1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCFrameLowering.h" 20 #include "PPCInstrInfo.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/APSInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineModuleInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetLowering.h" 56 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/ValueTypes.h" 59 #include "llvm/CodeGenTypes/MachineValueType.h" 60 #include "llvm/IR/CallingConv.h" 61 #include "llvm/IR/Constant.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DataLayout.h" 64 #include "llvm/IR/DebugLoc.h" 65 #include "llvm/IR/DerivedTypes.h" 66 #include "llvm/IR/Function.h" 67 #include "llvm/IR/GlobalValue.h" 68 #include "llvm/IR/IRBuilder.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/Intrinsics.h" 71 #include "llvm/IR/IntrinsicsPowerPC.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/MC/MCContext.h" 77 #include "llvm/MC/MCExpr.h" 78 #include "llvm/MC/MCRegisterInfo.h" 79 #include "llvm/MC/MCSectionXCOFF.h" 80 #include "llvm/MC/MCSymbolXCOFF.h" 81 #include "llvm/Support/AtomicOrdering.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/CodeGen.h" 85 #include "llvm/Support/CommandLine.h" 86 #include "llvm/Support/Compiler.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/Format.h" 90 #include "llvm/Support/KnownBits.h" 91 #include "llvm/Support/MathExtras.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Target/TargetMachine.h" 94 #include "llvm/Target/TargetOptions.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <list> 100 #include <optional> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 106 #define DEBUG_TYPE "ppc-lowering" 107 108 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 109 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 112 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 115 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 116 117 static cl::opt<bool> DisableSCO("disable-ppc-sco", 118 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 119 120 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 121 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 122 123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 124 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 125 126 static cl::opt<bool> 127 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 128 cl::desc("disable vector permute decomposition"), 129 cl::init(true), cl::Hidden); 130 131 cl::opt<bool> DisableAutoPairedVecSt( 132 "disable-auto-paired-vec-st", 133 cl::desc("disable automatically generated 32byte paired vector stores"), 134 cl::init(true), cl::Hidden); 135 136 static cl::opt<unsigned> PPCMinimumJumpTableEntries( 137 "ppc-min-jump-table-entries", cl::init(64), cl::Hidden, 138 cl::desc("Set minimum number of entries to use a jump table on PPC")); 139 140 static cl::opt<unsigned> PPCGatherAllAliasesMaxDepth( 141 "ppc-gather-alias-max-depth", cl::init(18), cl::Hidden, 142 cl::desc("max depth when checking alias info in GatherAllAliases()")); 143 144 static cl::opt<unsigned> PPCAIXTLSModelOptUseIEForLDLimit( 145 "ppc-aix-shared-lib-tls-model-opt-limit", cl::init(1), cl::Hidden, 146 cl::desc("Set inclusive limit count of TLS local-dynamic access(es) in a " 147 "function to use initial-exec")); 148 149 STATISTIC(NumTailCalls, "Number of tail calls"); 150 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 151 STATISTIC(ShufflesHandledWithVPERM, 152 "Number of shuffles lowered to a VPERM or XXPERM"); 153 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 154 155 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 156 157 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 158 159 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 160 161 // A faster local-[exec|dynamic] TLS access sequence (enabled with the 162 // -maix-small-local-[exec|dynamic]-tls option) can be produced for TLS 163 // variables; consistent with the IBM XL compiler, we apply a max size of 164 // slightly under 32KB. 165 constexpr uint64_t AIXSmallTlsPolicySizeLimit = 32751; 166 167 // FIXME: Remove this once the bug has been fixed! 168 extern cl::opt<bool> ANDIGlueBug; 169 170 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 171 const PPCSubtarget &STI) 172 : TargetLowering(TM), Subtarget(STI) { 173 // Initialize map that relates the PPC addressing modes to the computed flags 174 // of a load/store instruction. The map is used to determine the optimal 175 // addressing mode when selecting load and stores. 176 initializeAddrModeMap(); 177 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 178 // arguments are at least 4/8 bytes aligned. 179 bool isPPC64 = Subtarget.isPPC64(); 180 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 181 182 // Set up the register classes. 183 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 184 if (!useSoftFloat()) { 185 if (hasSPE()) { 186 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 187 // EFPU2 APU only supports f32 188 if (!Subtarget.hasEFPU2()) 189 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 190 } else { 191 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 192 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 193 } 194 } 195 196 // Match BITREVERSE to customized fast code sequence in the td file. 197 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 198 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 199 200 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 201 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 202 203 // Custom lower inline assembly to check for special registers. 204 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 205 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 206 207 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 208 for (MVT VT : MVT::integer_valuetypes()) { 209 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 210 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 211 } 212 213 if (Subtarget.isISA3_0()) { 214 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 215 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 216 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 217 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 218 } else { 219 // No extending loads from f16 or HW conversions back and forth. 220 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 221 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 222 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 224 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 225 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 226 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 227 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 228 } 229 230 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 231 232 // PowerPC has pre-inc load and store's. 233 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 234 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 235 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 236 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 237 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 238 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 239 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 240 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 241 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 242 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 243 if (!Subtarget.hasSPE()) { 244 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 245 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 246 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 247 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 248 } 249 250 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 251 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 252 for (MVT VT : ScalarIntVTs) { 253 setOperationAction(ISD::ADDC, VT, Legal); 254 setOperationAction(ISD::ADDE, VT, Legal); 255 setOperationAction(ISD::SUBC, VT, Legal); 256 setOperationAction(ISD::SUBE, VT, Legal); 257 } 258 259 if (Subtarget.useCRBits()) { 260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 261 262 if (isPPC64 || Subtarget.hasFPCVT()) { 263 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 264 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 265 isPPC64 ? MVT::i64 : MVT::i32); 266 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 267 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 268 isPPC64 ? MVT::i64 : MVT::i32); 269 270 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 271 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 272 isPPC64 ? MVT::i64 : MVT::i32); 273 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 274 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 275 isPPC64 ? MVT::i64 : MVT::i32); 276 277 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 278 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 279 isPPC64 ? MVT::i64 : MVT::i32); 280 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 281 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 282 isPPC64 ? MVT::i64 : MVT::i32); 283 284 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 285 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 286 isPPC64 ? MVT::i64 : MVT::i32); 287 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 288 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 289 isPPC64 ? MVT::i64 : MVT::i32); 290 } else { 291 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 292 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 293 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 294 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 295 } 296 297 // PowerPC does not support direct load/store of condition registers. 298 setOperationAction(ISD::LOAD, MVT::i1, Custom); 299 setOperationAction(ISD::STORE, MVT::i1, Custom); 300 301 // FIXME: Remove this once the ANDI glue bug is fixed: 302 if (ANDIGlueBug) 303 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 304 305 for (MVT VT : MVT::integer_valuetypes()) { 306 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 307 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 308 setTruncStoreAction(VT, MVT::i1, Expand); 309 } 310 311 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 312 } 313 314 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 315 // PPC (the libcall is not available). 316 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 317 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 318 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 319 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 320 321 // We do not currently implement these libm ops for PowerPC. 322 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 323 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 324 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 325 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 326 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 327 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 328 329 // PowerPC has no SREM/UREM instructions unless we are on P9 330 // On P9 we may use a hardware instruction to compute the remainder. 331 // When the result of both the remainder and the division is required it is 332 // more efficient to compute the remainder from the result of the division 333 // rather than use the remainder instruction. The instructions are legalized 334 // directly because the DivRemPairsPass performs the transformation at the IR 335 // level. 336 if (Subtarget.isISA3_0()) { 337 setOperationAction(ISD::SREM, MVT::i32, Legal); 338 setOperationAction(ISD::UREM, MVT::i32, Legal); 339 setOperationAction(ISD::SREM, MVT::i64, Legal); 340 setOperationAction(ISD::UREM, MVT::i64, Legal); 341 } else { 342 setOperationAction(ISD::SREM, MVT::i32, Expand); 343 setOperationAction(ISD::UREM, MVT::i32, Expand); 344 setOperationAction(ISD::SREM, MVT::i64, Expand); 345 setOperationAction(ISD::UREM, MVT::i64, Expand); 346 } 347 348 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 349 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 350 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 351 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 352 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 353 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 354 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 355 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 356 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 357 358 // Handle constrained floating-point operations of scalar. 359 // TODO: Handle SPE specific operation. 360 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 364 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 365 366 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 367 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 368 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 369 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 370 371 if (!Subtarget.hasSPE()) { 372 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 373 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 374 } 375 376 if (Subtarget.hasVSX()) { 377 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 378 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 379 } 380 381 if (Subtarget.hasFSQRT()) { 382 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 383 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 384 } 385 386 if (Subtarget.hasFPRND()) { 387 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 391 392 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 393 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 394 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 395 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 396 } 397 398 // We don't support sin/cos/sqrt/fmod/pow 399 setOperationAction(ISD::FSIN , MVT::f64, Expand); 400 setOperationAction(ISD::FCOS , MVT::f64, Expand); 401 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 402 setOperationAction(ISD::FREM , MVT::f64, Expand); 403 setOperationAction(ISD::FPOW , MVT::f64, Expand); 404 setOperationAction(ISD::FSIN , MVT::f32, Expand); 405 setOperationAction(ISD::FCOS , MVT::f32, Expand); 406 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 407 setOperationAction(ISD::FREM , MVT::f32, Expand); 408 setOperationAction(ISD::FPOW , MVT::f32, Expand); 409 410 // MASS transformation for LLVM intrinsics with replicating fast-math flag 411 // to be consistent to PPCGenScalarMASSEntries pass 412 if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) { 413 setOperationAction(ISD::FSIN , MVT::f64, Custom); 414 setOperationAction(ISD::FCOS , MVT::f64, Custom); 415 setOperationAction(ISD::FPOW , MVT::f64, Custom); 416 setOperationAction(ISD::FLOG, MVT::f64, Custom); 417 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 418 setOperationAction(ISD::FEXP, MVT::f64, Custom); 419 setOperationAction(ISD::FSIN , MVT::f32, Custom); 420 setOperationAction(ISD::FCOS , MVT::f32, Custom); 421 setOperationAction(ISD::FPOW , MVT::f32, Custom); 422 setOperationAction(ISD::FLOG, MVT::f32, Custom); 423 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 424 setOperationAction(ISD::FEXP, MVT::f32, Custom); 425 } 426 427 if (Subtarget.hasSPE()) { 428 setOperationAction(ISD::FMA , MVT::f64, Expand); 429 setOperationAction(ISD::FMA , MVT::f32, Expand); 430 } else { 431 setOperationAction(ISD::FMA , MVT::f64, Legal); 432 setOperationAction(ISD::FMA , MVT::f32, Legal); 433 } 434 435 if (Subtarget.hasSPE()) 436 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 437 438 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 439 440 // If we're enabling GP optimizations, use hardware square root 441 if (!Subtarget.hasFSQRT() && 442 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 443 Subtarget.hasFRE())) 444 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 445 446 if (!Subtarget.hasFSQRT() && 447 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 448 Subtarget.hasFRES())) 449 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 450 451 if (Subtarget.hasFCPSGN()) { 452 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 453 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 454 } else { 455 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 456 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 457 } 458 459 if (Subtarget.hasFPRND()) { 460 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 461 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 462 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 463 setOperationAction(ISD::FROUND, MVT::f64, Legal); 464 465 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 466 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 467 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 468 setOperationAction(ISD::FROUND, MVT::f32, Legal); 469 } 470 471 // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP 472 // instruction xxbrd to speed up scalar BSWAP64. 473 if (Subtarget.isISA3_1()) { 474 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 475 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 476 } else { 477 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 478 setOperationAction( 479 ISD::BSWAP, MVT::i64, 480 (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand); 481 } 482 483 // CTPOP or CTTZ were introduced in P8/P9 respectively 484 if (Subtarget.isISA3_0()) { 485 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 486 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 487 } else { 488 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 489 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 490 } 491 492 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 493 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 494 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 495 } else { 496 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 497 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 498 } 499 500 // PowerPC does not have ROTR 501 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 502 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 503 504 if (!Subtarget.useCRBits()) { 505 // PowerPC does not have Select 506 setOperationAction(ISD::SELECT, MVT::i32, Expand); 507 setOperationAction(ISD::SELECT, MVT::i64, Expand); 508 setOperationAction(ISD::SELECT, MVT::f32, Expand); 509 setOperationAction(ISD::SELECT, MVT::f64, Expand); 510 } 511 512 // PowerPC wants to turn select_cc of FP into fsel when possible. 513 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 514 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 515 516 // PowerPC wants to optimize integer setcc a bit 517 if (!Subtarget.useCRBits()) 518 setOperationAction(ISD::SETCC, MVT::i32, Custom); 519 520 if (Subtarget.hasFPU()) { 521 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 522 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 523 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 524 525 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 526 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 527 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 528 } 529 530 // PowerPC does not have BRCOND which requires SetCC 531 if (!Subtarget.useCRBits()) 532 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 533 534 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 535 536 if (Subtarget.hasSPE()) { 537 // SPE has built-in conversions 538 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 539 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 540 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 541 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 542 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 543 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 544 545 // SPE supports signaling compare of f32/f64. 546 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 547 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 548 } else { 549 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 550 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 551 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 552 553 // PowerPC does not have [U|S]INT_TO_FP 554 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 555 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 556 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 557 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 558 } 559 560 if (Subtarget.hasDirectMove() && isPPC64) { 561 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 562 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 563 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 564 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 565 if (TM.Options.UnsafeFPMath) { 566 setOperationAction(ISD::LRINT, MVT::f64, Legal); 567 setOperationAction(ISD::LRINT, MVT::f32, Legal); 568 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 569 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 570 setOperationAction(ISD::LROUND, MVT::f64, Legal); 571 setOperationAction(ISD::LROUND, MVT::f32, Legal); 572 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 573 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 574 } 575 } else { 576 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 577 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 578 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 579 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 580 } 581 582 // We cannot sextinreg(i1). Expand to shifts. 583 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 584 585 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 586 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 587 // support continuation, user-level threading, and etc.. As a result, no 588 // other SjLj exception interfaces are implemented and please don't build 589 // your own exception handling based on them. 590 // LLVM/Clang supports zero-cost DWARF exception handling. 591 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 592 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 593 594 // We want to legalize GlobalAddress and ConstantPool nodes into the 595 // appropriate instructions to materialize the address. 596 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 597 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 598 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 599 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 600 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 601 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 602 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 603 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 604 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 605 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 606 607 // TRAP is legal. 608 setOperationAction(ISD::TRAP, MVT::Other, Legal); 609 610 // TRAMPOLINE is custom lowered. 611 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 612 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 613 614 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 615 setOperationAction(ISD::VASTART , MVT::Other, Custom); 616 617 if (Subtarget.is64BitELFABI()) { 618 // VAARG always uses double-word chunks, so promote anything smaller. 619 setOperationAction(ISD::VAARG, MVT::i1, Promote); 620 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 621 setOperationAction(ISD::VAARG, MVT::i8, Promote); 622 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 623 setOperationAction(ISD::VAARG, MVT::i16, Promote); 624 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 625 setOperationAction(ISD::VAARG, MVT::i32, Promote); 626 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 627 setOperationAction(ISD::VAARG, MVT::Other, Expand); 628 } else if (Subtarget.is32BitELFABI()) { 629 // VAARG is custom lowered with the 32-bit SVR4 ABI. 630 setOperationAction(ISD::VAARG, MVT::Other, Custom); 631 setOperationAction(ISD::VAARG, MVT::i64, Custom); 632 } else 633 setOperationAction(ISD::VAARG, MVT::Other, Expand); 634 635 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 636 if (Subtarget.is32BitELFABI()) 637 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 638 else 639 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 640 641 // Use the default implementation. 642 setOperationAction(ISD::VAEND , MVT::Other, Expand); 643 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 644 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 645 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 646 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 647 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 648 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 649 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 650 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 651 652 // We want to custom lower some of our intrinsics. 653 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 654 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 655 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 656 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 657 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); 658 659 // To handle counter-based loop conditions. 660 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 661 662 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 663 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 664 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 665 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 666 667 // Comparisons that require checking two conditions. 668 if (Subtarget.hasSPE()) { 669 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 670 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 671 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 672 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 673 } 674 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 675 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 676 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 677 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 678 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 679 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 680 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 681 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 682 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 683 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 684 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 685 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 686 687 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 688 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 689 690 if (Subtarget.has64BitSupport()) { 691 // They also have instructions for converting between i64 and fp. 692 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 693 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 694 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 695 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 696 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 697 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 698 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 699 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 700 // This is just the low 32 bits of a (signed) fp->i64 conversion. 701 // We cannot do this with Promote because i64 is not a legal type. 702 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 703 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 704 705 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 706 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 707 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 708 } 709 } else { 710 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 711 if (Subtarget.hasSPE()) { 712 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 713 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 714 } else { 715 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 716 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 717 } 718 } 719 720 // With the instructions enabled under FPCVT, we can do everything. 721 if (Subtarget.hasFPCVT()) { 722 if (Subtarget.has64BitSupport()) { 723 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 724 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 725 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 726 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 727 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 728 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 729 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 730 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 731 } 732 733 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 734 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 735 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 736 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 737 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 738 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 739 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 740 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 741 } 742 743 if (Subtarget.use64BitRegs()) { 744 // 64-bit PowerPC implementations can support i64 types directly 745 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 746 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 747 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 748 // 64-bit PowerPC wants to expand i128 shifts itself. 749 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 750 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 751 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 752 } else { 753 // 32-bit PowerPC wants to expand i64 shifts itself. 754 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 755 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 756 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 757 } 758 759 // PowerPC has better expansions for funnel shifts than the generic 760 // TargetLowering::expandFunnelShift. 761 if (Subtarget.has64BitSupport()) { 762 setOperationAction(ISD::FSHL, MVT::i64, Custom); 763 setOperationAction(ISD::FSHR, MVT::i64, Custom); 764 } 765 setOperationAction(ISD::FSHL, MVT::i32, Custom); 766 setOperationAction(ISD::FSHR, MVT::i32, Custom); 767 768 if (Subtarget.hasVSX()) { 769 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 770 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 771 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 772 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 773 } 774 775 if (Subtarget.hasAltivec()) { 776 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 777 setOperationAction(ISD::SADDSAT, VT, Legal); 778 setOperationAction(ISD::SSUBSAT, VT, Legal); 779 setOperationAction(ISD::UADDSAT, VT, Legal); 780 setOperationAction(ISD::USUBSAT, VT, Legal); 781 } 782 // First set operation action for all vector types to expand. Then we 783 // will selectively turn on ones that can be effectively codegen'd. 784 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 785 // add/sub are legal for all supported vector VT's. 786 setOperationAction(ISD::ADD, VT, Legal); 787 setOperationAction(ISD::SUB, VT, Legal); 788 789 // For v2i64, these are only valid with P8Vector. This is corrected after 790 // the loop. 791 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 792 setOperationAction(ISD::SMAX, VT, Legal); 793 setOperationAction(ISD::SMIN, VT, Legal); 794 setOperationAction(ISD::UMAX, VT, Legal); 795 setOperationAction(ISD::UMIN, VT, Legal); 796 } 797 else { 798 setOperationAction(ISD::SMAX, VT, Expand); 799 setOperationAction(ISD::SMIN, VT, Expand); 800 setOperationAction(ISD::UMAX, VT, Expand); 801 setOperationAction(ISD::UMIN, VT, Expand); 802 } 803 804 if (Subtarget.hasVSX()) { 805 setOperationAction(ISD::FMAXNUM, VT, Legal); 806 setOperationAction(ISD::FMINNUM, VT, Legal); 807 } 808 809 // Vector instructions introduced in P8 810 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 811 setOperationAction(ISD::CTPOP, VT, Legal); 812 setOperationAction(ISD::CTLZ, VT, Legal); 813 } 814 else { 815 setOperationAction(ISD::CTPOP, VT, Expand); 816 setOperationAction(ISD::CTLZ, VT, Expand); 817 } 818 819 // Vector instructions introduced in P9 820 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 821 setOperationAction(ISD::CTTZ, VT, Legal); 822 else 823 setOperationAction(ISD::CTTZ, VT, Expand); 824 825 // We promote all shuffles to v16i8. 826 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 827 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 828 829 // We promote all non-typed operations to v4i32. 830 setOperationAction(ISD::AND , VT, Promote); 831 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 832 setOperationAction(ISD::OR , VT, Promote); 833 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 834 setOperationAction(ISD::XOR , VT, Promote); 835 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 836 setOperationAction(ISD::LOAD , VT, Promote); 837 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 838 setOperationAction(ISD::SELECT, VT, Promote); 839 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 840 setOperationAction(ISD::VSELECT, VT, Legal); 841 setOperationAction(ISD::SELECT_CC, VT, Promote); 842 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 843 setOperationAction(ISD::STORE, VT, Promote); 844 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 845 846 // No other operations are legal. 847 setOperationAction(ISD::MUL , VT, Expand); 848 setOperationAction(ISD::SDIV, VT, Expand); 849 setOperationAction(ISD::SREM, VT, Expand); 850 setOperationAction(ISD::UDIV, VT, Expand); 851 setOperationAction(ISD::UREM, VT, Expand); 852 setOperationAction(ISD::FDIV, VT, Expand); 853 setOperationAction(ISD::FREM, VT, Expand); 854 setOperationAction(ISD::FNEG, VT, Expand); 855 setOperationAction(ISD::FSQRT, VT, Expand); 856 setOperationAction(ISD::FLOG, VT, Expand); 857 setOperationAction(ISD::FLOG10, VT, Expand); 858 setOperationAction(ISD::FLOG2, VT, Expand); 859 setOperationAction(ISD::FEXP, VT, Expand); 860 setOperationAction(ISD::FEXP2, VT, Expand); 861 setOperationAction(ISD::FSIN, VT, Expand); 862 setOperationAction(ISD::FCOS, VT, Expand); 863 setOperationAction(ISD::FABS, VT, Expand); 864 setOperationAction(ISD::FFLOOR, VT, Expand); 865 setOperationAction(ISD::FCEIL, VT, Expand); 866 setOperationAction(ISD::FTRUNC, VT, Expand); 867 setOperationAction(ISD::FRINT, VT, Expand); 868 setOperationAction(ISD::FLDEXP, VT, Expand); 869 setOperationAction(ISD::FNEARBYINT, VT, Expand); 870 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 871 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 872 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 873 setOperationAction(ISD::MULHU, VT, Expand); 874 setOperationAction(ISD::MULHS, VT, Expand); 875 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 876 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 877 setOperationAction(ISD::UDIVREM, VT, Expand); 878 setOperationAction(ISD::SDIVREM, VT, Expand); 879 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 880 setOperationAction(ISD::FPOW, VT, Expand); 881 setOperationAction(ISD::BSWAP, VT, Expand); 882 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 883 setOperationAction(ISD::ROTL, VT, Expand); 884 setOperationAction(ISD::ROTR, VT, Expand); 885 886 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 887 setTruncStoreAction(VT, InnerVT, Expand); 888 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 889 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 890 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 891 } 892 } 893 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 894 if (!Subtarget.hasP8Vector()) { 895 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 896 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 897 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 898 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 899 } 900 901 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 902 // with merges, splats, etc. 903 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 904 905 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 906 // are cheap, so handle them before they get expanded to scalar. 907 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 908 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 909 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 910 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 911 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 912 913 setOperationAction(ISD::AND , MVT::v4i32, Legal); 914 setOperationAction(ISD::OR , MVT::v4i32, Legal); 915 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 916 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 917 setOperationAction(ISD::SELECT, MVT::v4i32, 918 Subtarget.useCRBits() ? Legal : Expand); 919 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 920 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 921 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 922 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 923 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 924 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 925 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 926 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 927 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 928 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 929 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 930 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 931 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 932 933 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 934 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 935 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 936 if (Subtarget.hasAltivec()) 937 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 938 setOperationAction(ISD::ROTL, VT, Legal); 939 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 940 if (Subtarget.hasP8Altivec()) 941 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 942 943 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 944 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 945 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 946 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 947 948 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 949 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 950 951 if (Subtarget.hasVSX()) { 952 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 953 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 954 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 955 } 956 957 if (Subtarget.hasP8Altivec()) 958 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 959 else 960 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 961 962 if (Subtarget.isISA3_1()) { 963 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 964 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 965 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 966 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 967 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 968 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 969 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 970 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 971 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 972 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 973 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 974 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 975 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 976 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 977 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 978 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 979 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 980 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 981 } 982 983 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 984 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 985 986 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 987 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 988 989 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 990 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 991 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 992 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 993 994 // Altivec does not contain unordered floating-point compare instructions 995 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 996 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 997 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 998 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 999 1000 if (Subtarget.hasVSX()) { 1001 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 1002 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 1003 if (Subtarget.hasP8Vector()) { 1004 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1005 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 1006 } 1007 if (Subtarget.hasDirectMove() && isPPC64) { 1008 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 1009 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 1010 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 1011 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 1012 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 1013 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 1014 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 1015 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 1016 } 1017 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 1018 1019 // The nearbyint variants are not allowed to raise the inexact exception 1020 // so we can only code-gen them with unsafe math. 1021 if (TM.Options.UnsafeFPMath) { 1022 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 1023 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 1024 } 1025 1026 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 1027 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 1028 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1029 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1030 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1031 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1032 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1033 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1034 1035 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1036 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1037 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1038 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1039 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1040 1041 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1042 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1043 1044 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1045 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1046 1047 // Share the Altivec comparison restrictions. 1048 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1049 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1050 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1051 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1052 1053 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1054 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1055 1056 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 1057 1058 if (Subtarget.hasP8Vector()) 1059 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1060 1061 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1062 1063 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1064 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1065 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1066 1067 if (Subtarget.hasP8Altivec()) { 1068 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1069 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1070 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1071 1072 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1073 // SRL, but not for SRA because of the instructions available: 1074 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1075 // doing 1076 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1077 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1078 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1079 1080 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1081 } 1082 else { 1083 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1084 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1085 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1086 1087 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1088 1089 // VSX v2i64 only supports non-arithmetic operations. 1090 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1091 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1092 } 1093 1094 if (Subtarget.isISA3_1()) 1095 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1096 else 1097 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1098 1099 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1100 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1101 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1102 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1103 1104 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 1105 1106 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1107 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1108 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1109 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1110 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1111 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1112 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1113 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1114 1115 // Custom handling for partial vectors of integers converted to 1116 // floating point. We already have optimal handling for v2i32 through 1117 // the DAG combine, so those aren't necessary. 1118 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1119 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1120 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1121 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1122 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1123 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1124 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1125 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1126 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1127 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1128 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1129 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1130 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1131 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1132 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1133 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1134 1135 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1136 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1137 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1138 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1139 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1140 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1141 1142 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1143 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1144 1145 // Handle constrained floating-point operations of vector. 1146 // The predictor is `hasVSX` because altivec instruction has 1147 // no exception but VSX vector instruction has. 1148 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1149 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1150 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1151 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1152 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1153 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1154 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1155 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1156 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1157 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1158 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1159 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1160 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1161 1162 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1163 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1164 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1165 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1166 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1167 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1168 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1169 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1170 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1171 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1172 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1173 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1174 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1175 1176 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1177 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1178 1179 for (MVT FPT : MVT::fp_valuetypes()) 1180 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1181 1182 // Expand the SELECT to SELECT_CC 1183 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1184 1185 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1186 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1187 1188 // No implementation for these ops for PowerPC. 1189 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1190 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1191 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1192 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1193 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1194 setOperationAction(ISD::FREM, MVT::f128, Expand); 1195 } 1196 1197 if (Subtarget.hasP8Altivec()) { 1198 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1199 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1200 } 1201 1202 if (Subtarget.hasP9Vector()) { 1203 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1204 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1205 1206 // Test data class instructions store results in CR bits. 1207 if (Subtarget.useCRBits()) { 1208 setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom); 1209 setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom); 1210 setOperationAction(ISD::IS_FPCLASS, MVT::f128, Custom); 1211 } 1212 1213 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1214 // SRL, but not for SRA because of the instructions available: 1215 // VS{RL} and VS{RL}O. 1216 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1217 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1218 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1219 1220 setOperationAction(ISD::FADD, MVT::f128, Legal); 1221 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1222 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1223 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1224 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1225 1226 setOperationAction(ISD::FMA, MVT::f128, Legal); 1227 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1228 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1229 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1230 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1231 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1232 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1233 1234 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1235 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1236 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1237 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1238 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1239 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1240 1241 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1242 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1243 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1244 1245 // Handle constrained floating-point operations of fp128 1246 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1247 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1248 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1249 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1250 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1251 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1252 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1253 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1254 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1255 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1256 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1257 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1258 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1259 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1260 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1261 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1262 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1263 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1264 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1265 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1266 } else if (Subtarget.hasVSX()) { 1267 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1268 setOperationAction(ISD::STORE, MVT::f128, Promote); 1269 1270 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1271 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1272 1273 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1274 // fp_to_uint and int_to_fp. 1275 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1276 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1277 1278 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1279 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1280 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1281 setOperationAction(ISD::FABS, MVT::f128, Expand); 1282 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1283 setOperationAction(ISD::FMA, MVT::f128, Expand); 1284 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1285 1286 // Expand the fp_extend if the target type is fp128. 1287 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1288 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1289 1290 // Expand the fp_round if the source type is fp128. 1291 for (MVT VT : {MVT::f32, MVT::f64}) { 1292 setOperationAction(ISD::FP_ROUND, VT, Custom); 1293 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1294 } 1295 1296 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1297 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1298 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1299 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1300 1301 // Lower following f128 select_cc pattern: 1302 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1303 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1304 1305 // We need to handle f128 SELECT_CC with integer result type. 1306 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1307 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1308 } 1309 1310 if (Subtarget.hasP9Altivec()) { 1311 if (Subtarget.isISA3_1()) { 1312 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1313 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1314 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1315 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1316 } else { 1317 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1318 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1319 } 1320 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1321 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1322 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1323 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1324 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1325 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1326 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1327 1328 setOperationAction(ISD::ABDU, MVT::v16i8, Legal); 1329 setOperationAction(ISD::ABDU, MVT::v8i16, Legal); 1330 setOperationAction(ISD::ABDU, MVT::v4i32, Legal); 1331 setOperationAction(ISD::ABDS, MVT::v4i32, Legal); 1332 } 1333 1334 if (Subtarget.hasP10Vector()) { 1335 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1336 } 1337 } 1338 1339 if (Subtarget.pairedVectorMemops()) { 1340 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1341 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1342 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1343 } 1344 if (Subtarget.hasMMA()) { 1345 if (Subtarget.isISAFuture()) 1346 addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass); 1347 else 1348 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1349 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1350 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1351 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1352 } 1353 1354 if (Subtarget.has64BitSupport()) 1355 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1356 1357 if (Subtarget.isISA3_1()) 1358 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1359 1360 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1361 1362 if (!isPPC64) { 1363 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1364 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1365 } 1366 1367 if (shouldInlineQuadwordAtomics()) { 1368 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1369 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1370 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1371 } 1372 1373 setBooleanContents(ZeroOrOneBooleanContent); 1374 1375 if (Subtarget.hasAltivec()) { 1376 // Altivec instructions set fields to all zeros or all ones. 1377 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1378 } 1379 1380 if (shouldInlineQuadwordAtomics()) 1381 setMaxAtomicSizeInBitsSupported(128); 1382 else if (isPPC64) 1383 setMaxAtomicSizeInBitsSupported(64); 1384 else 1385 setMaxAtomicSizeInBitsSupported(32); 1386 1387 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1388 1389 // We have target-specific dag combine patterns for the following nodes: 1390 setTargetDAGCombine({ISD::AND, ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, 1391 ISD::MUL, ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); 1392 if (Subtarget.hasFPCVT()) 1393 setTargetDAGCombine(ISD::UINT_TO_FP); 1394 setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); 1395 if (Subtarget.useCRBits()) 1396 setTargetDAGCombine(ISD::BRCOND); 1397 setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, 1398 ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); 1399 1400 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); 1401 1402 setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); 1403 1404 if (Subtarget.useCRBits()) { 1405 setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); 1406 } 1407 1408 setLibcallName(RTLIB::LOG_F128, "logf128"); 1409 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1410 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1411 setLibcallName(RTLIB::EXP_F128, "expf128"); 1412 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1413 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1414 setLibcallName(RTLIB::COS_F128, "cosf128"); 1415 setLibcallName(RTLIB::SINCOS_F128, "sincosf128"); 1416 setLibcallName(RTLIB::POW_F128, "powf128"); 1417 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1418 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1419 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1420 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1421 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1422 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1423 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1424 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1425 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1426 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1427 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1428 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1429 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1430 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1431 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1432 setLibcallName(RTLIB::FREXP_F128, "frexpf128"); 1433 1434 if (Subtarget.isAIXABI()) { 1435 setLibcallName(RTLIB::MEMCPY, isPPC64 ? "___memmove64" : "___memmove"); 1436 setLibcallName(RTLIB::MEMMOVE, isPPC64 ? "___memmove64" : "___memmove"); 1437 setLibcallName(RTLIB::MEMSET, isPPC64 ? "___memset64" : "___memset"); 1438 setLibcallName(RTLIB::BZERO, isPPC64 ? "___bzero64" : "___bzero"); 1439 } 1440 1441 // With 32 condition bits, we don't need to sink (and duplicate) compares 1442 // aggressively in CodeGenPrep. 1443 if (Subtarget.useCRBits()) { 1444 setHasMultipleConditionRegisters(); 1445 setJumpIsExpensive(); 1446 } 1447 1448 // TODO: The default entry number is set to 64. This stops most jump table 1449 // generation on PPC. But it is good for current PPC HWs because the indirect 1450 // branch instruction mtctr to the jump table may lead to bad branch predict. 1451 // Re-evaluate this value on future HWs that can do better with mtctr. 1452 setMinimumJumpTableEntries(PPCMinimumJumpTableEntries); 1453 1454 setMinFunctionAlignment(Align(4)); 1455 1456 switch (Subtarget.getCPUDirective()) { 1457 default: break; 1458 case PPC::DIR_970: 1459 case PPC::DIR_A2: 1460 case PPC::DIR_E500: 1461 case PPC::DIR_E500mc: 1462 case PPC::DIR_E5500: 1463 case PPC::DIR_PWR4: 1464 case PPC::DIR_PWR5: 1465 case PPC::DIR_PWR5X: 1466 case PPC::DIR_PWR6: 1467 case PPC::DIR_PWR6X: 1468 case PPC::DIR_PWR7: 1469 case PPC::DIR_PWR8: 1470 case PPC::DIR_PWR9: 1471 case PPC::DIR_PWR10: 1472 case PPC::DIR_PWR11: 1473 case PPC::DIR_PWR_FUTURE: 1474 setPrefLoopAlignment(Align(16)); 1475 setPrefFunctionAlignment(Align(16)); 1476 break; 1477 } 1478 1479 if (Subtarget.enableMachineScheduler()) 1480 setSchedulingPreference(Sched::Source); 1481 else 1482 setSchedulingPreference(Sched::Hybrid); 1483 1484 computeRegisterProperties(STI.getRegisterInfo()); 1485 1486 // The Freescale cores do better with aggressive inlining of memcpy and 1487 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1488 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1489 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1490 MaxStoresPerMemset = 32; 1491 MaxStoresPerMemsetOptSize = 16; 1492 MaxStoresPerMemcpy = 32; 1493 MaxStoresPerMemcpyOptSize = 8; 1494 MaxStoresPerMemmove = 32; 1495 MaxStoresPerMemmoveOptSize = 8; 1496 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1497 // The A2 also benefits from (very) aggressive inlining of memcpy and 1498 // friends. The overhead of a the function call, even when warm, can be 1499 // over one hundred cycles. 1500 MaxStoresPerMemset = 128; 1501 MaxStoresPerMemcpy = 128; 1502 MaxStoresPerMemmove = 128; 1503 MaxLoadsPerMemcmp = 128; 1504 } else { 1505 MaxLoadsPerMemcmp = 8; 1506 MaxLoadsPerMemcmpOptSize = 4; 1507 } 1508 1509 IsStrictFPEnabled = true; 1510 1511 // Let the subtarget (CPU) decide if a predictable select is more expensive 1512 // than the corresponding branch. This information is used in CGP to decide 1513 // when to convert selects into branches. 1514 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1515 1516 GatherAllAliasesMaxDepth = PPCGatherAllAliasesMaxDepth; 1517 } 1518 1519 // *********************************** NOTE ************************************ 1520 // For selecting load and store instructions, the addressing modes are defined 1521 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1522 // patterns to match the load the store instructions. 1523 // 1524 // The TD definitions for the addressing modes correspond to their respective 1525 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1526 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1527 // address mode flags of a particular node. Afterwards, the computed address 1528 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1529 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1530 // accordingly, based on the preferred addressing mode. 1531 // 1532 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1533 // MemOpFlags contains all the possible flags that can be used to compute the 1534 // optimal addressing mode for load and store instructions. 1535 // AddrMode contains all the possible load and store addressing modes available 1536 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1537 // 1538 // When adding new load and store instructions, it is possible that new address 1539 // flags may need to be added into MemOpFlags, and a new addressing mode will 1540 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1541 // of the minimal and main distinguishing address flags for the new load/store 1542 // instructions) will need to be added into initializeAddrModeMap() below. 1543 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1544 // need to be updated to account for selecting the optimal addressing mode. 1545 // ***************************************************************************** 1546 /// Initialize the map that relates the different addressing modes of the load 1547 /// and store instructions to a set of flags. This ensures the load/store 1548 /// instruction is correctly matched during instruction selection. 1549 void PPCTargetLowering::initializeAddrModeMap() { 1550 AddrModesMap[PPC::AM_DForm] = { 1551 // LWZ, STW 1552 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1553 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1554 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1555 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1556 // LBZ, LHZ, STB, STH 1557 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1558 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1559 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1560 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1561 // LHA 1562 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1563 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1564 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1565 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1566 // LFS, LFD, STFS, STFD 1567 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1568 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1569 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1570 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1571 }; 1572 AddrModesMap[PPC::AM_DSForm] = { 1573 // LWA 1574 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1575 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1576 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1577 // LD, STD 1578 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1579 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1580 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1581 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1582 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1583 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1584 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1585 }; 1586 AddrModesMap[PPC::AM_DQForm] = { 1587 // LXV, STXV 1588 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1589 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1590 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1591 }; 1592 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1593 PPC::MOF_SubtargetP10}; 1594 // TODO: Add mapping for quadword load/store. 1595 } 1596 1597 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1598 /// the desired ByVal argument alignment. 1599 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1600 if (MaxAlign == MaxMaxAlign) 1601 return; 1602 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1603 if (MaxMaxAlign >= 32 && 1604 VTy->getPrimitiveSizeInBits().getFixedValue() >= 256) 1605 MaxAlign = Align(32); 1606 else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 && 1607 MaxAlign < 16) 1608 MaxAlign = Align(16); 1609 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1610 Align EltAlign; 1611 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1612 if (EltAlign > MaxAlign) 1613 MaxAlign = EltAlign; 1614 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1615 for (auto *EltTy : STy->elements()) { 1616 Align EltAlign; 1617 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1618 if (EltAlign > MaxAlign) 1619 MaxAlign = EltAlign; 1620 if (MaxAlign == MaxMaxAlign) 1621 break; 1622 } 1623 } 1624 } 1625 1626 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1627 /// function arguments in the caller parameter area. 1628 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1629 const DataLayout &DL) const { 1630 // 16byte and wider vectors are passed on 16byte boundary. 1631 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1632 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1633 if (Subtarget.hasAltivec()) 1634 getMaxByValAlign(Ty, Alignment, Align(16)); 1635 return Alignment.value(); 1636 } 1637 1638 bool PPCTargetLowering::useSoftFloat() const { 1639 return Subtarget.useSoftFloat(); 1640 } 1641 1642 bool PPCTargetLowering::hasSPE() const { 1643 return Subtarget.hasSPE(); 1644 } 1645 1646 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1647 return VT.isScalarInteger(); 1648 } 1649 1650 bool PPCTargetLowering::shallExtractConstSplatVectorElementToStore( 1651 Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const { 1652 if (!Subtarget.isPPC64() || !Subtarget.hasVSX()) 1653 return false; 1654 1655 if (auto *VTy = dyn_cast<VectorType>(VectorTy)) { 1656 if (VTy->getScalarType()->isIntegerTy()) { 1657 // ElemSizeInBits 8/16 can fit in immediate field, not needed here. 1658 if (ElemSizeInBits == 32) { 1659 Index = Subtarget.isLittleEndian() ? 2 : 1; 1660 return true; 1661 } 1662 if (ElemSizeInBits == 64) { 1663 Index = Subtarget.isLittleEndian() ? 