs[i].ArgVT;
5871 
5872     // PtrOff will be used to store the current argument to the stack if a
5873     // register cannot be found for it.
5874     SDValue PtrOff;
5875 
5876     // We re-align the argument offset for each argument, except when using the
5877     // fast calling convention, when we need to make sure we do that only when
5878     // we'll actually use a stack slot.
5879     auto ComputePtrOff = [&]() {
5880       /* Respect alignment of argument on the stack.  */
5881       auto Alignment =
5882           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5883       ArgOffset = alignTo(ArgOffset, Alignment);
5884 
5885       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5886 
5887       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5888     };
5889 
5890     if (!IsFastCall) {
5891       ComputePtrOff();
5892 
5893       /* Compute GPR index associated with argument offset.  */
5894       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5895       GPR_idx = std::min(GPR_idx, NumGPRs);
5896     }
5897 
5898     // Promote integers to 64-bit values.
5899     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5900       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5901       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5902       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5903     }
5904 
5905     // FIXME memcpy is used way more than necessary.  Correctness first.
5906     // Note: "by value" is code for passing a structure by value, not
5907     // basic types.
5908     if (Flags.isByVal()) {
5909       // Note: Size includes alignment padding, so
5910       //   struct x { short a; char b; }
5911       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5912       // These are the proper values we need for right-justifying the
5913       // aggregate in a parameter register.
5914       unsigned Size = Flags.getByValSize();
5915 
5916       // An empty aggregate parameter takes up no storage and no
5917       // registers.
5918       if (Size == 0)
5919         continue;
5920 
5921       if (IsFastCall)
5922         ComputePtrOff();
5923 
5924       // All aggregates smaller than 8 bytes must be passed right-justified.
5925       if (Size==1 || Size==2 || Size==4) {
5926         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5927         if (GPR_idx != NumGPRs) {
5928           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5929                                         MachinePointerInfo(), VT);
5930           MemOpChains.push_back(Load.getValue(1));
5931           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5932 
5933           ArgOffset += PtrByteSize;
5934           continue;
5935         }
5936       }
5937 
5938       if (GPR_idx == NumGPRs && Size < 8) {
5939         SDValue AddPtr = PtrOff;
5940         if (!isLittleEndian) {
5941           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5942                                           PtrOff.getValueType());
5943           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5944         }
5945         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5946                                                           CallSeqStart,
5947                                                           Flags, DAG, dl);
5948         ArgOffset += PtrByteSize;
5949         continue;
5950       }
5951       // Copy entire object into memory.  There are cases where gcc-generated
5952       // code assumes it is there, even if it could be put entirely into
5953       // registers.  (This is not what the doc says.)
5954 
5955       // FIXME: The above statement is likely due to a misunderstanding of the
5956       // documents.  All arguments must be copied into the parameter area BY
5957       // THE CALLEE in the event that the callee takes the address of any
5958       // formal argument.  That has not yet been implemented.  However, it is
5959       // reasonable to use the stack area as a staging area for the register
5960       // load.
5961 
5962       // Skip this for small aggregates, as we will use the same slot for a
5963       // right-justified copy, below.
5964       if (Size >= 8)
5965         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5966                                                           CallSeqStart,
5967                                                           Flags, DAG, dl);
5968 
5969       // When a register is available, pass a small aggregate right-justified.
5970       if (Size < 8 && GPR_idx != NumGPRs) {
5971         // The easiest way to get this right-justified in a register
5972         // is to copy the structure into the rightmost portion of a
5973         // local variable slot, then load the whole slot into the
5974         // register.
5975         // FIXME: The memcpy seems to produce pretty awful code for
5976         // small aggregates, particularly for packed ones.
5977         // FIXME: It would be preferable to use the slot in the
5978         // parameter save area instead of a new local variable.
5979         SDValue AddPtr = PtrOff;
5980         if (!isLittleEndian) {
5981           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5982           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5983         }
5984         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5985                                                           CallSeqStart,
5986                                                           Flags, DAG, dl);
5987 
5988         // Load the slot into the register.
5989         SDValue Load =
5990             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5991         MemOpChains.push_back(Load.getValue(1));
5992         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5993 
5994         // Done with this argument.
5995         ArgOffset += PtrByteSize;
5996         continue;
5997       }
5998 
5999       // For aggregates larger than PtrByteSize, copy the pieces of the
6000       // object that fit into registers from the parameter save area.
6001       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6002         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6003         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6004         if (GPR_idx != NumGPRs) {
6005           SDValue Load =
6006               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6007           MemOpChains.push_back(Load.getValue(1));
6008           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6009           ArgOffset += PtrByteSize;
6010         } else {
6011           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6012           break;
6013         }
6014       }
6015       continue;
6016     }
6017 
6018     switch (Arg.getSimpleValueType().SimpleTy) {
6019     default: llvm_unreachable("Unexpected ValueType for argument!");
6020     case MVT::i1:
6021     case MVT::i32:
6022     case MVT::i64:
6023       if (Flags.isNest()) {
6024         // The 'nest' parameter, if any, is passed in R11.
6025         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6026         break;
6027       }
6028 
6029       // These can be scalar arguments or elements of an integer array type
6030       // passed directly.  Clang may use those instead of "byval" aggregate
6031       // types to avoid forcing arguments to memory unnecessarily.
6032       if (GPR_idx != NumGPRs) {
6033         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6034       } else {
6035         if (IsFastCall)
6036           ComputePtrOff();
6037 
6038         assert(HasParameterArea &&
6039                "Parameter area must exist to pass an argument in memory.");
6040         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6041                          true, CFlags.IsTailCall, false, MemOpChains,
6042                          TailCallArguments, dl);
6043         if (IsFastCall)
6044           ArgOffset += PtrByteSize;
6045       }
6046       if (!IsFastCall)
6047         ArgOffset += PtrByteSize;
6048       break;
6049     case MVT::f32:
6050     case MVT::f64: {
6051       // These can be scalar arguments or elements of a float array type
6052       // passed directly.  The latter are used to implement ELFv2 homogenous
6053       // float aggregates.
6054 
6055       // Named arguments go into FPRs first, and once they overflow, the
6056       // remaining arguments go into GPRs and then the parameter save area.
6057       // Unnamed arguments for vararg functions always go to GPRs and
6058       // then the parameter save area.  For now, put all arguments to vararg
6059       // routines always in both locations (FPR *and* GPR or stack slot).
6060       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6061       bool NeededLoad = false;
6062 
6063       // First load the argument into the next available FPR.
6064       if (FPR_idx != NumFPRs)
6065         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6066 
6067       // Next, load the argument into GPR or stack slot if needed.
6068       if (!NeedGPROrStack)
6069         ;
6070       else if (GPR_idx != NumGPRs && !IsFastCall) {
6071         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6072         // once we support fp <-> gpr moves.
6073 
6074         // In the non-vararg case, this can only ever happen in the
6075         // presence of f32 array types, since otherwise we never run
6076         // out of FPRs before running out of GPRs.
6077         SDValue ArgVal;
6078 
6079         // Double values are always passed in a single GPR.
6080         if (Arg.getValueType() != MVT::f32) {
6081           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6082 
6083         // Non-array float values are extended and passed in a GPR.
6084         } else if (!Flags.isInConsecutiveRegs()) {
6085           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6086           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6087 
6088         // If we have an array of floats, we collect every odd element
6089         // together with its predecessor into one GPR.
6090         } else if (ArgOffset % PtrByteSize != 0) {
6091           SDValue Lo, Hi;
6092           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6093           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6094           if (!isLittleEndian)
6095             std::swap(Lo, Hi);
6096           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6097 
6098         // The final element, if even, goes into the first half of a GPR.
6099         } else if (Flags.isInConsecutiveRegsLast()) {
6100           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6101           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6102           if (!isLittleEndian)
6103             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6104                                  DAG.getConstant(32, dl, MVT::i32));
6105 
6106         // Non-final even elements are skipped; they will be handled
6107         // together the with subsequent argument on the next go-around.
6108         } else
6109           ArgVal = SDValue();
6110 
6111         if (ArgVal.getNode())
6112           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6113       } else {
6114         if (IsFastCall)
6115           ComputePtrOff();
6116 
6117         // Single-precision floating-point values are mapped to the
6118         // second (rightmost) word of the stack doubleword.
6119         if (Arg.getValueType() == MVT::f32 &&
6120             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6121           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6122           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6123         }
6124 
6125         assert(HasParameterArea &&
6126                "Parameter area must exist to pass an argument in memory.");
6127         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6128                          true, CFlags.IsTailCall, false, MemOpChains,
6129                          TailCallArguments, dl);
6130 
6131         NeededLoad = true;
6132       }
6133       // When passing an array of floats, the array occupies consecutive
6134       // space in the argument area; only round up to the next doubleword
6135       // at the end of the array.  Otherwise, each float takes 8 bytes.
6136       if (!IsFastCall || NeededLoad) {
6137         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6138                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6139         if (Flags.isInConsecutiveRegsLast())
6140           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6141       }
6142       break;
6143     }
6144     case MVT::v4f32:
6145     case MVT::v4i32:
6146     case MVT::v8i16:
6147     case MVT::v16i8:
6148     case MVT::v2f64:
6149     case MVT::v2i64:
6150     case MVT::v1i128:
6151     case MVT::f128:
6152       // These can be scalar arguments or elements of a vector array type
6153       // passed directly.  The latter are used to implement ELFv2 homogenous
6154       // vector aggregates.
6155 
6156       // For a varargs call, named arguments go into VRs or on the stack as
6157       // usual; unnamed arguments always go to the stack or the corresponding
6158       // GPRs when within range.  For now, we always put the value in both
6159       // locations (or even all three).
6160       if (CFlags.IsVarArg) {
6161         assert(HasParameterArea &&
6162                "Parameter area must exist if we have a varargs call.");
6163         // We could elide this store in the case where the object fits
6164         // entirely in R registers.  Maybe later.
6165         SDValue Store =
6166             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6167         MemOpChains.push_back(Store);
6168         if (VR_idx != NumVRs) {
6169           SDValue Load =
6170               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6171           MemOpChains.push_back(Load.getValue(1));
6172           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6173         }
6174         ArgOffset += 16;
6175         for (unsigned i=0; i<16; i+=PtrByteSize) {
6176           if (GPR_idx == NumGPRs)
6177             break;
6178           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6179                                    DAG.getConstant(i, dl, PtrVT));
6180           SDValue Load =
6181               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6182           MemOpChains.push_back(Load.getValue(1));
6183           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6184         }
6185         break;
6186       }
6187 
6188       // Non-varargs Altivec params go into VRs or on the stack.
6189       if (VR_idx != NumVRs) {
6190         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6191       } else {
6192         if (IsFastCall)
6193           ComputePtrOff();
6194 
6195         assert(HasParameterArea &&
6196                "Parameter area must exist to pass an argument in memory.");
6197         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6198                          true, CFlags.IsTailCall, true, MemOpChains,
6199                          TailCallArguments, dl);
6200         if (IsFastCall)
6201           ArgOffset += 16;
6202       }
6203 
6204       if (!IsFastCall)
6205         ArgOffset += 16;
6206       break;
6207     }
6208   }
6209 
6210   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6211          "mismatch in size of parameter area");
6212   (void)NumBytesActuallyUsed;
6213 
6214   if (!MemOpChains.empty())
6215     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6216 
6217   // Check if this is an indirect call (MTCTR/BCTRL).
6218   // See prepareDescriptorIndirectCall and buildCallOperands for more
6219   // information about calls through function pointers in the 64-bit SVR4 ABI.
6220   if (CFlags.IsIndirect) {
6221     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6222     // caller in the TOC save area.
6223     if (isTOCSaveRestoreRequired(Subtarget)) {
6224       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6225       // Load r2 into a virtual register and store it to the TOC save area.
6226       setUsesTOCBasePtr(DAG);
6227       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6228       // TOC save area offset.
6229       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6230       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6231       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6232       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6233                            MachinePointerInfo::getStack(
6234                                DAG.getMachineFunction(), TOCSaveOffset));
6235     }
6236     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6237     // This does not mean the MTCTR instruction must use R12; it's easier
6238     // to model this as an extra parameter, so do that.
6239     if (isELFv2ABI && !CFlags.IsPatchPoint)
6240       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6241   }
6242 
6243   // Build a sequence of copy-to-reg nodes chained together with token chain
6244   // and flag operands which copy the outgoing args into the appropriate regs.
6245   SDValue InFlag;
6246   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6247     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6248                              RegsToPass[i].second, InFlag);
6249     InFlag = Chain.getValue(1);
6250   }
6251 
6252   if (CFlags.IsTailCall && !IsSibCall)
6253     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6254                     TailCallArguments);
6255 
6256   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6257                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6258 }
6259 
6260 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6261                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6262                    CCState &State) {
6263 
6264   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6265       State.getMachineFunction().getSubtarget());
6266   const bool IsPPC64 = Subtarget.isPPC64();
6267   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6268   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6269 
6270   if (ValVT.isVector() && !State.getMachineFunction()
6271                                .getTarget()
6272                                .Options.EnableAIXExtendedAltivecABI)
6273     report_fatal_error("the default Altivec AIX ABI is not yet supported");
6274 
6275   if (ValVT == MVT::f128)
6276     report_fatal_error("f128 is unimplemented on AIX.");
6277 
6278   if (ArgFlags.isNest())
6279     report_fatal_error("Nest arguments are unimplemented.");
6280 
6281   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6282                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6283                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6284   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6285                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6286                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6287 
6288   static const MCPhysReg VR[] = {// Vector registers.
6289                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6290                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6291                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6292 
6293   if (ArgFlags.isByVal()) {
6294     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6295       report_fatal_error("Pass-by-value arguments with alignment greater than "
6296                          "register width are not supported.");
6297 
6298     const unsigned ByValSize = ArgFlags.getByValSize();
6299 
6300     // An empty aggregate parameter takes up no storage and no registers,
6301     // but needs a MemLoc for a stack slot for the formal arguments side.
6302     if (ByValSize == 0) {
6303       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6304                                        State.getNextStackOffset(), RegVT,
6305                                        LocInfo));
6306       return false;
6307     }
6308 
6309     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6310     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6311     for (const unsigned E = Offset + StackSize; Offset < E;
6312          Offset += PtrAlign.value()) {
6313       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6314         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6315       else {
6316         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6317                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6318                                          LocInfo));
6319         break;
6320       }
6321     }
6322     return false;
6323   }
6324 
6325   // Arguments always reserve parameter save area.
6326   switch (ValVT.SimpleTy) {
6327   default:
6328     report_fatal_error("Unhandled value type for argument.");
6329   case MVT::i64:
6330     // i64 arguments should have been split to i32 for PPC32.
6331     assert(IsPPC64 && "PPC32 should have split i64 values.");
6332     LLVM_FALLTHROUGH;
6333   case MVT::i1:
6334   case MVT::i32: {
6335     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6336     // AIX integer arguments are always passed in register width.
6337     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6338       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6339                                   : CCValAssign::LocInfo::ZExt;
6340     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6341       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6342     else
6343       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6344 
6345     return false;
6346   }
6347   case MVT::f32:
6348   case MVT::f64: {
6349     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6350     const unsigned StoreSize = LocVT.getStoreSize();
6351     // Floats are always 4-byte aligned in the PSA on AIX.
6352     // This includes f64 in 64-bit mode for ABI compatibility.
6353     const unsigned Offset =
6354         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6355     unsigned FReg = State.AllocateReg(FPR);
6356     if (FReg)
6357       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6358 
6359     // Reserve and initialize GPRs or initialize the PSA as required.
6360     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6361       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6362         assert(FReg && "An FPR should be available when a GPR is reserved.");
6363         if (State.isVarArg()) {
6364           // Successfully reserved GPRs are only initialized for vararg calls.
6365           // Custom handling is required for:
6366           //   f64 in PPC32 needs to be split into 2 GPRs.
6367           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6368           State.addLoc(
6369               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6370         }
6371       } else {
6372         // If there are insufficient GPRs, the PSA needs to be initialized.
6373         // Initialization occurs even if an FPR was initialized for
6374         // compatibility with the AIX XL compiler. The full memory for the
6375         // argument will be initialized even if a prior word is saved in GPR.
6376         // A custom memLoc is used when the argument also passes in FPR so
6377         // that the callee handling can skip over it easily.
6378         State.addLoc(
6379             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6380                                              LocInfo)
6381                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6382         break;
6383       }
6384     }
6385 
6386     return false;
6387   }
6388   case MVT::v4f32:
6389   case MVT::v4i32:
6390   case MVT::v8i16:
6391   case MVT::v16i8:
6392   case MVT::v2i64:
6393   case MVT::v2f64:
6394   case MVT::v1i128: {
6395     if (State.isVarArg())
6396       report_fatal_error(
6397           "variadic arguments for vector types are unimplemented for AIX");
6398 
6399     if (unsigned VReg = State.AllocateReg(VR))
6400       State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6401     else {
6402       report_fatal_error(
6403           "passing vector parameters to the stack is unimplemented for AIX");
6404     }
6405     return false;
6406   }
6407   }
6408   return true;
6409 }
6410 
6411 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6412                                                     bool IsPPC64) {
6413   assert((IsPPC64 || SVT != MVT::i64) &&
6414          "i64 should have been split for 32-bit codegen.");
6415 
6416   switch (SVT) {
6417   default:
6418     report_fatal_error("Unexpected value type for formal argument");
6419   case MVT::i1:
6420   case MVT::i32:
6421   case MVT::i64:
6422     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6423   case MVT::f32:
6424     return &PPC::F4RCRegClass;
6425   case MVT::f64:
6426     return &PPC::F8RCRegClass;
6427   case MVT::v4f32:
6428   case MVT::v4i32:
6429   case MVT::v8i16:
6430   case MVT::v16i8:
6431   case MVT::v2i64:
6432   case MVT::v2f64:
6433   case MVT::v1i128:
6434     return &PPC::VRRCRegClass;
6435   }
6436 }
6437 
6438 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6439                                         SelectionDAG &DAG, SDValue ArgValue,
6440                                         MVT LocVT, const SDLoc &dl) {
6441   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6442   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6443 
6444   if (Flags.isSExt())
6445     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6446                            DAG.getValueType(ValVT));
6447   else if (Flags.isZExt())
6448     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6449                            DAG.getValueType(ValVT));
6450 
6451   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6452 }
6453 
6454 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6455   const unsigned LASize = FL->getLinkageSize();
6456 
6457   if (PPC::GPRCRegClass.contains(Reg)) {
6458     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6459            "Reg must be a valid argument register!");
6460     return LASize + 4 * (Reg - PPC::R3);
6461   }
6462 
6463   if (PPC::G8RCRegClass.contains(Reg)) {
6464     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6465            "Reg must be a valid argument register!");
6466     return LASize + 8 * (Reg - PPC::X3);
6467   }
6468 
6469   llvm_unreachable("Only general purpose registers expected.");
6470 }
6471 
6472 //   AIX ABI Stack Frame Layout:
6473 //
6474 //   Low Memory +--------------------------------------------+
6475 //   SP   +---> | Back chain                                 | ---+
6476 //        |     +--------------------------------------------+    |
6477 //        |     | Saved Condition Register                   |    |
6478 //        |     +--------------------------------------------+    |
6479 //        |     | Saved Linkage Register                     |    |
6480 //        |     +--------------------------------------------+    | Linkage Area
6481 //        |     | Reserved for compilers                     |    |
6482 //        |     +--------------------------------------------+    |
6483 //        |     | Reserved for binders                       |    |
6484 //        |     +--------------------------------------------+    |
6485 //        |     | Saved TOC pointer                          | ---+
6486 //        |     +--------------------------------------------+
6487 //        |     | Parameter save area                        |
6488 //        |     +--------------------------------------------+
6489 //        |     | Alloca space                               |
6490 //        |     +--------------------------------------------+
6491 //        |     | Local variable space                       |
6492 //        |     +--------------------------------------------+
6493 //        |     | Float/int conversion temporary             |
6494 //        |     +--------------------------------------------+
6495 //        |     | Save area for AltiVec registers            |
6496 //        |     +--------------------------------------------+
6497 //        |     | AltiVec alignment padding                  |
6498 //        |     +--------------------------------------------+
6499 //        |     | Save area for VRSAVE register              |
6500 //        |     +--------------------------------------------+
6501 //        |     | Save area for General Purpose registers    |
6502 //        |     +--------------------------------------------+
6503 //        |     | Save area for Floating Point registers     |
6504 //        |     +--------------------------------------------+
6505 //        +---- | Back chain                                 |
6506 // High Memory  +--------------------------------------------+
6507 //
6508 //  Specifications:
6509 //  AIX 7.2 Assembler Language Reference
6510 //  Subroutine linkage convention
6511 
6512 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6513     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6514     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6515     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6516 
6517   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6518           CallConv == CallingConv::Fast) &&
6519          "Unexpected calling convention!");
6520 
6521   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6522     report_fatal_error("Tail call support is unimplemented on AIX.");
6523 
6524   if (useSoftFloat())
6525     report_fatal_error("Soft float support is unimplemented on AIX.");
6526 
6527   const PPCSubtarget &Subtarget =
6528       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6529 
6530   const bool IsPPC64 = Subtarget.isPPC64();
6531   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6532 
6533   // Assign locations to all of the incoming arguments.
6534   SmallVector<CCValAssign, 16> ArgLocs;
6535   MachineFunction &MF = DAG.getMachineFunction();
6536   MachineFrameInfo &MFI = MF.getFrameInfo();
6537   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6538   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6539 
6540   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6541   // Reserve space for the linkage area on the stack.
6542   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6543   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6544   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6545 
6546   SmallVector<SDValue, 8> MemOps;
6547 
6548   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6549     CCValAssign &VA = ArgLocs[I++];
6550     MVT LocVT = VA.getLocVT();
6551     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6552     if (VA.isMemLoc() && VA.getValVT().isVector())
6553       report_fatal_error(
6554           "passing vector parameters to the stack is unimplemented for AIX");
6555 
6556     // For compatibility with the AIX XL compiler, the float args in the
6557     // parameter save area are initialized even if the argument is available
6558     // in register.  The caller is required to initialize both the register
6559     // and memory, however, the callee can choose to expect it in either.
6560     // The memloc is dismissed here because the argument is retrieved from
6561     // the register.
6562     if (VA.isMemLoc() && VA.needsCustom())
6563       continue;
6564 
6565     if (VA.isRegLoc()) {
6566       if (VA.getValVT().isScalarInteger())
6567         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6568       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector())
6569         FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32
6570                                           ? PPCFunctionInfo::ShortFloatPoint
6571                                           : PPCFunctionInfo::LongFloatPoint);
6572     }
6573 
6574     if (Flags.isByVal() && VA.isMemLoc()) {
6575       const unsigned Size =
6576           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
6577                   PtrByteSize);
6578       const int FI = MF.getFrameInfo().CreateFixedObject(
6579           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
6580           /* IsAliased */ true);
6581       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6582       InVals.push_back(FIN);
6583 
6584       continue;
6585     }
6586 
6587     if (Flags.isByVal()) {
6588       assert(VA.isRegLoc() && "MemLocs should already be handled.");
6589 
6590       const MCPhysReg ArgReg = VA.getLocReg();
6591       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
6592 
6593       if (Flags.getNonZeroByValAlign() > PtrByteSize)
6594         report_fatal_error("Over aligned byvals not supported yet.");
6595 
6596       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
6597       const int FI = MF.getFrameInfo().CreateFixedObject(
6598           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
6599           /* IsAliased */ true);
6600       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6601       InVals.push_back(FIN);
6602 
6603       // Add live ins for all the RegLocs for the same ByVal.
6604       const TargetRegisterClass *RegClass =
6605           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6606 
6607       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
6608                                                unsigned Offset) {
6609         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
6610         // Since the callers side has left justified the aggregate in the
6611         // register, we can simply store the entire register into the stack
6612         // slot.
6613         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6614         // The store to the fixedstack object is needed becuase accessing a
6615         // field of the ByVal will use a gep and load. Ideally we will optimize
6616         // to extracting the value from the register directly, and elide the
6617         // stores when the arguments address is not taken, but that will need to
6618         // be future work.
6619         SDValue Store = DAG.getStore(
6620             CopyFrom.getValue(1), dl, CopyFrom,
6621             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
6622             MachinePointerInfo::getFixedStack(MF, FI, Offset));
6623 
6624         MemOps.push_back(Store);
6625       };
6626 
6627       unsigned Offset = 0;
6628       HandleRegLoc(VA.getLocReg(), Offset);
6629       Offset += PtrByteSize;
6630       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
6631            Offset += PtrByteSize) {
6632         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
6633                "RegLocs should be for ByVal argument.");
6634 
6635         const CCValAssign RL = ArgLocs[I++];
6636         HandleRegLoc(RL.getLocReg(), Offset);
6637         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6638       }
6639 
6640       if (Offset != StackSize) {
6641         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
6642                "Expected MemLoc for remaining bytes.");
6643         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
6644         // Consume the MemLoc.The InVal has already been emitted, so nothing
6645         // more needs to be done.
6646         ++I;
6647       }
6648 
6649       continue;
6650     }
6651 
6652     EVT ValVT = VA.getValVT();
6653     if (VA.isRegLoc() && !VA.needsCustom()) {
6654       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
6655       unsigned VReg =
6656           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6657       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6658       if (ValVT.isScalarInteger() &&
6659           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
6660         ArgValue =
6661             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
6662       }
6663       InVals.push_back(ArgValue);
6664       continue;
6665     }
6666     if (VA.isMemLoc()) {
6667       const unsigned LocSize = LocVT.getStoreSize();
6668       const unsigned ValSize = ValVT.getStoreSize();
6669       assert((ValSize <= LocSize) &&
6670              "Object size is larger than size of MemLoc");
6671       int CurArgOffset = VA.getLocMemOffset();
6672       // Objects are right-justified because AIX is big-endian.
6673       if (LocSize > ValSize)
6674         CurArgOffset += LocSize - ValSize;
6675       // Potential tail calls could cause overwriting of argument stack slots.
6676       const bool IsImmutable =
6677           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6678             (CallConv == CallingConv::Fast));
6679       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6680       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6681       SDValue ArgValue =
6682           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6683       InVals.push_back(ArgValue);
6684       continue;
6685     }
6686   }
6687 
6688   // On AIX a minimum of 8 words is saved to the parameter save area.
6689   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
6690   // Area that is at least reserved in the caller of this function.
6691   unsigned CallerReservedArea =
6692       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
6693 
6694   // Set the size that is at least reserved in caller of this function. Tail
6695   // call optimized function's reserved stack space needs to be aligned so
6696   // that taking the difference between two stack areas will result in an
6697   // aligned stack.
6698   CallerReservedArea =
6699       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
6700   FuncInfo->setMinReservedArea(CallerReservedArea);
6701 
6702   if (isVarArg) {
6703     FuncInfo->setVarArgsFrameIndex(
6704         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
6705     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
6706 
6707     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6708                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6709 
6710     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6711                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6712     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
6713 
6714     // The fixed integer arguments of a variadic function are stored to the
6715     // VarArgsFrameIndex on the stack so that they may be loaded by
6716     // dereferencing the result of va_next.
6717     for (unsigned GPRIndex =
6718              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
6719          GPRIndex < NumGPArgRegs; ++GPRIndex) {
6720 
6721       const unsigned VReg =
6722           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
6723                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
6724 
6725       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
6726       SDValue Store =
6727           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
6728       MemOps.push_back(Store);
6729       // Increment the address for the next argument to store.
6730       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
6731       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
6732     }
6733   }
6734 
6735   if (!MemOps.empty())
6736     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
6737 
6738   return Chain;
6739 }
6740 
6741 SDValue PPCTargetLowering::LowerCall_AIX(
6742     SDValue Chain, SDValue Callee, CallFlags CFlags,
6743     const SmallVectorImpl<ISD::OutputArg> &Outs,
6744     const SmallVectorImpl<SDValue> &OutVals,
6745     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6746     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6747     const CallBase *CB) const {
6748   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
6749   // AIX ABI stack frame layout.
6750 
6751   assert((CFlags.CallConv == CallingConv::C ||
6752           CFlags.CallConv == CallingConv::Cold ||
6753           CFlags.CallConv == CallingConv::Fast) &&
6754          "Unexpected calling convention!");
6755 
6756   if (CFlags.IsPatchPoint)
6757     report_fatal_error("This call type is unimplemented on AIX.");
6758 
6759   const PPCSubtarget& Subtarget =
6760       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
6761 
6762   MachineFunction &MF = DAG.getMachineFunction();
6763   SmallVector<CCValAssign, 16> ArgLocs;
6764   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
6765                  *DAG.getContext());
6766 
6767   // Reserve space for the linkage save area (LSA) on the stack.
6768   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
6769   //   [SP][CR][LR][2 x reserved][TOC].
6770   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
6771   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6772   const bool IsPPC64 = Subtarget.isPPC64();
6773   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
6774   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6775   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6776   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
6777 
6778   // The prolog code of the callee may store up to 8 GPR argument registers to
6779   // the stack, allowing va_start to index over them in memory if the callee
6780   // is variadic.
6781   // Because we cannot tell if this is needed on the caller side, we have to
6782   // conservatively assume that it is needed.  As such, make sure we have at
6783   // least enough stack space for the caller to store the 8 GPRs.
6784   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
6785   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
6786                                      CCInfo.getNextStackOffset());
6787 
6788   // Adjust the stack pointer for the new arguments...
6789   // These operations are automatically eliminated by the prolog/epilog pass.
6790   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6791   SDValue CallSeqStart = Chain;
6792 
6793   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6794   SmallVector<SDValue, 8> MemOpChains;
6795 
6796   // Set up a copy of the stack pointer for loading and storing any
6797   // arguments that may not fit in the registers available for argument
6798   // passing.
6799   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
6800                                    : DAG.getRegister(PPC::R1, MVT::i32);
6801 
6802   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
6803     const unsigned ValNo = ArgLocs[I].getValNo();
6804     SDValue Arg = OutVals[ValNo];
6805     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
6806 
6807     if (Flags.isByVal()) {
6808       const unsigned ByValSize = Flags.getByValSize();
6809 
6810       // Nothing to do for zero-sized ByVals on the caller side.
6811       if (!ByValSize) {
6812         ++I;
6813         continue;
6814       }
6815 
6816       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
6817         return DAG.getExtLoad(
6818             ISD::ZEXTLOAD, dl, PtrVT, Chain,
6819             (LoadOffset != 0)
6820                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
6821                 : Arg,
6822             MachinePointerInfo(), VT);
6823       };
6824 
6825       unsigned LoadOffset = 0;
6826 
6827       // Initialize registers, which are fully occupied by the by-val argument.
6828       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
6829         SDValue Load = GetLoad(PtrVT, LoadOffset);
6830         MemOpChains.push_back(Load.getValue(1));
6831         LoadOffset += PtrByteSize;
6832         const CCValAssign &ByValVA = ArgLocs[I++];
6833         assert(ByValVA.getValNo() == ValNo &&
6834                "Unexpected location for pass-by-value argument.");
6835         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
6836       }
6837 
6838       if (LoadOffset == ByValSize)
6839         continue;
6840 
6841       // There must be one more loc to handle the remainder.
6842       assert(ArgLocs[I].getValNo() == ValNo &&
6843              "Expected additional location for by-value argument.");
6844 
6845       if (ArgLocs[I].isMemLoc()) {
6846         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
6847         const CCValAssign &ByValVA = ArgLocs[I++];
6848         ISD::ArgFlagsTy MemcpyFlags = Flags;
6849         // Only memcpy the bytes that don't pass in register.
6850         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
6851         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
6852             (LoadOffset != 0)
6853                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
6854                 : Arg,
6855             DAG.getObjectPtrOffset(dl, StackPtr,
6856                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
6857             CallSeqStart, MemcpyFlags, DAG, dl);
6858         continue;
6859       }
6860 
6861       // Initialize the final register residue.
6862       // Any residue that occupies the final by-val arg register must be
6863       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
6864       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
6865       // 2 and 1 byte loads.
6866       const unsigned ResidueBytes = ByValSize % PtrByteSize;
6867       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
6868              "Unexpected register residue for by-value argument.");
6869       SDValue ResidueVal;
6870       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
6871         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
6872         const MVT VT =
6873             N == 1 ? MVT::i8
6874                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
6875         SDValue Load = GetLoad(VT, LoadOffset);
6876         MemOpChains.push_back(Load.getValue(1));
6877         LoadOffset += N;
6878         Bytes += N;
6879 
6880         // By-val arguments are passed left-justfied in register.
6881         // Every load here needs to be shifted, otherwise a full register load
6882         // should have been used.
6883         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
6884                "Unexpected load emitted during handling of pass-by-value "
6885                "argument.");
6886         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
6887         EVT ShiftAmountTy =
6888             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
6889         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
6890         SDValue ShiftedLoad =
6891             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
6892         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
6893                                               ShiftedLoad)
6894                                 : ShiftedLoad;
6895       }
6896 
6897       const CCValAssign &ByValVA = ArgLocs[I++];
6898       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
6899       continue;
6900     }
6901 
6902     CCValAssign &VA = ArgLocs[I++];
6903     const MVT LocVT = VA.getLocVT();
6904     const MVT ValVT = VA.getValVT();
6905 
6906     if (VA.isMemLoc() && VA.getValVT().isVector())
6907       report_fatal_error(
6908           "passing vector parameters to the stack is unimplemented for AIX");
6909 
6910     switch (VA.getLocInfo()) {
6911     default:
6912       report_fatal_error("Unexpected argument extension type.");
6913     case CCValAssign::Full:
6914       break;
6915     case CCValAssign::ZExt:
6916       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6917       break;
6918     case CCValAssign::SExt:
6919       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6920       break;
6921     }
6922 
6923     if (VA.isRegLoc() && !VA.needsCustom()) {
6924       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
6925       continue;
6926     }
6927 
6928     if (VA.isMemLoc()) {
6929       SDValue PtrOff =
6930           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
6931       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6932       MemOpChains.push_back(
6933           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
6934 
6935       continue;
6936     }
6937 
6938     // Custom handling is used for GPR initializations for vararg float
6939     // arguments.
6940     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
6941            ValVT.isFloatingPoint() && LocVT.isInteger() &&
6942            "Unexpected register handling for calling convention.");
6943 
6944     SDValue ArgAsInt =
6945         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
6946 
6947     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
6948       // f32 in 32-bit GPR
6949       // f64 in 64-bit GPR
6950       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
6951     else if (Arg.getValueType().getFixedSizeInBits() <
6952              LocVT.getFixedSizeInBits())
6953       // f32 in 64-bit GPR.
6954       RegsToPass.push_back(std::make_pair(
6955           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
6956     else {
6957       // f64 in two 32-bit GPRs
6958       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
6959       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
6960              "Unexpected custom register for argument!");
6961       CCValAssign &GPR1 = VA;
6962       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
6963                                      DAG.getConstant(32, dl, MVT::i8));
6964       RegsToPass.push_back(std::make_pair(
6965           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
6966 
6967       if (I != E) {
6968         // If only 1 GPR was available, there will only be one custom GPR and
6969         // the argument will also pass in memory.
6970         CCValAssign &PeekArg = ArgLocs[I];
6971         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
6972           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
6973           CCValAssign &GPR2 = ArgLocs[I++];
6974           RegsToPass.push_back(std::make_pair(
6975               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
6976         }
6977       }
6978     }
6979   }
6980 
6981   if (!MemOpChains.empty())
6982     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6983 
6984   // For indirect calls, we need to save the TOC base to the stack for
6985   // restoration after the call.
6986   if (CFlags.IsIndirect) {
6987     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6988     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
6989     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
6990     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
6991     const unsigned TOCSaveOffset =
6992         Subtarget.getFrameLowering()->getTOCSaveOffset();
6993 
6994     setUsesTOCBasePtr(DAG);
6995     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
6996     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6997     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
6998     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6999     Chain = DAG.getStore(
7000         Val.getValue(1), dl, Val, AddPtr,
7001         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7002   }
7003 
7004   // Build a sequence of copy-to-reg nodes chained together with token chain
7005   // and flag operands which copy the outgoing args into the appropriate regs.
7006   SDValue InFlag;
7007   for (auto Reg : RegsToPass) {
7008     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7009     InFlag = Chain.getValue(1);
7010   }
7011 
7012   const int SPDiff = 0;
7013   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7014                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7015 }
7016 
7017 bool
7018 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7019                                   MachineFunction &MF, bool isVarArg,
7020                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7021                                   LLVMContext &Context) const {
7022   SmallVector<CCValAssign, 16> RVLocs;
7023   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7024   return CCInfo.CheckReturn(
7025       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7026                 ? RetCC_PPC_Cold
7027                 : RetCC_PPC);
7028 }
7029 
7030 SDValue
7031 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7032                                bool isVarArg,
7033                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7034                                const SmallVectorImpl<SDValue> &OutVals,
7035                                const SDLoc &dl, SelectionDAG &DAG) const {
7036   SmallVector<CCValAssign, 16> RVLocs;
7037   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7038                  *DAG.getContext());
7039   CCInfo.AnalyzeReturn(Outs,
7040                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7041                            ? RetCC_PPC_Cold
7042                            : RetCC_PPC);
7043 
7044   SDValue Flag;
7045   SmallVector<SDValue, 4> RetOps(1, Chain);
7046 
7047   // Copy the result values into the output registers.
7048   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7049     CCValAssign &VA = RVLocs[i];
7050     assert(VA.isRegLoc() && "Can only return in registers!");
7051 
7052     SDValue Arg = OutVals[RealResIdx];
7053 
7054     switch (VA.getLocInfo()) {
7055     default: llvm_unreachable("Unknown loc info!");
7056     case CCValAssign::Full: break;
7057     case CCValAssign::AExt:
7058       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7059       break;
7060     case CCValAssign::ZExt:
7061       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7062       break;
7063     case CCValAssign::SExt:
7064       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7065       break;
7066     }
7067     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7068       bool isLittleEndian = Subtarget.isLittleEndian();
7069       // Legalize ret f64 -> ret 2 x i32.
7070       SDValue SVal =
7071           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7072                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7073       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7074       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7075       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7076                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7077       Flag = Chain.getValue(1);
7078       VA = RVLocs[++i]; // skip ahead to next loc
7079       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7080     } else
7081       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7082     Flag = Chain.getValue(1);
7083     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7084   }
7085 
7086   RetOps[0] = Chain;  // Update chain.
7087 
7088   // Add the flag if we have it.
7089   if (Flag.getNode())
7090     RetOps.push_back(Flag);
7091 
7092   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7093 }
7094 
7095 SDValue
7096 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7097                                                 SelectionDAG &DAG) const {
7098   SDLoc dl(Op);
7099 
7100   // Get the correct type for integers.
7101   EVT IntVT = Op.getValueType();
7102 
7103   // Get the inputs.
7104   SDValue Chain = Op.getOperand(0);
7105   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7106   // Build a DYNAREAOFFSET node.
7107   SDValue Ops[2] = {Chain, FPSIdx};
7108   SDVTList VTs = DAG.getVTList(IntVT);
7109   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7110 }
7111 
7112 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7113                                              SelectionDAG &DAG) const {
7114   // When we pop the dynamic allocation we need to restore the SP link.
7115   SDLoc dl(Op);
7116 
7117   // Get the correct type for pointers.
7118   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7119 
7120   // Construct the stack pointer operand.
7121   bool isPPC64 = Subtarget.isPPC64();
7122   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7123   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7124 
7125   // Get the operands for the STACKRESTORE.
7126   SDValue Chain = Op.getOperand(0);
7127   SDValue SaveSP = Op.getOperand(1);
7128 
7129   // Load the old link SP.
7130   SDValue LoadLinkSP =
7131       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7132 
7133   // Restore the stack pointer.
7134   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7135 
7136   // Store the old link SP.
7137   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7138 }
7139 
7140 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7141   MachineFunction &MF = DAG.getMachineFunction();
7142   bool isPPC64 = Subtarget.isPPC64();
7143   EVT PtrVT = getPointerTy(MF.getDataLayout());
7144 
7145   // Get current frame pointer save index.  The users of this index will be
7146   // primarily DYNALLOC instructions.
7147   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7148   int RASI = FI->getReturnAddrSaveIndex();
7149 
7150   // If the frame pointer save index hasn't been defined yet.