1 : 0; 1664 return true; 1665 } 1666 } 1667 } 1668 return false; 1669 } 1670 1671 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1672 switch ((PPCISD::NodeType)Opcode) { 1673 case PPCISD::FIRST_NUMBER: break; 1674 case PPCISD::FSEL: return "PPCISD::FSEL"; 1675 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1676 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1677 case PPCISD::FCFID: return "PPCISD::FCFID"; 1678 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1679 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1680 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1681 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1682 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1683 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1684 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1685 case PPCISD::FRE: return "PPCISD::FRE"; 1686 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1687 case PPCISD::FTSQRT: 1688 return "PPCISD::FTSQRT"; 1689 case PPCISD::FSQRT: 1690 return "PPCISD::FSQRT"; 1691 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1692 case PPCISD::VPERM: return "PPCISD::VPERM"; 1693 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1694 case PPCISD::XXSPLTI_SP_TO_DP: 1695 return "PPCISD::XXSPLTI_SP_TO_DP"; 1696 case PPCISD::XXSPLTI32DX: 1697 return "PPCISD::XXSPLTI32DX"; 1698 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1699 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1700 case PPCISD::XXPERM: 1701 return "PPCISD::XXPERM"; 1702 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1703 case PPCISD::CMPB: return "PPCISD::CMPB"; 1704 case PPCISD::Hi: return "PPCISD::Hi"; 1705 case PPCISD::Lo: return "PPCISD::Lo"; 1706 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1707 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1708 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1709 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1710 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1711 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1712 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1713 case PPCISD::SRL: return "PPCISD::SRL"; 1714 case PPCISD::SRA: return "PPCISD::SRA"; 1715 case PPCISD::SHL: return "PPCISD::SHL"; 1716 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1717 case PPCISD::CALL: return "PPCISD::CALL"; 1718 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1719 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1720 case PPCISD::CALL_RM: 1721 return "PPCISD::CALL_RM"; 1722 case PPCISD::CALL_NOP_RM: 1723 return "PPCISD::CALL_NOP_RM"; 1724 case PPCISD::CALL_NOTOC_RM: 1725 return "PPCISD::CALL_NOTOC_RM"; 1726 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1727 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1728 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1729 case PPCISD::BCTRL_RM: 1730 return "PPCISD::BCTRL_RM"; 1731 case PPCISD::BCTRL_LOAD_TOC_RM: 1732 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1733 case PPCISD::RET_GLUE: return "PPCISD::RET_GLUE"; 1734 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1735 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1736 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1737 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1738 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1739 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1740 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1741 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1742 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1743 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1744 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1745 case PPCISD::ANDI_rec_1_EQ_BIT: 1746 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1747 case PPCISD::ANDI_rec_1_GT_BIT: 1748 return "PPCISD::ANDI_rec_1_GT_BIT"; 1749 case PPCISD::VCMP: return "PPCISD::VCMP"; 1750 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1751 case PPCISD::LBRX: return "PPCISD::LBRX"; 1752 case PPCISD::STBRX: return "PPCISD::STBRX"; 1753 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1754 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1755 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1756 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1757 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1758 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1759 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1760 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1761 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1762 case PPCISD::ST_VSR_SCAL_INT: 1763 return "PPCISD::ST_VSR_SCAL_INT"; 1764 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1765 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1766 case PPCISD::BDZ: return "PPCISD::BDZ"; 1767 case PPCISD::MFFS: return "PPCISD::MFFS"; 1768 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1769 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1770 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1771 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1772 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1773 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1774 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1775 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1776 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1777 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1778 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1779 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1780 case PPCISD::GET_TLS_MOD_AIX: return "PPCISD::GET_TLS_MOD_AIX"; 1781 case PPCISD::GET_TPOINTER: return "PPCISD::GET_TPOINTER"; 1782 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1783 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1784 case PPCISD::TLSLD_AIX: return "PPCISD::TLSLD_AIX"; 1785 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1786 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1787 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1788 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1789 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1790 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1791 case PPCISD::PADDI_DTPREL: 1792 return "PPCISD::PADDI_DTPREL"; 1793 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1794 case PPCISD::SC: return "PPCISD::SC"; 1795 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1796 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1797 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1798 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1799 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1800 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1801 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1802 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1803 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1804 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1805 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1806 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1807 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1808 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1809 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1810 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1811 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1812 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1813 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1814 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1815 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1816 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1817 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1818 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1819 case PPCISD::STRICT_FADDRTZ: 1820 return "PPCISD::STRICT_FADDRTZ"; 1821 case PPCISD::STRICT_FCTIDZ: 1822 return "PPCISD::STRICT_FCTIDZ"; 1823 case PPCISD::STRICT_FCTIWZ: 1824 return "PPCISD::STRICT_FCTIWZ"; 1825 case PPCISD::STRICT_FCTIDUZ: 1826 return "PPCISD::STRICT_FCTIDUZ"; 1827 case PPCISD::STRICT_FCTIWUZ: 1828 return "PPCISD::STRICT_FCTIWUZ"; 1829 case PPCISD::STRICT_FCFID: 1830 return "PPCISD::STRICT_FCFID"; 1831 case PPCISD::STRICT_FCFIDU: 1832 return "PPCISD::STRICT_FCFIDU"; 1833 case PPCISD::STRICT_FCFIDS: 1834 return "PPCISD::STRICT_FCFIDS"; 1835 case PPCISD::STRICT_FCFIDUS: 1836 return "PPCISD::STRICT_FCFIDUS"; 1837 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1838 case PPCISD::STORE_COND: 1839 return "PPCISD::STORE_COND"; 1840 } 1841 return nullptr; 1842 } 1843 1844 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1845 EVT VT) const { 1846 if (!VT.isVector()) 1847 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1848 1849 return VT.changeVectorElementTypeToInteger(); 1850 } 1851 1852 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1853 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1854 return true; 1855 } 1856 1857 //===----------------------------------------------------------------------===// 1858 // Node matching predicates, for use by the tblgen matching code. 1859 //===----------------------------------------------------------------------===// 1860 1861 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1862 static bool isFloatingPointZero(SDValue Op) { 1863 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1864 return CFP->getValueAPF().isZero(); 1865 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1866 // Maybe this has already been legalized into the constant pool? 1867 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1868 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1869 return CFP->getValueAPF().isZero(); 1870 } 1871 return false; 1872 } 1873 1874 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1875 /// true if Op is undef or if it matches the specified value. 1876 static bool isConstantOrUndef(int Op, int Val) { 1877 return Op < 0 || Op == Val; 1878 } 1879 1880 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1881 /// VPKUHUM instruction. 1882 /// The ShuffleKind distinguishes between big-endian operations with 1883 /// two different inputs (0), either-endian operations with two identical 1884 /// inputs (1), and little-endian operations with two different inputs (2). 1885 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1886 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1887 SelectionDAG &DAG) { 1888 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1889 if (ShuffleKind == 0) { 1890 if (IsLE) 1891 return false; 1892 for (unsigned i = 0; i != 16; ++i) 1893 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1894 return false; 1895 } else if (ShuffleKind == 2) { 1896 if (!IsLE) 1897 return false; 1898 for (unsigned i = 0; i != 16; ++i) 1899 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1900 return false; 1901 } else if (ShuffleKind == 1) { 1902 unsigned j = IsLE ? 0 : 1; 1903 for (unsigned i = 0; i != 8; ++i) 1904 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1905 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1906 return false; 1907 } 1908 return true; 1909 } 1910 1911 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1912 /// VPKUWUM instruction. 1913 /// The ShuffleKind distinguishes between big-endian operations with 1914 /// two different inputs (0), either-endian operations with two identical 1915 /// inputs (1), and little-endian operations with two different inputs (2). 1916 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1917 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1918 SelectionDAG &DAG) { 1919 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1920 if (ShuffleKind == 0) { 1921 if (IsLE) 1922 return false; 1923 for (unsigned i = 0; i != 16; i += 2) 1924 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1925 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1926 return false; 1927 } else if (ShuffleKind == 2) { 1928 if (!IsLE) 1929 return false; 1930 for (unsigned i = 0; i != 16; i += 2) 1931 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1932 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1933 return false; 1934 } else if (ShuffleKind == 1) { 1935 unsigned j = IsLE ? 0 : 2; 1936 for (unsigned i = 0; i != 8; i += 2) 1937 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1938 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1939 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1940 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1941 return false; 1942 } 1943 return true; 1944 } 1945 1946 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1947 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1948 /// current subtarget. 1949 /// 1950 /// The ShuffleKind distinguishes between big-endian operations with 1951 /// two different inputs (0), either-endian operations with two identical 1952 /// inputs (1), and little-endian operations with two different inputs (2). 1953 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1954 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1955 SelectionDAG &DAG) { 1956 const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); 1957 if (!Subtarget.hasP8Vector()) 1958 return false; 1959 1960 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1961 if (ShuffleKind == 0) { 1962 if (IsLE) 1963 return false; 1964 for (unsigned i = 0; i != 16; i += 4) 1965 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1966 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1967 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1968 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1969 return false; 1970 } else if (ShuffleKind == 2) { 1971 if (!IsLE) 1972 return false; 1973 for (unsigned i = 0; i != 16; i += 4) 1974 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1975 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1976 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1977 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1978 return false; 1979 } else if (ShuffleKind == 1) { 1980 unsigned j = IsLE ? 0 : 4; 1981 for (unsigned i = 0; i != 8; i += 4) 1982 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1983 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1984 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1985 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1986 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1987 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1988 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1989 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1990 return false; 1991 } 1992 return true; 1993 } 1994 1995 /// isVMerge - Common function, used to match vmrg* shuffles. 1996 /// 1997 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1998 unsigned LHSStart, unsigned RHSStart) { 1999 if (N->getValueType(0) != MVT::v16i8) 2000 return false; 2001 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 2002 "Unsupported merge size!"); 2003 2004 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 2005 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 2006 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 2007 LHSStart+j+i*UnitSize) || 2008 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 2009 RHSStart+j+i*UnitSize)) 2010 return false; 2011 } 2012 return true; 2013 } 2014 2015 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 2016 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 2017 /// The ShuffleKind distinguishes between big-endian merges with two 2018 /// different inputs (0), either-endian merges with two identical inputs (1), 2019 /// and little-endian merges with two different inputs (2). For the latter, 2020 /// the input operands are swapped (see PPCInstrAltivec.td). 2021 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 2022 unsigned ShuffleKind, SelectionDAG &DAG) { 2023 if (DAG.getDataLayout().isLittleEndian()) { 2024 if (ShuffleKind == 1) // unary 2025 return isVMerge(N, UnitSize, 0, 0); 2026 else if (ShuffleKind == 2) // swapped 2027 return isVMerge(N, UnitSize, 0, 16); 2028 else 2029 return false; 2030 } else { 2031 if (ShuffleKind == 1) // unary 2032 return isVMerge(N, UnitSize, 8, 8); 2033 else if (ShuffleKind == 0) // normal 2034 return isVMerge(N, UnitSize, 8, 24); 2035 else 2036 return false; 2037 } 2038 } 2039 2040 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 2041 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 2042 /// The ShuffleKind distinguishes between big-endian merges with two 2043 /// different inputs (0), either-endian merges with two identical inputs (1), 2044 /// and little-endian merges with two different inputs (2). For the latter, 2045 /// the input operands are swapped (see PPCInstrAltivec.td). 2046 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 2047 unsigned ShuffleKind, SelectionDAG &DAG) { 2048 if (DAG.getDataLayout().isLittleEndian()) { 2049 if (ShuffleKind == 1) // unary 2050 return isVMerge(N, UnitSize, 8, 8); 2051 else if (ShuffleKind == 2) // swapped 2052 return isVMerge(N, UnitSize, 8, 24); 2053 else 2054 return false; 2055 } else { 2056 if (ShuffleKind == 1) // unary 2057 return isVMerge(N, UnitSize, 0, 0); 2058 else if (ShuffleKind == 0) // normal 2059 return isVMerge(N, UnitSize, 0, 16); 2060 else 2061 return false; 2062 } 2063 } 2064 2065 /** 2066 * Common function used to match vmrgew and vmrgow shuffles 2067 * 2068 * The indexOffset determines whether to look for even or odd words in 2069 * the shuffle mask. This is based on the of the endianness of the target 2070 * machine. 2071 * - Little Endian: 2072 * - Use offset of 0 to check for odd elements 2073 * - Use offset of 4 to check for even elements 2074 * - Big Endian: 2075 * - Use offset of 0 to check for even elements 2076 * - Use offset of 4 to check for odd elements 2077 * A detailed description of the vector element ordering for little endian and 2078 * big endian can be found at 2079 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2080 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2081 * compiler differences mean to you 2082 * 2083 * The mask to the shuffle vector instruction specifies the indices of the 2084 * elements from the two input vectors to place in the result. The elements are 2085 * numbered in array-access order, starting with the first vector. These vectors 2086 * are always of type v16i8, thus each vector will contain 16 elements of size 2087 * 8. More info on the shuffle vector can be found in the 2088 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2089 * Language Reference. 2090 * 2091 * The RHSStartValue indicates whether the same input vectors are used (unary) 2092 * or two different input vectors are used, based on the following: 2093 * - If the instruction uses the same vector for both inputs, the range of the 2094 * indices will be 0 to 15. In this case, the RHSStart value passed should 2095 * be 0. 2096 * - If the instruction has two different vectors then the range of the 2097 * indices will be 0 to 31. In this case, the RHSStart value passed should 2098 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2099 * to 31 specify elements in the second vector). 2100 * 2101 * \param[in] N The shuffle vector SD Node to analyze 2102 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2103 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2104 * vector to the shuffle_vector instruction 2105 * \return true iff this shuffle vector represents an even or odd word merge 2106 */ 2107 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2108 unsigned RHSStartValue) { 2109 if (N->getValueType(0) != MVT::v16i8) 2110 return false; 2111 2112 for (unsigned i = 0; i < 2; ++i) 2113 for (unsigned j = 0; j < 4; ++j) 2114 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2115 i*RHSStartValue+j+IndexOffset) || 2116 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2117 i*RHSStartValue+j+IndexOffset+8)) 2118 return false; 2119 return true; 2120 } 2121 2122 /** 2123 * Determine if the specified shuffle mask is suitable for the vmrgew or 2124 * vmrgow instructions. 2125 * 2126 * \param[in] N The shuffle vector SD Node to analyze 2127 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2128 * \param[in] ShuffleKind Identify the type of merge: 2129 * - 0 = big-endian merge with two different inputs; 2130 * - 1 = either-endian merge with two identical inputs; 2131 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2132 * little-endian merges). 2133 * \param[in] DAG The current SelectionDAG 2134 * \return true iff this shuffle mask 2135 */ 2136 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2137 unsigned ShuffleKind, SelectionDAG &DAG) { 2138 if (DAG.getDataLayout().isLittleEndian()) { 2139 unsigned indexOffset = CheckEven ? 4 : 0; 2140 if (ShuffleKind == 1) // Unary 2141 return isVMerge(N, indexOffset, 0); 2142 else if (ShuffleKind == 2) // swapped 2143 return isVMerge(N, indexOffset, 16); 2144 else 2145 return false; 2146 } 2147 else { 2148 unsigned indexOffset = CheckEven ? 0 : 4; 2149 if (ShuffleKind == 1) // Unary 2150 return isVMerge(N, indexOffset, 0); 2151 else if (ShuffleKind == 0) // Normal 2152 return isVMerge(N, indexOffset, 16); 2153 else 2154 return false; 2155 } 2156 return false; 2157 } 2158 2159 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2160 /// amount, otherwise return -1. 2161 /// The ShuffleKind distinguishes between big-endian operations with two 2162 /// different inputs (0), either-endian operations with two identical inputs 2163 /// (1), and little-endian operations with two different inputs (2). For the 2164 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2165 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2166 SelectionDAG &DAG) { 2167 if (N->getValueType(0) != MVT::v16i8) 2168 return -1; 2169 2170 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2171 2172 // Find the first non-undef value in the shuffle mask. 2173 unsigned i; 2174 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2175 /*search*/; 2176 2177 if (i == 16) return -1; // all undef. 2178 2179 // Otherwise, check to see if the rest of the elements are consecutively 2180 // numbered from this value. 2181 unsigned ShiftAmt = SVOp->getMaskElt(i); 2182 if (ShiftAmt < i) return -1; 2183 2184 ShiftAmt -= i; 2185 bool isLE = DAG.getDataLayout().isLittleEndian(); 2186 2187 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2188 // Check the rest of the elements to see if they are consecutive. 2189 for (++i; i != 16; ++i) 2190 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2191 return -1; 2192 } else if (ShuffleKind == 1) { 2193 // Check the rest of the elements to see if they are consecutive. 2194 for (++i; i != 16; ++i) 2195 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2196 return -1; 2197 } else 2198 return -1; 2199 2200 if (isLE) 2201 ShiftAmt = 16 - ShiftAmt; 2202 2203 return ShiftAmt; 2204 } 2205 2206 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2207 /// specifies a splat of a single element that is suitable for input to 2208 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2209 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2210 EVT VT = N->getValueType(0); 2211 if (VT == MVT::v2i64 || VT == MVT::v2f64) 2212 return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1); 2213 2214 assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) && 2215 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2216 2217 // The consecutive indices need to specify an element, not part of two 2218 // different elements. So abandon ship early if this isn't the case. 2219 if (N->getMaskElt(0) % EltSize != 0) 2220 return false; 2221 2222 // This is a splat operation if each element of the permute is the same, and 2223 // if the value doesn't reference the second vector. 2224 unsigned ElementBase = N->getMaskElt(0); 2225 2226 // FIXME: Handle UNDEF elements too! 2227 if (ElementBase >= 16) 2228 return false; 2229 2230 // Check that the indices are consecutive, in the case of a multi-byte element 2231 // splatted with a v16i8 mask. 2232 for (unsigned i = 1; i != EltSize; ++i) 2233 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2234 return false; 2235 2236 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2237 if (N->getMaskElt(i) < 0) continue; 2238 for (unsigned j = 0; j != EltSize; ++j) 2239 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2240 return false; 2241 } 2242 return true; 2243 } 2244 2245 /// Check that the mask is shuffling N byte elements. Within each N byte 2246 /// element of the mask, the indices could be either in increasing or 2247 /// decreasing order as long as they are consecutive. 2248 /// \param[in] N the shuffle vector SD Node to analyze 2249 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2250 /// Word/DoubleWord/QuadWord). 2251 /// \param[in] StepLen the delta indices number among the N byte element, if 2252 /// the mask is in increasing/decreasing order then it is 1/-1. 2253 /// \return true iff the mask is shuffling N byte elements. 2254 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2255 int StepLen) { 2256 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2257 "Unexpected element width."); 2258 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2259 2260 unsigned NumOfElem = 16 / Width; 2261 unsigned MaskVal[16]; // Width is never greater than 16 2262 for (unsigned i = 0; i < NumOfElem; ++i) { 2263 MaskVal[0] = N->getMaskElt(i * Width); 2264 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2265 return false; 2266 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2267 return false; 2268 } 2269 2270 for (unsigned int j = 1; j < Width; ++j) { 2271 MaskVal[j] = N->getMaskElt(i * Width + j); 2272 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2273 return false; 2274 } 2275 } 2276 } 2277 2278 return true; 2279 } 2280 2281 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2282 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2283 if (!isNByteElemShuffleMask(N, 4, 1)) 2284 return false; 2285 2286 // Now we look at mask elements 0,4,8,12 2287 unsigned M0 = N->getMaskElt(0) / 4; 2288 unsigned M1 = N->getMaskElt(4) / 4; 2289 unsigned M2 = N->getMaskElt(8) / 4; 2290 unsigned M3 = N->getMaskElt(12) / 4; 2291 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2292 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2293 2294 // Below, let H and L be arbitrary elements of the shuffle mask 2295 // where H is in the range [4,7] and L is in the range [0,3]. 2296 // H, 1, 2, 3 or L, 5, 6, 7 2297 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2298 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2299 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2300 InsertAtByte = IsLE ? 12 : 0; 2301 Swap = M0 < 4; 2302 return true; 2303 } 2304 // 0, H, 2, 3 or 4, L, 6, 7 2305 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2306 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2307 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2308 InsertAtByte = IsLE ? 8 : 4; 2309 Swap = M1 < 4; 2310 return true; 2311 } 2312 // 0, 1, H, 3 or 4, 5, L, 7 2313 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2314 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2315 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2316 InsertAtByte = IsLE ? 4 : 8; 2317 Swap = M2 < 4; 2318 return true; 2319 } 2320 // 0, 1, 2, H or 4, 5, 6, L 2321 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2322 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2323 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2324 InsertAtByte = IsLE ? 0 : 12; 2325 Swap = M3 < 4; 2326 return true; 2327 } 2328 2329 // If both vector operands for the shuffle are the same vector, the mask will 2330 // contain only elements from the first one and the second one will be undef. 2331 if (N->getOperand(1).isUndef()) { 2332 ShiftElts = 0; 2333 Swap = true; 2334 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2335 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2336 InsertAtByte = IsLE ? 12 : 0; 2337 return true; 2338 } 2339 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2340 InsertAtByte = IsLE ? 8 : 4; 2341 return true; 2342 } 2343 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2344 InsertAtByte = IsLE ? 4 : 8; 2345 return true; 2346 } 2347 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2348 InsertAtByte = IsLE ? 0 : 12; 2349 return true; 2350 } 2351 } 2352 2353 return false; 2354 } 2355 2356 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2357 bool &Swap, bool IsLE) { 2358 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2359 // Ensure each byte index of the word is consecutive. 2360 if (!isNByteElemShuffleMask(N, 4, 1)) 2361 return false; 2362 2363 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2364 unsigned M0 = N->getMaskElt(0) / 4; 2365 unsigned M1 = N->getMaskElt(4) / 4; 2366 unsigned M2 = N->getMaskElt(8) / 4; 2367 unsigned M3 = N->getMaskElt(12) / 4; 2368 2369 // If both vector operands for the shuffle are the same vector, the mask will 2370 // contain only elements from the first one and the second one will be undef. 2371 if (N->getOperand(1).isUndef()) { 2372 assert(M0 < 4 && "Indexing into an undef vector?"); 2373 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2374 return false; 2375 2376 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2377 Swap = false; 2378 return true; 2379 } 2380 2381 // Ensure each word index of the ShuffleVector Mask is consecutive. 2382 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2383 return false; 2384 2385 if (IsLE) { 2386 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2387 // Input vectors don't need to be swapped if the leading element 2388 // of the result is one of the 3 left elements of the second vector 2389 // (or if there is no shift to be done at all). 2390 Swap = false; 2391 ShiftElts = (8 - M0) % 8; 2392 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2393 // Input vectors need to be swapped if the leading element 2394 // of the result is one of the 3 left elements of the first vector 2395 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2396 Swap = true; 2397 ShiftElts = (4 - M0) % 4; 2398 } 2399 2400 return true; 2401 } else { // BE 2402 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2403 // Input vectors don't need to be swapped if the leading element 2404 // of the result is one of the 4 elements of the first vector. 2405 Swap = false; 2406 ShiftElts = M0; 2407 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2408 // Input vectors need to be swapped if the leading element 2409 // of the result is one of the 4 elements of the right vector. 2410 Swap = true; 2411 ShiftElts = M0 - 4; 2412 } 2413 2414 return true; 2415 } 2416 } 2417 2418 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2419 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2420 2421 if (!isNByteElemShuffleMask(N, Width, -1)) 2422 return false; 2423 2424 for (int i = 0; i < 16; i += Width) 2425 if (N->getMaskElt(i) != i + Width - 1) 2426 return false; 2427 2428 return true; 2429 } 2430 2431 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2432 return isXXBRShuffleMaskHelper(N, 2); 2433 } 2434 2435 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2436 return isXXBRShuffleMaskHelper(N, 4); 2437 } 2438 2439 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2440 return isXXBRShuffleMaskHelper(N, 8); 2441 } 2442 2443 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2444 return isXXBRShuffleMaskHelper(N, 16); 2445 } 2446 2447 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2448 /// if the inputs to the instruction should be swapped and set \p DM to the 2449 /// value for the immediate. 2450 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2451 /// AND element 0 of the result comes from the first input (LE) or second input 2452 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2453 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2454 /// mask. 2455 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2456 bool &Swap, bool IsLE) { 2457 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2458 2459 // Ensure each byte index of the double word is consecutive. 2460 if (!isNByteElemShuffleMask(N, 8, 1)) 2461 return false; 2462 2463 unsigned M0 = N->getMaskElt(0) / 8; 2464 unsigned M1 = N->getMaskElt(8) / 8; 2465 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2466 2467 // If both vector operands for the shuffle are the same vector, the mask will 2468 // contain only elements from the first one and the second one will be undef. 2469 if (N->getOperand(1).isUndef()) { 2470 if ((M0 | M1) < 2) { 2471 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2472 Swap = false; 2473 return true; 2474 } else 2475 return false; 2476 } 2477 2478 if (IsLE) { 2479 if (M0 > 1 && M1 < 2) { 2480 Swap = false; 2481 } else if (M0 < 2 && M1 > 1) { 2482 M0 = (M0 + 2) % 4; 2483 M1 = (M1 + 2) % 4; 2484 Swap = true; 2485 } else 2486 return false; 2487 2488 // Note: if control flow comes here that means Swap is already set above 2489 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2490 return true; 2491 } else { // BE 2492 if (M0 < 2 && M1 > 1) { 2493 Swap = false; 2494 } else if (M0 > 1 && M1 < 2) { 2495 M0 = (M0 + 2) % 4; 2496 M1 = (M1 + 2) % 4; 2497 Swap = true; 2498 } else 2499 return false; 2500 2501 // Note: if control flow comes here that means Swap is already set above 2502 DM = (M0 << 1) + (M1 & 1); 2503 return true; 2504 } 2505 } 2506 2507 2508 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2509 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2510 /// elements are counted from the left of the vector register). 2511 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2512 SelectionDAG &DAG) { 2513 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2514 assert(isSplatShuffleMask(SVOp, EltSize)); 2515 EVT VT = SVOp->getValueType(0); 2516 2517 if (VT == MVT::v2i64 || VT == MVT::v2f64) 2518 return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0) 2519 : SVOp->getMaskElt(0); 2520 2521 if (DAG.getDataLayout().isLittleEndian()) 2522 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2523 else 2524 return SVOp->getMaskElt(0) / EltSize; 2525 } 2526 2527 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2528 /// by using a vspltis[bhw] instruction of the specified element size, return 2529 /// the constant being splatted. The ByteSize field indicates the number of 2530 /// bytes of each element [124] -> [bhw]. 2531 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2532 SDValue OpVal; 2533 2534 // If ByteSize of the splat is bigger than the element size of the 2535 // build_vector, then we have a case where we are checking for a splat where 2536 // multiple elements of the buildvector are folded together into a single 2537 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2538 unsigned EltSize = 16/N->getNumOperands(); 2539 if (EltSize < ByteSize) { 2540 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2541 SDValue UniquedVals[4]; 2542 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2543 2544 // See if all of the elements in the buildvector agree across. 2545 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2546 if (N->getOperand(i).isUndef()) continue; 2547 // If the element isn't a constant, bail fully out. 2548 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2549 2550 if (!UniquedVals[i&(Multiple-1)].getNode()) 2551 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2552 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2553 return SDValue(); // no match. 2554 } 2555 2556 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2557 // either constant or undef values that are identical for each chunk. See 2558 // if these chunks can form into a larger vspltis*. 2559 2560 // Check to see if all of the leading entries are either 0 or -1. If 2561 // neither, then this won't fit into the immediate field. 2562 bool LeadingZero = true; 2563 bool LeadingOnes = true; 2564 for (unsigned i = 0; i != Multiple-1; ++i) { 2565 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2566 2567 LeadingZero &= isNullConstant(UniquedVals[i]); 2568 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2569 } 2570 // Finally, check the least significant entry. 2571 if (LeadingZero) { 2572 if (!UniquedVals[Multiple-1].getNode()) 2573 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2574 int Val = UniquedVals[Multiple - 1]->getAsZExtVal(); 2575 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2576 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2577 } 2578 if (LeadingOnes) { 2579 if (!UniquedVals[Multiple-1].getNode()) 2580 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2581 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2582 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2583 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2584 } 2585 2586 return SDValue(); 2587 } 2588 2589 // Check to see if this buildvec has a single non-undef value in its elements. 2590 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2591 if (N->getOperand(i).isUndef()) continue; 2592 if (!OpVal.getNode()) 2593 OpVal = N->getOperand(i); 2594 else if (OpVal != N->getOperand(i)) 2595 return SDValue(); 2596 } 2597 2598 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2599 2600 unsigned ValSizeInBytes = EltSize; 2601 uint64_t Value = 0; 2602 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2603 Value = CN->getZExtValue(); 2604 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2605 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2606 Value = llvm::bit_cast<uint32_t>(CN->getValueAPF().convertToFloat()); 2607 } 2608 2609 // If the splat value is larger than the element value, then we can never do 2610 // this splat. The only case that we could fit the replicated bits into our 2611 // immediate field for would be zero, and we prefer to use vxor for it. 2612 if (ValSizeInBytes < ByteSize) return SDValue(); 2613 2614 // If the element value is larger than the splat value, check if it consists 2615 // of a repeated bit pattern of size ByteSize. 2616 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2617 return SDValue(); 2618 2619 // Properly sign extend the value. 2620 int MaskVal = SignExtend32(Value, ByteSize * 8); 2621 2622 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2623 if (MaskVal == 0) return SDValue(); 2624 2625 // Finally, if this value fits in a 5 bit sext field, return it 2626 if (SignExtend32<5>(MaskVal) == MaskVal) 2627 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2628 return SDValue(); 2629 } 2630 2631 //===----------------------------------------------------------------------===// 2632 // Addressing Mode Selection 2633 //===----------------------------------------------------------------------===// 2634 2635 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2636 /// or 64-bit immediate, and if the value can be accurately represented as a 2637 /// sign extension from a 16-bit value. If so, this returns true and the 2638 /// immediate. 2639 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2640 if (!isa<ConstantSDNode>(N)) 2641 return false; 2642 2643 Imm = (int16_t)N->getAsZExtVal(); 2644 if (N->getValueType(0) == MVT::i32) 2645 return Imm == (int32_t)N->getAsZExtVal(); 2646 else 2647 return Imm == (int64_t)N->getAsZExtVal(); 2648 } 2649 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2650 return isIntS16Immediate(Op.getNode(), Imm); 2651 } 2652 2653 /// Used when computing address flags for selecting loads and stores. 2654 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2655 /// An OR of two provably disjoint values is equivalent to an ADD. 2656 /// Most PPC load/store instructions compute the effective address as a sum, 2657 /// so doing this conversion is useful. 2658 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2659 if (N.getOpcode() != ISD::OR) 2660 return false; 2661 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2662 if (!LHSKnown.Zero.getBoolValue()) 2663 return false; 2664 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2665 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2666 } 2667 2668 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2669 /// be represented as an indexed [r+r] operation. 2670 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2671 SDValue &Index, 2672 SelectionDAG &DAG) const { 2673 for (SDNode *U : N->uses()) { 2674 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2675 if (Memop->getMemoryVT() == MVT::f64) { 2676 Base = N.getOperand(0); 2677 Index = N.getOperand(1); 2678 return true; 2679 } 2680 } 2681 } 2682 return false; 2683 } 2684 2685 /// isIntS34Immediate - This method tests if value of node given can be 2686 /// accurately represented as a sign extension from a 34-bit value. If so, 2687 /// this returns true and the immediate. 2688 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2689 if (!isa<ConstantSDNode>(N)) 2690 return false; 2691 2692 Imm = (int64_t)N->getAsZExtVal(); 2693 return isInt<34>(Imm); 2694 } 2695 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2696 return isIntS34Immediate(Op.getNode(), Imm); 2697 } 2698 2699 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2700 /// can be represented as an indexed [r+r] operation. Returns false if it 2701 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2702 /// non-zero and N can be represented by a base register plus a signed 16-bit 2703 /// displacement, make a more precise judgement by checking (displacement % \p 2704 /// EncodingAlignment). 2705 bool PPCTargetLowering::SelectAddressRegReg( 2706 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2707 MaybeAlign EncodingAlignment) const { 2708 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2709 // a [pc+imm]. 2710 if (SelectAddressPCRel(N, Base)) 2711 return false; 2712 2713 int16_t Imm = 0; 2714 if (N.getOpcode() == ISD::ADD) { 2715 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2716 // SPE load/store can only handle 8-bit offsets. 2717 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2718 return true; 2719 if (isIntS16Immediate(N.getOperand(1), Imm) && 2720 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2721 return false; // r+i 2722 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2723 return false; // r+i 2724 2725 Base = N.getOperand(0); 2726 Index = N.getOperand(1); 2727 return true; 2728 } else if (N.getOpcode() == ISD::OR) { 2729 if (isIntS16Immediate(N.getOperand(1), Imm) && 2730 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2731 return false; // r+i can fold it if we can. 2732 2733 // If this is an or of disjoint bitfields, we can codegen this as an add 2734 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2735 // disjoint. 2736 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2737 2738 if (LHSKnown.Zero.getBoolValue()) { 2739 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2740 // If all of the bits are known zero on the LHS or RHS, the add won't 2741 // carry. 2742 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2743 Base = N.getOperand(0); 2744 Index = N.getOperand(1); 2745 return true; 2746 } 2747 } 2748 } 2749 2750 return false; 2751 } 2752 2753 // If we happen to be doing an i64 load or store into a stack slot that has 2754 // less than a 4-byte alignment, then the frame-index elimination may need to 2755 // use an indexed load or store instruction (because the offset may not be a 2756 // multiple of 4). The extra register needed to hold the offset comes from the 2757 // register scavenger, and it is possible that the scavenger will need to use 2758 // an emergency spill slot. As a result, we need to make sure that a spill slot 2759 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2760 // stack slot. 2761 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2762 // FIXME: This does not handle the LWA case. 2763 if (VT != MVT::i64) 2764 return; 2765 2766 // NOTE: We'll exclude negative FIs here, which come from argument 2767 // lowering, because there are no known test cases triggering this problem 2768 // using packed structures (or similar). We can remove this exclusion if 2769 // we find such a test case. The reason why this is so test-case driven is 2770 // because this entire 'fixup' is only to prevent crashes (from the 2771 // register scavenger) on not-really-valid inputs. For example, if we have: 2772 // %a = alloca i1 2773 // %b = bitcast i1* %a to i64* 2774 // store i64* a, i64 b 2775 // then the store should really be marked as 'align 1', but is not. If it 2776 // were marked as 'align 1' then the indexed form would have been 2777 // instruction-selected initially, and the problem this 'fixup' is preventing 2778 // won't happen regardless. 2779 if (FrameIdx < 0) 2780 return; 2781 2782 MachineFunction &MF = DAG.getMachineFunction(); 2783 MachineFrameInfo &MFI = MF.getFrameInfo(); 2784 2785 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2786 return; 2787 2788 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2789 FuncInfo->setHasNonRISpills(); 2790 } 2791 2792 /// Returns true if the address N can be represented by a base register plus 2793 /// a signed 16-bit displacement [r+imm], and if it is not better 2794 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2795 /// displacements that are multiples of that value. 2796 bool PPCTargetLowering::SelectAddressRegImm( 2797 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2798 MaybeAlign EncodingAlignment) const { 2799 // FIXME dl should come from parent load or store, not from address 2800 SDLoc dl(N); 2801 2802 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2803 // a [pc+imm]. 2804 if (SelectAddressPCRel(N, Base)) 2805 return false; 2806 2807 // If this can be more profitably realized as r+r, fail. 2808 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2809 return false; 2810 2811 if (N.getOpcode() == ISD::ADD) { 2812 int16_t imm = 0; 2813 if (isIntS16Immediate(N.getOperand(1), imm) && 2814 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2815 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2816 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2817 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2818 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2819 } else { 2820 Base = N.getOperand(0); 2821 } 2822 return true; // [r+i] 2823 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2824 // Match LOAD (ADD (X, Lo(G))). 2825 assert(!N.getOperand(1).getConstantOperandVal(1) && 2826 "Cannot handle constant offsets yet!"); 2827 Disp = N.getOperand(1).getOperand(0); // The global address. 2828 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2829 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2830 Disp.getOpcode() == ISD::TargetConstantPool || 2831 Disp.getOpcode() == ISD::TargetJumpTable); 2832 Base = N.getOperand(0); 2833 return true; // [&g+r] 2834 } 2835 } else if (N.getOpcode() == ISD::OR) { 2836 int16_t imm = 0; 2837 if (isIntS16Immediate(N.getOperand(1), imm) && 2838 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2839 // If this is an or of disjoint bitfields, we can codegen this as an add 2840 // (for better address arithmetic) if the LHS and RHS of the OR are 2841 // provably disjoint. 2842 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2843 2844 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2845 // If all of the bits are known zero on the LHS or RHS, the add won't 2846 // carry. 2847 if (FrameIndexSDNode *FI = 2848 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2849 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2850 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2851 } else { 2852 Base = N.getOperand(0); 2853 } 2854 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2855 return true; 2856 } 2857 } 2858 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2859 // Loading from a constant address. 2860 2861 // If this address fits entirely in a 16-bit sext immediate field, codegen 2862 // this as "d, 0" 2863 int16_t Imm; 2864 if (isIntS16Immediate(CN, Imm) && 2865 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2866 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2867 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2868 CN->getValueType(0)); 2869 return true; 2870 } 2871 2872 // Handle 32-bit sext immediates with LIS + addr mode. 2873 if ((CN->getValueType(0) == MVT::i32 || 2874 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2875 (!EncodingAlignment || 2876 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2877 int Addr = (int)CN->getZExtValue(); 2878 2879 // Otherwise, break this down into an LIS + disp. 2880 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2881 2882 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2883 MVT::i32); 2884 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2885 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2886 return true; 2887 } 2888 } 2889 2890 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2891 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2892 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2893 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2894 } else 2895 Base = N; 2896 return true; // [r+0] 2897 } 2898 2899 /// Similar to the 16-bit case but for instructions that take a 34-bit 2900 /// displacement field (prefixed loads/stores). 2901 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2902 SDValue &Base, 2903 SelectionDAG &DAG) const { 2904 // Only on 64-bit targets. 2905 if (N.getValueType() != MVT::i64) 2906 return false; 2907 2908 SDLoc dl(N); 2909 int64_t Imm = 0; 2910 2911 if (N.getOpcode() == ISD::ADD) { 2912 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2913 return false; 2914 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2915 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2916 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2917 else 2918 Base = N.getOperand(0); 2919 return true; 2920 } 2921 2922 if (N.getOpcode() == ISD::OR) { 2923 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2924 return false; 2925 // If this is an or of disjoint bitfields, we can codegen this as an add 2926 // (for better address arithmetic) if the LHS and RHS of the OR are 2927 // provably disjoint. 2928 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2929 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2930 return false; 2931 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2932 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2933 else 2934 Base = N.getOperand(0); 2935 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2936 return true; 2937 } 2938 2939 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2940 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2941 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2942 return true; 2943 } 2944 2945 return false; 2946 } 2947 2948 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2949 /// represented as an indexed [r+r] operation. 2950 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2951 SDValue &Index, 2952 SelectionDAG &DAG) const { 2953 // Check to see if we can easily represent this as an [r+r] address. This 2954 // will fail if it thinks that the address is more profitably represented as 2955 // reg+imm, e.g. where imm = 0. 2956 if (SelectAddressRegReg(N, Base, Index, DAG)) 2957 return true; 2958 2959 // If the address is the result of an add, we will utilize the fact that the 2960 // address calculation includes an implicit add. However, we can reduce 2961 // register pressure if we do not materialize a constant just for use as the 2962 // index register. We only get rid of the add if it is not an add of a 2963 // value and a 16-bit signed constant and both have a single use. 2964 int16_t imm = 0; 2965 if (N.getOpcode() == ISD::ADD && 2966 (!isIntS16Immediate(N.getOperand(1), imm) || 2967 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2968 Base = N.getOperand(0); 2969 Index = N.getOperand(1); 2970 return true; 2971 } 2972 2973 // Otherwise, do it the hard way, using R0 as the base register. 2974 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2975 N.getValueType()); 2976 Index = N; 2977 return true; 2978 } 2979 2980 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2981 Ty *PCRelCand = dyn_cast<Ty>(N); 2982 return PCRelCand && (PPCInstrInfo::hasPCRelFlag(PCRelCand->getTargetFlags())); 2983 } 2984 2985 /// Returns true if this address is a PC Relative address. 2986 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2987 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2988 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2989 // This is a materialize PC Relative node. Always select this as PC Relative. 2990 Base = N; 2991 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2992 return true; 2993 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2994 isValidPCRelNode<GlobalAddressSDNode>(N) || 2995 isValidPCRelNode<JumpTableSDNode>(N) || 2996 isValidPCRelNode<BlockAddressSDNode>(N)) 2997 return true; 2998 return false; 2999 } 3000 3001 /// Returns true if we should use a direct load into vector instruction 3002 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 3003 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 3004 3005 // If there are any other uses other than scalar to vector, then we should 3006 // keep it as a scalar load -> direct move pattern to prevent multiple 3007 // loads. 3008 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 3009 if (!LD) 3010 return false; 3011 3012 EVT MemVT = LD->getMemoryVT(); 3013 if (!MemVT.isSimple()) 3014 return false; 3015 switch(MemVT.getSimpleVT().SimpleTy) { 3016 case MVT::i64: 3017 break; 3018 case MVT::i32: 3019 if (!ST.hasP8Vector()) 3020 return false; 3021 break; 3022 case MVT::i16: 3023 case MVT::i8: 3024 if (!ST.hasP9Vector()) 3025 return false; 3026 break; 3027 default: 3028 return false; 3029 } 3030 3031 SDValue LoadedVal(N, 0); 3032 if (!LoadedVal.hasOneUse()) 3033 return false; 3034 3035 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 3036 UI != UE; ++UI) 3037 if (UI.getUse().get().getResNo() == 0 && 3038 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 3039 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 3040 return false; 3041 3042 return true; 3043 } 3044 3045 /// getPreIndexedAddressParts - returns true by value, base pointer and 3046 /// offset pointer and addressing mode by reference if the node's address 3047 /// can be legally represented as pre-indexed load / store address. 3048 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 3049 SDValue &Offset, 3050 ISD::MemIndexedMode &AM, 3051 SelectionDAG &DAG) const { 3052 if (DisablePPCPreinc) return false; 3053 3054 bool isLoad = true; 3055 SDValue Ptr; 3056 EVT VT; 3057 Align Alignment; 3058 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3059 Ptr = LD->getBasePtr(); 3060 VT = LD->getMemoryVT(); 3061 Alignment = LD->getAlign(); 3062 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 3063 Ptr = ST->getBasePtr(); 3064 VT = ST->getMemoryVT(); 3065 Alignment = ST->getAlign(); 3066 isLoad = false; 3067 } else 3068 return false; 3069 3070 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 3071 // instructions because we can fold these into a more efficient instruction 3072 // instead, (such as LXSD). 3073 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 3074 return false; 3075 } 3076 3077 // PowerPC doesn't have preinc load/store instructions for vectors 3078 if (VT.isVector()) 3079 return false; 3080 3081 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3082 // Common code will reject creating a pre-inc form if the base pointer 3083 // is a frame index, or if N is a store and the base pointer is either 3084 // the same as or a predecessor of the value being stored. Check for 3085 // those situations here, and try with swapped Base/Offset instead. 3086 bool Swap = false; 3087 3088 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3089 Swap = true; 3090 else if (!isLoad) { 3091 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3092 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3093 Swap = true; 3094 } 3095 3096 if (Swap) 3097 std::swap(Base, Offset); 3098 3099 AM = ISD::PRE_INC; 3100 return true; 3101 } 3102 3103 // LDU/STU can only handle immediates that are a multiple of 4. 3104 if (VT != MVT::i64) { 3105 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt)) 3106 return false; 3107 } else { 3108 // LDU/STU need an address with at least 4-byte alignment. 3109 if (Alignment < Align(4)) 3110 return false; 3111 3112 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3113 return false; 3114 } 3115 3116 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3117 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3118 // sext i32 to i64 when addr mode is r+i. 3119 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3120 LD->getExtensionType() == ISD::SEXTLOAD && 3121 isa<ConstantSDNode>(Offset)) 3122 return false; 3123 } 3124 3125 AM = ISD::PRE_INC; 3126 return true; 3127 } 3128 3129 //===----------------------------------------------------------------------===// 3130 // LowerOperation implementation 3131 //===----------------------------------------------------------------------===// 3132 3133 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3134 /// and LoOpFlags to the target MO flags. 3135 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3136 unsigned &HiOpFlags, unsigned &LoOpFlags, 3137 const GlobalValue *GV = nullptr) { 3138 HiOpFlags = PPCII::MO_HA; 3139 LoOpFlags = PPCII::MO_LO; 3140 3141 // Don't use the pic base if not in PIC relocation model. 3142 if (IsPIC) { 3143 HiOpFlags = PPCII::MO_PIC_HA_FLAG; 3144 LoOpFlags = PPCII::MO_PIC_LO_FLAG; 3145 } 3146 } 3147 3148 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3149 SelectionDAG &DAG) { 3150 SDLoc DL(HiPart); 3151 EVT PtrVT = HiPart.getValueType(); 3152 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3153 3154 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3155 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3156 3157 // With PIC, the first instruction is actually "GR+hi(&G)". 3158 if (isPIC) 3159 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3160 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3161 3162 // Generate non-pic code that has direct accesses to the constant pool. 3163 // The address of the global is just (hi(&g)+lo(&g)). 3164 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3165 } 3166 3167 static void setUsesTOCBasePtr(MachineFunction &MF) { 3168 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3169 FuncInfo->setUsesTOCBasePtr(); 3170 } 3171 3172 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3173 setUsesTOCBasePtr(DAG.getMachineFunction()); 3174 } 3175 3176 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3177 SDValue GA) const { 3178 const bool Is64Bit = Subtarget.isPPC64(); 3179 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3180 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3181 : Subtarget.isAIXABI() 3182 ? DAG.getRegister(PPC::R2, VT) 3183 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3184 SDValue Ops[] = { GA, Reg }; 3185 return DAG.getMemIntrinsicNode( 3186 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3187 MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt, 3188 MachineMemOperand::MOLoad); 3189 } 3190 3191 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3192 SelectionDAG &DAG) const { 3193 EVT PtrVT = Op.getValueType(); 3194 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3195 const Constant *C = CP->getConstVal(); 3196 3197 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3198 // The actual address of the GlobalValue is stored in the TOC. 3199 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3200 if (Subtarget.isUsingPCRelativeCalls()) { 3201 SDLoc DL(CP); 3202 EVT Ty = getPointerTy(DAG.getDataLayout()); 3203 SDValue ConstPool = DAG.getTargetConstantPool( 3204 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3205 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3206 } 3207 setUsesTOCBasePtr(DAG); 3208 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3209 return getTOCEntry(DAG, SDLoc(CP), GA); 3210 } 3211 3212 unsigned MOHiFlag, MOLoFlag; 3213 bool IsPIC = isPositionIndependent(); 3214 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3215 3216 if (IsPIC && Subtarget.isSVR4ABI()) { 3217 SDValue GA = 3218 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3219 return getTOCEntry(DAG, SDLoc(CP), GA); 3220 } 3221 3222 SDValue CPIHi = 3223 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3224 SDValue CPILo = 3225 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3226 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3227 } 3228 3229 // For 64-bit PowerPC, prefer the more compact relative encodings. 3230 // This trades 32 bits per jump table entry for one or two instructions 3231 // on the jump site. 3232 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3233 if (isJumpTableRelative()) 3234 return MachineJumpTableInfo::EK_LabelDifference32; 3235 3236 return TargetLowering::getJumpTableEncoding(); 3237 } 3238 3239 bool PPCTargetLowering::isJumpTableRelative() const { 3240 if (UseAbsoluteJumpTables) 3241 return false; 3242 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3243 return true; 3244 return TargetLowering::isJumpTableRelative(); 3245 } 3246 3247 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3248 SelectionDAG &DAG) const { 3249 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3250 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3251 3252 switch (getTargetMachine().getCodeModel()) { 3253 case CodeModel::Small: 3254 case CodeModel::Medium: 3255 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3256 default: 3257 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3258 getPointerTy(DAG.getDataLayout())); 3259 } 3260 } 3261 3262 const MCExpr * 3263 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3264 unsigned JTI, 3265 MCContext &Ctx) const { 3266 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3267 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3268 3269 switch (getTargetMachine().getCodeModel()) { 3270 case CodeModel::Small: 3271 case CodeModel::Medium: 3272 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3273 default: 3274 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3275 } 3276 } 3277 3278 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3279 EVT PtrVT = Op.getValueType(); 3280 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3281 3282 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3283 if (Subtarget.isUsingPCRelativeCalls()) { 3284 SDLoc DL(JT); 3285 EVT Ty = getPointerTy(DAG.getDataLayout()); 3286 SDValue GA = 3287 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3288 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3289 return MatAddr; 3290 } 3291 3292 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3293 // The actual address of the GlobalValue is stored in the TOC. 3294 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3295 setUsesTOCBasePtr(DAG); 3296 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3297 return getTOCEntry(DAG, SDLoc(JT), GA); 3298 } 3299 3300 unsigned MOHiFlag, MOLoFlag; 3301 bool IsPIC = isPositionIndependent(); 3302 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3303 3304 if (IsPIC && Subtarget.isSVR4ABI()) { 3305 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3306 PPCII::MO_PIC_FLAG); 3307 return getTOCEntry(DAG, SDLoc(GA), GA); 3308 } 3309 3310 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3311 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3312 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3313 } 3314 3315 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3316 SelectionDAG &DAG) const { 3317 EVT PtrVT = Op.getValueType(); 3318 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3319 const BlockAddress *BA = BASDN->getBlockAddress(); 3320 3321 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3322 if (Subtarget.isUsingPCRelativeCalls()) { 3323 SDLoc DL(BASDN); 3324 EVT Ty = getPointerTy(DAG.getDataLayout()); 3325 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3326 PPCII::MO_PCREL_FLAG); 3327 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3328 return MatAddr; 3329 } 3330 3331 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3332 // The actual BlockAddress is stored in the TOC. 3333 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3334 setUsesTOCBasePtr(DAG); 3335 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3336 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3337 } 3338 3339 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3340 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3341 return getTOCEntry( 3342 DAG, SDLoc(BASDN), 3343 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3344 3345 unsigned MOHiFlag, MOLoFlag; 3346 bool IsPIC = isPositionIndependent(); 3347 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3348 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3349 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3350 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3351 } 3352 3353 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3354 SelectionDAG &DAG) const { 3355 if (Subtarget.isAIXABI()) 3356 return LowerGlobalTLSAddressAIX(Op, DAG); 3357 3358 return LowerGlobalTLSAddressLinux(Op, DAG); 3359 } 3360 3361 /// updateForAIXShLibTLSModelOpt - Helper to initialize TLS model opt settings, 3362 /// and then apply the update. 3363 static void updateForAIXShLibTLSModelOpt(TLSModel::Model &Model, 3364 SelectionDAG &DAG, 3365 const TargetMachine &TM) { 3366 // Initialize TLS model opt setting lazily: 3367 // (1) Use initial-exec for single TLS var references within current function. 3368 // (2) Use local-dynamic for multiple TLS var references within current 3369 // function. 3370 PPCFunctionInfo *FuncInfo = 3371 DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3372 if (!FuncInfo->isAIXFuncTLSModelOptInitDone()) { 3373 SmallPtrSet<const GlobalValue *, 8> TLSGV; 3374 // Iterate over all instructions within current function, collect all TLS 3375 // global variables (global variables taken as the first parameter to 3376 // Intrinsic::threadlocal_address). 3377 const Function &Func = DAG.getMachineFunction().getFunction(); 3378 for (Function::const_iterator BI = Func.begin(), BE = Func.end(); BI != BE; 3379 ++BI) 3380 for (BasicBlock::const_iterator II = BI->begin(), IE = BI->end(); 3381 II != IE; ++II) 3382 if (II->getOpcode() == Instruction::Call) 3383 if (const CallInst *CI = dyn_cast<const CallInst>(&*II)) 3384 if (Function *CF = CI->getCalledFunction()) 3385 if (CF->isDeclaration() && 3386 CF->getIntrinsicID() == Intrinsic::threadlocal_address) 3387 if (const GlobalValue *GV = 3388 dyn_cast<GlobalValue>(II->getOperand(0))) { 3389 TLSModel::Model GVModel = TM.getTLSModel(GV); 3390 if (GVModel == TLSModel::LocalDynamic) 3391 TLSGV.insert(GV); 3392 } 3393 3394 unsigned TLSGVCnt = TLSGV.size(); 3395 LLVM_DEBUG(dbgs() << format("LocalDynamic TLSGV count:%d\n", TLSGVCnt)); 3396 if (TLSGVCnt <= PPCAIXTLSModelOptUseIEForLDLimit) 3397 FuncInfo->setAIXFuncUseTLSIEForLD(); 3398 FuncInfo->setAIXFuncTLSModelOptInitDone(); 3399 } 3400 3401 if (FuncInfo->isAIXFuncUseTLSIEForLD()) { 3402 LLVM_DEBUG( 3403 dbgs() << DAG.getMachineFunction().getName() 3404 << " function is using the TLS-IE model for TLS-LD access.\n"); 3405 Model = TLSModel::InitialExec; 3406 } 3407 } 3408 3409 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3410 SelectionDAG &DAG) const { 3411 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3412 3413 if (DAG.getTarget().useEmulatedTLS()) 3414 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3415 3416 SDLoc dl(GA); 3417 const GlobalValue *GV = GA->getGlobal(); 3418 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3419 bool Is64Bit = Subtarget.isPPC64(); 3420 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 3421 3422 // Apply update to the TLS model. 3423 if (Subtarget.hasAIXShLibTLSModelOpt()) 3424 updateForAIXShLibTLSModelOpt(Model, DAG, getTargetMachine()); 3425 3426 bool IsTLSLocalExecModel = Model == TLSModel::LocalExec; 3427 3428 if (IsTLSLocalExecModel || Model == TLSModel::InitialExec) { 3429 bool HasAIXSmallLocalExecTLS = Subtarget.hasAIXSmallLocalExecTLS(); 3430 bool HasAIXSmallTLSGlobalAttr = false; 3431 SDValue VariableOffsetTGA = 3432 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_FLAG); 3433 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3434 SDValue TLSReg; 3435 3436 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 3437 if (GVar->hasAttribute("aix-small-tls")) 3438 HasAIXSmallTLSGlobalAttr = true; 3439 3440 if (Is64Bit) { 3441 // For local-exec and initial-exec on AIX (64-bit), the sequence generated 3442 // involves a load of the variable offset (from the TOC), followed by an 3443 // add of the loaded variable offset to R13 (the thread pointer). 3444 // This code sequence looks like: 3445 // ld reg1,var[TC](2) 3446 // add reg2, reg1, r13 // r13 contains the thread pointer 3447 TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3448 3449 // With the -maix-small-local-exec-tls option, or with the "aix-small-tls" 3450 // global variable attribute, produce a faster access sequence for 3451 // local-exec TLS variables where the offset from the TLS base is encoded 3452 // as an immediate operand. 3453 // 3454 // We only utilize the faster local-exec access sequence when the TLS 3455 // variable has a size within the policy limit. We treat types that are 3456 // not sized or are empty as being over the policy size limit. 3457 if ((HasAIXSmallLocalExecTLS || HasAIXSmallTLSGlobalAttr) && 3458 IsTLSLocalExecModel) { 3459 Type *GVType = GV->getValueType(); 3460 if (GVType->isSized() && !GVType->isEmptyTy() && 3461 GV->getDataLayout().getTypeAllocSize(GVType) <= 3462 AIXSmallTlsPolicySizeLimit) 3463 return DAG.getNode(PPCISD::Lo, dl, PtrVT, VariableOffsetTGA, TLSReg); 3464 } 3465 } else { 3466 // For local-exec and initial-exec on AIX (32-bit), the sequence generated 3467 // involves loading the variable offset from the TOC, generating a call to 3468 // .__get_tpointer to get the thread pointer (which will be in R3), and 3469 // adding the two together: 3470 // lwz reg1,var[TC](2) 3471 // bla .__get_tpointer 3472 // add reg2, reg1, r3 3473 TLSReg = DAG.getNode(PPCISD::GET_TPOINTER, dl, PtrVT); 3474 3475 // We do not implement the 32-bit version of the faster access sequence 3476 // for local-exec that is controlled by the -maix-small-local-exec-tls 3477 // option, or the "aix-small-tls" global variable attribute. 3478 if (HasAIXSmallLocalExecTLS || HasAIXSmallTLSGlobalAttr) 3479 report_fatal_error("The small-local-exec TLS access sequence is " 3480 "currently only supported on AIX (64-bit mode)."); 3481 } 3482 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, VariableOffset); 3483 } 3484 3485 if (Model == TLSModel::LocalDynamic) { 3486 bool HasAIXSmallLocalDynamicTLS = Subtarget.hasAIXSmallLocalDynamicTLS(); 3487 3488 // We do not implement the 32-bit version of the faster access sequence 3489 // for local-dynamic that is controlled by -maix-small-local-dynamic-tls. 3490 if (!Is64Bit && HasAIXSmallLocalDynamicTLS) 3491 report_fatal_error("The small-local-dynamic TLS access sequence is " 3492 "currently only supported on AIX (64-bit mode)."); 3493 3494 // For local-dynamic on AIX, we need to generate one TOC entry for each 3495 // variable offset, and a single module-handle TOC entry for the entire 3496 // file. 3497 3498 SDValue VariableOffsetTGA = 3499 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSLD_FLAG); 3500 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3501 3502 Module *M = DAG.getMachineFunction().getFunction().getParent(); 3503 GlobalVariable *TLSGV = 3504 dyn_cast_or_null<GlobalVariable>(M->getOrInsertGlobal( 3505 StringRef("_$TLSML"), PointerType::getUnqual(*DAG.getContext()))); 3506 TLSGV->setThreadLocalMode(GlobalVariable::LocalDynamicTLSModel); 3507 assert(TLSGV && "Not able to create GV for _$TLSML."); 3508 SDValue ModuleHandleTGA = 3509 DAG.getTargetGlobalAddress(TLSGV, dl, PtrVT, 0, PPCII::MO_TLSLDM_FLAG); 3510 SDValue ModuleHandleTOC = getTOCEntry(DAG, dl, ModuleHandleTGA); 3511 SDValue ModuleHandle = 3512 DAG.getNode(PPCISD::TLSLD_AIX, dl, PtrVT, ModuleHandleTOC); 3513 3514 // With the -maix-small-local-dynamic-tls option, produce a faster access 3515 // sequence for local-dynamic TLS variables where the offset from the 3516 // module-handle is encoded as an immediate operand. 3517 // 3518 // We only utilize the faster local-dynamic access sequence when the TLS 3519 // variable has a size within the policy limit. We treat types that are 3520 // not sized or are empty as being over the policy size limit. 3521 if (HasAIXSmallLocalDynamicTLS) { 3522 Type *GVType = GV->getValueType(); 3523 if (GVType->isSized() && !GVType->isEmptyTy() && 3524 GV->getDataLayout().getTypeAllocSize(GVType) <= 3525 AIXSmallTlsPolicySizeLimit) 3526 return DAG.getNode(PPCISD::Lo, dl, PtrVT, VariableOffsetTGA, 3527 ModuleHandle); 3528 } 3529 3530 return DAG.getNode(ISD::ADD, dl, PtrVT, ModuleHandle, VariableOffset); 3531 } 3532 3533 // If Local- or Initial-exec or Local-dynamic is not possible or specified, 3534 // all GlobalTLSAddress nodes are lowered using the general-dynamic model. We 3535 // need to generate two TOC entries, one for the variable offset, one for the 3536 // region handle. The global address for the TOC entry of the region handle is 3537 // created with the MO_TLSGDM_FLAG flag and the global address for the TOC 3538 // entry of the variable offset is created with MO_TLSGD_FLAG. 3539 SDValue VariableOffsetTGA = 3540 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3541 SDValue RegionHandleTGA = 3542 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3543 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3544 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3545 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3546 RegionHandle); 3547 } 3548 3549 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3550 SelectionDAG &DAG) const { 3551 // FIXME: TLS addresses currently use medium model code sequences, 3552 // which is the most useful form. Eventually support for small and 3553 // large models could be added if users need it, at the cost of 3554 // additional complexity. 3555 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3556 if (DAG.getTarget().useEmulatedTLS()) 3557 return LowerToTLSEmulatedModel(GA, DAG); 3558 3559 SDLoc dl(GA); 3560 const GlobalValue *GV = GA->getGlobal(); 3561 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3562 bool is64bit = Subtarget.isPPC64(); 3563 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3564 PICLevel::Level picLevel = M->getPICLevel(); 3565 3566 const TargetMachine &TM = getTargetMachine(); 3567 TLSModel::Model Model = TM.getTLSModel(GV); 3568 3569 if (Model == TLSModel::LocalExec) { 3570 if (Subtarget.isUsingPCRelativeCalls()) { 3571 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3572 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3573 PPCII::MO_TPREL_PCREL_FLAG); 3574 SDValue MatAddr = 3575 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3576 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3577 } 3578 3579 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3580 PPCII::MO_TPREL_HA); 3581 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3582 PPCII::MO_TPREL_LO); 3583 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3584 : DAG.getRegister(PPC::R2, MVT::i32); 3585 3586 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3587 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3588 } 3589 3590 if (Model == TLSModel::InitialExec) { 3591 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3592 SDValue TGA = DAG.getTargetGlobalAddress( 3593 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3594 SDValue TGATLS = DAG.getTargetGlobalAddress( 3595 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_TLS_PCREL_FLAG : PPCII::MO_TLS); 3596 SDValue TPOffset; 3597 if (IsPCRel) { 3598 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3599 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3600 MachinePointerInfo()); 3601 } else { 3602 SDValue GOTPtr; 3603 if (is64bit) { 3604 setUsesTOCBasePtr(DAG); 3605 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3606 GOTPtr = 3607 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3608 } else { 3609 if (!TM.isPositionIndependent()) 3610 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3611 else if (picLevel == PICLevel::SmallPIC) 3612 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3613 else 3614 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3615 } 3616 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3617 } 3618 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3619 } 3620 3621 if (Model == TLSModel::GeneralDynamic) { 3622 if (Subtarget.isUsingPCRelativeCalls()) { 3623 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3624 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3625 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3626 } 3627 3628 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3629 SDValue GOTPtr; 3630 if (is64bit) { 3631 setUsesTOCBasePtr(DAG); 3632 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3633 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3634 GOTReg, TGA); 3635 } else { 3636 if (picLevel == PICLevel::SmallPIC) 3637 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3638 else 3639 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3640 } 3641 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3642 GOTPtr, TGA, TGA); 3643 } 3644 3645 if (Model == TLSModel::LocalDynamic) { 3646 if (Subtarget.isUsingPCRelativeCalls()) { 3647 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3648 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3649 SDValue MatPCRel = 3650 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3651 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3652 } 3653 3654 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3655 SDValue GOTPtr; 3656 if (is64bit) { 3657 setUsesTOCBasePtr(DAG); 3658 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3659 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3660 GOTReg, TGA); 3661 } else { 3662 if (picLevel == PICLevel::SmallPIC) 3663 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3664 else 3665 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3666 } 3667 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3668 PtrVT, GOTPtr, TGA, TGA); 3669 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3670 PtrVT, TLSAddr, TGA); 3671 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3672 } 3673 3674 llvm_unreachable("Unknown TLS model!"); 3675 } 3676 3677 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3678 SelectionDAG &DAG) const { 3679 EVT PtrVT = Op.getValueType(); 3680 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3681 SDLoc DL(GSDN); 3682 const GlobalValue *GV = GSDN->getGlobal(); 3683 3684 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3685 // The actual address of the GlobalValue is stored in the TOC. 3686 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3687 if (Subtarget.isUsingPCRelativeCalls()) { 3688 EVT Ty = getPointerTy(DAG.getDataLayout()); 3689 if (isAccessedAsGotIndirect(Op)) { 3690 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3691 PPCII::MO_GOT_PCREL_FLAG); 3692 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3693 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3694 MachinePointerInfo()); 3695 return Load; 3696 } else { 3697 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3698 PPCII::MO_PCREL_FLAG); 3699 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3700 } 3701 } 3702 setUsesTOCBasePtr(DAG); 3703 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3704 return getTOCEntry(DAG, DL, GA); 3705 } 3706 3707 unsigned MOHiFlag, MOLoFlag; 3708 bool IsPIC = isPositionIndependent(); 3709 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3710 3711 if (IsPIC && Subtarget.isSVR4ABI()) { 3712 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3713 GSDN->getOffset(), 3714 PPCII::MO_PIC_FLAG); 3715 return getTOCEntry(DAG, DL, GA); 3716 } 3717 3718 SDValue GAHi = 3719 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3720 SDValue GALo = 3721 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3722 3723 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3724 } 3725 3726 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3727 bool IsStrict = Op->isStrictFPOpcode(); 3728 ISD::CondCode CC = 3729 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3730 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3731 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3732 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3733 EVT LHSVT = LHS.getValueType(); 3734 SDLoc dl(Op); 3735 3736 // Soften the setcc with libcall if it is fp128. 3737 if (LHSVT == MVT::f128) { 3738 assert(!Subtarget.hasP9Vector() && 3739 "SETCC for f128 is already legal under Power9!"); 3740 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3741 Op->getOpcode() == ISD::STRICT_FSETCCS); 3742 if (RHS.getNode()) 3743 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3744 DAG.getCondCode(CC)); 3745 if (IsStrict) 3746 return DAG.getMergeValues({LHS, Chain}, dl); 3747 return LHS; 3748 } 3749 3750 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3751 3752 if (Op.getValueType() == MVT::v2i64) { 3753 // When the operands themselves are v2i64 values, we need to do something 3754 // special because VSX has no underlying comparison operations for these. 3755 if (LHS.getValueType() == MVT::v2i64) { 3756 // Equality can be handled by casting to the legal type for Altivec 3757 // comparisons, everything else needs to be expanded. 3758 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3759 return SDValue(); 3760 SDValue SetCC32 = DAG.getSetCC( 3761 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3762 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3763 int ShuffV[] = {1, 0, 3, 2}; 3764 SDValue Shuff = 3765 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3766 return DAG.getBitcast(MVT::v2i64, 3767 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3768 dl, MVT::v4i32, Shuff, SetCC32)); 3769 } 3770 3771 // We handle most of these in the usual way. 3772 return Op; 3773 } 3774 3775 // If we're comparing for equality to zero, expose the fact that this is 3776 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3777 // fold the new nodes. 3778 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3779 return V; 3780 3781 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3782 // Leave comparisons against 0 and -1 alone for now, since they're usually 3783 // optimized. FIXME: revisit this when we can custom lower all setcc 3784 // optimizations. 3785 if (C->isAllOnes() || C->isZero()) 3786 return SDValue(); 3787 } 3788 3789 // If we have an integer seteq/setne, turn it into a compare against zero 3790 // by xor'ing the rhs with the lhs, which is faster than setting a 3791 // condition register, reading it back out, and masking the correct bit. The 3792 // normal approach here uses sub to do this instead of xor. Using xor exposes 3793 // the result to other bit-twiddling opportunities. 3794 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3795 EVT VT = Op.getValueType(); 3796 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3797 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3798 } 3799 return SDValue(); 3800 } 3801 3802 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3803 SDNode *Node = Op.getNode(); 3804 EVT VT = Node->getValueType(0); 3805 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3806 SDValue InChain = Node->getOperand(0); 3807 SDValue VAListPtr = Node->getOperand(1); 3808 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3809 SDLoc dl(Node); 3810 3811 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3812 3813 // gpr_index 3814 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3815 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3816 InChain = GprIndex.getValue(1); 3817 3818 if (VT == MVT::i64) { 3819 // Check if GprIndex is even 3820 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3821 DAG.getConstant(1, dl, MVT::i32)); 3822 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3823 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3824 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3825 DAG.getConstant(1, dl, MVT::i32)); 3826 // Align GprIndex to be even if it isn't 3827 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3828 GprIndex); 3829 } 3830 3831 // fpr index is 1 byte after gpr 3832 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3833 DAG.getConstant(1, dl, MVT::i32)); 3834 3835 // fpr 3836 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3837 FprPtr, MachinePointerInfo(SV), MVT::i8); 3838 InChain = FprIndex.getValue(1); 3839 3840 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3841 DAG.getConstant(8, dl, MVT::i32)); 3842 3843 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3844 DAG.getConstant(4, dl, MVT::i32)); 3845 3846 // areas 3847 SDValue OverflowArea = 3848 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3849 InChain = OverflowArea.getValue(1); 3850 3851 SDValue RegSaveArea = 3852 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3853 InChain = RegSaveArea.getValue(1); 3854 3855 // select overflow_area if index > 8 3856 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3857 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3858 3859 // adjustment constant gpr_index * 4/8 3860 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3861 VT.isInteger() ? GprIndex : FprIndex, 3862 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3863 MVT::i32)); 3864 3865 // OurReg = RegSaveArea + RegConstant 3866 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3867 RegConstant); 3868 3869 // Floating types are 32 bytes into RegSaveArea 3870 if (VT.isFloatingPoint()) 3871 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3872 DAG.getConstant(32, dl, MVT::i32)); 3873 3874 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3875 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3876 VT.isInteger() ? GprIndex : FprIndex, 3877 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3878 MVT::i32)); 3879 3880 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3881 VT.isInteger() ? VAListPtr : FprPtr, 3882 MachinePointerInfo(SV), MVT::i8); 3883 3884 // determine if we should load from reg_save_area or overflow_area 3885 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3886 3887 // increase overflow_area by 4/8 if gpr/fpr > 8 3888 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3889 DAG.getConstant(VT.isInteger() ? 4 : 8, 3890 dl, MVT::i32)); 3891 3892 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3893 OverflowAreaPlusN); 3894 3895 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3896 MachinePointerInfo(), MVT::i32); 3897 3898 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3899 } 3900 3901 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3902 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3903 3904 // We have to copy the entire va_list struct: 3905 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3906 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3907 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3908 false, true, /*CI=*/nullptr, std::nullopt, 3909 MachinePointerInfo(), MachinePointerInfo()); 3910 } 3911 3912 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3913 SelectionDAG &DAG) const { 3914 if (Subtarget.isAIXABI()) 3915 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3916 3917 return Op.getOperand(0); 3918 } 3919 3920 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3921 MachineFunction &MF = DAG.getMachineFunction(); 3922 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3923 3924 assert((Op.getOpcode() == ISD::INLINEASM || 3925 Op.getOpcode() == ISD::INLINEASM_BR) && 3926 "Expecting Inline ASM node."); 3927 3928 // If an LR store is already known to be required then there is not point in 3929 // checking this ASM as well. 3930 if (MFI.isLRStoreRequired()) 3931 return Op; 3932 3933 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3934 // type MVT::Glue. We want to ignore this last operand if that is the case. 3935 unsigned NumOps = Op.getNumOperands(); 3936 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3937 --NumOps; 3938 3939 // Check all operands that may contain the LR. 3940 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3941 const InlineAsm::Flag Flags(Op.getConstantOperandVal(i)); 3942 unsigned NumVals = Flags.getNumOperandRegisters(); 3943 ++i; // Skip the ID value. 3944 3945 switch (Flags.getKind()) { 3946 default: 3947 llvm_unreachable("Bad flags!"); 3948 case InlineAsm::Kind::RegUse: 3949 case InlineAsm::Kind::Imm: 3950 case InlineAsm::Kind::Mem: 3951 i += NumVals; 3952 break; 3953 case InlineAsm::Kind::Clobber: 3954 case InlineAsm::Kind::RegDef: 3955 case InlineAsm::Kind::RegDefEarlyClobber: { 3956 for (; NumVals; --NumVals, ++i) { 3957 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3958 if (Reg != PPC::LR && Reg != PPC::LR8) 3959 continue; 3960 MFI.setLRStoreRequired(); 3961 return Op; 3962 } 3963 break; 3964 } 3965 } 3966 } 3967 3968 return Op; 3969 } 3970 3971 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3972 SelectionDAG &DAG) const { 3973 if (Subtarget.isAIXABI()) 3974 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3975 3976 SDValue Chain = Op.getOperand(0); 3977 SDValue Trmp = Op.getOperand(1); // trampoline 3978 SDValue FPtr = Op.getOperand(2); // nested function 3979 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3980 SDLoc dl(Op); 3981 3982 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3983 bool isPPC64 = (PtrVT == MVT::i64); 3984 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3985 3986 TargetLowering::ArgListTy Args; 3987 TargetLowering::ArgListEntry Entry; 3988 3989 Entry.Ty = IntPtrTy; 3990 Entry.Node = Trmp; Args.push_back(Entry); 3991 3992 // TrampSize == (isPPC64 ? 48 : 40); 3993 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3994 isPPC64 ? MVT::i64 : MVT::i32); 3995 Args.push_back(Entry); 3996 3997 Entry.Node = FPtr; Args.push_back(Entry); 3998 Entry.Node = Nest; Args.push_back(Entry); 3999 4000 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 4001 TargetLowering::CallLoweringInfo CLI(DAG); 4002 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 4003 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4004 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 4005 4006 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 4007 return CallResult.second; 4008 } 4009 4010 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4011 MachineFunction &MF = DAG.getMachineFunction(); 4012 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4013 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4014 4015 SDLoc dl(Op); 4016 4017 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 4018 // vastart just stores the address of the VarArgsFrameIndex slot into the 4019 // memory location argument. 4020 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4021 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4022 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 4023 MachinePointerInfo(SV)); 4024 } 4025 4026 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 4027 // We suppose the given va_list is already allocated. 4028 // 4029 // typedef struct { 4030 // char gpr; /* index into the array of 8 GPRs 4031 // * stored in the register save area 4032 // * gpr=0 corresponds to r3, 4033 // * gpr=1 to r4, etc. 4034 // */ 4035 // char fpr; /* index into the array of 8 FPRs 4036 // * stored in the register save area 4037 // * fpr=0 corresponds to f1, 4038 // * fpr=1 to f2, etc. 4039 // */ 4040 // char *overflow_arg_area; 4041 // /* location on stack that holds 4042 // * the next overflow argument 4043 // */ 4044 // char *reg_save_area; 4045 // /* where r3:r10 and f1:f8 (if saved) 4046 // * are stored 4047 // */ 4048 // } va_list[1]; 4049 4050 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 4051 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 4052 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 4053 PtrVT); 4054 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4055 PtrVT); 4056 4057 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 4058 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 4059 4060 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 4061 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 4062 4063 uint64_t FPROffset = 1; 4064 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 4065 4066 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4067 4068 // Store first byte : number of int regs 4069 SDValue firstStore = 4070 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 4071 MachinePointerInfo(SV), MVT::i8); 4072 uint64_t nextOffset = FPROffset; 4073 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 4074 ConstFPROffset); 4075 4076 // Store second byte : number of float regs 4077 SDValue secondStore = 4078 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 4079 MachinePointerInfo(SV, nextOffset), MVT::i8); 4080 nextOffset += StackOffset; 4081 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 4082 4083 // Store second word : arguments given on stack 4084 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 4085 MachinePointerInfo(SV, nextOffset)); 4086 nextOffset += FrameOffset; 4087 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 4088 4089 // Store third word : arguments given in registers 4090 return DAG.getStore(thirdStore, dl, FR, nextPtr, 4091 MachinePointerInfo(SV, nextOffset)); 4092 } 4093 4094 /// FPR - The set of FP registers that should be allocated for arguments 4095 /// on Darwin and AIX. 4096 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 4097 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 4098 PPC::F11, PPC::F12, PPC::F13}; 4099 4100 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 4101 /// the stack. 4102 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 4103 unsigned PtrByteSize) { 4104 unsigned ArgSize = ArgVT.getStoreSize(); 4105 if (Flags.isByVal()) 4106 ArgSize = Flags.getByValSize(); 4107 4108 // Round up to multiples of the pointer size, except for array members, 4109 // which are always packed. 4110 if (!Flags.isInConsecutiveRegs()) 4111 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4112 4113 return ArgSize; 4114 } 4115 4116 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 4117 /// on the stack. 4118 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 4119 ISD::ArgFlagsTy Flags, 4120 unsigned PtrByteSize) { 4121 Align Alignment(PtrByteSize); 4122 4123 // Altivec parameters are padded to a 16 byte boundary. 4124 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 4125 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 4126 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 4127 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 4128 Alignment = Align(16); 4129 4130 // ByVal parameters are aligned as requested. 4131 if (Flags.isByVal()) { 4132 auto BVAlign = Flags.getNonZeroByValAlign(); 4133 if (BVAlign > PtrByteSize) { 4134 if (BVAlign.value() % PtrByteSize != 0) 4135 llvm_unreachable( 4136 "ByVal alignment is not a multiple of the pointer size"); 4137 4138 Alignment = BVAlign; 4139 } 4140 } 4141 4142 // Array members are always packed to their original alignment. 4143 if (Flags.isInConsecutiveRegs()) { 4144 // If the array member was split into multiple registers, the first 4145 // needs to be aligned to the size of the full type. (Except for 4146 // ppcf128, which is only aligned as its f64 components.) 4147 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 4148 Alignment = Align(OrigVT.getStoreSize()); 4149 else 4150 Alignment = Align(ArgVT.getStoreSize()); 4151 } 4152 4153 return Alignment; 4154 } 4155 4156 /// CalculateStackSlotUsed - Return whether this argument will use its 4157 /// stack slot (instead of being passed in registers). ArgOffset, 4158 /// AvailableFPRs, and AvailableVRs must hold the current argument 4159 /// position, and will be updated to account for this argument. 4160 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 4161 unsigned PtrByteSize, unsigned LinkageSize, 4162 unsigned ParamAreaSize, unsigned &ArgOffset, 4163 unsigned &AvailableFPRs, 4164 unsigned &AvailableVRs) { 4165 bool UseMemory = false; 4166 4167 // Respect alignment of argument on the stack. 4168 Align Alignment = 4169 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4170 ArgOffset = alignTo(ArgOffset, Alignment); 4171 // If there's no space left in the argument save area, we must 4172 // use memory (this check also catches zero-sized arguments). 4173 if (ArgOffset >= LinkageSize + ParamAreaSize) 4174 UseMemory = true; 4175 4176 // Allocate argument on the stack. 4177 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4178 if (Flags.isInConsecutiveRegsLast()) 4179 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4180 // If we overran the argument save area, we must use memory 4181 // (this check catches arguments passed partially in memory) 4182 if (ArgOffset > LinkageSize + ParamAreaSize) 4183 UseMemory = true; 4184 4185 // However, if the argument is actually passed in an FPR or a VR, 4186 // we don't use memory after all. 4187 if (!Flags.isByVal()) { 4188 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 4189 if (AvailableFPRs > 0) { 4190 --AvailableFPRs; 4191 return false; 4192 } 4193 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 4194 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 4195 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 4196 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 4197 if (AvailableVRs > 0) { 4198 --AvailableVRs; 4199 return false; 4200 } 4201 } 4202 4203 return UseMemory; 4204 } 4205 4206 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 4207 /// ensure minimum alignment required for target. 4208 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 4209 unsigned NumBytes) { 4210 return alignTo(NumBytes, Lowering->getStackAlign()); 4211 } 4212 4213 SDValue PPCTargetLowering::LowerFormalArguments( 4214 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4215 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4216 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4217 if (Subtarget.isAIXABI()) 4218 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 4219 InVals); 4220 if (Subtarget.is64BitELFABI()) 4221 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 4222 InVals); 4223 assert(Subtarget.is32BitELFABI()); 4224 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 4225 InVals); 4226 } 4227 4228 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 4229 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4230 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4231 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4232 4233 // 32-bit SVR4 ABI Stack Frame Layout: 4234 // +-----------------------------------+ 4235 // +--> | Back chain | 4236 // | +-----------------------------------+ 4237 // | | Floating-point register save area | 4238 // | +-----------------------------------+ 4239 // | | General register save area | 4240 // | +-----------------------------------+ 4241 // | | CR save word | 4242 // | +-----------------------------------+ 4243 // | | VRSAVE save word | 4244 // | +-----------------------------------+ 4245 // | | Alignment padding | 4246 // | +-----------------------------------+ 4247 // | | Vector register save area | 4248 // | +-----------------------------------+ 4249 // | | Local variable space | 4250 // | +-----------------------------------+ 4251 // | | Parameter list area | 4252 // | +-----------------------------------+ 4253 // | | LR save word | 4254 // | +-----------------------------------+ 4255 // SP--> +--- | Back chain | 4256 // +-----------------------------------+ 4257 // 4258 // Specifications: 4259 // System V Application Binary Interface PowerPC Processor Supplement 4260 // AltiVec Technology Programming Interface Manual 4261 4262 MachineFunction &MF = DAG.getMachineFunction(); 4263 MachineFrameInfo &MFI = MF.getFrameInfo(); 4264 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4265 4266 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4267 // Potential tail calls could cause overwriting of argument stack slots. 4268 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4269 (CallConv == CallingConv::Fast)); 4270 const Align PtrAlign(4); 4271 4272 // Assign locations to all of the incoming arguments. 4273 SmallVector<CCValAssign, 16> ArgLocs; 4274 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4275 *DAG.getContext()); 4276 4277 // Reserve space for the linkage area on the stack. 4278 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4279 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4280 if (useSoftFloat()) 4281 CCInfo.PreAnalyzeFormalArguments(Ins); 4282 4283 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4284 CCInfo.clearWasPPCF128(); 4285 4286 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4287 CCValAssign &VA = ArgLocs[i]; 4288 4289 // Arguments stored in registers. 4290 if (VA.isRegLoc()) { 4291 const TargetRegisterClass *RC; 4292 EVT ValVT = VA.getValVT(); 4293 4294 switch (ValVT.getSimpleVT().SimpleTy) { 4295 default: 4296 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4297 case MVT::i1: 4298 case MVT::i32: 4299 RC = &PPC::GPRCRegClass; 4300 break; 4301 case MVT::f32: 4302 if (Subtarget.hasP8Vector()) 4303 RC = &PPC::VSSRCRegClass; 4304 else if (Subtarget.hasSPE()) 4305 RC = &PPC::GPRCRegClass; 4306 else 4307 RC = &PPC::F4RCRegClass; 4308 break; 4309 case MVT::f64: 4310 if (Subtarget.hasVSX()) 4311 RC = &PPC::VSFRCRegClass; 4312 else if (Subtarget.hasSPE()) 4313 // SPE passes doubles in GPR pairs. 4314 RC = &PPC::GPRCRegClass; 4315 else 4316 RC = &PPC::F8RCRegClass; 4317 break; 4318 case MVT::v16i8: 4319 case MVT::v8i16: 4320 case MVT::v4i32: 4321 RC = &PPC::VRRCRegClass; 4322 break; 4323 case MVT::v4f32: 4324 RC = &PPC::VRRCRegClass; 4325 break; 4326 case MVT::v2f64: 4327 case MVT::v2i64: 4328 RC = &PPC::VRRCRegClass; 4329 break; 4330 } 4331 4332 SDValue ArgValue; 4333 // Transform the arguments stored in physical registers into 4334 // virtual ones. 4335 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4336 assert(i + 1 < e && "No second half of double precision argument"); 4337 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4338 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4339 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4340 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4341 if (!Subtarget.isLittleEndian()) 4342 std::swap (ArgValueLo, ArgValueHi); 4343 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4344 ArgValueHi); 4345 } else { 4346 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4347 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4348 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4349 if (ValVT == MVT::i1) 4350 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4351 } 4352 4353 InVals.push_back(ArgValue); 4354 } else { 4355 // Argument stored in memory. 4356 assert(VA.isMemLoc()); 4357 4358 // Get the extended size of the argument type in stack 4359 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4360 // Get the actual size of the argument type 4361 unsigned ObjSize = VA.getValVT().getStoreSize(); 4362 unsigned ArgOffset = VA.getLocMemOffset(); 4363 // Stack objects in PPC32 are right justified. 4364 ArgOffset += ArgSize - ObjSize; 4365 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4366 4367 // Create load nodes to retrieve arguments from the stack. 4368 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4369 InVals.push_back( 4370 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4371 } 4372 } 4373 4374 // Assign locations to all of the incoming aggregate by value arguments. 4375 // Aggregates passed by value are stored in the local variable space of the 4376 // caller's stack frame, right above the parameter list area. 4377 SmallVector<CCValAssign, 16> ByValArgLocs; 4378 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4379 ByValArgLocs, *DAG.getContext()); 4380 4381 // Reserve stack space for the allocations in CCInfo. 4382 CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign); 4383 4384 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4385 4386 // Area that is at least reserved in the caller of this function. 4387 unsigned MinReservedArea = CCByValInfo.getStackSize(); 4388 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4389 4390 // Set the size that is at least reserved in caller of this function. Tail 4391 // call optimized function's reserved stack space needs to be aligned so that 4392 // taking the difference between two stack areas will result in an aligned 4393 // stack. 4394 MinReservedArea = 4395 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4396 FuncInfo->setMinReservedArea(MinReservedArea); 4397 4398 SmallVector<SDValue, 8> MemOps; 4399 4400 // If the function takes variable number of arguments, make a frame index for 4401 // the start of the first vararg value... for expansion of llvm.va_start. 4402 if (isVarArg) { 4403 static const MCPhysReg GPArgRegs[] = { 4404 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4405 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4406 }; 4407 const unsigned NumGPArgRegs = std::size(GPArgRegs); 4408 4409 static const MCPhysReg FPArgRegs[] = { 4410 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4411 PPC::F8 4412 }; 4413 unsigned NumFPArgRegs = std::size(FPArgRegs); 4414 4415 if (useSoftFloat() || hasSPE()) 4416 NumFPArgRegs = 0; 4417 4418 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4419 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4420 4421 // Make room for NumGPArgRegs and NumFPArgRegs. 4422 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4423 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4424 4425 FuncInfo->setVarArgsStackOffset(MFI.CreateFixedObject( 4426 PtrVT.getSizeInBits() / 8, CCInfo.getStackSize(), true)); 4427 4428 FuncInfo->setVarArgsFrameIndex( 4429 MFI.CreateStackObject(Depth, Align(8), false)); 4430 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4431 4432 // The fixed integer arguments of a variadic function are stored to the 4433 // VarArgsFrameIndex on the stack so that they may be loaded by 4434 // dereferencing the result of va_next. 4435 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4436 // Get an existing live-in vreg, or add a new one. 4437 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4438 if (!VReg) 4439 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4440 4441 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4442 SDValue Store = 4443 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4444 MemOps.push_back(Store); 4445 // Increment the address by four for the next argument to store 4446 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4447 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4448 } 4449 4450 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4451 // is set. 4452 // The double arguments are stored to the VarArgsFrameIndex 4453 // on the stack. 4454 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4455 // Get an existing live-in vreg, or add a new one. 4456 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4457 if (!VReg) 4458 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4459 4460 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4461 SDValue Store = 4462 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4463 MemOps.push_back(Store); 4464 // Increment the address by eight for the next argument to store 4465 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4466 PtrVT); 4467 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4468 } 4469 } 4470 4471 if (!MemOps.empty()) 4472 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4473 4474 return Chain; 4475 } 4476 4477 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4478 // value to MVT::i64 and then truncate to the correct register size. 4479 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4480 EVT ObjectVT, SelectionDAG &DAG, 4481 SDValue ArgVal, 4482 const SDLoc &dl) const { 4483 if (Flags.isSExt()) 4484 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4485 DAG.getValueType(ObjectVT)); 4486 else if (Flags.isZExt()) 4487 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4488 DAG.getValueType(ObjectVT)); 4489 4490 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4491 } 4492 4493 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4494 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4495 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4496 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4497 // TODO: add description of PPC stack frame format, or at least some docs. 4498 // 4499 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4500 bool isLittleEndian = Subtarget.isLittleEndian(); 4501 MachineFunction &MF = DAG.getMachineFunction(); 4502 MachineFrameInfo &MFI = MF.getFrameInfo(); 4503 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4504 4505 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4506 "fastcc not supported on varargs functions"); 4507 4508 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4509 // Potential tail calls could cause overwriting of argument stack slots. 4510 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4511 (CallConv == CallingConv::Fast)); 4512 unsigned PtrByteSize = 8; 4513 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4514 4515 static const MCPhysReg GPR[] = { 4516 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4517 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4518 }; 4519 static const MCPhysReg VR[] = { 4520 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4521 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4522 }; 4523 4524 const unsigned Num_GPR_Regs = std::size(GPR); 4525 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4526 const unsigned Num_VR_Regs = std::size(VR); 4527 4528 // Do a first pass over the arguments to determine whether the ABI 4529 // guarantees that our caller has allocated the parameter save area 4530 // on its stack frame. In the ELFv1 ABI, this is always the case; 4531 // in the ELFv2 ABI, it is true if this is a vararg function or if 4532 // any parameter is located in a stack slot. 4533 4534 bool HasParameterArea = !isELFv2ABI || isVarArg; 4535 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4536 unsigned NumBytes = LinkageSize; 4537 unsigned AvailableFPRs = Num_FPR_Regs; 4538 unsigned AvailableVRs = Num_VR_Regs; 4539 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4540 if (Ins[i].Flags.isNest()) 4541 continue; 4542 4543 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4544 PtrByteSize, LinkageSize, ParamAreaSize, 4545 NumBytes, AvailableFPRs, AvailableVRs)) 4546 HasParameterArea = true; 4547 } 4548 4549 // Add DAG nodes to load the arguments or copy them out of registers. On 4550 // entry to a function on PPC, the arguments start after the linkage area, 4551 // although the first ones are often in registers. 4552 4553 unsigned ArgOffset = LinkageSize; 4554 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4555 SmallVector<SDValue, 8> MemOps; 4556 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4557 unsigned CurArgIdx = 0; 4558 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4559 SDValue ArgVal; 4560 bool needsLoad = false; 4561 EVT ObjectVT = Ins[ArgNo].VT; 4562 EVT OrigVT = Ins[ArgNo].ArgVT; 4563 unsigned ObjSize = ObjectVT.getStoreSize(); 4564 unsigned ArgSize = ObjSize; 4565 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4566 if (Ins[ArgNo].isOrigArg()) { 4567 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4568 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4569 } 4570 // We re-align the argument offset for each argument, except when using the 4571 // fast calling convention, when we need to make sure we do that only when 4572 // we'll actually use a stack slot. 4573 unsigned CurArgOffset; 4574 Align Alignment; 4575 auto ComputeArgOffset = [&]() { 4576 /* Respect alignment of argument on the stack. */ 4577 Alignment = 4578 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4579 ArgOffset = alignTo(ArgOffset, Alignment); 4580 CurArgOffset = ArgOffset; 4581 }; 4582 4583 if (CallConv != CallingConv::Fast) { 4584 ComputeArgOffset(); 4585 4586 /* Compute GPR index associated with argument offset. */ 4587 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4588 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4589 } 4590 4591 // FIXME the codegen can be much improved in some cases. 4592 // We do not have to keep everything in memory. 4593 if (Flags.isByVal()) { 4594 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4595 4596 if (CallConv == CallingConv::Fast) 4597 ComputeArgOffset(); 4598 4599 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4600 ObjSize = Flags.getByValSize(); 4601 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4602 // Empty aggregate parameters do not take up registers. Examples: 4603 // struct { } a; 4604 // union { } b; 4605 // int c[0]; 4606 // etc. However, we have to provide a place-holder in InVals, so 4607 // pretend we have an 8-byte item at the current address for that 4608 // purpose. 4609 if (!ObjSize) { 4610 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4611 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4612 InVals.push_back(FIN); 4613 continue; 4614 } 4615 4616 // Create a stack object covering all stack doublewords occupied 4617 // by the argument. If the argument is (fully or partially) on 4618 // the stack, or if the argument is fully in registers but the 4619 // caller has allocated the parameter save anyway, we can refer 4620 // directly to the caller's stack frame. Otherwise, create a 4621 // local copy in our own frame. 4622 int FI; 4623 if (HasParameterArea || 4624 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4625 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4626 else 4627 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4628 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4629 4630 // Handle aggregates smaller than 8 bytes. 4631 if (ObjSize < PtrByteSize) { 4632 // The value of the object is its address, which differs from the 4633 // address of the enclosing doubleword on big-endian systems. 4634 SDValue Arg = FIN; 4635 if (!isLittleEndian) { 4636 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4637 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4638 } 4639 InVals.push_back(Arg); 4640 4641 if (GPR_idx != Num_GPR_Regs) { 4642 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4643 FuncInfo->addLiveInAttr(VReg, Flags); 4644 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4645 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4646 SDValue Store = 4647 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4648 MachinePointerInfo(&*FuncArg), ObjType); 4649 MemOps.push_back(Store); 4650 } 4651 // Whether we copied from a register or not, advance the offset 4652 // into the parameter save area by a full doubleword. 4653 ArgOffset += PtrByteSize; 4654 continue; 4655 } 4656 4657 // The value of the object is its address, which is the address of 4658 // its first stack doubleword. 4659 InVals.push_back(FIN); 4660 4661 // Store whatever pieces of the object are in registers to memory. 4662 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4663 if (GPR_idx == Num_GPR_Regs) 4664 break; 4665 4666 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4667 FuncInfo->addLiveInAttr(VReg, Flags); 4668 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4669 SDValue Addr = FIN; 4670 if (j) { 4671 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4672 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4673 } 4674 unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; 4675 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); 4676 SDValue Store = 4677 DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, 4678 MachinePointerInfo(&*FuncArg, j), ObjType); 4679 MemOps.push_back(Store); 4680 ++GPR_idx; 4681 } 4682 ArgOffset += ArgSize; 4683 continue; 4684 } 4685 4686 switch (ObjectVT.getSimpleVT().SimpleTy) { 4687 default: llvm_unreachable("Unhandled argument type!"); 4688 case MVT::i1: 4689 case MVT::i32: 4690 case MVT::i64: 4691 if (Flags.isNest()) { 4692 // The 'nest' parameter, if any, is passed in R11. 4693 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4694 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4695 4696 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4697 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4698 4699 break; 4700 } 4701 4702 // These can be scalar arguments or elements of an integer array type 4703 // passed directly. Clang may use those instead of "byval" aggregate 4704 // types to avoid forcing arguments to memory unnecessarily. 4705 if (GPR_idx != Num_GPR_Regs) { 4706 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4707 FuncInfo->addLiveInAttr(VReg, Flags); 4708 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4709 4710 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4711 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4712 // value to MVT::i64 and then truncate to the correct register size. 4713 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4714 } else { 4715 if (CallConv == CallingConv::Fast) 4716 ComputeArgOffset(); 4717 4718 needsLoad = true; 4719 ArgSize = PtrByteSize; 4720 } 4721 if (CallConv != CallingConv::Fast || needsLoad) 4722 ArgOffset += 8; 4723 break; 4724 4725 case MVT::f32: 4726 case MVT::f64: 4727 // These can be scalar arguments or elements of a float array type 4728 // passed directly. The latter are used to implement ELFv2 homogenous 4729 // float aggregates. 4730 if (FPR_idx != Num_FPR_Regs) { 4731 unsigned VReg; 4732 4733 if (ObjectVT == MVT::f32) 4734 VReg = MF.addLiveIn(FPR[FPR_idx], 4735 Subtarget.hasP8Vector() 4736 ? &PPC::VSSRCRegClass 4737 : &PPC::F4RCRegClass); 4738 else 4739 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4740 ? &PPC::VSFRCRegClass 4741 : &PPC::F8RCRegClass); 4742 4743 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4744 ++FPR_idx; 4745 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4746 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4747 // once we support fp <-> gpr moves. 4748 4749 // This can only ever happen in the presence of f32 array types, 4750 // since otherwise we never run out of FPRs before running out 4751 // of GPRs. 4752 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4753 FuncInfo->addLiveInAttr(VReg, Flags); 4754 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4755 4756 if (ObjectVT == MVT::f32) { 4757 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4758 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4759 DAG.getConstant(32, dl, MVT::i32)); 4760 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4761 } 4762 4763 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4764 } else { 4765 if (CallConv == CallingConv::Fast) 4766 ComputeArgOffset(); 4767 4768 needsLoad = true; 4769 } 4770 4771 // When passing an array of floats, the array occupies consecutive 4772 // space in the argument area; only round up to the next doubleword 4773 // at the end of the array. Otherwise, each float takes 8 bytes. 4774 if (CallConv != CallingConv::Fast || needsLoad) { 4775 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4776 ArgOffset += ArgSize; 4777 if (Flags.isInConsecutiveRegsLast()) 4778 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4779 } 4780 break; 4781 case MVT::v4f32: 4782 case MVT::v4i32: 4783 case MVT::v8i16: 4784 case MVT::v16i8: 4785 case MVT::v2f64: 4786 case MVT::v2i64: 4787 case MVT::v1i128: 4788 case MVT::f128: 4789 // These can be scalar arguments or elements of a vector array type 4790 // passed directly. The latter are used to implement ELFv2 homogenous 4791 // vector aggregates. 4792 if (VR_idx != Num_VR_Regs) { 4793 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4794 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4795 ++VR_idx; 4796 } else { 4797 if (CallConv == CallingConv::Fast) 4798 ComputeArgOffset(); 4799 needsLoad = true; 4800 } 4801 if (CallConv != CallingConv::Fast || needsLoad) 4802 ArgOffset += 16; 4803 break; 4804 } 4805 4806 // We need to load the argument to a virtual register if we determined 4807 // above that we ran out of physical registers of the appropriate type. 4808 if (needsLoad) { 4809 if (ObjSize < ArgSize && !isLittleEndian) 4810 CurArgOffset += ArgSize - ObjSize; 4811 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4812 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4813 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4814 } 4815 4816 InVals.push_back(ArgVal); 4817 } 4818 4819 // Area that is at least reserved in the caller of this function. 4820 unsigned MinReservedArea; 4821 if (HasParameterArea) 4822 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4823 else 4824 MinReservedArea = LinkageSize; 4825 4826 // Set the size that is at least reserved in caller of this function. Tail 4827 // call optimized functions' reserved stack space needs to be aligned so that 4828 // taking the difference between two stack areas will result in an aligned 4829 // stack. 4830 MinReservedArea = 4831 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4832 FuncInfo->setMinReservedArea(MinReservedArea); 4833 4834 // If the function takes variable number of arguments, make a frame index for 4835 // the start of the first vararg value... for expansion of llvm.va_start. 4836 // On ELFv2ABI spec, it writes: 4837 // C programs that are intended to be *portable* across different compilers 4838 // and architectures must use the header file <stdarg.h> to deal with variable 4839 // argument lists. 4840 if (isVarArg && MFI.hasVAStart()) { 4841 int Depth = ArgOffset; 4842 4843 FuncInfo->setVarArgsFrameIndex( 4844 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4845 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4846 4847 // If this function is vararg, store any remaining integer argument regs 4848 // to their spots on the stack so that they may be loaded by dereferencing 4849 // the result of va_next. 4850 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4851 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4852 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4853 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4854 SDValue Store = 4855 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4856 MemOps.push_back(Store); 4857 // Increment the address by four for the next argument to store 4858 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4859 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4860 } 4861 } 4862 4863 if (!MemOps.empty()) 4864 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4865 4866 return Chain; 4867 } 4868 4869 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4870 /// adjusted to accommodate the arguments for the tailcall. 4871 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4872 unsigned ParamSize) { 4873 4874 if (!isTailCall) return 0; 4875 4876 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4877 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4878 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4879 // Remember only if the new adjustment is bigger. 4880 if (SPDiff < FI->getTailCallSPDelta()) 4881 FI->setTailCallSPDelta(SPDiff); 4882 4883 return SPDiff; 4884 } 4885 4886 static bool isFunctionGlobalAddress(const GlobalValue *CalleeGV); 4887 4888 static bool callsShareTOCBase(const Function *Caller, 4889 const GlobalValue *CalleeGV, 4890 const TargetMachine &TM) { 4891 // It does not make sense to call callsShareTOCBase() with a caller that 4892 // is PC Relative since PC Relative callers do not have a TOC. 4893 #ifndef NDEBUG 4894 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4895 assert(!STICaller->isUsingPCRelativeCalls() && 4896 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4897 #endif 4898 4899 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4900 // don't have enough information to determine if the caller and callee share 4901 // the same TOC base, so we have to pessimistically assume they don't for 4902 // correctness. 4903 if (!CalleeGV) 4904 return false; 4905 4906 // If the callee is preemptable, then the static linker will use a plt-stub 4907 // which saves the toc to the stack, and needs a nop after the call 4908 // instruction to convert to a toc-restore. 4909 if (!TM.shouldAssumeDSOLocal(CalleeGV)) 4910 return false; 4911 4912 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4913 // We may need a TOC restore in the situation where the caller requires a 4914 // valid TOC but the callee is PC Relative and does not. 4915 const Function *F = dyn_cast<Function>(CalleeGV); 4916 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(CalleeGV); 4917 4918 // If we have an Alias we can try to get the function from there. 4919 if (Alias) { 4920 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4921 F = dyn_cast<Function>(GlobalObj); 4922 } 4923 4924 // If we still have no valid function pointer we do not have enough 4925 // information to determine if the callee uses PC Relative calls so we must 4926 // assume that it does. 4927 if (!F) 4928 return false; 4929 4930 // If the callee uses PC Relative we cannot guarantee that the callee won't 4931 // clobber the TOC of the caller and so we must assume that the two 4932 // functions do not share a TOC base. 4933 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4934 if (STICallee->isUsingPCRelativeCalls()) 4935 return false; 4936 4937 // If the GV is not a strong definition then we need to assume it can be 4938 // replaced by another function at link time. The function that replaces 4939 // it may not share the same TOC as the caller since the callee may be 4940 // replaced by a PC Relative version of the same function. 4941 if (!CalleeGV->isStrongDefinitionForLinker()) 4942 return false; 4943 4944 // The medium and large code models are expected to provide a sufficiently 4945 // large TOC to provide all data addressing needs of a module with a 4946 // single TOC. 4947 if (CodeModel::Medium == TM.getCodeModel() || 4948 CodeModel::Large == TM.getCodeModel()) 4949 return true; 4950 4951 // Any explicitly-specified sections and section prefixes must also match. 4952 // Also, if we're using -ffunction-sections, then each function is always in 4953 // a different section (the same is true for COMDAT functions). 4954 if (TM.getFunctionSections() || CalleeGV->hasComdat() || 4955 Caller->hasComdat() || CalleeGV->getSection() != Caller->getSection()) 4956 return false; 4957 if (const auto *F = dyn_cast<Function>(CalleeGV)) { 4958 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4959 return false; 4960 } 4961 4962 return true; 4963 } 4964 4965 static bool 4966 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4967 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4968 assert(Subtarget.is64BitELFABI()); 4969 4970 const unsigned PtrByteSize = 8; 4971 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4972 4973 static const MCPhysReg GPR[] = { 4974 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4975 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4976 }; 4977 static const MCPhysReg VR[] = { 4978 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4979 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4980 }; 4981 4982 const unsigned NumGPRs = std::size(GPR); 4983 const unsigned NumFPRs = 13; 4984 const unsigned NumVRs = std::size(VR); 4985 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4986 4987 unsigned NumBytes = LinkageSize; 4988 unsigned AvailableFPRs = NumFPRs; 4989 unsigned AvailableVRs = NumVRs; 4990 4991 for (const ISD::OutputArg& Param : Outs) { 4992 if (Param.Flags.isNest()) continue; 4993 4994 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4995 LinkageSize, ParamAreaSize, NumBytes, 4996 AvailableFPRs, AvailableVRs)) 4997 return true; 4998 } 4999 return false; 5000 } 5001 5002 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 5003 if (CB.arg_size() != CallerFn->arg_size()) 5004 return false; 5005 5006 auto CalleeArgIter = CB.arg_begin(); 5007 auto CalleeArgEnd = CB.arg_end(); 5008 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 5009 5010 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 5011 const Value* CalleeArg = *CalleeArgIter; 5012 const Value* CallerArg = &(*CallerArgIter); 5013 if (CalleeArg == CallerArg) 5014 continue; 5015 5016 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 5017 // tail call @callee([4 x i64] undef, [4 x i64] %b) 5018 // } 5019 // 1st argument of callee is undef and has the same type as caller. 5020 if (CalleeArg->getType() == CallerArg->getType() && 5021 isa<UndefValue>(CalleeArg)) 5022 continue; 5023 5024 return false; 5025 } 5026 5027 return true; 5028 } 5029 5030 // Returns true if TCO is possible between the callers and callees 5031 // calling conventions. 5032 static bool 5033 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 5034 CallingConv::ID CalleeCC) { 5035 // Tail calls are possible with fastcc and ccc. 5036 auto isTailCallableCC = [] (CallingConv::ID CC){ 5037 return CC == CallingConv::C || CC == CallingConv::Fast; 5038 }; 5039 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 5040 return false; 5041 5042 // We can safely tail call both fastcc and ccc callees from a c calling 5043 // convention caller. If the caller is fastcc, we may have less stack space 5044 // than a non-fastcc caller with the same signature so disable tail-calls in 5045 // that case. 5046 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 5047 } 5048 5049 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 5050 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, 5051 CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, 5052 const SmallVectorImpl<ISD::OutputArg> &Outs, 5053 const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc, 5054 bool isCalleeExternalSymbol) const { 5055 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 5056 5057 if (DisableSCO && !TailCallOpt) return false; 5058 5059 // Variadic argument functions are not supported. 5060 if (isVarArg) return false; 5061 5062 // Check that the calling conventions are compatible for tco. 5063 if (!areCallingConvEligibleForTCO_64SVR4(CallerCC, CalleeCC)) 5064 return false; 5065 5066 // Caller contains any byval parameter is not supported. 5067 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 5068 return false; 5069 5070 // Callee contains any byval parameter is not supported, too. 5071 // Note: This is a quick work around, because in some cases, e.g. 5072 // caller's stack size > callee's stack size, we are still able to apply 5073 // sibling call optimization. For example, gcc is able to do SCO for caller1 5074 // in the following example, but not for caller2. 5075 // struct test { 5076 // long int a; 5077 // char ary[56]; 5078 // } gTest; 5079 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 5080 // b->a = v.a; 5081 // return 0; 5082 // } 5083 // void caller1(struct test a, struct test c, struct test *b) { 5084 // callee(gTest, b); } 5085 // void caller2(struct test *b) { callee(gTest, b); } 5086 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 5087 return false; 5088 5089 // If callee and caller use different calling conventions, we cannot pass 5090 // parameters on stack since offsets for the parameter area may be different. 5091 if (CallerCC != CalleeCC && needStackSlotPassParameters(Subtarget, Outs)) 5092 return false; 5093 5094 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 5095 // the caller and callee share the same TOC for TCO/SCO. If the caller and 5096 // callee potentially have different TOC bases then we cannot tail call since 5097 // we need to restore the TOC pointer after the call. 5098 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 5099 // We cannot guarantee this for indirect calls or calls to external functions. 5100 // When PC-Relative addressing is used, the concept of the TOC is no longer 5101 // applicable so this check is not required. 5102 // Check first for indirect calls. 5103 if (!Subtarget.isUsingPCRelativeCalls() && 5104 !isFunctionGlobalAddress(CalleeGV) && !isCalleeExternalSymbol) 5105 return false; 5106 5107 // Check if we share the TOC base. 5108 if (!Subtarget.isUsingPCRelativeCalls() && 5109 !callsShareTOCBase(CallerFunc, CalleeGV, getTargetMachine())) 5110 return false; 5111 5112 // TCO allows altering callee ABI, so we don't have to check further. 5113 if (CalleeCC == CallingConv::Fast && TailCallOpt) 5114 return true; 5115 5116 if (DisableSCO) return false; 5117 5118 // If callee use the same argument list that caller is using, then we can 5119 // apply SCO on this case. If it is not, then we need to check if callee needs 5120 // stack for passing arguments. 5121 // PC Relative tail calls may not have a CallBase. 5122 // If there is no CallBase we cannot verify if we have the same argument 5123 // list so assume that we don't have the same argument list. 5124 if (CB && !hasSameArgumentList(CallerFunc, *CB) && 5125 needStackSlotPassParameters(Subtarget, Outs)) 5126 return false; 5127 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 5128 return false; 5129 5130 return true; 5131 } 5132 5133 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 5134 /// for tail call optimization. Targets which want to do tail call 5135 /// optimization should implement this function. 5136 bool PPCTargetLowering::IsEligibleForTailCallOptimization( 5137 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, 5138 CallingConv::ID CallerCC, bool isVarArg, 5139 const SmallVectorImpl<ISD::InputArg> &Ins) const { 5140 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5141 return false; 5142 5143 // Variable argument functions are not supported. 5144 if (isVarArg) 5145 return false; 5146 5147 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 5148 // Functions containing by val parameters are not supported. 5149 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 5150 return false; 5151 5152 // Non-PIC/GOT tail calls are supported. 5153 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 5154 return true; 5155 5156 // At the moment we can only do local tail calls (in same module, hidden 5157 // or protected) if we are generating PIC. 5158 if (CalleeGV) 5159 return CalleeGV->hasHiddenVisibility() || 5160 CalleeGV->hasProtectedVisibility(); 5161 } 5162 5163 return false; 5164 } 5165 5166 /// isCallCompatibleAddress - Return the immediate to use if the specified 5167 /// 32-bit value is representable in the immediate field of a BxA instruction. 5168 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 5169 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 5170 if (!C) return nullptr; 5171 5172 int Addr = C->getZExtValue(); 5173 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5174 SignExtend32<26>(Addr) != Addr) 5175 return nullptr; // Top 6 bits have to be sext of immediate. 5176 5177 return DAG 5178 .getConstant( 5179 (int)C->getZExtValue() >> 2, SDLoc(Op), 5180 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5181 .getNode(); 5182 } 5183 5184 namespace { 5185 5186 struct TailCallArgumentInfo { 5187 SDValue Arg; 5188 SDValue FrameIdxOp; 5189 int FrameIdx = 0; 5190 5191 TailCallArgumentInfo() = default; 5192 }; 5193 5194 } // end anonymous namespace 5195 5196 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5197 static void StoreTailCallArgumentsToStackSlot( 5198 SelectionDAG &DAG, SDValue Chain, 5199 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5200 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5201 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5202 SDValue Arg = TailCallArgs[i].Arg; 5203 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5204 int FI = TailCallArgs[i].FrameIdx; 5205 // Store relative to framepointer. 5206 MemOpChains.push_back(DAG.getStore( 5207 Chain, dl, Arg, FIN, 5208 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5209 } 5210 } 5211 5212 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5213 /// the appropriate stack slot for the tail call optimized function call. 5214 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5215 SDValue OldRetAddr, SDValue OldFP, 5216 int SPDiff, const SDLoc &dl) { 5217 if (SPDiff) { 5218 // Calculate the new stack slot for the return address. 5219 MachineFunction &MF = DAG.getMachineFunction(); 5220 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5221 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5222 bool isPPC64 = Subtarget.isPPC64(); 5223 int SlotSize = isPPC64 ? 8 : 4; 5224 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5225 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5226 NewRetAddrLoc, true); 5227 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5228 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5229 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5230 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5231 } 5232 return Chain; 5233 } 5234 5235 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5236 /// the position of the argument. 5237 static void 5238 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5239 SDValue Arg, int SPDiff, unsigned ArgOffset, 5240 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5241 int Offset = ArgOffset + SPDiff; 5242 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5243 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5244 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5245 SDValue FIN = DAG.getFrameIndex(FI, VT); 5246 TailCallArgumentInfo Info; 5247 Info.Arg = Arg; 5248 Info.FrameIdxOp = FIN; 5249 Info.FrameIdx = FI; 5250 TailCallArguments.push_back(Info); 5251 } 5252 5253 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5254 /// stack slot. Returns the chain as result and the loaded frame pointers in 5255 /// LROpOut/FPOpout. Used when tail calling. 5256 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5257 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5258 SDValue &FPOpOut, const SDLoc &dl) const { 5259 if (SPDiff) { 5260 // Load the LR and FP stack slot for later adjusting. 5261 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5262 LROpOut = getReturnAddrFrameIndex(DAG); 5263 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5264 Chain = SDValue(LROpOut.getNode(), 1); 5265 } 5266 return Chain; 5267 } 5268 5269 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5270 /// by "Src" to address "Dst" of size "Size". Alignment information is 5271 /// specified by the specific parameter attribute. The copy will be passed as 5272 /// a byval function parameter. 5273 /// Sometimes what we are copying is the end of a larger object, the part that 5274 /// does not fit in registers. 5275 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5276 SDValue Chain, ISD::ArgFlagsTy Flags, 5277 SelectionDAG &DAG, const SDLoc &dl) { 5278 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5279 return DAG.getMemcpy( 5280 Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(), false, false, 5281 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo()); 5282 } 5283 5284 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5285 /// tail calls. 5286 static void LowerMemOpCallTo( 5287 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5288 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5289 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5290 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5291 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5292 if (!isTailCall) { 5293 if (isVector) { 5294 SDValue StackPtr; 5295 if (isPPC64) 5296 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5297 else 5298 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5299 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5300 DAG.getConstant(ArgOffset, dl, PtrVT)); 5301 } 5302 MemOpChains.push_back( 5303 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5304 // Calculate and remember argument location. 5305 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5306 TailCallArguments); 5307 } 5308 5309 static void 5310 PrepareTailCall(SelectionDAG &DAG, SDValue &InGlue, SDValue &Chain, 5311 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5312 SDValue FPOp, 5313 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5314 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5315 // might overwrite each other in case of tail call optimization. 5316 SmallVector<SDValue, 8> MemOpChains2; 5317 // Do not flag preceding copytoreg stuff together with the following stuff. 5318 InGlue = SDValue(); 5319 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5320 MemOpChains2, dl); 5321 if (!MemOpChains2.empty()) 5322 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5323 5324 // Store the return address to the appropriate stack slot. 5325 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5326 5327 // Emit callseq_end just before tailcall node. 5328 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl); 5329 InGlue = Chain.getValue(1); 5330 } 5331 5332 // Is this global address that of a function that can be called by name? (as 5333 // opposed to something that must hold a descriptor for an indirect call). 5334 static bool isFunctionGlobalAddress(const GlobalValue *GV) { 5335 if (GV) { 5336 if (GV->isThreadLocal()) 5337 return false; 5338 5339 return GV->getValueType()->isFunctionTy(); 5340 } 5341 5342 return false; 5343 } 5344 5345 SDValue PPCTargetLowering::LowerCallResult( 5346 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, 5347 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5348 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5349 SmallVector<CCValAssign, 16> RVLocs; 5350 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5351 *DAG.getContext()); 5352 5353 CCRetInfo.AnalyzeCallResult( 5354 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5355 ? RetCC_PPC_Cold 5356 : RetCC_PPC); 5357 5358 // Copy all of the result registers out of their specified physreg. 5359 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5360 CCValAssign &VA = RVLocs[i]; 5361 assert(VA.isRegLoc() && "Can only return in registers!"); 5362 5363 SDValue Val; 5364 5365 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5366 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5367 InGlue); 5368 Chain = Lo.getValue(1); 5369 InGlue = Lo.getValue(2); 5370 VA = RVLocs[++i]; // skip ahead to next loc 5371 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5372 InGlue); 5373 Chain = Hi.getValue(1); 5374 InGlue = Hi.getValue(2); 5375 if (!Subtarget.isLittleEndian()) 5376 std::swap (Lo, Hi); 5377 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5378 } else { 5379 Val = DAG.getCopyFromReg(Chain, dl, 5380 VA.getLocReg(), VA.getLocVT(), InGlue); 5381 Chain = Val.getValue(1); 5382 InGlue = Val.getValue(2); 5383 } 5384 5385 switch (VA.getLocInfo()) { 5386 default: llvm_unreachable("Unknown loc info!"); 5387 case CCValAssign::Full: break; 5388 case CCValAssign::AExt: 5389 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5390 break; 5391 case CCValAssign::ZExt: 5392 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5393 DAG.getValueType(VA.getValVT())); 5394 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5395 break; 5396 case CCValAssign::SExt: 5397 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5398 DAG.getValueType(VA.getValVT())); 5399 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5400 break; 5401 } 5402 5403 InVals.push_back(Val); 5404 } 5405 5406 return Chain; 5407 } 5408 5409 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5410 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5411 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5412 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5413 5414 // PatchPoint calls are not indirect. 