7151   if (!RASI) {
7152     // Find out what the fix offset of the frame pointer save area.
7153     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7154     // Allocate the frame index for frame pointer save area.
7155     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7156     // Save the result.
7157     FI->setReturnAddrSaveIndex(RASI);
7158   }
7159   return DAG.getFrameIndex(RASI, PtrVT);
7160 }
7161 
7162 SDValue
7163 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7164   MachineFunction &MF = DAG.getMachineFunction();
7165   bool isPPC64 = Subtarget.isPPC64();
7166   EVT PtrVT = getPointerTy(MF.getDataLayout());
7167 
7168   // Get current frame pointer save index.  The users of this index will be
7169   // primarily DYNALLOC instructions.
7170   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7171   int FPSI = FI->getFramePointerSaveIndex();
7172 
7173   // If the frame pointer save index hasn't been defined yet.
7174   if (!FPSI) {
7175     // Find out what the fix offset of the frame pointer save area.
7176     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7177     // Allocate the frame index for frame pointer save area.
7178     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7179     // Save the result.
7180     FI->setFramePointerSaveIndex(FPSI);
7181   }
7182   return DAG.getFrameIndex(FPSI, PtrVT);
7183 }
7184 
7185 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7186                                                    SelectionDAG &DAG) const {
7187   MachineFunction &MF = DAG.getMachineFunction();
7188   // Get the inputs.
7189   SDValue Chain = Op.getOperand(0);
7190   SDValue Size  = Op.getOperand(1);
7191   SDLoc dl(Op);
7192 
7193   // Get the correct type for pointers.
7194   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7195   // Negate the size.
7196   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7197                                 DAG.getConstant(0, dl, PtrVT), Size);
7198   // Construct a node for the frame pointer save index.
7199   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7200   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7201   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7202   if (hasInlineStackProbe(MF))
7203     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7204   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7205 }
7206 
7207 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7208                                                      SelectionDAG &DAG) const {
7209   MachineFunction &MF = DAG.getMachineFunction();
7210 
7211   bool isPPC64 = Subtarget.isPPC64();
7212   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7213 
7214   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7215   return DAG.getFrameIndex(FI, PtrVT);
7216 }
7217 
7218 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7219                                                SelectionDAG &DAG) const {
7220   SDLoc DL(Op);
7221   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7222                      DAG.getVTList(MVT::i32, MVT::Other),
7223                      Op.getOperand(0), Op.getOperand(1));
7224 }
7225 
7226 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7227                                                 SelectionDAG &DAG) const {
7228   SDLoc DL(Op);
7229   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7230                      Op.getOperand(0), Op.getOperand(1));
7231 }
7232 
7233 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7234   if (Op.getValueType().isVector())
7235     return LowerVectorLoad(Op, DAG);
7236 
7237   assert(Op.getValueType() == MVT::i1 &&
7238          "Custom lowering only for i1 loads");
7239 
7240   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7241 
7242   SDLoc dl(Op);
7243   LoadSDNode *LD = cast<LoadSDNode>(Op);
7244 
7245   SDValue Chain = LD->getChain();
7246   SDValue BasePtr = LD->getBasePtr();
7247   MachineMemOperand *MMO = LD->getMemOperand();
7248 
7249   SDValue NewLD =
7250       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7251                      BasePtr, MVT::i8, MMO);
7252   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7253 
7254   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7255   return DAG.getMergeValues(Ops, dl);
7256 }
7257 
7258 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7259   if (Op.getOperand(1).getValueType().isVector())
7260     return LowerVectorStore(Op, DAG);
7261 
7262   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7263          "Custom lowering only for i1 stores");
7264 
7265   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7266 
7267   SDLoc dl(Op);
7268   StoreSDNode *ST = cast<StoreSDNode>(Op);
7269 
7270   SDValue Chain = ST->getChain();
7271   SDValue BasePtr = ST->getBasePtr();
7272   SDValue Value = ST->getValue();
7273   MachineMemOperand *MMO = ST->getMemOperand();
7274 
7275   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7276                       Value);
7277   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7278 }
7279 
7280 // FIXME: Remove this once the ANDI glue bug is fixed:
7281 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7282   assert(Op.getValueType() == MVT::i1 &&
7283          "Custom lowering only for i1 results");
7284 
7285   SDLoc DL(Op);
7286   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7287 }
7288 
7289 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7290                                                SelectionDAG &DAG) const {
7291 
7292   // Implements a vector truncate that fits in a vector register as a shuffle.
7293   // We want to legalize vector truncates down to where the source fits in
7294   // a vector register (and target is therefore smaller than vector register
7295   // size).  At that point legalization will try to custom lower the sub-legal
7296   // result and get here - where we can contain the truncate as a single target
7297   // operation.
7298 
7299   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7300   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7301   //
7302   // We will implement it for big-endian ordering as this (where x denotes
7303   // undefined):
7304   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7305   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7306   //
7307   // The same operation in little-endian ordering will be:
7308   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7309   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7310 
7311   EVT TrgVT = Op.getValueType();
7312   assert(TrgVT.isVector() && "Vector type expected.");
7313   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7314   EVT EltVT = TrgVT.getVectorElementType();
7315   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7316       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7317       !isPowerOf2_32(EltVT.getSizeInBits()))
7318     return SDValue();
7319 
7320   SDValue N1 = Op.getOperand(0);
7321   EVT SrcVT = N1.getValueType();
7322   unsigned SrcSize = SrcVT.getSizeInBits();
7323   if (SrcSize > 256 ||
7324       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7325       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7326     return SDValue();
7327   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7328     return SDValue();
7329 
7330   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7331   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7332 
7333   SDLoc DL(Op);
7334   SDValue Op1, Op2;
7335   if (SrcSize == 256) {
7336     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7337     EVT SplitVT =
7338         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7339     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7340     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7341                       DAG.getConstant(0, DL, VecIdxTy));
7342     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7343                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7344   }
7345   else {
7346     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7347     Op2 = DAG.getUNDEF(WideVT);
7348   }
7349 
7350   // First list the elements we want to keep.
7351   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7352   SmallVector<int, 16> ShuffV;
7353   if (Subtarget.isLittleEndian())
7354     for (unsigned i = 0; i < TrgNumElts; ++i)
7355       ShuffV.push_back(i * SizeMult);
7356   else
7357     for (unsigned i = 1; i <= TrgNumElts; ++i)
7358       ShuffV.push_back(i * SizeMult - 1);
7359 
7360   // Populate the remaining elements with undefs.
7361   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7362     // ShuffV.push_back(i + WideNumElts);
7363     ShuffV.push_back(WideNumElts + 1);
7364 
7365   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7366   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7367   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7368 }
7369 
7370 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7371 /// possible.
7372 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7373   // Not FP, or using SPE? Not a fsel.
7374   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7375       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7376     return Op;
7377 
7378   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7379 
7380   EVT ResVT = Op.getValueType();
7381   EVT CmpVT = Op.getOperand(0).getValueType();
7382   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7383   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7384   SDLoc dl(Op);
7385   SDNodeFlags Flags = Op.getNode()->getFlags();
7386 
7387   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7388   // presence of infinities.
7389   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7390     switch (CC) {
7391     default:
7392       break;
7393     case ISD::SETOGT:
7394     case ISD::SETGT:
7395       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7396     case ISD::SETOLT:
7397     case ISD::SETLT:
7398       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7399     }
7400   }
7401 
7402   // We might be able to do better than this under some circumstances, but in
7403   // general, fsel-based lowering of select is a finite-math-only optimization.
7404   // For more information, see section F.3 of the 2.06 ISA specification.
7405   // With ISA 3.0
7406   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7407       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7408     return Op;
7409 
7410   // If the RHS of the comparison is a 0.0, we don't need to do the
7411   // subtraction at all.
7412   SDValue Sel1;
7413   if (isFloatingPointZero(RHS))
7414     switch (CC) {
7415     default: break;       // SETUO etc aren't handled by fsel.
7416     case ISD::SETNE:
7417       std::swap(TV, FV);
7418       LLVM_FALLTHROUGH;
7419     case ISD::SETEQ:
7420       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7421         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7422       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7423       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7424         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7425       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7426                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7427     case ISD::SETULT:
7428     case ISD::SETLT:
7429       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7430       LLVM_FALLTHROUGH;
7431     case ISD::SETOGE:
7432     case ISD::SETGE:
7433       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7434         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7435       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7436     case ISD::SETUGT:
7437     case ISD::SETGT:
7438       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7439       LLVM_FALLTHROUGH;
7440     case ISD::SETOLE:
7441     case ISD::SETLE:
7442       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7443         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7444       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7445                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7446     }
7447 
7448   SDValue Cmp;
7449   switch (CC) {
7450   default: break;       // SETUO etc aren't handled by fsel.
7451   case ISD::SETNE:
7452     std::swap(TV, FV);
7453     LLVM_FALLTHROUGH;
7454   case ISD::SETEQ:
7455     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7456     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7457       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7458     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7459     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7460       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7461     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7462                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7463   case ISD::SETULT:
7464   case ISD::SETLT:
7465     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7466     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7467       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7468     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7469   case ISD::SETOGE:
7470   case ISD::SETGE:
7471     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7472     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7473       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7474     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7475   case ISD::SETUGT:
7476   case ISD::SETGT:
7477     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7478     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7479       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7480     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7481   case ISD::SETOLE:
7482   case ISD::SETLE:
7483     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7484     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7485       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7486     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7487   }
7488   return Op;
7489 }
7490 
7491 static unsigned getPPCStrictOpcode(unsigned Opc) {
7492   switch (Opc) {
7493   default:
7494     llvm_unreachable("No strict version of this opcode!");
7495   case PPCISD::FCTIDZ:
7496     return PPCISD::STRICT_FCTIDZ;
7497   case PPCISD::FCTIWZ:
7498     return PPCISD::STRICT_FCTIWZ;
7499   case PPCISD::FCTIDUZ:
7500     return PPCISD::STRICT_FCTIDUZ;
7501   case PPCISD::FCTIWUZ:
7502     return PPCISD::STRICT_FCTIWUZ;
7503   case PPCISD::FCFID:
7504     return PPCISD::STRICT_FCFID;
7505   case PPCISD::FCFIDU:
7506     return PPCISD::STRICT_FCFIDU;
7507   case PPCISD::FCFIDS:
7508     return PPCISD::STRICT_FCFIDS;
7509   case PPCISD::FCFIDUS:
7510     return PPCISD::STRICT_FCFIDUS;
7511   }
7512 }
7513 
7514 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
7515                               const PPCSubtarget &Subtarget) {
7516   SDLoc dl(Op);
7517   bool IsStrict = Op->isStrictFPOpcode();
7518   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7519                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7520 
7521   // TODO: Any other flags to propagate?
7522   SDNodeFlags Flags;
7523   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7524 
7525   // For strict nodes, source is the second operand.
7526   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7527   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
7528   assert(Src.getValueType().isFloatingPoint());
7529   if (Src.getValueType() == MVT::f32) {
7530     if (IsStrict) {
7531       Src =
7532           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
7533                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
7534       Chain = Src.getValue(1);
7535     } else
7536       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7537   }
7538   SDValue Conv;
7539   unsigned Opc = ISD::DELETED_NODE;
7540   switch (Op.getSimpleValueType().SimpleTy) {
7541   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7542   case MVT::i32:
7543     Opc = IsSigned ? PPCISD::FCTIWZ
7544                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
7545     break;
7546   case MVT::i64:
7547     assert((IsSigned || Subtarget.hasFPCVT()) &&
7548            "i64 FP_TO_UINT is supported only with FPCVT");
7549     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
7550   }
7551   if (IsStrict) {
7552     Opc = getPPCStrictOpcode(Opc);
7553     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
7554                        {Chain, Src}, Flags);
7555   } else {
7556     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
7557   }
7558   return Conv;
7559 }
7560 
7561 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7562                                                SelectionDAG &DAG,
7563                                                const SDLoc &dl) const {
7564   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
7565   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7566                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7567   bool IsStrict = Op->isStrictFPOpcode();
7568 
7569   // Convert the FP value to an int value through memory.
7570   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7571                   (IsSigned || Subtarget.hasFPCVT());
7572   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7573   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7574   MachinePointerInfo MPI =
7575       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7576 
7577   // Emit a store to the stack slot.
7578   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
7579   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
7580   if (i32Stack) {
7581     MachineFunction &MF = DAG.getMachineFunction();
7582     Alignment = Align(4);
7583     MachineMemOperand *MMO =
7584         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
7585     SDValue Ops[] = { Chain, Tmp, FIPtr };
7586     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7587               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7588   } else
7589     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
7590 
7591   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7592   // add in a bias on big endian.
7593   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7594     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7595                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7596     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7597   }
7598 
7599   RLI.Chain = Chain;
7600   RLI.Ptr = FIPtr;
7601   RLI.MPI = MPI;
7602   RLI.Alignment = Alignment;
7603 }
7604 
7605 /// Custom lowers floating point to integer conversions to use
7606 /// the direct move instructions available in ISA 2.07 to avoid the
7607 /// need for load/store combinations.
7608 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7609                                                     SelectionDAG &DAG,
7610                                                     const SDLoc &dl) const {
7611   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
7612   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
7613   if (Op->isStrictFPOpcode())
7614     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
7615   else
7616     return Mov;
7617 }
7618 
7619 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7620                                           const SDLoc &dl) const {
7621   bool IsStrict = Op->isStrictFPOpcode();
7622   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7623                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7624   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7625   EVT SrcVT = Src.getValueType();
7626   EVT DstVT = Op.getValueType();
7627 
7628   // FP to INT conversions are legal for f128.
7629   if (SrcVT == MVT::f128)
7630     return Subtarget.hasP9Vector() ? Op : SDValue();
7631 
7632   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7633   // PPC (the libcall is not available).
7634   if (SrcVT == MVT::ppcf128) {
7635     if (DstVT == MVT::i32) {
7636       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
7637       // set other fast-math flags to FP operations in both strict and
7638       // non-strict cases. (FP_TO_SINT, FSUB)
7639       SDNodeFlags Flags;
7640       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7641 
7642       if (IsSigned) {
7643         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
7644                                  DAG.getIntPtrConstant(0, dl));
7645         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
7646                                  DAG.getIntPtrConstant(1, dl));
7647 
7648         // Add the two halves of the long double in round-to-zero mode, and use
7649         // a smaller FP_TO_SINT.
7650         if (IsStrict) {
7651           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
7652                                     DAG.getVTList(MVT::f64, MVT::Other),
7653                                     {Op.getOperand(0), Lo, Hi}, Flags);
7654           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
7655                              DAG.getVTList(MVT::i32, MVT::Other),
7656                              {Res.getValue(1), Res}, Flags);
7657         } else {
7658           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7659           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7660         }
7661       } else {
7662         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7663         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7664         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7665         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
7666         if (IsStrict) {
7667           // Sel = Src < 0x80000000
7668           // FltOfs = select Sel, 0.0, 0x80000000
7669           // IntOfs = select Sel, 0, 0x80000000
7670           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7671           SDValue Chain = Op.getOperand(0);
7672           EVT SetCCVT =
7673               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7674           EVT DstSetCCVT =
7675               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7676           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7677                                      Chain, true);
7678           Chain = Sel.getValue(1);
7679 
7680           SDValue FltOfs = DAG.getSelect(
7681               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7682           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7683 
7684           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
7685                                     DAG.getVTList(SrcVT, MVT::Other),
7686                                     {Chain, Src, FltOfs}, Flags);
7687           Chain = Val.getValue(1);
7688           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
7689                                      DAG.getVTList(DstVT, MVT::Other),
7690                                      {Chain, Val}, Flags);
7691           Chain = SInt.getValue(1);
7692           SDValue IntOfs = DAG.getSelect(
7693               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
7694           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7695           return DAG.getMergeValues({Result, Chain}, dl);
7696         } else {
7697           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7698           // FIXME: generated code sucks.
7699           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
7700           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7701           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
7702           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
7703           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
7704         }
7705       }
7706     }
7707 
7708     return SDValue();
7709   }
7710 
7711   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7712     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7713 
7714   ReuseLoadInfo RLI;
7715   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7716 
7717   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7718                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7719 }
7720 
7721 // We're trying to insert a regular store, S, and then a load, L. If the
7722 // incoming value, O, is a load, we might just be able to have our load use the
7723 // address used by O. However, we don't know if anything else will store to
7724 // that address before we can load from it. To prevent this situation, we need
7725 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7726 // the same chain operand as O, we create a token factor from the chain results
7727 // of O and L, and we replace all uses of O's chain result with that token
7728 // factor (see spliceIntoChain below for this last part).
7729 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7730                                             ReuseLoadInfo &RLI,
7731                                             SelectionDAG &DAG,
7732                                             ISD::LoadExtType ET) const {
7733   // Conservatively skip reusing for constrained FP nodes.
7734   if (Op->isStrictFPOpcode())
7735     return false;
7736 
7737   SDLoc dl(Op);
7738   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
7739                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
7740   if (ET == ISD::NON_EXTLOAD &&
7741       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
7742       isOperationLegalOrCustom(Op.getOpcode(),
7743                                Op.getOperand(0).getValueType())) {
7744 
7745     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7746     return true;
7747   }
7748 
7749   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7750   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7751       LD->isNonTemporal())
7752     return false;
7753   if (LD->getMemoryVT() != MemVT)
7754     return false;
7755 
7756   // If the result of the load is an illegal type, then we can't build a
7757   // valid chain for reuse since the legalised loads and token factor node that
7758   // ties the legalised loads together uses a different output chain then the
7759   // illegal load.
7760   if (!isTypeLegal(LD->getValueType(0)))
7761     return false;
7762 
7763   RLI.Ptr = LD->getBasePtr();
7764   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7765     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7766            "Non-pre-inc AM on PPC?");
7767     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7768                           LD->getOffset());
7769   }
7770 
7771   RLI.Chain = LD->getChain();
7772   RLI.MPI = LD->getPointerInfo();
7773   RLI.IsDereferenceable = LD->isDereferenceable();
7774   RLI.IsInvariant = LD->isInvariant();
7775   RLI.Alignment = LD->getAlign();
7776   RLI.AAInfo = LD->getAAInfo();
7777   RLI.Ranges = LD->getRanges();
7778 
7779   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7780   return true;
7781 }
7782 
7783 // Given the head of the old chain, ResChain, insert a token factor containing
7784 // it and NewResChain, and make users of ResChain now be users of that token
7785 // factor.
7786 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7787 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7788                                         SDValue NewResChain,
7789                                         SelectionDAG &DAG) const {
7790   if (!ResChain)
7791     return;
7792 
7793   SDLoc dl(NewResChain);
7794 
7795   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7796                            NewResChain, DAG.getUNDEF(MVT::Other));
7797   assert(TF.getNode() != NewResChain.getNode() &&
7798          "A new TF really is required here");
7799 
7800   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7801   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7802 }
7803 
7804 /// Analyze profitability of direct move
7805 /// prefer float load to int load plus direct move
7806 /// when there is no integer use of int load
7807 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7808   SDNode *Origin = Op.getOperand(0).getNode();
7809   if (Origin->getOpcode() != ISD::LOAD)
7810     return true;
7811 
7812   // If there is no LXSIBZX/LXSIHZX, like Power8,
7813   // prefer direct move if the memory size is 1 or 2 bytes.
7814   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7815   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7816     return true;
7817 
7818   for (SDNode::use_iterator UI = Origin->use_begin(),
7819                             UE = Origin->use_end();
7820        UI != UE; ++UI) {
7821 
7822     // Only look at the users of the loaded value.
7823     if (UI.getUse().get().getResNo() != 0)
7824       continue;
7825 
7826     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7827         UI->getOpcode() != ISD::UINT_TO_FP &&
7828         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
7829         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
7830       return true;
7831   }
7832 
7833   return false;
7834 }
7835 
7836 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
7837                               const PPCSubtarget &Subtarget,
7838                               SDValue Chain = SDValue()) {
7839   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
7840                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
7841   SDLoc dl(Op);
7842 
7843   // TODO: Any other flags to propagate?
7844   SDNodeFlags Flags;
7845   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7846 
7847   // If we have FCFIDS, then use it when converting to single-precision.
7848   // Otherwise, convert to double-precision and then round.
7849   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
7850   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
7851                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
7852   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
7853   if (Op->isStrictFPOpcode()) {
7854     if (!Chain)
7855       Chain = Op.getOperand(0);
7856     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
7857                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
7858   } else
7859     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
7860 }
7861 
7862 /// Custom lowers integer to floating point conversions to use
7863 /// the direct move instructions available in ISA 2.07 to avoid the
7864 /// need for load/store combinations.
7865 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7866                                                     SelectionDAG &DAG,
7867                                                     const SDLoc &dl) const {
7868   assert((Op.getValueType() == MVT::f32 ||
7869           Op.getValueType() == MVT::f64) &&
7870          "Invalid floating point type as target of conversion");
7871   assert(Subtarget.hasFPCVT() &&
7872          "Int to FP conversions with direct moves require FPCVT");
7873   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
7874   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7875   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
7876                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
7877   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
7878   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
7879   return convertIntToFP(Op, Mov, DAG, Subtarget);
7880 }
7881 
7882 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7883 
7884   EVT VecVT = Vec.getValueType();
7885   assert(VecVT.isVector() && "Expected a vector type.");
7886   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7887 
7888   EVT EltVT = VecVT.getVectorElementType();
7889   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7890   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7891 
7892   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7893   SmallVector<SDValue, 16> Ops(NumConcat);
7894   Ops[0] = Vec;
7895   SDValue UndefVec = DAG.getUNDEF(VecVT);
7896   for (unsigned i = 1; i < NumConcat; ++i)
7897     Ops[i] = UndefVec;
7898 
7899   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7900 }
7901 
7902 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7903                                                 const SDLoc &dl) const {
7904   bool IsStrict = Op->isStrictFPOpcode();
7905   unsigned Opc = Op.getOpcode();
7906   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7907   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
7908           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
7909          "Unexpected conversion type");
7910   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7911          "Supports conversions to v2f64/v4f32 only.");
7912 
7913   // TODO: Any other flags to propagate?
7914   SDNodeFlags Flags;
7915   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7916 
7917   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
7918   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7919 
7920   SDValue Wide = widenVec(DAG, Src, dl);
7921   EVT WideVT = Wide.getValueType();
7922   unsigned WideNumElts = WideVT.getVectorNumElements();
7923   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7924 
7925   SmallVector<int, 16> ShuffV;
7926   for (unsigned i = 0; i < WideNumElts; ++i)
7927     ShuffV.push_back(i + WideNumElts);
7928 
7929   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7930   int SaveElts = FourEltRes ? 4 : 2;
7931   if (Subtarget.isLittleEndian())
7932     for (int i = 0; i < SaveElts; i++)
7933       ShuffV[i * Stride] = i;
7934   else
7935     for (int i = 1; i <= SaveElts; i++)
7936       ShuffV[i * Stride - 1] = i - 1;
7937 
7938   SDValue ShuffleSrc2 =
7939       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7940   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7941 
7942   SDValue Extend;
7943   if (SignedConv) {
7944     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7945     EVT ExtVT = Src.getValueType();
7946     if (Subtarget.hasP9Altivec())
7947       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
7948                                IntermediateVT.getVectorNumElements());
7949 
7950     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7951                          DAG.getValueType(ExtVT));
7952   } else
7953     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
7954 
7955   if (IsStrict)
7956     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
7957                        {Op.getOperand(0), Extend}, Flags);
7958 
7959   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7960 }
7961 
7962 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7963                                           SelectionDAG &DAG) const {
7964   SDLoc dl(Op);
7965   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
7966                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
7967   bool IsStrict = Op->isStrictFPOpcode();
7968   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7969   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
7970 
7971   // TODO: Any other flags to propagate?
7972   SDNodeFlags Flags;
7973   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7974 
7975   EVT InVT = Src.getValueType();
7976   EVT OutVT = Op.getValueType();
7977   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7978       isOperationCustom(Op.getOpcode(), InVT))
7979     return LowerINT_TO_FPVector(Op, DAG, dl);
7980 
7981   // Conversions to f128 are legal.
7982   if (Op.getValueType() == MVT::f128)
7983     return Subtarget.hasP9Vector() ? Op : SDValue();
7984 
7985   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7986   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7987     return SDValue();
7988 
7989   if (Src.getValueType() == MVT::i1) {
7990     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
7991                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
7992                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
7993     if (IsStrict)
7994       return DAG.getMergeValues({Sel, Chain}, dl);
7995     else
7996       return Sel;
7997   }
7998 
7999   // If we have direct moves, we can do all the conversion, skip the store/load
8000   // however, without FPCVT we can't do most conversions.
8001   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8002       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8003     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8004 
8005   assert((IsSigned || Subtarget.hasFPCVT()) &&
8006          "UINT_TO_FP is supported only with FPCVT");
8007 
8008   if (Src.getValueType() == MVT::i64) {
8009     SDValue SINT = Src;
8010     // When converting to single-precision, we actually need to convert
8011     // to double-precision first and then round to single-precision.
8012     // To avoid double-rounding effects during that operation, we have
8013     // to prepare the input operand.  Bits that might be truncated when
8014     // converting to double-precision are replaced by a bit that won't
8015     // be lost at this stage, but is below the single-precision rounding
8016     // position.
8017     //
8018     // However, if -enable-unsafe-fp-math is in effect, accept double
8019     // rounding to avoid the extra overhead.
8020     if (Op.getValueType() == MVT::f32 &&
8021         !Subtarget.hasFPCVT() &&
8022         !DAG.getTarget().Options.UnsafeFPMath) {
8023 
8024       // Twiddle input to make sure the low 11 bits are zero.  (If this
8025       // is the case, we are guaranteed the value will fit into the 53 bit
8026       // mantissa of an IEEE double-precision value without rounding.)
8027       // If any of those low 11 bits were not zero originally, make sure
8028       // bit 12 (value 2048) is set instead, so that the final rounding
8029       // to single-precision gets the correct result.
8030       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8031                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8032       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8033                           Round, DAG.getConstant(2047, dl, MVT::i64));
8034       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8035       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8036                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8037 
8038       // However, we cannot use that value unconditionally: if the magnitude
8039       // of the input value is small, the bit-twiddling we did above might
8040       // end up visibly changing the output.  Fortunately, in that case, we
8041       // don't need to twiddle bits since the original input will convert
8042       // exactly to double-precision floating-point already.  Therefore,
8043       // construct a conditional to use the original value if the top 11
8044       // bits are all sign-bit copies, and use the rounded value computed
8045       // above otherwise.
8046       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8047                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8048       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8049                          Cond, DAG.getConstant(1, dl, MVT::i64));
8050       Cond = DAG.getSetCC(
8051           dl,
8052           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8053           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8054 
8055       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8056     }
8057 
8058     ReuseLoadInfo RLI;
8059     SDValue Bits;
8060 
8061     MachineFunction &MF = DAG.getMachineFunction();
8062     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8063       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8064                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8065       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8066     } else if (Subtarget.hasLFIWAX() &&
8067                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8068       MachineMemOperand *MMO =
8069         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8070                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8071       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8072       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8073                                      DAG.getVTList(MVT::f64, MVT::Other),
8074                                      Ops, MVT::i32, MMO);
8075       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8076     } else if (Subtarget.hasFPCVT() &&
8077                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8078       MachineMemOperand *MMO =
8079         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8080                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8081       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8082       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8083                                      DAG.getVTList(MVT::f64, MVT::Other),
8084                                      Ops, MVT::i32, MMO);
8085       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8086     } else if (((Subtarget.hasLFIWAX() &&
8087                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8088                 (Subtarget.hasFPCVT() &&
8089                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8090                SINT.getOperand(0).getValueType() == MVT::i32) {
8091       MachineFrameInfo &MFI = MF.getFrameInfo();
8092       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8093 
8094       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8095       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8096 
8097       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8098                                    MachinePointerInfo::getFixedStack(
8099                                        DAG.getMachineFunction(), FrameIdx));
8100       Chain = Store;
8101 
8102       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8103              "Expected an i32 store");
8104 
8105       RLI.Ptr = FIdx;
8106       RLI.Chain = Chain;
8107       RLI.MPI =
8108           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8109       RLI.Alignment = Align(4);
8110 
8111       MachineMemOperand *MMO =
8112         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8113                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8114       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8115       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8116                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8117                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8118                                      Ops, MVT::i32, MMO);
8119       Chain = Bits.getValue(1);
8120     } else
8121       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8122 
8123     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8124     if (IsStrict)
8125       Chain = FP.getValue(1);
8126 
8127     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8128       if (IsStrict)
8129         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8130                          DAG.getVTList(MVT::f32, MVT::Other),
8131                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8132       else
8133         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8134                          DAG.getIntPtrConstant(0, dl));
8135     }
8136     return FP;
8137   }
8138 
8139   assert(Src.getValueType() == MVT::i32 &&
8140          "Unhandled INT_TO_FP type in custom expander!");
8141   // Since we only generate this in 64-bit mode, we can take advantage of
8142   // 64-bit registers.  In particular, sign extend the input value into the
8143   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8144   // then lfd it and fcfid it.
8145   MachineFunction &MF = DAG.getMachineFunction();
8146   MachineFrameInfo &MFI = MF.getFrameInfo();
8147   EVT PtrVT = getPointerTy(MF.getDataLayout());
8148 
8149   SDValue Ld;
8150   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8151     ReuseLoadInfo RLI;
8152     bool ReusingLoad;
8153     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8154       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8155       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8156 
8157       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8158                                    MachinePointerInfo::getFixedStack(
8159                                        DAG.getMachineFunction(), FrameIdx));
8160       Chain = Store;
8161 
8162       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8163              "Expected an i32 store");
8164 
8165       RLI.Ptr = FIdx;
8166       RLI.Chain = Chain;
8167       RLI.MPI =
8168           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8169       RLI.Alignment = Align(4);
8170     }
8171 
8172     MachineMemOperand *MMO =
8173       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8174                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8175     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8176     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8177                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8178                                  MVT::i32, MMO);
8179     Chain = Ld.getValue(1);
8180     if (ReusingLoad)
8181       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8182   } else {
8183     assert(Subtarget.isPPC64() &&
8184            "i32->FP without LFIWAX supported only on PPC64");
8185 
8186     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8187     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8188 
8189     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8190 
8191     // STD the extended value into the stack slot.
8192     SDValue Store = DAG.getStore(
8193         Chain, dl, Ext64, FIdx,
8194         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8195     Chain = Store;
8196 
8197     // Load the value as a double.
8198     Ld = DAG.getLoad(
8199         MVT::f64, dl, Chain, FIdx,
8200         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8201     Chain = Ld.getValue(1);
8202   }
8203 
8204   // FCFID it and return it.
8205   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8206   if (IsStrict)
8207     Chain = FP.getValue(1);
8208   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8209     if (IsStrict)
8210       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8211                        DAG.getVTList(MVT::f32, MVT::Other),
8212                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8213     else
8214       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8215                        DAG.getIntPtrConstant(0, dl));
8216   }
8217   return FP;
8218 }
8219 
8220 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8221                                             SelectionDAG &DAG) const {
8222   SDLoc dl(Op);
8223   /*
8224    The rounding mode is in bits 30:31 of FPSR, and has the following
8225    settings:
8226      00 Round to nearest
8227      01 Round to 0
8228      10 Round to +inf
8229      11 Round to -inf
8230 
8231   FLT_ROUNDS, on the other hand, expects the following:
8232     -1 Undefined
8233      0 Round to 0
8234      1 Round to nearest
8235      2 Round to +inf
8236      3 Round to -inf
8237 
8238   To perform the conversion, we do:
8239     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8240   */
8241 
8242   MachineFunction &MF = DAG.getMachineFunction();
8243   EVT VT = Op.getValueType();
8244   EVT PtrVT = getPointerTy(MF.getDataLayout());
8245 
8246   // Save FP Control Word to register
8247   SDValue Chain = Op.getOperand(0);
8248   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8249   Chain = MFFS.getValue(1);
8250 
8251   SDValue CWD;
8252   if (isTypeLegal(MVT::i64)) {
8253     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8254                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8255   } else {
8256     // Save FP register to stack slot
8257     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8258     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8259     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8260 
8261     // Load FP Control Word from low 32 bits of stack slot.
8262     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8263            "Stack slot adjustment is valid only on big endian subtargets!");
8264     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8265     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8266     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8267     Chain = CWD.getValue(1);
8268   }
8269 
8270   // Transform as necessary
8271   SDValue CWD1 =
8272     DAG.getNode(ISD::AND, dl, MVT::i32,
8273                 CWD, DAG.getConstant(3, dl, MVT::i32));
8274   SDValue CWD2 =
8275     DAG.getNode(ISD::SRL, dl, MVT::i32,
8276                 DAG.getNode(ISD::AND, dl, MVT::i32,
8277                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8278                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8279                             DAG.getConstant(3, dl, MVT::i32)),
8280                 DAG.getConstant(1, dl, MVT::i32));
8281 
8282   SDValue RetVal =
8283     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8284 
8285   RetVal =
8286       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8287                   dl, VT, RetVal);
8288 
8289   return DAG.getMergeValues({RetVal, Chain}, dl);
8290 }
8291 
8292 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8293   EVT VT = Op.getValueType();
8294   unsigned BitWidth = VT.getSizeInBits();
8295   SDLoc dl(Op);
8296   assert(Op.getNumOperands() == 3 &&
8297          VT == Op.getOperand(1).getValueType() &&
8298          "Unexpected SHL!");
8299 
8300   // Expand into a bunch of logical ops.  Note that these ops
8301   // depend on the PPC behavior for oversized shift amounts.
8302   SDValue Lo = Op.getOperand(0);
8303   SDValue Hi = Op.getOperand(1);
8304   SDValue Amt = Op.getOperand(2);
8305   EVT AmtVT = Amt.getValueType();
8306 
8307   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8308                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8309   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8310   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8311   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8312   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8313                              DAG.getConstant(-BitWidth, dl, AmtVT));
8314   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8315   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8316   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8317   SDValue OutOps[] = { OutLo, OutHi };
8318   return DAG.getMergeValues(OutOps, dl);
8319 }
8320 
8321 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8322   EVT VT = Op.getValueType();
8323   SDLoc dl(Op);
8324   unsigned BitWidth = VT.getSizeInBits();
8325   assert(Op.getNumOperands() == 3 &&
8326          VT == Op.getOperand(1).getValueType() &&
8327          "Unexpected SRL!");
8328 
8329   // Expand into a bunch of logical ops.  Note that these ops
8330   // depend on the PPC behavior for oversized shift amounts.
8331   SDValue Lo = Op.getOperand(0);
8332   SDValue Hi = Op.getOperand(1);
8333   SDValue Amt = Op.getOperand(2);
8334   EVT AmtVT = Amt.getValueType();
8335 
8336   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8337                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8338   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8339   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8340   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8341   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8342                              DAG.getConstant(-BitWidth, dl, AmtVT));
8343   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8344   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8345   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8346   SDValue OutOps[] = { OutLo, OutHi };
8347   return DAG.getMergeValues(OutOps, dl);
8348 }
8349 
8350 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8351   SDLoc dl(Op);
8352   EVT VT = Op.getValueType();
8353   unsigned BitWidth = VT.getSizeInBits();
8354   assert(Op.getNumOperands() == 3 &&
8355          VT == Op.getOperand(1).getValueType() &&
8356          "Unexpected SRA!");
8357 
8358   // Expand into a bunch of logical ops, followed by a select_cc.
8359   SDValue Lo = Op.getOperand(0);
8360   SDValue Hi = Op.getOperand(1);
8361   SDValue Amt = Op.getOperand(2);
8362   EVT AmtVT = Amt.getValueType();
8363 
8364   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8365                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8366   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8367   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8368   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8369   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8370                              DAG.getConstant(-BitWidth, dl, AmtVT));
8371   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8372   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8373   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8374                                   Tmp4, Tmp6, ISD::SETLE);
8375   SDValue OutOps[] = { OutLo, OutHi };
8376   return DAG.getMergeValues(OutOps, dl);
8377 }
8378 
8379 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8380                                             SelectionDAG &DAG) const {
8381   SDLoc dl(Op);
8382   EVT VT = Op.getValueType();
8383   unsigned BitWidth = VT.getSizeInBits();
8384 
8385   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8386   SDValue X = Op.getOperand(0);
8387   SDValue Y = Op.getOperand(1);
8388   SDValue Z = Op.getOperand(2);
8389   EVT AmtVT = Z.getValueType();
8390 
8391   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8392   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8393   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8394   // on PowerPC shift by BW being well defined.
8395   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8396                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8397   SDValue SubZ =
8398       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8399   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8400   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8401   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8402 }
8403 
8404 //===----------------------------------------------------------------------===//
8405 // Vector related lowering.
8406 //
8407 
8408 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8409 /// element size of SplatSize. Cast the result to VT.
8410 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8411                                       SelectionDAG &DAG, const SDLoc &dl) {
8412   static const MVT VTys[] = { // canonical VT to use for each size.
8413     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8414   };
8415 
8416   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8417 
8418   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8419   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8420     SplatSize = 1;
8421     Val = 0xFF;
8422   }
8423 
8424   EVT CanonicalVT = VTys[SplatSize-1];
8425 
8426   // Build a canonical splat for this value.
8427   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8428 }
8429 
8430 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8431 /// specified intrinsic ID.
8432 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8433                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8434   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8435   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8436                      DAG.getConstant(IID, dl, MVT::i32), Op);
8437 }
8438 
8439 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8440 /// specified intrinsic ID.
8441 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8442                                 SelectionDAG &DAG, const SDLoc &dl,
8443                                 EVT DestVT = MVT::Other) {
8444   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8445   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8446                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8447 }
8448 
8449 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8450 /// specified intrinsic ID.
8451 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8452                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8453                                 EVT DestVT = MVT::Other) {
8454   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8455   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8456                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8457 }
8458 
8459 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8460 /// amount.  The result has the specified value type.
8461 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8462                            SelectionDAG &DAG, const SDLoc &dl) {
8463   // Force LHS/RHS to be the right type.
8464   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8465   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8466 
8467   int Ops[16];
8468   for (unsigned i = 0; i != 16; ++i)
8469     Ops[i] = i + Amt;
8470   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8471   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8472 }
8473 
8474 /// Do we have an efficient pattern in a .td file for this node?
8475 ///
8476 /// \param V - pointer to the BuildVectorSDNode being matched
8477 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8478 ///
8479 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8480 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8481 /// the opposite is true (expansion is beneficial) are:
8482 /// - The node builds a vector out of integers that are not 32 or 64-bits
8483 /// - The node builds a vector out of constants
8484 /// - The node is a "load-and-splat"
8485 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8486 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8487                                             bool HasDirectMove,
8488                                             bool HasP8Vector) {
8489   EVT VecVT = V->getValueType(0);
8490   bool RightType = VecVT == MVT::v2f64 ||
8491     (HasP8Vector && VecVT == MVT::v4f32) ||
8492     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8493   if (!RightType)
8494     return false;
8495 
8496   bool IsSplat = true;
8497   bool IsLoad = false;
8498   SDValue Op0 = V->getOperand(0);
8499 
8500   // This function is called in a block that confirms the node is not a constant
8501   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8502   // different constants.
8503   if (V->isConstant())
8504     return false;
8505   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8506     if (V->getOperand(i).isUndef())
8507       return false;
8508     // We want to expand nodes that represent load-and-splat even if the
8509     // loaded value is a floating point truncation or conversion to int.
8510     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8511         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8512          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8513         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8514          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8515         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8516          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8517       IsLoad = true;
8518     // If the operands are different or the input is not a load and has more
8519     // uses than just this BV node, then it isn't a splat.
8520     if (V->getOperand(i) != Op0 ||
8521         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8522       IsSplat = false;
8523   }
8524   return !(IsSplat && IsLoad);
8525 }
8526 
8527 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8528 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8529 
8530   SDLoc dl(Op);
8531   SDValue Op0 = Op->getOperand(0);
8532 
8533   if ((Op.getValueType() != MVT::f128) ||
8534       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8535       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8536       (Op0.getOperand(1).getValueType() != MVT::i64))
8537     return SDValue();
8538 
8539   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8540                      Op0.getOperand(1));
8541 }
8542 
8543 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
8544   const SDValue *InputLoad = &Op;
8545   if (InputLoad->getOpcode() == ISD::BITCAST)
8546     InputLoad = &InputLoad->getOperand(0);
8547   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
8548       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
8549     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
8550     InputLoad = &InputLoad->getOperand(0);
8551   }
8552   if (InputLoad->getOpcode() != ISD::LOAD)
8553     return nullptr;
8554   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8555   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8556 }
8557 
8558 // Convert the argument APFloat to a single precision APFloat if there is no
8559 // loss in information during the conversion to single precision APFloat and the
8560 // resulting number is not a denormal number. Return true if successful.
8561 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
8562   APFloat APFloatToConvert = ArgAPFloat;
8563   bool LosesInfo = true;
8564   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8565                            &LosesInfo);
8566   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
8567   if (Success)
8568     ArgAPFloat = APFloatToConvert;
8569   return Success;
8570 }
8571 
8572 // Bitcast the argument APInt to a double and convert it to a single precision
8573 // APFloat, bitcast the APFloat to an APInt and assign it to the original
8574 // argument if there is no loss in information during the conversion from
8575 // double to single precision APFloat and the resulting number is not a denormal
8576 // number. Return true if successful.
8577 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
8578   double DpValue = ArgAPInt.bitsToDouble();
8579   APFloat APFloatDp(DpValue);
8580   bool Success = convertToNonDenormSingle(APFloatDp);
8581   if (Success)
8582     ArgAPInt = APFloatDp.bitcastToAPInt();
8583   return Success;
8584 }
8585 
8586 // If this is a case we can't handle, return null and let the default
8587 // expansion code take care of it.  If we CAN select this case, and if it
8588 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8589 // this case more efficiently than a constant pool load, lower it to the
8590 // sequence of ops that should be used.
8591 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8592                                              SelectionDAG &DAG) const {
8593   SDLoc dl(Op);
8594   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8595   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8596 
8597   // Check if this is a splat of a constant value.
8598   APInt APSplatBits, APSplatUndef;
8599   unsigned SplatBitSize;
8600   bool HasAnyUndefs;
8601   bool BVNIsConstantSplat =
8602       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8603                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
8604 
8605   // If it is a splat of a double, check if we can shrink it to a 32 bit
8606   // non-denormal float which when converted back to double gives us the same
8607   // double. This is to exploit the XXSPLTIDP instruction.
8608   // If we lose precision, we use XXSPLTI32DX.
8609   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
8610       Subtarget.hasPrefixInstrs()) {
8611     // Check the type first to short-circuit so we don't modify APSplatBits if
8612     // this block isn't executed.
8613     if ((Op->getValueType(0) == MVT::v2f64) &&
8614         convertToNonDenormSingle(APSplatBits)) {
8615       SDValue SplatNode = DAG.getNode(
8616           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
8617           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
8618       return DAG.getBitcast(Op.getValueType(), SplatNode);
8619     } else {
8620       // We may lose precision, so we have to use XXSPLTI32DX.
8621 
8622       uint32_t Hi =
8623           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
8624       uint32_t Lo =
8625           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
8626       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
8627 
8628       if (!Hi || !Lo)
8629         // If either load is 0, then we should generate XXLXOR to set to 0.
8630         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
8631 
8632       if (Hi)
8633         SplatNode = DAG.getNode(
8634             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
8635             DAG.getTargetConstant(0, dl, MVT::i32),
8636             DAG.getTargetConstant(Hi, dl, MVT::i32));
8637 
8638       if (Lo)
8639         SplatNode =
8640             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
8641                         DAG.getTargetConstant(1, dl, MVT::i32),
8642                         DAG.getTargetConstant(Lo, dl, MVT::i32));
8643 
8644       return DAG.getBitcast(Op.getValueType(), SplatNode);
8645     }
8646   }
8647 
8648   if (!BVNIsConstantSplat || SplatBitSize > 32) {
8649 
8650     bool IsPermutedLoad = false;
8651     const SDValue *InputLoad =
8652         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
8653     // Handle load-and-splat patterns as we have instructions that will do this
8654     // in one go.
8655     if (InputLoad && DAG.isSplatValue(Op, true)) {
8656       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8657 
8658       // We have handling for 4 and 8 byte elements.
8659       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8660 
8661       // Checking for a single use of this load, we have to check for vector
8662       // width (128 bits) / ElementSize uses (since each operand of the
8663       // BUILD_VECTOR is a separate use of the value.
8664       unsigned NumUsesOfInputLD = 128 / ElementSize;
8665       for (SDValue BVInOp : Op->ops())
8666         if (BVInOp.isUndef())
8667           NumUsesOfInputLD--;
8668       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
8669       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
8670           ((Subtarget.hasVSX() && ElementSize == 64) ||
8671            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8672         SDValue Ops[] = {
8673           LD->getChain(),    // Chain
8674           LD->getBasePtr(),  // Ptr
8675           DAG.getValueType(Op.getValueType()) // VT
8676         };
8677         SDValue LdSplt = DAG.getMemIntrinsicNode(
8678             PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8679             Ops, LD->getMemoryVT(), LD->getMemOperand());
8680         // Replace all uses of the output chain of the original load with the
8681         // output chain of the new load.
8682         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
8683                                       LdSplt.getValue(1));
8684         return LdSplt;
8685       }
8686     }
8687 
8688     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
8689     // 32-bits can be lowered to VSX instructions under certain conditions.
8690     // Without VSX, there is no pattern more efficient than expanding the node.
8691     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
8692         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8693                                         Subtarget.hasP8Vector()))
8694       return Op;
8695     return SDValue();
8696   }
8697 
8698   uint64_t SplatBits = APSplatBits.getZExtValue();
8699   uint64_t SplatUndef = APSplatUndef.getZExtValue();
8700   unsigned SplatSize = SplatBitSize / 8;
8701 
8702   // First, handle single instruction cases.
8703 
8704   // All zeros?
8705   if (SplatBits == 0) {
8706     // Canonicalize all zero vectors to be v4i32.
8707     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8708       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8709       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8710     }
8711     return Op;
8712   }
8713 
8714   // We have XXSPLTIW for constant splats four bytes wide.
8715   // Given vector length is a multiple of 4, 2-byte splats can be replaced
8716   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
8717   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
8718   // turned into a 4-byte splat of 0xABABABAB.
8719   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
8720     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
8721                                   Op.getValueType(), DAG, dl);
8722 
8723   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
8724     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8725                                   dl);
8726 
8727   // We have XXSPLTIB for constant splats one byte wide.
8728   if (Subtarget.hasP9Vector() && SplatSize == 1)
8729     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8730                                   dl);
8731 
8732   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8733   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8734                     (32-SplatBitSize));
8735   if (SextVal >= -16 && SextVal <= 15)
8736     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
8737                                   dl);
8738 
8739   // Two instruction sequences.
8740 
8741   // If this value is in the range [-32,30] and is even, use:
8742   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8743   // If this value is in the range [17,31] and is odd, use:
8744   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8745   // If this value is in the range [-31,-17] and is odd, use:
8746   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8747   // Note the last two are three-instruction sequences.
8748   if (SextVal >= -32 && SextVal <= 31) {
8749     // To avoid having these optimizations undone by constant folding,
8750     // we convert to a pseudo that will be expanded later into one of
8751     // the above forms.
8752     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8753     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8754               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8755     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8756     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8757     if (VT == Op.getValueType())
8758       return RetVal;
8759     else
8760       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8761   }
8762 
8763   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8764   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8765   // for fneg/fabs.
8766   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8767     // Make -1 and vspltisw -1:
8768     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
8769 
8770     // Make the VSLW intrinsic, computing 0x8000_0000.
8771     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8772                                    OnesV, DAG, dl);
8773 
8774     // xor by OnesV to invert it.
8775     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8776     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8777   }
8778 
8779   // Check to see if this is a wide variety of vsplti*, binop self cases.
8780   static const signed char SplatCsts[] = {
8781     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8782     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8783   };
8784 
8785   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8786     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8787     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8788     int i = SplatCsts[idx];
8789 
8790     // Figure out what shift amount will be used by altivec if shifted by i in
8791     // this splat size.
8792     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8793 
8794     // vsplti + shl self.
8795     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8796       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
8797       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8798         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8799         Intrinsic::ppc_altivec_vslw
8800       };
8801       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8802       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8803     }
8804 
8805     // vsplti + srl self.
8806     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8807       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
8808       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8809         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8810         Intrinsic::ppc_altivec_vsrw
8811       };
8812       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8813       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8814     }
8815 
8816     // vsplti + rol self.
8817     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8818                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8819       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
8820       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8821         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8822         Intrinsic::ppc_altivec_vrlw
8823       };
8824       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8825       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8826     }
8827 
8828     // t = vsplti c, result = vsldoi t, t, 1
8829     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8830       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
8831       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8832       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8833     }
8834     // t = vsplti c, result = vsldoi t, t, 2
8835     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8836       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
8837       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8838       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8839     }
8840     // t = vsplti c, result = vsldoi t, t, 3
8841     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8842       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
8843       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8844       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8845     }
8846   }
8847 
8848   return SDValue();
8849 }
8850 
8851 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8852 /// the specified operations to build the shuffle.
8853 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8854                                       SDValue RHS, SelectionDAG &DAG,
8855                                       const SDLoc &dl) {
8856   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8857   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8858   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8859 
8860   enum {
8861     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8862     OP_VMRGHW,
8863     OP_VMRGLW,
8864     OP_VSPLTISW0,
8865     OP_VSPLTISW1,
8866     OP_VSPLTISW2,
8867     OP_VSPLTISW3,
8868     OP_VSLDOI4,
8869     OP_VSLDOI8,
8870     OP_VSLDOI12
8871   };
8872 
8873   if (OpNum == OP_COPY) {
8874     if (LHSID == (1*9+2)*9+3) return LHS;
8875     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8876     return RHS;
8877   }
8878 
8879   SDValue OpLHS, OpRHS;
8880   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8881   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8882 
8883   int ShufIdxs[16];
8884   switch (OpNum) {
8885   default: llvm_unreachable("Unknown i32 permute!");
8886   case OP_VMRGHW:
8887     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8888     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8889     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8890     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8891     break;
8892   case OP_VMRGLW:
8893     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8894     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8895     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8896     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8897     break;
8898   case OP_VSPLTISW0:
8899     for (unsigned i = 0; i != 16; ++i)
8900       ShufIdxs[i] = (i&3)+0;
8901     break;
8902   case OP_VSPLTISW1:
8903     for (unsigned i = 0; i != 16; ++i)
8904       ShufIdxs[i] = (i&3)+4;
8905     break;
8906   case OP_VSPLTISW2:
8907     for (unsigned i = 0; i != 16; ++i)
8908       ShufIdxs[i] = (i&3)+8;
8909     break;
8910   case OP_VSPLTISW3:
8911     for (unsigned i = 0; i != 16; ++i)
8912       ShufIdxs[i] = (i&3)+12;
8913     break;
8914   case OP_VSLDOI4:
8915     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8916   case OP_VSLDOI8:
8917     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8918   case OP_VSLDOI12:
8919     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8920   }
8921   EVT VT = OpLHS.getValueType();
8922   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8923   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8924   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8925   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8926 }
8927 
8928 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8929 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8930 /// SDValue.
8931 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8932                                            SelectionDAG &DAG) const {
8933   const unsigned BytesInVector = 16;
8934   bool IsLE = Subtarget.isLittleEndian();
8935   SDLoc dl(N);
8936   SDValue V1 = N->getOperand(0);
8937   SDValue V2 = N->getOperand(1);
8938   unsigned ShiftElts = 0, InsertAtByte = 0;
8939   bool Swap = false;
8940 
8941   // Shifts required to get the byte we want at element 7.
8942   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8943                                    0, 15, 14, 13, 12, 11, 10, 9};
8944   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8945                                 1, 2,  3,  4,  5,  6,  7,  8};
8946 
8947   ArrayRef<int> Mask = N->getMask();
8948   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8949 
8950   // For each mask element, find out if we're just inserting something
8951   // from V2 into V1 or vice versa.
8952   // Possible permutations inserting an element from V2 into V1:
8953   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8954   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8955   //   ...
8956   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8957   // Inserting from V1 into V2 will be similar, except mask range will be
8958   // [16,31].
8959 
8960   bool FoundCandidate = false;
8961   // If both vector operands for the shuffle are the same vector, the mask
8962   // will contain only elements from the first one and the second one will be
8963   // undef.
8964   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8965   // Go through the mask of half-words to find an element that's being moved
8966   // from one vector to the other.
8967   for (unsigned i = 0; i < BytesInVector; ++i) {
8968     unsigned CurrentElement = Mask[i];
8969     // If 2nd operand is undefined, we should only look for element 7 in the
8970     // Mask.
8971     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8972       continue;
8973 
8974     bool OtherElementsInOrder = true;
8975     // Examine the other elements in the Mask to see if they're in original
8976     // order.
8977     for (unsigned j = 0; j < BytesInVector; ++j) {
8978       if (j == i)
8979         continue;
8980       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8981       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8982       // in which we always assume we're always picking from the 1st operand.
8983       int MaskOffset =
8984           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8985       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8986         OtherElementsInOrder = false;
8987         break;
8988       }
8989     }
8990     // If other elements are in original order, we record the number of shifts
8991     // we need to get the element we want into element 7. Also record which byte
8992     // in the vector we should insert into.
8993     if (OtherElementsInOrder) {
8994       // If 2nd operand is undefined, we assume no shifts and no swapping.
8995       if (V2.isUndef()) {
8996         ShiftElts = 0;
8997         Swap = false;
8998       } else {
8999         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9000         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9001                          : BigEndianShifts[CurrentElement & 0xF];
9002         Swap = CurrentElement < BytesInVector;
9003       }
9004       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9005       FoundCandidate = true;
9006       break;
9007     }
9008   }
9009 
9010   if (!FoundCandidate)
9011     return SDValue();
9012 
9013   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9014   // optionally with VECSHL if shift is required.
9015   if (Swap)
9016     std::swap(V1, V2);
9017   if (V2.isUndef())
9018     V2 = V1;
9019   if (ShiftElts) {
9020     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9021                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9022     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9023                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9024   }
9025   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9026                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9027 }
9028 
9029 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9030 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9031 /// SDValue.
9032 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9033                                            SelectionDAG &DAG) const {
9034   const unsigned NumHalfWords = 8;
9035   const unsigned BytesInVector = NumHalfWords * 2;
9036   // Check that the shuffle is on half-words.
9037   if (!isNByteElemShuffleMask(N, 2, 1))
9038     return SDValue();
9039 
9040   bool IsLE = Subtarget.isLittleEndian();
9041   SDLoc dl(N);
9042   SDValue V1 = N->getOperand(0);
9043   SDValue V2 = N->getOperand(1);
9044   unsigned ShiftElts = 0, InsertAtByte = 0;
9045   bool Swap = false;
9046 
9047   // Shifts required to get the half-word we want at element 3.
9048   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9049   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9050 
9051   uint32_t Mask = 0;
9052   uint32_t OriginalOrderLow = 0x1234567;
9053   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9054   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9055   // 32-bit space, only need 4-bit nibbles per element.
9056   for (unsigned i = 0; i < NumHalfWords; ++i) {
9057     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9058     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9059   }
9060 
9061   // For each mask element, find out if we're just inserting something
9062   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9063   // from V2 into V1:
9064   //   X, 1, 2, 3, 4, 5, 6, 7
9065   //   0, X, 2, 3, 4, 5, 6, 7
9066   //   0, 1, X, 3, 4, 5, 6, 7
9067   //   0, 1, 2, X, 4, 5, 6, 7
9068   //   0, 1, 2, 3, X, 5, 6, 7
9069   //   0, 1, 2, 3, 4, X, 6, 7
9070   //   0, 1, 2, 3, 4, 5, X, 7
9071   //   0, 1, 2, 3, 4, 5, 6, X
9072   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9073 
9074   bool FoundCandidate = false;
9075   // Go through the mask of half-words to find an element that's being moved
9076   // from one vector to the other.
9077   for (unsigned i = 0; i < NumHalfWords; ++i) {
9078     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9079     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9080     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9081     uint32_t TargetOrder = 0x0;
9082 
9083     // If both vector operands for the shuffle are the same vector, the mask
9084     // will contain only elements from the first one and the second one will be
9085     // undef.
9086     if (V2.isUndef()) {
9087       ShiftElts = 0;
9088       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9089       TargetOrder = OriginalOrderLow;
9090       Swap = false;
9091       // Skip if not the correct element or mask of other elements don't equal
9092       // to our expected order.
9093       if (MaskOneElt == VINSERTHSrcElem &&
9094           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9095         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9096         FoundCandidate = true;
9097         break;
9098       }
9099     } else { // If both operands are defined.
9100       // Target order is [8,15] if the current mask is between [0,7].
9101       TargetOrder =
9102           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9103       // Skip if mask of other elements don't equal our expected order.
9104       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9105         // We only need the last 3 bits for the number of shifts.
9106         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9107                          : BigEndianShifts[MaskOneElt & 0x7];
9108         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9109         Swap = MaskOneElt < NumHalfWords;
9110         FoundCandidate = true;
9111         break;
9112       }
9113     }
9114   }
9115 
9116   if (!FoundCandidate)
9117     return SDValue();
9118 
9119   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9120   // optionally with VECSHL if shift is required.
9121   if (Swap)
9122     std::swap(V1, V2);
9123   if (V2.isUndef())
9124     V2 = V1;
9125   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9126   if (ShiftElts) {
9127     // Double ShiftElts because we're left shifting on v16i8 type.
9128     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9129                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9130     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9131     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9132                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9133     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9134   }
9135   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9136   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9137                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9138   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9139 }
9140 
9141 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9142 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9143 /// return the default SDValue.
9144 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9145                                               SelectionDAG &DAG) const {
9146   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9147   // to v16i8. Peek through the bitcasts to get the actual operands.
9148   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9149   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9150 
9151   auto ShuffleMask = SVN->getMask();
9152   SDValue VecShuffle(SVN, 0);
9153   SDLoc DL(SVN);
9154 
9155   // Check that we have a four byte shuffle.
9156   if (!isNByteElemShuffleMask(SVN, 4, 1))
9157     return SDValue();
9158 
9159   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9160   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9161     std::swap(LHS, RHS);
9162     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9163     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9164   }
9165 
9166   // Ensure that the RHS is a vector of constants.
9167   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9168   if (!BVN)
9169     return SDValue();
9170 
9171   // Check if RHS is a splat of 4-bytes (or smaller).
9172   APInt APSplatValue, APSplatUndef;
9173   unsigned SplatBitSize;
9174   bool HasAnyUndefs;
9175   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9176                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9177       SplatBitSize > 32)
9178     return SDValue();
9179 
9180   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9181   // The instruction splats a constant C into two words of the source vector
9182   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9183   // Thus we check that the shuffle mask is the equivalent  of
9184   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9185   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9186   // within each word are consecutive, so we only need to check the first byte.
9187   SDValue Index;
9188   bool IsLE = Subtarget.isLittleEndian();
9189   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9190       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9191        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9192     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9193   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9194            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9195             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9196     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9197   else
9198     return SDValue();
9199 
9200   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9201   // for XXSPLTI32DX.
9202   unsigned SplatVal = APSplatValue.getZExtValue();
9203   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9204     SplatVal |= (SplatVal << SplatBitSize);
9205 
9206   SDValue SplatNode = DAG.getNode(
9207       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9208       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9209   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9210 }
9211 
9212 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9213 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9214 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9215 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9216 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9217   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9218   assert(Op.getValueType() == MVT::v1i128 &&
9219          "Only set v1i128 as custom, other type shouldn't reach here!");
9220   SDLoc dl(Op);
9221   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9222   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9223   unsigned SHLAmt = N1.getConstantOperandVal(0);
9224   if (SHLAmt % 8 == 0) {
9225     SmallVector<int, 16> Mask(16, 0);
9226     std::iota(Mask.begin(), Mask.end(), 0);
9227     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9228     if (SDValue Shuffle =
9229             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9230                                  DAG.getUNDEF(MVT::v16i8), Mask))
9231       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9232   }
9233   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9234   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9235                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9236   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9237                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9238   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9239   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9240 }
9241 
9242 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9243 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9244 /// return the code it can be lowered into.  Worst case, it can always be
9245 /// lowered into a vperm.
9246 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9247                                                SelectionDAG &DAG) const {
9248   SDLoc dl(Op);
9249   SDValue V1 = Op.getOperand(0);
9250   SDValue V2 = Op.getOperand(1);
9251   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9252 
9253   // Any nodes that were combined in the target-independent combiner prior
9254   // to vector legalization will not be sent to the target combine. Try to
9255   // combine it here.
9256   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9257     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9258       return NewShuffle;
9259     Op = NewShuffle;
9260     SVOp = cast<ShuffleVectorSDNode>(Op);
9261     V1 = Op.getOperand(0);
9262     V2 = Op.getOperand(1);
9263   }
9264   EVT VT = Op.getValueType();
9265   bool isLittleEndian = Subtarget.isLittleEndian();
9266 
9267   unsigned ShiftElts, InsertAtByte;
9268   bool Swap = false;
9269 
9270   // If this is a load-and-splat, we can do that with a single instruction
9271   // in some cases. However if the load has multiple uses, we don't want to
9272   // combine it because that will just produce multiple loads.
9273   bool IsPermutedLoad = false;
9274   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9275   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9276       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9277       InputLoad->hasOneUse()) {
9278     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9279     int SplatIdx =
9280       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9281 
9282     // The splat index for permuted loads will be in the left half of the vector
9283     // which is strictly wider than the loaded value by 8 bytes. So we need to
9284     // adjust the splat index to point to the correct address in memory.
9285     if (IsPermutedLoad) {
9286       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9287       SplatIdx += IsFourByte ? 2 : 1;
9288       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9289              "Splat of a value outside of the loaded memory");
9290     }
9291 
9292     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9293     // For 4-byte load-and-splat, we need Power9.
9294     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9295       uint64_t Offset = 0;
9296       if (IsFourByte)
9297         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9298       else
9299         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9300 
9301       SDValue BasePtr = LD->getBasePtr();
9302       if (Offset != 0)
9303         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9304                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9305       SDValue Ops[] = {
9306         LD->getChain(),    // Chain
9307         BasePtr,           // BasePtr
9308         DAG.getValueType(Op.getValueType()) // VT
9309       };
9310       SDVTList VTL =
9311         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9312       SDValue LdSplt =
9313         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9314                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9315       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9316       if (LdSplt.getValueType() != SVOp->getValueType(0))
9317         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9318       return LdSplt;
9319     }
9320   }
9321   if (Subtarget.hasP9Vector() &&
9322       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9323                            isLittleEndian)) {
9324     if (Swap)
9325       std::swap(V1, V2);
9326     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9327     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9328     if (ShiftElts) {
9329       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9330                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9331       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9332                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9333       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9334     }
9335     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9336                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9337     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9338   }
9339 
9340   if (Subtarget.hasPrefixInstrs()) {
9341     SDValue SplatInsertNode;
9342     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9343       return SplatInsertNode;
9344   }
9345 
9346   if (Subtarget.hasP9Altivec()) {
9347     SDValue NewISDNode;
9348     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9349       return NewISDNode;
9350 
9351     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9352       return NewISDNode;
9353   }
9354 
9355   if (Subtarget.hasVSX() &&
9356       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9357     if (Swap)
9358       std::swap(V1, V2);
9359     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9360     SDValue Conv2 =
9361         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9362 
9363     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9364                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9365     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9366   }
9367 
9368   if (Subtarget.hasVSX() &&
9369     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9370     if (Swap)
9371       std::swap(V1, V2);
9372     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9373     SDValue Conv2 =
9374         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9375 
9376     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9377                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9378     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9379   }
9380 
9381   if (Subtarget.hasP9Vector()) {
9382      if (PPC::isXXBRHShuffleMask(SVOp)) {
9383       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9384       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9385       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9386     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9387       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9388       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9389       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9390     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9391       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9392       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9393       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9394     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9395       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9396       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9397       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9398     }
9399   }
9400 
9401   if (Subtarget.hasVSX()) {
9402     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9403       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9404 
9405       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9406       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9407                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9408       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9409     }
9410 
9411     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9412     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9413       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9414       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9415       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9416     }
9417   }
9418 
9419   // Cases that are handled by instructions that take permute immediates
9420   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9421   // selected by the instruction selector.
9422   if (V2.isUndef()) {
9423     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9424         PPC::isSplatShuffleMask(SVOp, 2) ||
9425         PPC::isSplatShuffleMask(SVOp, 4) ||
9426         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9427         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9428         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9429         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9430         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9431         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9432         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9433         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9434         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9435         (Subtarget.hasP8Altivec() && (
9436          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9437          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9438          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9439       return Op;
9440     }
9441   }
9442 
9443   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9444   // and produce a fixed permutation.  If any of these match, do not lower to
9445   // VPERM.
9446   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9447   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9448       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9449       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9450       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9451       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9452       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9453       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9454       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9455       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9456       (Subtarget.hasP8Altivec() && (
9457        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9458        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9459        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9460     return Op;
9461 
9462   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9463   // perfect shuffle table to emit an optimal matching sequence.
9464   ArrayRef<int> PermMask = SVOp->getMask();
9465 
9466   unsigned PFIndexes[4];
9467   bool isFourElementShuffle = true;
9468   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9469     unsigned EltNo = 8;   // Start out undef.
9470     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9471       if (PermMask[i*4+j] < 0)
9472         continue;   // Undef, ignore it.
9473 
9474       unsigned ByteSource = PermMask[i*4+j];
9475       if ((ByteSource & 3) != j) {
9476         isFourElementShuffle = false;
9477         break;
9478       }
9479 
9480       if (EltNo == 8) {
9481         EltNo = ByteSource/4;
9482       } else if (EltNo != ByteSource/4) {
9483         isFourElementShuffle = false;
9484         break;
9485       }
9486     }
9487     PFIndexes[i] = EltNo;
9488   }
9489 
9490   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9491   // perfect shuffle vector to determine if it is cost effective to do this as
9492   // discrete instructions, or whether we should use a vperm.
9493   // For now, we skip this for little endian until such time as we have a
9494   // little-endian perfect shuffle table.
9495   if (isFourElementShuffle && !isLittleEndian) {
9496     // Compute the index in the perfect shuffle table.
9497     unsigned PFTableIndex =
9498       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9499 
9500     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9501     unsigned Cost  = (PFEntry >> 30);
9502 
9503     // Determining when to avoid vperm is tricky.  Many things affect the cost
9504     // of vperm, particularly how many times the perm mask needs to be computed.
9505     // For example, if the perm mask can be hoisted out of a loop or is already
9506     // used (perhaps because there are multiple permutes with the same shuffle
9507     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9508     // the loop requires an extra register.
9509     //
9510     // As a compromise, we only emit discrete instructions if the shuffle can be
9511     // generated in 3 or fewer operations.  When we have loop information
9512     // available, if this block is within a loop, we should avoid using vperm
9513     // for 3-operation perms and use a constant pool load instead.
9514     if (Cost < 3)
9515       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9516   }
9517 
9518   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9519   // vector that will get spilled to the constant pool.
9520   if (V2.isUndef()) V2 = V1;
9521 
9522   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9523   // that it is in input element units, not in bytes.  Convert now.
9524 
9525   // For little endian, the order of the input vectors is reversed, and
9526   // the permutation mask is complemented with respect to 31.  This is
9527   // necessary to produce proper semantics with the big-endian-biased vperm
9528   // instruction.
9529   EVT EltVT = V1.getValueType().getVectorElementType();
9530   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9531 
9532   SmallVector<SDValue, 16> ResultMask;
9533   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9534     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9535 
9536     for (unsigned j = 0; j != BytesPerElement; ++j)
9537       if (isLittleEndian)
9538         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9539                                              dl, MVT::i32));
9540       else
9541         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9542                                              MVT::i32));
9543   }
9544 
9545   ShufflesHandledWithVPERM++;
9546   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9547   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
9548   LLVM_DEBUG(SVOp->dump());
9549   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
9550   LLVM_DEBUG(VPermMask.dump());
9551 
9552   if (isLittleEndian)
9553     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9554                        V2, V1, VPermMask);
9555   else
9556     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9557                        V1, V2, VPermMask);
9558 }
9559 
9560 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9561 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9562 /// information about the intrinsic.
9563 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9564                                  bool &isDot, const PPCSubtarget &Subtarget) {
9565   unsigned IntrinsicID =
9566       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9567   CompareOpc = -1;
9568   isDot = false;
9569   switch (IntrinsicID) {
9570   default:
9571     return false;
9572   // Comparison predicates.
9573   case Intrinsic::ppc_altivec_vcmpbfp_p:
9574     CompareOpc = 966;
9575     isDot = true;
9576     break;
9577   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9578     CompareOpc = 198;
9579     isDot = true;
9580     break;
9581   case Intrinsic::ppc_altivec_vcmpequb_p:
9582     CompareOpc = 6;
9583     isDot = true;
9584     break;
9585   case Intrinsic::ppc_altivec_vcmpequh_p:
9586     CompareOpc = 70;
9587     isDot = true;
9588     break;
9589   case Intrinsic::ppc_altivec_vcmpequw_p:
9590     CompareOpc = 134;
9591     isDot = true;
9592     break;
9593   case Intrinsic::ppc_altivec_vcmpequd_p:
9594     if (Subtarget.hasP8Altivec()) {
9595       CompareOpc = 199;
9596       isDot = true;
9597     } else
9598       return false;
9599     break;
9600   case Intrinsic::ppc_altivec_vcmpneb_p:
9601   case Intrinsic::ppc_altivec_vcmpneh_p:
9602   case Intrinsic::ppc_altivec_vcmpnew_p:
9603   case Intrinsic::ppc_altivec_vcmpnezb_p:
9604   case Intrinsic::ppc_altivec_vcmpnezh_p:
9605   case Intrinsic::ppc_altivec_vcmpnezw_p:
9606     if (Subtarget.hasP9Altivec()) {
9607       switch (IntrinsicID) {
9608       default:
9609         llvm_unreachable("Unknown comparison intrinsic.");
9610       case Intrinsic::ppc_altivec_vcmpneb_p:
9611         CompareOpc = 7;
9612         break;
9613       case Intrinsic::ppc_altivec_vcmpneh_p:
9614         CompareOpc = 71;
9615         break;
9616       case Intrinsic::ppc_altivec_vcmpnew_p:
9617         CompareOpc = 135;
9618         break;
9619       case Intrinsic::ppc_altivec_vcmpnezb_p:
9620         CompareOpc = 263;
9621         break;
9622       case Intrinsic::ppc_altivec_vcmpnezh_p:
9623         CompareOpc = 327;
9624         break;
9625       case Intrinsic::ppc_altivec_vcmpnezw_p:
9626         CompareOpc = 391;
9627         break;
9628       }
9629       isDot = true;
9630     } else
9631       return false;
9632     break;
9633   case Intrinsic::ppc_altivec_vcmpgefp_p:
9634     CompareOpc = 454;
9635     isDot = true;
9636     break;
9637   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9638     CompareOpc = 710;
9639     isDot = true;
9640     break;
9641   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9642     CompareOpc = 774;
9643     isDot = true;
9644     break;
9645   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9646     CompareOpc = 838;
9647     isDot = true;
9648     break;
9649   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9650     CompareOpc = 902;
9651     isDot = true;
9652     break;
9653   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9654     if (Subtarget.hasP8Altivec()) {
9655       CompareOpc = 967;
9656       isDot = true;
9657     } else
9658       return false;
9659     break;
9660   case Intrinsic::ppc_altivec_vcmpgtub_p:
9661     CompareOpc = 518;
9662     isDot = true;
9663     break;
9664   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9665     CompareOpc = 582;
9666     isDot = true;
9667     break;
9668   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9669     CompareOpc = 646;
9670     isDot = true;
9671     break;
9672   case Intrinsic::ppc_altivec_vcmpgtud_p:
9673     if (Subtarget.hasP8Altivec()) {
9674       CompareOpc = 711;
9675       isDot = true;
9676     } else
9677       return false;
9678     break;
9679 
9680   case Intrinsic::ppc_altivec_vcmpequq:
9681   case Intrinsic::ppc_altivec_vcmpgtsq:
9682   case Intrinsic::ppc_altivec_vcmpgtuq:
9683     if (!Subtarget.isISA3_1())
9684       return false;
9685     switch (IntrinsicID) {
9686     default:
9687       llvm_unreachable("Unknown comparison intrinsic.");
9688     case Intrinsic::ppc_altivec_vcmpequq:
9689       CompareOpc = 455;
9690       break;
9691     case Intrinsic::ppc_altivec_vcmpgtsq:
9692       CompareOpc = 903;
9693       break;
9694     case Intrinsic::ppc_altivec_vcmpgtuq:
9695       CompareOpc = 647;
9696       break;
9697     }
9698     break;
9699 
9700   // VSX predicate comparisons use the same infrastructure
9701   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9702   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9703   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9704   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9705   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9706   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9707     if (Subtarget.hasVSX()) {
9708       switch (IntrinsicID) {
9709       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9710         CompareOpc = 99;
9711         break;
9712       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9713         CompareOpc = 115;
9714         break;
9715       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9716         CompareOpc = 107;
9717         break;
9718       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9719         CompareOpc = 67;
9720         break;
9721       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9722         CompareOpc = 83;
9723         break;
9724       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9725         CompareOpc = 75;
9726         break;
9727       }
9728       isDot = true;
9729     } else
9730       return false;
9731     break;
9732 
9733   // Normal Comparisons.
9734   case Intrinsic::ppc_altivec_vcmpbfp:
9735     CompareOpc = 966;
9736     break;
9737   case Intrinsic::ppc_altivec_vcmpeqfp:
9738     CompareOpc = 198;
9739     break;
9740   case Intrinsic::ppc_altivec_vcmpequb:
9741     CompareOpc = 6;
9742     break;
9743   case Intrinsic::ppc_altivec_vcmpequh:
9744     CompareOpc = 70;
9745     break;
9746   case Intrinsic::ppc_altivec_vcmpequw:
9747     CompareOpc = 134;
9748     break;
9749   case Intrinsic::ppc_altivec_vcmpequd:
9750     if (Subtarget.hasP8Altivec())
9751       CompareOpc = 199;
9752     else
9753       return false;
9754     break;
9755   case Intrinsic::ppc_altivec_vcmpneb:
9756   case Intrinsic::ppc_altivec_vcmpneh:
9757   case Intrinsic::ppc_altivec_vcmpnew:
9758   case Intrinsic::ppc_altivec_vcmpnezb:
9759   case Intrinsic::ppc_altivec_vcmpnezh:
9760   case Intrinsic::ppc_altivec_vcmpnezw:
9761     if (Subtarget.hasP9Altivec())
9762       switch (IntrinsicID) {
9763       default:
9764         llvm_unreachable("Unknown comparison intrinsic.");
9765       case Intrinsic::ppc_altivec_vcmpneb:
9766         CompareOpc = 7;
9767         break;
9768       case Intrinsic::ppc_altivec_vcmpneh:
9769         CompareOpc = 71;
9770         break;
9771       case Intrinsic::ppc_altivec_vcmpnew:
9772         CompareOpc = 135;
9773         break;
9774       case Intrinsic::ppc_altivec_vcmpnezb:
9775         CompareOpc = 263;
9776         break;
9777       case Intrinsic::ppc_altivec_vcmpnezh:
9778         CompareOpc = 327;
9779         break;
9780       case Intrinsic::ppc_altivec_vcmpnezw:
9781         CompareOpc = 391;
9782         break;
9783       }
9784     else
9785       return false;
9786     break;
9787   case Intrinsic::ppc_altivec_vcmpgefp:
9788     CompareOpc = 454;
9789     break;
9790   case Intrinsic::ppc_altivec_vcmpgtfp:
9791     CompareOpc = 710;
9792     break;
9793   case Intrinsic::ppc_altivec_vcmpgtsb:
9794     CompareOpc = 774;
9795     break;
9796   case Intrinsic::ppc_altivec_vcmpgtsh:
9797     CompareOpc = 838;
9798     break;
9799   case Intrinsic::ppc_altivec_vcmpgtsw:
9800     CompareOpc = 902;
9801     break;
9802   case Intrinsic::ppc_altivec_vcmpgtsd:
9803     if (Subtarget.hasP8Altivec())
9804       CompareOpc = 967;
9805     else
9806       return false;
9807     break;
9808   case Intrinsic::ppc_altivec_vcmpgtub:
9809     CompareOpc = 518;
9810     break;
9811   case Intrinsic::ppc_altivec_vcmpgtuh:
9812     CompareOpc = 582;
9813     break;
9814   case Intrinsic::ppc_altivec_vcmpgtuw:
9815     CompareOpc = 646;
9816     break;
9817   case Intrinsic::ppc_altivec_vcmpgtud:
9818     if (Subtarget.hasP8Altivec())
9819       CompareOpc = 711;
9820     else
9821       return false;
9822     break;
9823   case Intrinsic::ppc_altivec_vcmpequq_p:
9824   case Intrinsic::ppc_altivec_vcmpgtsq_p:
9825   case Intrinsic::ppc_altivec_vcmpgtuq_p:
9826     if (!Subtarget.isISA3_1())
9827       return false;
9828     switch (IntrinsicID) {
9829     default:
9830       llvm_unreachable("Unknown comparison intrinsic.");
9831     case Intrinsic::ppc_altivec_vcmpequq_p:
9832       CompareOpc = 455;
9833       break;
9834     case Intrinsic::ppc_altivec_vcmpgtsq_p:
9835       CompareOpc = 903;
9836       break;
9837     case Intrinsic::ppc_altivec_vcmpgtuq_p:
9838       CompareOpc = 647;
9839       break;
9840     }
9841     isDot = true;
9842     break;
9843   }
9844   return true;
9845 }
9846 
9847 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9848 /// lower, do it, otherwise return null.
9849 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9850                                                    SelectionDAG &DAG) const {
9851   unsigned IntrinsicID =
9852     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9853 
9854   SDLoc dl(Op);
9855 
9856   switch (IntrinsicID) {
9857   case Intrinsic::thread_pointer:
9858     // Reads the thread pointer register, used for __builtin_thread_pointer.
9859     if (Subtarget.isPPC64())
9860       return DAG.getRegister(PPC::X13, MVT::i64);
9861     return DAG.getRegister(PPC::R2, MVT::i32);
9862 
9863   case Intrinsic::ppc_mma_disassemble_acc:
9864   case Intrinsic::ppc_vsx_disassemble_pair: {
9865     int NumVecs = 2;
9866     SDValue WideVec = Op.getOperand(1);
9867     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
9868       NumVecs = 4;
9869       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
9870     }
9871     SmallVector<SDValue, 4> RetOps;
9872     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
9873       SDValue Extract = DAG.getNode(
9874           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
9875           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
9876                                                      : VecNo,
9877                           dl, MVT::i64));
9878       RetOps.push_back(Extract);
9879     }
9880     return DAG.getMergeValues(RetOps, dl);
9881   }
9882   }
9883 
9884   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9885   // opcode number of the comparison.
9886   int CompareOpc;
9887   bool isDot;
9888   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9889     return SDValue();    // Don't custom lower most intrinsics.
9890 
9891   // If this is a non-dot comparison, make the VCMP node and we are done.
9892   if (!isDot) {
9893     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9894                               Op.getOperand(1), Op.getOperand(2),
9895                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9896     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9897   }
9898 
9899   // Create the PPCISD altivec 'dot' comparison node.
9900   SDValue Ops[] = {
9901     Op.getOperand(2),  // LHS
9902     Op.getOperand(3),  // RHS
9903     DAG.getConstant(CompareOpc, dl, MVT::i32)
9904   };
9905   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9906   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
9907 
9908   // Now that we have the comparison, emit a copy from the CR to a GPR.
9909   // This is flagged to the above dot comparison.
9910   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9911                                 DAG.getRegister(PPC::CR6, MVT::i32),
9912                                 CompNode.getValue(1));
9913 
9914   // Unpack the result based on how the target uses it.
9915   unsigned BitNo;   // Bit # of CR6.
9916   bool InvertBit;   // Invert result?
9917   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9918   default:  // Can't happen, don't crash on invalid number though.
9919   case 0:   // Return the value of the EQ bit of CR6.
9920     BitNo = 0; InvertBit = false;
9921     break;
9922   case 1:   // Return the inverted value of the EQ bit of CR6.