5415 if (isPatchPoint) 5416 return false; 5417 5418 if (isFunctionGlobalAddress(GV) || isa<ExternalSymbolSDNode>(Callee)) 5419 return false; 5420 5421 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5422 // becuase the immediate function pointer points to a descriptor instead of 5423 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5424 // pointer immediate points to the global entry point, while the BLA would 5425 // need to jump to the local entry point (see rL211174). 5426 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5427 isBLACompatibleAddress(Callee, DAG)) 5428 return false; 5429 5430 return true; 5431 } 5432 5433 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5434 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5435 return Subtarget.isAIXABI() || 5436 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5437 } 5438 5439 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5440 const Function &Caller, const SDValue &Callee, 5441 const PPCSubtarget &Subtarget, 5442 const TargetMachine &TM, 5443 bool IsStrictFPCall = false) { 5444 if (CFlags.IsTailCall) 5445 return PPCISD::TC_RETURN; 5446 5447 unsigned RetOpc = 0; 5448 // This is a call through a function pointer. 5449 if (CFlags.IsIndirect) { 5450 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5451 // indirect calls. The save of the caller's TOC pointer to the stack will be 5452 // inserted into the DAG as part of call lowering. The restore of the TOC 5453 // pointer is modeled by using a pseudo instruction for the call opcode that 5454 // represents the 2 instruction sequence of an indirect branch and link, 5455 // immediately followed by a load of the TOC pointer from the stack save 5456 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5457 // as it is not saved or used. 5458 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5459 : PPCISD::BCTRL; 5460 } else if (Subtarget.isUsingPCRelativeCalls()) { 5461 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5462 RetOpc = PPCISD::CALL_NOTOC; 5463 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) { 5464 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5465 // immediately following the call instruction if the caller and callee may 5466 // have different TOC bases. At link time if the linker determines the calls 5467 // may not share a TOC base, the call is redirected to a trampoline inserted 5468 // by the linker. The trampoline will (among other things) save the callers 5469 // TOC pointer at an ABI designated offset in the linkage area and the 5470 // linker will rewrite the nop to be a load of the TOC pointer from the 5471 // linkage area into gpr2. 5472 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5473 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5474 RetOpc = 5475 callsShareTOCBase(&Caller, GV, TM) ? PPCISD::CALL : PPCISD::CALL_NOP; 5476 } else 5477 RetOpc = PPCISD::CALL; 5478 if (IsStrictFPCall) { 5479 switch (RetOpc) { 5480 default: 5481 llvm_unreachable("Unknown call opcode"); 5482 case PPCISD::BCTRL_LOAD_TOC: 5483 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5484 break; 5485 case PPCISD::BCTRL: 5486 RetOpc = PPCISD::BCTRL_RM; 5487 break; 5488 case PPCISD::CALL_NOTOC: 5489 RetOpc = PPCISD::CALL_NOTOC_RM; 5490 break; 5491 case PPCISD::CALL: 5492 RetOpc = PPCISD::CALL_RM; 5493 break; 5494 case PPCISD::CALL_NOP: 5495 RetOpc = PPCISD::CALL_NOP_RM; 5496 break; 5497 } 5498 } 5499 return RetOpc; 5500 } 5501 5502 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5503 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5504 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5505 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5506 return SDValue(Dest, 0); 5507 5508 // Returns true if the callee is local, and false otherwise. 5509 auto isLocalCallee = [&]() { 5510 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5511 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5512 5513 return DAG.getTarget().shouldAssumeDSOLocal(GV) && 5514 !isa_and_nonnull<GlobalIFunc>(GV); 5515 }; 5516 5517 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5518 // a static relocation model causes some versions of GNU LD (2.17.50, at 5519 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5520 // built with secure-PLT. 5521 bool UsePlt = 5522 Subtarget.is32BitELFABI() && !isLocalCallee() && 5523 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5524 5525 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5526 const TargetMachine &TM = Subtarget.getTargetMachine(); 5527 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5528 MCSymbolXCOFF *S = 5529 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5530 5531 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5532 return DAG.getMCSymbol(S, PtrVT); 5533 }; 5534 5535 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5536 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5537 if (isFunctionGlobalAddress(GV)) { 5538 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5539 5540 if (Subtarget.isAIXABI()) { 5541 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5542 return getAIXFuncEntryPointSymbolSDNode(GV); 5543 } 5544 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5545 UsePlt ? PPCII::MO_PLT : 0); 5546 } 5547 5548 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5549 const char *SymName = S->getSymbol(); 5550 if (Subtarget.isAIXABI()) { 5551 // If there exists a user-declared function whose name is the same as the 5552 // ExternalSymbol's, then we pick up the user-declared version. 5553 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5554 if (const Function *F = 5555 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5556 return getAIXFuncEntryPointSymbolSDNode(F); 5557 5558 // On AIX, direct function calls reference the symbol for the function's 5559 // entry point, which is named by prepending a "." before the function's 5560 // C-linkage name. A Qualname is returned here because an external 5561 // function entry point is a csect with XTY_ER property. 5562 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5563 auto &Context = DAG.getMachineFunction().getContext(); 5564 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5565 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5566 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5567 return Sec->getQualNameSymbol(); 5568 }; 5569 5570 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5571 } 5572 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5573 UsePlt ? PPCII::MO_PLT : 0); 5574 } 5575 5576 // No transformation needed. 5577 assert(Callee.getNode() && "What no callee?"); 5578 return Callee; 5579 } 5580 5581 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5582 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5583 "Expected a CALLSEQ_STARTSDNode."); 5584 5585 // The last operand is the chain, except when the node has glue. If the node 5586 // has glue, then the last operand is the glue, and the chain is the second 5587 // last operand. 5588 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5589 if (LastValue.getValueType() != MVT::Glue) 5590 return LastValue; 5591 5592 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5593 } 5594 5595 // Creates the node that moves a functions address into the count register 5596 // to prepare for an indirect call instruction. 5597 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5598 SDValue &Glue, SDValue &Chain, 5599 const SDLoc &dl) { 5600 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5601 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5602 Chain = DAG.getNode(PPCISD::MTCTR, dl, ReturnTypes, 5603 ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5604 // The glue is the second value produced. 5605 Glue = Chain.getValue(1); 5606 } 5607 5608 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5609 SDValue &Glue, SDValue &Chain, 5610 SDValue CallSeqStart, 5611 const CallBase *CB, const SDLoc &dl, 5612 bool hasNest, 5613 const PPCSubtarget &Subtarget) { 5614 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5615 // entry point, but to the function descriptor (the function entry point 5616 // address is part of the function descriptor though). 5617 // The function descriptor is a three doubleword structure with the 5618 // following fields: function entry point, TOC base address and 5619 // environment pointer. 5620 // Thus for a call through a function pointer, the following actions need 5621 // to be performed: 5622 // 1. Save the TOC of the caller in the TOC save area of its stack 5623 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5624 // 2. Load the address of the function entry point from the function 5625 // descriptor. 5626 // 3. Load the TOC of the callee from the function descriptor into r2. 5627 // 4. Load the environment pointer from the function descriptor into 5628 // r11. 5629 // 5. Branch to the function entry point address. 5630 // 6. On return of the callee, the TOC of the caller needs to be 5631 // restored (this is done in FinishCall()). 5632 // 5633 // The loads are scheduled at the beginning of the call sequence, and the 5634 // register copies are flagged together to ensure that no other 5635 // operations can be scheduled in between. E.g. without flagging the 5636 // copies together, a TOC access in the caller could be scheduled between 5637 // the assignment of the callee TOC and the branch to the callee, which leads 5638 // to incorrect code. 5639 5640 // Start by loading the function address from the descriptor. 5641 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5642 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5643 ? (MachineMemOperand::MODereferenceable | 5644 MachineMemOperand::MOInvariant) 5645 : MachineMemOperand::MONone; 5646 5647 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5648 5649 // Registers used in building the DAG. 5650 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5651 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5652 5653 // Offsets of descriptor members. 5654 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5655 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5656 5657 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5658 const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 5659 5660 // One load for the functions entry point address. 5661 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5662 Alignment, MMOFlags); 5663 5664 // One for loading the TOC anchor for the module that contains the called 5665 // function. 5666 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5667 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5668 SDValue TOCPtr = 5669 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5670 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5671 5672 // One for loading the environment pointer. 5673 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5674 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5675 SDValue LoadEnvPtr = 5676 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5677 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5678 5679 5680 // Then copy the newly loaded TOC anchor to the TOC pointer. 5681 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5682 Chain = TOCVal.getValue(0); 5683 Glue = TOCVal.getValue(1); 5684 5685 // If the function call has an explicit 'nest' parameter, it takes the 5686 // place of the environment pointer. 5687 assert((!hasNest || !Subtarget.isAIXABI()) && 5688 "Nest parameter is not supported on AIX."); 5689 if (!hasNest) { 5690 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5691 Chain = EnvVal.getValue(0); 5692 Glue = EnvVal.getValue(1); 5693 } 5694 5695 // The rest of the indirect call sequence is the same as the non-descriptor 5696 // DAG. 5697 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5698 } 5699 5700 static void 5701 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5702 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5703 SelectionDAG &DAG, 5704 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5705 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5706 const PPCSubtarget &Subtarget) { 5707 const bool IsPPC64 = Subtarget.isPPC64(); 5708 // MVT for a general purpose register. 5709 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5710 5711 // First operand is always the chain. 5712 Ops.push_back(Chain); 5713 5714 // If it's a direct call pass the callee as the second operand. 5715 if (!CFlags.IsIndirect) 5716 Ops.push_back(Callee); 5717 else { 5718 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5719 5720 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5721 // on the stack (this would have been done in `LowerCall_64SVR4` or 5722 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5723 // represents both the indirect branch and a load that restores the TOC 5724 // pointer from the linkage area. The operand for the TOC restore is an add 5725 // of the TOC save offset to the stack pointer. This must be the second 5726 // operand: after the chain input but before any other variadic arguments. 5727 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5728 // saved or used. 5729 if (isTOCSaveRestoreRequired(Subtarget)) { 5730 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5731 5732 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5733 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5734 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5735 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5736 Ops.push_back(AddTOC); 5737 } 5738 5739 // Add the register used for the environment pointer. 5740 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5741 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5742 RegVT)); 5743 5744 5745 // Add CTR register as callee so a bctr can be emitted later. 5746 if (CFlags.IsTailCall) 5747 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5748 } 5749 5750 // If this is a tail call add stack pointer delta. 5751 if (CFlags.IsTailCall) 5752 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5753 5754 // Add argument registers to the end of the list so that they are known live 5755 // into the call. 5756 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5757 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5758 RegsToPass[i].second.getValueType())); 5759 5760 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5761 // no way to mark dependencies as implicit here. 5762 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5763 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5764 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5765 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5766 5767 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5768 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5769 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5770 5771 // Add a register mask operand representing the call-preserved registers. 5772 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5773 const uint32_t *Mask = 5774 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5775 assert(Mask && "Missing call preserved mask for calling convention"); 5776 Ops.push_back(DAG.getRegisterMask(Mask)); 5777 5778 // If the glue is valid, it is the last operand. 5779 if (Glue.getNode()) 5780 Ops.push_back(Glue); 5781 } 5782 5783 SDValue PPCTargetLowering::FinishCall( 5784 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5785 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5786 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5787 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5788 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5789 5790 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5791 Subtarget.isAIXABI()) 5792 setUsesTOCBasePtr(DAG); 5793 5794 unsigned CallOpc = 5795 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5796 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5797 5798 if (!CFlags.IsIndirect) 5799 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5800 else if (Subtarget.usesFunctionDescriptors()) 5801 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5802 dl, CFlags.HasNest, Subtarget); 5803 else 5804 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5805 5806 // Build the operand list for the call instruction. 5807 SmallVector<SDValue, 8> Ops; 5808 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5809 SPDiff, Subtarget); 5810 5811 // Emit tail call. 5812 if (CFlags.IsTailCall) { 5813 // Indirect tail call when using PC Relative calls do not have the same 5814 // constraints. 5815 assert(((Callee.getOpcode() == ISD::Register && 5816 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5817 Callee.getOpcode() == ISD::TargetExternalSymbol || 5818 Callee.getOpcode() == ISD::TargetGlobalAddress || 5819 isa<ConstantSDNode>(Callee) || 5820 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5821 "Expecting a global address, external symbol, absolute value, " 5822 "register or an indirect tail call when PC Relative calls are " 5823 "used."); 5824 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5825 assert(CallOpc == PPCISD::TC_RETURN && 5826 "Unexpected call opcode for a tail call."); 5827 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5828 SDValue Ret = DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5829 DAG.addNoMergeSiteInfo(Ret.getNode(), CFlags.NoMerge); 5830 return Ret; 5831 } 5832 5833 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5834 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5835 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5836 Glue = Chain.getValue(1); 5837 5838 // When performing tail call optimization the callee pops its arguments off 5839 // the stack. Account for this here so these bytes can be pushed back on in 5840 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5841 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5842 getTargetMachine().Options.GuaranteedTailCallOpt) 5843 ? NumBytes 5844 : 0; 5845 5846 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl); 5847 Glue = Chain.getValue(1); 5848 5849 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5850 DAG, InVals); 5851 } 5852 5853 bool PPCTargetLowering::supportsTailCallFor(const CallBase *CB) const { 5854 CallingConv::ID CalleeCC = CB->getCallingConv(); 5855 const Function *CallerFunc = CB->getCaller(); 5856 CallingConv::ID CallerCC = CallerFunc->getCallingConv(); 5857 const Function *CalleeFunc = CB->getCalledFunction(); 5858 if (!CalleeFunc) 5859 return false; 5860 const GlobalValue *CalleeGV = dyn_cast<GlobalValue>(CalleeFunc); 5861 5862 SmallVector<ISD::OutputArg, 2> Outs; 5863 SmallVector<ISD::InputArg, 2> Ins; 5864 5865 GetReturnInfo(CalleeCC, CalleeFunc->getReturnType(), 5866 CalleeFunc->getAttributes(), Outs, *this, 5867 CalleeFunc->getDataLayout()); 5868 5869 return isEligibleForTCO(CalleeGV, CalleeCC, CallerCC, CB, 5870 CalleeFunc->isVarArg(), Outs, Ins, CallerFunc, 5871 false /*isCalleeExternalSymbol*/); 5872 } 5873 5874 bool PPCTargetLowering::isEligibleForTCO( 5875 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, 5876 CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, 5877 const SmallVectorImpl<ISD::OutputArg> &Outs, 5878 const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc, 5879 bool isCalleeExternalSymbol) const { 5880 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5881 return false; 5882 5883 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5884 return IsEligibleForTailCallOptimization_64SVR4( 5885 CalleeGV, CalleeCC, CallerCC, CB, isVarArg, Outs, Ins, CallerFunc, 5886 isCalleeExternalSymbol); 5887 else 5888 return IsEligibleForTailCallOptimization(CalleeGV, CalleeCC, CallerCC, 5889 isVarArg, Ins); 5890 } 5891 5892 SDValue 5893 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5894 SmallVectorImpl<SDValue> &InVals) const { 5895 SelectionDAG &DAG = CLI.DAG; 5896 SDLoc &dl = CLI.DL; 5897 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5898 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5899 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5900 SDValue Chain = CLI.Chain; 5901 SDValue Callee = CLI.Callee; 5902 bool &isTailCall = CLI.IsTailCall; 5903 CallingConv::ID CallConv = CLI.CallConv; 5904 bool isVarArg = CLI.IsVarArg; 5905 bool isPatchPoint = CLI.IsPatchPoint; 5906 const CallBase *CB = CLI.CB; 5907 5908 if (isTailCall) { 5909 MachineFunction &MF = DAG.getMachineFunction(); 5910 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 5911 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5912 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5913 bool IsCalleeExternalSymbol = isa<ExternalSymbolSDNode>(Callee); 5914 5915 isTailCall = 5916 isEligibleForTCO(GV, CallConv, CallerCC, CB, isVarArg, Outs, Ins, 5917 &(MF.getFunction()), IsCalleeExternalSymbol); 5918 if (isTailCall) { 5919 ++NumTailCalls; 5920 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5921 ++NumSiblingCalls; 5922 5923 // PC Relative calls no longer guarantee that the callee is a Global 5924 // Address Node. The callee could be an indirect tail call in which 5925 // case the SDValue for the callee could be a load (to load the address 5926 // of a function pointer) or it may be a register copy (to move the 5927 // address of the callee from a function parameter into a virtual 5928 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5929 assert((Subtarget.isUsingPCRelativeCalls() || 5930 isa<GlobalAddressSDNode>(Callee)) && 5931 "Callee should be an llvm::Function object."); 5932 5933 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5934 << "\nTCO callee: "); 5935 LLVM_DEBUG(Callee.dump()); 5936 } 5937 } 5938 5939 if (!isTailCall && CB && CB->isMustTailCall()) 5940 report_fatal_error("failed to perform tail call elimination on a call " 5941 "site marked musttail"); 5942 5943 // When long calls (i.e. indirect calls) are always used, calls are always 5944 // made via function pointer. If we have a function name, first translate it 5945 // into a pointer. 5946 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5947 !isTailCall) 5948 Callee = LowerGlobalAddress(Callee, DAG); 5949 5950 CallFlags CFlags( 5951 CallConv, isTailCall, isVarArg, isPatchPoint, 5952 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5953 // hasNest 5954 Subtarget.is64BitELFABI() && 5955 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5956 CLI.NoMerge); 5957 5958 if (Subtarget.isAIXABI()) 5959 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5960 InVals, CB); 5961 5962 assert(Subtarget.isSVR4ABI()); 5963 if (Subtarget.isPPC64()) 5964 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5965 InVals, CB); 5966 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5967 InVals, CB); 5968 } 5969 5970 SDValue PPCTargetLowering::LowerCall_32SVR4( 5971 SDValue Chain, SDValue Callee, CallFlags CFlags, 5972 const SmallVectorImpl<ISD::OutputArg> &Outs, 5973 const SmallVectorImpl<SDValue> &OutVals, 5974 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5975 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5976 const CallBase *CB) const { 5977 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5978 // of the 32-bit SVR4 ABI stack frame layout. 5979 5980 const CallingConv::ID CallConv = CFlags.CallConv; 5981 const bool IsVarArg = CFlags.IsVarArg; 5982 const bool IsTailCall = CFlags.IsTailCall; 5983 5984 assert((CallConv == CallingConv::C || 5985 CallConv == CallingConv::Cold || 5986 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5987 5988 const Align PtrAlign(4); 5989 5990 MachineFunction &MF = DAG.getMachineFunction(); 5991 5992 // Mark this function as potentially containing a function that contains a 5993 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5994 // and restoring the callers stack pointer in this functions epilog. This is 5995 // done because by tail calling the called function might overwrite the value 5996 // in this function's (MF) stack pointer stack slot 0(SP). 5997 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5998 CallConv == CallingConv::Fast) 5999 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6000 6001 // Count how many bytes are to be pushed on the stack, including the linkage 6002 // area, parameter list area and the part of the local variable space which 6003 // contains copies of aggregates which are passed by value. 6004 6005 // Assign locations to all of the outgoing arguments. 6006 SmallVector<CCValAssign, 16> ArgLocs; 6007 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 6008 6009 // Reserve space for the linkage area on the stack. 6010 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 6011 PtrAlign); 6012 if (useSoftFloat()) 6013 CCInfo.PreAnalyzeCallOperands(Outs); 6014 6015 if (IsVarArg) { 6016 // Handle fixed and variable vector arguments differently. 6017 // Fixed vector arguments go into registers as long as registers are 6018 // available. Variable vector arguments always go into memory. 6019 unsigned NumArgs = Outs.size(); 6020 6021 for (unsigned i = 0; i != NumArgs; ++i) { 6022 MVT ArgVT = Outs[i].VT; 6023 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6024 bool Result; 6025 6026 if (Outs[i].IsFixed) { 6027 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 6028 CCInfo); 6029 } else { 6030 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 6031 ArgFlags, CCInfo); 6032 } 6033 6034 if (Result) { 6035 #ifndef NDEBUG 6036 errs() << "Call operand #" << i << " has unhandled type " 6037 << ArgVT << "\n"; 6038 #endif 6039 llvm_unreachable(nullptr); 6040 } 6041 } 6042 } else { 6043 // All arguments are treated the same. 6044 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 6045 } 6046 CCInfo.clearWasPPCF128(); 6047 6048 // Assign locations to all of the outgoing aggregate by value arguments. 6049 SmallVector<CCValAssign, 16> ByValArgLocs; 6050 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 6051 6052 // Reserve stack space for the allocations in CCInfo. 6053 CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign); 6054 6055 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 6056 6057 // Size of the linkage area, parameter list area and the part of the local 6058 // space variable where copies of aggregates which are passed by value are 6059 // stored. 6060 unsigned NumBytes = CCByValInfo.getStackSize(); 6061 6062 // Calculate by how many bytes the stack has to be adjusted in case of tail 6063 // call optimization. 6064 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 6065 6066 // Adjust the stack pointer for the new arguments... 6067 // These operations are automatically eliminated by the prolog/epilog pass 6068 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6069 SDValue CallSeqStart = Chain; 6070 6071 // Load the return address and frame pointer so it can be moved somewhere else 6072 // later. 6073 SDValue LROp, FPOp; 6074 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6075 6076 // Set up a copy of the stack pointer for use loading and storing any 6077 // arguments that may not fit in the registers available for argument 6078 // passing. 6079 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6080 6081 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6082 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6083 SmallVector<SDValue, 8> MemOpChains; 6084 6085 bool seenFloatArg = false; 6086 // Walk the register/memloc assignments, inserting copies/loads. 6087 // i - Tracks the index into the list of registers allocated for the call 6088 // RealArgIdx - Tracks the index into the list of actual function arguments 6089 // j - Tracks the index into the list of byval arguments 6090 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 6091 i != e; 6092 ++i, ++RealArgIdx) { 6093 CCValAssign &VA = ArgLocs[i]; 6094 SDValue Arg = OutVals[RealArgIdx]; 6095 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 6096 6097 if (Flags.isByVal()) { 6098 // Argument is an aggregate which is passed by value, thus we need to 6099 // create a copy of it in the local variable space of the current stack 6100 // frame (which is the stack frame of the caller) and pass the address of 6101 // this copy to the callee. 6102 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 6103 CCValAssign &ByValVA = ByValArgLocs[j++]; 6104 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 6105 6106 // Memory reserved in the local variable space of the callers stack frame. 6107 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 6108 6109 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 6110 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 6111 StackPtr, PtrOff); 6112 6113 // Create a copy of the argument in the local area of the current 6114 // stack frame. 6115 SDValue MemcpyCall = 6116 CreateCopyOfByValArgument(Arg, PtrOff, 6117 CallSeqStart.getNode()->getOperand(0), 6118 Flags, DAG, dl); 6119 6120 // This must go outside the CALLSEQ_START..END. 6121 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 6122 SDLoc(MemcpyCall)); 6123 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6124 NewCallSeqStart.getNode()); 6125 Chain = CallSeqStart = NewCallSeqStart; 6126 6127 // Pass the address of the aggregate copy on the stack either in a 6128 // physical register or in the parameter list area of the current stack 6129 // frame to the callee. 6130 Arg = PtrOff; 6131 } 6132 6133 // When useCRBits() is true, there can be i1 arguments. 6134 // It is because getRegisterType(MVT::i1) => MVT::i1, 6135 // and for other integer types getRegisterType() => MVT::i32. 6136 // Extend i1 and ensure callee will get i32. 6137 if (Arg.getValueType() == MVT::i1) 6138 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6139 dl, MVT::i32, Arg); 6140 6141 if (VA.isRegLoc()) { 6142 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 6143 // Put argument in a physical register. 6144 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 6145 bool IsLE = Subtarget.isLittleEndian(); 6146 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6147 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 6148 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 6149 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6150 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 6151 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 6152 SVal.getValue(0))); 6153 } else 6154 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 6155 } else { 6156 // Put argument in the parameter list area of the current stack frame. 6157 assert(VA.isMemLoc()); 6158 unsigned LocMemOffset = VA.getLocMemOffset(); 6159 6160 if (!IsTailCall) { 6161 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 6162 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 6163 StackPtr, PtrOff); 6164 6165 MemOpChains.push_back( 6166 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 6167 } else { 6168 // Calculate and remember argument location. 6169 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 6170 TailCallArguments); 6171 } 6172 } 6173 } 6174 6175 if (!MemOpChains.empty()) 6176 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6177 6178 // Build a sequence of copy-to-reg nodes chained together with token chain 6179 // and flag operands which copy the outgoing args into the appropriate regs. 6180 SDValue InGlue; 6181 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6182 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6183 RegsToPass[i].second, InGlue); 6184 InGlue = Chain.getValue(1); 6185 } 6186 6187 // Set CR bit 6 to true if this is a vararg call with floating args passed in 6188 // registers. 6189 if (IsVarArg) { 6190 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 6191 SDValue Ops[] = { Chain, InGlue }; 6192 6193 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl, 6194 VTs, ArrayRef(Ops, InGlue.getNode() ? 2 : 1)); 6195 6196 InGlue = Chain.getValue(1); 6197 } 6198 6199 if (IsTailCall) 6200 PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6201 TailCallArguments); 6202 6203 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, 6204 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6205 } 6206 6207 // Copy an argument into memory, being careful to do this outside the 6208 // call sequence for the call to which the argument belongs. 6209 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 6210 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 6211 SelectionDAG &DAG, const SDLoc &dl) const { 6212 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 6213 CallSeqStart.getNode()->getOperand(0), 6214 Flags, DAG, dl); 6215 // The MEMCPY must go outside the CALLSEQ_START..END. 6216 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6217 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6218 SDLoc(MemcpyCall)); 6219 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6220 NewCallSeqStart.getNode()); 6221 return NewCallSeqStart; 6222 } 6223 6224 SDValue PPCTargetLowering::LowerCall_64SVR4( 6225 SDValue Chain, SDValue Callee, CallFlags CFlags, 6226 const SmallVectorImpl<ISD::OutputArg> &Outs, 6227 const SmallVectorImpl<SDValue> &OutVals, 6228 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6229 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6230 const CallBase *CB) const { 6231 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6232 bool isLittleEndian = Subtarget.isLittleEndian(); 6233 unsigned NumOps = Outs.size(); 6234 bool IsSibCall = false; 6235 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6236 6237 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6238 unsigned PtrByteSize = 8; 6239 6240 MachineFunction &MF = DAG.getMachineFunction(); 6241 6242 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6243 IsSibCall = true; 6244 6245 // Mark this function as potentially containing a function that contains a 6246 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6247 // and restoring the callers stack pointer in this functions epilog. This is 6248 // done because by tail calling the called function might overwrite the value 6249 // in this function's (MF) stack pointer stack slot 0(SP). 6250 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6251 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6252 6253 assert(!(IsFastCall && CFlags.IsVarArg) && 6254 "fastcc not supported on varargs functions"); 6255 6256 // Count how many bytes are to be pushed on the stack, including the linkage 6257 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6258 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6259 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6260 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6261 unsigned NumBytes = LinkageSize; 6262 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6263 6264 static const MCPhysReg GPR[] = { 6265 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6266 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6267 }; 6268 static const MCPhysReg VR[] = { 6269 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6270 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6271 }; 6272 6273 const unsigned NumGPRs = std::size(GPR); 6274 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6275 const unsigned NumVRs = std::size(VR); 6276 6277 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6278 // can be passed to the callee in registers. 6279 // For the fast calling convention, there is another check below. 6280 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6281 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6282 if (!HasParameterArea) { 6283 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6284 unsigned AvailableFPRs = NumFPRs; 6285 unsigned AvailableVRs = NumVRs; 6286 unsigned NumBytesTmp = NumBytes; 6287 for (unsigned i = 0; i != NumOps; ++i) { 6288 if (Outs[i].Flags.isNest()) continue; 6289 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6290 PtrByteSize, LinkageSize, ParamAreaSize, 6291 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6292 HasParameterArea = true; 6293 } 6294 } 6295 6296 // When using the fast calling convention, we don't provide backing for 6297 // arguments that will be in registers. 6298 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6299 6300 // Avoid allocating parameter area for fastcc functions if all the arguments 6301 // can be passed in the registers. 6302 if (IsFastCall) 6303 HasParameterArea = false; 6304 6305 // Add up all the space actually used. 6306 for (unsigned i = 0; i != NumOps; ++i) { 6307 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6308 EVT ArgVT = Outs[i].VT; 6309 EVT OrigVT = Outs[i].ArgVT; 6310 6311 if (Flags.isNest()) 6312 continue; 6313 6314 if (IsFastCall) { 6315 if (Flags.isByVal()) { 6316 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6317 if (NumGPRsUsed > NumGPRs) 6318 HasParameterArea = true; 6319 } else { 6320 switch (ArgVT.getSimpleVT().SimpleTy) { 6321 default: llvm_unreachable("Unexpected ValueType for argument!"); 6322 case MVT::i1: 6323 case MVT::i32: 6324 case MVT::i64: 6325 if (++NumGPRsUsed <= NumGPRs) 6326 continue; 6327 break; 6328 case MVT::v4i32: 6329 case MVT::v8i16: 6330 case MVT::v16i8: 6331 case MVT::v2f64: 6332 case MVT::v2i64: 6333 case MVT::v1i128: 6334 case MVT::f128: 6335 if (++NumVRsUsed <= NumVRs) 6336 continue; 6337 break; 6338 case MVT::v4f32: 6339 if (++NumVRsUsed <= NumVRs) 6340 continue; 6341 break; 6342 case MVT::f32: 6343 case MVT::f64: 6344 if (++NumFPRsUsed <= NumFPRs) 6345 continue; 6346 break; 6347 } 6348 HasParameterArea = true; 6349 } 6350 } 6351 6352 /* Respect alignment of argument on the stack. */ 6353 auto Alignement = 6354 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6355 NumBytes = alignTo(NumBytes, Alignement); 6356 6357 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6358 if (Flags.isInConsecutiveRegsLast()) 6359 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6360 } 6361 6362 unsigned NumBytesActuallyUsed = NumBytes; 6363 6364 // In the old ELFv1 ABI, 6365 // the prolog code of the callee may store up to 8 GPR argument registers to 6366 // the stack, allowing va_start to index over them in memory if its varargs. 6367 // Because we cannot tell if this is needed on the caller side, we have to 6368 // conservatively assume that it is needed. As such, make sure we have at 6369 // least enough stack space for the caller to store the 8 GPRs. 6370 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6371 // really requires memory operands, e.g. a vararg function. 6372 if (HasParameterArea) 6373 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6374 else 6375 NumBytes = LinkageSize; 6376 6377 // Tail call needs the stack to be aligned. 6378 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6379 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6380 6381 int SPDiff = 0; 6382 6383 // Calculate by how many bytes the stack has to be adjusted in case of tail 6384 // call optimization. 6385 if (!IsSibCall) 6386 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6387 6388 // To protect arguments on the stack from being clobbered in a tail call, 6389 // force all the loads to happen before doing any other lowering. 6390 if (CFlags.IsTailCall) 6391 Chain = DAG.getStackArgumentTokenFactor(Chain); 6392 6393 // Adjust the stack pointer for the new arguments... 6394 // These operations are automatically eliminated by the prolog/epilog pass 6395 if (!IsSibCall) 6396 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6397 SDValue CallSeqStart = Chain; 6398 6399 // Load the return address and frame pointer so it can be move somewhere else 6400 // later. 6401 SDValue LROp, FPOp; 6402 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6403 6404 // Set up a copy of the stack pointer for use loading and storing any 6405 // arguments that may not fit in the registers available for argument 6406 // passing. 6407 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6408 6409 // Figure out which arguments are going to go in registers, and which in 6410 // memory. Also, if this is a vararg function, floating point operations 6411 // must be stored to our stack, and loaded into integer regs as well, if 6412 // any integer regs are available for argument passing. 6413 unsigned ArgOffset = LinkageSize; 6414 6415 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6416 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6417 6418 SmallVector<SDValue, 8> MemOpChains; 6419 for (unsigned i = 0; i != NumOps; ++i) { 6420 SDValue Arg = OutVals[i]; 6421 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6422 EVT ArgVT = Outs[i].VT; 6423 EVT OrigVT = Outs[i].ArgVT; 6424 6425 // PtrOff will be used to store the current argument to the stack if a 6426 // register cannot be found for it. 6427 SDValue PtrOff; 6428 6429 // We re-align the argument offset for each argument, except when using the 6430 // fast calling convention, when we need to make sure we do that only when 6431 // we'll actually use a stack slot. 6432 auto ComputePtrOff = [&]() { 6433 /* Respect alignment of argument on the stack. */ 6434 auto Alignment = 6435 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6436 ArgOffset = alignTo(ArgOffset, Alignment); 6437 6438 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6439 6440 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6441 }; 6442 6443 if (!IsFastCall) { 6444 ComputePtrOff(); 6445 6446 /* Compute GPR index associated with argument offset. */ 6447 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6448 GPR_idx = std::min(GPR_idx, NumGPRs); 6449 } 6450 6451 // Promote integers to 64-bit values. 6452 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6453 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6454 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6455 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6456 } 6457 6458 // FIXME memcpy is used way more than necessary. Correctness first. 6459 // Note: "by value" is code for passing a structure by value, not 6460 // basic types. 6461 if (Flags.isByVal()) { 6462 // Note: Size includes alignment padding, so 6463 // struct x { short a; char b; } 6464 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6465 // These are the proper values we need for right-justifying the 6466 // aggregate in a parameter register. 6467 unsigned Size = Flags.getByValSize(); 6468 6469 // An empty aggregate parameter takes up no storage and no 6470 // registers. 6471 if (Size == 0) 6472 continue; 6473 6474 if (IsFastCall) 6475 ComputePtrOff(); 6476 6477 // All aggregates smaller than 8 bytes must be passed right-justified. 6478 if (Size==1 || Size==2 || Size==4) { 6479 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6480 if (GPR_idx != NumGPRs) { 6481 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6482 MachinePointerInfo(), VT); 6483 MemOpChains.push_back(Load.getValue(1)); 6484 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6485 6486 ArgOffset += PtrByteSize; 6487 continue; 6488 } 6489 } 6490 6491 if (GPR_idx == NumGPRs && Size < 8) { 6492 SDValue AddPtr = PtrOff; 6493 if (!isLittleEndian) { 6494 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6495 PtrOff.getValueType()); 6496 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6497 } 6498 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6499 CallSeqStart, 6500 Flags, DAG, dl); 6501 ArgOffset += PtrByteSize; 6502 continue; 6503 } 6504 // Copy the object to parameter save area if it can not be entirely passed 6505 // by registers. 6506 // FIXME: we only need to copy the parts which need to be passed in 6507 // parameter save area. For the parts passed by registers, we don't need 6508 // to copy them to the stack although we need to allocate space for them 6509 // in parameter save area. 6510 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6511 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6512 CallSeqStart, 6513 Flags, DAG, dl); 6514 6515 // When a register is available, pass a small aggregate right-justified. 6516 if (Size < 8 && GPR_idx != NumGPRs) { 6517 // The easiest way to get this right-justified in a register 6518 // is to copy the structure into the rightmost portion of a 6519 // local variable slot, then load the whole slot into the 6520 // register. 6521 // FIXME: The memcpy seems to produce pretty awful code for 6522 // small aggregates, particularly for packed ones. 6523 // FIXME: It would be preferable to use the slot in the 6524 // parameter save area instead of a new local variable. 6525 SDValue AddPtr = PtrOff; 6526 if (!isLittleEndian) { 6527 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6528 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6529 } 6530 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6531 CallSeqStart, 6532 Flags, DAG, dl); 6533 6534 // Load the slot into the register. 6535 SDValue Load = 6536 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6537 MemOpChains.push_back(Load.getValue(1)); 6538 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6539 6540 // Done with this argument. 6541 ArgOffset += PtrByteSize; 6542 continue; 6543 } 6544 6545 // For aggregates larger than PtrByteSize, copy the pieces of the 6546 // object that fit into registers from the parameter save area. 6547 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6548 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6549 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6550 if (GPR_idx != NumGPRs) { 6551 unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8; 6552 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits); 6553 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg, 6554 MachinePointerInfo(), ObjType); 6555 6556 MemOpChains.push_back(Load.getValue(1)); 6557 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6558 ArgOffset += PtrByteSize; 6559 } else { 6560 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6561 break; 6562 } 6563 } 6564 continue; 6565 } 6566 6567 switch (Arg.getSimpleValueType().SimpleTy) { 6568 default: llvm_unreachable("Unexpected ValueType for argument!"); 6569 case MVT::i1: 6570 case MVT::i32: 6571 case MVT::i64: 6572 if (Flags.isNest()) { 6573 // The 'nest' parameter, if any, is passed in R11. 6574 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6575 break; 6576 } 6577 6578 // These can be scalar arguments or elements of an integer array type 6579 // passed directly. Clang may use those instead of "byval" aggregate 6580 // types to avoid forcing arguments to memory unnecessarily. 6581 if (GPR_idx != NumGPRs) { 6582 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6583 } else { 6584 if (IsFastCall) 6585 ComputePtrOff(); 6586 6587 assert(HasParameterArea && 6588 "Parameter area must exist to pass an argument in memory."); 6589 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6590 true, CFlags.IsTailCall, false, MemOpChains, 6591 TailCallArguments, dl); 6592 if (IsFastCall) 6593 ArgOffset += PtrByteSize; 6594 } 6595 if (!IsFastCall) 6596 ArgOffset += PtrByteSize; 6597 break; 6598 case MVT::f32: 6599 case MVT::f64: { 6600 // These can be scalar arguments or elements of a float array type 6601 // passed directly. The latter are used to implement ELFv2 homogenous 6602 // float aggregates. 6603 6604 // Named arguments go into FPRs first, and once they overflow, the 6605 // remaining arguments go into GPRs and then the parameter save area. 6606 // Unnamed arguments for vararg functions always go to GPRs and 6607 // then the parameter save area. For now, put all arguments to vararg 6608 // routines always in both locations (FPR *and* GPR or stack slot). 6609 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6610 bool NeededLoad = false; 6611 6612 // First load the argument into the next available FPR. 6613 if (FPR_idx != NumFPRs) 6614 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6615 6616 // Next, load the argument into GPR or stack slot if needed. 6617 if (!NeedGPROrStack) 6618 ; 6619 else if (GPR_idx != NumGPRs && !IsFastCall) { 6620 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6621 // once we support fp <-> gpr moves. 6622 6623 // In the non-vararg case, this can only ever happen in the 6624 // presence of f32 array types, since otherwise we never run 6625 // out of FPRs before running out of GPRs. 6626 SDValue ArgVal; 6627 6628 // Double values are always passed in a single GPR. 6629 if (Arg.getValueType() != MVT::f32) { 6630 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6631 6632 // Non-array float values are extended and passed in a GPR. 6633 } else if (!Flags.isInConsecutiveRegs()) { 6634 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6635 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6636 6637 // If we have an array of floats, we collect every odd element 6638 // together with its predecessor into one GPR. 6639 } else if (ArgOffset % PtrByteSize != 0) { 6640 SDValue Lo, Hi; 6641 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6642 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6643 if (!isLittleEndian) 6644 std::swap(Lo, Hi); 6645 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6646 6647 // The final element, if even, goes into the first half of a GPR. 6648 } else if (Flags.isInConsecutiveRegsLast()) { 6649 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6650 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6651 if (!isLittleEndian) 6652 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6653 DAG.getConstant(32, dl, MVT::i32)); 6654 6655 // Non-final even elements are skipped; they will be handled 6656 // together the with subsequent argument on the next go-around. 6657 } else 6658 ArgVal = SDValue(); 6659 6660 if (ArgVal.getNode()) 6661 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6662 } else { 6663 if (IsFastCall) 6664 ComputePtrOff(); 6665 6666 // Single-precision floating-point values are mapped to the 6667 // second (rightmost) word of the stack doubleword. 6668 if (Arg.getValueType() == MVT::f32 && 6669 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6670 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6671 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6672 } 6673 6674 assert(HasParameterArea && 6675 "Parameter area must exist to pass an argument in memory."); 6676 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6677 true, CFlags.IsTailCall, false, MemOpChains, 6678 TailCallArguments, dl); 6679 6680 NeededLoad = true; 6681 } 6682 // When passing an array of floats, the array occupies consecutive 6683 // space in the argument area; only round up to the next doubleword 6684 // at the end of the array. Otherwise, each float takes 8 bytes. 6685 if (!IsFastCall || NeededLoad) { 6686 ArgOffset += (Arg.getValueType() == MVT::f32 && 6687 Flags.isInConsecutiveRegs()) ? 4 : 8; 6688 if (Flags.isInConsecutiveRegsLast()) 6689 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6690 } 6691 break; 6692 } 6693 case MVT::v4f32: 6694 case MVT::v4i32: 6695 case MVT::v8i16: 6696 case MVT::v16i8: 6697 case MVT::v2f64: 6698 case MVT::v2i64: 6699 case MVT::v1i128: 6700 case MVT::f128: 6701 // These can be scalar arguments or elements of a vector array type 6702 // passed directly. The latter are used to implement ELFv2 homogenous 6703 // vector aggregates. 6704 6705 // For a varargs call, named arguments go into VRs or on the stack as 6706 // usual; unnamed arguments always go to the stack or the corresponding 6707 // GPRs when within range. For now, we always put the value in both 6708 // locations (or even all three). 6709 if (CFlags.IsVarArg) { 6710 assert(HasParameterArea && 6711 "Parameter area must exist if we have a varargs call."); 6712 // We could elide this store in the case where the object fits 6713 // entirely in R registers. Maybe later. 6714 SDValue Store = 6715 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6716 MemOpChains.push_back(Store); 6717 if (VR_idx != NumVRs) { 6718 SDValue Load = 6719 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6720 MemOpChains.push_back(Load.getValue(1)); 6721 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6722 } 6723 ArgOffset += 16; 6724 for (unsigned i=0; i<16; i+=PtrByteSize) { 6725 if (GPR_idx == NumGPRs) 6726 break; 6727 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6728 DAG.getConstant(i, dl, PtrVT)); 6729 SDValue Load = 6730 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6731 MemOpChains.push_back(Load.getValue(1)); 6732 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6733 } 6734 break; 6735 } 6736 6737 // Non-varargs Altivec params go into VRs or on the stack. 6738 if (VR_idx != NumVRs) { 6739 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6740 } else { 6741 if (IsFastCall) 6742 ComputePtrOff(); 6743 6744 assert(HasParameterArea && 6745 "Parameter area must exist to pass an argument in memory."); 6746 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6747 true, CFlags.IsTailCall, true, MemOpChains, 6748 TailCallArguments, dl); 6749 if (IsFastCall) 6750 ArgOffset += 16; 6751 } 6752 6753 if (!IsFastCall) 6754 ArgOffset += 16; 6755 break; 6756 } 6757 } 6758 6759 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6760 "mismatch in size of parameter area"); 6761 (void)NumBytesActuallyUsed; 6762 6763 if (!MemOpChains.empty()) 6764 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6765 6766 // Check if this is an indirect call (MTCTR/BCTRL). 6767 // See prepareDescriptorIndirectCall and buildCallOperands for more 6768 // information about calls through function pointers in the 64-bit SVR4 ABI. 6769 if (CFlags.IsIndirect) { 6770 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6771 // caller in the TOC save area. 6772 if (isTOCSaveRestoreRequired(Subtarget)) { 6773 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6774 // Load r2 into a virtual register and store it to the TOC save area. 6775 setUsesTOCBasePtr(DAG); 6776 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6777 // TOC save area offset. 6778 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6779 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6780 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6781 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6782 MachinePointerInfo::getStack( 6783 DAG.getMachineFunction(), TOCSaveOffset)); 6784 } 6785 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6786 // This does not mean the MTCTR instruction must use R12; it's easier 6787 // to model this as an extra parameter, so do that. 6788 if (isELFv2ABI && !CFlags.IsPatchPoint) 6789 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6790 } 6791 6792 // Build a sequence of copy-to-reg nodes chained together with token chain 6793 // and flag operands which copy the outgoing args into the appropriate regs. 6794 SDValue InGlue; 6795 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6796 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6797 RegsToPass[i].second, InGlue); 6798 InGlue = Chain.getValue(1); 6799 } 6800 6801 if (CFlags.IsTailCall && !IsSibCall) 6802 PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6803 TailCallArguments); 6804 6805 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, 6806 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6807 } 6808 6809 // Returns true when the shadow of a general purpose argument register 6810 // in the parameter save area is aligned to at least 'RequiredAlign'. 6811 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6812 assert(RequiredAlign.value() <= 16 && 6813 "Required alignment greater than stack alignment."); 6814 switch (Reg) { 6815 default: 6816 report_fatal_error("called on invalid register."); 6817 case PPC::R5: 6818 case PPC::R9: 6819 case PPC::X3: 6820 case PPC::X5: 6821 case PPC::X7: 6822 case PPC::X9: 6823 // These registers are 16 byte aligned which is the most strict aligment 6824 // we can support. 6825 return true; 6826 case PPC::R3: 6827 case PPC::R7: 6828 case PPC::X4: 6829 case PPC::X6: 6830 case PPC::X8: 6831 case PPC::X10: 6832 // The shadow of these registers in the PSA is 8 byte aligned. 6833 return RequiredAlign <= 8; 6834 case PPC::R4: 6835 case PPC::R6: 6836 case PPC::R8: 6837 case PPC::R10: 6838 return RequiredAlign <= 4; 6839 } 6840 } 6841 6842 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6843 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6844 CCState &S) { 6845 AIXCCState &State = static_cast<AIXCCState &>(S); 6846 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6847 State.getMachineFunction().getSubtarget()); 6848 const bool IsPPC64 = Subtarget.isPPC64(); 6849 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6850 const Align PtrAlign(PtrSize); 6851 const Align StackAlign(16); 6852 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6853 6854 if (ValVT == MVT::f128) 6855 report_fatal_error("f128 is unimplemented on AIX."); 6856 6857 if (ArgFlags.isNest()) 6858 report_fatal_error("Nest arguments are unimplemented."); 6859 6860 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6861 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6862 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6863 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6864 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6865 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6866 6867 static const MCPhysReg VR[] = {// Vector registers. 6868 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6869 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6870 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6871 6872 const ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6873 6874 if (ArgFlags.isByVal()) { 6875 const Align ByValAlign(ArgFlags.getNonZeroByValAlign()); 6876 if (ByValAlign > StackAlign) 6877 report_fatal_error("Pass-by-value arguments with alignment greater than " 6878 "16 are not supported."); 6879 6880 const unsigned ByValSize = ArgFlags.getByValSize(); 6881 const Align ObjAlign = ByValAlign > PtrAlign ? ByValAlign : PtrAlign; 6882 6883 // An empty aggregate parameter takes up no storage and no registers, 6884 // but needs a MemLoc for a stack slot for the formal arguments side. 6885 if (ByValSize == 0) { 6886 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6887 State.getStackSize(), RegVT, LocInfo)); 6888 return false; 6889 } 6890 6891 // Shadow allocate any registers that are not properly aligned. 6892 unsigned NextReg = State.getFirstUnallocated(GPRs); 6893 while (NextReg != GPRs.size() && 6894 !isGPRShadowAligned(GPRs[NextReg], ObjAlign)) { 6895 // Shadow allocate next registers since its aligment is not strict enough. 6896 unsigned Reg = State.AllocateReg(GPRs); 6897 // Allocate the stack space shadowed by said register. 6898 State.AllocateStack(PtrSize, PtrAlign); 6899 assert(Reg && "Alocating register unexpectedly failed."); 6900 (void)Reg; 6901 NextReg = State.getFirstUnallocated(GPRs); 6902 } 6903 6904 const unsigned StackSize = alignTo(ByValSize, ObjAlign); 6905 unsigned Offset = State.AllocateStack(StackSize, ObjAlign); 6906 for (const unsigned E = Offset + StackSize; Offset < E; Offset += PtrSize) { 6907 if (unsigned Reg = State.AllocateReg(GPRs)) 6908 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6909 else { 6910 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6911 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6912 LocInfo)); 6913 break; 6914 } 6915 } 6916 return false; 6917 } 6918 6919 // Arguments always reserve parameter save area. 6920 switch (ValVT.SimpleTy) { 6921 default: 6922 report_fatal_error("Unhandled value type for argument."); 6923 case MVT::i64: 6924 // i64 arguments should have been split to i32 for PPC32. 6925 assert(IsPPC64 && "PPC32 should have split i64 values."); 6926 [[fallthrough]]; 6927 case MVT::i1: 6928 case MVT::i32: { 6929 const unsigned Offset = State.AllocateStack(PtrSize, PtrAlign); 6930 // AIX integer arguments are always passed in register width. 6931 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6932 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6933 : CCValAssign::LocInfo::ZExt; 6934 if (unsigned Reg = State.AllocateReg(GPRs)) 6935 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6936 else 6937 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6938 6939 return false; 6940 } 6941 case MVT::f32: 6942 case MVT::f64: { 6943 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6944 const unsigned StoreSize = LocVT.getStoreSize(); 6945 // Floats are always 4-byte aligned in the PSA on AIX. 6946 // This includes f64 in 64-bit mode for ABI compatibility. 6947 const unsigned Offset = 6948 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6949 unsigned FReg = State.AllocateReg(FPR); 6950 if (FReg) 6951 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6952 6953 // Reserve and initialize GPRs or initialize the PSA as required. 6954 for (unsigned I = 0; I < StoreSize; I += PtrSize) { 6955 if (unsigned Reg = State.AllocateReg(GPRs)) { 6956 assert(FReg && "An FPR should be available when a GPR is reserved."); 6957 if (State.isVarArg()) { 6958 // Successfully reserved GPRs are only initialized for vararg calls. 6959 // Custom handling is required for: 6960 // f64 in PPC32 needs to be split into 2 GPRs. 6961 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6962 State.addLoc( 6963 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6964 } 6965 } else { 6966 // If there are insufficient GPRs, the PSA needs to be initialized. 6967 // Initialization occurs even if an FPR was initialized for 6968 // compatibility with the AIX XL compiler. The full memory for the 6969 // argument will be initialized even if a prior word is saved in GPR. 6970 // A custom memLoc is used when the argument also passes in FPR so 6971 // that the callee handling can skip over it easily. 6972 State.addLoc( 6973 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6974 LocInfo) 6975 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6976 break; 6977 } 6978 } 6979 6980 return false; 6981 } 6982 case MVT::v4f32: 6983 case MVT::v4i32: 6984 case MVT::v8i16: 6985 case MVT::v16i8: 6986 case MVT::v2i64: 6987 case MVT::v2f64: 6988 case MVT::v1i128: { 6989 const unsigned VecSize = 16; 6990 const Align VecAlign(VecSize); 6991 6992 if (!State.isVarArg()) { 6993 // If there are vector registers remaining we don't consume any stack 6994 // space. 6995 if (unsigned VReg = State.AllocateReg(VR)) { 6996 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6997 return false; 6998 } 6999 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 7000 // might be allocated in the portion of the PSA that is shadowed by the 7001 // GPRs. 7002 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 7003 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7004 return false; 7005 } 7006 7007 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 7008 // Burn any underaligned registers and their shadowed stack space until 7009 // we reach the required alignment. 7010 while (NextRegIndex != GPRs.size() && 7011 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 7012 // Shadow allocate register and its stack shadow. 7013 unsigned Reg = State.AllocateReg(GPRs); 7014 State.AllocateStack(PtrSize, PtrAlign); 7015 assert(Reg && "Allocating register unexpectedly failed."); 7016 (void)Reg; 7017 NextRegIndex = State.getFirstUnallocated(GPRs); 7018 } 7019 7020 // Vectors that are passed as fixed arguments are handled differently. 7021 // They are passed in VRs if any are available (unlike arguments passed 7022 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 7023 // functions) 7024 if (State.isFixed(ValNo)) { 7025 if (unsigned VReg = State.AllocateReg(VR)) { 7026 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 7027 // Shadow allocate GPRs and stack space even though we pass in a VR. 7028 for (unsigned I = 0; I != VecSize; I += PtrSize) 7029 State.AllocateReg(GPRs); 7030 State.AllocateStack(VecSize, VecAlign); 7031 return false; 7032 } 7033 // No vector registers remain so pass on the stack. 7034 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 7035 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7036 return false; 7037 } 7038 7039 // If all GPRS are consumed then we pass the argument fully on the stack. 7040 if (NextRegIndex == GPRs.size()) { 7041 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 7042 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7043 return false; 7044 } 7045 7046 // Corner case for 32-bit codegen. We have 2 registers to pass the first 7047 // half of the argument, and then need to pass the remaining half on the 7048 // stack. 7049 if (GPRs[NextRegIndex] == PPC::R9) { 7050 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 7051 State.addLoc( 7052 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7053 7054 const unsigned FirstReg = State.AllocateReg(PPC::R9); 7055 const unsigned SecondReg = State.AllocateReg(PPC::R10); 7056 assert(FirstReg && SecondReg && 7057 "Allocating R9 or R10 unexpectedly failed."); 7058 State.addLoc( 7059 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 7060 State.addLoc( 7061 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 7062 return false; 7063 } 7064 7065 // We have enough GPRs to fully pass the vector argument, and we have 7066 // already consumed any underaligned registers. Start with the custom 7067 // MemLoc and then the custom RegLocs. 7068 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 7069 State.addLoc( 7070 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7071 for (unsigned I = 0; I != VecSize; I += PtrSize) { 7072 const unsigned Reg = State.AllocateReg(GPRs); 7073 assert(Reg && "Failed to allocated register for vararg vector argument"); 7074 State.addLoc( 7075 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7076 } 7077 return false; 7078 } 7079 } 7080 return true; 7081 } 7082 7083 // So far, this function is only used by LowerFormalArguments_AIX() 7084 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7085 bool IsPPC64, 7086 bool HasP8Vector, 7087 bool HasVSX) { 7088 assert((IsPPC64 || SVT != MVT::i64) && 7089 "i64 should have been split for 32-bit codegen."); 7090 7091 switch (SVT) { 7092 default: 7093 report_fatal_error("Unexpected value type for formal argument"); 7094 case MVT::i1: 7095 case MVT::i32: 7096 case MVT::i64: 7097 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7098 case MVT::f32: 7099 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 7100 case MVT::f64: 7101 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 7102 case MVT::v4f32: 7103 case MVT::v4i32: 7104 case MVT::v8i16: 7105 case MVT::v16i8: 7106 case MVT::v2i64: 7107 case MVT::v2f64: 7108 case MVT::v1i128: 7109 return &PPC::VRRCRegClass; 7110 } 7111 } 7112 7113 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7114 SelectionDAG &DAG, SDValue ArgValue, 7115 MVT LocVT, const SDLoc &dl) { 7116 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7117 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 7118 7119 if (Flags.isSExt()) 7120 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7121 DAG.getValueType(ValVT)); 7122 else if (Flags.isZExt()) 7123 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7124 DAG.getValueType(ValVT)); 7125 7126 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7127 } 7128 7129 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7130 const unsigned LASize = FL->getLinkageSize(); 7131 7132 if (PPC::GPRCRegClass.contains(Reg)) { 7133 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7134 "Reg must be a valid argument register!"); 7135 return LASize + 4 * (Reg - PPC::R3); 7136 } 7137 7138 if (PPC::G8RCRegClass.contains(Reg)) { 7139 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7140 "Reg must be a valid argument register!"); 7141 return LASize + 8 * (Reg - PPC::X3); 7142 } 7143 7144 llvm_unreachable("Only general purpose registers expected."); 7145 } 7146 7147 // AIX ABI Stack Frame Layout: 7148 // 7149 // Low Memory +--------------------------------------------+ 7150 // SP +---> | Back chain | ---+ 7151 // | +--------------------------------------------+ | 7152 // | | Saved Condition Register | | 7153 // | +--------------------------------------------+ | 7154 // | | Saved Linkage Register | | 7155 // | +--------------------------------------------+ | Linkage Area 7156 // | | Reserved for compilers | | 7157 // | +--------------------------------------------+ | 7158 // | | Reserved for binders | | 7159 // | +--------------------------------------------+ | 7160 // | | Saved TOC pointer | ---+ 7161 // | +--------------------------------------------+ 7162 // | | Parameter save area | 7163 // | +--------------------------------------------+ 7164 // | | Alloca space | 7165 // | +--------------------------------------------+ 7166 // | | Local variable space | 7167 // | +--------------------------------------------+ 7168 // | | Float/int conversion temporary | 7169 // | +--------------------------------------------+ 7170 // | | Save area for AltiVec registers | 7171 // | +--------------------------------------------+ 7172 // | | AltiVec alignment padding | 7173 // | +--------------------------------------------+ 7174 // | | Save area for VRSAVE register | 7175 // | +--------------------------------------------+ 7176 // | | Save area for General Purpose registers | 7177 // | +--------------------------------------------+ 7178 // | | Save area for Floating Point registers | 7179 // | +--------------------------------------------+ 7180 // +---- | Back chain | 7181 // High Memory +--------------------------------------------+ 7182 // 7183 // Specifications: 7184 // AIX 7.2 Assembler Language Reference 7185 // Subroutine linkage convention 7186 7187 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7188 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7189 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7190 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7191 7192 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7193 CallConv == CallingConv::Fast) && 7194 "Unexpected calling convention!"); 7195 7196 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7197 report_fatal_error("Tail call support is unimplemented on AIX."); 7198 7199 if (useSoftFloat()) 7200 report_fatal_error("Soft float support is unimplemented on AIX."); 7201 7202 const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); 7203 7204 const bool IsPPC64 = Subtarget.isPPC64(); 7205 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7206 7207 // Assign locations to all of the incoming arguments. 7208 SmallVector<CCValAssign, 16> ArgLocs; 7209 MachineFunction &MF = DAG.getMachineFunction(); 7210 MachineFrameInfo &MFI = MF.getFrameInfo(); 7211 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7212 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7213 7214 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7215 // Reserve space for the linkage area on the stack. 7216 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7217 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7218 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7219 7220 SmallVector<SDValue, 8> MemOps; 7221 7222 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7223 CCValAssign &VA = ArgLocs[I++]; 7224 MVT LocVT = VA.getLocVT(); 7225 MVT ValVT = VA.getValVT(); 7226 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7227 // For compatibility with the AIX XL compiler, the float args in the 7228 // parameter save area are initialized even if the argument is available 7229 // in register. The caller is required to initialize both the register 7230 // and memory, however, the callee can choose to expect it in either. 7231 // The memloc is dismissed here because the argument is retrieved from 7232 // the register. 