9923     BitNo = 0; InvertBit = true;
9924     break;
9925   case 2:   // Return the value of the LT bit of CR6.
9926     BitNo = 2; InvertBit = false;
9927     break;
9928   case 3:   // Return the inverted value of the LT bit of CR6.
9929     BitNo = 2; InvertBit = true;
9930     break;
9931   }
9932 
9933   // Shift the bit into the low position.
9934   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9935                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9936   // Isolate the bit.
9937   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9938                       DAG.getConstant(1, dl, MVT::i32));
9939 
9940   // If we are supposed to, toggle the bit.
9941   if (InvertBit)
9942     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9943                         DAG.getConstant(1, dl, MVT::i32));
9944   return Flags;
9945 }
9946 
9947 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9948                                                SelectionDAG &DAG) const {
9949   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9950   // the beginning of the argument list.
9951   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9952   SDLoc DL(Op);
9953   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9954   case Intrinsic::ppc_cfence: {
9955     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9956     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9957     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9958                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9959                                                   Op.getOperand(ArgStart + 1)),
9960                                       Op.getOperand(0)),
9961                    0);
9962   }
9963   default:
9964     break;
9965   }
9966   return SDValue();
9967 }
9968 
9969 // Lower scalar BSWAP64 to xxbrd.
9970 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9971   SDLoc dl(Op);
9972   // MTVSRDD
9973   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9974                    Op.getOperand(0));
9975   // XXBRD
9976   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9977   // MFVSRD
9978   int VectorIndex = 0;
9979   if (Subtarget.isLittleEndian())
9980     VectorIndex = 1;
9981   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9982                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9983   return Op;
9984 }
9985 
9986 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9987 // compared to a value that is atomically loaded (atomic loads zero-extend).
9988 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9989                                                 SelectionDAG &DAG) const {
9990   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9991          "Expecting an atomic compare-and-swap here.");
9992   SDLoc dl(Op);
9993   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9994   EVT MemVT = AtomicNode->getMemoryVT();
9995   if (MemVT.getSizeInBits() >= 32)
9996     return Op;
9997 
9998   SDValue CmpOp = Op.getOperand(2);
9999   // If this is already correctly zero-extended, leave it alone.
10000   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10001   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10002     return Op;
10003 
10004   // Clear the high bits of the compare operand.
10005   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10006   SDValue NewCmpOp =
10007     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10008                 DAG.getConstant(MaskVal, dl, MVT::i32));
10009 
10010   // Replace the existing compare operand with the properly zero-extended one.
10011   SmallVector<SDValue, 4> Ops;
10012   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10013     Ops.push_back(AtomicNode->getOperand(i));
10014   Ops[2] = NewCmpOp;
10015   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10016   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10017   auto NodeTy =
10018     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10019   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10020 }
10021 
10022 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10023                                                  SelectionDAG &DAG) const {
10024   SDLoc dl(Op);
10025   // Create a stack slot that is 16-byte aligned.
10026   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10027   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10028   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10029   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10030 
10031   // Store the input value into Value#0 of the stack slot.
10032   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10033                                MachinePointerInfo());
10034   // Load it out.
10035   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10036 }
10037 
10038 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10039                                                   SelectionDAG &DAG) const {
10040   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10041          "Should only be called for ISD::INSERT_VECTOR_ELT");
10042 
10043   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10044   // We have legal lowering for constant indices but not for variable ones.
10045   if (!C)
10046     return SDValue();
10047 
10048   EVT VT = Op.getValueType();
10049   SDLoc dl(Op);
10050   SDValue V1 = Op.getOperand(0);
10051   SDValue V2 = Op.getOperand(1);
10052   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10053   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10054     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10055     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10056     unsigned InsertAtElement = C->getZExtValue();
10057     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10058     if (Subtarget.isLittleEndian()) {
10059       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10060     }
10061     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10062                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10063   }
10064   return Op;
10065 }
10066 
10067 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10068                                            SelectionDAG &DAG) const {
10069   SDLoc dl(Op);
10070   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10071   SDValue LoadChain = LN->getChain();
10072   SDValue BasePtr = LN->getBasePtr();
10073   EVT VT = Op.getValueType();
10074 
10075   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10076     return Op;
10077 
10078   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10079   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10080   // 2 or 4 vsx registers.
10081   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10082          "Type unsupported without MMA");
10083   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10084          "Type unsupported without paired vector support");
10085   Align Alignment = LN->getAlign();
10086   SmallVector<SDValue, 4> Loads;
10087   SmallVector<SDValue, 4> LoadChains;
10088   unsigned NumVecs = VT.getSizeInBits() / 128;
10089   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10090     SDValue Load =
10091         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10092                     LN->getPointerInfo().getWithOffset(Idx * 16),
10093                     commonAlignment(Alignment, Idx * 16),
10094                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10095     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10096                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10097     Loads.push_back(Load);
10098     LoadChains.push_back(Load.getValue(1));
10099   }
10100   if (Subtarget.isLittleEndian()) {
10101     std::reverse(Loads.begin(), Loads.end());
10102     std::reverse(LoadChains.begin(), LoadChains.end());
10103   }
10104   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10105   SDValue Value =
10106       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10107                   dl, VT, Loads);
10108   SDValue RetOps[] = {Value, TF};
10109   return DAG.getMergeValues(RetOps, dl);
10110 }
10111 
10112 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10113                                             SelectionDAG &DAG) const {
10114   SDLoc dl(Op);
10115   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10116   SDValue StoreChain = SN->getChain();
10117   SDValue BasePtr = SN->getBasePtr();
10118   SDValue Value = SN->getValue();
10119   EVT StoreVT = Value.getValueType();
10120 
10121   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10122     return Op;
10123 
10124   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10125   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10126   // underlying registers individually.
10127   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10128          "Type unsupported without MMA");
10129   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10130          "Type unsupported without paired vector support");
10131   Align Alignment = SN->getAlign();
10132   SmallVector<SDValue, 4> Stores;
10133   unsigned NumVecs = 2;
10134   if (StoreVT == MVT::v512i1) {
10135     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10136     NumVecs = 4;
10137   }
10138   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10139     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10140     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10141                               DAG.getConstant(VecNum, dl, MVT::i64));
10142     SDValue Store =
10143         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10144                      SN->getPointerInfo().getWithOffset(Idx * 16),
10145                      commonAlignment(Alignment, Idx * 16),
10146                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10147     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10148                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10149     Stores.push_back(Store);
10150   }
10151   SDValue TF = DAG.getTokenFactor(dl, Stores);
10152   return TF;
10153 }
10154 
10155 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10156   SDLoc dl(Op);
10157   if (Op.getValueType() == MVT::v4i32) {
10158     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10159 
10160     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10161     // +16 as shift amt.
10162     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10163     SDValue RHSSwap =   // = vrlw RHS, 16
10164       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10165 
10166     // Shrinkify inputs to v8i16.
10167     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10168     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10169     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10170 
10171     // Low parts multiplied together, generating 32-bit results (we ignore the
10172     // top parts).
10173     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10174                                         LHS, RHS, DAG, dl, MVT::v4i32);
10175 
10176     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10177                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10178     // Shift the high parts up 16 bits.
10179     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10180                               Neg16, DAG, dl);
10181     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10182   } else if (Op.getValueType() == MVT::v16i8) {
10183     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10184     bool isLittleEndian = Subtarget.isLittleEndian();
10185 
10186     // Multiply the even 8-bit parts, producing 16-bit sums.
10187     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10188                                            LHS, RHS, DAG, dl, MVT::v8i16);
10189     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10190 
10191     // Multiply the odd 8-bit parts, producing 16-bit sums.
10192     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10193                                           LHS, RHS, DAG, dl, MVT::v8i16);
10194     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10195 
10196     // Merge the results together.  Because vmuleub and vmuloub are
10197     // instructions with a big-endian bias, we must reverse the
10198     // element numbering and reverse the meaning of "odd" and "even"
10199     // when generating little endian code.
10200     int Ops[16];
10201     for (unsigned i = 0; i != 8; ++i) {
10202       if (isLittleEndian) {
10203         Ops[i*2  ] = 2*i;
10204         Ops[i*2+1] = 2*i+16;
10205       } else {
10206         Ops[i*2  ] = 2*i+1;
10207         Ops[i*2+1] = 2*i+1+16;
10208       }
10209     }
10210     if (isLittleEndian)
10211       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10212     else
10213       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10214   } else {
10215     llvm_unreachable("Unknown mul to lower!");
10216   }
10217 }
10218 
10219 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10220   bool IsStrict = Op->isStrictFPOpcode();
10221   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10222       !Subtarget.hasP9Vector())
10223     return SDValue();
10224 
10225   return Op;
10226 }
10227 
10228 // Custom lowering for fpext vf32 to v2f64
10229 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10230 
10231   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10232          "Should only be called for ISD::FP_EXTEND");
10233 
10234   // FIXME: handle extends from half precision float vectors on P9.
10235   // We only want to custom lower an extend from v2f32 to v2f64.
10236   if (Op.getValueType() != MVT::v2f64 ||
10237       Op.getOperand(0).getValueType() != MVT::v2f32)
10238     return SDValue();
10239 
10240   SDLoc dl(Op);
10241   SDValue Op0 = Op.getOperand(0);
10242 
10243   switch (Op0.getOpcode()) {
10244   default:
10245     return SDValue();
10246   case ISD::EXTRACT_SUBVECTOR: {
10247     assert(Op0.getNumOperands() == 2 &&
10248            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10249            "Node should have 2 operands with second one being a constant!");
10250 
10251     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10252       return SDValue();
10253 
10254     // Custom lower is only done for high or low doubleword.
10255     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10256     if (Idx % 2 != 0)
10257       return SDValue();
10258 
10259     // Since input is v4f32, at this point Idx is either 0 or 2.
10260     // Shift to get the doubleword position we want.
10261     int DWord = Idx >> 1;
10262 
10263     // High and low word positions are different on little endian.
10264     if (Subtarget.isLittleEndian())
10265       DWord ^= 0x1;
10266 
10267     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10268                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10269   }
10270   case ISD::FADD:
10271   case ISD::FMUL:
10272   case ISD::FSUB: {
10273     SDValue NewLoad[2];
10274     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10275       // Ensure both input are loads.
10276       SDValue LdOp = Op0.getOperand(i);
10277       if (LdOp.getOpcode() != ISD::LOAD)
10278         return SDValue();
10279       // Generate new load node.
10280       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10281       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10282       NewLoad[i] = DAG.getMemIntrinsicNode(
10283           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10284           LD->getMemoryVT(), LD->getMemOperand());
10285     }
10286     SDValue NewOp =
10287         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10288                     NewLoad[1], Op0.getNode()->getFlags());
10289     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10290                        DAG.getConstant(0, dl, MVT::i32));
10291   }
10292   case ISD::LOAD: {
10293     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10294     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10295     SDValue NewLd = DAG.getMemIntrinsicNode(
10296         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10297         LD->getMemoryVT(), LD->getMemOperand());
10298     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10299                        DAG.getConstant(0, dl, MVT::i32));
10300   }
10301   }
10302   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10303 }
10304 
10305 /// LowerOperation - Provide custom lowering hooks for some operations.
10306 ///
10307 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10308   switch (Op.getOpcode()) {
10309   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10310   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10311   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10312   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10313   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10314   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10315   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10316   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10317   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10318 
10319   // Variable argument lowering.
10320   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10321   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10322   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10323 
10324   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10325   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10326   case ISD::GET_DYNAMIC_AREA_OFFSET:
10327     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10328 
10329   // Exception handling lowering.
10330   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10331   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10332   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10333 
10334   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10335   case ISD::STORE:              return LowerSTORE(Op, DAG);
10336   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10337   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10338   case ISD::STRICT_FP_TO_UINT:
10339   case ISD::STRICT_FP_TO_SINT:
10340   case ISD::FP_TO_UINT:
10341   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10342   case ISD::STRICT_UINT_TO_FP:
10343   case ISD::STRICT_SINT_TO_FP:
10344   case ISD::UINT_TO_FP:
10345   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10346   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10347 
10348   // Lower 64-bit shifts.
10349   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10350   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10351   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10352 
10353   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10354   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10355 
10356   // Vector-related lowering.
10357   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10358   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10359   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10360   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10361   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10362   case ISD::MUL:                return LowerMUL(Op, DAG);
10363   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10364   case ISD::STRICT_FP_ROUND:
10365   case ISD::FP_ROUND:
10366     return LowerFP_ROUND(Op, DAG);
10367   case ISD::ROTL:               return LowerROTL(Op, DAG);
10368 
10369   // For counter-based loop handling.
10370   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10371 
10372   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10373 
10374   // Frame & Return address.
10375   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10376   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10377 
10378   case ISD::INTRINSIC_VOID:
10379     return LowerINTRINSIC_VOID(Op, DAG);
10380   case ISD::BSWAP:
10381     return LowerBSWAP(Op, DAG);
10382   case ISD::ATOMIC_CMP_SWAP:
10383     return LowerATOMIC_CMP_SWAP(Op, DAG);
10384   }
10385 }
10386 
10387 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10388                                            SmallVectorImpl<SDValue>&Results,
10389                                            SelectionDAG &DAG) const {
10390   SDLoc dl(N);
10391   switch (N->getOpcode()) {
10392   default:
10393     llvm_unreachable("Do not know how to custom type legalize this operation!");
10394   case ISD::READCYCLECOUNTER: {
10395     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10396     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10397 
10398     Results.push_back(
10399         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10400     Results.push_back(RTB.getValue(2));
10401     break;
10402   }
10403   case ISD::INTRINSIC_W_CHAIN: {
10404     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10405         Intrinsic::loop_decrement)
10406       break;
10407 
10408     assert(N->getValueType(0) == MVT::i1 &&
10409            "Unexpected result type for CTR decrement intrinsic");
10410     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10411                                  N->getValueType(0));
10412     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10413     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10414                                  N->getOperand(1));
10415 
10416     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10417     Results.push_back(NewInt.getValue(1));
10418     break;
10419   }
10420   case ISD::VAARG: {
10421     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10422       return;
10423 
10424     EVT VT = N->getValueType(0);
10425 
10426     if (VT == MVT::i64) {
10427       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10428 
10429       Results.push_back(NewNode);
10430       Results.push_back(NewNode.getValue(1));
10431     }
10432     return;
10433   }
10434   case ISD::STRICT_FP_TO_SINT:
10435   case ISD::STRICT_FP_TO_UINT:
10436   case ISD::FP_TO_SINT:
10437   case ISD::FP_TO_UINT:
10438     // LowerFP_TO_INT() can only handle f32 and f64.
10439     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10440         MVT::ppcf128)
10441       return;
10442     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10443     return;
10444   case ISD::TRUNCATE: {
10445     if (!N->getValueType(0).isVector())
10446       return;
10447     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10448     if (Lowered)
10449       Results.push_back(Lowered);
10450     return;
10451   }
10452   case ISD::FSHL:
10453   case ISD::FSHR:
10454     // Don't handle funnel shifts here.
10455     return;
10456   case ISD::BITCAST:
10457     // Don't handle bitcast here.
10458     return;
10459   case ISD::FP_EXTEND:
10460     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10461     if (Lowered)
10462       Results.push_back(Lowered);
10463     return;
10464   }
10465 }
10466 
10467 //===----------------------------------------------------------------------===//
10468 //  Other Lowering Code
10469 //===----------------------------------------------------------------------===//
10470 
10471 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10472   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10473   Function *Func = Intrinsic::getDeclaration(M, Id);
10474   return Builder.CreateCall(Func, {});
10475 }
10476 
10477 // The mappings for emitLeading/TrailingFence is taken from
10478 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10479 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10480                                                  Instruction *Inst,
10481                                                  AtomicOrdering Ord) const {
10482   if (Ord == AtomicOrdering::SequentiallyConsistent)
10483     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10484   if (isReleaseOrStronger(Ord))
10485     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10486   return nullptr;
10487 }
10488 
10489 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10490                                                   Instruction *Inst,
10491                                                   AtomicOrdering Ord) const {
10492   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10493     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10494     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10495     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10496     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10497       return Builder.CreateCall(
10498           Intrinsic::getDeclaration(
10499               Builder.GetInsertBlock()->getParent()->getParent(),
10500               Intrinsic::ppc_cfence, {Inst->getType()}),
10501           {Inst});
10502     // FIXME: Can use isync for rmw operation.
10503     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10504   }
10505   return nullptr;
10506 }
10507 
10508 MachineBasicBlock *
10509 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10510                                     unsigned AtomicSize,
10511                                     unsigned BinOpcode,
10512                                     unsigned CmpOpcode,
10513                                     unsigned CmpPred) const {
10514   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10515   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10516 
10517   auto LoadMnemonic = PPC::LDARX;
10518   auto StoreMnemonic = PPC::STDCX;
10519   switch (AtomicSize) {
10520   default:
10521     llvm_unreachable("Unexpected size of atomic entity");
10522   case 1:
10523     LoadMnemonic = PPC::LBARX;
10524     StoreMnemonic = PPC::STBCX;
10525     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10526     break;
10527   case 2:
10528     LoadMnemonic = PPC::LHARX;
10529     StoreMnemonic = PPC::STHCX;
10530     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10531     break;
10532   case 4:
10533     LoadMnemonic = PPC::LWARX;
10534     StoreMnemonic = PPC::STWCX;
10535     break;
10536   case 8:
10537     LoadMnemonic = PPC::LDARX;
10538     StoreMnemonic = PPC::STDCX;
10539     break;
10540   }
10541 
10542   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10543   MachineFunction *F = BB->getParent();
10544   MachineFunction::iterator It = ++BB->getIterator();
10545 
10546   Register dest = MI.getOperand(0).getReg();
10547   Register ptrA = MI.getOperand(1).getReg();
10548   Register ptrB = MI.getOperand(2).getReg();
10549   Register incr = MI.getOperand(3).getReg();
10550   DebugLoc dl = MI.getDebugLoc();
10551 
10552   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10553   MachineBasicBlock *loop2MBB =
10554     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10555   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10556   F->insert(It, loopMBB);
10557   if (CmpOpcode)
10558     F->insert(It, loop2MBB);
10559   F->insert(It, exitMBB);
10560   exitMBB->splice(exitMBB->begin(), BB,
10561                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10562   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10563 
10564   MachineRegisterInfo &RegInfo = F->getRegInfo();
10565   Register TmpReg = (!BinOpcode) ? incr :
10566     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10567                                            : &PPC::GPRCRegClass);
10568 
10569   //  thisMBB:
10570   //   ...
10571   //   fallthrough --> loopMBB
10572   BB->addSuccessor(loopMBB);
10573 
10574   //  loopMBB:
10575   //   l[wd]arx dest, ptr
10576   //   add r0, dest, incr
10577   //   st[wd]cx. r0, ptr
10578   //   bne- loopMBB
10579   //   fallthrough --> exitMBB
10580 
10581   // For max/min...
10582   //  loopMBB:
10583   //   l[wd]arx dest, ptr
10584   //   cmpl?[wd] incr, dest
10585   //   bgt exitMBB
10586   //  loop2MBB:
10587   //   st[wd]cx. dest, ptr
10588   //   bne- loopMBB
10589   //   fallthrough --> exitMBB
10590 
10591   BB = loopMBB;
10592   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10593     .addReg(ptrA).addReg(ptrB);
10594   if (BinOpcode)
10595     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10596   if (CmpOpcode) {
10597     // Signed comparisons of byte or halfword values must be sign-extended.
10598     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10599       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10600       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10601               ExtReg).addReg(dest);
10602       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10603         .addReg(incr).addReg(ExtReg);
10604     } else
10605       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10606         .addReg(incr).addReg(dest);
10607 
10608     BuildMI(BB, dl, TII->get(PPC::BCC))
10609       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10610     BB->addSuccessor(loop2MBB);
10611     BB->addSuccessor(exitMBB);
10612     BB = loop2MBB;
10613   }
10614   BuildMI(BB, dl, TII->get(StoreMnemonic))
10615     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10616   BuildMI(BB, dl, TII->get(PPC::BCC))
10617     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10618   BB->addSuccessor(loopMBB);
10619   BB->addSuccessor(exitMBB);
10620 
10621   //  exitMBB:
10622   //   ...
10623   BB = exitMBB;
10624   return BB;
10625 }
10626 
10627 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
10628   switch(MI.getOpcode()) {
10629   default:
10630     return false;
10631   case PPC::COPY:
10632     return TII->isSignExtended(MI);
10633   case PPC::LHA:
10634   case PPC::LHA8:
10635   case PPC::LHAU:
10636   case PPC::LHAU8:
10637   case PPC::LHAUX:
10638   case PPC::LHAUX8:
10639   case PPC::LHAX:
10640   case PPC::LHAX8:
10641   case PPC::LWA:
10642   case PPC::LWAUX:
10643   case PPC::LWAX:
10644   case PPC::LWAX_32:
10645   case PPC::LWA_32:
10646   case PPC::PLHA:
10647   case PPC::PLHA8:
10648   case PPC::PLHA8pc:
10649   case PPC::PLHApc:
10650   case PPC::PLWA:
10651   case PPC::PLWA8:
10652   case PPC::PLWA8pc:
10653   case PPC::PLWApc:
10654   case PPC::EXTSB:
10655   case PPC::EXTSB8:
10656   case PPC::EXTSB8_32_64:
10657   case PPC::EXTSB8_rec:
10658   case PPC::EXTSB_rec:
10659   case PPC::EXTSH:
10660   case PPC::EXTSH8:
10661   case PPC::EXTSH8_32_64:
10662   case PPC::EXTSH8_rec:
10663   case PPC::EXTSH_rec:
10664   case PPC::EXTSW:
10665   case PPC::EXTSWSLI:
10666   case PPC::EXTSWSLI_32_64:
10667   case PPC::EXTSWSLI_32_64_rec:
10668   case PPC::EXTSWSLI_rec:
10669   case PPC::EXTSW_32:
10670   case PPC::EXTSW_32_64:
10671   case PPC::EXTSW_32_64_rec:
10672   case PPC::EXTSW_rec:
10673   case PPC::SRAW:
10674   case PPC::SRAWI:
10675   case PPC::SRAWI_rec:
10676   case PPC::SRAW_rec:
10677     return true;
10678   }
10679   return false;
10680 }
10681 
10682 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10683     MachineInstr &MI, MachineBasicBlock *BB,
10684     bool is8bit, // operation
10685     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10686   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10687   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10688 
10689   // If this is a signed comparison and the value being compared is not known
10690   // to be sign extended, sign extend it here.
10691   DebugLoc dl = MI.getDebugLoc();
10692   MachineFunction *F = BB->getParent();
10693   MachineRegisterInfo &RegInfo = F->getRegInfo();
10694   Register incr = MI.getOperand(3).getReg();
10695   bool IsSignExtended = Register::isVirtualRegister(incr) &&
10696     isSignExtended(*RegInfo.getVRegDef(incr), TII);
10697 
10698   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
10699     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10700     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
10701         .addReg(MI.getOperand(3).getReg());
10702     MI.getOperand(3).setReg(ValueReg);
10703   }
10704   // If we support part-word atomic mnemonics, just use them
10705   if (Subtarget.hasPartwordAtomics())
10706     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10707                             CmpPred);
10708 
10709   // In 64 bit mode we have to use 64 bits for addresses, even though the
10710   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10711   // registers without caring whether they're 32 or 64, but here we're
10712   // doing actual arithmetic on the addresses.
10713   bool is64bit = Subtarget.isPPC64();
10714   bool isLittleEndian = Subtarget.isLittleEndian();
10715   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10716 
10717   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10718   MachineFunction::iterator It = ++BB->getIterator();
10719 
10720   Register dest = MI.getOperand(0).getReg();
10721   Register ptrA = MI.getOperand(1).getReg();
10722   Register ptrB = MI.getOperand(2).getReg();
10723 
10724   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10725   MachineBasicBlock *loop2MBB =
10726       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10727   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10728   F->insert(It, loopMBB);
10729   if (CmpOpcode)
10730     F->insert(It, loop2MBB);
10731   F->insert(It, exitMBB);
10732   exitMBB->splice(exitMBB->begin(), BB,
10733                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10734   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10735 
10736   const TargetRegisterClass *RC =
10737       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10738   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10739 
10740   Register PtrReg = RegInfo.createVirtualRegister(RC);
10741   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10742   Register ShiftReg =
10743       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10744   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10745   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10746   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10747   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10748   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10749   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10750   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10751   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10752   Register Ptr1Reg;
10753   Register TmpReg =
10754       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10755 
10756   //  thisMBB:
10757   //   ...
10758   //   fallthrough --> loopMBB
10759   BB->addSuccessor(loopMBB);
10760 
10761   // The 4-byte load must be aligned, while a char or short may be
10762   // anywhere in the word.  Hence all this nasty bookkeeping code.
10763   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10764   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10765   //   xori shift, shift1, 24 [16]
10766   //   rlwinm ptr, ptr1, 0, 0, 29
10767   //   slw incr2, incr, shift
10768   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10769   //   slw mask, mask2, shift
10770   //  loopMBB:
10771   //   lwarx tmpDest, ptr
10772   //   add tmp, tmpDest, incr2
10773   //   andc tmp2, tmpDest, mask
10774   //   and tmp3, tmp, mask
10775   //   or tmp4, tmp3, tmp2
10776   //   stwcx. tmp4, ptr
10777   //   bne- loopMBB
10778   //   fallthrough --> exitMBB
10779   //   srw dest, tmpDest, shift
10780   if (ptrA != ZeroReg) {
10781     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10782     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10783         .addReg(ptrA)
10784         .addReg(ptrB);
10785   } else {
10786     Ptr1Reg = ptrB;
10787   }
10788   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10789   // mode.
10790   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10791       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10792       .addImm(3)
10793       .addImm(27)
10794       .addImm(is8bit ? 28 : 27);
10795   if (!isLittleEndian)
10796     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10797         .addReg(Shift1Reg)
10798         .addImm(is8bit ? 24 : 16);
10799   if (is64bit)
10800     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10801         .addReg(Ptr1Reg)
10802         .addImm(0)
10803         .addImm(61);
10804   else
10805     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10806         .addReg(Ptr1Reg)
10807         .addImm(0)
10808         .addImm(0)
10809         .addImm(29);
10810   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10811   if (is8bit)
10812     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10813   else {
10814     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10815     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10816         .addReg(Mask3Reg)
10817         .addImm(65535);
10818   }
10819   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10820       .addReg(Mask2Reg)
10821       .addReg(ShiftReg);
10822 
10823   BB = loopMBB;
10824   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10825       .addReg(ZeroReg)
10826       .addReg(PtrReg);
10827   if (BinOpcode)
10828     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10829         .addReg(Incr2Reg)
10830         .addReg(TmpDestReg);
10831   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10832       .addReg(TmpDestReg)
10833       .addReg(MaskReg);
10834   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10835   if (CmpOpcode) {
10836     // For unsigned comparisons, we can directly compare the shifted values.
10837     // For signed comparisons we shift and sign extend.
10838     Register SReg = RegInfo.createVirtualRegister(GPRC);
10839     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10840         .addReg(TmpDestReg)
10841         .addReg(MaskReg);
10842     unsigned ValueReg = SReg;
10843     unsigned CmpReg = Incr2Reg;
10844     if (CmpOpcode == PPC::CMPW) {
10845       ValueReg = RegInfo.createVirtualRegister(GPRC);
10846       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10847           .addReg(SReg)
10848           .addReg(ShiftReg);
10849       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10850       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10851           .addReg(ValueReg);
10852       ValueReg = ValueSReg;
10853       CmpReg = incr;
10854     }
10855     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10856         .addReg(CmpReg)
10857         .addReg(ValueReg);
10858     BuildMI(BB, dl, TII->get(PPC::BCC))
10859         .addImm(CmpPred)
10860         .addReg(PPC::CR0)
10861         .addMBB(exitMBB);
10862     BB->addSuccessor(loop2MBB);
10863     BB->addSuccessor(exitMBB);
10864     BB = loop2MBB;
10865   }
10866   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10867   BuildMI(BB, dl, TII->get(PPC::STWCX))
10868       .addReg(Tmp4Reg)
10869       .addReg(ZeroReg)
10870       .addReg(PtrReg);
10871   BuildMI(BB, dl, TII->get(PPC::BCC))
10872       .addImm(PPC::PRED_NE)
10873       .addReg(PPC::CR0)
10874       .addMBB(loopMBB);
10875   BB->addSuccessor(loopMBB);
10876   BB->addSuccessor(exitMBB);
10877 
10878   //  exitMBB:
10879   //   ...
10880   BB = exitMBB;
10881   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10882       .addReg(TmpDestReg)
10883       .addReg(ShiftReg);
10884   return BB;
10885 }
10886 
10887 llvm::MachineBasicBlock *
10888 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10889                                     MachineBasicBlock *MBB) const {
10890   DebugLoc DL = MI.getDebugLoc();
10891   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10892   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10893 
10894   MachineFunction *MF = MBB->getParent();
10895   MachineRegisterInfo &MRI = MF->getRegInfo();
10896 
10897   const BasicBlock *BB = MBB->getBasicBlock();
10898   MachineFunction::iterator I = ++MBB->getIterator();
10899 
10900   Register DstReg = MI.getOperand(0).getReg();
10901   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10902   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10903   Register mainDstReg = MRI.createVirtualRegister(RC);
10904   Register restoreDstReg = MRI.createVirtualRegister(RC);
10905 
10906   MVT PVT = getPointerTy(MF->getDataLayout());
10907   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10908          "Invalid Pointer Size!");
10909   // For v = setjmp(buf), we generate
10910   //
10911   // thisMBB:
10912   //  SjLjSetup mainMBB
10913   //  bl mainMBB
10914   //  v_restore = 1
10915   //  b sinkMBB
10916   //
10917   // mainMBB:
10918   //  buf[LabelOffset] = LR
10919   //  v_main = 0
10920   //
10921   // sinkMBB:
10922   //  v = phi(main, restore)
10923   //
10924 
10925   MachineBasicBlock *thisMBB = MBB;
10926   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10927   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10928   MF->insert(I, mainMBB);
10929   MF->insert(I, sinkMBB);
10930 
10931   MachineInstrBuilder MIB;
10932 
10933   // Transfer the remainder of BB and its successor edges to sinkMBB.
10934   sinkMBB->splice(sinkMBB->begin(), MBB,
10935                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10936   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10937 
10938   // Note that the structure of the jmp_buf used here is not compatible
10939   // with that used by libc, and is not designed to be. Specifically, it
10940   // stores only those 'reserved' registers that LLVM does not otherwise
10941   // understand how to spill. Also, by convention, by the time this
10942   // intrinsic is called, Clang has already stored the frame address in the
10943   // first slot of the buffer and stack address in the third. Following the
10944   // X86 target code, we'll store the jump address in the second slot. We also
10945   // need to save the TOC pointer (R2) to handle jumps between shared
10946   // libraries, and that will be stored in the fourth slot. The thread
10947   // identifier (R13) is not affected.
10948 
10949   // thisMBB:
10950   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10951   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10952   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10953 
10954   // Prepare IP either in reg.
10955   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10956   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10957   Register BufReg = MI.getOperand(1).getReg();
10958 
10959   if (Subtarget.is64BitELFABI()) {
10960     setUsesTOCBasePtr(*MBB->getParent());
10961     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10962               .addReg(PPC::X2)
10963               .addImm(TOCOffset)
10964               .addReg(BufReg)
10965               .cloneMemRefs(MI);
10966   }
10967 
10968   // Naked functions never have a base pointer, and so we use r1. For all
10969   // other functions, this decision must be delayed until during PEI.
10970   unsigned BaseReg;
10971   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10972     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10973   else
10974     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10975 
10976   MIB = BuildMI(*thisMBB, MI, DL,
10977                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10978             .addReg(BaseReg)
10979             .addImm(BPOffset)
10980             .addReg(BufReg)
10981             .cloneMemRefs(MI);
10982 
10983   // Setup
10984   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10985   MIB.addRegMask(TRI->getNoPreservedMask());
10986 
10987   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10988 
10989   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10990           .addMBB(mainMBB);
10991   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10992 
10993   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10994   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10995 
10996   // mainMBB:
10997   //  mainDstReg = 0
10998   MIB =
10999       BuildMI(mainMBB, DL,
11000               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11001 
11002   // Store IP
11003   if (Subtarget.isPPC64()) {
11004     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11005             .addReg(LabelReg)
11006             .addImm(LabelOffset)
11007             .addReg(BufReg);
11008   } else {
11009     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11010             .addReg(LabelReg)
11011             .addImm(LabelOffset)
11012             .addReg(BufReg);
11013   }
11014   MIB.cloneMemRefs(MI);
11015 
11016   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11017   mainMBB->addSuccessor(sinkMBB);
11018 
11019   // sinkMBB:
11020   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11021           TII->get(PPC::PHI), DstReg)
11022     .addReg(mainDstReg).addMBB(mainMBB)
11023     .addReg(restoreDstReg).addMBB(thisMBB);
11024 
11025   MI.eraseFromParent();
11026   return sinkMBB;
11027 }
11028 
11029 MachineBasicBlock *
11030 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11031                                      MachineBasicBlock *MBB) const {
11032   DebugLoc DL = MI.getDebugLoc();
11033   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11034 
11035   MachineFunction *MF = MBB->getParent();
11036   MachineRegisterInfo &MRI = MF->getRegInfo();
11037 
11038   MVT PVT = getPointerTy(MF->getDataLayout());
11039   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11040          "Invalid Pointer Size!");
11041 
11042   const TargetRegisterClass *RC =
11043     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11044   Register Tmp = MRI.createVirtualRegister(RC);
11045   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11046   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11047   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11048   unsigned BP =
11049       (PVT == MVT::i64)
11050           ? PPC::X30
11051           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11052                                                               : PPC::R30);
11053 
11054   MachineInstrBuilder MIB;
11055 
11056   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11057   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11058   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11059   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11060 
11061   Register BufReg = MI.getOperand(0).getReg();
11062 
11063   // Reload FP (the jumped-to function may not have had a
11064   // frame pointer, and if so, then its r31 will be restored
11065   // as necessary).
11066   if (PVT == MVT::i64) {
11067     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11068             .addImm(0)
11069             .addReg(BufReg);
11070   } else {
11071     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11072             .addImm(0)
11073             .addReg(BufReg);
11074   }
11075   MIB.cloneMemRefs(MI);
11076 
11077   // Reload IP
11078   if (PVT == MVT::i64) {
11079     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11080             .addImm(LabelOffset)
11081             .addReg(BufReg);
11082   } else {
11083     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11084             .addImm(LabelOffset)
11085             .addReg(BufReg);
11086   }
11087   MIB.cloneMemRefs(MI);
11088 
11089   // Reload SP
11090   if (PVT == MVT::i64) {
11091     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11092             .addImm(SPOffset)
11093             .addReg(BufReg);
11094   } else {
11095     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11096             .addImm(SPOffset)
11097             .addReg(BufReg);
11098   }
11099   MIB.cloneMemRefs(MI);
11100 
11101   // Reload BP
11102   if (PVT == MVT::i64) {
11103     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11104             .addImm(BPOffset)
11105             .addReg(BufReg);
11106   } else {
11107     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11108             .addImm(BPOffset)
11109             .addReg(BufReg);
11110   }
11111   MIB.cloneMemRefs(MI);
11112 
11113   // Reload TOC
11114   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11115     setUsesTOCBasePtr(*MBB->getParent());
11116     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11117               .addImm(TOCOffset)
11118               .addReg(BufReg)
11119               .cloneMemRefs(MI);
11120   }
11121 
11122   // Jump
11123   BuildMI(*MBB, MI, DL,
11124           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11125   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11126 
11127   MI.eraseFromParent();
11128   return MBB;
11129 }
11130 
11131 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11132   // If the function specifically requests inline stack probes, emit them.
11133   if (MF.getFunction().hasFnAttribute("probe-stack"))
11134     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11135            "inline-asm";
11136   return false;
11137 }
11138 
11139 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11140   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11141   unsigned StackAlign = TFI->getStackAlignment();
11142   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11143          "Unexpected stack alignment");
11144   // The default stack probe size is 4096 if the function has no
11145   // stack-probe-size attribute.
11146   unsigned StackProbeSize = 4096;
11147   const Function &Fn = MF.getFunction();
11148   if (Fn.hasFnAttribute("stack-probe-size"))
11149     Fn.getFnAttribute("stack-probe-size")
11150         .getValueAsString()
11151         .getAsInteger(0, StackProbeSize);
11152   // Round down to the stack alignment.
11153   StackProbeSize &= ~(StackAlign - 1);
11154   return StackProbeSize ? StackProbeSize : StackAlign;
11155 }
11156 
11157 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11158 // into three phases. In the first phase, it uses pseudo instruction
11159 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11160 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11161 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11162 // MaxCallFrameSize so that it can calculate correct data area pointer.
11163 MachineBasicBlock *
11164 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11165                                     MachineBasicBlock *MBB) const {
11166   const bool isPPC64 = Subtarget.isPPC64();
11167   MachineFunction *MF = MBB->getParent();
11168   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11169   DebugLoc DL = MI.getDebugLoc();
11170   const unsigned ProbeSize = getStackProbeSize(*MF);
11171   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11172   MachineRegisterInfo &MRI = MF->getRegInfo();
11173   // The CFG of probing stack looks as
11174   //         +-----+
11175   //         | MBB |
11176   //         +--+--+
11177   //            |
11178   //       +----v----+
11179   //  +--->+ TestMBB +---+
11180   //  |    +----+----+   |
11181   //  |         |        |
11182   //  |   +-----v----+   |
11183   //  +---+ BlockMBB |   |
11184   //      +----------+   |
11185   //                     |
11186   //       +---------+   |
11187   //       | TailMBB +<--+
11188   //       +---------+
11189   // In MBB, calculate previous frame pointer and final stack pointer.
11190   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11191   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11192   // TailMBB is spliced via \p MI.
11193   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11194   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11195   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11196 
11197   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11198   MF->insert(MBBIter, TestMBB);
11199   MF->insert(MBBIter, BlockMBB);
11200   MF->insert(MBBIter, TailMBB);
11201 
11202   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11203   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11204 
11205   Register DstReg = MI.getOperand(0).getReg();
11206   Register NegSizeReg = MI.getOperand(1).getReg();
11207   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11208   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11209   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11210   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11211 
11212   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11213   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11214   // NegSize.
11215   unsigned ProbeOpc;
11216   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11217     ProbeOpc =
11218         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11219   else
11220     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11221     // and NegSizeReg will be allocated in the same phyreg to avoid
11222     // redundant copy when NegSizeReg has only one use which is current MI and
11223     // will be replaced by PREPARE_PROBED_ALLOCA then.
11224     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11225                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11226   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11227       .addDef(ActualNegSizeReg)
11228       .addReg(NegSizeReg)
11229       .add(MI.getOperand(2))
11230       .add(MI.getOperand(3));
11231 
11232   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11233   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11234           FinalStackPtr)
11235       .addReg(SPReg)
11236       .addReg(ActualNegSizeReg);
11237 
11238   // Materialize a scratch register for update.
11239   int64_t NegProbeSize = -(int64_t)ProbeSize;
11240   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11241   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11242   if (!isInt<16>(NegProbeSize)) {
11243     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11244     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11245         .addImm(NegProbeSize >> 16);
11246     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11247             ScratchReg)
11248         .addReg(TempReg)
11249         .addImm(NegProbeSize & 0xFFFF);
11250   } else
11251     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11252         .addImm(NegProbeSize);
11253 
11254   {
11255     // Probing leading residual part.
11256     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11257     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11258         .addReg(ActualNegSizeReg)
11259         .addReg(ScratchReg);
11260     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11261     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11262         .addReg(Div)
11263         .addReg(ScratchReg);
11264     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11265     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11266         .addReg(Mul)
11267         .addReg(ActualNegSizeReg);
11268     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11269         .addReg(FramePointer)
11270         .addReg(SPReg)
11271         .addReg(NegMod);
11272   }
11273 
11274   {
11275     // Remaining part should be multiple of ProbeSize.
11276     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11277     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11278         .addReg(SPReg)
11279         .addReg(FinalStackPtr);
11280     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11281         .addImm(PPC::PRED_EQ)
11282         .addReg(CmpResult)
11283         .addMBB(TailMBB);
11284     TestMBB->addSuccessor(BlockMBB);
11285     TestMBB->addSuccessor(TailMBB);
11286   }
11287 
11288   {
11289     // Touch the block.