7233 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 7234 continue; 7235 7236 auto HandleMemLoc = [&]() { 7237 const unsigned LocSize = LocVT.getStoreSize(); 7238 const unsigned ValSize = ValVT.getStoreSize(); 7239 assert((ValSize <= LocSize) && 7240 "Object size is larger than size of MemLoc"); 7241 int CurArgOffset = VA.getLocMemOffset(); 7242 // Objects are right-justified because AIX is big-endian. 7243 if (LocSize > ValSize) 7244 CurArgOffset += LocSize - ValSize; 7245 // Potential tail calls could cause overwriting of argument stack slots. 7246 const bool IsImmutable = 7247 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7248 (CallConv == CallingConv::Fast)); 7249 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7250 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7251 SDValue ArgValue = 7252 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7253 InVals.push_back(ArgValue); 7254 }; 7255 7256 // Vector arguments to VaArg functions are passed both on the stack, and 7257 // in any available GPRs. Load the value from the stack and add the GPRs 7258 // as live ins. 7259 if (VA.isMemLoc() && VA.needsCustom()) { 7260 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 7261 assert(isVarArg && "Only use custom memloc for vararg."); 7262 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 7263 // matching custom RegLocs. 7264 const unsigned OriginalValNo = VA.getValNo(); 7265 (void)OriginalValNo; 7266 7267 auto HandleCustomVecRegLoc = [&]() { 7268 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7269 "Missing custom RegLoc."); 7270 VA = ArgLocs[I++]; 7271 assert(VA.getValVT().isVector() && 7272 "Unexpected Val type for custom RegLoc."); 7273 assert(VA.getValNo() == OriginalValNo && 7274 "ValNo mismatch between custom MemLoc and RegLoc."); 7275 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 7276 MF.addLiveIn(VA.getLocReg(), 7277 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7278 Subtarget.hasVSX())); 7279 }; 7280 7281 HandleMemLoc(); 7282 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7283 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7284 // R10. 7285 HandleCustomVecRegLoc(); 7286 HandleCustomVecRegLoc(); 7287 7288 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7289 // we passed the vector in R5, R6, R7 and R8. 7290 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7291 assert(!IsPPC64 && 7292 "Only 2 custom RegLocs expected for 64-bit codegen."); 7293 HandleCustomVecRegLoc(); 7294 HandleCustomVecRegLoc(); 7295 } 7296 7297 continue; 7298 } 7299 7300 if (VA.isRegLoc()) { 7301 if (VA.getValVT().isScalarInteger()) 7302 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7303 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7304 switch (VA.getValVT().SimpleTy) { 7305 default: 7306 report_fatal_error("Unhandled value type for argument."); 7307 case MVT::f32: 7308 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7309 break; 7310 case MVT::f64: 7311 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7312 break; 7313 } 7314 } else if (VA.getValVT().isVector()) { 7315 switch (VA.getValVT().SimpleTy) { 7316 default: 7317 report_fatal_error("Unhandled value type for argument."); 7318 case MVT::v16i8: 7319 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7320 break; 7321 case MVT::v8i16: 7322 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7323 break; 7324 case MVT::v4i32: 7325 case MVT::v2i64: 7326 case MVT::v1i128: 7327 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7328 break; 7329 case MVT::v4f32: 7330 case MVT::v2f64: 7331 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7332 break; 7333 } 7334 } 7335 } 7336 7337 if (Flags.isByVal() && VA.isMemLoc()) { 7338 const unsigned Size = 7339 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7340 PtrByteSize); 7341 const int FI = MF.getFrameInfo().CreateFixedObject( 7342 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7343 /* IsAliased */ true); 7344 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7345 InVals.push_back(FIN); 7346 7347 continue; 7348 } 7349 7350 if (Flags.isByVal()) { 7351 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7352 7353 const MCPhysReg ArgReg = VA.getLocReg(); 7354 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7355 7356 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7357 const int FI = MF.getFrameInfo().CreateFixedObject( 7358 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7359 /* IsAliased */ true); 7360 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7361 InVals.push_back(FIN); 7362 7363 // Add live ins for all the RegLocs for the same ByVal. 7364 const TargetRegisterClass *RegClass = 7365 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7366 7367 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7368 unsigned Offset) { 7369 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7370 // Since the callers side has left justified the aggregate in the 7371 // register, we can simply store the entire register into the stack 7372 // slot. 7373 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7374 // The store to the fixedstack object is needed becuase accessing a 7375 // field of the ByVal will use a gep and load. Ideally we will optimize 7376 // to extracting the value from the register directly, and elide the 7377 // stores when the arguments address is not taken, but that will need to 7378 // be future work. 7379 SDValue Store = DAG.getStore( 7380 CopyFrom.getValue(1), dl, CopyFrom, 7381 DAG.getObjectPtrOffset(dl, FIN, TypeSize::getFixed(Offset)), 7382 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7383 7384 MemOps.push_back(Store); 7385 }; 7386 7387 unsigned Offset = 0; 7388 HandleRegLoc(VA.getLocReg(), Offset); 7389 Offset += PtrByteSize; 7390 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7391 Offset += PtrByteSize) { 7392 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7393 "RegLocs should be for ByVal argument."); 7394 7395 const CCValAssign RL = ArgLocs[I++]; 7396 HandleRegLoc(RL.getLocReg(), Offset); 7397 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7398 } 7399 7400 if (Offset != StackSize) { 7401 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7402 "Expected MemLoc for remaining bytes."); 7403 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7404 // Consume the MemLoc.The InVal has already been emitted, so nothing 7405 // more needs to be done. 7406 ++I; 7407 } 7408 7409 continue; 7410 } 7411 7412 if (VA.isRegLoc() && !VA.needsCustom()) { 7413 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7414 Register VReg = 7415 MF.addLiveIn(VA.getLocReg(), 7416 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7417 Subtarget.hasVSX())); 7418 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7419 if (ValVT.isScalarInteger() && 7420 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7421 ArgValue = 7422 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7423 } 7424 InVals.push_back(ArgValue); 7425 continue; 7426 } 7427 if (VA.isMemLoc()) { 7428 HandleMemLoc(); 7429 continue; 7430 } 7431 } 7432 7433 // On AIX a minimum of 8 words is saved to the parameter save area. 7434 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7435 // Area that is at least reserved in the caller of this function. 7436 unsigned CallerReservedArea = std::max<unsigned>( 7437 CCInfo.getStackSize(), LinkageSize + MinParameterSaveArea); 7438 7439 // Set the size that is at least reserved in caller of this function. Tail 7440 // call optimized function's reserved stack space needs to be aligned so 7441 // that taking the difference between two stack areas will result in an 7442 // aligned stack. 7443 CallerReservedArea = 7444 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7445 FuncInfo->setMinReservedArea(CallerReservedArea); 7446 7447 if (isVarArg) { 7448 FuncInfo->setVarArgsFrameIndex( 7449 MFI.CreateFixedObject(PtrByteSize, CCInfo.getStackSize(), true)); 7450 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7451 7452 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7453 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7454 7455 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7456 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7457 const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32); 7458 7459 // The fixed integer arguments of a variadic function are stored to the 7460 // VarArgsFrameIndex on the stack so that they may be loaded by 7461 // dereferencing the result of va_next. 7462 for (unsigned GPRIndex = 7463 (CCInfo.getStackSize() - LinkageSize) / PtrByteSize; 7464 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7465 7466 const Register VReg = 7467 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7468 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7469 7470 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7471 SDValue Store = 7472 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7473 MemOps.push_back(Store); 7474 // Increment the address for the next argument to store. 7475 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7476 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7477 } 7478 } 7479 7480 if (!MemOps.empty()) 7481 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7482 7483 return Chain; 7484 } 7485 7486 SDValue PPCTargetLowering::LowerCall_AIX( 7487 SDValue Chain, SDValue Callee, CallFlags CFlags, 7488 const SmallVectorImpl<ISD::OutputArg> &Outs, 7489 const SmallVectorImpl<SDValue> &OutVals, 7490 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7491 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7492 const CallBase *CB) const { 7493 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7494 // AIX ABI stack frame layout. 7495 7496 assert((CFlags.CallConv == CallingConv::C || 7497 CFlags.CallConv == CallingConv::Cold || 7498 CFlags.CallConv == CallingConv::Fast) && 7499 "Unexpected calling convention!"); 7500 7501 if (CFlags.IsPatchPoint) 7502 report_fatal_error("This call type is unimplemented on AIX."); 7503 7504 const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); 7505 7506 MachineFunction &MF = DAG.getMachineFunction(); 7507 SmallVector<CCValAssign, 16> ArgLocs; 7508 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7509 *DAG.getContext()); 7510 7511 // Reserve space for the linkage save area (LSA) on the stack. 7512 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7513 // [SP][CR][LR][2 x reserved][TOC]. 7514 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7515 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7516 const bool IsPPC64 = Subtarget.isPPC64(); 7517 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7518 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7519 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7520 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7521 7522 // The prolog code of the callee may store up to 8 GPR argument registers to 7523 // the stack, allowing va_start to index over them in memory if the callee 7524 // is variadic. 7525 // Because we cannot tell if this is needed on the caller side, we have to 7526 // conservatively assume that it is needed. As such, make sure we have at 7527 // least enough stack space for the caller to store the 8 GPRs. 7528 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7529 const unsigned NumBytes = std::max<unsigned>( 7530 LinkageSize + MinParameterSaveAreaSize, CCInfo.getStackSize()); 7531 7532 // Adjust the stack pointer for the new arguments... 7533 // These operations are automatically eliminated by the prolog/epilog pass. 7534 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7535 SDValue CallSeqStart = Chain; 7536 7537 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7538 SmallVector<SDValue, 8> MemOpChains; 7539 7540 // Set up a copy of the stack pointer for loading and storing any 7541 // arguments that may not fit in the registers available for argument 7542 // passing. 7543 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7544 : DAG.getRegister(PPC::R1, MVT::i32); 7545 7546 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7547 const unsigned ValNo = ArgLocs[I].getValNo(); 7548 SDValue Arg = OutVals[ValNo]; 7549 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7550 7551 if (Flags.isByVal()) { 7552 const unsigned ByValSize = Flags.getByValSize(); 7553 7554 // Nothing to do for zero-sized ByVals on the caller side. 7555 if (!ByValSize) { 7556 ++I; 7557 continue; 7558 } 7559 7560 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7561 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7562 (LoadOffset != 0) 7563 ? DAG.getObjectPtrOffset( 7564 dl, Arg, TypeSize::getFixed(LoadOffset)) 7565 : Arg, 7566 MachinePointerInfo(), VT); 7567 }; 7568 7569 unsigned LoadOffset = 0; 7570 7571 // Initialize registers, which are fully occupied by the by-val argument. 7572 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7573 SDValue Load = GetLoad(PtrVT, LoadOffset); 7574 MemOpChains.push_back(Load.getValue(1)); 7575 LoadOffset += PtrByteSize; 7576 const CCValAssign &ByValVA = ArgLocs[I++]; 7577 assert(ByValVA.getValNo() == ValNo && 7578 "Unexpected location for pass-by-value argument."); 7579 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7580 } 7581 7582 if (LoadOffset == ByValSize) 7583 continue; 7584 7585 // There must be one more loc to handle the remainder. 7586 assert(ArgLocs[I].getValNo() == ValNo && 7587 "Expected additional location for by-value argument."); 7588 7589 if (ArgLocs[I].isMemLoc()) { 7590 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7591 const CCValAssign &ByValVA = ArgLocs[I++]; 7592 ISD::ArgFlagsTy MemcpyFlags = Flags; 7593 // Only memcpy the bytes that don't pass in register. 7594 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7595 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7596 (LoadOffset != 0) ? DAG.getObjectPtrOffset( 7597 dl, Arg, TypeSize::getFixed(LoadOffset)) 7598 : Arg, 7599 DAG.getObjectPtrOffset( 7600 dl, StackPtr, TypeSize::getFixed(ByValVA.getLocMemOffset())), 7601 CallSeqStart, MemcpyFlags, DAG, dl); 7602 continue; 7603 } 7604 7605 // Initialize the final register residue. 7606 // Any residue that occupies the final by-val arg register must be 7607 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7608 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7609 // 2 and 1 byte loads. 7610 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7611 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7612 "Unexpected register residue for by-value argument."); 7613 SDValue ResidueVal; 7614 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7615 const unsigned N = llvm::bit_floor(ResidueBytes - Bytes); 7616 const MVT VT = 7617 N == 1 ? MVT::i8 7618 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7619 SDValue Load = GetLoad(VT, LoadOffset); 7620 MemOpChains.push_back(Load.getValue(1)); 7621 LoadOffset += N; 7622 Bytes += N; 7623 7624 // By-val arguments are passed left-justfied in register. 7625 // Every load here needs to be shifted, otherwise a full register load 7626 // should have been used. 7627 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7628 "Unexpected load emitted during handling of pass-by-value " 7629 "argument."); 7630 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7631 EVT ShiftAmountTy = 7632 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7633 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7634 SDValue ShiftedLoad = 7635 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7636 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7637 ShiftedLoad) 7638 : ShiftedLoad; 7639 } 7640 7641 const CCValAssign &ByValVA = ArgLocs[I++]; 7642 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7643 continue; 7644 } 7645 7646 CCValAssign &VA = ArgLocs[I++]; 7647 const MVT LocVT = VA.getLocVT(); 7648 const MVT ValVT = VA.getValVT(); 7649 7650 switch (VA.getLocInfo()) { 7651 default: 7652 report_fatal_error("Unexpected argument extension type."); 7653 case CCValAssign::Full: 7654 break; 7655 case CCValAssign::ZExt: 7656 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7657 break; 7658 case CCValAssign::SExt: 7659 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7660 break; 7661 } 7662 7663 if (VA.isRegLoc() && !VA.needsCustom()) { 7664 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7665 continue; 7666 } 7667 7668 // Vector arguments passed to VarArg functions need custom handling when 7669 // they are passed (at least partially) in GPRs. 7670 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7671 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7672 // Store value to its stack slot. 7673 SDValue PtrOff = 7674 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7675 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7676 SDValue Store = 7677 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7678 MemOpChains.push_back(Store); 7679 const unsigned OriginalValNo = VA.getValNo(); 7680 // Then load the GPRs from the stack 7681 unsigned LoadOffset = 0; 7682 auto HandleCustomVecRegLoc = [&]() { 7683 assert(I != E && "Unexpected end of CCvalAssigns."); 7684 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7685 "Expected custom RegLoc."); 7686 CCValAssign RegVA = ArgLocs[I++]; 7687 assert(RegVA.getValNo() == OriginalValNo && 7688 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7689 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7690 DAG.getConstant(LoadOffset, dl, PtrVT)); 7691 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7692 MemOpChains.push_back(Load.getValue(1)); 7693 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7694 LoadOffset += PtrByteSize; 7695 }; 7696 7697 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7698 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7699 // R10. 7700 HandleCustomVecRegLoc(); 7701 HandleCustomVecRegLoc(); 7702 7703 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7704 ArgLocs[I].getValNo() == OriginalValNo) { 7705 assert(!IsPPC64 && 7706 "Only 2 custom RegLocs expected for 64-bit codegen."); 7707 HandleCustomVecRegLoc(); 7708 HandleCustomVecRegLoc(); 7709 } 7710 7711 continue; 7712 } 7713 7714 if (VA.isMemLoc()) { 7715 SDValue PtrOff = 7716 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7717 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7718 MemOpChains.push_back( 7719 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7720 7721 continue; 7722 } 7723 7724 if (!ValVT.isFloatingPoint()) 7725 report_fatal_error( 7726 "Unexpected register handling for calling convention."); 7727 7728 // Custom handling is used for GPR initializations for vararg float 7729 // arguments. 7730 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7731 LocVT.isInteger() && 7732 "Custom register handling only expected for VarArg."); 7733 7734 SDValue ArgAsInt = 7735 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7736 7737 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7738 // f32 in 32-bit GPR 7739 // f64 in 64-bit GPR 7740 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7741 else if (Arg.getValueType().getFixedSizeInBits() < 7742 LocVT.getFixedSizeInBits()) 7743 // f32 in 64-bit GPR. 7744 RegsToPass.push_back(std::make_pair( 7745 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7746 else { 7747 // f64 in two 32-bit GPRs 7748 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7749 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7750 "Unexpected custom register for argument!"); 7751 CCValAssign &GPR1 = VA; 7752 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7753 DAG.getConstant(32, dl, MVT::i8)); 7754 RegsToPass.push_back(std::make_pair( 7755 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7756 7757 if (I != E) { 7758 // If only 1 GPR was available, there will only be one custom GPR and 7759 // the argument will also pass in memory. 7760 CCValAssign &PeekArg = ArgLocs[I]; 7761 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7762 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7763 CCValAssign &GPR2 = ArgLocs[I++]; 7764 RegsToPass.push_back(std::make_pair( 7765 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7766 } 7767 } 7768 } 7769 } 7770 7771 if (!MemOpChains.empty()) 7772 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7773 7774 // For indirect calls, we need to save the TOC base to the stack for 7775 // restoration after the call. 7776 if (CFlags.IsIndirect) { 7777 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7778 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7779 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7780 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7781 const unsigned TOCSaveOffset = 7782 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7783 7784 setUsesTOCBasePtr(DAG); 7785 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7786 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7787 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7788 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7789 Chain = DAG.getStore( 7790 Val.getValue(1), dl, Val, AddPtr, 7791 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7792 } 7793 7794 // Build a sequence of copy-to-reg nodes chained together with token chain 7795 // and flag operands which copy the outgoing args into the appropriate regs. 7796 SDValue InGlue; 7797 for (auto Reg : RegsToPass) { 7798 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InGlue); 7799 InGlue = Chain.getValue(1); 7800 } 7801 7802 const int SPDiff = 0; 7803 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, 7804 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7805 } 7806 7807 bool 7808 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7809 MachineFunction &MF, bool isVarArg, 7810 const SmallVectorImpl<ISD::OutputArg> &Outs, 7811 LLVMContext &Context) const { 7812 SmallVector<CCValAssign, 16> RVLocs; 7813 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7814 return CCInfo.CheckReturn( 7815 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7816 ? RetCC_PPC_Cold 7817 : RetCC_PPC); 7818 } 7819 7820 SDValue 7821 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7822 bool isVarArg, 7823 const SmallVectorImpl<ISD::OutputArg> &Outs, 7824 const SmallVectorImpl<SDValue> &OutVals, 7825 const SDLoc &dl, SelectionDAG &DAG) const { 7826 SmallVector<CCValAssign, 16> RVLocs; 7827 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7828 *DAG.getContext()); 7829 CCInfo.AnalyzeReturn(Outs, 7830 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7831 ? RetCC_PPC_Cold 7832 : RetCC_PPC); 7833 7834 SDValue Glue; 7835 SmallVector<SDValue, 4> RetOps(1, Chain); 7836 7837 // Copy the result values into the output registers. 7838 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7839 CCValAssign &VA = RVLocs[i]; 7840 assert(VA.isRegLoc() && "Can only return in registers!"); 7841 7842 SDValue Arg = OutVals[RealResIdx]; 7843 7844 switch (VA.getLocInfo()) { 7845 default: llvm_unreachable("Unknown loc info!"); 7846 case CCValAssign::Full: break; 7847 case CCValAssign::AExt: 7848 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7849 break; 7850 case CCValAssign::ZExt: 7851 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7852 break; 7853 case CCValAssign::SExt: 7854 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7855 break; 7856 } 7857 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7858 bool isLittleEndian = Subtarget.isLittleEndian(); 7859 // Legalize ret f64 -> ret 2 x i32. 7860 SDValue SVal = 7861 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7862 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7863 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); 7864 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7865 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7866 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7867 Glue = Chain.getValue(1); 7868 VA = RVLocs[++i]; // skip ahead to next loc 7869 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); 7870 } else 7871 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue); 7872 Glue = Chain.getValue(1); 7873 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7874 } 7875 7876 RetOps[0] = Chain; // Update chain. 7877 7878 // Add the glue if we have it. 7879 if (Glue.getNode()) 7880 RetOps.push_back(Glue); 7881 7882 return DAG.getNode(PPCISD::RET_GLUE, dl, MVT::Other, RetOps); 7883 } 7884 7885 SDValue 7886 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7887 SelectionDAG &DAG) const { 7888 SDLoc dl(Op); 7889 7890 // Get the correct type for integers. 7891 EVT IntVT = Op.getValueType(); 7892 7893 // Get the inputs. 7894 SDValue Chain = Op.getOperand(0); 7895 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7896 // Build a DYNAREAOFFSET node. 7897 SDValue Ops[2] = {Chain, FPSIdx}; 7898 SDVTList VTs = DAG.getVTList(IntVT); 7899 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7900 } 7901 7902 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7903 SelectionDAG &DAG) const { 7904 // When we pop the dynamic allocation we need to restore the SP link. 7905 SDLoc dl(Op); 7906 7907 // Get the correct type for pointers. 7908 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7909 7910 // Construct the stack pointer operand. 7911 bool isPPC64 = Subtarget.isPPC64(); 7912 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7913 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7914 7915 // Get the operands for the STACKRESTORE. 7916 SDValue Chain = Op.getOperand(0); 7917 SDValue SaveSP = Op.getOperand(1); 7918 7919 // Load the old link SP. 7920 SDValue LoadLinkSP = 7921 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7922 7923 // Restore the stack pointer. 7924 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7925 7926 // Store the old link SP. 7927 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7928 } 7929 7930 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7931 MachineFunction &MF = DAG.getMachineFunction(); 7932 bool isPPC64 = Subtarget.isPPC64(); 7933 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7934 7935 // Get current frame pointer save index. The users of this index will be 7936 // primarily DYNALLOC instructions. 7937 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7938 int RASI = FI->getReturnAddrSaveIndex(); 7939 7940 // If the frame pointer save index hasn't been defined yet. 7941 if (!RASI) { 7942 // Find out what the fix offset of the frame pointer save area. 7943 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7944 // Allocate the frame index for frame pointer save area. 7945 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7946 // Save the result. 7947 FI->setReturnAddrSaveIndex(RASI); 7948 } 7949 return DAG.getFrameIndex(RASI, PtrVT); 7950 } 7951 7952 SDValue 7953 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7954 MachineFunction &MF = DAG.getMachineFunction(); 7955 bool isPPC64 = Subtarget.isPPC64(); 7956 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7957 7958 // Get current frame pointer save index. The users of this index will be 7959 // primarily DYNALLOC instructions. 7960 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7961 int FPSI = FI->getFramePointerSaveIndex(); 7962 7963 // If the frame pointer save index hasn't been defined yet. 7964 if (!FPSI) { 7965 // Find out what the fix offset of the frame pointer save area. 7966 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7967 // Allocate the frame index for frame pointer save area. 7968 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7969 // Save the result. 7970 FI->setFramePointerSaveIndex(FPSI); 7971 } 7972 return DAG.getFrameIndex(FPSI, PtrVT); 7973 } 7974 7975 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7976 SelectionDAG &DAG) const { 7977 MachineFunction &MF = DAG.getMachineFunction(); 7978 // Get the inputs. 7979 SDValue Chain = Op.getOperand(0); 7980 SDValue Size = Op.getOperand(1); 7981 SDLoc dl(Op); 7982 7983 // Get the correct type for pointers. 7984 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7985 // Negate the size. 7986 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7987 DAG.getConstant(0, dl, PtrVT), Size); 7988 // Construct a node for the frame pointer save index. 7989 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7990 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7991 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7992 if (hasInlineStackProbe(MF)) 7993 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7994 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7995 } 7996 7997 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7998 SelectionDAG &DAG) const { 7999 MachineFunction &MF = DAG.getMachineFunction(); 8000 8001 bool isPPC64 = Subtarget.isPPC64(); 8002 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8003 8004 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 8005 return DAG.getFrameIndex(FI, PtrVT); 8006 } 8007 8008 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 8009 SelectionDAG &DAG) const { 8010 SDLoc DL(Op); 8011 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 8012 DAG.getVTList(MVT::i32, MVT::Other), 8013 Op.getOperand(0), Op.getOperand(1)); 8014 } 8015 8016 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 8017 SelectionDAG &DAG) const { 8018 SDLoc DL(Op); 8019 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 8020 Op.getOperand(0), Op.getOperand(1)); 8021 } 8022 8023 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 8024 if (Op.getValueType().isVector()) 8025 return LowerVectorLoad(Op, DAG); 8026 8027 assert(Op.getValueType() == MVT::i1 && 8028 "Custom lowering only for i1 loads"); 8029 8030 // First, load 8 bits into 32 bits, then truncate to 1 bit. 8031 8032 SDLoc dl(Op); 8033 LoadSDNode *LD = cast<LoadSDNode>(Op); 8034 8035 SDValue Chain = LD->getChain(); 8036 SDValue BasePtr = LD->getBasePtr(); 8037 MachineMemOperand *MMO = LD->getMemOperand(); 8038 8039 SDValue NewLD = 8040 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 8041 BasePtr, MVT::i8, MMO); 8042 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 8043 8044 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 8045 return DAG.getMergeValues(Ops, dl); 8046 } 8047 8048 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 8049 if (Op.getOperand(1).getValueType().isVector()) 8050 return LowerVectorStore(Op, DAG); 8051 8052 assert(Op.getOperand(1).getValueType() == MVT::i1 && 8053 "Custom lowering only for i1 stores"); 8054 8055 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 8056 8057 SDLoc dl(Op); 8058 StoreSDNode *ST = cast<StoreSDNode>(Op); 8059 8060 SDValue Chain = ST->getChain(); 8061 SDValue BasePtr = ST->getBasePtr(); 8062 SDValue Value = ST->getValue(); 8063 MachineMemOperand *MMO = ST->getMemOperand(); 8064 8065 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 8066 Value); 8067 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 8068 } 8069 8070 // FIXME: Remove this once the ANDI glue bug is fixed: 8071 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 8072 assert(Op.getValueType() == MVT::i1 && 8073 "Custom lowering only for i1 results"); 8074 8075 SDLoc DL(Op); 8076 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 8077 } 8078 8079 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 8080 SelectionDAG &DAG) const { 8081 8082 // Implements a vector truncate that fits in a vector register as a shuffle. 8083 // We want to legalize vector truncates down to where the source fits in 8084 // a vector register (and target is therefore smaller than vector register 8085 // size). At that point legalization will try to custom lower the sub-legal 8086 // result and get here - where we can contain the truncate as a single target 8087 // operation. 8088 8089 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 8090 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 8091 // 8092 // We will implement it for big-endian ordering as this (where x denotes 8093 // undefined): 8094 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8095 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8096 // 8097 // The same operation in little-endian ordering will be: 8098 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8099 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8100 8101 EVT TrgVT = Op.getValueType(); 8102 assert(TrgVT.isVector() && "Vector type expected."); 8103 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8104 EVT EltVT = TrgVT.getVectorElementType(); 8105 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 8106 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 8107 !llvm::has_single_bit<uint32_t>(EltVT.getSizeInBits())) 8108 return SDValue(); 8109 8110 SDValue N1 = Op.getOperand(0); 8111 EVT SrcVT = N1.getValueType(); 8112 unsigned SrcSize = SrcVT.getSizeInBits(); 8113 if (SrcSize > 256 || !isPowerOf2_32(SrcVT.getVectorNumElements()) || 8114 !llvm::has_single_bit<uint32_t>( 8115 SrcVT.getVectorElementType().getSizeInBits())) 8116 return SDValue(); 8117 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 8118 return SDValue(); 8119 8120 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8121 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8122 8123 SDLoc DL(Op); 8124 SDValue Op1, Op2; 8125 if (SrcSize == 256) { 8126 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 8127 EVT SplitVT = 8128 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 8129 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 8130 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8131 DAG.getConstant(0, DL, VecIdxTy)); 8132 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8133 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 8134 } 8135 else { 8136 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8137 Op2 = DAG.getUNDEF(WideVT); 8138 } 8139 8140 // First list the elements we want to keep. 8141 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8142 SmallVector<int, 16> ShuffV; 8143 if (Subtarget.isLittleEndian()) 8144 for (unsigned i = 0; i < TrgNumElts; ++i) 8145 ShuffV.push_back(i * SizeMult); 8146 else 8147 for (unsigned i = 1; i <= TrgNumElts; ++i) 8148 ShuffV.push_back(i * SizeMult - 1); 8149 8150 // Populate the remaining elements with undefs. 8151 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8152 // ShuffV.push_back(i + WideNumElts); 8153 ShuffV.push_back(WideNumElts + 1); 8154 8155 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 8156 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 8157 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 8158 } 8159 8160 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8161 /// possible. 8162 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8163 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8164 EVT ResVT = Op.getValueType(); 8165 EVT CmpVT = Op.getOperand(0).getValueType(); 8166 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8167 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8168 SDLoc dl(Op); 8169 8170 // Without power9-vector, we don't have native instruction for f128 comparison. 8171 // Following transformation to libcall is needed for setcc: 8172 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 8173 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 8174 SDValue Z = DAG.getSetCC( 8175 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 8176 LHS, RHS, CC); 8177 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 8178 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 8179 } 8180 8181 // Not FP, or using SPE? Not a fsel. 8182 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 8183 Subtarget.hasSPE()) 8184 return Op; 8185 8186 SDNodeFlags Flags = Op.getNode()->getFlags(); 8187 8188 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 8189 // presence of infinities. 8190 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8191 switch (CC) { 8192 default: 8193 break; 8194 case ISD::SETOGT: 8195 case ISD::SETGT: 8196 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 8197 case ISD::SETOLT: 8198 case ISD::SETLT: 8199 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 8200 } 8201 } 8202 8203 // We might be able to do better than this under some circumstances, but in 8204 // general, fsel-based lowering of select is a finite-math-only optimization. 8205 // For more information, see section F.3 of the 2.06 ISA specification. 8206 // With ISA 3.0 8207 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8208 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()) || 8209 ResVT == MVT::f128) 8210 return Op; 8211 8212 // If the RHS of the comparison is a 0.0, we don't need to do the 8213 // subtraction at all. 8214 SDValue Sel1; 8215 if (isFloatingPointZero(RHS)) 8216 switch (CC) { 8217 default: break; // SETUO etc aren't handled by fsel. 8218 case ISD::SETNE: 8219 std::swap(TV, FV); 8220 [[fallthrough]]; 8221 case ISD::SETEQ: 8222 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8223 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8224 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8225 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8226 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8227 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8228 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8229 case ISD::SETULT: 8230 case ISD::SETLT: 8231 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8232 [[fallthrough]]; 8233 case ISD::SETOGE: 8234 case ISD::SETGE: 8235 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8236 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8237 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8238 case ISD::SETUGT: 8239 case ISD::SETGT: 8240 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8241 [[fallthrough]]; 8242 case ISD::SETOLE: 8243 case ISD::SETLE: 8244 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8245 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8246 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8247 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8248 } 8249 8250 SDValue Cmp; 8251 switch (CC) { 8252 default: break; // SETUO etc aren't handled by fsel. 8253 case ISD::SETNE: 8254 std::swap(TV, FV); 8255 [[fallthrough]]; 8256 case ISD::SETEQ: 8257 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8258 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8259 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8260 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8261 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8262 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8263 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8264 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8265 case ISD::SETULT: 8266 case ISD::SETLT: 8267 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8268 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8269 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8270 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8271 case ISD::SETOGE: 8272 case ISD::SETGE: 8273 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8274 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8275 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8276 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8277 case ISD::SETUGT: 8278 case ISD::SETGT: 8279 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8280 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8281 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8282 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8283 case ISD::SETOLE: 8284 case ISD::SETLE: 8285 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8286 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8287 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8288 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8289 } 8290 return Op; 8291 } 8292 8293 static unsigned getPPCStrictOpcode(unsigned Opc) { 8294 switch (Opc) { 8295 default: 8296 llvm_unreachable("No strict version of this opcode!"); 8297 case PPCISD::FCTIDZ: 8298 return PPCISD::STRICT_FCTIDZ; 8299 case PPCISD::FCTIWZ: 8300 return PPCISD::STRICT_FCTIWZ; 8301 case PPCISD::FCTIDUZ: 8302 return PPCISD::STRICT_FCTIDUZ; 8303 case PPCISD::FCTIWUZ: 8304 return PPCISD::STRICT_FCTIWUZ; 8305 case PPCISD::FCFID: 8306 return PPCISD::STRICT_FCFID; 8307 case PPCISD::FCFIDU: 8308 return PPCISD::STRICT_FCFIDU; 8309 case PPCISD::FCFIDS: 8310 return PPCISD::STRICT_FCFIDS; 8311 case PPCISD::FCFIDUS: 8312 return PPCISD::STRICT_FCFIDUS; 8313 } 8314 } 8315 8316 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8317 const PPCSubtarget &Subtarget) { 8318 SDLoc dl(Op); 8319 bool IsStrict = Op->isStrictFPOpcode(); 8320 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8321 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8322 8323 // TODO: Any other flags to propagate? 8324 SDNodeFlags Flags; 8325 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8326 8327 // For strict nodes, source is the second operand. 8328 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8329 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8330 MVT DestTy = Op.getSimpleValueType(); 8331 assert(Src.getValueType().isFloatingPoint() && 8332 (DestTy == MVT::i8 || DestTy == MVT::i16 || DestTy == MVT::i32 || 8333 DestTy == MVT::i64) && 8334 "Invalid FP_TO_INT types"); 8335 if (Src.getValueType() == MVT::f32) { 8336 if (IsStrict) { 8337 Src = 8338 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8339 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8340 Chain = Src.getValue(1); 8341 } else 8342 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8343 } 8344 if ((DestTy == MVT::i8 || DestTy == MVT::i16) && Subtarget.hasP9Vector()) 8345 DestTy = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 8346 unsigned Opc = ISD::DELETED_NODE; 8347 switch (DestTy.SimpleTy) { 8348 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8349 case MVT::i32: 8350 Opc = IsSigned ? PPCISD::FCTIWZ 8351 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8352 break; 8353 case MVT::i64: 8354 assert((IsSigned || Subtarget.hasFPCVT()) && 8355 "i64 FP_TO_UINT is supported only with FPCVT"); 8356 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8357 } 8358 EVT ConvTy = Src.getValueType() == MVT::f128 ? MVT::f128 : MVT::f64; 8359 SDValue Conv; 8360 if (IsStrict) { 8361 Opc = getPPCStrictOpcode(Opc); 8362 Conv = DAG.getNode(Opc, dl, DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, 8363 Flags); 8364 } else { 8365 Conv = DAG.getNode(Opc, dl, ConvTy, Src); 8366 } 8367 return Conv; 8368 } 8369 8370 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8371 SelectionDAG &DAG, 8372 const SDLoc &dl) const { 8373 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8374 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8375 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8376 bool IsStrict = Op->isStrictFPOpcode(); 8377 8378 // Convert the FP value to an int value through memory. 8379 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8380 (IsSigned || Subtarget.hasFPCVT()); 8381 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8382 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8383 MachinePointerInfo MPI = 8384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8385 8386 // Emit a store to the stack slot. 8387 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8388 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8389 if (i32Stack) { 8390 MachineFunction &MF = DAG.getMachineFunction(); 8391 Alignment = Align(4); 8392 MachineMemOperand *MMO = 8393 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8394 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8395 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8396 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8397 } else 8398 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8399 8400 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8401 // add in a bias on big endian. 8402 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8403 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8404 DAG.getConstant(4, dl, FIPtr.getValueType())); 8405 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8406 } 8407 8408 RLI.Chain = Chain; 8409 RLI.Ptr = FIPtr; 8410 RLI.MPI = MPI; 8411 RLI.Alignment = Alignment; 8412 } 8413 8414 /// Custom lowers floating point to integer conversions to use 8415 /// the direct move instructions available in ISA 2.07 to avoid the 8416 /// need for load/store combinations. 8417 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8418 SelectionDAG &DAG, 8419 const SDLoc &dl) const { 8420 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8421 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8422 if (Op->isStrictFPOpcode()) 8423 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8424 else 8425 return Mov; 8426 } 8427 8428 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8429 const SDLoc &dl) const { 8430 bool IsStrict = Op->isStrictFPOpcode(); 8431 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8432 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8433 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8434 EVT SrcVT = Src.getValueType(); 8435 EVT DstVT = Op.getValueType(); 8436 8437 // FP to INT conversions are legal for f128. 8438 if (SrcVT == MVT::f128) 8439 return Subtarget.hasP9Vector() ? Op : SDValue(); 8440 8441 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8442 // PPC (the libcall is not available). 8443 if (SrcVT == MVT::ppcf128) { 8444 if (DstVT == MVT::i32) { 8445 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8446 // set other fast-math flags to FP operations in both strict and 8447 // non-strict cases. (FP_TO_SINT, FSUB) 8448 SDNodeFlags Flags; 8449 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8450 8451 if (IsSigned) { 8452 SDValue Lo, Hi; 8453 std::tie(Lo, Hi) = DAG.SplitScalar(Src, dl, MVT::f64, MVT::f64); 8454 8455 // Add the two halves of the long double in round-to-zero mode, and use 8456 // a smaller FP_TO_SINT. 8457 if (IsStrict) { 8458 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8459 DAG.getVTList(MVT::f64, MVT::Other), 8460 {Op.getOperand(0), Lo, Hi}, Flags); 8461 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8462 DAG.getVTList(MVT::i32, MVT::Other), 8463 {Res.getValue(1), Res}, Flags); 8464 } else { 8465 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8466 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8467 } 8468 } else { 8469 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8470 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8471 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8472 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8473 if (IsStrict) { 8474 // Sel = Src < 0x80000000 8475 // FltOfs = select Sel, 0.0, 0x80000000 8476 // IntOfs = select Sel, 0, 0x80000000 8477 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8478 SDValue Chain = Op.getOperand(0); 8479 EVT SetCCVT = 8480 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8481 EVT DstSetCCVT = 8482 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8483 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8484 Chain, true); 8485 Chain = Sel.getValue(1); 8486 8487 SDValue FltOfs = DAG.getSelect( 8488 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8489 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8490 8491 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8492 DAG.getVTList(SrcVT, MVT::Other), 8493 {Chain, Src, FltOfs}, Flags); 8494 Chain = Val.getValue(1); 8495 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8496 DAG.getVTList(DstVT, MVT::Other), 8497 {Chain, Val}, Flags); 8498 Chain = SInt.getValue(1); 8499 SDValue IntOfs = DAG.getSelect( 8500 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8501 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8502 return DAG.getMergeValues({Result, Chain}, dl); 8503 } else { 8504 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8505 // FIXME: generated code sucks. 8506 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8507 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8508 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8509 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8510 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8511 } 8512 } 8513 } 8514 8515 return SDValue(); 8516 } 8517 8518 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8519 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8520 8521 ReuseLoadInfo RLI; 8522 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8523 8524 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8525 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8526 } 8527 8528 // We're trying to insert a regular store, S, and then a load, L. If the 8529 // incoming value, O, is a load, we might just be able to have our load use the 8530 // address used by O. However, we don't know if anything else will store to 8531 // that address before we can load from it. To prevent this situation, we need 8532 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8533 // the same chain operand as O, we create a token factor from the chain results 8534 // of O and L, and we replace all uses of O's chain result with that token 8535 // factor (see spliceIntoChain below for this last part). 8536 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8537 ReuseLoadInfo &RLI, 8538 SelectionDAG &DAG, 8539 ISD::LoadExtType ET) const { 8540 // Conservatively skip reusing for constrained FP nodes. 8541 if (Op->isStrictFPOpcode()) 8542 return false; 8543 8544 SDLoc dl(Op); 8545 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8546 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8547 if (ET == ISD::NON_EXTLOAD && 8548 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8549 isOperationLegalOrCustom(Op.getOpcode(), 8550 Op.getOperand(0).getValueType())) { 8551 8552 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8553 return true; 8554 } 8555 8556 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8557 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8558 LD->isNonTemporal()) 8559 return false; 8560 if (LD->getMemoryVT() != MemVT) 8561 return false; 8562 8563 // If the result of the load is an illegal type, then we can't build a 8564 // valid chain for reuse since the legalised loads and token factor node that 8565 // ties the legalised loads together uses a different output chain then the 8566 // illegal load. 8567 if (!isTypeLegal(LD->getValueType(0))) 8568 return false; 8569 8570 RLI.Ptr = LD->getBasePtr(); 8571 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8572 assert(LD->getAddressingMode() == ISD::PRE_INC && 8573 "Non-pre-inc AM on PPC?"); 8574 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8575 LD->getOffset()); 8576 } 8577 8578 RLI.Chain = LD->getChain(); 8579 RLI.MPI = LD->getPointerInfo(); 8580 RLI.IsDereferenceable = LD->isDereferenceable(); 8581 RLI.IsInvariant = LD->isInvariant(); 8582 RLI.Alignment = LD->getAlign(); 8583 RLI.AAInfo = LD->getAAInfo(); 8584 RLI.Ranges = LD->getRanges(); 8585 8586 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8587 return true; 8588 } 8589 8590 // Given the head of the old chain, ResChain, insert a token factor containing 8591 // it and NewResChain, and make users of ResChain now be users of that token 8592 // factor. 8593 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8594 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8595 SDValue NewResChain, 8596 SelectionDAG &DAG) const { 8597 if (!ResChain) 8598 return; 8599 8600 SDLoc dl(NewResChain); 8601 8602 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8603 NewResChain, DAG.getUNDEF(MVT::Other)); 8604 assert(TF.getNode() != NewResChain.getNode() && 8605 "A new TF really is required here"); 8606 8607 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8608 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8609 } 8610 8611 /// Analyze profitability of direct move 8612 /// prefer float load to int load plus direct move 8613 /// when there is no integer use of int load 8614 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8615 SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode(); 8616 if (Origin->getOpcode() != ISD::LOAD) 8617 return true; 8618 8619 // If there is no LXSIBZX/LXSIHZX, like Power8, 8620 // prefer direct move if the memory size is 1 or 2 bytes. 8621 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8622 if (!Subtarget.hasP9Vector() && 8623 (!MMO->getSize().hasValue() || MMO->getSize().getValue() <= 2)) 8624 return true; 8625 8626 for (SDNode::use_iterator UI = Origin->use_begin(), 8627 UE = Origin->use_end(); 8628 UI != UE; ++UI) { 8629 8630 // Only look at the users of the loaded value. 8631 if (UI.getUse().get().getResNo() != 0) 8632 continue; 8633 8634 if (UI->getOpcode() != ISD::SINT_TO_FP && 8635 UI->getOpcode() != ISD::UINT_TO_FP && 8636 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8637 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8638 return true; 8639 } 8640 8641 return false; 8642 } 8643 8644 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8645 const PPCSubtarget &Subtarget, 8646 SDValue Chain = SDValue()) { 8647 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8648 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8649 SDLoc dl(Op); 8650 8651 // TODO: Any other flags to propagate? 8652 SDNodeFlags Flags; 8653 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8654 8655 // If we have FCFIDS, then use it when converting to single-precision. 8656 // Otherwise, convert to double-precision and then round. 8657 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8658 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8659 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8660 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8661 if (Op->isStrictFPOpcode()) { 8662 if (!Chain) 8663 Chain = Op.getOperand(0); 8664 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8665 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8666 } else 8667 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8668 } 8669 8670 /// Custom lowers integer to floating point conversions to use 8671 /// the direct move instructions available in ISA 2.07 to avoid the 8672 /// need for load/store combinations. 8673 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8674 SelectionDAG &DAG, 8675 const SDLoc &dl) const { 8676 assert((Op.getValueType() == MVT::f32 || 8677 Op.getValueType() == MVT::f64) && 8678 "Invalid floating point type as target of conversion"); 8679 assert(Subtarget.hasFPCVT() && 8680 "Int to FP conversions with direct moves require FPCVT"); 8681 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8682 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8683 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8684 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8685 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8686 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8687 return convertIntToFP(Op, Mov, DAG, Subtarget); 8688 } 8689 8690 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8691 8692 EVT VecVT = Vec.getValueType(); 8693 assert(VecVT.isVector() && "Expected a vector type."); 8694 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8695 8696 EVT EltVT = VecVT.getVectorElementType(); 8697 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8698 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8699 8700 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8701 SmallVector<SDValue, 16> Ops(NumConcat); 8702 Ops[0] = Vec; 8703 SDValue UndefVec = DAG.getUNDEF(VecVT); 8704 for (unsigned i = 1; i < NumConcat; ++i) 8705 Ops[i] = UndefVec; 8706 8707 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8708 } 8709 8710 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8711 const SDLoc &dl) const { 8712 bool IsStrict = Op->isStrictFPOpcode(); 8713 unsigned Opc = Op.getOpcode(); 8714 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8715 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8716 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8717 "Unexpected conversion type"); 8718 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8719 "Supports conversions to v2f64/v4f32 only."); 8720 8721 // TODO: Any other flags to propagate? 8722 SDNodeFlags Flags; 8723 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8724 8725 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8726 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8727 8728 SDValue Wide = widenVec(DAG, Src, dl); 8729 EVT WideVT = Wide.getValueType(); 8730 unsigned WideNumElts = WideVT.getVectorNumElements(); 8731 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8732 8733 SmallVector<int, 16> ShuffV; 8734 for (unsigned i = 0; i < WideNumElts; ++i) 8735 ShuffV.push_back(i + WideNumElts); 8736 8737 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8738 int SaveElts = FourEltRes ? 4 : 2; 8739 if (Subtarget.isLittleEndian()) 8740 for (int i = 0; i < SaveElts; i++) 8741 ShuffV[i * Stride] = i; 8742 else 8743 for (int i = 1; i <= SaveElts; i++) 8744 ShuffV[i * Stride - 1] = i - 1; 8745 8746 SDValue ShuffleSrc2 = 8747 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8748 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8749 8750 SDValue Extend; 8751 if (SignedConv) { 8752 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8753 EVT ExtVT = Src.getValueType(); 8754 if (Subtarget.hasP9Altivec()) 8755 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8756 IntermediateVT.getVectorNumElements()); 8757 8758 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8759 DAG.getValueType(ExtVT)); 8760 } else 8761 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8762 8763 if (IsStrict) 8764 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8765 {Op.getOperand(0), Extend}, Flags); 8766 8767 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8768 } 8769 8770 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8771 SelectionDAG &DAG) const { 8772 SDLoc dl(Op); 8773 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8774 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8775 bool IsStrict = Op->isStrictFPOpcode(); 8776 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8777 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8778 8779 // TODO: Any other flags to propagate? 8780 SDNodeFlags Flags; 8781 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8782 8783 EVT InVT = Src.getValueType(); 8784 EVT OutVT = Op.getValueType(); 8785 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8786 isOperationCustom(Op.getOpcode(), InVT)) 8787 return LowerINT_TO_FPVector(Op, DAG, dl); 8788 8789 // Conversions to f128 are legal. 8790 if (Op.getValueType() == MVT::f128) 8791 return Subtarget.hasP9Vector() ? Op : SDValue(); 8792 8793 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8794 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8795 return SDValue(); 8796 8797 if (Src.getValueType() == MVT::i1) { 8798 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8799 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8800 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8801 if (IsStrict) 8802 return DAG.getMergeValues({Sel, Chain}, dl); 8803 else 8804 return Sel; 8805 } 8806 8807 // If we have direct moves, we can do all the conversion, skip the store/load 8808 // however, without FPCVT we can't do most conversions. 8809 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8810 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8811 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8812 8813 assert((IsSigned || Subtarget.hasFPCVT()) && 8814 "UINT_TO_FP is supported only with FPCVT"); 8815 8816 if (Src.getValueType() == MVT::i64) { 8817 SDValue SINT = Src; 8818 // When converting to single-precision, we actually need to convert 8819 // to double-precision first and then round to single-precision. 8820 // To avoid double-rounding effects during that operation, we have 8821 // to prepare the input operand. Bits that might be truncated when 8822 // converting to double-precision are replaced by a bit that won't 8823 // be lost at this stage, but is below the single-precision rounding 8824 // position. 8825 // 8826 // However, if -enable-unsafe-fp-math is in effect, accept double 8827 // rounding to avoid the extra overhead. 8828 if (Op.getValueType() == MVT::f32 && 8829 !Subtarget.hasFPCVT() && 8830 !DAG.getTarget().Options.UnsafeFPMath) { 8831 8832 // Twiddle input to make sure the low 11 bits are zero. (If this 8833 // is the case, we are guaranteed the value will fit into the 53 bit 8834 // mantissa of an IEEE double-precision value without rounding.) 8835 // If any of those low 11 bits were not zero originally, make sure 8836 // bit 12 (value 2048) is set instead, so that the final rounding 8837 // to single-precision gets the correct result. 8838 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8839 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8840 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8841 Round, DAG.getConstant(2047, dl, MVT::i64)); 8842 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8843 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8844 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8845 8846 // However, we cannot use that value unconditionally: if the magnitude 8847 // of the input value is small, the bit-twiddling we did above might 8848 // end up visibly changing the output. Fortunately, in that case, we 8849 // don't need to twiddle bits since the original input will convert 8850 // exactly to double-precision floating-point already. Therefore, 8851 // construct a conditional to use the original value if the top 11 8852 // bits are all sign-bit copies, and use the rounded value computed 8853 // above otherwise. 8854 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8855 SINT, DAG.getConstant(53, dl, MVT::i32)); 8856 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8857 Cond, DAG.getConstant(1, dl, MVT::i64)); 8858 Cond = DAG.getSetCC( 8859 dl, 8860 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8861 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8862 8863 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8864 } 8865 8866 ReuseLoadInfo RLI; 8867 SDValue Bits; 8868 8869 MachineFunction &MF = DAG.getMachineFunction(); 8870 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8871 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8872 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8873 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8874 } else if (Subtarget.hasLFIWAX() && 8875 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8876 MachineMemOperand *MMO = 8877 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8878 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8879 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8880 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8881 DAG.getVTList(MVT::f64, MVT::Other), 8882 Ops, MVT::i32, MMO); 8883 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8884 } else if (Subtarget.hasFPCVT() && 8885 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8886 MachineMemOperand *MMO = 8887 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8888 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8889 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8890 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8891 DAG.getVTList(MVT::f64, MVT::Other), 8892 Ops, MVT::i32, MMO); 8893 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8894 } else if (((Subtarget.hasLFIWAX() && 8895 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8896 (Subtarget.hasFPCVT() && 8897 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8898 SINT.getOperand(0).getValueType() == MVT::i32) { 8899 MachineFrameInfo &MFI = MF.getFrameInfo(); 8900 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8901 8902 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8903 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8904 8905 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8906 MachinePointerInfo::getFixedStack( 8907 DAG.getMachineFunction(), FrameIdx)); 8908 Chain = Store; 8909 8910 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8911 "Expected an i32 store"); 8912 8913 RLI.Ptr = FIdx; 8914 RLI.Chain = Chain; 8915 RLI.MPI = 8916 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8917 RLI.Alignment = Align(4); 8918 8919 MachineMemOperand *MMO = 8920 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8921 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8922 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8923 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8924 PPCISD::LFIWZX : PPCISD::LFIWAX, 8925 dl, DAG.getVTList(MVT::f64, MVT::Other), 8926 Ops, MVT::i32, MMO); 8927 Chain = Bits.getValue(1); 8928 } else 8929 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8930 8931 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8932 if (IsStrict) 8933 Chain = FP.getValue(1); 8934 8935 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8936 if (IsStrict) 8937 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8938 DAG.getVTList(MVT::f32, MVT::Other), 8939 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8940 else 8941 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8942 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 8943 } 8944 return FP; 8945 } 8946 8947 assert(Src.getValueType() == MVT::i32 && 8948 "Unhandled INT_TO_FP type in custom expander!"); 8949 // Since we only generate this in 64-bit mode, we can take advantage of 8950 // 64-bit registers. In particular, sign extend the input value into the 8951 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8952 // then lfd it and fcfid it. 8953 MachineFunction &MF = DAG.getMachineFunction(); 8954 MachineFrameInfo &MFI = MF.getFrameInfo(); 8955 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8956 8957 SDValue Ld; 8958 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8959 ReuseLoadInfo RLI; 8960 bool ReusingLoad; 8961 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8962 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8963 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8964 8965 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8966 MachinePointerInfo::getFixedStack( 8967 DAG.getMachineFunction(), FrameIdx)); 8968 Chain = Store; 8969 8970 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8971 "Expected an i32 store"); 8972 8973 RLI.Ptr = FIdx; 8974 RLI.Chain = Chain; 8975 RLI.MPI = 8976 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8977 RLI.Alignment = Align(4); 8978 } 8979 8980 MachineMemOperand *MMO = 8981 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8982 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8983 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8984 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8985 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8986 MVT::i32, MMO); 8987 Chain = Ld.getValue(1); 8988 if (ReusingLoad) 8989 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8990 } else { 8991 assert(Subtarget.isPPC64() && 8992 "i32->FP without LFIWAX supported only on PPC64"); 8993 8994 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8995 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8996 8997 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8998 8999 // STD the extended value into the stack slot. 9000 SDValue Store = DAG.getStore( 9001 Chain, dl, Ext64, FIdx, 9002 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 9003 Chain = Store; 9004 9005 // Load the value as a double. 9006 Ld = DAG.getLoad( 9007 MVT::f64, dl, Chain, FIdx, 9008 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 9009 Chain = Ld.getValue(1); 9010 } 9011 9012 // FCFID it and return it. 9013 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 9014 if (IsStrict) 9015 Chain = FP.getValue(1); 9016 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 9017 if (IsStrict) 9018 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 9019 DAG.getVTList(MVT::f32, MVT::Other), 9020 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 9021 else 9022 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 9023 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 9024 } 9025 return FP; 9026 } 9027 9028 SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op, 9029 SelectionDAG &DAG) const { 9030 SDLoc dl(Op); 9031 /* 9032 The rounding mode is in bits 30:31 of FPSR, and has the following 9033 settings: 9034 00 Round to nearest 9035 01 Round to 0 9036 10 Round to +inf 9037 11 Round to -inf 9038 9039 GET_ROUNDING, on the other hand, expects the following: 9040 -1 Undefined 9041 0 Round to 0 9042 1 Round to nearest 9043 2 Round to +inf 9044 3 Round to -inf 9045 9046 To perform the conversion, we do: 9047 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 9048 */ 9049 9050 MachineFunction &MF = DAG.getMachineFunction(); 9051 EVT VT = Op.getValueType(); 9052 EVT PtrVT = getPointerTy(MF.getDataLayout()); 9053 9054 // Save FP Control Word to register 9055 SDValue Chain = Op.getOperand(0); 9056 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 9057 Chain = MFFS.getValue(1); 9058 9059 SDValue CWD; 9060 if (isTypeLegal(MVT::i64)) { 9061 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 9062 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 9063 } else { 9064 // Save FP register to stack slot 9065 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 9066 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 9067 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 9068 9069 // Load FP Control Word from low 32 bits of stack slot. 9070 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 9071 "Stack slot adjustment is valid only on big endian subtargets!"); 9072 SDValue Four = DAG.getConstant(4, dl, PtrVT); 9073 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 9074 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 9075 Chain = CWD.getValue(1); 9076 } 9077 9078 // Transform as necessary 9079 SDValue CWD1 = 9080 DAG.getNode(ISD::AND, dl, MVT::i32, 9081 CWD, DAG.getConstant(3, dl, MVT::i32)); 9082 SDValue CWD2 = 9083 DAG.getNode(ISD::SRL, dl, MVT::i32, 9084 DAG.getNode(ISD::AND, dl, MVT::i32, 9085 DAG.getNode(ISD::XOR, dl, MVT::i32, 9086 CWD, DAG.getConstant(3, dl, MVT::i32)), 9087 DAG.getConstant(3, dl, MVT::i32)), 9088 DAG.getConstant(1, dl, MVT::i32)); 9089 9090 SDValue RetVal = 9091 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 9092 9093 RetVal = 9094 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 9095 dl, VT, RetVal); 9096 9097 return DAG.getMergeValues({RetVal, Chain}, dl); 9098 } 9099 9100 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 9101 EVT VT = Op.getValueType(); 9102 unsigned BitWidth = VT.getSizeInBits(); 9103 SDLoc dl(Op); 9104 assert(Op.getNumOperands() == 3 && 9105 VT == Op.getOperand(1).getValueType() && 9106 "Unexpected SHL!"); 9107 9108 // Expand into a bunch of logical ops. Note that these ops 9109 // depend on the PPC behavior for oversized shift amounts. 