11290     // |P...|P...|P...
11291     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11292         .addReg(FramePointer)
11293         .addReg(SPReg)
11294         .addReg(ScratchReg);
11295     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11296     BlockMBB->addSuccessor(TestMBB);
11297   }
11298 
11299   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11300   // DYNAREAOFFSET pseudo instruction to get the future result.
11301   Register MaxCallFrameSizeReg =
11302       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11303   BuildMI(TailMBB, DL,
11304           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11305           MaxCallFrameSizeReg)
11306       .add(MI.getOperand(2))
11307       .add(MI.getOperand(3));
11308   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11309       .addReg(SPReg)
11310       .addReg(MaxCallFrameSizeReg);
11311 
11312   // Splice instructions after MI to TailMBB.
11313   TailMBB->splice(TailMBB->end(), MBB,
11314                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11315   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11316   MBB->addSuccessor(TestMBB);
11317 
11318   // Delete the pseudo instruction.
11319   MI.eraseFromParent();
11320 
11321   ++NumDynamicAllocaProbed;
11322   return TailMBB;
11323 }
11324 
11325 MachineBasicBlock *
11326 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11327                                                MachineBasicBlock *BB) const {
11328   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11329       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11330     if (Subtarget.is64BitELFABI() &&
11331         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11332         !Subtarget.isUsingPCRelativeCalls()) {
11333       // Call lowering should have added an r2 operand to indicate a dependence
11334       // on the TOC base pointer value. It can't however, because there is no
11335       // way to mark the dependence as implicit there, and so the stackmap code
11336       // will confuse it with a regular operand. Instead, add the dependence
11337       // here.
11338       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11339     }
11340 
11341     return emitPatchPoint(MI, BB);
11342   }
11343 
11344   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11345       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11346     return emitEHSjLjSetJmp(MI, BB);
11347   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11348              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11349     return emitEHSjLjLongJmp(MI, BB);
11350   }
11351 
11352   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11353 
11354   // To "insert" these instructions we actually have to insert their
11355   // control-flow patterns.
11356   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11357   MachineFunction::iterator It = ++BB->getIterator();
11358 
11359   MachineFunction *F = BB->getParent();
11360 
11361   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11362       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11363       MI.getOpcode() == PPC::SELECT_I8) {
11364     SmallVector<MachineOperand, 2> Cond;
11365     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11366         MI.getOpcode() == PPC::SELECT_CC_I8)
11367       Cond.push_back(MI.getOperand(4));
11368     else
11369       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11370     Cond.push_back(MI.getOperand(1));
11371 
11372     DebugLoc dl = MI.getDebugLoc();
11373     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11374                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11375   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11376              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11377              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11378              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11379              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11380              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11381              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11382              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11383              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11384              MI.getOpcode() == PPC::SELECT_F4 ||
11385              MI.getOpcode() == PPC::SELECT_F8 ||
11386              MI.getOpcode() == PPC::SELECT_F16 ||
11387              MI.getOpcode() == PPC::SELECT_SPE ||
11388              MI.getOpcode() == PPC::SELECT_SPE4 ||
11389              MI.getOpcode() == PPC::SELECT_VRRC ||
11390              MI.getOpcode() == PPC::SELECT_VSFRC ||
11391              MI.getOpcode() == PPC::SELECT_VSSRC ||
11392              MI.getOpcode() == PPC::SELECT_VSRC) {
11393     // The incoming instruction knows the destination vreg to set, the
11394     // condition code register to branch on, the true/false values to
11395     // select between, and a branch opcode to use.
11396 
11397     //  thisMBB:
11398     //  ...
11399     //   TrueVal = ...
11400     //   cmpTY ccX, r1, r2
11401     //   bCC copy1MBB
11402     //   fallthrough --> copy0MBB
11403     MachineBasicBlock *thisMBB = BB;
11404     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11405     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11406     DebugLoc dl = MI.getDebugLoc();
11407     F->insert(It, copy0MBB);
11408     F->insert(It, sinkMBB);
11409 
11410     // Transfer the remainder of BB and its successor edges to sinkMBB.
11411     sinkMBB->splice(sinkMBB->begin(), BB,
11412                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11413     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11414 
11415     // Next, add the true and fallthrough blocks as its successors.
11416     BB->addSuccessor(copy0MBB);
11417     BB->addSuccessor(sinkMBB);
11418 
11419     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11420         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11421         MI.getOpcode() == PPC::SELECT_F16 ||
11422         MI.getOpcode() == PPC::SELECT_SPE4 ||
11423         MI.getOpcode() == PPC::SELECT_SPE ||
11424         MI.getOpcode() == PPC::SELECT_VRRC ||
11425         MI.getOpcode() == PPC::SELECT_VSFRC ||
11426         MI.getOpcode() == PPC::SELECT_VSSRC ||
11427         MI.getOpcode() == PPC::SELECT_VSRC) {
11428       BuildMI(BB, dl, TII->get(PPC::BC))
11429           .addReg(MI.getOperand(1).getReg())
11430           .addMBB(sinkMBB);
11431     } else {
11432       unsigned SelectPred = MI.getOperand(4).getImm();
11433       BuildMI(BB, dl, TII->get(PPC::BCC))
11434           .addImm(SelectPred)
11435           .addReg(MI.getOperand(1).getReg())
11436           .addMBB(sinkMBB);
11437     }
11438 
11439     //  copy0MBB:
11440     //   %FalseValue = ...
11441     //   # fallthrough to sinkMBB
11442     BB = copy0MBB;
11443 
11444     // Update machine-CFG edges
11445     BB->addSuccessor(sinkMBB);
11446 
11447     //  sinkMBB:
11448     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11449     //  ...
11450     BB = sinkMBB;
11451     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11452         .addReg(MI.getOperand(3).getReg())
11453         .addMBB(copy0MBB)
11454         .addReg(MI.getOperand(2).getReg())
11455         .addMBB(thisMBB);
11456   } else if (MI.getOpcode() == PPC::ReadTB) {
11457     // To read the 64-bit time-base register on a 32-bit target, we read the
11458     // two halves. Should the counter have wrapped while it was being read, we
11459     // need to try again.
11460     // ...
11461     // readLoop:
11462     // mfspr Rx,TBU # load from TBU
11463     // mfspr Ry,TB  # load from TB
11464     // mfspr Rz,TBU # load from TBU
11465     // cmpw crX,Rx,Rz # check if 'old'='new'
11466     // bne readLoop   # branch if they're not equal
11467     // ...
11468 
11469     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11470     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11471     DebugLoc dl = MI.getDebugLoc();
11472     F->insert(It, readMBB);
11473     F->insert(It, sinkMBB);
11474 
11475     // Transfer the remainder of BB and its successor edges to sinkMBB.
11476     sinkMBB->splice(sinkMBB->begin(), BB,
11477                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11478     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11479 
11480     BB->addSuccessor(readMBB);
11481     BB = readMBB;
11482 
11483     MachineRegisterInfo &RegInfo = F->getRegInfo();
11484     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11485     Register LoReg = MI.getOperand(0).getReg();
11486     Register HiReg = MI.getOperand(1).getReg();
11487 
11488     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11489     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11490     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11491 
11492     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11493 
11494     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11495         .addReg(HiReg)
11496         .addReg(ReadAgainReg);
11497     BuildMI(BB, dl, TII->get(PPC::BCC))
11498         .addImm(PPC::PRED_NE)
11499         .addReg(CmpReg)
11500         .addMBB(readMBB);
11501 
11502     BB->addSuccessor(readMBB);
11503     BB->addSuccessor(sinkMBB);
11504   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11505     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11506   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11507     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11508   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11509     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11510   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11511     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11512 
11513   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11514     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11515   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11516     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11517   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11518     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11519   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11520     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11521 
11522   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11523     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11524   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11525     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11526   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11527     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11528   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11529     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11530 
11531   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11532     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11533   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11534     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11535   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11536     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11537   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11538     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11539 
11540   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11541     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11542   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11543     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11544   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11545     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11546   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11547     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11548 
11549   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11550     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11551   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11552     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11553   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11554     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11555   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11556     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11557 
11558   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11559     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11560   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11561     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11562   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11563     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11564   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11565     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11566 
11567   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11568     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11569   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11570     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11571   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11572     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11573   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11574     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11575 
11576   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11577     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11578   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11579     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11580   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11581     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11582   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11583     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11584 
11585   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11586     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11587   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11588     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11589   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11590     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11591   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11592     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11593 
11594   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11595     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11596   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11597     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11598   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11599     BB = EmitAtomicBinary(MI, BB, 4, 0);
11600   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11601     BB = EmitAtomicBinary(MI, BB, 8, 0);
11602   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11603            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11604            (Subtarget.hasPartwordAtomics() &&
11605             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11606            (Subtarget.hasPartwordAtomics() &&
11607             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11608     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11609 
11610     auto LoadMnemonic = PPC::LDARX;
11611     auto StoreMnemonic = PPC::STDCX;
11612     switch (MI.getOpcode()) {
11613     default:
11614       llvm_unreachable("Compare and swap of unknown size");
11615     case PPC::ATOMIC_CMP_SWAP_I8:
11616       LoadMnemonic = PPC::LBARX;
11617       StoreMnemonic = PPC::STBCX;
11618       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11619       break;
11620     case PPC::ATOMIC_CMP_SWAP_I16:
11621       LoadMnemonic = PPC::LHARX;
11622       StoreMnemonic = PPC::STHCX;
11623       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11624       break;
11625     case PPC::ATOMIC_CMP_SWAP_I32:
11626       LoadMnemonic = PPC::LWARX;
11627       StoreMnemonic = PPC::STWCX;
11628       break;
11629     case PPC::ATOMIC_CMP_SWAP_I64:
11630       LoadMnemonic = PPC::LDARX;
11631       StoreMnemonic = PPC::STDCX;
11632       break;
11633     }
11634     Register dest = MI.getOperand(0).getReg();
11635     Register ptrA = MI.getOperand(1).getReg();
11636     Register ptrB = MI.getOperand(2).getReg();
11637     Register oldval = MI.getOperand(3).getReg();
11638     Register newval = MI.getOperand(4).getReg();
11639     DebugLoc dl = MI.getDebugLoc();
11640 
11641     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11642     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11643     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11644     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11645     F->insert(It, loop1MBB);
11646     F->insert(It, loop2MBB);
11647     F->insert(It, midMBB);
11648     F->insert(It, exitMBB);
11649     exitMBB->splice(exitMBB->begin(), BB,
11650                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11651     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11652 
11653     //  thisMBB:
11654     //   ...
11655     //   fallthrough --> loopMBB
11656     BB->addSuccessor(loop1MBB);
11657 
11658     // loop1MBB:
11659     //   l[bhwd]arx dest, ptr
11660     //   cmp[wd] dest, oldval
11661     //   bne- midMBB
11662     // loop2MBB:
11663     //   st[bhwd]cx. newval, ptr
11664     //   bne- loopMBB
11665     //   b exitBB
11666     // midMBB:
11667     //   st[bhwd]cx. dest, ptr
11668     // exitBB:
11669     BB = loop1MBB;
11670     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11671     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11672         .addReg(oldval)
11673         .addReg(dest);
11674     BuildMI(BB, dl, TII->get(PPC::BCC))
11675         .addImm(PPC::PRED_NE)
11676         .addReg(PPC::CR0)
11677         .addMBB(midMBB);
11678     BB->addSuccessor(loop2MBB);
11679     BB->addSuccessor(midMBB);
11680 
11681     BB = loop2MBB;
11682     BuildMI(BB, dl, TII->get(StoreMnemonic))
11683         .addReg(newval)
11684         .addReg(ptrA)
11685         .addReg(ptrB);
11686     BuildMI(BB, dl, TII->get(PPC::BCC))
11687         .addImm(PPC::PRED_NE)
11688         .addReg(PPC::CR0)
11689         .addMBB(loop1MBB);
11690     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11691     BB->addSuccessor(loop1MBB);
11692     BB->addSuccessor(exitMBB);
11693 
11694     BB = midMBB;
11695     BuildMI(BB, dl, TII->get(StoreMnemonic))
11696         .addReg(dest)
11697         .addReg(ptrA)
11698         .addReg(ptrB);
11699     BB->addSuccessor(exitMBB);
11700 
11701     //  exitMBB:
11702     //   ...
11703     BB = exitMBB;
11704   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11705              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11706     // We must use 64-bit registers for addresses when targeting 64-bit,
11707     // since we're actually doing arithmetic on them.  Other registers
11708     // can be 32-bit.
11709     bool is64bit = Subtarget.isPPC64();
11710     bool isLittleEndian = Subtarget.isLittleEndian();
11711     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11712 
11713     Register dest = MI.getOperand(0).getReg();
11714     Register ptrA = MI.getOperand(1).getReg();
11715     Register ptrB = MI.getOperand(2).getReg();
11716     Register oldval = MI.getOperand(3).getReg();
11717     Register newval = MI.getOperand(4).getReg();
11718     DebugLoc dl = MI.getDebugLoc();
11719 
11720     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11721     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11722     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11723     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11724     F->insert(It, loop1MBB);
11725     F->insert(It, loop2MBB);
11726     F->insert(It, midMBB);
11727     F->insert(It, exitMBB);
11728     exitMBB->splice(exitMBB->begin(), BB,
11729                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11730     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11731 
11732     MachineRegisterInfo &RegInfo = F->getRegInfo();
11733     const TargetRegisterClass *RC =
11734         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11735     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11736 
11737     Register PtrReg = RegInfo.createVirtualRegister(RC);
11738     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11739     Register ShiftReg =
11740         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11741     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11742     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11743     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11744     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11745     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11746     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11747     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11748     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11749     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11750     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11751     Register Ptr1Reg;
11752     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11753     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11754     //  thisMBB:
11755     //   ...
11756     //   fallthrough --> loopMBB
11757     BB->addSuccessor(loop1MBB);
11758 
11759     // The 4-byte load must be aligned, while a char or short may be
11760     // anywhere in the word.  Hence all this nasty bookkeeping code.
11761     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11762     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11763     //   xori shift, shift1, 24 [16]
11764     //   rlwinm ptr, ptr1, 0, 0, 29
11765     //   slw newval2, newval, shift
11766     //   slw oldval2, oldval,shift
11767     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11768     //   slw mask, mask2, shift
11769     //   and newval3, newval2, mask
11770     //   and oldval3, oldval2, mask
11771     // loop1MBB:
11772     //   lwarx tmpDest, ptr
11773     //   and tmp, tmpDest, mask
11774     //   cmpw tmp, oldval3
11775     //   bne- midMBB
11776     // loop2MBB:
11777     //   andc tmp2, tmpDest, mask
11778     //   or tmp4, tmp2, newval3
11779     //   stwcx. tmp4, ptr
11780     //   bne- loop1MBB
11781     //   b exitBB
11782     // midMBB:
11783     //   stwcx. tmpDest, ptr
11784     // exitBB:
11785     //   srw dest, tmpDest, shift
11786     if (ptrA != ZeroReg) {
11787       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11788       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11789           .addReg(ptrA)
11790           .addReg(ptrB);
11791     } else {
11792       Ptr1Reg = ptrB;
11793     }
11794 
11795     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11796     // mode.
11797     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11798         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11799         .addImm(3)
11800         .addImm(27)
11801         .addImm(is8bit ? 28 : 27);
11802     if (!isLittleEndian)
11803       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11804           .addReg(Shift1Reg)
11805           .addImm(is8bit ? 24 : 16);
11806     if (is64bit)
11807       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11808           .addReg(Ptr1Reg)
11809           .addImm(0)
11810           .addImm(61);
11811     else
11812       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11813           .addReg(Ptr1Reg)
11814           .addImm(0)
11815           .addImm(0)
11816           .addImm(29);
11817     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11818         .addReg(newval)
11819         .addReg(ShiftReg);
11820     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11821         .addReg(oldval)
11822         .addReg(ShiftReg);
11823     if (is8bit)
11824       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11825     else {
11826       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11827       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11828           .addReg(Mask3Reg)
11829           .addImm(65535);
11830     }
11831     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11832         .addReg(Mask2Reg)
11833         .addReg(ShiftReg);
11834     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11835         .addReg(NewVal2Reg)
11836         .addReg(MaskReg);
11837     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11838         .addReg(OldVal2Reg)
11839         .addReg(MaskReg);
11840 
11841     BB = loop1MBB;
11842     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11843         .addReg(ZeroReg)
11844         .addReg(PtrReg);
11845     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11846         .addReg(TmpDestReg)
11847         .addReg(MaskReg);
11848     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11849         .addReg(TmpReg)
11850         .addReg(OldVal3Reg);
11851     BuildMI(BB, dl, TII->get(PPC::BCC))
11852         .addImm(PPC::PRED_NE)
11853         .addReg(PPC::CR0)
11854         .addMBB(midMBB);
11855     BB->addSuccessor(loop2MBB);
11856     BB->addSuccessor(midMBB);
11857 
11858     BB = loop2MBB;
11859     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11860         .addReg(TmpDestReg)
11861         .addReg(MaskReg);
11862     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11863         .addReg(Tmp2Reg)
11864         .addReg(NewVal3Reg);
11865     BuildMI(BB, dl, TII->get(PPC::STWCX))
11866         .addReg(Tmp4Reg)
11867         .addReg(ZeroReg)
11868         .addReg(PtrReg);
11869     BuildMI(BB, dl, TII->get(PPC::BCC))
11870         .addImm(PPC::PRED_NE)
11871         .addReg(PPC::CR0)
11872         .addMBB(loop1MBB);
11873     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11874     BB->addSuccessor(loop1MBB);
11875     BB->addSuccessor(exitMBB);
11876 
11877     BB = midMBB;
11878     BuildMI(BB, dl, TII->get(PPC::STWCX))
11879         .addReg(TmpDestReg)
11880         .addReg(ZeroReg)
11881         .addReg(PtrReg);
11882     BB->addSuccessor(exitMBB);
11883 
11884     //  exitMBB:
11885     //   ...
11886     BB = exitMBB;
11887     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11888         .addReg(TmpReg)
11889         .addReg(ShiftReg);
11890   } else if (MI.getOpcode() == PPC::FADDrtz) {
11891     // This pseudo performs an FADD with rounding mode temporarily forced
11892     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11893     // is not modeled at the SelectionDAG level.
11894     Register Dest = MI.getOperand(0).getReg();
11895     Register Src1 = MI.getOperand(1).getReg();
11896     Register Src2 = MI.getOperand(2).getReg();
11897     DebugLoc dl = MI.getDebugLoc();
11898 
11899     MachineRegisterInfo &RegInfo = F->getRegInfo();
11900     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11901 
11902     // Save FPSCR value.
11903     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11904 
11905     // Set rounding mode to round-to-zero.
11906     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
11907         .addImm(31)
11908         .addReg(PPC::RM, RegState::ImplicitDefine);
11909 
11910     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
11911         .addImm(30)
11912         .addReg(PPC::RM, RegState::ImplicitDefine);
11913 
11914     // Perform addition.
11915     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
11916                    .addReg(Src1)
11917                    .addReg(Src2);
11918     if (MI.getFlag(MachineInstr::NoFPExcept))
11919       MIB.setMIFlag(MachineInstr::NoFPExcept);
11920 
11921     // Restore FPSCR value.
11922     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11923   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11924              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11925              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11926              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11927     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11928                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11929                           ? PPC::ANDI8_rec
11930                           : PPC::ANDI_rec;
11931     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11932                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11933 
11934     MachineRegisterInfo &RegInfo = F->getRegInfo();
11935     Register Dest = RegInfo.createVirtualRegister(
11936         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11937 
11938     DebugLoc Dl = MI.getDebugLoc();
11939     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11940         .addReg(MI.getOperand(1).getReg())
11941         .addImm(1);
11942     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11943             MI.getOperand(0).getReg())
11944         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11945   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11946     DebugLoc Dl = MI.getDebugLoc();
11947     MachineRegisterInfo &RegInfo = F->getRegInfo();
11948     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11949     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11950     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11951             MI.getOperand(0).getReg())
11952         .addReg(CRReg);
11953   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11954     DebugLoc Dl = MI.getDebugLoc();
11955     unsigned Imm = MI.getOperand(1).getImm();
11956     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11957     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11958             MI.getOperand(0).getReg())
11959         .addReg(PPC::CR0EQ);
11960   } else if (MI.getOpcode() == PPC::SETRNDi) {
11961     DebugLoc dl = MI.getDebugLoc();
11962     Register OldFPSCRReg = MI.getOperand(0).getReg();
11963 
11964     // Save FPSCR value.
11965     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11966 
11967     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11968     // the following settings:
11969     //   00 Round to nearest
11970     //   01 Round to 0
11971     //   10 Round to +inf
11972     //   11 Round to -inf
11973 
11974     // When the operand is immediate, using the two least significant bits of
11975     // the immediate to set the bits 62:63 of FPSCR.
11976     unsigned Mode = MI.getOperand(1).getImm();
11977     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11978         .addImm(31)
11979         .addReg(PPC::RM, RegState::ImplicitDefine);
11980 
11981     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11982         .addImm(30)
11983         .addReg(PPC::RM, RegState::ImplicitDefine);
11984   } else if (MI.getOpcode() == PPC::SETRND) {
11985     DebugLoc dl = MI.getDebugLoc();
11986 
11987     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11988     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11989     // If the target doesn't have DirectMove, we should use stack to do the
11990     // conversion, because the target doesn't have the instructions like mtvsrd
11991     // or mfvsrd to do this conversion directly.
11992     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11993       if (Subtarget.hasDirectMove()) {
11994         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11995           .addReg(SrcReg);
11996       } else {
11997         // Use stack to do the register copy.
11998         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11999         MachineRegisterInfo &RegInfo = F->getRegInfo();
12000         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12001         if (RC == &PPC::F8RCRegClass) {
12002           // Copy register from F8RCRegClass to G8RCRegclass.
12003           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12004                  "Unsupported RegClass.");
12005 
12006           StoreOp = PPC::STFD;
12007           LoadOp = PPC::LD;
12008         } else {
12009           // Copy register from G8RCRegClass to F8RCRegclass.
12010           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12011                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12012                  "Unsupported RegClass.");
12013         }
12014 
12015         MachineFrameInfo &MFI = F->getFrameInfo();
12016         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12017 
12018         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12019             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12020             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12021             MFI.getObjectAlign(FrameIdx));
12022 
12023         // Store the SrcReg into the stack.
12024         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12025           .addReg(SrcReg)
12026           .addImm(0)
12027           .addFrameIndex(FrameIdx)
12028           .addMemOperand(MMOStore);
12029 
12030         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12031             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12032             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12033             MFI.getObjectAlign(FrameIdx));
12034 
12035         // Load from the stack where SrcReg is stored, and save to DestReg,
12036         // so we have done the RegClass conversion from RegClass::SrcReg to
12037         // RegClass::DestReg.
12038         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12039           .addImm(0)
12040           .addFrameIndex(FrameIdx)
12041           .addMemOperand(MMOLoad);
12042       }
12043     };
12044 
12045     Register OldFPSCRReg = MI.getOperand(0).getReg();
12046 
12047     // Save FPSCR value.
12048     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12049 
12050     // When the operand is gprc register, use two least significant bits of the
12051     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12052     //
12053     // copy OldFPSCRTmpReg, OldFPSCRReg
12054     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12055     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12056     // copy NewFPSCRReg, NewFPSCRTmpReg
12057     // mtfsf 255, NewFPSCRReg
12058     MachineOperand SrcOp = MI.getOperand(1);
12059     MachineRegisterInfo &RegInfo = F->getRegInfo();
12060     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12061 
12062     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12063 
12064     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12065     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12066 
12067     // The first operand of INSERT_SUBREG should be a register which has
12068     // subregisters, we only care about its RegClass, so we should use an
12069     // IMPLICIT_DEF register.
12070     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12071     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12072       .addReg(ImDefReg)
12073       .add(SrcOp)
12074       .addImm(1);
12075 
12076     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12077     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12078       .addReg(OldFPSCRTmpReg)
12079       .addReg(ExtSrcReg)
12080       .addImm(0)
12081       .addImm(62);
12082 
12083     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12084     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12085 
12086     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12087     // bits of FPSCR.
12088     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12089       .addImm(255)
12090       .addReg(NewFPSCRReg)
12091       .addImm(0)
12092       .addImm(0);
12093   } else if (MI.getOpcode() == PPC::SETFLM) {
12094     DebugLoc Dl = MI.getDebugLoc();
12095 
12096     // Result of setflm is previous FPSCR content, so we need to save it first.
12097     Register OldFPSCRReg = MI.getOperand(0).getReg();
12098     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12099 
12100     // Put bits in 32:63 to FPSCR.
12101     Register NewFPSCRReg = MI.getOperand(1).getReg();
12102     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12103         .addImm(255)
12104         .addReg(NewFPSCRReg)
12105         .addImm(0)
12106         .addImm(0);
12107   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12108              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12109     return emitProbedAlloca(MI, BB);
12110   } else {
12111     llvm_unreachable("Unexpected instr type to insert");
12112   }
12113 
12114   MI.eraseFromParent(); // The pseudo instruction is gone now.
12115   return BB;
12116 }
12117 
12118 //===----------------------------------------------------------------------===//
12119 // Target Optimization Hooks
12120 //===----------------------------------------------------------------------===//
12121 
12122 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12123   // For the estimates, convergence is quadratic, so we essentially double the
12124   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12125   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12126   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12127   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12128   if (VT.getScalarType() == MVT::f64)
12129     RefinementSteps++;
12130   return RefinementSteps;
12131 }
12132 
12133 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12134                                             const DenormalMode &Mode) const {
12135   // We only have VSX Vector Test for software Square Root.
12136   EVT VT = Op.getValueType();
12137   if (!isTypeLegal(MVT::i1) ||
12138       (VT != MVT::f64 &&
12139        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12140     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12141 
12142   SDLoc DL(Op);
12143   // The output register of FTSQRT is CR field.
12144   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12145   // ftsqrt BF,FRB
12146   // Let e_b be the unbiased exponent of the double-precision
12147   // floating-point operand in register FRB.
12148   // fe_flag is set to 1 if either of the following conditions occurs.
12149   //   - The double-precision floating-point operand in register FRB is a zero,
12150   //     a NaN, or an infinity, or a negative value.
12151   //   - e_b is less than or equal to -970.
12152   // Otherwise fe_flag is set to 0.
12153   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12154   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12155   // exponent is less than -970)
12156   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12157   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12158                                     FTSQRT, SRIdxVal),
12159                  0);
12160 }
12161 
12162 SDValue
12163 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12164                                                SelectionDAG &DAG) const {
12165   // We only have VSX Vector Square Root.
12166   EVT VT = Op.getValueType();
12167   if (VT != MVT::f64 &&
12168       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12169     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12170 
12171   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12172 }
12173 
12174 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12175                                            int Enabled, int &RefinementSteps,
12176                                            bool &UseOneConstNR,
12177                                            bool Reciprocal) const {
12178   EVT VT = Operand.getValueType();
12179   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12180       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12181       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12182       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12183     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12184       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12185 
12186     // The Newton-Raphson computation with a single constant does not provide
12187     // enough accuracy on some CPUs.
12188     UseOneConstNR = !Subtarget.needsTwoConstNR();
12189     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12190   }
12191   return SDValue();
12192 }
12193 
12194 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12195                                             int Enabled,
12196                                             int &RefinementSteps) const {
12197   EVT VT = Operand.getValueType();
12198   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12199       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12200       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12201       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12202     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12203       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12204     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12205   }
12206   return SDValue();
12207 }
12208 
12209 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12210   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12211   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12212   // enabled for division), this functionality is redundant with the default
12213   // combiner logic (once the division -> reciprocal/multiply transformation
12214   // has taken place). As a result, this matters more for older cores than for
12215   // newer ones.
12216 
12217   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12218   // reciprocal if there are two or more FDIVs (for embedded cores with only
12219   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12220   switch (Subtarget.getCPUDirective()) {
12221   default:
12222     return 3;
12223   case PPC::DIR_440:
12224   case PPC::DIR_A2:
12225   case PPC::DIR_E500:
12226   case PPC::DIR_E500mc:
12227   case PPC::DIR_E5500:
12228     return 2;
12229   }
12230 }
12231 
12232 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12233 // collapsed, and so we need to look through chains of them.
12234 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12235                                      int64_t& Offset, SelectionDAG &DAG) {
12236   if (DAG.isBaseWithConstantOffset(Loc)) {
12237     Base = Loc.getOperand(0);
12238     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12239 
12240     // The base might itself be a base plus an offset, and if so, accumulate
12241     // that as well.
12242     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12243   }
12244 }
12245 
12246 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12247                             unsigned Bytes, int Dist,
12248                             SelectionDAG &DAG) {
12249   if (VT.getSizeInBits() / 8 != Bytes)
12250     return false;
12251 
12252   SDValue BaseLoc = Base->getBasePtr();
12253   if (Loc.getOpcode() == ISD::FrameIndex) {
12254     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12255       return false;
12256     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12257     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12258     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12259     int FS  = MFI.getObjectSize(FI);
12260     int BFS = MFI.getObjectSize(BFI);
12261     if (FS != BFS || FS != (int)Bytes) return false;
12262     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12263   }
12264 
12265   SDValue Base1 = Loc, Base2 = BaseLoc;
12266   int64_t Offset1 = 0, Offset2 = 0;
12267   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12268   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12269   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12270     return true;
12271 
12272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12273   const GlobalValue *GV1 = nullptr;
12274   const GlobalValue *GV2 = nullptr;
12275   Offset1 = 0;
12276   Offset2 = 0;
12277   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12278   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12279   if (isGA1 && isGA2 && GV1 == GV2)
12280     return Offset1 == (Offset2 + Dist*Bytes);
12281   return false;
12282 }
12283 
12284 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12285 // not enforce equality of the chain operands.
12286 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12287                             unsigned Bytes, int Dist,
12288                             SelectionDAG &DAG) {
12289   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12290     EVT VT = LS->getMemoryVT();
12291     SDValue Loc = LS->getBasePtr();
12292     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12293   }
12294 
12295   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12296     EVT VT;
12297     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12298     default: return false;
12299     case Intrinsic::ppc_altivec_lvx:
12300     case Intrinsic::ppc_altivec_lvxl:
12301     case Intrinsic::ppc_vsx_lxvw4x:
12302     case Intrinsic::ppc_vsx_lxvw4x_be:
12303       VT = MVT::v4i32;
12304       break;
12305     case Intrinsic::ppc_vsx_lxvd2x:
12306     case Intrinsic::ppc_vsx_lxvd2x_be:
12307       VT = MVT::v2f64;
12308       break;
12309     case Intrinsic::ppc_altivec_lvebx:
12310       VT = MVT::i8;
12311       break;
12312     case Intrinsic::ppc_altivec_lvehx:
12313       VT = MVT::i16;
12314       break;
12315     case Intrinsic::ppc_altivec_lvewx:
12316       VT = MVT::i32;
12317       break;
12318     }
12319 
12320     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12321   }
12322 
12323   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12324     EVT VT;
12325     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12326     default: return false;
12327     case Intrinsic::ppc_altivec_stvx:
12328     case Intrinsic::ppc_altivec_stvxl:
12329     case Intrinsic::ppc_vsx_stxvw4x:
12330       VT = MVT::v4i32;
12331       break;
12332     case Intrinsic::ppc_vsx_stxvd2x:
12333       VT = MVT::v2f64;
12334       break;
12335     case Intrinsic::ppc_vsx_stxvw4x_be:
12336       VT = MVT::v4i32;
12337       break;
12338     case Intrinsic::ppc_vsx_stxvd2x_be:
12339       VT = MVT::v2f64;
12340       break;
12341     case Intrinsic::ppc_altivec_stvebx:
12342       VT = MVT::i8;
12343       break;
12344     case Intrinsic::ppc_altivec_stvehx:
12345       VT = MVT::i16;
12346       break;
12347     case Intrinsic::ppc_altivec_stvewx:
12348       VT = MVT::i32;
12349       break;
12350     }
12351 
12352     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12353   }
12354 
12355   return false;
12356 }
12357 
12358 // Return true is there is a nearyby consecutive load to the one provided
12359 // (regardless of alignment). We search up and down the chain, looking though
12360 // token factors and other loads (but nothing else). As a result, a true result
12361 // indicates that it is safe to create a new consecutive load adjacent to the
12362 // load provided.
12363 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12364   SDValue Chain = LD->getChain();
12365   EVT VT = LD->getMemoryVT();
12366 
12367   SmallSet<SDNode *, 16> LoadRoots;
12368   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12369   SmallSet<SDNode *, 16> Visited;
12370 
12371   // First, search up the chain, branching to follow all token-factor operands.
12372   // If we find a consecutive load, then we're done, otherwise, record all
12373   // nodes just above the top-level loads and token factors.
12374   while (!Queue.empty()) {
12375     SDNode *ChainNext = Queue.pop_back_val();
12376     if (!Visited.insert(ChainNext).second)
12377       continue;
12378 
12379     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12380       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12381         return true;
12382 
12383       if (!Visited.count(ChainLD->getChain().getNode()))
12384         Queue.push_back(ChainLD->getChain().getNode());
12385     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12386       for (const SDUse &O : ChainNext->ops())
12387         if (!Visited.count(O.getNode()))
12388           Queue.push_back(O.getNode());
12389     } else
12390       LoadRoots.insert(ChainNext);
12391   }
12392 
12393   // Second, search down the chain, starting from the top-level nodes recorded
12394   // in the first phase. These top-level nodes are the nodes just above all
12395   // loads and token factors. Starting with their uses, recursively look though
12396   // all loads (just the chain uses) and token factors to find a consecutive
12397   // load.
12398   Visited.clear();
12399   Queue.clear();
12400 
12401   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12402        IE = LoadRoots.end(); I != IE; ++I) {
12403     Queue.push_back(*I);
12404 
12405     while (!Queue.empty()) {
12406       SDNode *LoadRoot = Queue.pop_back_val();
12407       if (!Visited.insert(LoadRoot).second)
12408         continue;
12409 
12410       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12411         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12412           return true;
12413 
12414       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12415            UE = LoadRoot->use_end(); UI != UE; ++UI)
12416         if (((isa<MemSDNode>(*UI) &&
12417             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12418             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12419           Queue.push_back(*UI);
12420     }
12421   }
12422 
12423   return false;
12424 }
12425 
12426 /// This function is called when we have proved that a SETCC node can be replaced
12427 /// by subtraction (and other supporting instructions) so that the result of
12428 /// comparison is kept in a GPR instead of CR. This function is purely for
12429 /// codegen purposes and has some flags to guide the codegen process.
12430 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12431                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12432   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12433 
12434   // Zero extend the operands to the largest legal integer. Originally, they
12435   // must be of a strictly smaller size.
12436   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12437                          DAG.getConstant(Size, DL, MVT::i32));
12438   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12439                          DAG.getConstant(Size, DL, MVT::i32));
12440 
12441   // Swap if needed. Depends on the condition code.
12442   if (Swap)
12443     std::swap(Op0, Op1);
12444 
12445   // Subtract extended integers.
12446   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12447 
12448   // Move the sign bit to the least significant position and zero out the rest.
12449   // Now the least significant bit carries the result of original comparison.
12450   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12451                              DAG.getConstant(Size - 1, DL, MVT::i32));
12452   auto Final = Shifted;
12453 
12454   // Complement the result if needed. Based on the condition code.
12455   if (Complement)
12456     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12457                         DAG.getConstant(1, DL, MVT::i64));
12458 
12459   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12460 }
12461 
12462 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12463                                                   DAGCombinerInfo &DCI) const {
12464   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12465 
12466   SelectionDAG &DAG = DCI.DAG;
12467   SDLoc DL(N);
12468 
12469   // Size of integers being compared has a critical role in the following
12470   // analysis, so we prefer to do this when all types are legal.
12471   if (!DCI.isAfterLegalizeDAG())
12472     return SDValue();
12473 
12474   // If all users of SETCC extend its value to a legal integer type
12475   // then we replace SETCC with a subtraction
12476   for (SDNode::use_iterator UI = N->use_begin(),
12477        UE = N->use_end(); UI != UE; ++UI) {
12478     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12479       return SDValue();
12480   }
12481 
12482   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12483   auto OpSize = N->getOperand(0).getValueSizeInBits();
12484 
12485   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12486 
12487   if (OpSize < Size) {
12488     switch (CC) {
12489     default: break;
12490     case ISD::SETULT:
12491       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12492     case ISD::SETULE:
12493       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12494     case ISD::SETUGT:
12495       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12496     case ISD::SETUGE:
12497       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12498     }
12499   }
12500 
12501   return SDValue();
12502 }
12503 
12504 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12505                                                   DAGCombinerInfo &DCI) const {
12506   SelectionDAG &DAG = DCI.DAG;
12507   SDLoc dl(N);
12508 
12509   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12510   // If we're tracking CR bits, we need to be careful that we don't have:
12511   //   trunc(binary-ops(zext(x), zext(y)))
12512   // or
12513   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12514   // such that we're unnecessarily moving things into GPRs when it would be
12515   // better to keep them in CR bits.
12516 
12517   // Note that trunc here can be an actual i1 trunc, or can be the effective
12518   // truncation that comes from a setcc or select_cc.
12519   if (N->getOpcode() == ISD::TRUNCATE &&
12520       N->getValueType(0) != MVT::i1)
12521     return SDValue();
12522 
12523   if (N->getOperand(0).getValueType() != MVT::i32 &&
12524       N->getOperand(0).getValueType() != MVT::i64)
12525     return SDValue();
12526 
12527   if (N->getOpcode() == ISD::SETCC ||
12528       N->getOpcode() == ISD::SELECT_CC) {
12529     // If we're looking at a comparison, then we need to make sure that the
12530     // high bits (all except for the first) don't matter the result.
12531     ISD::CondCode CC =
12532       cast<CondCodeSDNode>(N->getOperand(
12533         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12534     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12535 
12536     if (ISD::isSignedIntSetCC(CC)) {
12537       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12538           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12539         return SDValue();
12540     } else if (ISD::isUnsignedIntSetCC(CC)) {
12541       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12542                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12543           !DAG.MaskedValueIsZero(N->getOperand(1),
12544                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12545         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12546                                              : SDValue());
12547     } else {
12548       // This is neither a signed nor an unsigned comparison, just make sure
12549       // that the high bits are equal.
12550       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12551       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12552 
12553       // We don't really care about what is known about the first bit (if
12554       // anything), so pretend that it is known zero for both to ensure they can
12555       // be compared as constants.
12556       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
12557       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
12558 
12559       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
12560           Op1Known.getConstant() != Op2Known.getConstant())
12561         return SDValue();
12562     }
12563   }
12564 
12565   // We now know that the higher-order bits are irrelevant, we just need to
12566   // make sure that all of the intermediate operations are bit operations, and
12567   // all inputs are extensions.
12568   if (N->getOperand(0).getOpcode() != ISD::AND &&
12569       N->getOperand(0).getOpcode() != ISD::OR  &&
12570       N->getOperand(0).getOpcode() != ISD::XOR &&
12571       N->getOperand(0).getOpcode() != ISD::SELECT &&
12572       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12573       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12574       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12575       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12576       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12577     return SDValue();
12578 
12579   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12580       N->getOperand(1).getOpcode() != ISD::AND &&
12581       N->getOperand(1).getOpcode() != ISD::OR  &&
12582       N->getOperand(1).getOpcode() != ISD::XOR &&
12583       N->getOperand(1).getOpcode() != ISD::SELECT &&
12584       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12585       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12586       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12587       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12588       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12589     return SDValue();
12590 
12591   SmallVector<SDValue, 4> Inputs;
12592   SmallVector<SDValue, 8> BinOps, PromOps;
12593   SmallPtrSet<SDNode *, 16> Visited;
12594 
12595   for (unsigned i = 0; i < 2; ++i) {
12596     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12597           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12598           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12599           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12600         isa<ConstantSDNode>(N->getOperand(i)))
12601       Inputs.push_back(N->getOperand(i));
12602     else
12603       BinOps.push_back(N->getOperand(i));
12604 
12605     if (N->getOpcode() == ISD::TRUNCATE)
12606       break;
12607   }
12608 
12609   // Visit all inputs, collect all binary operations (and, or, xor and
12610   // select) that are all fed by extensions.