9110 SDValue Lo = Op.getOperand(0); 9111 SDValue Hi = Op.getOperand(1); 9112 SDValue Amt = Op.getOperand(2); 9113 EVT AmtVT = Amt.getValueType(); 9114 9115 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9116 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9117 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 9118 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 9119 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 9120 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9121 DAG.getConstant(-BitWidth, dl, AmtVT)); 9122 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 9123 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 9124 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 9125 SDValue OutOps[] = { OutLo, OutHi }; 9126 return DAG.getMergeValues(OutOps, dl); 9127 } 9128 9129 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 9130 EVT VT = Op.getValueType(); 9131 SDLoc dl(Op); 9132 unsigned BitWidth = VT.getSizeInBits(); 9133 assert(Op.getNumOperands() == 3 && 9134 VT == Op.getOperand(1).getValueType() && 9135 "Unexpected SRL!"); 9136 9137 // Expand into a bunch of logical ops. Note that these ops 9138 // depend on the PPC behavior for oversized shift amounts. 9139 SDValue Lo = Op.getOperand(0); 9140 SDValue Hi = Op.getOperand(1); 9141 SDValue Amt = Op.getOperand(2); 9142 EVT AmtVT = Amt.getValueType(); 9143 9144 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9145 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9146 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9147 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9148 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9149 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9150 DAG.getConstant(-BitWidth, dl, AmtVT)); 9151 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 9152 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 9153 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 9154 SDValue OutOps[] = { OutLo, OutHi }; 9155 return DAG.getMergeValues(OutOps, dl); 9156 } 9157 9158 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 9159 SDLoc dl(Op); 9160 EVT VT = Op.getValueType(); 9161 unsigned BitWidth = VT.getSizeInBits(); 9162 assert(Op.getNumOperands() == 3 && 9163 VT == Op.getOperand(1).getValueType() && 9164 "Unexpected SRA!"); 9165 9166 // Expand into a bunch of logical ops, followed by a select_cc. 9167 SDValue Lo = Op.getOperand(0); 9168 SDValue Hi = Op.getOperand(1); 9169 SDValue Amt = Op.getOperand(2); 9170 EVT AmtVT = Amt.getValueType(); 9171 9172 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9173 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9174 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9175 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9176 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9177 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9178 DAG.getConstant(-BitWidth, dl, AmtVT)); 9179 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 9180 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 9181 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 9182 Tmp4, Tmp6, ISD::SETLE); 9183 SDValue OutOps[] = { OutLo, OutHi }; 9184 return DAG.getMergeValues(OutOps, dl); 9185 } 9186 9187 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 9188 SelectionDAG &DAG) const { 9189 SDLoc dl(Op); 9190 EVT VT = Op.getValueType(); 9191 unsigned BitWidth = VT.getSizeInBits(); 9192 9193 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 9194 SDValue X = Op.getOperand(0); 9195 SDValue Y = Op.getOperand(1); 9196 SDValue Z = Op.getOperand(2); 9197 EVT AmtVT = Z.getValueType(); 9198 9199 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 9200 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 9201 // This is simpler than TargetLowering::expandFunnelShift because we can rely 9202 // on PowerPC shift by BW being well defined. 9203 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 9204 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 9205 SDValue SubZ = 9206 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 9207 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 9208 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 9209 return DAG.getNode(ISD::OR, dl, VT, X, Y); 9210 } 9211 9212 //===----------------------------------------------------------------------===// 9213 // Vector related lowering. 9214 // 9215 9216 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 9217 /// element size of SplatSize. Cast the result to VT. 9218 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 9219 SelectionDAG &DAG, const SDLoc &dl) { 9220 static const MVT VTys[] = { // canonical VT to use for each size. 9221 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 9222 }; 9223 9224 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 9225 9226 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 9227 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 9228 SplatSize = 1; 9229 Val = 0xFF; 9230 } 9231 9232 EVT CanonicalVT = VTys[SplatSize-1]; 9233 9234 // Build a canonical splat for this value. 9235 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 9236 } 9237 9238 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9239 /// specified intrinsic ID. 9240 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9241 const SDLoc &dl, EVT DestVT = MVT::Other) { 9242 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9243 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9244 DAG.getConstant(IID, dl, MVT::i32), Op); 9245 } 9246 9247 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9248 /// specified intrinsic ID. 9249 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9250 SelectionDAG &DAG, const SDLoc &dl, 9251 EVT DestVT = MVT::Other) { 9252 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9253 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9254 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9255 } 9256 9257 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9258 /// specified intrinsic ID. 9259 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9260 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9261 EVT DestVT = MVT::Other) { 9262 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9263 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9264 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9265 } 9266 9267 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9268 /// amount. The result has the specified value type. 9269 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9270 SelectionDAG &DAG, const SDLoc &dl) { 9271 // Force LHS/RHS to be the right type. 9272 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9273 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9274 9275 int Ops[16]; 9276 for (unsigned i = 0; i != 16; ++i) 9277 Ops[i] = i + Amt; 9278 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9279 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9280 } 9281 9282 /// Do we have an efficient pattern in a .td file for this node? 9283 /// 9284 /// \param V - pointer to the BuildVectorSDNode being matched 9285 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9286 /// 9287 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9288 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9289 /// the opposite is true (expansion is beneficial) are: 9290 /// - The node builds a vector out of integers that are not 32 or 64-bits 9291 /// - The node builds a vector out of constants 9292 /// - The node is a "load-and-splat" 9293 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9294 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9295 bool HasDirectMove, 9296 bool HasP8Vector) { 9297 EVT VecVT = V->getValueType(0); 9298 bool RightType = VecVT == MVT::v2f64 || 9299 (HasP8Vector && VecVT == MVT::v4f32) || 9300 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9301 if (!RightType) 9302 return false; 9303 9304 bool IsSplat = true; 9305 bool IsLoad = false; 9306 SDValue Op0 = V->getOperand(0); 9307 9308 // This function is called in a block that confirms the node is not a constant 9309 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9310 // different constants. 9311 if (V->isConstant()) 9312 return false; 9313 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9314 if (V->getOperand(i).isUndef()) 9315 return false; 9316 // We want to expand nodes that represent load-and-splat even if the 9317 // loaded value is a floating point truncation or conversion to int. 9318 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9319 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9320 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9321 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9322 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9323 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9324 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9325 IsLoad = true; 9326 // If the operands are different or the input is not a load and has more 9327 // uses than just this BV node, then it isn't a splat. 9328 if (V->getOperand(i) != Op0 || 9329 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9330 IsSplat = false; 9331 } 9332 return !(IsSplat && IsLoad); 9333 } 9334 9335 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9336 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9337 9338 SDLoc dl(Op); 9339 SDValue Op0 = Op->getOperand(0); 9340 9341 if (!Subtarget.isPPC64() || (Op0.getOpcode() != ISD::BUILD_PAIR) || 9342 (Op.getValueType() != MVT::f128)) 9343 return SDValue(); 9344 9345 SDValue Lo = Op0.getOperand(0); 9346 SDValue Hi = Op0.getOperand(1); 9347 if ((Lo.getValueType() != MVT::i64) || (Hi.getValueType() != MVT::i64)) 9348 return SDValue(); 9349 9350 if (!Subtarget.isLittleEndian()) 9351 std::swap(Lo, Hi); 9352 9353 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Lo, Hi); 9354 } 9355 9356 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9357 const SDValue *InputLoad = &Op; 9358 while (InputLoad->getOpcode() == ISD::BITCAST) 9359 InputLoad = &InputLoad->getOperand(0); 9360 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9361 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9362 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9363 InputLoad = &InputLoad->getOperand(0); 9364 } 9365 if (InputLoad->getOpcode() != ISD::LOAD) 9366 return nullptr; 9367 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9368 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9369 } 9370 9371 // Convert the argument APFloat to a single precision APFloat if there is no 9372 // loss in information during the conversion to single precision APFloat and the 9373 // resulting number is not a denormal number. Return true if successful. 9374 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9375 APFloat APFloatToConvert = ArgAPFloat; 9376 bool LosesInfo = true; 9377 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9378 &LosesInfo); 9379 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9380 if (Success) 9381 ArgAPFloat = APFloatToConvert; 9382 return Success; 9383 } 9384 9385 // Bitcast the argument APInt to a double and convert it to a single precision 9386 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9387 // argument if there is no loss in information during the conversion from 9388 // double to single precision APFloat and the resulting number is not a denormal 9389 // number. Return true if successful. 9390 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9391 double DpValue = ArgAPInt.bitsToDouble(); 9392 APFloat APFloatDp(DpValue); 9393 bool Success = convertToNonDenormSingle(APFloatDp); 9394 if (Success) 9395 ArgAPInt = APFloatDp.bitcastToAPInt(); 9396 return Success; 9397 } 9398 9399 // Nondestructive check for convertTonNonDenormSingle. 9400 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9401 // Only convert if it loses info, since XXSPLTIDP should 9402 // handle the other case. 9403 APFloat APFloatToConvert = ArgAPFloat; 9404 bool LosesInfo = true; 9405 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9406 &LosesInfo); 9407 9408 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9409 } 9410 9411 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9412 unsigned &Opcode) { 9413 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9414 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9415 return false; 9416 9417 EVT Ty = Op->getValueType(0); 9418 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9419 // as we cannot handle extending loads for these types. 9420 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9421 ISD::isNON_EXTLoad(InputNode)) 9422 return true; 9423 9424 EVT MemVT = InputNode->getMemoryVT(); 9425 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9426 // memory VT is the same vector element VT type. 9427 // The loads feeding into the v8i16 and v16i8 types will be extending because 9428 // scalar i8/i16 are not legal types. 9429 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9430 (MemVT == Ty.getVectorElementType())) 9431 return true; 9432 9433 if (Ty == MVT::v2i64) { 9434 // Check the extend type, when the input type is i32, and the output vector 9435 // type is v2i64. 9436 if (MemVT == MVT::i32) { 9437 if (ISD::isZEXTLoad(InputNode)) 9438 Opcode = PPCISD::ZEXT_LD_SPLAT; 9439 if (ISD::isSEXTLoad(InputNode)) 9440 Opcode = PPCISD::SEXT_LD_SPLAT; 9441 } 9442 return true; 9443 } 9444 return false; 9445 } 9446 9447 // If this is a case we can't handle, return null and let the default 9448 // expansion code take care of it. If we CAN select this case, and if it 9449 // selects to a single instruction, return Op. Otherwise, if we can codegen 9450 // this case more efficiently than a constant pool load, lower it to the 9451 // sequence of ops that should be used. 9452 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9453 SelectionDAG &DAG) const { 9454 SDLoc dl(Op); 9455 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9456 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9457 9458 // Check if this is a splat of a constant value. 9459 APInt APSplatBits, APSplatUndef; 9460 unsigned SplatBitSize; 9461 bool HasAnyUndefs; 9462 bool BVNIsConstantSplat = 9463 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9464 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9465 9466 // If it is a splat of a double, check if we can shrink it to a 32 bit 9467 // non-denormal float which when converted back to double gives us the same 9468 // double. This is to exploit the XXSPLTIDP instruction. 9469 // If we lose precision, we use XXSPLTI32DX. 9470 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9471 Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) { 9472 // Check the type first to short-circuit so we don't modify APSplatBits if 9473 // this block isn't executed. 9474 if ((Op->getValueType(0) == MVT::v2f64) && 9475 convertToNonDenormSingle(APSplatBits)) { 9476 SDValue SplatNode = DAG.getNode( 9477 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9478 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9479 return DAG.getBitcast(Op.getValueType(), SplatNode); 9480 } else { 9481 // We may lose precision, so we have to use XXSPLTI32DX. 9482 9483 uint32_t Hi = 9484 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9485 uint32_t Lo = 9486 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9487 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9488 9489 if (!Hi || !Lo) 9490 // If either load is 0, then we should generate XXLXOR to set to 0. 9491 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9492 9493 if (Hi) 9494 SplatNode = DAG.getNode( 9495 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9496 DAG.getTargetConstant(0, dl, MVT::i32), 9497 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9498 9499 if (Lo) 9500 SplatNode = 9501 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9502 DAG.getTargetConstant(1, dl, MVT::i32), 9503 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9504 9505 return DAG.getBitcast(Op.getValueType(), SplatNode); 9506 } 9507 } 9508 9509 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9510 unsigned NewOpcode = PPCISD::LD_SPLAT; 9511 9512 // Handle load-and-splat patterns as we have instructions that will do this 9513 // in one go. 9514 if (DAG.isSplatValue(Op, true) && 9515 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9516 const SDValue *InputLoad = &Op.getOperand(0); 9517 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9518 9519 // If the input load is an extending load, it will be an i32 -> i64 9520 // extending load and isValidSplatLoad() will update NewOpcode. 9521 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9522 unsigned ElementSize = 9523 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9524 9525 assert(((ElementSize == 2 * MemorySize) 9526 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9527 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9528 : (NewOpcode == PPCISD::LD_SPLAT)) && 9529 "Unmatched element size and opcode!\n"); 9530 9531 // Checking for a single use of this load, we have to check for vector 9532 // width (128 bits) / ElementSize uses (since each operand of the 9533 // BUILD_VECTOR is a separate use of the value. 9534 unsigned NumUsesOfInputLD = 128 / ElementSize; 9535 for (SDValue BVInOp : Op->ops()) 9536 if (BVInOp.isUndef()) 9537 NumUsesOfInputLD--; 9538 9539 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9540 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9541 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9542 // 15", but function IsValidSplatLoad() now will only return true when 9543 // the data at index 0 is not nullptr. So we will not get into trouble for 9544 // these cases. 9545 // 9546 // case 1 - lfiwzx/lfiwax 9547 // 1.1: load result is i32 and is sign/zero extend to i64; 9548 // 1.2: build a v2i64 vector type with above loaded value; 9549 // 1.3: the vector has only one value at index 0, others are all undef; 9550 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9551 if (NumUsesOfInputLD == 1 && 9552 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9553 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9554 Subtarget.hasLFIWAX())) 9555 return SDValue(); 9556 9557 // case 2 - lxvr[hb]x 9558 // 2.1: load result is at most i16; 9559 // 2.2: build a vector with above loaded value; 9560 // 2.3: the vector has only one value at index 0, others are all undef; 9561 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9562 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9563 Subtarget.isISA3_1() && ElementSize <= 16) 9564 return SDValue(); 9565 9566 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9567 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9568 Subtarget.hasVSX()) { 9569 SDValue Ops[] = { 9570 LD->getChain(), // Chain 9571 LD->getBasePtr(), // Ptr 9572 DAG.getValueType(Op.getValueType()) // VT 9573 }; 9574 SDValue LdSplt = DAG.getMemIntrinsicNode( 9575 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9576 LD->getMemoryVT(), LD->getMemOperand()); 9577 // Replace all uses of the output chain of the original load with the 9578 // output chain of the new load. 9579 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9580 LdSplt.getValue(1)); 9581 return LdSplt; 9582 } 9583 } 9584 9585 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9586 // 32-bits can be lowered to VSX instructions under certain conditions. 9587 // Without VSX, there is no pattern more efficient than expanding the node. 9588 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9589 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9590 Subtarget.hasP8Vector())) 9591 return Op; 9592 return SDValue(); 9593 } 9594 9595 uint64_t SplatBits = APSplatBits.getZExtValue(); 9596 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9597 unsigned SplatSize = SplatBitSize / 8; 9598 9599 // First, handle single instruction cases. 9600 9601 // All zeros? 9602 if (SplatBits == 0) { 9603 // Canonicalize all zero vectors to be v4i32. 9604 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9605 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9606 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9607 } 9608 return Op; 9609 } 9610 9611 // We have XXSPLTIW for constant splats four bytes wide. 9612 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9613 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9614 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9615 // turned into a 4-byte splat of 0xABABABAB. 9616 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector() && SplatSize == 2) 9617 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9618 Op.getValueType(), DAG, dl); 9619 9620 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector() && SplatSize == 4) 9621 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9622 dl); 9623 9624 // We have XXSPLTIB for constant splats one byte wide. 9625 if (Subtarget.hasP9Vector() && SplatSize == 1) 9626 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9627 dl); 9628 9629 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9630 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9631 (32-SplatBitSize)); 9632 if (SextVal >= -16 && SextVal <= 15) 9633 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9634 dl); 9635 9636 // Two instruction sequences. 9637 9638 // If this value is in the range [-32,30] and is even, use: 9639 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9640 // If this value is in the range [17,31] and is odd, use: 9641 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9642 // If this value is in the range [-31,-17] and is odd, use: 9643 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9644 // Note the last two are three-instruction sequences. 9645 if (SextVal >= -32 && SextVal <= 31) { 9646 // To avoid having these optimizations undone by constant folding, 9647 // we convert to a pseudo that will be expanded later into one of 9648 // the above forms. 9649 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9650 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9651 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9652 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9653 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9654 if (VT == Op.getValueType()) 9655 return RetVal; 9656 else 9657 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9658 } 9659 9660 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9661 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9662 // for fneg/fabs. 9663 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9664 // Make -1 and vspltisw -1: 9665 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9666 9667 // Make the VSLW intrinsic, computing 0x8000_0000. 9668 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9669 OnesV, DAG, dl); 9670 9671 // xor by OnesV to invert it. 9672 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9673 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9674 } 9675 9676 // Check to see if this is a wide variety of vsplti*, binop self cases. 9677 static const signed char SplatCsts[] = { 9678 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9679 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9680 }; 9681 9682 for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) { 9683 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9684 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9685 int i = SplatCsts[idx]; 9686 9687 // Figure out what shift amount will be used by altivec if shifted by i in 9688 // this splat size. 9689 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9690 9691 // vsplti + shl self. 9692 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9693 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9694 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9695 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9696 Intrinsic::ppc_altivec_vslw 9697 }; 9698 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9699 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9700 } 9701 9702 // vsplti + srl self. 9703 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9704 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9705 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9706 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9707 Intrinsic::ppc_altivec_vsrw 9708 }; 9709 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9710 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9711 } 9712 9713 // vsplti + rol self. 9714 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9715 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9716 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9717 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9718 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9719 Intrinsic::ppc_altivec_vrlw 9720 }; 9721 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9722 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9723 } 9724 9725 // t = vsplti c, result = vsldoi t, t, 1 9726 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9727 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9728 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9729 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9730 } 9731 // t = vsplti c, result = vsldoi t, t, 2 9732 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9733 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9734 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9735 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9736 } 9737 // t = vsplti c, result = vsldoi t, t, 3 9738 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9739 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9740 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9741 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9742 } 9743 } 9744 9745 return SDValue(); 9746 } 9747 9748 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9749 /// the specified operations to build the shuffle. 9750 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9751 SDValue RHS, SelectionDAG &DAG, 9752 const SDLoc &dl) { 9753 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9754 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9755 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9756 9757 enum { 9758 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9759 OP_VMRGHW, 9760 OP_VMRGLW, 9761 OP_VSPLTISW0, 9762 OP_VSPLTISW1, 9763 OP_VSPLTISW2, 9764 OP_VSPLTISW3, 9765 OP_VSLDOI4, 9766 OP_VSLDOI8, 9767 OP_VSLDOI12 9768 }; 9769 9770 if (OpNum == OP_COPY) { 9771 if (LHSID == (1*9+2)*9+3) return LHS; 9772 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9773 return RHS; 9774 } 9775 9776 SDValue OpLHS, OpRHS; 9777 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9778 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9779 9780 int ShufIdxs[16]; 9781 switch (OpNum) { 9782 default: llvm_unreachable("Unknown i32 permute!"); 9783 case OP_VMRGHW: 9784 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9785 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9786 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9787 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9788 break; 9789 case OP_VMRGLW: 9790 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9791 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9792 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9793 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9794 break; 9795 case OP_VSPLTISW0: 9796 for (unsigned i = 0; i != 16; ++i) 9797 ShufIdxs[i] = (i&3)+0; 9798 break; 9799 case OP_VSPLTISW1: 9800 for (unsigned i = 0; i != 16; ++i) 9801 ShufIdxs[i] = (i&3)+4; 9802 break; 9803 case OP_VSPLTISW2: 9804 for (unsigned i = 0; i != 16; ++i) 9805 ShufIdxs[i] = (i&3)+8; 9806 break; 9807 case OP_VSPLTISW3: 9808 for (unsigned i = 0; i != 16; ++i) 9809 ShufIdxs[i] = (i&3)+12; 9810 break; 9811 case OP_VSLDOI4: 9812 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9813 case OP_VSLDOI8: 9814 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9815 case OP_VSLDOI12: 9816 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9817 } 9818 EVT VT = OpLHS.getValueType(); 9819 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9820 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9821 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9822 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9823 } 9824 9825 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9826 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9827 /// SDValue. 9828 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9829 SelectionDAG &DAG) const { 9830 const unsigned BytesInVector = 16; 9831 bool IsLE = Subtarget.isLittleEndian(); 9832 SDLoc dl(N); 9833 SDValue V1 = N->getOperand(0); 9834 SDValue V2 = N->getOperand(1); 9835 unsigned ShiftElts = 0, InsertAtByte = 0; 9836 bool Swap = false; 9837 9838 // Shifts required to get the byte we want at element 7. 9839 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9840 0, 15, 14, 13, 12, 11, 10, 9}; 9841 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9842 1, 2, 3, 4, 5, 6, 7, 8}; 9843 9844 ArrayRef<int> Mask = N->getMask(); 9845 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9846 9847 // For each mask element, find out if we're just inserting something 9848 // from V2 into V1 or vice versa. 9849 // Possible permutations inserting an element from V2 into V1: 9850 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9851 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9852 // ... 9853 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9854 // Inserting from V1 into V2 will be similar, except mask range will be 9855 // [16,31]. 9856 9857 bool FoundCandidate = false; 9858 // If both vector operands for the shuffle are the same vector, the mask 9859 // will contain only elements from the first one and the second one will be 9860 // undef. 9861 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9862 // Go through the mask of half-words to find an element that's being moved 9863 // from one vector to the other. 9864 for (unsigned i = 0; i < BytesInVector; ++i) { 9865 unsigned CurrentElement = Mask[i]; 9866 // If 2nd operand is undefined, we should only look for element 7 in the 9867 // Mask. 9868 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9869 continue; 9870 9871 bool OtherElementsInOrder = true; 9872 // Examine the other elements in the Mask to see if they're in original 9873 // order. 9874 for (unsigned j = 0; j < BytesInVector; ++j) { 9875 if (j == i) 9876 continue; 9877 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9878 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9879 // in which we always assume we're always picking from the 1st operand. 9880 int MaskOffset = 9881 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9882 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9883 OtherElementsInOrder = false; 9884 break; 9885 } 9886 } 9887 // If other elements are in original order, we record the number of shifts 9888 // we need to get the element we want into element 7. Also record which byte 9889 // in the vector we should insert into. 9890 if (OtherElementsInOrder) { 9891 // If 2nd operand is undefined, we assume no shifts and no swapping. 9892 if (V2.isUndef()) { 9893 ShiftElts = 0; 9894 Swap = false; 9895 } else { 9896 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9897 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9898 : BigEndianShifts[CurrentElement & 0xF]; 9899 Swap = CurrentElement < BytesInVector; 9900 } 9901 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9902 FoundCandidate = true; 9903 break; 9904 } 9905 } 9906 9907 if (!FoundCandidate) 9908 return SDValue(); 9909 9910 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9911 // optionally with VECSHL if shift is required. 9912 if (Swap) 9913 std::swap(V1, V2); 9914 if (V2.isUndef()) 9915 V2 = V1; 9916 if (ShiftElts) { 9917 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9918 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9919 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9920 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9921 } 9922 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9923 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9924 } 9925 9926 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9927 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9928 /// SDValue. 9929 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9930 SelectionDAG &DAG) const { 9931 const unsigned NumHalfWords = 8; 9932 const unsigned BytesInVector = NumHalfWords * 2; 9933 // Check that the shuffle is on half-words. 9934 if (!isNByteElemShuffleMask(N, 2, 1)) 9935 return SDValue(); 9936 9937 bool IsLE = Subtarget.isLittleEndian(); 9938 SDLoc dl(N); 9939 SDValue V1 = N->getOperand(0); 9940 SDValue V2 = N->getOperand(1); 9941 unsigned ShiftElts = 0, InsertAtByte = 0; 9942 bool Swap = false; 9943 9944 // Shifts required to get the half-word we want at element 3. 9945 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9946 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9947 9948 uint32_t Mask = 0; 9949 uint32_t OriginalOrderLow = 0x1234567; 9950 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9951 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9952 // 32-bit space, only need 4-bit nibbles per element. 9953 for (unsigned i = 0; i < NumHalfWords; ++i) { 9954 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9955 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9956 } 9957 9958 // For each mask element, find out if we're just inserting something 9959 // from V2 into V1 or vice versa. Possible permutations inserting an element 9960 // from V2 into V1: 9961 // X, 1, 2, 3, 4, 5, 6, 7 9962 // 0, X, 2, 3, 4, 5, 6, 7 9963 // 0, 1, X, 3, 4, 5, 6, 7 9964 // 0, 1, 2, X, 4, 5, 6, 7 9965 // 0, 1, 2, 3, X, 5, 6, 7 9966 // 0, 1, 2, 3, 4, X, 6, 7 9967 // 0, 1, 2, 3, 4, 5, X, 7 9968 // 0, 1, 2, 3, 4, 5, 6, X 9969 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9970 9971 bool FoundCandidate = false; 9972 // Go through the mask of half-words to find an element that's being moved 9973 // from one vector to the other. 9974 for (unsigned i = 0; i < NumHalfWords; ++i) { 9975 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9976 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9977 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9978 uint32_t TargetOrder = 0x0; 9979 9980 // If both vector operands for the shuffle are the same vector, the mask 9981 // will contain only elements from the first one and the second one will be 9982 // undef. 9983 if (V2.isUndef()) { 9984 ShiftElts = 0; 9985 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9986 TargetOrder = OriginalOrderLow; 9987 Swap = false; 9988 // Skip if not the correct element or mask of other elements don't equal 9989 // to our expected order. 9990 if (MaskOneElt == VINSERTHSrcElem && 9991 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9992 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9993 FoundCandidate = true; 9994 break; 9995 } 9996 } else { // If both operands are defined. 9997 // Target order is [8,15] if the current mask is between [0,7]. 9998 TargetOrder = 9999 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 10000 // Skip if mask of other elements don't equal our expected order. 10001 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 10002 // We only need the last 3 bits for the number of shifts. 10003 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 10004 : BigEndianShifts[MaskOneElt & 0x7]; 10005 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 10006 Swap = MaskOneElt < NumHalfWords; 10007 FoundCandidate = true; 10008 break; 10009 } 10010 } 10011 } 10012 10013 if (!FoundCandidate) 10014 return SDValue(); 10015 10016 // Candidate found, construct the proper SDAG sequence with VINSERTH, 10017 // optionally with VECSHL if shift is required. 10018 if (Swap) 10019 std::swap(V1, V2); 10020 if (V2.isUndef()) 10021 V2 = V1; 10022 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10023 if (ShiftElts) { 10024 // Double ShiftElts because we're left shifting on v16i8 type. 10025 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 10026 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 10027 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 10028 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 10029 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10030 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10031 } 10032 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 10033 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 10034 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10035 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10036 } 10037 10038 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 10039 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 10040 /// return the default SDValue. 10041 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 10042 SelectionDAG &DAG) const { 10043 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 10044 // to v16i8. Peek through the bitcasts to get the actual operands. 10045 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 10046 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 10047 10048 auto ShuffleMask = SVN->getMask(); 10049 SDValue VecShuffle(SVN, 0); 10050 SDLoc DL(SVN); 10051 10052 // Check that we have a four byte shuffle. 10053 if (!isNByteElemShuffleMask(SVN, 4, 1)) 10054 return SDValue(); 10055 10056 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 10057 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 10058 std::swap(LHS, RHS); 10059 VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN)); 10060 ShuffleVectorSDNode *CommutedSV = dyn_cast<ShuffleVectorSDNode>(VecShuffle); 10061 if (!CommutedSV) 10062 return SDValue(); 10063 ShuffleMask = CommutedSV->getMask(); 10064 } 10065 10066 // Ensure that the RHS is a vector of constants. 10067 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 10068 if (!BVN) 10069 return SDValue(); 10070 10071 // Check if RHS is a splat of 4-bytes (or smaller). 10072 APInt APSplatValue, APSplatUndef; 10073 unsigned SplatBitSize; 10074 bool HasAnyUndefs; 10075 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 10076 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 10077 SplatBitSize > 32) 10078 return SDValue(); 10079 10080 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 10081 // The instruction splats a constant C into two words of the source vector 10082 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 10083 // Thus we check that the shuffle mask is the equivalent of 10084 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 10085 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 10086 // within each word are consecutive, so we only need to check the first byte. 10087 SDValue Index; 10088 bool IsLE = Subtarget.isLittleEndian(); 10089 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 10090 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 10091 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 10092 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 10093 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 10094 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 10095 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 10096 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 10097 else 10098 return SDValue(); 10099 10100 // If the splat is narrower than 32-bits, we need to get the 32-bit value 10101 // for XXSPLTI32DX. 10102 unsigned SplatVal = APSplatValue.getZExtValue(); 10103 for (; SplatBitSize < 32; SplatBitSize <<= 1) 10104 SplatVal |= (SplatVal << SplatBitSize); 10105 10106 SDValue SplatNode = DAG.getNode( 10107 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 10108 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 10109 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 10110 } 10111 10112 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 10113 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 10114 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 10115 /// i.e (or (shl x, C1), (srl x, 128-C1)). 10116 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 10117 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 10118 assert(Op.getValueType() == MVT::v1i128 && 10119 "Only set v1i128 as custom, other type shouldn't reach here!"); 10120 SDLoc dl(Op); 10121 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 10122 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 10123 unsigned SHLAmt = N1.getConstantOperandVal(0); 10124 if (SHLAmt % 8 == 0) { 10125 std::array<int, 16> Mask; 10126 std::iota(Mask.begin(), Mask.end(), 0); 10127 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 10128 if (SDValue Shuffle = 10129 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 10130 DAG.getUNDEF(MVT::v16i8), Mask)) 10131 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 10132 } 10133 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 10134 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 10135 DAG.getConstant(SHLAmt, dl, MVT::i32)); 10136 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 10137 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 10138 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 10139 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 10140 } 10141 10142 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 10143 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 10144 /// return the code it can be lowered into. Worst case, it can always be 10145 /// lowered into a vperm. 10146 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 10147 SelectionDAG &DAG) const { 10148 SDLoc dl(Op); 10149 SDValue V1 = Op.getOperand(0); 10150 SDValue V2 = Op.getOperand(1); 10151 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 10152 10153 // Any nodes that were combined in the target-independent combiner prior 10154 // to vector legalization will not be sent to the target combine. Try to 10155 // combine it here. 10156 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 10157 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 10158 return NewShuffle; 10159 Op = NewShuffle; 10160 SVOp = cast<ShuffleVectorSDNode>(Op); 10161 V1 = Op.getOperand(0); 10162 V2 = Op.getOperand(1); 10163 } 10164 EVT VT = Op.getValueType(); 10165 bool isLittleEndian = Subtarget.isLittleEndian(); 10166 10167 unsigned ShiftElts, InsertAtByte; 10168 bool Swap = false; 10169 10170 // If this is a load-and-splat, we can do that with a single instruction 10171 // in some cases. However if the load has multiple uses, we don't want to 10172 // combine it because that will just produce multiple loads. 10173 bool IsPermutedLoad = false; 10174 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 10175 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 10176 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 10177 InputLoad->hasOneUse()) { 10178 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 10179 int SplatIdx = 10180 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 10181 10182 // The splat index for permuted loads will be in the left half of the vector 10183 // which is strictly wider than the loaded value by 8 bytes. So we need to 10184 // adjust the splat index to point to the correct address in memory. 10185 if (IsPermutedLoad) { 10186 assert((isLittleEndian || IsFourByte) && 10187 "Unexpected size for permuted load on big endian target"); 10188 SplatIdx += IsFourByte ? 2 : 1; 10189 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 10190 "Splat of a value outside of the loaded memory"); 10191 } 10192 10193 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 10194 // For 4-byte load-and-splat, we need Power9. 10195 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 10196 uint64_t Offset = 0; 10197 if (IsFourByte) 10198 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 10199 else 10200 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 10201 10202 // If the width of the load is the same as the width of the splat, 10203 // loading with an offset would load the wrong memory. 10204 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 10205 Offset = 0; 10206 10207 SDValue BasePtr = LD->getBasePtr(); 10208 if (Offset != 0) 10209 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 10210 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 10211 SDValue Ops[] = { 10212 LD->getChain(), // Chain 10213 BasePtr, // BasePtr 10214 DAG.getValueType(Op.getValueType()) // VT 10215 }; 10216 SDVTList VTL = 10217 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 10218 SDValue LdSplt = 10219 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 10220 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10221 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 10222 if (LdSplt.getValueType() != SVOp->getValueType(0)) 10223 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 10224 return LdSplt; 10225 } 10226 } 10227 10228 // All v2i64 and v2f64 shuffles are legal 10229 if (VT == MVT::v2i64 || VT == MVT::v2f64) 10230 return Op; 10231 10232 if (Subtarget.hasP9Vector() && 10233 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 10234 isLittleEndian)) { 10235 if (V2.isUndef()) 10236 V2 = V1; 10237 else if (Swap) 10238 std::swap(V1, V2); 10239 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10240 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 10241 if (ShiftElts) { 10242 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 10243 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10244 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 10245 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10246 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10247 } 10248 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 10249 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10250 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10251 } 10252 10253 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) { 10254 SDValue SplatInsertNode; 10255 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 10256 return SplatInsertNode; 10257 } 10258 10259 if (Subtarget.hasP9Altivec()) { 10260 SDValue NewISDNode; 10261 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 10262 return NewISDNode; 10263 10264 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 10265 return NewISDNode; 10266 } 10267 10268 if (Subtarget.hasVSX() && 10269 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10270 if (Swap) 10271 std::swap(V1, V2); 10272 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10273 SDValue Conv2 = 10274 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 10275 10276 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 10277 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10278 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 10279 } 10280 10281 if (Subtarget.hasVSX() && 10282 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10283 if (Swap) 10284 std::swap(V1, V2); 10285 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10286 SDValue Conv2 = 10287 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10288 10289 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10290 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10291 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10292 } 10293 10294 if (Subtarget.hasP9Vector()) { 10295 if (PPC::isXXBRHShuffleMask(SVOp)) { 10296 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10297 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10298 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10299 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10300 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10301 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10302 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10303 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10304 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10305 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10306 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10307 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10308 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10309 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10310 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10311 } 10312 } 10313 10314 if (Subtarget.hasVSX()) { 10315 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10316 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10317 10318 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10319 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10320 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10321 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10322 } 10323 10324 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10325 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10326 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10327 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10328 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10329 } 10330 } 10331 10332 // Cases that are handled by instructions that take permute immediates 10333 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10334 // selected by the instruction selector. 10335 if (V2.isUndef()) { 10336 if (PPC::isSplatShuffleMask(SVOp, 1) || 10337 PPC::isSplatShuffleMask(SVOp, 2) || 10338 PPC::isSplatShuffleMask(SVOp, 4) || 10339 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10340 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10341 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10342 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10343 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10344 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10345 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10346 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10347 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10348 (Subtarget.hasP8Altivec() && ( 10349 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10350 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10351 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10352 return Op; 10353 } 10354 } 10355 10356 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10357 // and produce a fixed permutation. If any of these match, do not lower to 10358 // VPERM. 10359 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10360 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10361 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10362 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10363 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10364 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10365 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10366 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10367 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10368 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10369 (Subtarget.hasP8Altivec() && ( 10370 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10371 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10372 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10373 return Op; 10374 10375 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10376 // perfect shuffle table to emit an optimal matching sequence. 10377 ArrayRef<int> PermMask = SVOp->getMask(); 10378 10379 if (!DisablePerfectShuffle && !isLittleEndian) { 10380 unsigned PFIndexes[4]; 10381 bool isFourElementShuffle = true; 10382 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10383 ++i) { // Element number 10384 unsigned EltNo = 8; // Start out undef. 10385 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10386 if (PermMask[i * 4 + j] < 0) 10387 continue; // Undef, ignore it. 10388 10389 unsigned ByteSource = PermMask[i * 4 + j]; 10390 if ((ByteSource & 3) != j) { 10391 isFourElementShuffle = false; 10392 break; 10393 } 10394 10395 if (EltNo == 8) { 10396 EltNo = ByteSource / 4; 10397 } else if (EltNo != ByteSource / 4) { 10398 isFourElementShuffle = false; 10399 break; 10400 } 10401 } 10402 PFIndexes[i] = EltNo; 10403 } 10404 10405 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10406 // perfect shuffle vector to determine if it is cost effective to do this as 10407 // discrete instructions, or whether we should use a vperm. 10408 // For now, we skip this for little endian until such time as we have a 10409 // little-endian perfect shuffle table. 10410 if (isFourElementShuffle) { 10411 // Compute the index in the perfect shuffle table. 10412 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10413 PFIndexes[2] * 9 + PFIndexes[3]; 10414 10415 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10416 unsigned Cost = (PFEntry >> 30); 10417 10418 // Determining when to avoid vperm is tricky. Many things affect the cost 10419 // of vperm, particularly how many times the perm mask needs to be 10420 // computed. For example, if the perm mask can be hoisted out of a loop or 10421 // is already used (perhaps because there are multiple permutes with the 10422 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10423 // permute mask out of the loop requires an extra register. 10424 // 10425 // As a compromise, we only emit discrete instructions if the shuffle can 10426 // be generated in 3 or fewer operations. When we have loop information 10427 // available, if this block is within a loop, we should avoid using vperm 10428 // for 3-operation perms and use a constant pool load instead. 10429 if (Cost < 3) 10430 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10431 } 10432 } 10433 10434 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10435 // vector that will get spilled to the constant pool. 10436 if (V2.isUndef()) V2 = V1; 10437 10438 return LowerVPERM(Op, DAG, PermMask, VT, V1, V2); 10439 } 10440 10441 SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG, 10442 ArrayRef<int> PermMask, EVT VT, 10443 SDValue V1, SDValue V2) const { 10444 unsigned Opcode = PPCISD::VPERM; 10445 EVT ValType = V1.getValueType(); 10446 SDLoc dl(Op); 10447 bool NeedSwap = false; 10448 bool isLittleEndian = Subtarget.isLittleEndian(); 10449 bool isPPC64 = Subtarget.isPPC64(); 10450 10451 if (Subtarget.hasVSX() && Subtarget.hasP9Vector() && 10452 (V1->hasOneUse() || V2->hasOneUse())) { 10453 LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using " 10454 "XXPERM instead\n"); 10455 Opcode = PPCISD::XXPERM; 10456 10457 // The second input to XXPERM is also an output so if the second input has 10458 // multiple uses then copying is necessary, as a result we want the 10459 // single-use operand to be used as the second input to prevent copying. 10460 if ((!isLittleEndian && !V2->hasOneUse() && V1->hasOneUse()) || 10461 (isLittleEndian && !V1->hasOneUse() && V2->hasOneUse())) { 10462 std::swap(V1, V2); 10463 NeedSwap = !NeedSwap; 10464 } 10465 } 10466 10467 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10468 // that it is in input element units, not in bytes. Convert now. 10469 10470 // For little endian, the order of the input vectors is reversed, and 10471 // the permutation mask is complemented with respect to 31. This is 10472 // necessary to produce proper semantics with the big-endian-based vperm 10473 // instruction. 10474 EVT EltVT = V1.getValueType().getVectorElementType(); 10475 unsigned BytesPerElement = EltVT.getSizeInBits() / 8; 10476 10477 bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; 10478 bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; 10479 10480 /* 10481 Vectors will be appended like so: [ V1 | v2 ] 10482 XXSWAPD on V1: 10483 [ A | B | C | D ] -> [ C | D | A | B ] 10484 0-3 4-7 8-11 12-15 0-3 4-7 8-11 12-15 10485 i.e. index of A, B += 8, and index of C, D -= 8. 10486 XXSWAPD on V2: 10487 [ E | F | G | H ] -> [ G | H | E | F ] 10488 16-19 20-23 24-27 28-31 16-19 20-23 24-27 28-31 10489 i.e. index of E, F += 8, index of G, H -= 8 10490 Swap V1 and V2: 10491 [ V1 | V2 ] -> [ V2 | V1 ] 10492 0-15 16-31 0-15 16-31 10493 i.e. index of V1 += 16, index of V2 -= 16 10494 */ 10495 10496 SmallVector<SDValue, 16> ResultMask; 10497 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10498 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10499 10500 if (V1HasXXSWAPD) { 10501 if (SrcElt < 8) 10502 SrcElt += 8; 10503 else if (SrcElt < 16) 10504 SrcElt -= 8; 10505 } 10506 if (V2HasXXSWAPD) { 10507 if (SrcElt > 23) 10508 SrcElt -= 8; 10509 else if (SrcElt > 15) 10510 SrcElt += 8; 10511 } 10512 if (NeedSwap) { 10513 if (SrcElt < 16) 10514 SrcElt += 16; 10515 else 10516 SrcElt -= 16; 10517 } 10518 for (unsigned j = 0; j != BytesPerElement; ++j) 10519 if (isLittleEndian) 10520 ResultMask.push_back( 10521 DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32)); 10522 else 10523 ResultMask.push_back( 10524 DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32)); 10525 } 10526 10527 if (V1HasXXSWAPD) { 10528 dl = SDLoc(V1->getOperand(0)); 10529 V1 = V1->getOperand(0)->getOperand(1); 10530 } 10531 if (V2HasXXSWAPD) { 10532 dl = SDLoc(V2->getOperand(0)); 10533 V2 = V2->getOperand(0)->getOperand(1); 10534 } 10535 10536 if (isPPC64 && (V1HasXXSWAPD || V2HasXXSWAPD)) { 10537 if (ValType != MVT::v2f64) 10538 V1 = DAG.getBitcast(MVT::v2f64, V1); 10539 if (V2.getValueType() != MVT::v2f64) 10540 V2 = DAG.getBitcast(MVT::v2f64, V2); 10541 } 10542 10543 ShufflesHandledWithVPERM++; 10544 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10545 LLVM_DEBUG({ 10546 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 10547 if (Opcode == PPCISD::XXPERM) { 10548 dbgs() << "Emitting a XXPERM for the following shuffle:\n"; 10549 } else { 10550 dbgs() << "Emitting a VPERM for the following shuffle:\n"; 10551 } 10552 SVOp->dump(); 10553 dbgs() << "With the following permute control vector:\n"; 10554 VPermMask.dump(); 10555 }); 10556 10557 if (Opcode == PPCISD::XXPERM) 10558 VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask); 10559 10560 // Only need to place items backwards in LE, 10561 // the mask was properly calculated. 10562 if (isLittleEndian) 10563 std::swap(V1, V2); 10564 10565 SDValue VPERMNode = 10566 DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask); 10567 10568 VPERMNode = DAG.getBitcast(ValType, VPERMNode); 10569 return VPERMNode; 10570 } 10571 10572 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10573 /// vector comparison. If it is, return true and fill in Opc/isDot with 10574 /// information about the intrinsic. 10575 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10576 bool &isDot, const PPCSubtarget &Subtarget) { 10577 unsigned IntrinsicID = Intrin.getConstantOperandVal(0); 10578 CompareOpc = -1; 10579 isDot = false; 10580 switch (IntrinsicID) { 10581 default: 10582 return false; 10583 // Comparison predicates. 10584 case Intrinsic::ppc_altivec_vcmpbfp_p: 10585 CompareOpc = 966; 10586 isDot = true; 10587 break; 10588 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10589 CompareOpc = 198; 10590 isDot = true; 10591 break; 10592 case Intrinsic::ppc_altivec_vcmpequb_p: 10593 CompareOpc = 6; 10594 isDot = true; 10595 break; 10596 case Intrinsic::ppc_altivec_vcmpequh_p: 10597 CompareOpc = 70; 10598 isDot = true; 10599 break; 10600 case Intrinsic::ppc_altivec_vcmpequw_p: 10601 CompareOpc = 134; 10602 isDot = true; 10603 break; 10604 case Intrinsic::ppc_altivec_vcmpequd_p: 10605 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10606 CompareOpc = 199; 10607 isDot = true; 10608 } else 10609 return false; 10610 break; 10611 case Intrinsic::ppc_altivec_vcmpneb_p: 10612 case Intrinsic::ppc_altivec_vcmpneh_p: 10613 case Intrinsic::ppc_altivec_vcmpnew_p: 10614 case Intrinsic::ppc_altivec_vcmpnezb_p: 10615 case Intrinsic::ppc_altivec_vcmpnezh_p: 10616 case Intrinsic::ppc_altivec_vcmpnezw_p: 10617 if (Subtarget.hasP9Altivec()) { 10618 switch (IntrinsicID) { 10619 default: 10620 llvm_unreachable("Unknown comparison intrinsic."); 10621 case Intrinsic::ppc_altivec_vcmpneb_p: 10622 CompareOpc = 7; 10623 break; 10624 case Intrinsic::ppc_altivec_vcmpneh_p: 10625 CompareOpc = 71; 10626 break; 10627 case Intrinsic::ppc_altivec_vcmpnew_p: 10628 CompareOpc = 135; 10629 break; 10630 case Intrinsic::ppc_altivec_vcmpnezb_p: 10631 CompareOpc = 263; 10632 break; 10633 case Intrinsic::ppc_altivec_vcmpnezh_p: 10634 CompareOpc = 327; 10635 break; 10636 case Intrinsic::ppc_altivec_vcmpnezw_p: 10637 CompareOpc = 391; 10638 break; 10639 } 10640 isDot = true; 10641 } else 10642 return false; 10643 break; 10644 case Intrinsic::ppc_altivec_vcmpgefp_p: 10645 CompareOpc = 454; 10646 isDot = true; 10647 break; 10648 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10649 CompareOpc = 710; 10650 isDot = true; 10651 break; 10652 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10653 CompareOpc = 774; 10654 isDot = true; 10655 break; 10656 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10657 CompareOpc = 838; 10658 isDot = true; 10659 break; 10660 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10661 CompareOpc = 902; 10662 isDot = true; 10663 break; 10664 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10665 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10666 CompareOpc = 967; 10667 isDot = true; 10668 } else 10669 return false; 10670 break; 10671 case Intrinsic::ppc_altivec_vcmpgtub_p: 10672 CompareOpc = 518; 10673 isDot = true; 10674 break; 10675 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10676 CompareOpc = 582; 10677 isDot = true; 10678 break; 10679 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10680 CompareOpc = 646; 10681 isDot = true; 10682 break; 10683 case Intrinsic::ppc_altivec_vcmpgtud_p: 10684 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10685 CompareOpc = 711; 10686 isDot = true; 10687 } else 10688 return false; 10689 break; 10690 10691 case Intrinsic::ppc_altivec_vcmpequq: 10692 case Intrinsic::ppc_altivec_vcmpgtsq: 10693 case Intrinsic::ppc_altivec_vcmpgtuq: 10694 if (!Subtarget.isISA3_1()) 10695 return false; 10696 switch (IntrinsicID) { 10697 default: 10698 llvm_unreachable("Unknown comparison intrinsic."); 10699 case Intrinsic::ppc_altivec_vcmpequq: 10700 CompareOpc = 455; 10701 break; 10702 case Intrinsic::ppc_altivec_vcmpgtsq: 10703 CompareOpc = 903; 10704 break; 10705 case Intrinsic::ppc_altivec_vcmpgtuq: 10706 CompareOpc = 647; 10707 break; 10708 } 10709 break; 10710 10711 // VSX predicate comparisons use the same infrastructure 10712 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10713 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10714 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10715 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10716 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10717 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10718 if (Subtarget.hasVSX()) { 10719 switch (IntrinsicID) { 10720 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10721 CompareOpc = 99; 10722 break; 10723 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10724 CompareOpc = 115; 10725 break; 10726 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10727 CompareOpc = 107; 10728 break; 10729 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10730 CompareOpc = 67; 10731 break; 10732 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10733 CompareOpc = 83; 10734 break; 10735 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10736 CompareOpc = 75; 10737 break; 10738 } 10739 isDot = true; 10740 } else 10741 return false; 10742 break; 10743 10744 // Normal Comparisons. 10745 case Intrinsic::ppc_altivec_vcmpbfp: 10746 CompareOpc = 966; 10747 break; 10748 case Intrinsic::ppc_altivec_vcmpeqfp: 10749 CompareOpc = 198; 10750 break; 10751 case Intrinsic::ppc_altivec_vcmpequb: 10752 CompareOpc = 6; 10753 break; 10754 case Intrinsic::ppc_altivec_vcmpequh: 10755 CompareOpc = 70; 10756 break; 10757 case Intrinsic::ppc_altivec_vcmpequw: 10758 CompareOpc = 134; 10759 break; 10760 case Intrinsic::ppc_altivec_vcmpequd: 10761 if (Subtarget.hasP8Altivec()) 10762 CompareOpc = 199; 10763 else 10764 return false; 10765 break; 10766 case Intrinsic::ppc_altivec_vcmpneb: 10767 case Intrinsic::ppc_altivec_vcmpneh: 10768 case Intrinsic::ppc_altivec_vcmpnew: 10769 case Intrinsic::ppc_altivec_vcmpnezb: 10770 case Intrinsic::ppc_altivec_vcmpnezh: 10771 case Intrinsic::ppc_altivec_vcmpnezw: 10772 if (Subtarget.hasP9Altivec()) 10773 switch (IntrinsicID) { 10774 default: 10775 llvm_unreachable("Unknown comparison intrinsic."); 10776 case Intrinsic::ppc_altivec_vcmpneb: 10777 CompareOpc = 7; 10778 break; 10779 case Intrinsic::ppc_altivec_vcmpneh: 10780 CompareOpc = 71; 10781 break; 10782 case Intrinsic::ppc_altivec_vcmpnew: 10783 CompareOpc = 135; 10784 break; 10785 case Intrinsic::ppc_altivec_vcmpnezb: 10786 CompareOpc = 263; 10787 break; 10788 case Intrinsic::ppc_altivec_vcmpnezh: 10789 CompareOpc = 327; 10790 break; 10791 case Intrinsic::ppc_altivec_vcmpnezw: 10792 CompareOpc = 391; 10793 break; 10794 } 10795 else 10796 return false; 10797 break; 10798 case Intrinsic::ppc_altivec_vcmpgefp: 10799 CompareOpc = 454; 10800 break; 10801 case Intrinsic::ppc_altivec_vcmpgtfp: 10802 CompareOpc = 710; 10803 break; 10804 case Intrinsic::ppc_altivec_vcmpgtsb: 10805 CompareOpc = 774; 10806 break; 10807 case Intrinsic::ppc_altivec_vcmpgtsh: 10808 CompareOpc = 838; 10809 break; 10810 case Intrinsic::ppc_altivec_vcmpgtsw: 10811 CompareOpc = 902; 10812 break; 10813 case Intrinsic::ppc_altivec_vcmpgtsd: 10814 if (Subtarget.hasP8Altivec()) 10815 CompareOpc = 967; 10816 else 10817 return false; 10818 break; 10819 case Intrinsic::ppc_altivec_vcmpgtub: 10820 CompareOpc = 518; 10821 break; 10822 case Intrinsic::ppc_altivec_vcmpgtuh: 10823 CompareOpc = 582; 10824 break; 10825 case Intrinsic::ppc_altivec_vcmpgtuw: 10826 CompareOpc = 646; 10827 break; 10828 case Intrinsic::ppc_altivec_vcmpgtud: 10829 if (Subtarget.hasP8Altivec()) 10830 CompareOpc = 711; 10831 else 10832 return false; 10833 break; 10834 case Intrinsic::ppc_altivec_vcmpequq_p: 10835 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10836 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10837 if (!Subtarget.isISA3_1()) 10838 return false; 10839 switch (IntrinsicID) { 10840 default: 10841 llvm_unreachable("Unknown comparison intrinsic."); 10842 case Intrinsic::ppc_altivec_vcmpequq_p: 10843 CompareOpc = 455; 10844 break; 10845 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10846 CompareOpc = 903; 10847 break; 10848 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10849 CompareOpc = 647; 10850 break; 10851 } 10852 isDot = true; 10853 break; 10854 } 10855 return true; 10856 } 10857 10858 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10859 /// lower, do it, otherwise return null. 10860 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10861 SelectionDAG &DAG) const { 10862 unsigned IntrinsicID = Op.getConstantOperandVal(0); 10863 10864 SDLoc dl(Op); 10865 10866 switch (IntrinsicID) { 10867 case Intrinsic::thread_pointer: 10868 // Reads the thread pointer register, used for __builtin_thread_pointer. 10869 if (Subtarget.isPPC64()) 10870 return DAG.getRegister(PPC::X13, MVT::i64); 10871 return DAG.getRegister(PPC::R2, MVT::i32); 10872 10873 case Intrinsic::ppc_rldimi: { 10874 assert(Subtarget.isPPC64() && "rldimi is only available in 64-bit!"); 10875 SDValue Src = Op.getOperand(1); 10876 APInt Mask = Op.getConstantOperandAPInt(4); 10877 if (Mask.isZero()) 10878 return Op.getOperand(2); 10879 if (Mask.isAllOnes()) 10880 return DAG.getNode(ISD::ROTL, dl, MVT::i64, Src, Op.getOperand(3)); 10881 uint64_t SH = Op.getConstantOperandVal(3); 10882 unsigned MB = 0, ME = 0; 10883 if (!isRunOfOnes64(Mask.getZExtValue(), MB, ME)) 10884 report_fatal_error("invalid rldimi mask!"); 10885 // rldimi requires ME=63-SH, otherwise rotation is needed before rldimi. 10886 if (ME < 63 - SH) { 10887 Src = DAG.getNode(ISD::ROTL, dl, MVT::i64, Src, 10888 DAG.getConstant(ME + SH + 1, dl, MVT::i32)); 10889 } else if (ME > 63 - SH) { 10890 Src = DAG.getNode(ISD::ROTL, dl, MVT::i64, Src, 10891 DAG.getConstant(ME + SH - 63, dl, MVT::i32)); 10892 } 10893 return SDValue( 10894 DAG.getMachineNode(PPC::RLDIMI, dl, MVT::i64, 10895 {Op.getOperand(2), Src, 10896 DAG.getTargetConstant(63 - ME, dl, MVT::i32), 10897 DAG.getTargetConstant(MB, dl, MVT::i32)}), 10898 0); 10899 } 10900 10901 case Intrinsic::ppc_rlwimi: { 10902 APInt Mask = Op.getConstantOperandAPInt(4); 10903 if (Mask.isZero()) 10904 return Op.getOperand(2); 10905 if (Mask.isAllOnes()) 10906 return DAG.getNode(ISD::ROTL, dl, MVT::i32, Op.getOperand(1), 10907 Op.getOperand(3)); 10908 unsigned MB = 0, ME = 0; 10909 if (!isRunOfOnes(Mask.getZExtValue(), MB, ME)) 10910 report_fatal_error("invalid rlwimi mask!"); 10911 return SDValue(DAG.getMachineNode( 10912 PPC::RLWIMI, dl, MVT::i32, 10913 {Op.getOperand(2), Op.getOperand(1), Op.getOperand(3), 10914 DAG.getTargetConstant(MB, dl, MVT::i32), 10915 DAG.getTargetConstant(ME, dl, MVT::i32)}), 10916 0); 10917 } 10918 10919 case Intrinsic::ppc_rlwnm: { 10920 if (Op.getConstantOperandVal(3) == 0) 10921 return DAG.getConstant(0, dl, MVT::i32); 10922 unsigned MB = 0, ME = 0; 10923 if (!isRunOfOnes(Op.getConstantOperandVal(3), MB, ME)) 10924 report_fatal_error("invalid rlwnm mask!"); 10925 return SDValue( 10926 DAG.getMachineNode(PPC::RLWNM, dl, MVT::i32, 10927 {Op.getOperand(1), Op.getOperand(2), 10928 DAG.getTargetConstant(MB, dl, MVT::i32), 10929 DAG.getTargetConstant(ME, dl, MVT::i32)}), 10930 0); 10931 } 10932 10933 case Intrinsic::ppc_mma_disassemble_acc: { 10934 if (Subtarget.isISAFuture()) { 10935 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; 10936 SDValue WideVec = 10937 SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl, ReturnTypes, 10938 Op.getOperand(1)), 10939 0); 10940 SmallVector<SDValue, 4> RetOps; 10941 SDValue Value = SDValue(WideVec.getNode(), 0); 10942 SDValue Value2 = SDValue(WideVec.getNode(), 1); 10943 10944 SDValue Extract; 10945 Extract = DAG.getNode( 10946 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10947 Subtarget.isLittleEndian() ? Value2 : Value, 10948 DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, 10949 dl, getPointerTy(DAG.getDataLayout()))); 10950 RetOps.push_back(Extract); 10951 Extract = DAG.getNode( 10952 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10953 Subtarget.isLittleEndian() ? Value2 : Value, 10954 DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, 10955 dl, getPointerTy(DAG.getDataLayout()))); 10956 RetOps.push_back(Extract); 10957 Extract = DAG.getNode( 10958 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10959 Subtarget.isLittleEndian() ? Value : Value2, 10960 DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, 10961 dl, getPointerTy(DAG.getDataLayout()))); 10962 RetOps.push_back(Extract); 10963 Extract = DAG.getNode( 10964 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10965 Subtarget.isLittleEndian() ? Value : Value2, 10966 DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, 10967 dl, getPointerTy(DAG.getDataLayout()))); 10968 RetOps.push_back(Extract); 10969 return DAG.getMergeValues(RetOps, dl); 10970 } 10971 [[fallthrough]]; 10972 } 10973 case Intrinsic::ppc_vsx_disassemble_pair: { 10974 int NumVecs = 2; 10975 SDValue WideVec = Op.getOperand(1); 10976 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10977 NumVecs = 4; 10978 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10979 } 10980 SmallVector<SDValue, 4> RetOps; 10981 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10982 SDValue Extract = DAG.getNode( 10983 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10984 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10985 : VecNo, 10986 dl, getPointerTy(DAG.getDataLayout()))); 10987 RetOps.push_back(Extract); 10988 } 10989 return DAG.getMergeValues(RetOps, dl); 10990 } 10991 10992 case Intrinsic::ppc_mma_xxmfacc: 10993 case Intrinsic::ppc_mma_xxmtacc: { 10994 // Allow pre-isa-future subtargets to lower as normal. 