12611   while (!BinOps.empty()) {
12612     SDValue BinOp = BinOps.pop_back_val();
12613 
12614     if (!Visited.insert(BinOp.getNode()).second)
12615       continue;
12616 
12617     PromOps.push_back(BinOp);
12618 
12619     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12620       // The condition of the select is not promoted.
12621       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12622         continue;
12623       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12624         continue;
12625 
12626       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12627             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12628             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12629            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12630           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12631         Inputs.push_back(BinOp.getOperand(i));
12632       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12633                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12634                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12635                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12636                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12637                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12638                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12639                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12640                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12641         BinOps.push_back(BinOp.getOperand(i));
12642       } else {
12643         // We have an input that is not an extension or another binary
12644         // operation; we'll abort this transformation.
12645         return SDValue();
12646       }
12647     }
12648   }
12649 
12650   // Make sure that this is a self-contained cluster of operations (which
12651   // is not quite the same thing as saying that everything has only one
12652   // use).
12653   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12654     if (isa<ConstantSDNode>(Inputs[i]))
12655       continue;
12656 
12657     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12658                               UE = Inputs[i].getNode()->use_end();
12659          UI != UE; ++UI) {
12660       SDNode *User = *UI;
12661       if (User != N && !Visited.count(User))
12662         return SDValue();
12663 
12664       // Make sure that we're not going to promote the non-output-value
12665       // operand(s) or SELECT or SELECT_CC.
12666       // FIXME: Although we could sometimes handle this, and it does occur in
12667       // practice that one of the condition inputs to the select is also one of
12668       // the outputs, we currently can't deal with this.
12669       if (User->getOpcode() == ISD::SELECT) {
12670         if (User->getOperand(0) == Inputs[i])
12671           return SDValue();
12672       } else if (User->getOpcode() == ISD::SELECT_CC) {
12673         if (User->getOperand(0) == Inputs[i] ||
12674             User->getOperand(1) == Inputs[i])
12675           return SDValue();
12676       }
12677     }
12678   }
12679 
12680   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12681     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12682                               UE = PromOps[i].getNode()->use_end();
12683          UI != UE; ++UI) {
12684       SDNode *User = *UI;
12685       if (User != N && !Visited.count(User))
12686         return SDValue();
12687 
12688       // Make sure that we're not going to promote the non-output-value
12689       // operand(s) or SELECT or SELECT_CC.
12690       // FIXME: Although we could sometimes handle this, and it does occur in
12691       // practice that one of the condition inputs to the select is also one of
12692       // the outputs, we currently can't deal with this.
12693       if (User->getOpcode() == ISD::SELECT) {
12694         if (User->getOperand(0) == PromOps[i])
12695           return SDValue();
12696       } else if (User->getOpcode() == ISD::SELECT_CC) {
12697         if (User->getOperand(0) == PromOps[i] ||
12698             User->getOperand(1) == PromOps[i])
12699           return SDValue();
12700       }
12701     }
12702   }
12703 
12704   // Replace all inputs with the extension operand.
12705   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12706     // Constants may have users outside the cluster of to-be-promoted nodes,
12707     // and so we need to replace those as we do the promotions.
12708     if (isa<ConstantSDNode>(Inputs[i]))
12709       continue;
12710     else
12711       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12712   }
12713 
12714   std::list<HandleSDNode> PromOpHandles;
12715   for (auto &PromOp : PromOps)
12716     PromOpHandles.emplace_back(PromOp);
12717 
12718   // Replace all operations (these are all the same, but have a different
12719   // (i1) return type). DAG.getNode will validate that the types of
12720   // a binary operator match, so go through the list in reverse so that
12721   // we've likely promoted both operands first. Any intermediate truncations or
12722   // extensions disappear.
12723   while (!PromOpHandles.empty()) {
12724     SDValue PromOp = PromOpHandles.back().getValue();
12725     PromOpHandles.pop_back();
12726 
12727     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12728         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12729         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12730         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12731       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12732           PromOp.getOperand(0).getValueType() != MVT::i1) {
12733         // The operand is not yet ready (see comment below).
12734         PromOpHandles.emplace_front(PromOp);
12735         continue;
12736       }
12737 
12738       SDValue RepValue = PromOp.getOperand(0);
12739       if (isa<ConstantSDNode>(RepValue))
12740         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12741 
12742       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12743       continue;
12744     }
12745 
12746     unsigned C;
12747     switch (PromOp.getOpcode()) {
12748     default:             C = 0; break;
12749     case ISD::SELECT:    C = 1; break;
12750     case ISD::SELECT_CC: C = 2; break;
12751     }
12752 
12753     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12754          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12755         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12756          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12757       // The to-be-promoted operands of this node have not yet been
12758       // promoted (this should be rare because we're going through the
12759       // list backward, but if one of the operands has several users in
12760       // this cluster of to-be-promoted nodes, it is possible).
12761       PromOpHandles.emplace_front(PromOp);
12762       continue;
12763     }
12764 
12765     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12766                                 PromOp.getNode()->op_end());
12767 
12768     // If there are any constant inputs, make sure they're replaced now.
12769     for (unsigned i = 0; i < 2; ++i)
12770       if (isa<ConstantSDNode>(Ops[C+i]))
12771         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12772 
12773     DAG.ReplaceAllUsesOfValueWith(PromOp,
12774       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12775   }
12776 
12777   // Now we're left with the initial truncation itself.
12778   if (N->getOpcode() == ISD::TRUNCATE)
12779     return N->getOperand(0);
12780 
12781   // Otherwise, this is a comparison. The operands to be compared have just
12782   // changed type (to i1), but everything else is the same.
12783   return SDValue(N, 0);
12784 }
12785 
12786 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12787                                                   DAGCombinerInfo &DCI) const {
12788   SelectionDAG &DAG = DCI.DAG;
12789   SDLoc dl(N);
12790 
12791   // If we're tracking CR bits, we need to be careful that we don't have:
12792   //   zext(binary-ops(trunc(x), trunc(y)))
12793   // or
12794   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12795   // such that we're unnecessarily moving things into CR bits that can more
12796   // efficiently stay in GPRs. Note that if we're not certain that the high
12797   // bits are set as required by the final extension, we still may need to do
12798   // some masking to get the proper behavior.
12799 
12800   // This same functionality is important on PPC64 when dealing with
12801   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12802   // the return values of functions. Because it is so similar, it is handled
12803   // here as well.
12804 
12805   if (N->getValueType(0) != MVT::i32 &&
12806       N->getValueType(0) != MVT::i64)
12807     return SDValue();
12808 
12809   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12810         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12811     return SDValue();
12812 
12813   if (N->getOperand(0).getOpcode() != ISD::AND &&
12814       N->getOperand(0).getOpcode() != ISD::OR  &&
12815       N->getOperand(0).getOpcode() != ISD::XOR &&
12816       N->getOperand(0).getOpcode() != ISD::SELECT &&
12817       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12818     return SDValue();
12819 
12820   SmallVector<SDValue, 4> Inputs;
12821   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12822   SmallPtrSet<SDNode *, 16> Visited;
12823 
12824   // Visit all inputs, collect all binary operations (and, or, xor and
12825   // select) that are all fed by truncations.
12826   while (!BinOps.empty()) {
12827     SDValue BinOp = BinOps.pop_back_val();
12828 
12829     if (!Visited.insert(BinOp.getNode()).second)
12830       continue;
12831 
12832     PromOps.push_back(BinOp);
12833 
12834     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12835       // The condition of the select is not promoted.
12836       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12837         continue;
12838       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12839         continue;
12840 
12841       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12842           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12843         Inputs.push_back(BinOp.getOperand(i));
12844       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12845                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12846                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12847                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12848                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12849         BinOps.push_back(BinOp.getOperand(i));
12850       } else {
12851         // We have an input that is not a truncation or another binary
12852         // operation; we'll abort this transformation.
12853         return SDValue();
12854       }
12855     }
12856   }
12857 
12858   // The operands of a select that must be truncated when the select is
12859   // promoted because the operand is actually part of the to-be-promoted set.
12860   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12861 
12862   // Make sure that this is a self-contained cluster of operations (which
12863   // is not quite the same thing as saying that everything has only one
12864   // use).
12865   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12866     if (isa<ConstantSDNode>(Inputs[i]))
12867       continue;
12868 
12869     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12870                               UE = Inputs[i].getNode()->use_end();
12871          UI != UE; ++UI) {
12872       SDNode *User = *UI;
12873       if (User != N && !Visited.count(User))
12874         return SDValue();
12875 
12876       // If we're going to promote the non-output-value operand(s) or SELECT or
12877       // SELECT_CC, record them for truncation.
12878       if (User->getOpcode() == ISD::SELECT) {
12879         if (User->getOperand(0) == Inputs[i])
12880           SelectTruncOp[0].insert(std::make_pair(User,
12881                                     User->getOperand(0).getValueType()));
12882       } else if (User->getOpcode() == ISD::SELECT_CC) {
12883         if (User->getOperand(0) == Inputs[i])
12884           SelectTruncOp[0].insert(std::make_pair(User,
12885                                     User->getOperand(0).getValueType()));
12886         if (User->getOperand(1) == Inputs[i])
12887           SelectTruncOp[1].insert(std::make_pair(User,
12888                                     User->getOperand(1).getValueType()));
12889       }
12890     }
12891   }
12892 
12893   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12894     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12895                               UE = PromOps[i].getNode()->use_end();
12896          UI != UE; ++UI) {
12897       SDNode *User = *UI;
12898       if (User != N && !Visited.count(User))
12899         return SDValue();
12900 
12901       // If we're going to promote the non-output-value operand(s) or SELECT or
12902       // SELECT_CC, record them for truncation.
12903       if (User->getOpcode() == ISD::SELECT) {
12904         if (User->getOperand(0) == PromOps[i])
12905           SelectTruncOp[0].insert(std::make_pair(User,
12906                                     User->getOperand(0).getValueType()));
12907       } else if (User->getOpcode() == ISD::SELECT_CC) {
12908         if (User->getOperand(0) == PromOps[i])
12909           SelectTruncOp[0].insert(std::make_pair(User,
12910                                     User->getOperand(0).getValueType()));
12911         if (User->getOperand(1) == PromOps[i])
12912           SelectTruncOp[1].insert(std::make_pair(User,
12913                                     User->getOperand(1).getValueType()));
12914       }
12915     }
12916   }
12917 
12918   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12919   bool ReallyNeedsExt = false;
12920   if (N->getOpcode() != ISD::ANY_EXTEND) {
12921     // If all of the inputs are not already sign/zero extended, then
12922     // we'll still need to do that at the end.
12923     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12924       if (isa<ConstantSDNode>(Inputs[i]))
12925         continue;
12926 
12927       unsigned OpBits =
12928         Inputs[i].getOperand(0).getValueSizeInBits();
12929       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12930 
12931       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12932            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12933                                   APInt::getHighBitsSet(OpBits,
12934                                                         OpBits-PromBits))) ||
12935           (N->getOpcode() == ISD::SIGN_EXTEND &&
12936            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12937              (OpBits-(PromBits-1)))) {
12938         ReallyNeedsExt = true;
12939         break;
12940       }
12941     }
12942   }
12943 
12944   // Replace all inputs, either with the truncation operand, or a
12945   // truncation or extension to the final output type.
12946   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12947     // Constant inputs need to be replaced with the to-be-promoted nodes that
12948     // use them because they might have users outside of the cluster of
12949     // promoted nodes.
12950     if (isa<ConstantSDNode>(Inputs[i]))
12951       continue;
12952 
12953     SDValue InSrc = Inputs[i].getOperand(0);
12954     if (Inputs[i].getValueType() == N->getValueType(0))
12955       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12956     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12957       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12958         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12959     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12960       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12961         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12962     else
12963       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12964         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12965   }
12966 
12967   std::list<HandleSDNode> PromOpHandles;
12968   for (auto &PromOp : PromOps)
12969     PromOpHandles.emplace_back(PromOp);
12970 
12971   // Replace all operations (these are all the same, but have a different
12972   // (promoted) return type). DAG.getNode will validate that the types of
12973   // a binary operator match, so go through the list in reverse so that
12974   // we've likely promoted both operands first.
12975   while (!PromOpHandles.empty()) {
12976     SDValue PromOp = PromOpHandles.back().getValue();
12977     PromOpHandles.pop_back();
12978 
12979     unsigned C;
12980     switch (PromOp.getOpcode()) {
12981     default:             C = 0; break;
12982     case ISD::SELECT:    C = 1; break;
12983     case ISD::SELECT_CC: C = 2; break;
12984     }
12985 
12986     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12987          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12988         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12989          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12990       // The to-be-promoted operands of this node have not yet been
12991       // promoted (this should be rare because we're going through the
12992       // list backward, but if one of the operands has several users in
12993       // this cluster of to-be-promoted nodes, it is possible).
12994       PromOpHandles.emplace_front(PromOp);
12995       continue;
12996     }
12997 
12998     // For SELECT and SELECT_CC nodes, we do a similar check for any
12999     // to-be-promoted comparison inputs.
13000     if (PromOp.getOpcode() == ISD::SELECT ||
13001         PromOp.getOpcode() == ISD::SELECT_CC) {
13002       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13003            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13004           (SelectTruncOp[1].count(PromOp.getNode()) &&
13005            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13006         PromOpHandles.emplace_front(PromOp);
13007         continue;
13008       }
13009     }
13010 
13011     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13012                                 PromOp.getNode()->op_end());
13013 
13014     // If this node has constant inputs, then they'll need to be promoted here.
13015     for (unsigned i = 0; i < 2; ++i) {
13016       if (!isa<ConstantSDNode>(Ops[C+i]))
13017         continue;
13018       if (Ops[C+i].getValueType() == N->getValueType(0))
13019         continue;
13020 
13021       if (N->getOpcode() == ISD::SIGN_EXTEND)
13022         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13023       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13024         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13025       else
13026         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13027     }
13028 
13029     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13030     // truncate them again to the original value type.
13031     if (PromOp.getOpcode() == ISD::SELECT ||
13032         PromOp.getOpcode() == ISD::SELECT_CC) {
13033       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13034       if (SI0 != SelectTruncOp[0].end())
13035         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13036       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13037       if (SI1 != SelectTruncOp[1].end())
13038         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13039     }
13040 
13041     DAG.ReplaceAllUsesOfValueWith(PromOp,
13042       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13043   }
13044 
13045   // Now we're left with the initial extension itself.
13046   if (!ReallyNeedsExt)
13047     return N->getOperand(0);
13048 
13049   // To zero extend, just mask off everything except for the first bit (in the
13050   // i1 case).
13051   if (N->getOpcode() == ISD::ZERO_EXTEND)
13052     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13053                        DAG.getConstant(APInt::getLowBitsSet(
13054                                          N->getValueSizeInBits(0), PromBits),
13055                                        dl, N->getValueType(0)));
13056 
13057   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13058          "Invalid extension type");
13059   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13060   SDValue ShiftCst =
13061       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13062   return DAG.getNode(
13063       ISD::SRA, dl, N->getValueType(0),
13064       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13065       ShiftCst);
13066 }
13067 
13068 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13069                                         DAGCombinerInfo &DCI) const {
13070   assert(N->getOpcode() == ISD::SETCC &&
13071          "Should be called with a SETCC node");
13072 
13073   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13074   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13075     SDValue LHS = N->getOperand(0);
13076     SDValue RHS = N->getOperand(1);
13077 
13078     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13079     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13080         LHS.hasOneUse())
13081       std::swap(LHS, RHS);
13082 
13083     // x == 0-y --> x+y == 0
13084     // x != 0-y --> x+y != 0
13085     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13086         RHS.hasOneUse()) {
13087       SDLoc DL(N);
13088       SelectionDAG &DAG = DCI.DAG;
13089       EVT VT = N->getValueType(0);
13090       EVT OpVT = LHS.getValueType();
13091       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13092       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13093     }
13094   }
13095 
13096   return DAGCombineTruncBoolExt(N, DCI);
13097 }
13098 
13099 // Is this an extending load from an f32 to an f64?
13100 static bool isFPExtLoad(SDValue Op) {
13101   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13102     return LD->getExtensionType() == ISD::EXTLOAD &&
13103       Op.getValueType() == MVT::f64;
13104   return false;
13105 }
13106 
13107 /// Reduces the number of fp-to-int conversion when building a vector.
13108 ///
13109 /// If this vector is built out of floating to integer conversions,
13110 /// transform it to a vector built out of floating point values followed by a
13111 /// single floating to integer conversion of the vector.
13112 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13113 /// becomes (fptosi (build_vector ($A, $B, ...)))
13114 SDValue PPCTargetLowering::
13115 combineElementTruncationToVectorTruncation(SDNode *N,
13116                                            DAGCombinerInfo &DCI) const {
13117   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13118          "Should be called with a BUILD_VECTOR node");
13119 
13120   SelectionDAG &DAG = DCI.DAG;
13121   SDLoc dl(N);
13122 
13123   SDValue FirstInput = N->getOperand(0);
13124   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13125          "The input operand must be an fp-to-int conversion.");
13126 
13127   // This combine happens after legalization so the fp_to_[su]i nodes are
13128   // already converted to PPCSISD nodes.
13129   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13130   if (FirstConversion == PPCISD::FCTIDZ ||
13131       FirstConversion == PPCISD::FCTIDUZ ||
13132       FirstConversion == PPCISD::FCTIWZ ||
13133       FirstConversion == PPCISD::FCTIWUZ) {
13134     bool IsSplat = true;
13135     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13136       FirstConversion == PPCISD::FCTIWUZ;
13137     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13138     SmallVector<SDValue, 4> Ops;
13139     EVT TargetVT = N->getValueType(0);
13140     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13141       SDValue NextOp = N->getOperand(i);
13142       if (NextOp.getOpcode() != PPCISD::MFVSR)
13143         return SDValue();
13144       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13145       if (NextConversion != FirstConversion)
13146         return SDValue();
13147       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13148       // This is not valid if the input was originally double precision. It is
13149       // also not profitable to do unless this is an extending load in which
13150       // case doing this combine will allow us to combine consecutive loads.
13151       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13152         return SDValue();
13153       if (N->getOperand(i) != FirstInput)
13154         IsSplat = false;
13155     }
13156 
13157     // If this is a splat, we leave it as-is since there will be only a single
13158     // fp-to-int conversion followed by a splat of the integer. This is better
13159     // for 32-bit and smaller ints and neutral for 64-bit ints.
13160     if (IsSplat)
13161       return SDValue();
13162 
13163     // Now that we know we have the right type of node, get its operands
13164     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13165       SDValue In = N->getOperand(i).getOperand(0);
13166       if (Is32Bit) {
13167         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13168         // here, we know that all inputs are extending loads so this is safe).
13169         if (In.isUndef())
13170           Ops.push_back(DAG.getUNDEF(SrcVT));
13171         else {
13172           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13173                                       MVT::f32, In.getOperand(0),
13174                                       DAG.getIntPtrConstant(1, dl));
13175           Ops.push_back(Trunc);
13176         }
13177       } else
13178         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13179     }
13180 
13181     unsigned Opcode;
13182     if (FirstConversion == PPCISD::FCTIDZ ||
13183         FirstConversion == PPCISD::FCTIWZ)
13184       Opcode = ISD::FP_TO_SINT;
13185     else
13186       Opcode = ISD::FP_TO_UINT;
13187 
13188     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13189     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13190     return DAG.getNode(Opcode, dl, TargetVT, BV);
13191   }
13192   return SDValue();
13193 }
13194 
13195 /// Reduce the number of loads when building a vector.
13196 ///
13197 /// Building a vector out of multiple loads can be converted to a load
13198 /// of the vector type if the loads are consecutive. If the loads are
13199 /// consecutive but in descending order, a shuffle is added at the end
13200 /// to reorder the vector.
13201 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13202   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13203          "Should be called with a BUILD_VECTOR node");
13204 
13205   SDLoc dl(N);
13206 
13207   // Return early for non byte-sized type, as they can't be consecutive.
13208   if (!N->getValueType(0).getVectorElementType().isByteSized())
13209     return SDValue();
13210 
13211   bool InputsAreConsecutiveLoads = true;
13212   bool InputsAreReverseConsecutive = true;
13213   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13214   SDValue FirstInput = N->getOperand(0);
13215   bool IsRoundOfExtLoad = false;
13216 
13217   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13218       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13219     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13220     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13221   }
13222   // Not a build vector of (possibly fp_rounded) loads.
13223   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13224       N->getNumOperands() == 1)
13225     return SDValue();
13226 
13227   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13228     // If any inputs are fp_round(extload), they all must be.
13229     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13230       return SDValue();
13231 
13232     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13233       N->getOperand(i);
13234     if (NextInput.getOpcode() != ISD::LOAD)
13235       return SDValue();
13236 
13237     SDValue PreviousInput =
13238       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13239     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13240     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13241 
13242     // If any inputs are fp_round(extload), they all must be.
13243     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13244       return SDValue();
13245 
13246     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13247       InputsAreConsecutiveLoads = false;
13248     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13249       InputsAreReverseConsecutive = false;
13250 
13251     // Exit early if the loads are neither consecutive nor reverse consecutive.
13252     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13253       return SDValue();
13254   }
13255 
13256   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13257          "The loads cannot be both consecutive and reverse consecutive.");
13258 
13259   SDValue FirstLoadOp =
13260     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13261   SDValue LastLoadOp =
13262     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13263                        N->getOperand(N->getNumOperands()-1);
13264 
13265   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13266   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13267   if (InputsAreConsecutiveLoads) {
13268     assert(LD1 && "Input needs to be a LoadSDNode.");
13269     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13270                        LD1->getBasePtr(), LD1->getPointerInfo(),
13271                        LD1->getAlignment());
13272   }
13273   if (InputsAreReverseConsecutive) {
13274     assert(LDL && "Input needs to be a LoadSDNode.");
13275     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13276                                LDL->getBasePtr(), LDL->getPointerInfo(),
13277                                LDL->getAlignment());
13278     SmallVector<int, 16> Ops;
13279     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13280       Ops.push_back(i);
13281 
13282     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13283                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13284   }
13285   return SDValue();
13286 }
13287 
13288 // This function adds the required vector_shuffle needed to get
13289 // the elements of the vector extract in the correct position
13290 // as specified by the CorrectElems encoding.
13291 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13292                                       SDValue Input, uint64_t Elems,
13293                                       uint64_t CorrectElems) {
13294   SDLoc dl(N);
13295 
13296   unsigned NumElems = Input.getValueType().getVectorNumElements();
13297   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13298 
13299   // Knowing the element indices being extracted from the original
13300   // vector and the order in which they're being inserted, just put
13301   // them at element indices required for the instruction.
13302   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13303     if (DAG.getDataLayout().isLittleEndian())
13304       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13305     else
13306       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13307     CorrectElems = CorrectElems >> 8;
13308     Elems = Elems >> 8;
13309   }
13310 
13311   SDValue Shuffle =
13312       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13313                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13314 
13315   EVT VT = N->getValueType(0);
13316   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13317 
13318   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13319                                Input.getValueType().getVectorElementType(),
13320                                VT.getVectorNumElements());
13321   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13322                      DAG.getValueType(ExtVT));
13323 }
13324 
13325 // Look for build vector patterns where input operands come from sign
13326 // extended vector_extract elements of specific indices. If the correct indices
13327 // aren't used, add a vector shuffle to fix up the indices and create
13328 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13329 // during instruction selection.
13330 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13331   // This array encodes the indices that the vector sign extend instructions
13332   // extract from when extending from one type to another for both BE and LE.
13333   // The right nibble of each byte corresponds to the LE incides.
13334   // and the left nibble of each byte corresponds to the BE incides.
13335   // For example: 0x3074B8FC  byte->word
13336   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13337   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13338   // For example: 0x000070F8  byte->double word
13339   // For LE: the allowed indices are: 0x0,0x8
13340   // For BE: the allowed indices are: 0x7,0xF
13341   uint64_t TargetElems[] = {
13342       0x3074B8FC, // b->w
13343       0x000070F8, // b->d
13344       0x10325476, // h->w
13345       0x00003074, // h->d
13346       0x00001032, // w->d
13347   };
13348 
13349   uint64_t Elems = 0;
13350   int Index;
13351   SDValue Input;
13352 
13353   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13354     if (!Op)
13355       return false;
13356     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13357         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13358       return false;
13359 
13360     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13361     // of the right width.
13362     SDValue Extract = Op.getOperand(0);
13363     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13364       Extract = Extract.getOperand(0);
13365     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13366       return false;
13367 
13368     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13369     if (!ExtOp)
13370       return false;
13371 
13372     Index = ExtOp->getZExtValue();
13373     if (Input && Input != Extract.getOperand(0))
13374       return false;
13375 
13376     if (!Input)
13377       Input = Extract.getOperand(0);
13378 
13379     Elems = Elems << 8;
13380     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13381     Elems |= Index;
13382 
13383     return true;
13384   };
13385 
13386   // If the build vector operands aren't sign extended vector extracts,
13387   // of the same input vector, then return.
13388   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13389     if (!isSExtOfVecExtract(N->getOperand(i))) {
13390       return SDValue();
13391     }
13392   }
13393 
13394   // If the vector extract indicies are not correct, add the appropriate
13395   // vector_shuffle.
13396   int TgtElemArrayIdx;
13397   int InputSize = Input.getValueType().getScalarSizeInBits();
13398   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13399   if (InputSize + OutputSize == 40)
13400     TgtElemArrayIdx = 0;
13401   else if (InputSize + OutputSize == 72)
13402     TgtElemArrayIdx = 1;
13403   else if (InputSize + OutputSize == 48)
13404     TgtElemArrayIdx = 2;
13405   else if (InputSize + OutputSize == 80)
13406     TgtElemArrayIdx = 3;
13407   else if (InputSize + OutputSize == 96)
13408     TgtElemArrayIdx = 4;
13409   else
13410     return SDValue();
13411 
13412   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13413   CorrectElems = DAG.getDataLayout().isLittleEndian()
13414                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13415                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13416   if (Elems != CorrectElems) {
13417     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13418   }
13419 
13420   // Regular lowering will catch cases where a shuffle is not needed.
13421   return SDValue();
13422 }
13423 
13424 // Look for the pattern of a load from a narrow width to i128, feeding
13425 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13426 // (LXVRZX). This node represents a zero extending load that will be matched
13427 // to the Load VSX Vector Rightmost instructions.
13428 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13429   SDLoc DL(N);
13430 
13431   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13432   if (N->getValueType(0) != MVT::v1i128)
13433     return SDValue();
13434 
13435   SDValue Operand = N->getOperand(0);
13436   // Proceed with the transformation if the operand to the BUILD_VECTOR
13437   // is a load instruction.
13438   if (Operand.getOpcode() != ISD::LOAD)
13439     return SDValue();
13440 
13441   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13442   EVT MemoryType = LD->getMemoryVT();
13443 
13444   // This transformation is only valid if the we are loading either a byte,
13445   // halfword, word, or doubleword.
13446   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13447                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13448 
13449   // Ensure that the load from the narrow width is being zero extended to i128.
13450   if (!ValidLDType ||
13451       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13452        LD->getExtensionType() != ISD::EXTLOAD))
13453     return SDValue();
13454 
13455   SDValue LoadOps[] = {
13456       LD->getChain(), LD->getBasePtr(),
13457       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13458 
13459   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13460                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13461                                  LoadOps, MemoryType, LD->getMemOperand());
13462 }
13463 
13464 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13465                                                  DAGCombinerInfo &DCI) const {
13466   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13467          "Should be called with a BUILD_VECTOR node");
13468 
13469   SelectionDAG &DAG = DCI.DAG;
13470   SDLoc dl(N);
13471 
13472   if (!Subtarget.hasVSX())
13473     return SDValue();
13474 
13475   // The target independent DAG combiner will leave a build_vector of
13476   // float-to-int conversions intact. We can generate MUCH better code for
13477   // a float-to-int conversion of a vector of floats.
13478   SDValue FirstInput = N->getOperand(0);
13479   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13480     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13481     if (Reduced)
13482       return Reduced;
13483   }
13484 
13485   // If we're building a vector out of consecutive loads, just load that
13486   // vector type.
13487   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13488   if (Reduced)
13489     return Reduced;
13490 
13491   // If we're building a vector out of extended elements from another vector
13492   // we have P9 vector integer extend instructions. The code assumes legal
13493   // input types (i.e. it can't handle things like v4i16) so do not run before
13494   // legalization.
13495   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13496     Reduced = combineBVOfVecSExt(N, DAG);
13497     if (Reduced)
13498       return Reduced;
13499   }
13500 
13501   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13502   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13503   // is a load from <valid narrow width> to i128.
13504   if (Subtarget.isISA3_1()) {
13505     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13506     if (BVOfZLoad)
13507       return BVOfZLoad;
13508   }
13509 
13510   if (N->getValueType(0) != MVT::v2f64)
13511     return SDValue();
13512 
13513   // Looking for:
13514   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13515   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13516       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13517     return SDValue();
13518   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13519       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13520     return SDValue();
13521   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13522     return SDValue();
13523 
13524   SDValue Ext1 = FirstInput.getOperand(0);
13525   SDValue Ext2 = N->getOperand(1).getOperand(0);
13526   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13527      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13528     return SDValue();
13529 
13530   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13531   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13532   if (!Ext1Op || !Ext2Op)
13533     return SDValue();
13534   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13535       Ext1.getOperand(0) != Ext2.getOperand(0))
13536     return SDValue();
13537 
13538   int FirstElem = Ext1Op->getZExtValue();
13539   int SecondElem = Ext2Op->getZExtValue();
13540   int SubvecIdx;
13541   if (FirstElem == 0 && SecondElem == 1)
13542     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13543   else if (FirstElem == 2 && SecondElem == 3)
13544     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13545   else
13546     return SDValue();
13547 
13548   SDValue SrcVec = Ext1.getOperand(0);
13549   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13550     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13551   return DAG.getNode(NodeType, dl, MVT::v2f64,
13552                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13553 }
13554 
13555 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13556                                               DAGCombinerInfo &DCI) const {
13557   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13558           N->getOpcode() == ISD::UINT_TO_FP) &&
13559          "Need an int -> FP conversion node here");
13560 
13561   if (useSoftFloat() || !Subtarget.has64BitSupport())
13562     return SDValue();
13563 
13564   SelectionDAG &DAG = DCI.DAG;
13565   SDLoc dl(N);
13566   SDValue Op(N, 0);
13567 
13568   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13569   // from the hardware.
13570   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13571     return SDValue();
13572   if (!Op.getOperand(0).getValueType().isSimple())
13573     return SDValue();
13574   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13575       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13576     return SDValue();
13577 
13578   SDValue FirstOperand(Op.getOperand(0));
13579   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13580     (FirstOperand.getValueType() == MVT::i8 ||
13581      FirstOperand.getValueType() == MVT::i16);
13582   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13583     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13584     bool DstDouble = Op.getValueType() == MVT::f64;
13585     unsigned ConvOp = Signed ?
13586       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13587       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13588     SDValue WidthConst =
13589       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13590                             dl, false);
13591     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13592     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13593     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13594                                          DAG.getVTList(MVT::f64, MVT::Other),
13595                                          Ops, MVT::i8, LDN->getMemOperand());
13596 
13597     // For signed conversion, we need to sign-extend the value in the VSR
13598     if (Signed) {
13599       SDValue ExtOps[] = { Ld, WidthConst };
13600       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13601       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13602     } else
13603       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13604   }
13605 
13606 
13607   // For i32 intermediate values, unfortunately, the conversion functions
13608   // leave the upper 32 bits of the value are undefined. Within the set of
13609   // scalar instructions, we have no method for zero- or sign-extending the
13610   // value. Thus, we cannot handle i32 intermediate values here.
13611   if (Op.getOperand(0).getValueType() == MVT::i32)
13612     return SDValue();
13613 
13614   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13615          "UINT_TO_FP is supported only with FPCVT");
13616 
13617   // If we have FCFIDS, then use it when converting to single-precision.
13618   // Otherwise, convert to double-precision and then round.
13619   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13620                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13621                                                             : PPCISD::FCFIDS)
13622                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13623                                                             : PPCISD::FCFID);
13624   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13625                   ? MVT::f32
13626                   : MVT::f64;
13627 
13628   // If we're converting from a float, to an int, and back to a float again,
13629   // then we don't need the store/load pair at all.
13630   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13631        Subtarget.hasFPCVT()) ||
13632       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13633     SDValue Src = Op.getOperand(0).getOperand(0);
13634     if (Src.getValueType() == MVT::f32) {
13635       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13636       DCI.AddToWorklist(Src.getNode());
13637     } else if (Src.getValueType() != MVT::f64) {
13638       // Make sure that we don't pick up a ppc_fp128 source value.
13639       return SDValue();
13640     }
13641 
13642     unsigned FCTOp =
13643       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13644                                                         PPCISD::FCTIDUZ;
13645 
13646     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13647     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13648 
13649     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13650       FP = DAG.getNode(ISD::FP_ROUND, dl,
13651                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13652       DCI.AddToWorklist(FP.getNode());
13653     }
13654 
13655     return FP;
13656   }
13657 
13658   return SDValue();
13659 }
13660 
13661 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13662 // builtins) into loads with swaps.
13663 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13664                                               DAGCombinerInfo &DCI) const {
13665   SelectionDAG &DAG = DCI.DAG;
13666   SDLoc dl(N);
13667   SDValue Chain;
13668   SDValue Base;
13669   MachineMemOperand *MMO;
13670 
13671   switch (N->getOpcode()) {
13672   default:
13673     llvm_unreachable("Unexpected opcode for little endian VSX load");
13674   case ISD::LOAD: {
13675     LoadSDNode *LD = cast<LoadSDNode>(N);
13676     Chain = LD->getChain();
13677     Base = LD->getBasePtr();
13678     MMO = LD->getMemOperand();
13679     // If the MMO suggests this isn't a load of a full vector, leave
13680     // things alone.  For a built-in, we have to make the change for
13681     // correctness, so if there is a size problem that will be a bug.
13682     if (MMO->getSize() < 16)
13683       return SDValue();
13684     break;
13685   }
13686   case ISD::INTRINSIC_W_CHAIN: {
13687     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13688     Chain = Intrin->getChain();
13689     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13690     // us what we want. Get operand 2 instead.
13691     Base = Intrin->getOperand(2);
13692     MMO = Intrin->getMemOperand();
13693     break;
13694   }
13695   }
13696 
13697   MVT VecTy = N->getValueType(0).getSimpleVT();
13698 
13699   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13700   // aligned and the type is a vector with elements up to 4 bytes
13701   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13702       VecTy.getScalarSizeInBits() <= 32) {
13703     return SDValue();
13704   }
13705 
13706   SDValue LoadOps[] = { Chain, Base };
13707   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13708                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13709                                          LoadOps, MVT::v2f64, MMO);
13710 
13711   DCI.AddToWorklist(Load.getNode());
13712   Chain = Load.getValue(1);
13713   SDValue Swap = DAG.getNode(
13714       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13715   DCI.AddToWorklist(Swap.getNode());
13716 
13717   // Add a bitcast if the resulting load type doesn't match v2f64.
13718   if (VecTy != MVT::v2f64) {
13719     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13720     DCI.AddToWorklist(N.getNode());
13721     // Package {bitcast value, swap's chain} to match Load's shape.
13722     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13723                        N, Swap.getValue(1));
13724   }
13725 
13726   return Swap;
13727 }
13728 
13729 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13730 // builtins) into stores with swaps.
13731 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13732                                                DAGCombinerInfo &DCI) const {
13733   SelectionDAG &DAG = DCI.DAG;
13734   SDLoc dl(N);
13735   SDValue Chain;
13736   SDValue Base;
13737   unsigned SrcOpnd;
13738   MachineMemOperand *MMO;
13739 
13740   switch (N->getOpcode()) {
13741   default:
13742     llvm_unreachable("Unexpected opcode for little endian VSX store");
13743   case ISD::STORE: {
13744     StoreSDNode *ST = cast<StoreSDNode>(N);
13745     Chain = ST->getChain();
13746     Base = ST->getBasePtr();
13747     MMO = ST->getMemOperand();
13748     SrcOpnd = 1;
13749     // If the MMO suggests this isn't a store of a full vector, leave
13750     // things alone.  For a built-in, we have to make the change for
13751     // correctness, so if there is a size problem that will be a bug.
13752     if (MMO->getSize() < 16)
13753       return SDValue();
13754     break;
13755   }
13756   case ISD::INTRINSIC_VOID: {
13757     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13758     Chain = Intrin->getChain();
13759     // Intrin->getBasePtr() oddly does not get what we want.
13760     Base = Intrin->getOperand(3);
13761     MMO = Intrin->getMemOperand();
13762     SrcOpnd = 2;
13763     break;
13764   }
13765   }
13766 
13767   SDValue Src = N->getOperand(SrcOpnd);
13768   MVT VecTy = Src.getValueType().getSimpleVT();
13769 
13770   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13771   // aligned and the type is a vector with elements up to 4 bytes
13772   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13773       VecTy.getScalarSizeInBits() <= 32) {
13774     return SDValue();
13775   }
13776 
13777   // All stores are done as v2f64 and possible bit cast.
13778   if (VecTy != MVT::v2f64) {
13779     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13780     DCI.AddToWorklist(Src.getNode());
13781   }
13782 
13783   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13784                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13785   DCI.AddToWorklist(Swap.getNode());
13786   Chain = Swap.getValue(1);
13787   SDValue StoreOps[] = { Chain, Swap, Base };
13788   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13789                                           DAG.getVTList(MVT::Other),
13790                                           StoreOps, VecTy, MMO);
13791   DCI.AddToWorklist(Store.getNode());
13792   return Store;
13793 }
13794 
13795 // Handle DAG combine for STORE (FP_TO_INT F).
13796 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13797                                                DAGCombinerInfo &DCI) const {
13798 
13799   SelectionDAG &DAG = DCI.DAG;
13800   SDLoc dl(N);
13801   unsigned Opcode = N->getOperand(1).getOpcode();
13802 
13803   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13804          && "Not a FP_TO_INT Instruction!");
13805 
13806   SDValue Val = N->getOperand(1).getOperand(0);
13807   EVT Op1VT = N->getOperand(1).getValueType();
13808   EVT ResVT = Val.getValueType();
13809 
13810   if (!isTypeLegal(ResVT))
13811     return SDValue();
13812 
13813   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13814   bool ValidTypeForStoreFltAsInt =
13815         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13816          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13817 
13818   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13819       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13820     return SDValue();
13821 
13822   // Extend f32 values to f64
13823   if (ResVT.getScalarSizeInBits() == 32) {
13824     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13825     DCI.AddToWorklist(Val.getNode());
13826   }
13827 
13828   // Set signed or unsigned conversion opcode.
13829   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13830                           PPCISD::FP_TO_SINT_IN_VSR :
13831                           PPCISD::FP_TO_UINT_IN_VSR;
13832 
13833   Val = DAG.getNode(ConvOpcode,
13834                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13835   DCI.AddToWorklist(Val.getNode());
13836 
13837   // Set number of bytes being converted.
13838   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13839   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13840                     DAG.getIntPtrConstant(ByteSize, dl, false),
13841                     DAG.getValueType(Op1VT) };
13842 
13843   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13844           DAG.getVTList(MVT::Other), Ops,
13845           cast<StoreSDNode>(N)->getMemoryVT(),
13846           cast<StoreSDNode>(N)->getMemOperand());
13847 
13848   DCI.AddToWorklist(Val.getNode());
13849   return Val;
13850 }
13851 
13852 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
13853   // Check that the source of the element keeps flipping
13854   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
13855   bool PrevElemFromFirstVec = Mask[0] < NumElts;
13856   for (int i = 1, e = Mask.size(); i < e; i++) {
13857     if (PrevElemFromFirstVec && Mask[i] < NumElts)
13858       return false;
13859     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
13860       return false;
13861     PrevElemFromFirstVec = !PrevElemFromFirstVec;
13862   }
13863   return true;
13864 }
13865 
13866 static bool isSplatBV(SDValue Op) {
13867   if (Op.getOpcode() != ISD::BUILD_VECTOR)
13868     return false;
13869   SDValue FirstOp;
13870 
13871   // Find first non-undef input.
13872   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
13873     FirstOp = Op.getOperand(i);
13874     if (!FirstOp.isUndef())
13875       break;
13876   }
13877 
13878   // All inputs are undef or the same as the first non-undef input.
13879   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
13880     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
13881       return false;
13882   return true;
13883 }
13884 
13885 static SDValue isScalarToVec(SDValue Op) {
13886   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13887     return Op;
13888   if (Op.getOpcode() != ISD::BITCAST)
13889     return SDValue();
13890   Op = Op.getOperand(0);
13891   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13892     return Op;
13893   return SDValue();
13894 }
13895 
13896 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
13897                                             int LHSMaxIdx, int RHSMinIdx,
13898                                             int RHSMaxIdx, int HalfVec) {
13899   for (int i = 0, e = ShuffV.size(); i < e; i++) {
13900     int Idx = ShuffV[i];
13901     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
13902       ShuffV[i] += HalfVec;
13903   }
13904 }
13905 
13906 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
13907 // the original is:
13908 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
13909 // In such a case, just change the shuffle mask to extract the element
13910 // from the permuted index.
13911 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
13912   SDLoc dl(OrigSToV);
13913   EVT VT = OrigSToV.getValueType();
13914   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
13915          "Expecting a SCALAR_TO_VECTOR here");
13916   SDValue Input = OrigSToV.getOperand(0);
13917 
13918   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13919     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
13920     SDValue OrigVector = Input.getOperand(0);
13921 
13922     // Can't handle non-const element indices or different vector types
13923     // for the input to the extract and the output of the scalar_to_vector.
13924     if (Idx && VT == OrigVector.getValueType()) {
13925       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
13926       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
13927       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
13928     }
13929   }
13930   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
13931                      OrigSToV.getOperand(0));
13932 }
13933 
13934 // On little endian subtargets, combine shuffles such as:
13935 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
13936 // into:
13937 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
13938 // because the latter can be matched to a single instruction merge.
13939 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
13940 // to put the value into element zero. Adjust the shuffle mask so that the
13941 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
13942 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
13943                                                 SelectionDAG &DAG) const {
13944   SDValue LHS = SVN->getOperand(0);
13945   SDValue RHS = SVN->getOperand(1);
13946   auto Mask = SVN->getMask();
13947   int NumElts = LHS.getValueType().getVectorNumElements();
13948   SDValue Res(SVN, 0);
13949   SDLoc dl(SVN);
13950 
13951   // None of these combines are useful on big endian systems since the ISA
13952   // already has a big endian bias.
13953   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13954     return Res;
13955 
13956   // If this is not a shuffle of a shuffle and the first element comes from
13957   // the second vector, canonicalize to the commuted form. This will make it
13958   // more likely to match one of the single instruction patterns.
13959   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13960       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
13961     std::swap(LHS, RHS);
13962     Res = DAG.getCommutedVectorShuffle(*SVN);
13963     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
13964   }
13965 
13966   // Adjust the shuffle mask if either input vector comes from a
13967   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
13968   // form (to prevent the need for a swap).
13969   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
13970   SDValue SToVLHS = isScalarToVec(LHS);
13971   SDValue SToVRHS = isScalarToVec(RHS);
13972   if (SToVLHS || SToVRHS) {
13973     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
13974                             : SToVRHS.getValueType().getVectorNumElements();
13975     int NumEltsOut = ShuffV.size();
13976 
13977     // Initially assume that neither input is permuted. These will be adjusted
13978     // accordingly if either input is.
13979     int LHSMaxIdx = -1;
13980     int RHSMinIdx = -1;
13981     int RHSMaxIdx = -1;
13982     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
13983 
13984     // Get the permuted scalar to vector nodes for the source(s) that come from
13985     // ISD::SCALAR_TO_VECTOR.
13986     if (SToVLHS) {
13987       // Set up the values for the shuffle vector fixup.
13988       LHSMaxIdx = NumEltsOut / NumEltsIn;
13989       SToVLHS = getSToVPermuted(SToVLHS, DAG);
13990       if (SToVLHS.getValueType() != LHS.getValueType())
13991         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
13992       LHS = SToVLHS;
13993     }
13994     if (SToVRHS) {
13995       RHSMinIdx = NumEltsOut;
13996       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
13997       SToVRHS = getSToVPermuted(SToVRHS, DAG);
13998       if (SToVRHS.getValueType() != RHS.getValueType())
13999         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14000       RHS = SToVRHS;
14001     }
14002 
14003     // Fix up the shuffle mask to reflect where the desired element actually is.
14004     // The minimum and maximum indices that correspond to element zero for both
14005     // the LHS and RHS are computed and will control which shuffle mask entries
14006     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14007     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14008     // HalfVec to refer to the corresponding element in the permuted vector.
14009     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14010                                     HalfVec);
14011     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14012 
14013     // We may have simplified away the shuffle. We won't be able to do anything
14014     // further with it here.
14015     if (!isa<ShuffleVectorSDNode>(Res))
14016       return Res;
14017     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14018   }
14019 
14020   // The common case after we commuted the shuffle is that the RHS is a splat
14021   // and we have elements coming in from the splat at indices that are not
14022   // conducive to using a merge.
14023   // Example:
14024   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14025   if (!isSplatBV(RHS))
14026     return Res;
14027 
14028   // We are looking for a mask such that all even elements are from
14029   // one vector and all odd elements from the other.
14030   if (!isAlternatingShuffMask(Mask, NumElts))
14031     return Res;
14032 
14033   // Adjust the mask so we are pulling in the same index from the splat
14034   // as the index from the interesting vector in consecutive elements.
14035   // Example (even elements from first vector):
14036   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14037   if (Mask[0] < NumElts)
14038     for (int i = 1, e = Mask.size(); i < e; i += 2)
14039       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14040   // Example (odd elements from first vector):
14041   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14042   else
14043     for (int i = 0, e = Mask.size(); i < e; i += 2)
14044       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14045 
14046   // If the RHS has undefs, we need to remove them since we may have created
14047   // a shuffle that adds those instead of the splat value.
14048   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14049   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14050 
14051   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14052   return Res;
14053 }
14054 
14055 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14056                                                 LSBaseSDNode *LSBase,
14057                                                 DAGCombinerInfo &DCI) const {
14058   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14059         "Not a reverse memop pattern!");
14060 
14061   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14062     auto Mask = SVN->getMask();
14063     int i = 0;
14064     auto I = Mask.rbegin();
14065     auto E = Mask.rend();
14066 
14067     for (; I != E; ++I) {
14068       if (*I != i)
14069         return false;
14070       i++;
14071     }
14072     return true;
14073   };
14074 
14075   SelectionDAG &DAG = DCI.DAG;
14076   EVT VT = SVN->getValueType(0);
14077 
14078   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14079     return SDValue();
14080 
14081   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14082   // See comment in PPCVSXSwapRemoval.cpp.
14083   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14084   if (!Subtarget.hasP9Vector())
14085     return SDValue();
14086 
14087   if(!IsElementReverse(SVN))
14088     return SDValue();
14089 
14090   if (LSBase->getOpcode() == ISD::LOAD) {
14091     SDLoc dl(SVN);
14092     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14093     return DAG.getMemIntrinsicNode(
14094         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14095         LSBase->getMemoryVT(), LSBase->getMemOperand());
14096   }
14097 
14098   if (LSBase->getOpcode() == ISD::STORE) {
14099     SDLoc dl(LSBase);
14100     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14101                           LSBase->getBasePtr()};
14102     return DAG.getMemIntrinsicNode(
14103         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14104         LSBase->getMemoryVT(), LSBase->getMemOperand());
14105   }
14106 
14107   llvm_unreachable("Expected a load or store node here");
14108 }
14109 
14110 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14111                                              DAGCombinerInfo &DCI) const {
14112   SelectionDAG &DAG = DCI.DAG;
14113   SDLoc dl(N);
14114   switch (N->getOpcode()) {
14115   default: break;
14116   case ISD::ADD:
14117     return combineADD(N, DCI);
14118   case ISD::SHL:
14119     return combineSHL(N, DCI);
14120   case ISD::SRA:
14121     return combineSRA(N, DCI);
14122   case ISD::SRL:
14123     return combineSRL(N, DCI);
14124   case ISD::MUL:
14125     return combineMUL(N, DCI);
14126   case ISD::FMA:
14127   case PPCISD::FNMSUB:
14128     return combineFMALike(N, DCI);
14129   case PPCISD::SHL:
14130     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14131         return N->getOperand(0);
14132     break;
14133   case PPCISD::SRL:
14134     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14135         return N->getOperand(0);
14136     break;
14137   case PPCISD::SRA:
14138     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14139       if (C->isNullValue() ||   //  0 >>s V -> 0.
14140           C->isAllOnesValue())    // -1 >>s V -> -1.
14141         return N->getOperand(0);
14142     }
14143     break;
14144   case ISD::SIGN_EXTEND:
14145   case ISD::ZERO_EXTEND:
14146   case ISD::ANY_EXTEND:
14147     return DAGCombineExtBoolTrunc(N, DCI);
14148   case ISD::TRUNCATE:
14149     return combineTRUNCATE(N, DCI);
14150   case ISD::SETCC:
14151     if (SDValue CSCC = combineSetCC(N, DCI))
14152       return CSCC;
14153     LLVM_FALLTHROUGH;
14154   case ISD::SELECT_CC:
14155     return DAGCombineTruncBoolExt(N, DCI);
14156   case ISD::SINT_TO_FP:
14157   case ISD::UINT_TO_FP:
14158     return combineFPToIntToFP(N, DCI);
14159   case ISD::VECTOR_SHUFFLE:
14160     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14161       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14162       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14163     }
14164     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14165   case ISD::STORE: {
14166 
14167     EVT Op1VT = N->getOperand(1).getValueType();
14168     unsigned Opcode = N->getOperand(1).getOpcode();
14169 
14170     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14171       SDValue Val= combineStoreFPToInt(N, DCI);
14172       if (Val)
14173         return Val;
14174     }
14175 
14176     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14177       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14178       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14179       if (Val)
14180         return Val;
14181     }
14182 
14183     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14184     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14185         N->getOperand(1).getNode()->hasOneUse() &&
14186         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14187          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14188 
14189       // STBRX can only handle simple types and it makes no sense to store less
14190       // two bytes in byte-reversed order.
14191       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14192       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14193         break;
14194 
14195       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14196       // Do an any-extend to 32-bits if this is a half-word input.
14197       if (BSwapOp.getValueType() == MVT::i16)
14198         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14199 
14200       // If the type of BSWAP operand is wider than stored memory width
14201       // it need to be shifted to the right side before STBRX.
14202       if (Op1VT.bitsGT(mVT)) {
14203         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14204         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14205                               DAG.getConstant(Shift, dl, MVT::i32));
14206         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14207         if (Op1VT == MVT::i64)
14208           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14209       }
14210 
14211       SDValue Ops[] = {
14212         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14213       };
14214       return
14215         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14216                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14217                                 cast<StoreSDNode>(N)->getMemOperand());
14218     }
14219 
14220     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14221     // So it can increase the chance of CSE constant construction.
14222     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14223         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14224       // Need to sign-extended to 64-bits to handle negative values.
14225       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14226       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14227                                     MemVT.getSizeInBits());
14228       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14229 
14230       // DAG.getTruncStore() can't be used here because it doesn't accept
14231       // the general (base + offset) addressing mode.
14232       // So we use UpdateNodeOperands and setTruncatingStore instead.
14233       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14234                              N->getOperand(3));
14235       cast<StoreSDNode>(N)->setTruncatingStore(true);
14236       return SDValue(N, 0);
14237     }
14238 
14239     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14240     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14241     if (Op1VT.isSimple()) {
14242       MVT StoreVT = Op1VT.getSimpleVT();
14243       if (Subtarget.needsSwapsForVSXMemOps() &&
14244           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14245            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14246         return expandVSXStoreForLE(N, DCI);
14247     }
14248     break;
14249   }
14250   case ISD::LOAD: {
14251     LoadSDNode *LD = cast<LoadSDNode>(N);
14252     EVT VT = LD->getValueType(0);
14253 
14254     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14255     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14256     if (VT.isSimple()) {
14257       MVT LoadVT = VT.getSimpleVT();
14258       if (Subtarget.needsSwapsForVSXMemOps() &&
14259           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14260            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14261         return expandVSXLoadForLE(N, DCI);
14262     }
14263 
14264     // We sometimes end up with a 64-bit integer load, from which we extract
14265     // two single-precision floating-point numbers. This happens with
14266     // std::complex<float>, and other similar structures, because of the way we
14267     // canonicalize structure copies. However, if we lack direct moves,
14268     // then the final bitcasts from the extracted integer values to the
14269     // floating-point numbers turn into store/load pairs. Even with direct moves,
14270     // just loading the two floating-point numbers is likely better.
14271     auto ReplaceTwoFloatLoad = [&]() {
14272       if (VT != MVT::i64)
14273         return false;
14274 
14275       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14276           LD->isVolatile())
14277         return false;
14278 
14279       //  We're looking for a sequence like this:
14280       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14281       //      t16: i64 = srl t13, Constant:i32<32>
14282       //    t17: i32 = truncate t16
14283       //  t18: f32 = bitcast t17
14284       //    t19: i32 = truncate t13
14285       //  t20: f32 = bitcast t19
14286 
14287       if (!LD->hasNUsesOfValue(2, 0))
14288         return false;
14289 
14290       auto UI = LD->use_begin();
14291       while (UI.getUse().getResNo() != 0) ++UI;
14292       SDNode *Trunc = *UI++;
14293       while (UI.getUse().getResNo() != 0) ++UI;
14294       SDNode *RightShift = *UI;
14295       if (Trunc->getOpcode() != ISD::TRUNCATE)
14296         std::swap(Trunc, RightShift);
14297 
14298       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14299           Trunc->getValueType(0) != MVT::i32 ||
14300           !Trunc->hasOneUse())
14301         return false;
14302       if (RightShift->getOpcode() != ISD::SRL ||
14303           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14304           RightShift->getConstantOperandVal(1) != 32 ||
14305           !RightShift->hasOneUse())
14306         return false;
14307 
14308       SDNode *Trunc2 = *RightShift->use_begin();
14309       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14310           Trunc2->getValueType(0) != MVT::i32 ||
14311           !Trunc2->hasOneUse())
14312         return false;
14313 
14314       SDNode *Bitcast = *Trunc->use_begin();
14315       SDNode *Bitcast2 = *Trunc2->use_begin();
14316 
14317       if (Bitcast->getOpcode() != ISD::BITCAST ||
14318           Bitcast->getValueType(0) != MVT::f32)
14319         return false;
14320       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14321           Bitcast2->getValueType(0) != MVT::f32)
14322         return false;
14323 
14324       if (Subtarget.isLittleEndian())
14325         std::swap(Bitcast, Bitcast2);
14326 
14327       // Bitcast has the second float (in memory-layout order) and Bitcast2
14328       // has the first one.
14329 
14330       SDValue BasePtr = LD->getBasePtr();
14331       if (LD->isIndexed()) {
14332         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14333                "Non-pre-inc AM on PPC?");
14334         BasePtr =
14335           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14336                       LD->getOffset());
14337       }
14338 
14339       auto MMOFlags =
14340           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14341       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14342                                       LD->getPointerInfo(), LD->getAlignment(),
14343                                       MMOFlags, LD->getAAInfo());
14344       SDValue AddPtr =
14345         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14346                     BasePtr, DAG.getIntPtrConstant(4, dl));
14347       SDValue FloatLoad2 = DAG.getLoad(
14348           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14349           LD->getPointerInfo().getWithOffset(4),
14350           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14351 
14352       if (LD->isIndexed()) {
14353         // Note that DAGCombine should re-form any pre-increment load(s) from
14354         // what is produced here if that makes sense.
14355         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14356       }
14357 
14358       DCI.CombineTo(Bitcast2, FloatLoad);
14359       DCI.CombineTo(Bitcast, FloatLoad2);
14360 
14361       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14362                                     SDValue(FloatLoad2.getNode(), 1));
14363       return true;
14364     };
14365 
14366     if (ReplaceTwoFloatLoad())
14367       return SDValue(N, 0);
14368 
14369     EVT MemVT = LD->getMemoryVT();
14370     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14371     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14372     if (LD->isUnindexed() && VT.isVector() &&
14373         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14374           // P8 and later hardware should just use LOAD.
14375           !Subtarget.hasP8Vector() &&
14376           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14377            VT == MVT::v4f32))) &&
14378         LD->getAlign() < ABIAlignment) {
14379       // This is a type-legal unaligned Altivec load.
14380       SDValue Chain = LD->getChain();
14381       SDValue Ptr = LD->getBasePtr();
14382       bool isLittleEndian = Subtarget.isLittleEndian();
14383 
14384       // This implements the loading of unaligned vectors as described in
14385       // the venerable Apple Velocity Engine overview. Specifically:
14386       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14387       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14388       //
14389       // The general idea is to expand a sequence of one or more unaligned
14390       // loads into an alignment-based permutation-control instruction (lvsl
14391       // or lvsr), a series of regular vector loads (which always truncate
14392       // their input address to an aligned address), and a series of
14393       // permutations.  The results of these permutations are the requested
14394       // loaded values.  The trick is that the last "extra" load is not taken
14395       // from the address you might suspect (sizeof(vector) bytes after the
14396       // last requested load), but rather sizeof(vector) - 1 bytes after the
14397       // last requested vector. The point of this is to avoid a page fault if
14398       // the base address happened to be aligned. This works because if the
14399       // base address is aligned, then adding less than a full vector length
14400       // will cause the last vector in the sequence to be (re)loaded.
14401       // Otherwise, the next vector will be fetched as you might suspect was
14402       // necessary.
14403 
14404       // We might be able to reuse the permutation generation from
14405       // a different base address offset from this one by an aligned amount.
14406       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14407       // optimization later.
14408       Intrinsic::ID Intr, IntrLD, IntrPerm;
14409       MVT PermCntlTy, PermTy, LDTy;
14410       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14411                             : Intrinsic::ppc_altivec_lvsl;
14412       IntrLD = Intrinsic::ppc_altivec_lvx;
14413       IntrPerm = Intrinsic::ppc_altivec_vperm;
14414       PermCntlTy = MVT::v16i8;
14415       PermTy = MVT::v4i32;
14416       LDTy = MVT::v4i32;
14417 
14418       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14419 
14420       // Create the new MMO for the new base load. It is like the original MMO,
14421       // but represents an area in memory almost twice the vector size centered
14422       // on the original address. If the address is unaligned, we might start
14423       // reading up to (sizeof(vector)-1) bytes below the address of the
14424       // original unaligned load.
14425       MachineFunction &MF = DAG.getMachineFunction();
14426       MachineMemOperand *BaseMMO =
14427         MF.getMachineMemOperand(LD->getMemOperand(),
14428                                 -(long)MemVT.getStoreSize()+1,
14429                                 2*MemVT.getStoreSize()-1);
14430 
14431       // Create the new base load.
14432       SDValue LDXIntID =
14433           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14434       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14435       SDValue BaseLoad =
14436         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14437                                 DAG.getVTList(PermTy, MVT::Other),
14438                                 BaseLoadOps, LDTy, BaseMMO);
14439 
14440       // Note that the value of IncOffset (which is provided to the next
14441       // load's pointer info offset value, and thus used to calculate the
14442       // alignment), and the value of IncValue (which is actually used to
14443       // increment the pointer value) are different! This is because we
14444       // require the next load to appear to be aligned, even though it
14445       // is actually offset from the base pointer by a lesser amount.
14446       int IncOffset = VT.getSizeInBits() / 8;
14447       int IncValue = IncOffset;
14448 
14449       // Walk (both up and down) the chain looking for another load at the real
14450       // (aligned) offset (the alignment of the other load does not matter in
14451       // this case). If found, then do not use the offset reduction trick, as
14452       // that will prevent the loads from being later combined (as they would
14453       // otherwise be duplicates).
14454       if (!findConsecutiveLoad(LD, DAG))
14455         --IncValue;
14456 
14457       SDValue Increment =
14458           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14459       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14460 
14461       MachineMemOperand *ExtraMMO =
14462         MF.getMachineMemOperand(LD->getMemOperand(),
14463                                 1, 2*MemVT.getStoreSize()-1);
14464       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14465       SDValue ExtraLoad =
14466         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14467                                 DAG.getVTList(PermTy, MVT::Other),
14468                                 ExtraLoadOps, LDTy, ExtraMMO);
14469 
14470       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14471         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14472 
14473       // Because vperm has a big-endian bias, we must reverse the order
14474       // of the input vectors and complement the permute control vector
14475       // when generating little endian code.  We have already handled the
14476       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14477       // and ExtraLoad here.
14478       SDValue Perm;
14479       if (isLittleEndian)
14480         Perm = BuildIntrinsicOp(IntrPerm,
14481                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14482       else
14483         Perm = BuildIntrinsicOp(IntrPerm,
14484                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14485 
14486       if (VT != PermTy)
14487         Perm = Subtarget.hasAltivec()
14488                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14489                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14490                                  DAG.getTargetConstant(1, dl, MVT::i64));
14491                                // second argument is 1 because this rounding
14492                                // is always exact.
14493 
14494       // The output of the permutation is our loaded result, the TokenFactor is
14495       // our new chain.
14496       DCI.CombineTo(N, Perm, TF);
14497       return SDValue(N, 0);
14498     }
14499     }
14500     break;
14501     case ISD::INTRINSIC_WO_CHAIN: {
14502       bool isLittleEndian = Subtarget.isLittleEndian();
14503       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14504       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14505                                            : Intrinsic::ppc_altivec_lvsl);
14506       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14507         SDValue Add = N->getOperand(1);
14508 
14509         int Bits = 4 /* 16 byte alignment */;
14510 
14511         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14512                                   APInt::getAllOnesValue(Bits /* alignment */)
14513                                       .zext(Add.getScalarValueSizeInBits()))) {
14514           SDNode *BasePtr = Add->getOperand(0).getNode();
14515           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14516                                     UE = BasePtr->use_end();
14517                UI != UE; ++UI) {
14518             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14519                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14520                     IID) {
14521               // We've found another LVSL/LVSR, and this address is an aligned
14522               // multiple of that one. The results will be the same, so use the
14523               // one we've just found instead.
14524 
14525               return SDValue(*UI, 0);
14526             }
14527           }
14528         }
14529 
14530         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14531           SDNode *BasePtr = Add->getOperand(0).getNode();
14532           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14533                UE = BasePtr->use_end(); UI != UE; ++UI) {
14534             if (UI->getOpcode() == ISD::ADD &&
14535                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14536                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14537                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14538                 (1ULL << Bits) == 0) {
14539               SDNode *OtherAdd = *UI;
14540               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14541                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14542                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14543                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14544                   return SDValue(*VI, 0);
14545                 }
14546               }
14547             }
14548           }
14549         }
14550       }
14551 
14552       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14553       // Expose the vabsduw/h/b opportunity for down stream
14554       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14555           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14556            IID == Intrinsic::ppc_altivec_vmaxsh ||
14557            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14558         SDValue V1 = N->getOperand(1);
14559         SDValue V2 = N->getOperand(2);
14560         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14561              V1.getSimpleValueType() == MVT::v8i16 ||
14562              V1.getSimpleValueType() == MVT::v16i8) &&
14563             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14564           // (0-a, a)
14565           if (V1.getOpcode() == ISD::SUB &&
14566               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14567               V1.getOperand(1) == V2) {
14568             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14569           }
14570           // (a, 0-a)
14571           if (V2.getOpcode() == ISD::SUB &&
14572               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14573               V2.getOperand(1) == V1) {
14574             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14575           }
14576           // (x-y, y-x)
14577           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14578               V1.getOperand(0) == V2.getOperand(1) &&
14579               V1.getOperand(1) == V2.getOperand(0)) {
14580             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14581           }
14582         }
14583       }
14584     }
14585 
14586     break;
14587   case ISD::INTRINSIC_W_CHAIN:
14588     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14589     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14590     if (Subtarget.needsSwapsForVSXMemOps()) {
14591       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14592       default:
14593         break;
14594       case Intrinsic::ppc_vsx_lxvw4x:
14595       case Intrinsic::ppc_vsx_lxvd2x:
14596         return expandVSXLoadForLE(N, DCI);
14597       }
14598     }
14599     break;
14600   case ISD::INTRINSIC_VOID:
14601     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14602     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14603     if (Subtarget.needsSwapsForVSXMemOps()) {
14604       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14605       default:
14606         break;
14607       case Intrinsic::ppc_vsx_stxvw4x:
14608       case Intrinsic::ppc_vsx_stxvd2x:
14609         return expandVSXStoreForLE(N, DCI);
14610       }
14611     }
14612     break;
14613   case ISD::BSWAP:
14614     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14615     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14616         N->getOperand(0).hasOneUse() &&
14617         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14618          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14619           N->getValueType(0) == MVT::i64))) {
14620       SDValue Load = N->getOperand(0);
14621       LoadSDNode *LD = cast<LoadSDNode>(Load);
14622       // Create the byte-swapping load.
14623       SDValue Ops[] = {
14624         LD->getChain(),    // Chain
14625         LD->getBasePtr(),  // Ptr
14626         DAG.getValueType(N->getValueType(0)) // VT
14627       };
14628       SDValue BSLoad =
14629         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14630                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14631                                               MVT::i64 : MVT::i32, MVT::Other),
14632                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14633 
14634       // If this is an i16 load, insert the truncate.
14635       SDValue ResVal = BSLoad;
14636       if (N->getValueType(0) == MVT::i16)
14637         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14638 
14639       // First, combine the bswap away.  This makes the value produced by the
14640       // load dead.
14641       DCI.CombineTo(N, ResVal);
14642 
14643       // Next, combine the load away, we give it a bogus result value but a real
14644       // chain result.  The result value is dead because the bswap is dead.
14645       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14646 
14647       // Return N so it doesn't get rechecked!
14648       return SDValue(N, 0);
14649     }
14650     break;
14651   case PPCISD::VCMP:
14652     // If a VCMP_rec node already exists with exactly the same operands as this
14653     // node, use its result instead of this node (VCMP_rec computes both a CR6
14654     // and a normal output).
14655     //
14656     if (!N->getOperand(0).hasOneUse() &&
14657         !N->getOperand(1).hasOneUse() &&
14658         !N->getOperand(2).hasOneUse()) {
14659 
14660       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
14661       SDNode *VCMPrecNode = nullptr;
14662 
14663       SDNode *LHSN = N->getOperand(0).getNode();
14664       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14665            UI != E; ++UI)
14666         if (UI->getOpcode() == PPCISD::VCMP_rec &&
14667             UI->getOperand(1) == N->getOperand(1) &&
14668             UI->getOperand(2) == N->getOperand(2) &&
14669             UI->getOperand(0) == N->getOperand(0)) {
14670           VCMPrecNode = *UI;
14671           break;
14672         }
14673 
14674       // If there is no VCMP_rec node, or if the flag value has a single use,
14675       // don't transform this.
14676       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
14677         break;
14678 
14679       // Look at the (necessarily single) use of the flag value.  If it has a
14680       // chain, this transformation is more complex.  Note that multiple things
14681       // could use the value result, which we should ignore.
14682       SDNode *FlagUser = nullptr;
14683       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
14684            FlagUser == nullptr; ++UI) {
14685         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
14686         SDNode *User = *UI;
14687         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14688           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
14689             FlagUser = User;
14690             break;
14691           }
14692         }
14693       }
14694 
14695       // If the user is a MFOCRF instruction, we know this is safe.
14696       // Otherwise we give up for right now.
14697       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14698         return SDValue(VCMPrecNode, 0);
14699     }
14700     break;
14701   case ISD::BRCOND: {
14702     SDValue Cond = N->getOperand(1);
14703     SDValue Target = N->getOperand(2);
14704 
14705     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14706         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14707           Intrinsic::loop_decrement) {
14708 
14709       // We now need to make the intrinsic dead (it cannot be instruction
14710       // selected).
14711       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14712       assert(Cond.getNode()->hasOneUse() &&
14713              "Counter decrement has more than one use");
14714 
14715       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14716                          N->getOperand(0), Target);
14717     }
14718   }
14719   break;
14720   case ISD::BR_CC: {
14721     // If this is a branch on an altivec predicate comparison, lower this so
14722     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14723     // lowering is done pre-legalize, because the legalizer lowers the predicate
14724     // compare down to code that is difficult to reassemble.
14725     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14726     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14727 
14728     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14729     // value. If so, pass-through the AND to get to the intrinsic.
14730     if (LHS.getOpcode() == ISD::AND &&
14731         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14732         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14733           Intrinsic::loop_decrement &&
14734         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14735         !isNullConstant(LHS.getOperand(1)))
14736       LHS = LHS.getOperand(0);
14737 
14738     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14739         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14740           Intrinsic::loop_decrement &&
14741         isa<ConstantSDNode>(RHS)) {
14742       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14743              "Counter decrement comparison is not EQ or NE");
14744 
14745       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14746       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14747                     (CC == ISD::SETNE && !Val);
14748 
14749       // We now need to make the intrinsic dead (it cannot be instruction
14750       // selected).
14751       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14752       assert(LHS.getNode()->hasOneUse() &&
14753              "Counter decrement has more than one use");
14754 
14755       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14756                          N->getOperand(0), N->getOperand(4));
14757     }
14758 
14759     int CompareOpc;
14760     bool isDot;
14761 
14762     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14763         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14764         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14765       assert(isDot && "Can't compare against a vector result!");
14766 
14767       // If this is a comparison against something other than 0/1, then we know
14768       // that the condition is never/always true.
14769       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14770       if (Val != 0 && Val != 1) {
14771         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14772           return N->getOperand(0);
14773         // Always !=, turn it into an unconditional branch.
14774         return DAG.getNode(ISD::BR, dl, MVT::Other,
14775                            N->getOperand(0), N->getOperand(4));
14776       }
14777 
14778       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14779 
14780       // Create the PPCISD altivec 'dot' comparison node.
14781       SDValue Ops[] = {
14782         LHS.getOperand(2),  // LHS of compare
14783         LHS.getOperand(3),  // RHS of compare
14784         DAG.getConstant(CompareOpc, dl, MVT::i32)
14785       };
14786       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14787       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
14788 
14789       // Unpack the result based on how the target uses it.
14790       PPC::Predicate CompOpc;
14791       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14792       default:  // Can't happen, don't crash on invalid number though.
14793       case 0:   // Branch on the value of the EQ bit of CR6.
14794         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14795         break;
14796       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14797         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14798         break;
14799       case 2:   // Branch on the value of the LT bit of CR6.
14800         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14801         break;
14802       case 3:   // Branch on the inverted value of the LT bit of CR6.
14803         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14804         break;
14805       }
14806 
14807       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14808                          DAG.getConstant(CompOpc, dl, MVT::i32),
14809                          DAG.getRegister(PPC::CR6, MVT::i32),
14810                          N->getOperand(4), CompNode.getValue(1));
14811     }
14812     break;
14813   }
14814   case ISD::BUILD_VECTOR:
14815     return DAGCombineBuildVector(N, DCI);
14816   case ISD::ABS:
14817     return combineABS(N, DCI);
14818   case ISD::VSELECT:
14819     return combineVSelect(N, DCI);
14820   }
14821 
14822   return SDValue();
14823 }
14824 
14825 SDValue
14826 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14827                                  SelectionDAG &DAG,
14828                                  SmallVectorImpl<SDNode *> &Created) const {
14829   // fold (sdiv X, pow2)
14830   EVT VT = N->getValueType(0);
14831   if (VT == MVT::i64 && !Subtarget.isPPC64())
14832     return SDValue();
14833   if ((VT != MVT::i32 && VT != MVT::i64) ||
14834       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14835     return SDValue();
14836 
14837   SDLoc DL(N);
14838   SDValue N0 = N->getOperand(0);
14839 
14840   bool IsNegPow2 = (-Divisor).isPowerOf2();
14841   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14842   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14843 
14844   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14845   Created.push_back(Op.getNode());
14846 
14847   if (IsNegPow2) {
14848     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14849     Created.push_back(Op.getNode());
14850   }
14851 
14852   return Op;
14853 }
14854 
14855 //===----------------------------------------------------------------------===//
14856 // Inline Assembly Support
14857 //===----------------------------------------------------------------------===//
14858 
14859 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14860                                                       KnownBits &Known,
14861                                                       const APInt &DemandedElts,
14862                                                       const SelectionDAG &DAG,
14863                                                       unsigned Depth) const {
14864   Known.resetAll();
14865   switch (Op.getOpcode()) {
14866   default: break;
14867   case PPCISD::LBRX: {
14868     // lhbrx is known to have the top bits cleared out.
14869     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14870       Known.Zero = 0xFFFF0000;
14871     break;
14872   }
14873   case ISD::INTRINSIC_WO_CHAIN: {
14874     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14875     default: break;
14876     case Intrinsic::ppc_altivec_vcmpbfp_p:
14877     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14878     case Intrinsic::ppc_altivec_vcmpequb_p:
14879     case Intrinsic::ppc_altivec_vcmpequh_p:
14880     case Intrinsic::ppc_altivec_vcmpequw_p:
14881     case Intrinsic::ppc_altivec_vcmpequd_p:
14882     case Intrinsic::ppc_altivec_vcmpequq_p:
14883     case Intrinsic::ppc_altivec_vcmpgefp_p:
14884     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14885     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14886     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14887     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14888     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14889     case Intrinsic::ppc_altivec_vcmpgtsq_p:
14890     case Intrinsic::ppc_altivec_vcmpgtub_p:
14891     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14892     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14893     case Intrinsic::ppc_altivec_vcmpgtud_p:
14894     case Intrinsic::ppc_altivec_vcmpgtuq_p:
14895       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14896       break;
14897     }
14898   }
14899   }
14900 }
14901 
14902 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14903   switch (Subtarget.getCPUDirective()) {
14904   default: break;
14905   case PPC::DIR_970:
14906   case PPC::DIR_PWR4:
14907   case PPC::DIR_PWR5:
14908   case PPC::DIR_PWR5X:
14909   case PPC::DIR_PWR6:
14910   case PPC::DIR_PWR6X:
14911   case PPC::DIR_PWR7:
14912   case PPC::DIR_PWR8:
14913   case PPC::DIR_PWR9:
14914   case PPC::DIR_PWR10:
14915   case PPC::DIR_PWR_FUTURE: {
14916     if (!ML)
14917       break;
14918 
14919     if (!DisableInnermostLoopAlign32) {
14920       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14921       // so that we can decrease cache misses and branch-prediction misses.
14922       // Actual alignment of the loop will depend on the hotness check and other
14923       // logic in alignBlocks.
14924       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14925         return Align(32);
14926     }
14927 
14928     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14929 
14930     // For small loops (between 5 and 8 instructions), align to a 32-byte
14931     // boundary so that the entire loop fits in one instruction-cache line.
14932     uint64_t LoopSize = 0;
14933     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14934       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14935         LoopSize += TII->getInstSizeInBytes(*J);
14936         if (LoopSize > 32)
14937           break;
14938       }
14939 
14940     if (LoopSize > 16 && LoopSize <= 32)
14941       return Align(32);
14942 
14943     break;
14944   }
14945   }
14946 
14947   return TargetLowering::getPrefLoopAlignment(ML);
14948 }
14949 
14950 /// getConstraintType - Given a constraint, return the type of
14951 /// constraint it is for this target.
14952 PPCTargetLowering::ConstraintType
14953 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14954   if (Constraint.size() == 1) {
14955     switch (Constraint[0]) {
14956     default: break;
14957     case 'b':
14958     case 'r':
14959     case 'f':
14960     case 'd':
14961     case 'v':
14962     case 'y':
14963       return C_RegisterClass;
14964     case 'Z':
14965       // FIXME: While Z does indicate a memory constraint, it specifically
14966       // indicates an r+r address (used in conjunction with the 'y' modifier
14967       // in the replacement string). Currently, we're forcing the base
14968       // register to be r0 in the asm printer (which is interpreted as zero)
14969       // and forming the complete address in the second register. This is
14970       // suboptimal.
14971       return C_Memory;
14972     }
14973   } else if (Constraint == "wc") { // individual CR bits.
14974     return C_RegisterClass;
14975   } else if (Constraint == "wa" || Constraint == "wd" ||
14976              Constraint == "wf" || Constraint == "ws" ||
14977              Constraint == "wi" || Constraint == "ww") {
14978     return C_RegisterClass; // VSX registers.
14979   }
14980   return TargetLowering::getConstraintType(Constraint);
14981 }
14982 
14983 /// Examine constraint type and operand type and determine a weight value.
14984 /// This object must already have been set up with the operand type
14985 /// and the current alternative constraint selected.
14986 TargetLowering::ConstraintWeight
14987 PPCTargetLowering::getSingleConstraintMatchWeight(
14988     AsmOperandInfo &info, const char *constraint) const {
14989   ConstraintWeight weight = CW_Invalid;
14990   Value *CallOperandVal = info.CallOperandVal;
14991     // If we don't have a value, we can't do a match,
14992     // but allow it at the lowest weight.
14993   if (!CallOperandVal)
14994     return CW_Default;
14995   Type *type = CallOperandVal->getType();
14996 
14997   // Look at the constraint type.
14998   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14999     return CW_Register; // an individual CR bit.
15000   else if ((StringRef(constraint) == "wa" ||
15001             StringRef(constraint) == "wd" ||
15002             StringRef(constraint) == "wf") &&
15003            type->isVectorTy())
15004     return CW_Register;
15005   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15006     return CW_Register; // just hold 64-bit integers data.
15007   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15008     return CW_Register;
15009   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15010     return CW_Register;
15011 
15012   switch (*constraint) {
15013   default:
15014     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15015     break;
15016   case 'b':
15017     if (type->isIntegerTy())
15018       weight = CW_Register;
15019     break;
15020   case 'f':
15021     if (type->isFloatTy())
15022       weight = CW_Register;
15023     break;
15024   case 'd':
15025     if (type->isDoubleTy())
15026       weight = CW_Register;
15027     break;
15028   case 'v':
15029     if (type->isVectorTy())
15030       weight = CW_Register;
15031     break;
15032   case 'y':
15033     weight = CW_Register;
15034     break;
15035   case 'Z':
15036     weight = CW_Memory;
15037     break;
15038   }
15039   return weight;
15040 }
15041 
15042 std::pair<unsigned, const TargetRegisterClass *>
15043 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15044                                                 StringRef Constraint,
15045                                                 MVT VT) const {
15046   if (Constraint.size() == 1) {
15047     // GCC RS6000 Constraint Letters
15048     switch (Constraint[0]) {
15049     case 'b':   // R1-R31
15050       if (VT == MVT::i64 && Subtarget.isPPC64())
15051         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15052       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15053     case 'r':   // R0-R31
15054       if (VT == MVT::i64 && Subtarget.isPPC64())
15055         return std::make_pair(0U, &PPC::G8RCRegClass);
15056       return std::make_pair(0U, &PPC::GPRCRegClass);
15057     // 'd' and 'f' constraints are both defined to be "the floating point
15058     // registers", where one is for 32-bit and the other for 64-bit. We don't
15059     // really care overly much here so just give them all the same reg classes.
15060     case 'd':
15061     case 'f':
15062       if (Subtarget.hasSPE()) {
15063         if (VT == MVT::f32 || VT == MVT::i32)
15064           return std::make_pair(0U, &PPC::GPRCRegClass);
15065         if (VT == MVT::f64 || VT == MVT::i64)
15066           return std::make_pair(0U, &PPC::SPERCRegClass);
15067       } else {
15068         if (VT == MVT::f32 || VT == MVT::i32)
15069           return std::make_pair(0U, &PPC::F4RCRegClass);
15070         if (VT == MVT::f64 || VT == MVT::i64)
15071           return std::make_pair(0U, &PPC::F8RCRegClass);
15072       }
15073       break;
15074     case 'v':
15075       if (Subtarget.hasAltivec())
15076         return std::make_pair(0U, &PPC::VRRCRegClass);
15077       break;
15078     case 'y':   // crrc
15079       return std::make_pair(0U, &PPC::CRRCRegClass);
15080     }
15081   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15082     // An individual CR bit.