10995 if (!Subtarget.isISAFuture()) 10996 return SDValue(); 10997 // The intrinsics for xxmtacc and xxmfacc take one argument of 10998 // type v512i1, for future cpu the corresponding wacc instruction 10999 // dmxx[inst|extf]dmr512 is always generated for type v512i1, negating 11000 // the need to produce the xxm[t|f]acc. 11001 SDValue WideVec = Op.getOperand(1); 11002 DAG.ReplaceAllUsesWith(Op, WideVec); 11003 return SDValue(); 11004 } 11005 11006 case Intrinsic::ppc_unpack_longdouble: { 11007 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 11008 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 11009 "Argument of long double unpack must be 0 or 1!"); 11010 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 11011 DAG.getConstant(!!(Idx->getSExtValue()), dl, 11012 Idx->getValueType(0))); 11013 } 11014 11015 case Intrinsic::ppc_compare_exp_lt: 11016 case Intrinsic::ppc_compare_exp_gt: 11017 case Intrinsic::ppc_compare_exp_eq: 11018 case Intrinsic::ppc_compare_exp_uo: { 11019 unsigned Pred; 11020 switch (IntrinsicID) { 11021 case Intrinsic::ppc_compare_exp_lt: 11022 Pred = PPC::PRED_LT; 11023 break; 11024 case Intrinsic::ppc_compare_exp_gt: 11025 Pred = PPC::PRED_GT; 11026 break; 11027 case Intrinsic::ppc_compare_exp_eq: 11028 Pred = PPC::PRED_EQ; 11029 break; 11030 case Intrinsic::ppc_compare_exp_uo: 11031 Pred = PPC::PRED_UN; 11032 break; 11033 } 11034 return SDValue( 11035 DAG.getMachineNode( 11036 PPC::SELECT_CC_I4, dl, MVT::i32, 11037 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 11038 Op.getOperand(1), Op.getOperand(2)), 11039 0), 11040 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 11041 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 11042 0); 11043 } 11044 case Intrinsic::ppc_test_data_class: { 11045 EVT OpVT = Op.getOperand(1).getValueType(); 11046 unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP 11047 : (OpVT == MVT::f64 ? PPC::XSTSTDCDP 11048 : PPC::XSTSTDCSP); 11049 return SDValue( 11050 DAG.getMachineNode( 11051 PPC::SELECT_CC_I4, dl, MVT::i32, 11052 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 11053 Op.getOperand(1)), 11054 0), 11055 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 11056 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 11057 0); 11058 } 11059 case Intrinsic::ppc_fnmsub: { 11060 EVT VT = Op.getOperand(1).getValueType(); 11061 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) 11062 return DAG.getNode( 11063 ISD::FNEG, dl, VT, 11064 DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), 11065 DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); 11066 return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), 11067 Op.getOperand(2), Op.getOperand(3)); 11068 } 11069 case Intrinsic::ppc_convert_f128_to_ppcf128: 11070 case Intrinsic::ppc_convert_ppcf128_to_f128: { 11071 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 11072 ? RTLIB::CONVERT_PPCF128_F128 11073 : RTLIB::CONVERT_F128_PPCF128; 11074 MakeLibCallOptions CallOptions; 11075 std::pair<SDValue, SDValue> Result = 11076 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 11077 dl, SDValue()); 11078 return Result.first; 11079 } 11080 case Intrinsic::ppc_maxfe: 11081 case Intrinsic::ppc_maxfl: 11082 case Intrinsic::ppc_maxfs: 11083 case Intrinsic::ppc_minfe: 11084 case Intrinsic::ppc_minfl: 11085 case Intrinsic::ppc_minfs: { 11086 EVT VT = Op.getValueType(); 11087 assert( 11088 all_of(Op->ops().drop_front(4), 11089 [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && 11090 "ppc_[max|min]f[e|l|s] must have uniform type arguments"); 11091 (void)VT; 11092 ISD::CondCode CC = ISD::SETGT; 11093 if (IntrinsicID == Intrinsic::ppc_minfe || 11094 IntrinsicID == Intrinsic::ppc_minfl || 11095 IntrinsicID == Intrinsic::ppc_minfs) 11096 CC = ISD::SETLT; 11097 unsigned I = Op.getNumOperands() - 2, Cnt = I; 11098 SDValue Res = Op.getOperand(I); 11099 for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { 11100 Res = 11101 DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); 11102 } 11103 return Res; 11104 } 11105 } 11106 11107 // If this is a lowered altivec predicate compare, CompareOpc is set to the 11108 // opcode number of the comparison. 11109 int CompareOpc; 11110 bool isDot; 11111 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 11112 return SDValue(); // Don't custom lower most intrinsics. 11113 11114 // If this is a non-dot comparison, make the VCMP node and we are done. 11115 if (!isDot) { 11116 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 11117 Op.getOperand(1), Op.getOperand(2), 11118 DAG.getConstant(CompareOpc, dl, MVT::i32)); 11119 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 11120 } 11121 11122 // Create the PPCISD altivec 'dot' comparison node. 11123 SDValue Ops[] = { 11124 Op.getOperand(2), // LHS 11125 Op.getOperand(3), // RHS 11126 DAG.getConstant(CompareOpc, dl, MVT::i32) 11127 }; 11128 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 11129 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 11130 11131 // Now that we have the comparison, emit a copy from the CR to a GPR. 11132 // This is flagged to the above dot comparison. 11133 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 11134 DAG.getRegister(PPC::CR6, MVT::i32), 11135 CompNode.getValue(1)); 11136 11137 // Unpack the result based on how the target uses it. 11138 unsigned BitNo; // Bit # of CR6. 11139 bool InvertBit; // Invert result? 11140 switch (Op.getConstantOperandVal(1)) { 11141 default: // Can't happen, don't crash on invalid number though. 11142 case 0: // Return the value of the EQ bit of CR6. 11143 BitNo = 0; InvertBit = false; 11144 break; 11145 case 1: // Return the inverted value of the EQ bit of CR6. 11146 BitNo = 0; InvertBit = true; 11147 break; 11148 case 2: // Return the value of the LT bit of CR6. 11149 BitNo = 2; InvertBit = false; 11150 break; 11151 case 3: // Return the inverted value of the LT bit of CR6. 11152 BitNo = 2; InvertBit = true; 11153 break; 11154 } 11155 11156 // Shift the bit into the low position. 11157 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 11158 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 11159 // Isolate the bit. 11160 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 11161 DAG.getConstant(1, dl, MVT::i32)); 11162 11163 // If we are supposed to, toggle the bit. 11164 if (InvertBit) 11165 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 11166 DAG.getConstant(1, dl, MVT::i32)); 11167 return Flags; 11168 } 11169 11170 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 11171 SelectionDAG &DAG) const { 11172 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 11173 // the beginning of the argument list. 11174 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 11175 SDLoc DL(Op); 11176 switch (Op.getConstantOperandVal(ArgStart)) { 11177 case Intrinsic::ppc_cfence: { 11178 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 11179 SDValue Val = Op.getOperand(ArgStart + 1); 11180 EVT Ty = Val.getValueType(); 11181 if (Ty == MVT::i128) { 11182 // FIXME: Testing one of two paired registers is sufficient to guarantee 11183 // ordering? 11184 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 11185 } 11186 unsigned Opcode = Subtarget.isPPC64() ? PPC::CFENCE8 : PPC::CFENCE; 11187 EVT FTy = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 11188 return SDValue( 11189 DAG.getMachineNode(Opcode, DL, MVT::Other, 11190 DAG.getNode(ISD::ANY_EXTEND, DL, FTy, Val), 11191 Op.getOperand(0)), 11192 0); 11193 } 11194 default: 11195 break; 11196 } 11197 return SDValue(); 11198 } 11199 11200 // Lower scalar BSWAP64 to xxbrd. 11201 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 11202 SDLoc dl(Op); 11203 if (!Subtarget.isPPC64()) 11204 return Op; 11205 // MTVSRDD 11206 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 11207 Op.getOperand(0)); 11208 // XXBRD 11209 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 11210 // MFVSRD 11211 int VectorIndex = 0; 11212 if (Subtarget.isLittleEndian()) 11213 VectorIndex = 1; 11214 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 11215 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 11216 return Op; 11217 } 11218 11219 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 11220 // compared to a value that is atomically loaded (atomic loads zero-extend). 11221 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 11222 SelectionDAG &DAG) const { 11223 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 11224 "Expecting an atomic compare-and-swap here."); 11225 SDLoc dl(Op); 11226 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 11227 EVT MemVT = AtomicNode->getMemoryVT(); 11228 if (MemVT.getSizeInBits() >= 32) 11229 return Op; 11230 11231 SDValue CmpOp = Op.getOperand(2); 11232 // If this is already correctly zero-extended, leave it alone. 11233 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 11234 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 11235 return Op; 11236 11237 // Clear the high bits of the compare operand. 11238 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 11239 SDValue NewCmpOp = 11240 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 11241 DAG.getConstant(MaskVal, dl, MVT::i32)); 11242 11243 // Replace the existing compare operand with the properly zero-extended one. 11244 SmallVector<SDValue, 4> Ops; 11245 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 11246 Ops.push_back(AtomicNode->getOperand(i)); 11247 Ops[2] = NewCmpOp; 11248 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 11249 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 11250 auto NodeTy = 11251 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 11252 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 11253 } 11254 11255 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 11256 SelectionDAG &DAG) const { 11257 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 11258 EVT MemVT = N->getMemoryVT(); 11259 assert(MemVT.getSimpleVT() == MVT::i128 && 11260 "Expect quadword atomic operations"); 11261 SDLoc dl(N); 11262 unsigned Opc = N->getOpcode(); 11263 switch (Opc) { 11264 case ISD::ATOMIC_LOAD: { 11265 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 11266 // lowered to ppc instructions by pattern matching instruction selector. 11267 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 11268 SmallVector<SDValue, 4> Ops{ 11269 N->getOperand(0), 11270 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 11271 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 11272 Ops.push_back(N->getOperand(I)); 11273 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 11274 Ops, MemVT, N->getMemOperand()); 11275 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 11276 SDValue ValHi = 11277 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 11278 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 11279 DAG.getConstant(64, dl, MVT::i32)); 11280 SDValue Val = 11281 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 11282 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 11283 {Val, LoadedVal.getValue(2)}); 11284 } 11285 case ISD::ATOMIC_STORE: { 11286 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 11287 // lowered to ppc instructions by pattern matching instruction selector. 11288 SDVTList Tys = DAG.getVTList(MVT::Other); 11289 SmallVector<SDValue, 4> Ops{ 11290 N->getOperand(0), 11291 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 11292 SDValue Val = N->getOperand(1); 11293 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 11294 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 11295 DAG.getConstant(64, dl, MVT::i32)); 11296 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 11297 Ops.push_back(ValLo); 11298 Ops.push_back(ValHi); 11299 Ops.push_back(N->getOperand(2)); 11300 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 11301 N->getMemOperand()); 11302 } 11303 default: 11304 llvm_unreachable("Unexpected atomic opcode"); 11305 } 11306 } 11307 11308 static SDValue getDataClassTest(SDValue Op, FPClassTest Mask, const SDLoc &Dl, 11309 SelectionDAG &DAG, 11310 const PPCSubtarget &Subtarget) { 11311 assert(Mask <= fcAllFlags && "Invalid fp_class flags!"); 11312 11313 enum DataClassMask { 11314 DC_NAN = 1 << 6, 11315 DC_NEG_INF = 1 << 4, 11316 DC_POS_INF = 1 << 5, 11317 DC_NEG_ZERO = 1 << 2, 11318 DC_POS_ZERO = 1 << 3, 11319 DC_NEG_SUBNORM = 1, 11320 DC_POS_SUBNORM = 1 << 1, 11321 }; 11322 11323 EVT VT = Op.getValueType(); 11324 11325 unsigned TestOp = VT == MVT::f128 ? PPC::XSTSTDCQP 11326 : VT == MVT::f64 ? PPC::XSTSTDCDP 11327 : PPC::XSTSTDCSP; 11328 11329 if (Mask == fcAllFlags) 11330 return DAG.getBoolConstant(true, Dl, MVT::i1, VT); 11331 if (Mask == 0) 11332 return DAG.getBoolConstant(false, Dl, MVT::i1, VT); 11333 11334 // When it's cheaper or necessary to test reverse flags. 11335 if ((Mask & fcNormal) == fcNormal || Mask == ~fcQNan || Mask == ~fcSNan) { 11336 SDValue Rev = getDataClassTest(Op, ~Mask, Dl, DAG, Subtarget); 11337 return DAG.getNOT(Dl, Rev, MVT::i1); 11338 } 11339 11340 // Power doesn't support testing whether a value is 'normal'. Test the rest 11341 // first, and test if it's 'not not-normal' with expected sign. 11342 if (Mask & fcNormal) { 11343 SDValue Rev(DAG.getMachineNode( 11344 TestOp, Dl, MVT::i32, 11345 DAG.getTargetConstant(DC_NAN | DC_NEG_INF | DC_POS_INF | 11346 DC_NEG_ZERO | DC_POS_ZERO | 11347 DC_NEG_SUBNORM | DC_POS_SUBNORM, 11348 Dl, MVT::i32), 11349 Op), 11350 0); 11351 // Sign are stored in CR bit 0, result are in CR bit 2. 11352 SDValue Sign( 11353 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, 11354 DAG.getTargetConstant(PPC::sub_lt, Dl, MVT::i32)), 11355 0); 11356 SDValue Normal(DAG.getNOT( 11357 Dl, 11358 SDValue(DAG.getMachineNode( 11359 TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, 11360 DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), 11361 0), 11362 MVT::i1)); 11363 if (Mask & fcPosNormal) 11364 Sign = DAG.getNOT(Dl, Sign, MVT::i1); 11365 SDValue Result = DAG.getNode(ISD::AND, Dl, MVT::i1, Sign, Normal); 11366 if (Mask == fcPosNormal || Mask == fcNegNormal) 11367 return Result; 11368 11369 return DAG.getNode( 11370 ISD::OR, Dl, MVT::i1, 11371 getDataClassTest(Op, Mask & ~fcNormal, Dl, DAG, Subtarget), Result); 11372 } 11373 11374 // The instruction doesn't differentiate between signaling or quiet NaN. Test 11375 // the rest first, and test if it 'is NaN and is signaling/quiet'. 11376 if ((Mask & fcNan) == fcQNan || (Mask & fcNan) == fcSNan) { 11377 bool IsQuiet = Mask & fcQNan; 11378 SDValue NanCheck = getDataClassTest(Op, fcNan, Dl, DAG, Subtarget); 11379 11380 // Quietness is determined by the first bit in fraction field. 11381 uint64_t QuietMask = 0; 11382 SDValue HighWord; 11383 if (VT == MVT::f128) { 11384 HighWord = DAG.getNode( 11385 ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Op), 11386 DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 3 : 0, Dl)); 11387 QuietMask = 0x8000; 11388 } else if (VT == MVT::f64) { 11389 if (Subtarget.isPPC64()) { 11390 HighWord = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, 11391 DAG.getBitcast(MVT::i64, Op), 11392 DAG.getConstant(1, Dl, MVT::i32)); 11393 } else { 11394 SDValue Vec = DAG.getBitcast( 11395 MVT::v4i32, DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v2f64, Op)); 11396 HighWord = DAG.getNode( 11397 ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, Vec, 11398 DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 1 : 0, Dl)); 11399 } 11400 QuietMask = 0x80000; 11401 } else if (VT == MVT::f32) { 11402 HighWord = DAG.getBitcast(MVT::i32, Op); 11403 QuietMask = 0x400000; 11404 } 11405 SDValue NanRes = DAG.getSetCC( 11406 Dl, MVT::i1, 11407 DAG.getNode(ISD::AND, Dl, MVT::i32, HighWord, 11408 DAG.getConstant(QuietMask, Dl, MVT::i32)), 11409 DAG.getConstant(0, Dl, MVT::i32), IsQuiet ? ISD::SETNE : ISD::SETEQ); 11410 NanRes = DAG.getNode(ISD::AND, Dl, MVT::i1, NanCheck, NanRes); 11411 if (Mask == fcQNan || Mask == fcSNan) 11412 return NanRes; 11413 11414 return DAG.getNode(ISD::OR, Dl, MVT::i1, 11415 getDataClassTest(Op, Mask & ~fcNan, Dl, DAG, Subtarget), 11416 NanRes); 11417 } 11418 11419 unsigned NativeMask = 0; 11420 if ((Mask & fcNan) == fcNan) 11421 NativeMask |= DC_NAN; 11422 if (Mask & fcNegInf) 11423 NativeMask |= DC_NEG_INF; 11424 if (Mask & fcPosInf) 11425 NativeMask |= DC_POS_INF; 11426 if (Mask & fcNegZero) 11427 NativeMask |= DC_NEG_ZERO; 11428 if (Mask & fcPosZero) 11429 NativeMask |= DC_POS_ZERO; 11430 if (Mask & fcNegSubnormal) 11431 NativeMask |= DC_NEG_SUBNORM; 11432 if (Mask & fcPosSubnormal) 11433 NativeMask |= DC_POS_SUBNORM; 11434 return SDValue( 11435 DAG.getMachineNode( 11436 TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, 11437 SDValue(DAG.getMachineNode( 11438 TestOp, Dl, MVT::i32, 11439 DAG.getTargetConstant(NativeMask, Dl, MVT::i32), Op), 11440 0), 11441 DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), 11442 0); 11443 } 11444 11445 SDValue PPCTargetLowering::LowerIS_FPCLASS(SDValue Op, 11446 SelectionDAG &DAG) const { 11447 assert(Subtarget.hasP9Vector() && "Test data class requires Power9"); 11448 SDValue LHS = Op.getOperand(0); 11449 uint64_t RHSC = Op.getConstantOperandVal(1); 11450 SDLoc Dl(Op); 11451 FPClassTest Category = static_cast<FPClassTest>(RHSC); 11452 return getDataClassTest(LHS, Category, Dl, DAG, Subtarget); 11453 } 11454 11455 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 11456 SelectionDAG &DAG) const { 11457 SDLoc dl(Op); 11458 // Create a stack slot that is 16-byte aligned. 11459 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11460 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 11461 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 11462 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 11463 11464 // Store the input value into Value#0 of the stack slot. 11465 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 11466 MachinePointerInfo()); 11467 // Load it out. 11468 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 11469 } 11470 11471 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 11472 SelectionDAG &DAG) const { 11473 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 11474 "Should only be called for ISD::INSERT_VECTOR_ELT"); 11475 11476 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 11477 11478 EVT VT = Op.getValueType(); 11479 SDLoc dl(Op); 11480 SDValue V1 = Op.getOperand(0); 11481 SDValue V2 = Op.getOperand(1); 11482 11483 if (VT == MVT::v2f64 && C) 11484 return Op; 11485 11486 if (Subtarget.hasP9Vector()) { 11487 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 11488 // because on P10, it allows this specific insert_vector_elt load pattern to 11489 // utilize the refactored load and store infrastructure in order to exploit 11490 // prefixed loads. 11491 // On targets with inexpensive direct moves (Power9 and up), a 11492 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 11493 // load since a single precision load will involve conversion to double 11494 // precision on the load followed by another conversion to single precision. 11495 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 11496 (isa<LoadSDNode>(V2))) { 11497 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 11498 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 11499 SDValue InsVecElt = 11500 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 11501 BitcastLoad, Op.getOperand(2)); 11502 return DAG.getBitcast(MVT::v4f32, InsVecElt); 11503 } 11504 } 11505 11506 if (Subtarget.isISA3_1()) { 11507 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 11508 return SDValue(); 11509 // On P10, we have legal lowering for constant and variable indices for 11510 // all vectors. 11511 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 11512 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 11513 return Op; 11514 } 11515 11516 // Before P10, we have legal lowering for constant indices but not for 11517 // variable ones. 11518 if (!C) 11519 return SDValue(); 11520 11521 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 11522 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 11523 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 11524 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 11525 unsigned InsertAtElement = C->getZExtValue(); 11526 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 11527 if (Subtarget.isLittleEndian()) { 11528 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 11529 } 11530 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 11531 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 11532 } 11533 return Op; 11534 } 11535 11536 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 11537 SelectionDAG &DAG) const { 11538 SDLoc dl(Op); 11539 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 11540 SDValue LoadChain = LN->getChain(); 11541 SDValue BasePtr = LN->getBasePtr(); 11542 EVT VT = Op.getValueType(); 11543 11544 if (VT != MVT::v256i1 && VT != MVT::v512i1) 11545 return Op; 11546 11547 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 11548 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 11549 // 2 or 4 vsx registers. 11550 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 11551 "Type unsupported without MMA"); 11552 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 11553 "Type unsupported without paired vector support"); 11554 Align Alignment = LN->getAlign(); 11555 SmallVector<SDValue, 4> Loads; 11556 SmallVector<SDValue, 4> LoadChains; 11557 unsigned NumVecs = VT.getSizeInBits() / 128; 11558 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 11559 SDValue Load = 11560 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 11561 LN->getPointerInfo().getWithOffset(Idx * 16), 11562 commonAlignment(Alignment, Idx * 16), 11563 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 11564 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 11565 DAG.getConstant(16, dl, BasePtr.getValueType())); 11566 Loads.push_back(Load); 11567 LoadChains.push_back(Load.getValue(1)); 11568 } 11569 if (Subtarget.isLittleEndian()) { 11570 std::reverse(Loads.begin(), Loads.end()); 11571 std::reverse(LoadChains.begin(), LoadChains.end()); 11572 } 11573 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 11574 SDValue Value = 11575 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 11576 dl, VT, Loads); 11577 SDValue RetOps[] = {Value, TF}; 11578 return DAG.getMergeValues(RetOps, dl); 11579 } 11580 11581 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 11582 SelectionDAG &DAG) const { 11583 SDLoc dl(Op); 11584 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 11585 SDValue StoreChain = SN->getChain(); 11586 SDValue BasePtr = SN->getBasePtr(); 11587 SDValue Value = SN->getValue(); 11588 SDValue Value2 = SN->getValue(); 11589 EVT StoreVT = Value.getValueType(); 11590 11591 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 11592 return Op; 11593 11594 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 11595 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 11596 // underlying registers individually. 11597 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 11598 "Type unsupported without MMA"); 11599 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 11600 "Type unsupported without paired vector support"); 11601 Align Alignment = SN->getAlign(); 11602 SmallVector<SDValue, 4> Stores; 11603 unsigned NumVecs = 2; 11604 if (StoreVT == MVT::v512i1) { 11605 if (Subtarget.isISAFuture()) { 11606 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; 11607 MachineSDNode *ExtNode = DAG.getMachineNode( 11608 PPC::DMXXEXTFDMR512, dl, ReturnTypes, Op.getOperand(1)); 11609 11610 Value = SDValue(ExtNode, 0); 11611 Value2 = SDValue(ExtNode, 1); 11612 } else 11613 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 11614 NumVecs = 4; 11615 } 11616 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 11617 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 11618 SDValue Elt; 11619 if (Subtarget.isISAFuture()) { 11620 VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2); 11621 Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 11622 Idx > 1 ? Value2 : Value, 11623 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 11624 } else 11625 Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 11626 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 11627 11628 SDValue Store = 11629 DAG.getStore(StoreChain, dl, Elt, BasePtr, 11630 SN->getPointerInfo().getWithOffset(Idx * 16), 11631 commonAlignment(Alignment, Idx * 16), 11632 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 11633 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 11634 DAG.getConstant(16, dl, BasePtr.getValueType())); 11635 Stores.push_back(Store); 11636 } 11637 SDValue TF = DAG.getTokenFactor(dl, Stores); 11638 return TF; 11639 } 11640 11641 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 11642 SDLoc dl(Op); 11643 if (Op.getValueType() == MVT::v4i32) { 11644 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 11645 11646 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 11647 // +16 as shift amt. 11648 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 11649 SDValue RHSSwap = // = vrlw RHS, 16 11650 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 11651 11652 // Shrinkify inputs to v8i16. 11653 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 11654 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 11655 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 11656 11657 // Low parts multiplied together, generating 32-bit results (we ignore the 11658 // top parts). 11659 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 11660 LHS, RHS, DAG, dl, MVT::v4i32); 11661 11662 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 11663 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 11664 // Shift the high parts up 16 bits. 11665 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 11666 Neg16, DAG, dl); 11667 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 11668 } else if (Op.getValueType() == MVT::v16i8) { 11669 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 11670 bool isLittleEndian = Subtarget.isLittleEndian(); 11671 11672 // Multiply the even 8-bit parts, producing 16-bit sums. 11673 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 11674 LHS, RHS, DAG, dl, MVT::v8i16); 11675 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 11676 11677 // Multiply the odd 8-bit parts, producing 16-bit sums. 11678 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 11679 LHS, RHS, DAG, dl, MVT::v8i16); 11680 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 11681 11682 // Merge the results together. Because vmuleub and vmuloub are 11683 // instructions with a big-endian bias, we must reverse the 11684 // element numbering and reverse the meaning of "odd" and "even" 11685 // when generating little endian code. 11686 int Ops[16]; 11687 for (unsigned i = 0; i != 8; ++i) { 11688 if (isLittleEndian) { 11689 Ops[i*2 ] = 2*i; 11690 Ops[i*2+1] = 2*i+16; 11691 } else { 11692 Ops[i*2 ] = 2*i+1; 11693 Ops[i*2+1] = 2*i+1+16; 11694 } 11695 } 11696 if (isLittleEndian) 11697 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11698 else 11699 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11700 } else { 11701 llvm_unreachable("Unknown mul to lower!"); 11702 } 11703 } 11704 11705 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11706 bool IsStrict = Op->isStrictFPOpcode(); 11707 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11708 !Subtarget.hasP9Vector()) 11709 return SDValue(); 11710 11711 return Op; 11712 } 11713 11714 // Custom lowering for fpext vf32 to v2f64 11715 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11716 11717 assert(Op.getOpcode() == ISD::FP_EXTEND && 11718 "Should only be called for ISD::FP_EXTEND"); 11719 11720 // FIXME: handle extends from half precision float vectors on P9. 11721 // We only want to custom lower an extend from v2f32 to v2f64. 11722 if (Op.getValueType() != MVT::v2f64 || 11723 Op.getOperand(0).getValueType() != MVT::v2f32) 11724 return SDValue(); 11725 11726 SDLoc dl(Op); 11727 SDValue Op0 = Op.getOperand(0); 11728 11729 switch (Op0.getOpcode()) { 11730 default: 11731 return SDValue(); 11732 case ISD::EXTRACT_SUBVECTOR: { 11733 assert(Op0.getNumOperands() == 2 && 11734 isa<ConstantSDNode>(Op0->getOperand(1)) && 11735 "Node should have 2 operands with second one being a constant!"); 11736 11737 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11738 return SDValue(); 11739 11740 // Custom lower is only done for high or low doubleword. 11741 int Idx = Op0.getConstantOperandVal(1); 11742 if (Idx % 2 != 0) 11743 return SDValue(); 11744 11745 // Since input is v4f32, at this point Idx is either 0 or 2. 11746 // Shift to get the doubleword position we want. 11747 int DWord = Idx >> 1; 11748 11749 // High and low word positions are different on little endian. 11750 if (Subtarget.isLittleEndian()) 11751 DWord ^= 0x1; 11752 11753 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11754 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11755 } 11756 case ISD::FADD: 11757 case ISD::FMUL: 11758 case ISD::FSUB: { 11759 SDValue NewLoad[2]; 11760 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11761 // Ensure both input are loads. 11762 SDValue LdOp = Op0.getOperand(i); 11763 if (LdOp.getOpcode() != ISD::LOAD) 11764 return SDValue(); 11765 // Generate new load node. 11766 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11767 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11768 NewLoad[i] = DAG.getMemIntrinsicNode( 11769 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11770 LD->getMemoryVT(), LD->getMemOperand()); 11771 } 11772 SDValue NewOp = 11773 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11774 NewLoad[1], Op0.getNode()->getFlags()); 11775 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11776 DAG.getConstant(0, dl, MVT::i32)); 11777 } 11778 case ISD::LOAD: { 11779 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11780 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11781 SDValue NewLd = DAG.getMemIntrinsicNode( 11782 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11783 LD->getMemoryVT(), LD->getMemOperand()); 11784 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11785 DAG.getConstant(0, dl, MVT::i32)); 11786 } 11787 } 11788 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11789 } 11790 11791 /// LowerOperation - Provide custom lowering hooks for some operations. 11792 /// 11793 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11794 switch (Op.getOpcode()) { 11795 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11796 case ISD::FPOW: return lowerPow(Op, DAG); 11797 case ISD::FSIN: return lowerSin(Op, DAG); 11798 case ISD::FCOS: return lowerCos(Op, DAG); 11799 case ISD::FLOG: return lowerLog(Op, DAG); 11800 case ISD::FLOG10: return lowerLog10(Op, DAG); 11801 case ISD::FEXP: return lowerExp(Op, DAG); 11802 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11803 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11804 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11805 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11806 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11807 case ISD::STRICT_FSETCC: 11808 case ISD::STRICT_FSETCCS: 11809 case ISD::SETCC: return LowerSETCC(Op, DAG); 11810 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11811 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11812 11813 case ISD::INLINEASM: 11814 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11815 // Variable argument lowering. 11816 case ISD::VASTART: return LowerVASTART(Op, DAG); 11817 case ISD::VAARG: return LowerVAARG(Op, DAG); 11818 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11819 11820 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11821 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11822 case ISD::GET_DYNAMIC_AREA_OFFSET: 11823 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11824 11825 // Exception handling lowering. 11826 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11827 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11828 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11829 11830 case ISD::LOAD: return LowerLOAD(Op, DAG); 11831 case ISD::STORE: return LowerSTORE(Op, DAG); 11832 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11833 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11834 case ISD::STRICT_FP_TO_UINT: 11835 case ISD::STRICT_FP_TO_SINT: 11836 case ISD::FP_TO_UINT: 11837 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11838 case ISD::STRICT_UINT_TO_FP: 11839 case ISD::STRICT_SINT_TO_FP: 11840 case ISD::UINT_TO_FP: 11841 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11842 case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG); 11843 11844 // Lower 64-bit shifts. 11845 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11846 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11847 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11848 11849 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11850 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11851 11852 // Vector-related lowering. 11853 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11854 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11855 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11856 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11857 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11858 case ISD::MUL: return LowerMUL(Op, DAG); 11859 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11860 case ISD::STRICT_FP_ROUND: 11861 case ISD::FP_ROUND: 11862 return LowerFP_ROUND(Op, DAG); 11863 case ISD::ROTL: return LowerROTL(Op, DAG); 11864 11865 // For counter-based loop handling. 11866 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11867 11868 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11869 11870 // Frame & Return address. 11871 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11872 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11873 11874 case ISD::INTRINSIC_VOID: 11875 return LowerINTRINSIC_VOID(Op, DAG); 11876 case ISD::BSWAP: 11877 return LowerBSWAP(Op, DAG); 11878 case ISD::ATOMIC_CMP_SWAP: 11879 return LowerATOMIC_CMP_SWAP(Op, DAG); 11880 case ISD::ATOMIC_STORE: 11881 return LowerATOMIC_LOAD_STORE(Op, DAG); 11882 case ISD::IS_FPCLASS: 11883 return LowerIS_FPCLASS(Op, DAG); 11884 } 11885 } 11886 11887 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11888 SmallVectorImpl<SDValue>&Results, 11889 SelectionDAG &DAG) const { 11890 SDLoc dl(N); 11891 switch (N->getOpcode()) { 11892 default: 11893 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11894 case ISD::ATOMIC_LOAD: { 11895 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11896 Results.push_back(Res); 11897 Results.push_back(Res.getValue(1)); 11898 break; 11899 } 11900 case ISD::READCYCLECOUNTER: { 11901 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11902 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11903 11904 Results.push_back( 11905 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11906 Results.push_back(RTB.getValue(2)); 11907 break; 11908 } 11909 case ISD::INTRINSIC_W_CHAIN: { 11910 if (N->getConstantOperandVal(1) != Intrinsic::loop_decrement) 11911 break; 11912 11913 assert(N->getValueType(0) == MVT::i1 && 11914 "Unexpected result type for CTR decrement intrinsic"); 11915 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11916 N->getValueType(0)); 11917 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11918 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11919 N->getOperand(1)); 11920 11921 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11922 Results.push_back(NewInt.getValue(1)); 11923 break; 11924 } 11925 case ISD::INTRINSIC_WO_CHAIN: { 11926 switch (N->getConstantOperandVal(0)) { 11927 case Intrinsic::ppc_pack_longdouble: 11928 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11929 N->getOperand(2), N->getOperand(1))); 11930 break; 11931 case Intrinsic::ppc_maxfe: 11932 case Intrinsic::ppc_minfe: 11933 case Intrinsic::ppc_fnmsub: 11934 case Intrinsic::ppc_convert_f128_to_ppcf128: 11935 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11936 break; 11937 } 11938 break; 11939 } 11940 case ISD::VAARG: { 11941 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11942 return; 11943 11944 EVT VT = N->getValueType(0); 11945 11946 if (VT == MVT::i64) { 11947 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11948 11949 Results.push_back(NewNode); 11950 Results.push_back(NewNode.getValue(1)); 11951 } 11952 return; 11953 } 11954 case ISD::STRICT_FP_TO_SINT: 11955 case ISD::STRICT_FP_TO_UINT: 11956 case ISD::FP_TO_SINT: 11957 case ISD::FP_TO_UINT: { 11958 // LowerFP_TO_INT() can only handle f32 and f64. 11959 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11960 MVT::ppcf128) 11961 return; 11962 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11963 Results.push_back(LoweredValue); 11964 if (N->isStrictFPOpcode()) 11965 Results.push_back(LoweredValue.getValue(1)); 11966 return; 11967 } 11968 case ISD::TRUNCATE: { 11969 if (!N->getValueType(0).isVector()) 11970 return; 11971 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11972 if (Lowered) 11973 Results.push_back(Lowered); 11974 return; 11975 } 11976 case ISD::FSHL: 11977 case ISD::FSHR: 11978 // Don't handle funnel shifts here. 11979 return; 11980 case ISD::BITCAST: 11981 // Don't handle bitcast here. 11982 return; 11983 case ISD::FP_EXTEND: 11984 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11985 if (Lowered) 11986 Results.push_back(Lowered); 11987 return; 11988 } 11989 } 11990 11991 //===----------------------------------------------------------------------===// 11992 // Other Lowering Code 11993 //===----------------------------------------------------------------------===// 11994 11995 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11996 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11997 Function *Func = Intrinsic::getDeclaration(M, Id); 11998 return Builder.CreateCall(Func, {}); 11999 } 12000 12001 // The mappings for emitLeading/TrailingFence is taken from 12002 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 12003 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 12004 Instruction *Inst, 12005 AtomicOrdering Ord) const { 12006 if (Ord == AtomicOrdering::SequentiallyConsistent) 12007 return callIntrinsic(Builder, Intrinsic::ppc_sync); 12008 if (isReleaseOrStronger(Ord)) 12009 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 12010 return nullptr; 12011 } 12012 12013 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 12014 Instruction *Inst, 12015 AtomicOrdering Ord) const { 12016 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 12017 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 12018 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 12019 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 12020 if (isa<LoadInst>(Inst)) 12021 return Builder.CreateCall( 12022 Intrinsic::getDeclaration( 12023 Builder.GetInsertBlock()->getParent()->getParent(), 12024 Intrinsic::ppc_cfence, {Inst->getType()}), 12025 {Inst}); 12026 // FIXME: Can use isync for rmw operation. 12027 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 12028 } 12029 return nullptr; 12030 } 12031 12032 MachineBasicBlock * 12033 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 12034 unsigned AtomicSize, 12035 unsigned BinOpcode, 12036 unsigned CmpOpcode, 12037 unsigned CmpPred) const { 12038 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 12039 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12040 12041 auto LoadMnemonic = PPC::LDARX; 12042 auto StoreMnemonic = PPC::STDCX; 12043 switch (AtomicSize) { 12044 default: 12045 llvm_unreachable("Unexpected size of atomic entity"); 12046 case 1: 12047 LoadMnemonic = PPC::LBARX; 12048 StoreMnemonic = PPC::STBCX; 12049 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 12050 break; 12051 case 2: 12052 LoadMnemonic = PPC::LHARX; 12053 StoreMnemonic = PPC::STHCX; 12054 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 12055 break; 12056 case 4: 12057 LoadMnemonic = PPC::LWARX; 12058 StoreMnemonic = PPC::STWCX; 12059 break; 12060 case 8: 12061 LoadMnemonic = PPC::LDARX; 12062 StoreMnemonic = PPC::STDCX; 12063 break; 12064 } 12065 12066 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12067 MachineFunction *F = BB->getParent(); 12068 MachineFunction::iterator It = ++BB->getIterator(); 12069 12070 Register dest = MI.getOperand(0).getReg(); 12071 Register ptrA = MI.getOperand(1).getReg(); 12072 Register ptrB = MI.getOperand(2).getReg(); 12073 Register incr = MI.getOperand(3).getReg(); 12074 DebugLoc dl = MI.getDebugLoc(); 12075 12076 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 12077 MachineBasicBlock *loop2MBB = 12078 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 12079 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12080 F->insert(It, loopMBB); 12081 if (CmpOpcode) 12082 F->insert(It, loop2MBB); 12083 F->insert(It, exitMBB); 12084 exitMBB->splice(exitMBB->begin(), BB, 12085 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12086 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12087 12088 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12089 Register TmpReg = (!BinOpcode) ? incr : 12090 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 12091 : &PPC::GPRCRegClass); 12092 12093 // thisMBB: 12094 // ... 12095 // fallthrough --> loopMBB 12096 BB->addSuccessor(loopMBB); 12097 12098 // loopMBB: 12099 // l[wd]arx dest, ptr 12100 // add r0, dest, incr 12101 // st[wd]cx. r0, ptr 12102 // bne- loopMBB 12103 // fallthrough --> exitMBB 12104 12105 // For max/min... 12106 // loopMBB: 12107 // l[wd]arx dest, ptr 12108 // cmpl?[wd] dest, incr 12109 // bgt exitMBB 12110 // loop2MBB: 12111 // st[wd]cx. dest, ptr 12112 // bne- loopMBB 12113 // fallthrough --> exitMBB 12114 12115 BB = loopMBB; 12116 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 12117 .addReg(ptrA).addReg(ptrB); 12118 if (BinOpcode) 12119 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 12120 if (CmpOpcode) { 12121 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12122 // Signed comparisons of byte or halfword values must be sign-extended. 12123 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 12124 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12125 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 12126 ExtReg).addReg(dest); 12127 BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr); 12128 } else 12129 BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr); 12130 12131 BuildMI(BB, dl, TII->get(PPC::BCC)) 12132 .addImm(CmpPred) 12133 .addReg(CrReg) 12134 .addMBB(exitMBB); 12135 BB->addSuccessor(loop2MBB); 12136 BB->addSuccessor(exitMBB); 12137 BB = loop2MBB; 12138 } 12139 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12140 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 12141 BuildMI(BB, dl, TII->get(PPC::BCC)) 12142 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 12143 BB->addSuccessor(loopMBB); 12144 BB->addSuccessor(exitMBB); 12145 12146 // exitMBB: 12147 // ... 12148 BB = exitMBB; 12149 return BB; 12150 } 12151 12152 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 12153 switch(MI.getOpcode()) { 12154 default: 12155 return false; 12156 case PPC::COPY: 12157 return TII->isSignExtended(MI.getOperand(1).getReg(), 12158 &MI.getMF()->getRegInfo()); 12159 case PPC::LHA: 12160 case PPC::LHA8: 12161 case PPC::LHAU: 12162 case PPC::LHAU8: 12163 case PPC::LHAUX: 12164 case PPC::LHAUX8: 12165 case PPC::LHAX: 12166 case PPC::LHAX8: 12167 case PPC::LWA: 12168 case PPC::LWAUX: 12169 case PPC::LWAX: 12170 case PPC::LWAX_32: 12171 case PPC::LWA_32: 12172 case PPC::PLHA: 12173 case PPC::PLHA8: 12174 case PPC::PLHA8pc: 12175 case PPC::PLHApc: 12176 case PPC::PLWA: 12177 case PPC::PLWA8: 12178 case PPC::PLWA8pc: 12179 case PPC::PLWApc: 12180 case PPC::EXTSB: 12181 case PPC::EXTSB8: 12182 case PPC::EXTSB8_32_64: 12183 case PPC::EXTSB8_rec: 12184 case PPC::EXTSB_rec: 12185 case PPC::EXTSH: 12186 case PPC::EXTSH8: 12187 case PPC::EXTSH8_32_64: 12188 case PPC::EXTSH8_rec: 12189 case PPC::EXTSH_rec: 12190 case PPC::EXTSW: 12191 case PPC::EXTSWSLI: 12192 case PPC::EXTSWSLI_32_64: 12193 case PPC::EXTSWSLI_32_64_rec: 12194 case PPC::EXTSWSLI_rec: 12195 case PPC::EXTSW_32: 12196 case PPC::EXTSW_32_64: 12197 case PPC::EXTSW_32_64_rec: 12198 case PPC::EXTSW_rec: 12199 case PPC::SRAW: 12200 case PPC::SRAWI: 12201 case PPC::SRAWI_rec: 12202 case PPC::SRAW_rec: 12203 return true; 12204 } 12205 return false; 12206 } 12207 12208 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 12209 MachineInstr &MI, MachineBasicBlock *BB, 12210 bool is8bit, // operation 12211 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 12212 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 12213 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 12214 12215 // If this is a signed comparison and the value being compared is not known 12216 // to be sign extended, sign extend it here. 12217 DebugLoc dl = MI.getDebugLoc(); 12218 MachineFunction *F = BB->getParent(); 12219 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12220 Register incr = MI.getOperand(3).getReg(); 12221 bool IsSignExtended = 12222 incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII); 12223 12224 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 12225 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12226 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 12227 .addReg(MI.getOperand(3).getReg()); 12228 MI.getOperand(3).setReg(ValueReg); 12229 incr = ValueReg; 12230 } 12231 // If we support part-word atomic mnemonics, just use them 12232 if (Subtarget.hasPartwordAtomics()) 12233 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 12234 CmpPred); 12235 12236 // In 64 bit mode we have to use 64 bits for addresses, even though the 12237 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 12238 // registers without caring whether they're 32 or 64, but here we're 12239 // doing actual arithmetic on the addresses. 12240 bool is64bit = Subtarget.isPPC64(); 12241 bool isLittleEndian = Subtarget.isLittleEndian(); 12242 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12243 12244 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12245 MachineFunction::iterator It = ++BB->getIterator(); 12246 12247 Register dest = MI.getOperand(0).getReg(); 12248 Register ptrA = MI.getOperand(1).getReg(); 12249 Register ptrB = MI.getOperand(2).getReg(); 12250 12251 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 12252 MachineBasicBlock *loop2MBB = 12253 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 12254 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12255 F->insert(It, loopMBB); 12256 if (CmpOpcode) 12257 F->insert(It, loop2MBB); 12258 F->insert(It, exitMBB); 12259 exitMBB->splice(exitMBB->begin(), BB, 12260 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12261 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12262 12263 const TargetRegisterClass *RC = 12264 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12265 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12266 12267 Register PtrReg = RegInfo.createVirtualRegister(RC); 12268 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12269 Register ShiftReg = 12270 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12271 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 12272 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12273 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12274 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12275 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12276 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 12277 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12278 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12279 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 12280 Register Ptr1Reg; 12281 Register TmpReg = 12282 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 12283 12284 // thisMBB: 12285 // ... 12286 // fallthrough --> loopMBB 12287 BB->addSuccessor(loopMBB); 12288 12289 // The 4-byte load must be aligned, while a char or short may be 12290 // anywhere in the word. Hence all this nasty bookkeeping code. 12291 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12292 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12293 // xori shift, shift1, 24 [16] 12294 // rlwinm ptr, ptr1, 0, 0, 29 12295 // slw incr2, incr, shift 12296 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12297 // slw mask, mask2, shift 12298 // loopMBB: 12299 // lwarx tmpDest, ptr 12300 // add tmp, tmpDest, incr2 12301 // andc tmp2, tmpDest, mask 12302 // and tmp3, tmp, mask 12303 // or tmp4, tmp3, tmp2 12304 // stwcx. tmp4, ptr 12305 // bne- loopMBB 12306 // fallthrough --> exitMBB 12307 // srw SrwDest, tmpDest, shift 12308 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 12309 if (ptrA != ZeroReg) { 12310 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12311 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12312 .addReg(ptrA) 12313 .addReg(ptrB); 12314 } else { 12315 Ptr1Reg = ptrB; 12316 } 12317 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12318 // mode. 12319 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12320 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12321 .addImm(3) 12322 .addImm(27) 12323 .addImm(is8bit ? 28 : 27); 12324 if (!isLittleEndian) 12325 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12326 .addReg(Shift1Reg) 12327 .addImm(is8bit ? 24 : 16); 12328 if (is64bit) 12329 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12330 .addReg(Ptr1Reg) 12331 .addImm(0) 12332 .addImm(61); 12333 else 12334 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12335 .addReg(Ptr1Reg) 12336 .addImm(0) 12337 .addImm(0) 12338 .addImm(29); 12339 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 12340 if (is8bit) 12341 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12342 else { 12343 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12344 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12345 .addReg(Mask3Reg) 12346 .addImm(65535); 12347 } 12348 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12349 .addReg(Mask2Reg) 12350 .addReg(ShiftReg); 12351 12352 BB = loopMBB; 12353 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12354 .addReg(ZeroReg) 12355 .addReg(PtrReg); 12356 if (BinOpcode) 12357 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 12358 .addReg(Incr2Reg) 12359 .addReg(TmpDestReg); 12360 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12361 .addReg(TmpDestReg) 12362 .addReg(MaskReg); 12363 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 12364 if (CmpOpcode) { 12365 // For unsigned comparisons, we can directly compare the shifted values. 12366 // For signed comparisons we shift and sign extend. 12367 Register SReg = RegInfo.createVirtualRegister(GPRC); 12368 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12369 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 12370 .addReg(TmpDestReg) 12371 .addReg(MaskReg); 12372 unsigned ValueReg = SReg; 12373 unsigned CmpReg = Incr2Reg; 12374 if (CmpOpcode == PPC::CMPW) { 12375 ValueReg = RegInfo.createVirtualRegister(GPRC); 12376 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 12377 .addReg(SReg) 12378 .addReg(ShiftReg); 12379 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 12380 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 12381 .addReg(ValueReg); 12382 ValueReg = ValueSReg; 12383 CmpReg = incr; 12384 } 12385 BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg); 12386 BuildMI(BB, dl, TII->get(PPC::BCC)) 12387 .addImm(CmpPred) 12388 .addReg(CrReg) 12389 .addMBB(exitMBB); 12390 BB->addSuccessor(loop2MBB); 12391 BB->addSuccessor(exitMBB); 12392 BB = loop2MBB; 12393 } 12394 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 12395 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12396 .addReg(Tmp4Reg) 12397 .addReg(ZeroReg) 12398 .addReg(PtrReg); 12399 BuildMI(BB, dl, TII->get(PPC::BCC)) 12400 .addImm(PPC::PRED_NE) 12401 .addReg(PPC::CR0) 12402 .addMBB(loopMBB); 12403 BB->addSuccessor(loopMBB); 12404 BB->addSuccessor(exitMBB); 12405 12406 // exitMBB: 12407 // ... 12408 BB = exitMBB; 12409 // Since the shift amount is not a constant, we need to clear 12410 // the upper bits with a separate RLWINM. 12411 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 12412 .addReg(SrwDestReg) 12413 .addImm(0) 12414 .addImm(is8bit ? 24 : 16) 12415 .addImm(31); 12416 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 12417 .addReg(TmpDestReg) 12418 .addReg(ShiftReg); 12419 return BB; 12420 } 12421 12422 llvm::MachineBasicBlock * 12423 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 12424 MachineBasicBlock *MBB) const { 12425 DebugLoc DL = MI.getDebugLoc(); 12426 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12427 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12428 12429 MachineFunction *MF = MBB->getParent(); 12430 MachineRegisterInfo &MRI = MF->getRegInfo(); 12431 12432 const BasicBlock *BB = MBB->getBasicBlock(); 12433 MachineFunction::iterator I = ++MBB->getIterator(); 12434 12435 Register DstReg = MI.getOperand(0).getReg(); 12436 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 12437 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 12438 Register mainDstReg = MRI.createVirtualRegister(RC); 12439 Register restoreDstReg = MRI.createVirtualRegister(RC); 12440 12441 MVT PVT = getPointerTy(MF->getDataLayout()); 12442 assert((PVT == MVT::i64 || PVT == MVT::i32) && 12443 "Invalid Pointer Size!"); 12444 // For v = setjmp(buf), we generate 12445 // 12446 // thisMBB: 12447 // SjLjSetup mainMBB 12448 // bl mainMBB 12449 // v_restore = 1 12450 // b sinkMBB 12451 // 12452 // mainMBB: 12453 // buf[LabelOffset] = LR 12454 // v_main = 0 12455 // 12456 // sinkMBB: 12457 // v = phi(main, restore) 12458 // 12459 12460 MachineBasicBlock *thisMBB = MBB; 12461 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 12462 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 12463 MF->insert(I, mainMBB); 12464 MF->insert(I, sinkMBB); 12465 12466 MachineInstrBuilder MIB; 12467 12468 // Transfer the remainder of BB and its successor edges to sinkMBB. 12469 sinkMBB->splice(sinkMBB->begin(), MBB, 12470 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12471 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 12472 12473 // Note that the structure of the jmp_buf used here is not compatible 12474 // with that used by libc, and is not designed to be. Specifically, it 12475 // stores only those 'reserved' registers that LLVM does not otherwise 12476 // understand how to spill. Also, by convention, by the time this 12477 // intrinsic is called, Clang has already stored the frame address in the 12478 // first slot of the buffer and stack address in the third. Following the 12479 // X86 target code, we'll store the jump address in the second slot. We also 12480 // need to save the TOC pointer (R2) to handle jumps between shared 12481 // libraries, and that will be stored in the fourth slot. The thread 12482 // identifier (R13) is not affected. 12483 12484 // thisMBB: 12485 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 12486 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 12487 const int64_t BPOffset = 4 * PVT.getStoreSize(); 12488 12489 // Prepare IP either in reg. 12490 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 12491 Register LabelReg = MRI.createVirtualRegister(PtrRC); 12492 Register BufReg = MI.getOperand(1).getReg(); 12493 12494 if (Subtarget.is64BitELFABI()) { 12495 setUsesTOCBasePtr(*MBB->getParent()); 12496 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 12497 .addReg(PPC::X2) 12498 .addImm(TOCOffset) 12499 .addReg(BufReg) 12500 .cloneMemRefs(MI); 12501 } 12502 12503 // Naked functions never have a base pointer, and so we use r1. For all 12504 // other functions, this decision must be delayed until during PEI. 12505 unsigned BaseReg; 12506 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 12507 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 12508 else 12509 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 12510 12511 MIB = BuildMI(*thisMBB, MI, DL, 12512 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 12513 .addReg(BaseReg) 12514 .addImm(BPOffset) 12515 .addReg(BufReg) 12516 .cloneMemRefs(MI); 12517 12518 // Setup 12519 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 12520 MIB.addRegMask(TRI->getNoPreservedMask()); 12521 12522 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 12523 12524 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 12525 .addMBB(mainMBB); 12526 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 12527 12528 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 12529 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 12530 12531 // mainMBB: 12532 // mainDstReg = 0 12533 MIB = 12534 BuildMI(mainMBB, DL, 12535 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 12536 12537 // Store IP 12538 if (Subtarget.isPPC64()) { 12539 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 12540 .addReg(LabelReg) 12541 .addImm(LabelOffset) 12542 .addReg(BufReg); 12543 } else { 12544 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 12545 .addReg(LabelReg) 12546 .addImm(LabelOffset) 12547 .addReg(BufReg); 12548 } 12549 MIB.cloneMemRefs(MI); 12550 12551 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 12552 mainMBB->addSuccessor(sinkMBB); 12553 12554 // sinkMBB: 12555 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 12556 TII->get(PPC::PHI), DstReg) 12557 .addReg(mainDstReg).addMBB(mainMBB) 12558 .addReg(restoreDstReg).addMBB(thisMBB); 12559 12560 MI.eraseFromParent(); 12561 return sinkMBB; 12562 } 12563 12564 MachineBasicBlock * 12565 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 12566 MachineBasicBlock *MBB) const { 12567 DebugLoc DL = MI.getDebugLoc(); 12568 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12569 12570 MachineFunction *MF = MBB->getParent(); 12571 MachineRegisterInfo &MRI = MF->getRegInfo(); 12572 12573 MVT PVT = getPointerTy(MF->getDataLayout()); 12574 assert((PVT == MVT::i64 || PVT == MVT::i32) && 12575 "Invalid Pointer Size!"); 12576 12577 const TargetRegisterClass *RC = 12578 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12579 Register Tmp = MRI.createVirtualRegister(RC); 12580 // Since FP is only updated here but NOT referenced, it's treated as GPR. 12581 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 12582 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 12583 unsigned BP = 12584 (PVT == MVT::i64) 12585 ? PPC::X30 12586 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 12587 : PPC::R30); 12588 12589 MachineInstrBuilder MIB; 12590 12591 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 12592 const int64_t SPOffset = 2 * PVT.getStoreSize(); 12593 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 12594 const int64_t BPOffset = 4 * PVT.getStoreSize(); 12595 12596 Register BufReg = MI.getOperand(0).getReg(); 12597 12598 // Reload FP (the jumped-to function may not have had a 12599 // frame pointer, and if so, then its r31 will be restored 12600 // as necessary). 12601 if (PVT == MVT::i64) { 12602 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 12603 .addImm(0) 12604 .addReg(BufReg); 12605 } else { 12606 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 12607 .addImm(0) 12608 .addReg(BufReg); 12609 } 12610 MIB.cloneMemRefs(MI); 12611 12612 // Reload IP 12613 if (PVT == MVT::i64) { 12614 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 12615 .addImm(LabelOffset) 12616 .addReg(BufReg); 12617 } else { 12618 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 12619 .addImm(LabelOffset) 12620 .addReg(BufReg); 12621 } 12622 MIB.cloneMemRefs(MI); 12623 12624 // Reload SP 12625 if (PVT == MVT::i64) { 12626 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 12627 .addImm(SPOffset) 12628 .addReg(BufReg); 12629 } else { 12630 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 12631 .addImm(SPOffset) 12632 .addReg(BufReg); 12633 } 12634 MIB.cloneMemRefs(MI); 12635 12636 // Reload BP 12637 if (PVT == MVT::i64) { 12638 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 12639 .addImm(BPOffset) 12640 .addReg(BufReg); 12641 } else { 12642 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 12643 .addImm(BPOffset) 12644 .addReg(BufReg); 12645 } 12646 MIB.cloneMemRefs(MI); 12647 12648 // Reload TOC 12649 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 12650 setUsesTOCBasePtr(*MBB->getParent()); 12651 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 12652 .addImm(TOCOffset) 12653 .addReg(BufReg) 12654 .cloneMemRefs(MI); 12655 } 12656 12657 // Jump 12658 BuildMI(*MBB, MI, DL, 12659 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 12660 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 12661 12662 MI.eraseFromParent(); 12663 return MBB; 12664 } 12665 12666 bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { 12667 // If the function specifically requests inline stack probes, emit them. 12668 if (MF.getFunction().hasFnAttribute("probe-stack")) 12669 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 12670 "inline-asm"; 12671 return false; 12672 } 12673 12674 unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const { 12675 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 12676 unsigned StackAlign = TFI->getStackAlignment(); 12677 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 12678 "Unexpected stack alignment"); 12679 // The default stack probe size is 4096 if the function has no 12680 // stack-probe-size attribute. 12681 const Function &Fn = MF.getFunction(); 12682 unsigned StackProbeSize = 12683 Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096); 12684 // Round down to the stack alignment. 12685 StackProbeSize &= ~(StackAlign - 1); 12686 return StackProbeSize ? StackProbeSize : StackAlign; 12687 } 12688 12689 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 12690 // into three phases. In the first phase, it uses pseudo instruction 12691 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 12692 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 12693 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 12694 // MaxCallFrameSize so that it can calculate correct data area pointer. 12695 MachineBasicBlock * 12696 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 12697 MachineBasicBlock *MBB) const { 12698 const bool isPPC64 = Subtarget.isPPC64(); 12699 MachineFunction *MF = MBB->getParent(); 12700 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12701 DebugLoc DL = MI.getDebugLoc(); 12702 const unsigned ProbeSize = getStackProbeSize(*MF); 12703 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 12704 MachineRegisterInfo &MRI = MF->getRegInfo(); 12705 // The CFG of probing stack looks as 12706 // +-----+ 12707 // | MBB | 12708 // +--+--+ 12709 // | 12710 // +----v----+ 12711 // +--->+ TestMBB +---+ 12712 // | +----+----+ | 12713 // | | | 12714 // | +-----v----+ | 12715 // +---+ BlockMBB | | 12716 // +----------+ | 12717 // | 12718 // +---------+ | 12719 // | TailMBB +<--+ 12720 // +---------+ 12721 // In MBB, calculate previous frame pointer and final stack pointer. 12722 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12723 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12724 // TailMBB is spliced via \p MI. 12725 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12726 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12727 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12728 12729 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12730 MF->insert(MBBIter, TestMBB); 12731 MF->insert(MBBIter, BlockMBB); 12732 MF->insert(MBBIter, TailMBB); 12733 12734 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12735 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12736 12737 Register DstReg = MI.getOperand(0).getReg(); 12738 Register NegSizeReg = MI.getOperand(1).getReg(); 12739 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12740 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12741 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12742 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12743 12744 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12745 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12746 // NegSize. 12747 unsigned ProbeOpc; 12748 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12749 ProbeOpc = 12750 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12751 else 12752 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12753 // and NegSizeReg will be allocated in the same phyreg to avoid 12754 // redundant copy when NegSizeReg has only one use which is current MI and 12755 // will be replaced by PREPARE_PROBED_ALLOCA then. 12756 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12757 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12758 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12759 .addDef(ActualNegSizeReg) 12760 .addReg(NegSizeReg) 12761 .add(MI.getOperand(2)) 12762 .add(MI.getOperand(3)); 12763 12764 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12765 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12766 FinalStackPtr) 12767 .addReg(SPReg) 12768 .addReg(ActualNegSizeReg); 12769 12770 // Materialize a scratch register for update. 12771 int64_t NegProbeSize = -(int64_t)ProbeSize; 12772 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12773 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12774 if (!isInt<16>(NegProbeSize)) { 12775 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12776 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12777 .addImm(NegProbeSize >> 16); 12778 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12779 ScratchReg) 12780 .addReg(TempReg) 12781 .addImm(NegProbeSize & 0xFFFF); 12782 } else 12783 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12784 .addImm(NegProbeSize); 12785 12786 { 12787 // Probing leading residual part. 12788 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12789 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12790 .addReg(ActualNegSizeReg) 12791 .addReg(ScratchReg); 12792 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12793 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12794 .addReg(Div) 12795 .addReg(ScratchReg); 12796 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12797 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12798 .addReg(Mul) 12799 .addReg(ActualNegSizeReg); 12800 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12801 .addReg(FramePointer) 12802 .addReg(SPReg) 12803 .addReg(NegMod); 12804 } 12805 12806 { 12807 // Remaining part should be multiple of ProbeSize. 12808 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12809 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12810 .addReg(SPReg) 12811 .addReg(FinalStackPtr); 12812 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12813 .addImm(PPC::PRED_EQ) 12814 .addReg(CmpResult) 12815 .addMBB(TailMBB); 12816 TestMBB->addSuccessor(BlockMBB); 12817 TestMBB->addSuccessor(TailMBB); 12818 } 12819 12820 { 12821 // Touch the block. 12822 // |P...|P...|P... 12823 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12824 .addReg(FramePointer) 12825 .addReg(SPReg) 12826 .addReg(ScratchReg); 12827 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12828 BlockMBB->addSuccessor(TestMBB); 12829 } 12830 12831 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12832 // DYNAREAOFFSET pseudo instruction to get the future result. 12833 Register MaxCallFrameSizeReg = 12834 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12835 BuildMI(TailMBB, DL, 12836 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12837 MaxCallFrameSizeReg) 12838 .add(MI.getOperand(2)) 12839 .add(MI.getOperand(3)); 12840 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12841 .addReg(SPReg) 12842 .addReg(MaxCallFrameSizeReg); 12843 12844 // Splice instructions after MI to TailMBB. 12845 TailMBB->splice(TailMBB->end(), MBB, 12846 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12847 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12848 MBB->addSuccessor(TestMBB); 12849 12850 // Delete the pseudo instruction. 12851 MI.eraseFromParent(); 12852 12853 ++NumDynamicAllocaProbed; 12854 return TailMBB; 12855 } 12856 12857 static bool IsSelectCC(MachineInstr &MI) { 12858 switch (MI.getOpcode()) { 12859 case PPC::SELECT_CC_I4: 12860 case PPC::SELECT_CC_I8: 12861 case PPC::SELECT_CC_F4: 12862 case PPC::SELECT_CC_F8: 12863 case PPC::SELECT_CC_F16: 12864 case PPC::SELECT_CC_VRRC: 12865 case PPC::SELECT_CC_VSFRC: 12866 case PPC::SELECT_CC_VSSRC: 12867 case PPC::SELECT_CC_VSRC: 12868 case PPC::SELECT_CC_SPE4: 12869 case PPC::SELECT_CC_SPE: 12870 return true; 12871 default: 12872 return false; 12873 } 12874 } 12875 12876 static bool IsSelect(MachineInstr &MI) { 12877 switch (MI.getOpcode()) { 12878 case PPC::SELECT_I4: 12879 case PPC::SELECT_I8: 12880 case PPC::SELECT_F4: 12881 case PPC::SELECT_F8: 12882 case PPC::SELECT_F16: 12883 case PPC::SELECT_SPE: 12884 case PPC::SELECT_SPE4: 12885 case PPC::SELECT_VRRC: 12886 case PPC::SELECT_VSFRC: 12887 case PPC::SELECT_VSSRC: 12888 case PPC::SELECT_VSRC: 12889 return true; 12890 default: 12891 return false; 12892 } 12893 } 12894 12895 MachineBasicBlock * 12896 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12897 MachineBasicBlock *BB) const { 12898 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12899 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12900 if (Subtarget.is64BitELFABI() && 12901 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12902 !Subtarget.isUsingPCRelativeCalls()) { 12903 // Call lowering should have added an r2 operand to indicate a dependence 12904 // on the TOC base pointer value. It can't however, because there is no 12905 // way to mark the dependence as implicit there, and so the stackmap code 12906 // will confuse it with a regular operand. Instead, add the dependence 12907 // here. 12908 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12909 } 12910 12911 return emitPatchPoint(MI, BB); 12912 } 12913 12914 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12915 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12916 return emitEHSjLjSetJmp(MI, BB); 12917 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12918 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12919 return emitEHSjLjLongJmp(MI, BB); 12920 } 12921 12922 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12923 12924 // To "insert" these instructions we actually have to insert their 12925 // control-flow patterns. 12926 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12927 MachineFunction::iterator It = ++BB->getIterator(); 12928 12929 MachineFunction *F = BB->getParent(); 12930 MachineRegisterInfo &MRI = F->getRegInfo(); 12931 12932 if (Subtarget.hasISEL() && 12933 (MI.getOpcode() == PPC::SELECT_CC_I4 || 12934 MI.getOpcode() == PPC::SELECT_CC_I8 || 12935 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) { 12936 SmallVector<MachineOperand, 2> Cond; 12937 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12938 MI.getOpcode() == PPC::SELECT_CC_I8) 12939 Cond.push_back(MI.getOperand(4)); 12940 else 12941 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12942 Cond.push_back(MI.getOperand(1)); 12943 12944 DebugLoc dl = MI.getDebugLoc(); 12945 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12946 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12947 } else if (IsSelectCC(MI) || IsSelect(MI)) { 12948 // The incoming instruction knows the destination vreg to set, the 12949 // condition code register to branch on, the true/false values to 12950 // select between, and a branch opcode to use. 12951 12952 // thisMBB: 12953 // ... 