15083     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15084   } else if ((Constraint == "wa" || Constraint == "wd" ||
15085              Constraint == "wf" || Constraint == "wi") &&
15086              Subtarget.hasVSX()) {
15087     return std::make_pair(0U, &PPC::VSRCRegClass);
15088   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15089     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15090       return std::make_pair(0U, &PPC::VSSRCRegClass);
15091     else
15092       return std::make_pair(0U, &PPC::VSFRCRegClass);
15093   }
15094 
15095   // If we name a VSX register, we can't defer to the base class because it
15096   // will not recognize the correct register (their names will be VSL{0-31}
15097   // and V{0-31} so they won't match). So we match them here.
15098   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15099     int VSNum = atoi(Constraint.data() + 3);
15100     assert(VSNum >= 0 && VSNum <= 63 &&
15101            "Attempted to access a vsr out of range");
15102     if (VSNum < 32)
15103       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15104     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15105   }
15106   std::pair<unsigned, const TargetRegisterClass *> R =
15107       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15108 
15109   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15110   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15111   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15112   // register.
15113   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15114   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15115   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15116       PPC::GPRCRegClass.contains(R.first))
15117     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15118                             PPC::sub_32, &PPC::G8RCRegClass),
15119                           &PPC::G8RCRegClass);
15120 
15121   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15122   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15123     R.first = PPC::CR0;
15124     R.second = &PPC::CRRCRegClass;
15125   }
15126 
15127   return R;
15128 }
15129 
15130 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15131 /// vector.  If it is invalid, don't add anything to Ops.
15132 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15133                                                      std::string &Constraint,
15134                                                      std::vector<SDValue>&Ops,
15135                                                      SelectionDAG &DAG) const {
15136   SDValue Result;
15137 
15138   // Only support length 1 constraints.
15139   if (Constraint.length() > 1) return;
15140 
15141   char Letter = Constraint[0];
15142   switch (Letter) {
15143   default: break;
15144   case 'I':
15145   case 'J':
15146   case 'K':
15147   case 'L':
15148   case 'M':
15149   case 'N':
15150   case 'O':
15151   case 'P': {
15152     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15153     if (!CST) return; // Must be an immediate to match.
15154     SDLoc dl(Op);
15155     int64_t Value = CST->getSExtValue();
15156     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15157                          // numbers are printed as such.
15158     switch (Letter) {
15159     default: llvm_unreachable("Unknown constraint letter!");
15160     case 'I':  // "I" is a signed 16-bit constant.
15161       if (isInt<16>(Value))
15162         Result = DAG.getTargetConstant(Value, dl, TCVT);
15163       break;
15164     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15165       if (isShiftedUInt<16, 16>(Value))
15166         Result = DAG.getTargetConstant(Value, dl, TCVT);
15167       break;
15168     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15169       if (isShiftedInt<16, 16>(Value))
15170         Result = DAG.getTargetConstant(Value, dl, TCVT);
15171       break;
15172     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15173       if (isUInt<16>(Value))
15174         Result = DAG.getTargetConstant(Value, dl, TCVT);
15175       break;
15176     case 'M':  // "M" is a constant that is greater than 31.
15177       if (Value > 31)
15178         Result = DAG.getTargetConstant(Value, dl, TCVT);
15179       break;
15180     case 'N':  // "N" is a positive constant that is an exact power of two.
15181       if (Value > 0 && isPowerOf2_64(Value))
15182         Result = DAG.getTargetConstant(Value, dl, TCVT);
15183       break;
15184     case 'O':  // "O" is the constant zero.
15185       if (Value == 0)
15186         Result = DAG.getTargetConstant(Value, dl, TCVT);
15187       break;
15188     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15189       if (isInt<16>(-Value))
15190         Result = DAG.getTargetConstant(Value, dl, TCVT);
15191       break;
15192     }
15193     break;
15194   }
15195   }
15196 
15197   if (Result.getNode()) {
15198     Ops.push_back(Result);
15199     return;
15200   }
15201 
15202   // Handle standard constraint letters.
15203   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15204 }
15205 
15206 // isLegalAddressingMode - Return true if the addressing mode represented
15207 // by AM is legal for this target, for a load/store of the specified type.
15208 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15209                                               const AddrMode &AM, Type *Ty,
15210                                               unsigned AS,
15211                                               Instruction *I) const {
15212   // Vector type r+i form is supported since power9 as DQ form. We don't check
15213   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15214   // imm form is preferred and the offset can be adjusted to use imm form later
15215   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15216   // max offset to check legal addressing mode, we should be a little aggressive
15217   // to contain other offsets for that LSRUse.
15218   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15219     return false;
15220 
15221   // PPC allows a sign-extended 16-bit immediate field.
15222   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15223     return false;
15224 
15225   // No global is ever allowed as a base.
15226   if (AM.BaseGV)
15227     return false;
15228 
15229   // PPC only support r+r,
15230   switch (AM.Scale) {
15231   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15232     break;
15233   case 1:
15234     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15235       return false;
15236     // Otherwise we have r+r or r+i.
15237     break;
15238   case 2:
15239     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15240       return false;
15241     // Allow 2*r as r+r.
15242     break;
15243   default:
15244     // No other scales are supported.
15245     return false;
15246   }
15247 
15248   return true;
15249 }
15250 
15251 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15252                                            SelectionDAG &DAG) const {
15253   MachineFunction &MF = DAG.getMachineFunction();
15254   MachineFrameInfo &MFI = MF.getFrameInfo();
15255   MFI.setReturnAddressIsTaken(true);
15256 
15257   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15258     return SDValue();
15259 
15260   SDLoc dl(Op);
15261   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15262 
15263   // Make sure the function does not optimize away the store of the RA to
15264   // the stack.
15265   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15266   FuncInfo->setLRStoreRequired();
15267   bool isPPC64 = Subtarget.isPPC64();
15268   auto PtrVT = getPointerTy(MF.getDataLayout());
15269 
15270   if (Depth > 0) {
15271     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15272     SDValue Offset =
15273         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15274                         isPPC64 ? MVT::i64 : MVT::i32);
15275     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15276                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15277                        MachinePointerInfo());
15278   }
15279 
15280   // Just load the return address off the stack.
15281   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15282   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15283                      MachinePointerInfo());
15284 }
15285 
15286 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15287                                           SelectionDAG &DAG) const {
15288   SDLoc dl(Op);
15289   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15290 
15291   MachineFunction &MF = DAG.getMachineFunction();
15292   MachineFrameInfo &MFI = MF.getFrameInfo();
15293   MFI.setFrameAddressIsTaken(true);
15294 
15295   EVT PtrVT = getPointerTy(MF.getDataLayout());
15296   bool isPPC64 = PtrVT == MVT::i64;
15297 
15298   // Naked functions never have a frame pointer, and so we use r1. For all
15299   // other functions, this decision must be delayed until during PEI.
15300   unsigned FrameReg;
15301   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15302     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15303   else
15304     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15305 
15306   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15307                                          PtrVT);
15308   while (Depth--)
15309     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15310                             FrameAddr, MachinePointerInfo());
15311   return FrameAddr;
15312 }
15313 
15314 // FIXME? Maybe this could be a TableGen attribute on some registers and
15315 // this table could be generated automatically from RegInfo.
15316 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15317                                               const MachineFunction &MF) const {
15318   bool isPPC64 = Subtarget.isPPC64();
15319 
15320   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15321   if (!is64Bit && VT != LLT::scalar(32))
15322     report_fatal_error("Invalid register global variable type");
15323 
15324   Register Reg = StringSwitch<Register>(RegName)
15325                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15326                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15327                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15328                      .Default(Register());
15329 
15330   if (Reg)
15331     return Reg;
15332   report_fatal_error("Invalid register name global variable");
15333 }
15334 
15335 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15336   // 32-bit SVR4 ABI access everything as got-indirect.
15337   if (Subtarget.is32BitELFABI())
15338     return true;
15339 
15340   // AIX accesses everything indirectly through the TOC, which is similar to
15341   // the GOT.
15342   if (Subtarget.isAIXABI())
15343     return true;
15344 
15345   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15346   // If it is small or large code model, module locals are accessed
15347   // indirectly by loading their address from .toc/.got.
15348   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15349     return true;
15350 
15351   // JumpTable and BlockAddress are accessed as got-indirect.
15352   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15353     return true;
15354 
15355   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15356     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15357 
15358   return false;
15359 }
15360 
15361 bool
15362 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15363   // The PowerPC target isn't yet aware of offsets.
15364   return false;
15365 }
15366 
15367 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15368                                            const CallInst &I,
15369                                            MachineFunction &MF,
15370                                            unsigned Intrinsic) const {
15371   switch (Intrinsic) {
15372   case Intrinsic::ppc_altivec_lvx:
15373   case Intrinsic::ppc_altivec_lvxl:
15374   case Intrinsic::ppc_altivec_lvebx:
15375   case Intrinsic::ppc_altivec_lvehx:
15376   case Intrinsic::ppc_altivec_lvewx:
15377   case Intrinsic::ppc_vsx_lxvd2x:
15378   case Intrinsic::ppc_vsx_lxvw4x:
15379   case Intrinsic::ppc_vsx_lxvd2x_be:
15380   case Intrinsic::ppc_vsx_lxvw4x_be:
15381   case Intrinsic::ppc_vsx_lxvl:
15382   case Intrinsic::ppc_vsx_lxvll: {
15383     EVT VT;
15384     switch (Intrinsic) {
15385     case Intrinsic::ppc_altivec_lvebx:
15386       VT = MVT::i8;
15387       break;
15388     case Intrinsic::ppc_altivec_lvehx:
15389       VT = MVT::i16;
15390       break;
15391     case Intrinsic::ppc_altivec_lvewx:
15392       VT = MVT::i32;
15393       break;
15394     case Intrinsic::ppc_vsx_lxvd2x:
15395     case Intrinsic::ppc_vsx_lxvd2x_be:
15396       VT = MVT::v2f64;
15397       break;
15398     default:
15399       VT = MVT::v4i32;
15400       break;
15401     }
15402 
15403     Info.opc = ISD::INTRINSIC_W_CHAIN;
15404     Info.memVT = VT;
15405     Info.ptrVal = I.getArgOperand(0);
15406     Info.offset = -VT.getStoreSize()+1;
15407     Info.size = 2*VT.getStoreSize()-1;
15408     Info.align = Align(1);
15409     Info.flags = MachineMemOperand::MOLoad;
15410     return true;
15411   }
15412   case Intrinsic::ppc_altivec_stvx:
15413   case Intrinsic::ppc_altivec_stvxl:
15414   case Intrinsic::ppc_altivec_stvebx:
15415   case Intrinsic::ppc_altivec_stvehx:
15416   case Intrinsic::ppc_altivec_stvewx:
15417   case Intrinsic::ppc_vsx_stxvd2x:
15418   case Intrinsic::ppc_vsx_stxvw4x:
15419   case Intrinsic::ppc_vsx_stxvd2x_be:
15420   case Intrinsic::ppc_vsx_stxvw4x_be:
15421   case Intrinsic::ppc_vsx_stxvl:
15422   case Intrinsic::ppc_vsx_stxvll: {
15423     EVT VT;
15424     switch (Intrinsic) {
15425     case Intrinsic::ppc_altivec_stvebx:
15426       VT = MVT::i8;
15427       break;
15428     case Intrinsic::ppc_altivec_stvehx:
15429       VT = MVT::i16;
15430       break;
15431     case Intrinsic::ppc_altivec_stvewx:
15432       VT = MVT::i32;
15433       break;
15434     case Intrinsic::ppc_vsx_stxvd2x:
15435     case Intrinsic::ppc_vsx_stxvd2x_be:
15436       VT = MVT::v2f64;
15437       break;
15438     default:
15439       VT = MVT::v4i32;
15440       break;
15441     }
15442 
15443     Info.opc = ISD::INTRINSIC_VOID;
15444     Info.memVT = VT;
15445     Info.ptrVal = I.getArgOperand(1);
15446     Info.offset = -VT.getStoreSize()+1;
15447     Info.size = 2*VT.getStoreSize()-1;
15448     Info.align = Align(1);
15449     Info.flags = MachineMemOperand::MOStore;
15450     return true;
15451   }
15452   default:
15453     break;
15454   }
15455 
15456   return false;
15457 }
15458 
15459 /// It returns EVT::Other if the type should be determined using generic
15460 /// target-independent logic.
15461 EVT PPCTargetLowering::getOptimalMemOpType(
15462     const MemOp &Op, const AttributeList &FuncAttributes) const {
15463   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15464     // We should use Altivec/VSX loads and stores when available. For unaligned
15465     // addresses, unaligned VSX loads are only fast starting with the P8.
15466     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15467         (Op.isAligned(Align(16)) ||
15468          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15469       return MVT::v4i32;
15470   }
15471 
15472   if (Subtarget.isPPC64()) {
15473     return MVT::i64;
15474   }
15475 
15476   return MVT::i32;
15477 }
15478 
15479 /// Returns true if it is beneficial to convert a load of a constant
15480 /// to just the constant itself.
15481 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15482                                                           Type *Ty) const {
15483   assert(Ty->isIntegerTy());
15484 
15485   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15486   return !(BitSize == 0 || BitSize > 64);
15487 }
15488 
15489 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15490   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15491     return false;
15492   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15493   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15494   return NumBits1 == 64 && NumBits2 == 32;
15495 }
15496 
15497 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15498   if (!VT1.isInteger() || !VT2.isInteger())
15499     return false;
15500   unsigned NumBits1 = VT1.getSizeInBits();
15501   unsigned NumBits2 = VT2.getSizeInBits();
15502   return NumBits1 == 64 && NumBits2 == 32;
15503 }
15504 
15505 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15506   // Generally speaking, zexts are not free, but they are free when they can be
15507   // folded with other operations.
15508   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15509     EVT MemVT = LD->getMemoryVT();
15510     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15511          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15512         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15513          LD->getExtensionType() == ISD::ZEXTLOAD))
15514       return true;
15515   }
15516 
15517   // FIXME: Add other cases...
15518   //  - 32-bit shifts with a zext to i64
15519   //  - zext after ctlz, bswap, etc.
15520   //  - zext after and by a constant mask
15521 
15522   return TargetLowering::isZExtFree(Val, VT2);
15523 }
15524 
15525 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15526   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15527          "invalid fpext types");
15528   // Extending to float128 is not free.
15529   if (DestVT == MVT::f128)
15530     return false;
15531   return true;
15532 }
15533 
15534 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15535   return isInt<16>(Imm) || isUInt<16>(Imm);
15536 }
15537 
15538 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15539   return isInt<16>(Imm) || isUInt<16>(Imm);
15540 }
15541 
15542 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15543                                                        unsigned,
15544                                                        unsigned,
15545                                                        MachineMemOperand::Flags,
15546                                                        bool *Fast) const {
15547   if (DisablePPCUnaligned)
15548     return false;
15549 
15550   // PowerPC supports unaligned memory access for simple non-vector types.
15551   // Although accessing unaligned addresses is not as efficient as accessing
15552   // aligned addresses, it is generally more efficient than manual expansion,
15553   // and generally only traps for software emulation when crossing page
15554   // boundaries.
15555 
15556   if (!VT.isSimple())
15557     return false;
15558 
15559   if (VT.isFloatingPoint() && !VT.isVector() &&
15560       !Subtarget.allowsUnalignedFPAccess())
15561     return false;
15562 
15563   if (VT.getSimpleVT().isVector()) {
15564     if (Subtarget.hasVSX()) {
15565       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15566           VT != MVT::v4f32 && VT != MVT::v4i32)
15567         return false;
15568     } else {
15569       return false;
15570     }
15571   }
15572 
15573   if (VT == MVT::ppcf128)
15574     return false;
15575 
15576   if (Fast)
15577     *Fast = true;
15578 
15579   return true;
15580 }
15581 
15582 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
15583                                                SDValue C) const {
15584   // Check integral scalar types.
15585   if (!VT.isScalarInteger())
15586     return false;
15587   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
15588     if (!ConstNode->getAPIntValue().isSignedIntN(64))
15589       return false;
15590     // This transformation will generate >= 2 operations. But the following
15591     // cases will generate <= 2 instructions during ISEL. So exclude them.
15592     // 1. If the constant multiplier fits 16 bits, it can be handled by one
15593     // HW instruction, ie. MULLI
15594     // 2. If the multiplier after shifted fits 16 bits, an extra shift
15595     // instruction is needed than case 1, ie. MULLI and RLDICR
15596     int64_t Imm = ConstNode->getSExtValue();
15597     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
15598     Imm >>= Shift;
15599     if (isInt<16>(Imm))
15600       return false;
15601     uint64_t UImm = static_cast<uint64_t>(Imm);
15602     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
15603         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
15604       return true;
15605   }
15606   return false;
15607 }
15608 
15609 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15610                                                    EVT VT) const {
15611   return isFMAFasterThanFMulAndFAdd(
15612       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15613 }
15614 
15615 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15616                                                    Type *Ty) const {
15617   switch (Ty->getScalarType()->getTypeID()) {
15618   case Type::FloatTyID:
15619   case Type::DoubleTyID:
15620     return true;
15621   case Type::FP128TyID:
15622     return Subtarget.hasP9Vector();
15623   default:
15624     return false;
15625   }
15626 }
15627 
15628 // FIXME: add more patterns which are not profitable to hoist.
15629 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15630   if (!I->hasOneUse())
15631     return true;
15632 
15633   Instruction *User = I->user_back();
15634   assert(User && "A single use instruction with no uses.");
15635 
15636   switch (I->getOpcode()) {
15637   case Instruction::FMul: {
15638     // Don't break FMA, PowerPC prefers FMA.
15639     if (User->getOpcode() != Instruction::FSub &&
15640         User->getOpcode() != Instruction::FAdd)
15641       return true;
15642 
15643     const TargetOptions &Options = getTargetMachine().Options;
15644     const Function *F = I->getFunction();
15645     const DataLayout &DL = F->getParent()->getDataLayout();
15646     Type *Ty = User->getOperand(0)->getType();
15647 
15648     return !(
15649         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15650         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15651         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15652   }
15653   case Instruction::Load: {
15654     // Don't break "store (load float*)" pattern, this pattern will be combined
15655     // to "store (load int32)" in later InstCombine pass. See function
15656     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15657     // cycles than loading a 32 bit integer.
15658     LoadInst *LI = cast<LoadInst>(I);
15659     // For the loads that combineLoadToOperationType does nothing, like
15660     // ordered load, it should be profitable to hoist them.
15661     // For swifterror load, it can only be used for pointer to pointer type, so
15662     // later type check should get rid of this case.
15663     if (!LI->isUnordered())
15664       return true;
15665 
15666     if (User->getOpcode() != Instruction::Store)
15667       return true;
15668 
15669     if (I->getType()->getTypeID() != Type::FloatTyID)
15670       return true;
15671 
15672     return false;
15673   }
15674   default:
15675     return true;
15676   }
15677   return true;
15678 }
15679 
15680 const MCPhysReg *
15681 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15682   // LR is a callee-save register, but we must treat it as clobbered by any call
15683   // site. Hence we include LR in the scratch registers, which are in turn added
15684   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15685   // to CTR, which is used by any indirect call.
15686   static const MCPhysReg ScratchRegs[] = {
15687     PPC::X12, PPC::LR8, PPC::CTR8, 0
15688   };
15689 
15690   return ScratchRegs;
15691 }
15692 
15693 Register PPCTargetLowering::getExceptionPointerRegister(
15694     const Constant *PersonalityFn) const {
15695   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15696 }
15697 
15698 Register PPCTargetLowering::getExceptionSelectorRegister(
15699     const Constant *PersonalityFn) const {
15700   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15701 }
15702 
15703 bool
15704 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15705                      EVT VT , unsigned DefinedValues) const {
15706   if (VT == MVT::v2i64)
15707     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15708 
15709   if (Subtarget.hasVSX())
15710     return true;
15711 
15712   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15713 }
15714 
15715 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15716   if (DisableILPPref || Subtarget.enableMachineScheduler())
15717     return TargetLowering::getSchedulingPreference(N);
15718 
15719   return Sched::ILP;
15720 }
15721 
15722 // Create a fast isel object.
15723 FastISel *
15724 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15725                                   const TargetLibraryInfo *LibInfo) const {
15726   return PPC::createFastISel(FuncInfo, LibInfo);
15727 }
15728 
15729 // 'Inverted' means the FMA opcode after negating one multiplicand.
15730 // For example, (fma -a b c) = (fnmsub a b c)
15731 static unsigned invertFMAOpcode(unsigned Opc) {
15732   switch (Opc) {
15733   default:
15734     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15735   case ISD::FMA:
15736     return PPCISD::FNMSUB;
15737   case PPCISD::FNMSUB:
15738     return ISD::FMA;
15739   }
15740 }
15741 
15742 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15743                                                 bool LegalOps, bool OptForSize,
15744                                                 NegatibleCost &Cost,
15745                                                 unsigned Depth) const {
15746   if (Depth > SelectionDAG::MaxRecursionDepth)
15747     return SDValue();
15748 
15749   unsigned Opc = Op.getOpcode();
15750   EVT VT = Op.getValueType();
15751   SDNodeFlags Flags = Op.getNode()->getFlags();
15752 
15753   switch (Opc) {
15754   case PPCISD::FNMSUB:
15755     if (!Op.hasOneUse() || !isTypeLegal(VT))
15756       break;
15757 
15758     const TargetOptions &Options = getTargetMachine().Options;
15759     SDValue N0 = Op.getOperand(0);
15760     SDValue N1 = Op.getOperand(1);
15761     SDValue N2 = Op.getOperand(2);
15762     SDLoc Loc(Op);
15763 
15764     NegatibleCost N2Cost = NegatibleCost::Expensive;
15765     SDValue NegN2 =
15766         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
15767 
15768     if (!NegN2)
15769       return SDValue();
15770 
15771     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
15772     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
15773     // These transformations may change sign of zeroes. For example,
15774     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
15775     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
15776       // Try and choose the cheaper one to negate.
15777       NegatibleCost N0Cost = NegatibleCost::Expensive;
15778       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
15779                                            N0Cost, Depth + 1);
15780 
15781       NegatibleCost N1Cost = NegatibleCost::Expensive;
15782       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
15783                                            N1Cost, Depth + 1);
15784 
15785       if (NegN0 && N0Cost <= N1Cost) {
15786         Cost = std::min(N0Cost, N2Cost);
15787         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
15788       } else if (NegN1) {
15789         Cost = std::min(N1Cost, N2Cost);
15790         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
15791       }
15792     }
15793 
15794     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
15795     if (isOperationLegal(ISD::FMA, VT)) {
15796       Cost = N2Cost;
15797       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
15798     }
15799 
15800     break;
15801   }
15802 
15803   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
15804                                               Cost, Depth);
15805 }
15806 
15807 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15808 bool PPCTargetLowering::useLoadStackGuardNode() const {
15809   if (!Subtarget.isTargetLinux())
15810     return TargetLowering::useLoadStackGuardNode();
15811   return true;
15812 }
15813 
15814 // Override to disable global variable loading on Linux.
15815 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15816   if (!Subtarget.isTargetLinux())
15817     return TargetLowering::insertSSPDeclarations(M);
15818 }
15819 
15820 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15821                                      bool ForCodeSize) const {
15822   if (!VT.isSimple() || !Subtarget.hasVSX())
15823     return false;
15824 
15825   switch(VT.getSimpleVT().SimpleTy) {
15826   default:
15827     // For FP types that are currently not supported by PPC backend, return
15828     // false. Examples: f16, f80.
15829     return false;
15830   case MVT::f32:
15831   case MVT::f64:
15832     if (Subtarget.hasPrefixInstrs()) {
15833       // With prefixed instructions, we can materialize anything that can be
15834       // represented with a 32-bit immediate, not just positive zero.
15835       APFloat APFloatOfImm = Imm;
15836       return convertToNonDenormSingle(APFloatOfImm);
15837     }
15838     LLVM_FALLTHROUGH;
15839   case MVT::ppcf128:
15840     return Imm.isPosZero();
15841   }
15842 }
15843 
15844 // For vector shift operation op, fold
15845 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15846 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15847                                   SelectionDAG &DAG) {
15848   SDValue N0 = N->getOperand(0);
15849   SDValue N1 = N->getOperand(1);
15850   EVT VT = N0.getValueType();
15851   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15852   unsigned Opcode = N->getOpcode();
15853   unsigned TargetOpcode;
15854 
15855   switch (Opcode) {
15856   default:
15857     llvm_unreachable("Unexpected shift operation");
15858   case ISD::SHL:
15859     TargetOpcode = PPCISD::SHL;
15860     break;
15861   case ISD::SRL:
15862     TargetOpcode = PPCISD::SRL;
15863     break;
15864   case ISD::SRA:
15865     TargetOpcode = PPCISD::SRA;
15866     break;
15867   }
15868 
15869   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15870       N1->getOpcode() == ISD::AND)
15871     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15872       if (Mask->getZExtValue() == OpSizeInBits - 1)
15873         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15874 
15875   return SDValue();
15876 }
15877 
15878 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15879   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15880     return Value;
15881 
15882   SDValue N0 = N->getOperand(0);
15883   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15884   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
15885       N0.getOpcode() != ISD::SIGN_EXTEND ||
15886       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
15887       N->getValueType(0) != MVT::i64)
15888     return SDValue();
15889 
15890   // We can't save an operation here if the value is already extended, and
15891   // the existing shift is easier to combine.
15892   SDValue ExtsSrc = N0.getOperand(0);
15893   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15894       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15895     return SDValue();
15896 
15897   SDLoc DL(N0);
15898   SDValue ShiftBy = SDValue(CN1, 0);
15899   // We want the shift amount to be i32 on the extswli, but the shift could
15900   // have an i64.
15901   if (ShiftBy.getValueType() == MVT::i64)
15902     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15903 
15904   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15905                          ShiftBy);
15906 }
15907 
15908 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15909   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15910     return Value;
15911 
15912   return SDValue();
15913 }
15914 
15915 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15916   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15917     return Value;
15918 
15919   return SDValue();
15920 }
15921 
15922 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15923 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15924 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15925 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15926 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15927                                  const PPCSubtarget &Subtarget) {
15928   if (!Subtarget.isPPC64())
15929     return SDValue();
15930 
15931   SDValue LHS = N->getOperand(0);
15932   SDValue RHS = N->getOperand(1);
15933 
15934   auto isZextOfCompareWithConstant = [](SDValue Op) {
15935     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15936         Op.getValueType() != MVT::i64)
15937       return false;
15938 
15939     SDValue Cmp = Op.getOperand(0);
15940     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15941         Cmp.getOperand(0).getValueType() != MVT::i64)
15942       return false;
15943 
15944     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15945       int64_t NegConstant = 0 - Constant->getSExtValue();
15946       // Due to the limitations of the addi instruction,
15947       // -C is required to be [-32768, 32767].
15948       return isInt<16>(NegConstant);
15949     }
15950 
15951     return false;
15952   };
15953 
15954   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15955   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15956 
15957   // If there is a pattern, canonicalize a zext operand to the RHS.
15958   if (LHSHasPattern && !RHSHasPattern)
15959     std::swap(LHS, RHS);
15960   else if (!LHSHasPattern && !RHSHasPattern)
15961     return SDValue();
15962 
15963   SDLoc DL(N);
15964   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15965   SDValue Cmp = RHS.getOperand(0);
15966   SDValue Z = Cmp.getOperand(0);
15967   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15968 
15969   assert(Constant && "Constant Should not be a null pointer.");
15970   int64_t NegConstant = 0 - Constant->getSExtValue();
15971 
15972   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15973   default: break;
15974   case ISD::SETNE: {
15975     //                                 when C == 0
15976     //                             --> addze X, (addic Z, -1).carry
15977     //                            /
15978     // add X, (zext(setne Z, C))--
15979     //                            \    when -32768 <= -C <= 32767 && C != 0
15980     //                             --> addze X, (addic (addi Z, -C), -1).carry
15981     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15982                               DAG.getConstant(NegConstant, DL, MVT::i64));
15983     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15984     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15985                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15986     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15987                        SDValue(Addc.getNode(), 1));
15988     }
15989   case ISD::SETEQ: {
15990     //                                 when C == 0
15991     //                             --> addze X, (subfic Z, 0).carry
15992     //                            /
15993     // add X, (zext(sete  Z, C))--
15994     //                            \    when -32768 <= -C <= 32767 && C != 0
15995     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15996     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15997                               DAG.getConstant(NegConstant, DL, MVT::i64));
15998     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15999     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16000                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16001     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16002                        SDValue(Subc.getNode(), 1));
16003     }
16004   }
16005 
16006   return SDValue();
16007 }
16008 
16009 // Transform
16010 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16011 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16012 // In this case both C1 and C2 must be known constants.
16013 // C1+C2 must fit into a 34 bit signed integer.
16014 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16015                                           const PPCSubtarget &Subtarget) {
16016   if (!Subtarget.isUsingPCRelativeCalls())
16017     return SDValue();
16018 
16019   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16020   // If we find that node try to cast the Global Address and the Constant.
16021   SDValue LHS = N->getOperand(0);
16022   SDValue RHS = N->getOperand(1);
16023 
16024   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16025     std::swap(LHS, RHS);
16026 
16027   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16028     return SDValue();
16029 
16030   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16031   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16032   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16033 
16034   // Check that both casts succeeded.
16035   if (!GSDN || !ConstNode)
16036     return SDValue();
16037 
16038   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16039   SDLoc DL(GSDN);
16040 
16041   // The signed int offset needs to fit in 34 bits.
16042   if (!isInt<34>(NewOffset))
16043     return SDValue();
16044 
16045   // The new global address is a copy of the old global address except
16046   // that it has the updated Offset.
16047   SDValue GA =
16048       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16049                                  NewOffset, GSDN->getTargetFlags());
16050   SDValue MatPCRel =
16051       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16052   return MatPCRel;
16053 }
16054 
16055 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16056   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16057     return Value;
16058 
16059   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16060     return Value;
16061 
16062   return SDValue();
16063 }
16064 
16065 // Detect TRUNCATE operations on bitcasts of float128 values.
16066 // What we are looking for here is the situtation where we extract a subset
16067 // of bits from a 128 bit float.
16068 // This can be of two forms:
16069 // 1) BITCAST of f128 feeding TRUNCATE
16070 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16071 // The reason this is required is because we do not have a legal i128 type
16072 // and so we want to prevent having to store the f128 and then reload part
16073 // of it.
16074 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16075                                            DAGCombinerInfo &DCI) const {
16076   // If we are using CRBits then try that first.
16077   if (Subtarget.useCRBits()) {
16078     // Check if CRBits did anything and return that if it did.
16079     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16080       return CRTruncValue;
16081   }
16082 
16083   SDLoc dl(N);
16084   SDValue Op0 = N->getOperand(0);
16085 
16086   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16087   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16088     EVT VT = N->getValueType(0);
16089     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16090       return SDValue();
16091     SDValue Sub = Op0.getOperand(0);
16092     if (Sub.getOpcode() == ISD::SUB) {
16093       SDValue SubOp0 = Sub.getOperand(0);
16094       SDValue SubOp1 = Sub.getOperand(1);
16095       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16096           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16097         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16098                                SubOp1.getOperand(0),
16099                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16100       }
16101     }
16102   }
16103 
16104   // Looking for a truncate of i128 to i64.
16105   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16106     return SDValue();
16107 
16108   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16109 
16110   // SRL feeding TRUNCATE.
16111   if (Op0.getOpcode() == ISD::SRL) {
16112     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16113     // The right shift has to be by 64 bits.
16114     if (!ConstNode || ConstNode->getZExtValue() != 64)
16115       return SDValue();
16116 
16117     // Switch the element number to extract.
16118     EltToExtract = EltToExtract ? 0 : 1;
16119     // Update Op0 past the SRL.
16120     Op0 = Op0.getOperand(0);
16121   }
16122 
16123   // BITCAST feeding a TRUNCATE possibly via SRL.
16124   if (Op0.getOpcode() == ISD::BITCAST &&
16125       Op0.getValueType() == MVT::i128 &&
16126       Op0.getOperand(0).getValueType() == MVT::f128) {
16127     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16128     return DCI.DAG.getNode(
16129         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16130         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16131   }
16132   return SDValue();
16133 }
16134 
16135 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16136   SelectionDAG &DAG = DCI.DAG;
16137 
16138   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16139   if (!ConstOpOrElement)
16140     return SDValue();
16141 
16142   // An imul is usually smaller than the alternative sequence for legal type.
16143   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16144       isOperationLegal(ISD::MUL, N->getValueType(0)))
16145     return SDValue();
16146 
16147   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16148     switch (this->Subtarget.getCPUDirective()) {
16149     default:
16150       // TODO: enhance the condition for subtarget before pwr8
16151       return false;
16152     case PPC::DIR_PWR8:
16153       //  type        mul     add    shl
16154       // scalar        4       1      1
16155       // vector        7       2      2
16156       return true;
16157     case PPC::DIR_PWR9:
16158     case PPC::DIR_PWR10:
16159     case PPC::DIR_PWR_FUTURE:
16160       //  type        mul     add    shl
16161       // scalar        5       2      2
16162       // vector        7       2      2
16163 
16164       // The cycle RATIO of related operations are showed as a table above.
16165       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16166       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16167       // are 4, it is always profitable; but for 3 instrs patterns
16168       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16169       // So we should only do it for vector type.
16170       return IsAddOne && IsNeg ? VT.isVector() : true;
16171     }
16172   };
16173 
16174   EVT VT = N->getValueType(0);
16175   SDLoc DL(N);
16176 
16177   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16178   bool IsNeg = MulAmt.isNegative();
16179   APInt MulAmtAbs = MulAmt.abs();
16180 
16181   if ((MulAmtAbs - 1).isPowerOf2()) {
16182     // (mul x, 2^N + 1) => (add (shl x, N), x)
16183     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16184 
16185     if (!IsProfitable(IsNeg, true, VT))
16186       return SDValue();
16187 
16188     SDValue Op0 = N->getOperand(0);
16189     SDValue Op1 =
16190         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16191                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16192     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16193 
16194     if (!IsNeg)
16195       return Res;
16196 
16197     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16198   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16199     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16200     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16201 
16202     if (!IsProfitable(IsNeg, false, VT))
16203       return SDValue();
16204 
16205     SDValue Op0 = N->getOperand(0);
16206     SDValue Op1 =
16207         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16208                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16209 
16210     if (!IsNeg)
16211       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16212     else
16213       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16214 
16215   } else {
16216     return SDValue();
16217   }
16218 }
16219 
16220 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16221 // in combiner since we need to check SD flags and other subtarget features.
16222 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16223                                           DAGCombinerInfo &DCI) const {
16224   SDValue N0 = N->getOperand(0);
16225   SDValue N1 = N->getOperand(1);
16226   SDValue N2 = N->getOperand(2);
16227   SDNodeFlags Flags = N->getFlags();
16228   EVT VT = N->getValueType(0);
16229   SelectionDAG &DAG = DCI.DAG;
16230   const TargetOptions &Options = getTargetMachine().Options;
16231   unsigned Opc = N->getOpcode();
16232   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16233   bool LegalOps = !DCI.isBeforeLegalizeOps();
16234   SDLoc Loc(N);
16235 
16236   if (!isOperationLegal(ISD::FMA, VT))
16237     return SDValue();
16238 
16239   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16240   // since (fnmsub a b c)=-0 while c-ab=+0.
16241   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16242     return SDValue();
16243 
16244   // (fma (fneg a) b c) => (fnmsub a b c)
16245   // (fnmsub (fneg a) b c) => (fma a b c)
16246   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16247     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16248 
16249   // (fma a (fneg b) c) => (fnmsub a b c)
16250   // (fnmsub a (fneg b) c) => (fma a b c)
16251   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16252     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16253 
16254   return SDValue();
16255 }
16256 
16257 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16258   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16259   if (!Subtarget.is64BitELFABI())
16260     return false;
16261 
16262   // If not a tail call then no need to proceed.
16263   if (!CI->isTailCall())
16264     return false;
16265 
16266   // If sibling calls have been disabled and tail-calls aren't guaranteed
16267   // there is no reason to duplicate.
16268   auto &TM = getTargetMachine();
16269   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16270     return false;
16271 
16272   // Can't tail call a function called indirectly, or if it has variadic args.
16273   const Function *Callee = CI->getCalledFunction();
16274   if (!Callee || Callee->isVarArg())
16275     return false;
16276 
16277   // Make sure the callee and caller calling conventions are eligible for tco.
16278   const Function *Caller = CI->getParent()->getParent();
16279   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16280                                            CI->getCallingConv()))
16281       return false;
16282 
16283   // If the function is local then we have a good chance at tail-calling it
16284   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16285 }
16286 
16287 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16288   if (!Subtarget.hasVSX())
16289     return false;
16290   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16291     return true;
16292   return VT == MVT::f32 || VT == MVT::f64 ||
16293     VT == MVT::v4f32 || VT == MVT::v2f64;
16294 }
16295 
16296 bool PPCTargetLowering::
16297 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16298   const Value *Mask = AndI.getOperand(1);
16299   // If the mask is suitable for andi. or andis. we should sink the and.
16300   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16301     // Can't handle constants wider than 64-bits.
16302     if (CI->getBitWidth() > 64)
16303       return false;
16304     int64_t ConstVal = CI->getZExtValue();
16305     return isUInt<16>(ConstVal) ||
16306       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16307   }
16308 
16309   // For non-constant masks, we can always use the record-form and.
16310   return true;
16311 }
16312 
16313 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16314 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16315 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16316 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16317 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16318 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16319   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16320   assert(Subtarget.hasP9Altivec() &&
16321          "Only combine this when P9 altivec supported!");
16322   EVT VT = N->getValueType(0);
16323   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16324     return SDValue();
16325 
16326   SelectionDAG &DAG = DCI.DAG;
16327   SDLoc dl(N);
16328   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16329     // Even for signed integers, if it's known to be positive (as signed
16330     // integer) due to zero-extended inputs.
16331     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16332     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16333     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16334          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16335         (SubOpcd1 == ISD::ZERO_EXTEND ||
16336          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16337       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16338                          N->getOperand(0)->getOperand(0),
16339                          N->getOperand(0)->getOperand(1),
16340                          DAG.getTargetConstant(0, dl, MVT::i32));
16341     }
16342 
16343     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16344     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16345         N->getOperand(0).hasOneUse()) {
16346       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16347                          N->getOperand(0)->getOperand(0),
16348                          N->getOperand(0)->getOperand(1),
16349                          DAG.getTargetConstant(1, dl, MVT::i32));
16350     }
16351   }
16352 
16353   return SDValue();
16354 }
16355 
16356 // For type v4i32/v8ii16/v16i8, transform
16357 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16358 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16359 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16360 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16361 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16362                                           DAGCombinerInfo &DCI) const {
16363   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16364   assert(Subtarget.hasP9Altivec() &&
16365          "Only combine this when P9 altivec supported!");
16366 
16367   SelectionDAG &DAG = DCI.DAG;
16368   SDLoc dl(N);
16369   SDValue Cond = N->getOperand(0);
16370   SDValue TrueOpnd = N->getOperand(1);
16371   SDValue FalseOpnd = N->getOperand(2);
16372   EVT VT = N->getOperand(1).getValueType();
16373 
16374   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16375       FalseOpnd.getOpcode() != ISD::SUB)
16376     return SDValue();
16377 
16378   // ABSD only available for type v4i32/v8i16/v16i8
16379   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16380     return SDValue();
16381 
16382   // At least to save one more dependent computation
16383   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16384     return SDValue();
16385 
16386   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16387 
16388   // Can only handle unsigned comparison here
16389   switch (CC) {
16390   default:
16391     return SDValue();
16392   case ISD::SETUGT:
16393   case ISD::SETUGE:
16394     break;
16395   case ISD::SETULT:
16396   case ISD::SETULE:
16397     std::swap(TrueOpnd, FalseOpnd);
16398     break;
16399   }
16400 
16401   SDValue CmpOpnd1 = Cond.getOperand(0);
16402   SDValue CmpOpnd2 = Cond.getOperand(1);
16403 
16404   // SETCC CmpOpnd1 CmpOpnd2 cond
16405   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16406   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16407   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16408       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16409       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16410       FalseOpnd.getOperand(1) == CmpOpnd1) {
16411     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16412                        CmpOpnd1, CmpOpnd2,
16413                        DAG.getTargetConstant(0, dl, MVT::i32));
16414   }
16415 
16416   return SDValue();
16417 }
16418