12954 // TrueVal = ... 12955 // cmpTY ccX, r1, r2 12956 // bCC sinkMBB 12957 // fallthrough --> copy0MBB 12958 MachineBasicBlock *thisMBB = BB; 12959 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12960 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12961 DebugLoc dl = MI.getDebugLoc(); 12962 F->insert(It, copy0MBB); 12963 F->insert(It, sinkMBB); 12964 12965 // Set the call frame size on entry to the new basic blocks. 12966 // See https://reviews.llvm.org/D156113. 12967 unsigned CallFrameSize = TII->getCallFrameSizeAt(MI); 12968 copy0MBB->setCallFrameSize(CallFrameSize); 12969 sinkMBB->setCallFrameSize(CallFrameSize); 12970 12971 // Transfer the remainder of BB and its successor edges to sinkMBB. 12972 sinkMBB->splice(sinkMBB->begin(), BB, 12973 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12974 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12975 12976 // Next, add the true and fallthrough blocks as its successors. 12977 BB->addSuccessor(copy0MBB); 12978 BB->addSuccessor(sinkMBB); 12979 12980 if (IsSelect(MI)) { 12981 BuildMI(BB, dl, TII->get(PPC::BC)) 12982 .addReg(MI.getOperand(1).getReg()) 12983 .addMBB(sinkMBB); 12984 } else { 12985 unsigned SelectPred = MI.getOperand(4).getImm(); 12986 BuildMI(BB, dl, TII->get(PPC::BCC)) 12987 .addImm(SelectPred) 12988 .addReg(MI.getOperand(1).getReg()) 12989 .addMBB(sinkMBB); 12990 } 12991 12992 // copy0MBB: 12993 // %FalseValue = ... 12994 // # fallthrough to sinkMBB 12995 BB = copy0MBB; 12996 12997 // Update machine-CFG edges 12998 BB->addSuccessor(sinkMBB); 12999 13000 // sinkMBB: 13001 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 13002 // ... 13003 BB = sinkMBB; 13004 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 13005 .addReg(MI.getOperand(3).getReg()) 13006 .addMBB(copy0MBB) 13007 .addReg(MI.getOperand(2).getReg()) 13008 .addMBB(thisMBB); 13009 } else if (MI.getOpcode() == PPC::ReadTB) { 13010 // To read the 64-bit time-base register on a 32-bit target, we read the 13011 // two halves. Should the counter have wrapped while it was being read, we 13012 // need to try again. 13013 // ... 13014 // readLoop: 13015 // mfspr Rx,TBU # load from TBU 13016 // mfspr Ry,TB # load from TB 13017 // mfspr Rz,TBU # load from TBU 13018 // cmpw crX,Rx,Rz # check if 'old'='new' 13019 // bne readLoop # branch if they're not equal 13020 // ... 13021 13022 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 13023 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 13024 DebugLoc dl = MI.getDebugLoc(); 13025 F->insert(It, readMBB); 13026 F->insert(It, sinkMBB); 13027 13028 // Transfer the remainder of BB and its successor edges to sinkMBB. 13029 sinkMBB->splice(sinkMBB->begin(), BB, 13030 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 13031 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 13032 13033 BB->addSuccessor(readMBB); 13034 BB = readMBB; 13035 13036 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13037 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 13038 Register LoReg = MI.getOperand(0).getReg(); 13039 Register HiReg = MI.getOperand(1).getReg(); 13040 13041 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 13042 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 13043 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 13044 13045 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 13046 13047 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 13048 .addReg(HiReg) 13049 .addReg(ReadAgainReg); 13050 BuildMI(BB, dl, TII->get(PPC::BCC)) 13051 .addImm(PPC::PRED_NE) 13052 .addReg(CmpReg) 13053 .addMBB(readMBB); 13054 13055 BB->addSuccessor(readMBB); 13056 BB->addSuccessor(sinkMBB); 13057 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 13058 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 13059 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 13060 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 13061 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 13062 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 13063 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 13064 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 13065 13066 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 13067 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 13068 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 13069 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 13070 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 13071 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 13072 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 13073 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 13074 13075 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 13076 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 13077 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 13078 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 13079 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 13080 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 13081 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 13082 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 13083 13084 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 13085 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 13086 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 13087 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 13088 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 13089 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 13090 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 13091 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 13092 13093 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 13094 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 13095 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 13096 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 13097 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 13098 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 13099 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 13100 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 13101 13102 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 13103 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 13104 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 13105 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 13106 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 13107 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 13108 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 13109 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 13110 13111 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 13112 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT); 13113 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 13114 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT); 13115 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 13116 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT); 13117 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 13118 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT); 13119 13120 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 13121 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT); 13122 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 13123 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT); 13124 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 13125 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT); 13126 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 13127 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT); 13128 13129 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 13130 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT); 13131 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 13132 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT); 13133 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 13134 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT); 13135 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 13136 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT); 13137 13138 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 13139 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT); 13140 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 13141 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT); 13142 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 13143 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT); 13144 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 13145 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT); 13146 13147 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 13148 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 13149 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 13150 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 13151 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 13152 BB = EmitAtomicBinary(MI, BB, 4, 0); 13153 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 13154 BB = EmitAtomicBinary(MI, BB, 8, 0); 13155 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 13156 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 13157 (Subtarget.hasPartwordAtomics() && 13158 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 13159 (Subtarget.hasPartwordAtomics() && 13160 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 13161 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 13162 13163 auto LoadMnemonic = PPC::LDARX; 13164 auto StoreMnemonic = PPC::STDCX; 13165 switch (MI.getOpcode()) { 13166 default: 13167 llvm_unreachable("Compare and swap of unknown size"); 13168 case PPC::ATOMIC_CMP_SWAP_I8: 13169 LoadMnemonic = PPC::LBARX; 13170 StoreMnemonic = PPC::STBCX; 13171 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 13172 break; 13173 case PPC::ATOMIC_CMP_SWAP_I16: 13174 LoadMnemonic = PPC::LHARX; 13175 StoreMnemonic = PPC::STHCX; 13176 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 13177 break; 13178 case PPC::ATOMIC_CMP_SWAP_I32: 13179 LoadMnemonic = PPC::LWARX; 13180 StoreMnemonic = PPC::STWCX; 13181 break; 13182 case PPC::ATOMIC_CMP_SWAP_I64: 13183 LoadMnemonic = PPC::LDARX; 13184 StoreMnemonic = PPC::STDCX; 13185 break; 13186 } 13187 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13188 Register dest = MI.getOperand(0).getReg(); 13189 Register ptrA = MI.getOperand(1).getReg(); 13190 Register ptrB = MI.getOperand(2).getReg(); 13191 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 13192 Register oldval = MI.getOperand(3).getReg(); 13193 Register newval = MI.getOperand(4).getReg(); 13194 DebugLoc dl = MI.getDebugLoc(); 13195 13196 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 13197 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 13198 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 13199 F->insert(It, loop1MBB); 13200 F->insert(It, loop2MBB); 13201 F->insert(It, exitMBB); 13202 exitMBB->splice(exitMBB->begin(), BB, 13203 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 13204 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 13205 13206 // thisMBB: 13207 // ... 13208 // fallthrough --> loopMBB 13209 BB->addSuccessor(loop1MBB); 13210 13211 // loop1MBB: 13212 // l[bhwd]arx dest, ptr 13213 // cmp[wd] dest, oldval 13214 // bne- exitBB 13215 // loop2MBB: 13216 // st[bhwd]cx. newval, ptr 13217 // bne- loopMBB 13218 // b exitBB 13219 // exitBB: 13220 BB = loop1MBB; 13221 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 13222 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg) 13223 .addReg(dest) 13224 .addReg(oldval); 13225 BuildMI(BB, dl, TII->get(PPC::BCC)) 13226 .addImm(PPC::PRED_NE) 13227 .addReg(CrReg) 13228 .addMBB(exitMBB); 13229 BB->addSuccessor(loop2MBB); 13230 BB->addSuccessor(exitMBB); 13231 13232 BB = loop2MBB; 13233 BuildMI(BB, dl, TII->get(StoreMnemonic)) 13234 .addReg(newval) 13235 .addReg(ptrA) 13236 .addReg(ptrB); 13237 BuildMI(BB, dl, TII->get(PPC::BCC)) 13238 .addImm(PPC::PRED_NE) 13239 .addReg(PPC::CR0) 13240 .addMBB(loop1MBB); 13241 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 13242 BB->addSuccessor(loop1MBB); 13243 BB->addSuccessor(exitMBB); 13244 13245 // exitMBB: 13246 // ... 13247 BB = exitMBB; 13248 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 13249 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 13250 // We must use 64-bit registers for addresses when targeting 64-bit, 13251 // since we're actually doing arithmetic on them. Other registers 13252 // can be 32-bit. 13253 bool is64bit = Subtarget.isPPC64(); 13254 bool isLittleEndian = Subtarget.isLittleEndian(); 13255 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 13256 13257 Register dest = MI.getOperand(0).getReg(); 13258 Register ptrA = MI.getOperand(1).getReg(); 13259 Register ptrB = MI.getOperand(2).getReg(); 13260 Register oldval = MI.getOperand(3).getReg(); 13261 Register newval = MI.getOperand(4).getReg(); 13262 DebugLoc dl = MI.getDebugLoc(); 13263 13264 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 13265 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 13266 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 13267 F->insert(It, loop1MBB); 13268 F->insert(It, loop2MBB); 13269 F->insert(It, exitMBB); 13270 exitMBB->splice(exitMBB->begin(), BB, 13271 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 13272 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 13273 13274 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13275 const TargetRegisterClass *RC = 13276 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 13277 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 13278 13279 Register PtrReg = RegInfo.createVirtualRegister(RC); 13280 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 13281 Register ShiftReg = 13282 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 13283 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 13284 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 13285 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 13286 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 13287 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 13288 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 13289 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 13290 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 13291 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 13292 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 13293 Register Ptr1Reg; 13294 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 13295 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 13296 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 13297 // thisMBB: 13298 // ... 13299 // fallthrough --> loopMBB 13300 BB->addSuccessor(loop1MBB); 13301 13302 // The 4-byte load must be aligned, while a char or short may be 13303 // anywhere in the word. Hence all this nasty bookkeeping code. 13304 // add ptr1, ptrA, ptrB [copy if ptrA==0] 13305 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 13306 // xori shift, shift1, 24 [16] 13307 // rlwinm ptr, ptr1, 0, 0, 29 13308 // slw newval2, newval, shift 13309 // slw oldval2, oldval,shift 13310 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 13311 // slw mask, mask2, shift 13312 // and newval3, newval2, mask 13313 // and oldval3, oldval2, mask 13314 // loop1MBB: 13315 // lwarx tmpDest, ptr 13316 // and tmp, tmpDest, mask 13317 // cmpw tmp, oldval3 13318 // bne- exitBB 13319 // loop2MBB: 13320 // andc tmp2, tmpDest, mask 13321 // or tmp4, tmp2, newval3 13322 // stwcx. tmp4, ptr 13323 // bne- loop1MBB 13324 // b exitBB 13325 // exitBB: 13326 // srw dest, tmpDest, shift 13327 if (ptrA != ZeroReg) { 13328 Ptr1Reg = RegInfo.createVirtualRegister(RC); 13329 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 13330 .addReg(ptrA) 13331 .addReg(ptrB); 13332 } else { 13333 Ptr1Reg = ptrB; 13334 } 13335 13336 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 13337 // mode. 13338 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 13339 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 13340 .addImm(3) 13341 .addImm(27) 13342 .addImm(is8bit ? 28 : 27); 13343 if (!isLittleEndian) 13344 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 13345 .addReg(Shift1Reg) 13346 .addImm(is8bit ? 24 : 16); 13347 if (is64bit) 13348 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 13349 .addReg(Ptr1Reg) 13350 .addImm(0) 13351 .addImm(61); 13352 else 13353 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 13354 .addReg(Ptr1Reg) 13355 .addImm(0) 13356 .addImm(0) 13357 .addImm(29); 13358 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 13359 .addReg(newval) 13360 .addReg(ShiftReg); 13361 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 13362 .addReg(oldval) 13363 .addReg(ShiftReg); 13364 if (is8bit) 13365 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 13366 else { 13367 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 13368 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 13369 .addReg(Mask3Reg) 13370 .addImm(65535); 13371 } 13372 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 13373 .addReg(Mask2Reg) 13374 .addReg(ShiftReg); 13375 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 13376 .addReg(NewVal2Reg) 13377 .addReg(MaskReg); 13378 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 13379 .addReg(OldVal2Reg) 13380 .addReg(MaskReg); 13381 13382 BB = loop1MBB; 13383 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 13384 .addReg(ZeroReg) 13385 .addReg(PtrReg); 13386 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 13387 .addReg(TmpDestReg) 13388 .addReg(MaskReg); 13389 BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg) 13390 .addReg(TmpReg) 13391 .addReg(OldVal3Reg); 13392 BuildMI(BB, dl, TII->get(PPC::BCC)) 13393 .addImm(PPC::PRED_NE) 13394 .addReg(CrReg) 13395 .addMBB(exitMBB); 13396 BB->addSuccessor(loop2MBB); 13397 BB->addSuccessor(exitMBB); 13398 13399 BB = loop2MBB; 13400 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 13401 .addReg(TmpDestReg) 13402 .addReg(MaskReg); 13403 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 13404 .addReg(Tmp2Reg) 13405 .addReg(NewVal3Reg); 13406 BuildMI(BB, dl, TII->get(PPC::STWCX)) 13407 .addReg(Tmp4Reg) 13408 .addReg(ZeroReg) 13409 .addReg(PtrReg); 13410 BuildMI(BB, dl, TII->get(PPC::BCC)) 13411 .addImm(PPC::PRED_NE) 13412 .addReg(PPC::CR0) 13413 .addMBB(loop1MBB); 13414 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 13415 BB->addSuccessor(loop1MBB); 13416 BB->addSuccessor(exitMBB); 13417 13418 // exitMBB: 13419 // ... 13420 BB = exitMBB; 13421 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 13422 .addReg(TmpReg) 13423 .addReg(ShiftReg); 13424 } else if (MI.getOpcode() == PPC::FADDrtz) { 13425 // This pseudo performs an FADD with rounding mode temporarily forced 13426 // to round-to-zero. We emit this via custom inserter since the FPSCR 13427 // is not modeled at the SelectionDAG level. 13428 Register Dest = MI.getOperand(0).getReg(); 13429 Register Src1 = MI.getOperand(1).getReg(); 13430 Register Src2 = MI.getOperand(2).getReg(); 13431 DebugLoc dl = MI.getDebugLoc(); 13432 13433 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13434 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 13435 13436 // Save FPSCR value. 13437 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 13438 13439 // Set rounding mode to round-to-zero. 13440 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 13441 .addImm(31) 13442 .addReg(PPC::RM, RegState::ImplicitDefine); 13443 13444 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 13445 .addImm(30) 13446 .addReg(PPC::RM, RegState::ImplicitDefine); 13447 13448 // Perform addition. 13449 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 13450 .addReg(Src1) 13451 .addReg(Src2); 13452 if (MI.getFlag(MachineInstr::NoFPExcept)) 13453 MIB.setMIFlag(MachineInstr::NoFPExcept); 13454 13455 // Restore FPSCR value. 13456 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 13457 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 13458 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 13459 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 13460 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 13461 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 13462 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 13463 ? PPC::ANDI8_rec 13464 : PPC::ANDI_rec; 13465 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 13466 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 13467 13468 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13469 Register Dest = RegInfo.createVirtualRegister( 13470 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 13471 13472 DebugLoc Dl = MI.getDebugLoc(); 13473 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 13474 .addReg(MI.getOperand(1).getReg()) 13475 .addImm(1); 13476 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 13477 MI.getOperand(0).getReg()) 13478 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 13479 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 13480 DebugLoc Dl = MI.getDebugLoc(); 13481 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13482 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 13483 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 13484 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 13485 MI.getOperand(0).getReg()) 13486 .addReg(CRReg); 13487 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 13488 DebugLoc Dl = MI.getDebugLoc(); 13489 unsigned Imm = MI.getOperand(1).getImm(); 13490 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 13491 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 13492 MI.getOperand(0).getReg()) 13493 .addReg(PPC::CR0EQ); 13494 } else if (MI.getOpcode() == PPC::SETRNDi) { 13495 DebugLoc dl = MI.getDebugLoc(); 13496 Register OldFPSCRReg = MI.getOperand(0).getReg(); 13497 13498 // Save FPSCR value. 13499 if (MRI.use_empty(OldFPSCRReg)) 13500 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 13501 else 13502 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 13503 13504 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 13505 // the following settings: 13506 // 00 Round to nearest 13507 // 01 Round to 0 13508 // 10 Round to +inf 13509 // 11 Round to -inf 13510 13511 // When the operand is immediate, using the two least significant bits of 13512 // the immediate to set the bits 62:63 of FPSCR. 13513 unsigned Mode = MI.getOperand(1).getImm(); 13514 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 13515 .addImm(31) 13516 .addReg(PPC::RM, RegState::ImplicitDefine); 13517 13518 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 13519 .addImm(30) 13520 .addReg(PPC::RM, RegState::ImplicitDefine); 13521 } else if (MI.getOpcode() == PPC::SETRND) { 13522 DebugLoc dl = MI.getDebugLoc(); 13523 13524 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 13525 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 13526 // If the target doesn't have DirectMove, we should use stack to do the 13527 // conversion, because the target doesn't have the instructions like mtvsrd 13528 // or mfvsrd to do this conversion directly. 13529 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 13530 if (Subtarget.hasDirectMove()) { 13531 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 13532 .addReg(SrcReg); 13533 } else { 13534 // Use stack to do the register copy. 13535 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 13536 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13537 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 13538 if (RC == &PPC::F8RCRegClass) { 13539 // Copy register from F8RCRegClass to G8RCRegclass. 13540 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 13541 "Unsupported RegClass."); 13542 13543 StoreOp = PPC::STFD; 13544 LoadOp = PPC::LD; 13545 } else { 13546 // Copy register from G8RCRegClass to F8RCRegclass. 13547 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 13548 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 13549 "Unsupported RegClass."); 13550 } 13551 13552 MachineFrameInfo &MFI = F->getFrameInfo(); 13553 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 13554 13555 MachineMemOperand *MMOStore = F->getMachineMemOperand( 13556 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 13557 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 13558 MFI.getObjectAlign(FrameIdx)); 13559 13560 // Store the SrcReg into the stack. 13561 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 13562 .addReg(SrcReg) 13563 .addImm(0) 13564 .addFrameIndex(FrameIdx) 13565 .addMemOperand(MMOStore); 13566 13567 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 13568 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 13569 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 13570 MFI.getObjectAlign(FrameIdx)); 13571 13572 // Load from the stack where SrcReg is stored, and save to DestReg, 13573 // so we have done the RegClass conversion from RegClass::SrcReg to 13574 // RegClass::DestReg. 13575 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 13576 .addImm(0) 13577 .addFrameIndex(FrameIdx) 13578 .addMemOperand(MMOLoad); 13579 } 13580 }; 13581 13582 Register OldFPSCRReg = MI.getOperand(0).getReg(); 13583 13584 // Save FPSCR value. 13585 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 13586 13587 // When the operand is gprc register, use two least significant bits of the 13588 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 13589 // 13590 // copy OldFPSCRTmpReg, OldFPSCRReg 13591 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 13592 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 13593 // copy NewFPSCRReg, NewFPSCRTmpReg 13594 // mtfsf 255, NewFPSCRReg 13595 MachineOperand SrcOp = MI.getOperand(1); 13596 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13597 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13598 13599 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 13600 13601 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13602 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13603 13604 // The first operand of INSERT_SUBREG should be a register which has 13605 // subregisters, we only care about its RegClass, so we should use an 13606 // IMPLICIT_DEF register. 13607 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 13608 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 13609 .addReg(ImDefReg) 13610 .add(SrcOp) 13611 .addImm(1); 13612 13613 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13614 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 13615 .addReg(OldFPSCRTmpReg) 13616 .addReg(ExtSrcReg) 13617 .addImm(0) 13618 .addImm(62); 13619 13620 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 13621 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 13622 13623 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 13624 // bits of FPSCR. 13625 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 13626 .addImm(255) 13627 .addReg(NewFPSCRReg) 13628 .addImm(0) 13629 .addImm(0); 13630 } else if (MI.getOpcode() == PPC::SETFLM) { 13631 DebugLoc Dl = MI.getDebugLoc(); 13632 13633 // Result of setflm is previous FPSCR content, so we need to save it first. 13634 Register OldFPSCRReg = MI.getOperand(0).getReg(); 13635 if (MRI.use_empty(OldFPSCRReg)) 13636 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 13637 else 13638 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 13639 13640 // Put bits in 32:63 to FPSCR. 13641 Register NewFPSCRReg = MI.getOperand(1).getReg(); 13642 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 13643 .addImm(255) 13644 .addReg(NewFPSCRReg) 13645 .addImm(0) 13646 .addImm(0); 13647 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 13648 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 13649 return emitProbedAlloca(MI, BB); 13650 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 13651 DebugLoc DL = MI.getDebugLoc(); 13652 Register Src = MI.getOperand(2).getReg(); 13653 Register Lo = MI.getOperand(0).getReg(); 13654 Register Hi = MI.getOperand(1).getReg(); 13655 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 13656 .addDef(Lo) 13657 .addUse(Src, 0, PPC::sub_gp8_x1); 13658 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 13659 .addDef(Hi) 13660 .addUse(Src, 0, PPC::sub_gp8_x0); 13661 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 13662 MI.getOpcode() == PPC::STQX_PSEUDO) { 13663 DebugLoc DL = MI.getDebugLoc(); 13664 // Ptr is used as the ptr_rc_no_r0 part 13665 // of LQ/STQ's memory operand and adding result of RA and RB, 13666 // so it has to be g8rc_and_g8rc_nox0. 13667 Register Ptr = 13668 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 13669 Register Val = MI.getOperand(0).getReg(); 13670 Register RA = MI.getOperand(1).getReg(); 13671 Register RB = MI.getOperand(2).getReg(); 13672 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 13673 BuildMI(*BB, MI, DL, 13674 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 13675 : TII->get(PPC::STQ)) 13676 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 13677 .addImm(0) 13678 .addReg(Ptr); 13679 } else { 13680 llvm_unreachable("Unexpected instr type to insert"); 13681 } 13682 13683 MI.eraseFromParent(); // The pseudo instruction is gone now. 13684 return BB; 13685 } 13686 13687 //===----------------------------------------------------------------------===// 13688 // Target Optimization Hooks 13689 //===----------------------------------------------------------------------===// 13690 13691 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 13692 // For the estimates, convergence is quadratic, so we essentially double the 13693 // number of digits correct after every iteration. For both FRE and FRSQRTE, 13694 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 13695 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 13696 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 13697 if (VT.getScalarType() == MVT::f64) 13698 RefinementSteps++; 13699 return RefinementSteps; 13700 } 13701 13702 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 13703 const DenormalMode &Mode) const { 13704 // We only have VSX Vector Test for software Square Root. 13705 EVT VT = Op.getValueType(); 13706 if (!isTypeLegal(MVT::i1) || 13707 (VT != MVT::f64 && 13708 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 13709 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 13710 13711 SDLoc DL(Op); 13712 // The output register of FTSQRT is CR field. 13713 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13714 // ftsqrt BF,FRB 13715 // Let e_b be the unbiased exponent of the double-precision 13716 // floating-point operand in register FRB. 13717 // fe_flag is set to 1 if either of the following conditions occurs. 13718 // - The double-precision floating-point operand in register FRB is a zero, 13719 // a NaN, or an infinity, or a negative value. 13720 // - e_b is less than or equal to -970. 13721 // Otherwise fe_flag is set to 0. 13722 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13723 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13724 // exponent is less than -970) 13725 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13726 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13727 FTSQRT, SRIdxVal), 13728 0); 13729 } 13730 13731 SDValue 13732 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13733 SelectionDAG &DAG) const { 13734 // We only have VSX Vector Square Root. 13735 EVT VT = Op.getValueType(); 13736 if (VT != MVT::f64 && 13737 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13738 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13739 13740 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13741 } 13742 13743 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13744 int Enabled, int &RefinementSteps, 13745 bool &UseOneConstNR, 13746 bool Reciprocal) const { 13747 EVT VT = Operand.getValueType(); 13748 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13749 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13750 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13751 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13752 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13753 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13754 13755 // The Newton-Raphson computation with a single constant does not provide 13756 // enough accuracy on some CPUs. 13757 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13758 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13759 } 13760 return SDValue(); 13761 } 13762 13763 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13764 int Enabled, 13765 int &RefinementSteps) const { 13766 EVT VT = Operand.getValueType(); 13767 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13768 (VT == MVT::f64 && Subtarget.hasFRE()) || 13769 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13770 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13771 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13772 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13773 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13774 } 13775 return SDValue(); 13776 } 13777 13778 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13779 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13780 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13781 // enabled for division), this functionality is redundant with the default 13782 // combiner logic (once the division -> reciprocal/multiply transformation 13783 // has taken place). As a result, this matters more for older cores than for 13784 // newer ones. 13785 13786 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13787 // reciprocal if there are two or more FDIVs (for embedded cores with only 13788 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13789 switch (Subtarget.getCPUDirective()) { 13790 default: 13791 return 3; 13792 case PPC::DIR_440: 13793 case PPC::DIR_A2: 13794 case PPC::DIR_E500: 13795 case PPC::DIR_E500mc: 13796 case PPC::DIR_E5500: 13797 return 2; 13798 } 13799 } 13800 13801 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13802 // collapsed, and so we need to look through chains of them. 13803 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13804 int64_t& Offset, SelectionDAG &DAG) { 13805 if (DAG.isBaseWithConstantOffset(Loc)) { 13806 Base = Loc.getOperand(0); 13807 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13808 13809 // The base might itself be a base plus an offset, and if so, accumulate 13810 // that as well. 13811 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13812 } 13813 } 13814 13815 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13816 unsigned Bytes, int Dist, 13817 SelectionDAG &DAG) { 13818 if (VT.getSizeInBits() / 8 != Bytes) 13819 return false; 13820 13821 SDValue BaseLoc = Base->getBasePtr(); 13822 if (Loc.getOpcode() == ISD::FrameIndex) { 13823 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13824 return false; 13825 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13826 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13827 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13828 int FS = MFI.getObjectSize(FI); 13829 int BFS = MFI.getObjectSize(BFI); 13830 if (FS != BFS || FS != (int)Bytes) return false; 13831 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13832 } 13833 13834 SDValue Base1 = Loc, Base2 = BaseLoc; 13835 int64_t Offset1 = 0, Offset2 = 0; 13836 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13837 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13838 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13839 return true; 13840 13841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13842 const GlobalValue *GV1 = nullptr; 13843 const GlobalValue *GV2 = nullptr; 13844 Offset1 = 0; 13845 Offset2 = 0; 13846 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13847 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13848 if (isGA1 && isGA2 && GV1 == GV2) 13849 return Offset1 == (Offset2 + Dist*Bytes); 13850 return false; 13851 } 13852 13853 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13854 // not enforce equality of the chain operands. 13855 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13856 unsigned Bytes, int Dist, 13857 SelectionDAG &DAG) { 13858 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13859 EVT VT = LS->getMemoryVT(); 13860 SDValue Loc = LS->getBasePtr(); 13861 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13862 } 13863 13864 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13865 EVT VT; 13866 switch (N->getConstantOperandVal(1)) { 13867 default: return false; 13868 case Intrinsic::ppc_altivec_lvx: 13869 case Intrinsic::ppc_altivec_lvxl: 13870 case Intrinsic::ppc_vsx_lxvw4x: 13871 case Intrinsic::ppc_vsx_lxvw4x_be: 13872 VT = MVT::v4i32; 13873 break; 13874 case Intrinsic::ppc_vsx_lxvd2x: 13875 case Intrinsic::ppc_vsx_lxvd2x_be: 13876 VT = MVT::v2f64; 13877 break; 13878 case Intrinsic::ppc_altivec_lvebx: 13879 VT = MVT::i8; 13880 break; 13881 case Intrinsic::ppc_altivec_lvehx: 13882 VT = MVT::i16; 13883 break; 13884 case Intrinsic::ppc_altivec_lvewx: 13885 VT = MVT::i32; 13886 break; 13887 } 13888 13889 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13890 } 13891 13892 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13893 EVT VT; 13894 switch (N->getConstantOperandVal(1)) { 13895 default: return false; 13896 case Intrinsic::ppc_altivec_stvx: 13897 case Intrinsic::ppc_altivec_stvxl: 13898 case Intrinsic::ppc_vsx_stxvw4x: 13899 VT = MVT::v4i32; 13900 break; 13901 case Intrinsic::ppc_vsx_stxvd2x: 13902 VT = MVT::v2f64; 13903 break; 13904 case Intrinsic::ppc_vsx_stxvw4x_be: 13905 VT = MVT::v4i32; 13906 break; 13907 case Intrinsic::ppc_vsx_stxvd2x_be: 13908 VT = MVT::v2f64; 13909 break; 13910 case Intrinsic::ppc_altivec_stvebx: 13911 VT = MVT::i8; 13912 break; 13913 case Intrinsic::ppc_altivec_stvehx: 13914 VT = MVT::i16; 13915 break; 13916 case Intrinsic::ppc_altivec_stvewx: 13917 VT = MVT::i32; 13918 break; 13919 } 13920 13921 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13922 } 13923 13924 return false; 13925 } 13926 13927 // Return true is there is a nearyby consecutive load to the one provided 13928 // (regardless of alignment). We search up and down the chain, looking though 13929 // token factors and other loads (but nothing else). As a result, a true result 13930 // indicates that it is safe to create a new consecutive load adjacent to the 13931 // load provided. 13932 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13933 SDValue Chain = LD->getChain(); 13934 EVT VT = LD->getMemoryVT(); 13935 13936 SmallSet<SDNode *, 16> LoadRoots; 13937 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13938 SmallSet<SDNode *, 16> Visited; 13939 13940 // First, search up the chain, branching to follow all token-factor operands. 13941 // If we find a consecutive load, then we're done, otherwise, record all 13942 // nodes just above the top-level loads and token factors. 13943 while (!Queue.empty()) { 13944 SDNode *ChainNext = Queue.pop_back_val(); 13945 if (!Visited.insert(ChainNext).second) 13946 continue; 13947 13948 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13949 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13950 return true; 13951 13952 if (!Visited.count(ChainLD->getChain().getNode())) 13953 Queue.push_back(ChainLD->getChain().getNode()); 13954 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13955 for (const SDUse &O : ChainNext->ops()) 13956 if (!Visited.count(O.getNode())) 13957 Queue.push_back(O.getNode()); 13958 } else 13959 LoadRoots.insert(ChainNext); 13960 } 13961 13962 // Second, search down the chain, starting from the top-level nodes recorded 13963 // in the first phase. These top-level nodes are the nodes just above all 13964 // loads and token factors. Starting with their uses, recursively look though 13965 // all loads (just the chain uses) and token factors to find a consecutive 13966 // load. 13967 Visited.clear(); 13968 Queue.clear(); 13969 13970 for (SDNode *I : LoadRoots) { 13971 Queue.push_back(I); 13972 13973 while (!Queue.empty()) { 13974 SDNode *LoadRoot = Queue.pop_back_val(); 13975 if (!Visited.insert(LoadRoot).second) 13976 continue; 13977 13978 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13979 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13980 return true; 13981 13982 for (SDNode *U : LoadRoot->uses()) 13983 if (((isa<MemSDNode>(U) && 13984 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13985 U->getOpcode() == ISD::TokenFactor) && 13986 !Visited.count(U)) 13987 Queue.push_back(U); 13988 } 13989 } 13990 13991 return false; 13992 } 13993 13994 /// This function is called when we have proved that a SETCC node can be replaced 13995 /// by subtraction (and other supporting instructions) so that the result of 13996 /// comparison is kept in a GPR instead of CR. This function is purely for 13997 /// codegen purposes and has some flags to guide the codegen process. 13998 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13999 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 14000 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 14001 14002 // Zero extend the operands to the largest legal integer. Originally, they 14003 // must be of a strictly smaller size. 14004 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 14005 DAG.getConstant(Size, DL, MVT::i32)); 14006 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 14007 DAG.getConstant(Size, DL, MVT::i32)); 14008 14009 // Swap if needed. Depends on the condition code. 14010 if (Swap) 14011 std::swap(Op0, Op1); 14012 14013 // Subtract extended integers. 14014 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 14015 14016 // Move the sign bit to the least significant position and zero out the rest. 14017 // Now the least significant bit carries the result of original comparison. 14018 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 14019 DAG.getConstant(Size - 1, DL, MVT::i32)); 14020 auto Final = Shifted; 14021 14022 // Complement the result if needed. Based on the condition code. 14023 if (Complement) 14024 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 14025 DAG.getConstant(1, DL, MVT::i64)); 14026 14027 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 14028 } 14029 14030 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 14031 DAGCombinerInfo &DCI) const { 14032 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 14033 14034 SelectionDAG &DAG = DCI.DAG; 14035 SDLoc DL(N); 14036 14037 // Size of integers being compared has a critical role in the following 14038 // analysis, so we prefer to do this when all types are legal. 14039 if (!DCI.isAfterLegalizeDAG()) 14040 return SDValue(); 14041 14042 // If all users of SETCC extend its value to a legal integer type 14043 // then we replace SETCC with a subtraction 14044 for (const SDNode *U : N->uses()) 14045 if (U->getOpcode() != ISD::ZERO_EXTEND) 14046 return SDValue(); 14047 14048 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 14049 auto OpSize = N->getOperand(0).getValueSizeInBits(); 14050 14051 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 14052 14053 if (OpSize < Size) { 14054 switch (CC) { 14055 default: break; 14056 case ISD::SETULT: 14057 return generateEquivalentSub(N, Size, false, false, DL, DAG); 14058 case ISD::SETULE: 14059 return generateEquivalentSub(N, Size, true, true, DL, DAG); 14060 case ISD::SETUGT: 14061 return generateEquivalentSub(N, Size, false, true, DL, DAG); 14062 case ISD::SETUGE: 14063 return generateEquivalentSub(N, Size, true, false, DL, DAG); 14064 } 14065 } 14066 14067 return SDValue(); 14068 } 14069 14070 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 14071 DAGCombinerInfo &DCI) const { 14072 SelectionDAG &DAG = DCI.DAG; 14073 SDLoc dl(N); 14074 14075 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 14076 // If we're tracking CR bits, we need to be careful that we don't have: 14077 // trunc(binary-ops(zext(x), zext(y))) 14078 // or 14079 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 14080 // such that we're unnecessarily moving things into GPRs when it would be 14081 // better to keep them in CR bits. 14082 14083 // Note that trunc here can be an actual i1 trunc, or can be the effective 14084 // truncation that comes from a setcc or select_cc. 14085 if (N->getOpcode() == ISD::TRUNCATE && 14086 N->getValueType(0) != MVT::i1) 14087 return SDValue(); 14088 14089 if (N->getOperand(0).getValueType() != MVT::i32 && 14090 N->getOperand(0).getValueType() != MVT::i64) 14091 return SDValue(); 14092 14093 if (N->getOpcode() == ISD::SETCC || 14094 N->getOpcode() == ISD::SELECT_CC) { 14095 // If we're looking at a comparison, then we need to make sure that the 14096 // high bits (all except for the first) don't matter the result. 14097 ISD::CondCode CC = 14098 cast<CondCodeSDNode>(N->getOperand( 14099 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 14100 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 14101 14102 if (ISD::isSignedIntSetCC(CC)) { 14103 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 14104 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 14105 return SDValue(); 14106 } else if (ISD::isUnsignedIntSetCC(CC)) { 14107 if (!DAG.MaskedValueIsZero(N->getOperand(0), 14108 APInt::getHighBitsSet(OpBits, OpBits-1)) || 14109 !DAG.MaskedValueIsZero(N->getOperand(1), 14110 APInt::getHighBitsSet(OpBits, OpBits-1))) 14111 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 14112 : SDValue()); 14113 } else { 14114 // This is neither a signed nor an unsigned comparison, just make sure 14115 // that the high bits are equal. 14116 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 14117 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 14118 14119 // We don't really care about what is known about the first bit (if 14120 // anything), so pretend that it is known zero for both to ensure they can 14121 // be compared as constants. 14122 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 14123 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 14124 14125 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 14126 Op1Known.getConstant() != Op2Known.getConstant()) 14127 return SDValue(); 14128 } 14129 } 14130 14131 // We now know that the higher-order bits are irrelevant, we just need to 14132 // make sure that all of the intermediate operations are bit operations, and 14133 // all inputs are extensions. 14134 if (N->getOperand(0).getOpcode() != ISD::AND && 14135 N->getOperand(0).getOpcode() != ISD::OR && 14136 N->getOperand(0).getOpcode() != ISD::XOR && 14137 N->getOperand(0).getOpcode() != ISD::SELECT && 14138 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 14139 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 14140 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 14141 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 14142 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 14143 return SDValue(); 14144 14145 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 14146 N->getOperand(1).getOpcode() != ISD::AND && 14147 N->getOperand(1).getOpcode() != ISD::OR && 14148 N->getOperand(1).getOpcode() != ISD::XOR && 14149 N->getOperand(1).getOpcode() != ISD::SELECT && 14150 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 14151 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 14152 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 14153 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 14154 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 14155 return SDValue(); 14156 14157 SmallVector<SDValue, 4> Inputs; 14158 SmallVector<SDValue, 8> BinOps, PromOps; 14159 SmallPtrSet<SDNode *, 16> Visited; 14160 14161 for (unsigned i = 0; i < 2; ++i) { 14162 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 14163 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 14164 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 14165 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 14166 isa<ConstantSDNode>(N->getOperand(i))) 14167 Inputs.push_back(N->getOperand(i)); 14168 else 14169 BinOps.push_back(N->getOperand(i)); 14170 14171 if (N->getOpcode() == ISD::TRUNCATE) 14172 break; 14173 } 14174 14175 // Visit all inputs, collect all binary operations (and, or, xor and 14176 // select) that are all fed by extensions. 14177 while (!BinOps.empty()) { 14178 SDValue BinOp = BinOps.pop_back_val(); 14179 14180 if (!Visited.insert(BinOp.getNode()).second) 14181 continue; 14182 14183 PromOps.push_back(BinOp); 14184 14185 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 14186 // The condition of the select is not promoted. 14187 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 14188 continue; 14189 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 14190 continue; 14191 14192 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 14193 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 14194 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 14195 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 14196 isa<ConstantSDNode>(BinOp.getOperand(i))) { 14197 Inputs.push_back(BinOp.getOperand(i)); 14198 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 14199 BinOp.getOperand(i).getOpcode() == ISD::OR || 14200 BinOp.getOperand(i).getOpcode() == ISD::XOR || 14201 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 14202 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 14203 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 14204 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 14205 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 14206 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 14207 BinOps.push_back(BinOp.getOperand(i)); 14208 } else { 14209 // We have an input that is not an extension or another binary 14210 // operation; we'll abort this transformation. 14211 return SDValue(); 14212 } 14213 } 14214 } 14215 14216 // Make sure that this is a self-contained cluster of operations (which 14217 // is not quite the same thing as saying that everything has only one 14218 // use). 14219 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14220 if (isa<ConstantSDNode>(Inputs[i])) 14221 continue; 14222 14223 for (const SDNode *User : Inputs[i].getNode()->uses()) { 14224 if (User != N && !Visited.count(User)) 14225 return SDValue(); 14226 14227 // Make sure that we're not going to promote the non-output-value 14228 // operand(s) or SELECT or SELECT_CC. 14229 // FIXME: Although we could sometimes handle this, and it does occur in 14230 // practice that one of the condition inputs to the select is also one of 14231 // the outputs, we currently can't deal with this. 14232 if (User->getOpcode() == ISD::SELECT) { 14233 if (User->getOperand(0) == Inputs[i]) 14234 return SDValue(); 14235 } else if (User->getOpcode() == ISD::SELECT_CC) { 14236 if (User->getOperand(0) == Inputs[i] || 14237 User->getOperand(1) == Inputs[i]) 14238 return SDValue(); 14239 } 14240 } 14241 } 14242 14243 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 14244 for (const SDNode *User : PromOps[i].getNode()->uses()) { 14245 if (User != N && !Visited.count(User)) 14246 return SDValue(); 14247 14248 // Make sure that we're not going to promote the non-output-value 14249 // operand(s) or SELECT or SELECT_CC. 14250 // FIXME: Although we could sometimes handle this, and it does occur in 14251 // practice that one of the condition inputs to the select is also one of 14252 // the outputs, we currently can't deal with this. 14253 if (User->getOpcode() == ISD::SELECT) { 14254 if (User->getOperand(0) == PromOps[i]) 14255 return SDValue(); 14256 } else if (User->getOpcode() == ISD::SELECT_CC) { 14257 if (User->getOperand(0) == PromOps[i] || 14258 User->getOperand(1) == PromOps[i]) 14259 return SDValue(); 14260 } 14261 } 14262 } 14263 14264 // Replace all inputs with the extension operand. 14265 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14266 // Constants may have users outside the cluster of to-be-promoted nodes, 14267 // and so we need to replace those as we do the promotions. 14268 if (isa<ConstantSDNode>(Inputs[i])) 14269 continue; 14270 else 14271 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 14272 } 14273 14274 std::list<HandleSDNode> PromOpHandles; 14275 for (auto &PromOp : PromOps) 14276 PromOpHandles.emplace_back(PromOp); 14277 14278 // Replace all operations (these are all the same, but have a different 14279 // (i1) return type). DAG.getNode will validate that the types of 14280 // a binary operator match, so go through the list in reverse so that 14281 // we've likely promoted both operands first. Any intermediate truncations or 14282 // extensions disappear. 14283 while (!PromOpHandles.empty()) { 14284 SDValue PromOp = PromOpHandles.back().getValue(); 14285 PromOpHandles.pop_back(); 14286 14287 if (PromOp.getOpcode() == ISD::TRUNCATE || 14288 PromOp.getOpcode() == ISD::SIGN_EXTEND || 14289 PromOp.getOpcode() == ISD::ZERO_EXTEND || 14290 PromOp.getOpcode() == ISD::ANY_EXTEND) { 14291 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 14292 PromOp.getOperand(0).getValueType() != MVT::i1) { 14293 // The operand is not yet ready (see comment below). 14294 PromOpHandles.emplace_front(PromOp); 14295 continue; 14296 } 14297 14298 SDValue RepValue = PromOp.getOperand(0); 14299 if (isa<ConstantSDNode>(RepValue)) 14300 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 14301 14302 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 14303 continue; 14304 } 14305 14306 unsigned C; 14307 switch (PromOp.getOpcode()) { 14308 default: C = 0; break; 14309 case ISD::SELECT: C = 1; break; 14310 case ISD::SELECT_CC: C = 2; break; 14311 } 14312 14313 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 14314 PromOp.getOperand(C).getValueType() != MVT::i1) || 14315 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 14316 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 14317 // The to-be-promoted operands of this node have not yet been 14318 // promoted (this should be rare because we're going through the 14319 // list backward, but if one of the operands has several users in 14320 // this cluster of to-be-promoted nodes, it is possible). 14321 PromOpHandles.emplace_front(PromOp); 14322 continue; 14323 } 14324 14325 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 14326 PromOp.getNode()->op_end()); 14327 14328 // If there are any constant inputs, make sure they're replaced now. 14329 for (unsigned i = 0; i < 2; ++i) 14330 if (isa<ConstantSDNode>(Ops[C+i])) 14331 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 14332 14333 DAG.ReplaceAllUsesOfValueWith(PromOp, 14334 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 14335 } 14336 14337 // Now we're left with the initial truncation itself. 14338 if (N->getOpcode() == ISD::TRUNCATE) 14339 return N->getOperand(0); 14340 14341 // Otherwise, this is a comparison. The operands to be compared have just 14342 // changed type (to i1), but everything else is the same. 14343 return SDValue(N, 0); 14344 } 14345 14346 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 14347 DAGCombinerInfo &DCI) const { 14348 SelectionDAG &DAG = DCI.DAG; 14349 SDLoc dl(N); 14350 14351 // If we're tracking CR bits, we need to be careful that we don't have: 14352 // zext(binary-ops(trunc(x), trunc(y))) 14353 // or 14354 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 14355 // such that we're unnecessarily moving things into CR bits that can more 14356 // efficiently stay in GPRs. Note that if we're not certain that the high 14357 // bits are set as required by the final extension, we still may need to do 14358 // some masking to get the proper behavior. 14359 14360 // This same functionality is important on PPC64 when dealing with 14361 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 14362 // the return values of functions. Because it is so similar, it is handled 14363 // here as well. 14364 14365 if (N->getValueType(0) != MVT::i32 && 14366 N->getValueType(0) != MVT::i64) 14367 return SDValue(); 14368 14369 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 14370 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 14371 return SDValue(); 14372 14373 if (N->getOperand(0).getOpcode() != ISD::AND && 14374 N->getOperand(0).getOpcode() != ISD::OR && 14375 N->getOperand(0).getOpcode() != ISD::XOR && 14376 N->getOperand(0).getOpcode() != ISD::SELECT && 14377 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 14378 return SDValue(); 14379 14380 SmallVector<SDValue, 4> Inputs; 14381 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 14382 SmallPtrSet<SDNode *, 16> Visited; 14383 14384 // Visit all inputs, collect all binary operations (and, or, xor and 14385 // select) that are all fed by truncations. 14386 while (!BinOps.empty()) { 14387 SDValue BinOp = BinOps.pop_back_val(); 14388 14389 if (!Visited.insert(BinOp.getNode()).second) 14390 continue; 14391 14392 PromOps.push_back(BinOp); 14393 14394 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 14395 // The condition of the select is not promoted. 14396 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 14397 continue; 14398 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 14399 continue; 14400 14401 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 14402 isa<ConstantSDNode>(BinOp.getOperand(i))) { 14403 Inputs.push_back(BinOp.getOperand(i)); 14404 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 14405 BinOp.getOperand(i).getOpcode() == ISD::OR || 14406 BinOp.getOperand(i).getOpcode() == ISD::XOR || 14407 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 14408 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 14409 BinOps.push_back(BinOp.getOperand(i)); 14410 } else { 14411 // We have an input that is not a truncation or another binary 14412 // operation; we'll abort this transformation. 14413 return SDValue(); 14414 } 14415 } 14416 } 14417 14418 // The operands of a select that must be truncated when the select is 14419 // promoted because the operand is actually part of the to-be-promoted set. 14420 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 14421 14422 // Make sure that this is a self-contained cluster of operations (which 14423 // is not quite the same thing as saying that everything has only one 14424 // use). 14425 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14426 if (isa<ConstantSDNode>(Inputs[i])) 14427 continue; 14428 14429 for (SDNode *User : Inputs[i].getNode()->uses()) { 14430 if (User != N && !Visited.count(User)) 14431 return SDValue(); 14432 14433 // If we're going to promote the non-output-value operand(s) or SELECT or 14434 // SELECT_CC, record them for truncation. 14435 if (User->getOpcode() == ISD::SELECT) { 14436 if (User->getOperand(0) == Inputs[i]) 14437 SelectTruncOp[0].insert(std::make_pair(User, 14438 User->getOperand(0).getValueType())); 14439 } else if (User->getOpcode() == ISD::SELECT_CC) { 14440 if (User->getOperand(0) == Inputs[i]) 14441 SelectTruncOp[0].insert(std::make_pair(User, 14442 User->getOperand(0).getValueType())); 14443 if (User->getOperand(1) == Inputs[i]) 14444 SelectTruncOp[1].insert(std::make_pair(User, 14445 User->getOperand(1).getValueType())); 14446 } 14447 } 14448 } 14449 14450 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 14451 for (SDNode *User : PromOps[i].getNode()->uses()) { 14452 if (User != N && !Visited.count(User)) 14453 return SDValue(); 14454 14455 // If we're going to promote the non-output-value operand(s) or SELECT or 14456 // SELECT_CC, record them for truncation. 14457 if (User->getOpcode() == ISD::SELECT) { 14458 if (User->getOperand(0) == PromOps[i]) 14459 SelectTruncOp[0].insert(std::make_pair(User, 14460 User->getOperand(0).getValueType())); 14461 } else if (User->getOpcode() == ISD::SELECT_CC) { 14462 if (User->getOperand(0) == PromOps[i]) 14463 SelectTruncOp[0].insert(std::make_pair(User, 14464 User->getOperand(0).getValueType())); 14465 if (User->getOperand(1) == PromOps[i]) 14466 SelectTruncOp[1].insert(std::make_pair(User, 14467 User->getOperand(1).getValueType())); 14468 } 14469 } 14470 } 14471 14472 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 14473 bool ReallyNeedsExt = false; 14474 if (N->getOpcode() != ISD::ANY_EXTEND) { 14475 // If all of the inputs are not already sign/zero extended, then 14476 // we'll still need to do that at the end. 14477 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14478 if (isa<ConstantSDNode>(Inputs[i])) 14479 continue; 14480 14481 unsigned OpBits = 14482 Inputs[i].getOperand(0).getValueSizeInBits(); 14483 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 14484 14485 if ((N->getOpcode() == ISD::ZERO_EXTEND && 14486 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 14487 APInt::getHighBitsSet(OpBits, 14488 OpBits-PromBits))) || 14489 (N->getOpcode() == ISD::SIGN_EXTEND && 14490 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 14491 (OpBits-(PromBits-1)))) { 14492 ReallyNeedsExt = true; 14493 break; 14494 } 14495 } 14496 } 14497 14498 // Replace all inputs, either with the truncation operand, or a 14499 // truncation or extension to the final output type. 14500 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14501 // Constant inputs need to be replaced with the to-be-promoted nodes that 14502 // use them because they might have users outside of the cluster of 14503 // promoted nodes. 14504 if (isa<ConstantSDNode>(Inputs[i])) 14505 continue; 14506 14507 SDValue InSrc = Inputs[i].getOperand(0); 14508 if (Inputs[i].getValueType() == N->getValueType(0)) 14509 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 14510 else if (N->getOpcode() == ISD::SIGN_EXTEND) 14511 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 14512 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 14513 else if (N->getOpcode() == ISD::ZERO_EXTEND) 14514 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 14515 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 14516 else 14517 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 14518 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 14519 } 14520 14521 std::list<HandleSDNode> PromOpHandles; 14522 for (auto &PromOp : PromOps) 14523 PromOpHandles.emplace_back(PromOp); 14524 14525 // Replace all operations (these are all the same, but have a different 14526 // (promoted) return type). DAG.getNode will validate that the types of 14527 // a binary operator match, so go through the list in reverse so that 14528 // we've likely promoted both operands first. 14529 while (!PromOpHandles.empty()) { 14530 SDValue PromOp = PromOpHandles.back().getValue(); 14531 PromOpHandles.pop_back(); 14532 14533 unsigned C; 14534 switch (PromOp.getOpcode()) { 14535 default: C = 0; break; 14536 case ISD::SELECT: C = 1; break; 14537 case ISD::SELECT_CC: C = 2; break; 14538 } 14539 14540 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 14541 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 14542 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 14543 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 14544 // The to-be-promoted operands of this node have not yet been 14545 // promoted (this should be rare because we're going through the 14546 // list backward, but if one of the operands has several users in 14547 // this cluster of to-be-promoted nodes, it is possible). 14548 PromOpHandles.emplace_front(PromOp); 14549 continue; 14550 } 14551 14552 // For SELECT and SELECT_CC nodes, we do a similar check for any 14553 // to-be-promoted comparison inputs. 14554 if (PromOp.getOpcode() == ISD::SELECT || 14555 PromOp.getOpcode() == ISD::SELECT_CC) { 14556 if ((SelectTruncOp[0].count(PromOp.getNode()) && 14557 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 14558 (SelectTruncOp[1].count(PromOp.getNode()) && 14559 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 14560 PromOpHandles.emplace_front(PromOp); 14561 continue; 14562 } 14563 } 14564 14565 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 14566 PromOp.getNode()->op_end()); 14567 14568 // If this node has constant inputs, then they'll need to be promoted here. 14569 for (unsigned i = 0; i < 2; ++i) { 14570 if (!isa<ConstantSDNode>(Ops[C+i])) 14571 continue; 14572 if (Ops[C+i].getValueType() == N->getValueType(0)) 14573 continue; 14574 14575 if (N->getOpcode() == ISD::SIGN_EXTEND) 14576 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 14577 else if (N->getOpcode() == ISD::ZERO_EXTEND) 14578 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 14579 else 14580 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 14581 } 14582 14583 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 14584 // truncate them again to the original value type. 14585 if (PromOp.getOpcode() == ISD::SELECT || 14586 PromOp.getOpcode() == ISD::SELECT_CC) { 14587 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 14588 if (SI0 != SelectTruncOp[0].end()) 14589 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 14590 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 14591 if (SI1 != SelectTruncOp[1].end()) 14592 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 14593 } 14594 14595 DAG.ReplaceAllUsesOfValueWith(PromOp, 14596 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 14597 } 14598 14599 // Now we're left with the initial extension itself. 14600 if (!ReallyNeedsExt) 14601 return N->getOperand(0); 14602 14603 // To zero extend, just mask off everything except for the first bit (in the 14604 // i1 case). 14605 if (N->getOpcode() == ISD::ZERO_EXTEND) 14606 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 14607 DAG.getConstant(APInt::getLowBitsSet( 14608 N->getValueSizeInBits(0), PromBits), 14609 dl, N->getValueType(0))); 14610 14611 assert(N->getOpcode() == ISD::SIGN_EXTEND && 14612 "Invalid extension type"); 14613 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 14614 SDValue ShiftCst = 14615 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 14616 return DAG.getNode( 14617 ISD::SRA, dl, N->getValueType(0), 14618 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 14619 ShiftCst); 14620 } 14621 14622 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 14623 DAGCombinerInfo &DCI) const { 14624 assert(N->getOpcode() == ISD::SETCC && 14625 "Should be called with a SETCC node"); 14626 14627 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 14628 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 14629 SDValue LHS = N->getOperand(0); 14630 SDValue RHS = N->getOperand(1); 14631 14632 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 14633 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 14634 LHS.hasOneUse()) 14635 std::swap(LHS, RHS); 14636 14637 // x == 0-y --> x+y == 0 14638 // x != 0-y --> x+y != 0 14639 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 14640 RHS.hasOneUse()) { 14641 SDLoc DL(N); 14642 SelectionDAG &DAG = DCI.DAG; 14643 EVT VT = N->getValueType(0); 14644 EVT OpVT = LHS.getValueType(); 14645 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 14646 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 14647 } 14648 } 14649 14650 return DAGCombineTruncBoolExt(N, DCI); 14651 } 14652 14653 // Is this an extending load from an f32 to an f64? 14654 static bool isFPExtLoad(SDValue Op) { 14655 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 14656 return LD->getExtensionType() == ISD::EXTLOAD && 14657 Op.getValueType() == MVT::f64; 14658 return false; 14659 } 14660 14661 /// Reduces the number of fp-to-int conversion when building a vector. 14662 /// 14663 /// If this vector is built out of floating to integer conversions, 14664 /// transform it to a vector built out of floating point values followed by a 14665 /// single floating to integer conversion of the vector. 14666 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 14667 /// becomes (fptosi (build_vector ($A, $B, ...))) 14668 SDValue PPCTargetLowering:: 14669 combineElementTruncationToVectorTruncation(SDNode *N, 14670 DAGCombinerInfo &DCI) const { 14671 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14672 "Should be called with a BUILD_VECTOR node"); 14673 14674 SelectionDAG &DAG = DCI.DAG; 14675 SDLoc dl(N); 14676 14677 SDValue FirstInput = N->getOperand(0); 14678 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 14679 "The input operand must be an fp-to-int conversion."); 14680 14681 // This combine happens after legalization so the fp_to_[su]i nodes are 14682 // already converted to PPCSISD nodes. 14683 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 14684 if (FirstConversion == PPCISD::FCTIDZ || 14685 FirstConversion == PPCISD::FCTIDUZ || 14686 FirstConversion == PPCISD::FCTIWZ || 14687 FirstConversion == PPCISD::FCTIWUZ) { 14688 bool IsSplat = true; 14689 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 14690 FirstConversion == PPCISD::FCTIWUZ; 14691 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 14692 SmallVector<SDValue, 4> Ops; 14693 EVT TargetVT = N->getValueType(0); 14694 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14695 SDValue NextOp = N->getOperand(i); 14696 if (NextOp.getOpcode() != PPCISD::MFVSR) 14697 return SDValue(); 14698 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 14699 if (NextConversion != FirstConversion) 14700 return SDValue(); 14701 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 14702 // This is not valid if the input was originally double precision. It is 14703 // also not profitable to do unless this is an extending load in which 14704 // case doing this combine will allow us to combine consecutive loads. 14705 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 14706 return SDValue(); 14707 if (N->getOperand(i) != FirstInput) 14708 IsSplat = false; 14709 } 14710 14711 // If this is a splat, we leave it as-is since there will be only a single 14712 // fp-to-int conversion followed by a splat of the integer. This is better 14713 // for 32-bit and smaller ints and neutral for 64-bit ints. 14714 if (IsSplat) 14715 return SDValue(); 14716 14717 // Now that we know we have the right type of node, get its operands 14718 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14719 SDValue In = N->getOperand(i).getOperand(0); 14720 if (Is32Bit) { 14721 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14722 // here, we know that all inputs are extending loads so this is safe). 14723 if (In.isUndef()) 14724 Ops.push_back(DAG.getUNDEF(SrcVT)); 14725 else { 14726 SDValue Trunc = 14727 DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0), 14728 DAG.getIntPtrConstant(1, dl, /*isTarget=*/true)); 14729 Ops.push_back(Trunc); 14730 } 14731 } else 14732 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14733 } 14734 14735 unsigned Opcode; 14736 if (FirstConversion == PPCISD::FCTIDZ || 14737 FirstConversion == PPCISD::FCTIWZ) 14738 Opcode = ISD::FP_TO_SINT; 14739 else 14740 Opcode = ISD::FP_TO_UINT; 14741 14742 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14743 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14744 return DAG.getNode(Opcode, dl, TargetVT, BV); 14745 } 14746 return SDValue(); 14747 } 14748 14749 /// Reduce the number of loads when building a vector. 14750 /// 14751 /// Building a vector out of multiple loads can be converted to a load 14752 /// of the vector type if the loads are consecutive. If the loads are 14753 /// consecutive but in descending order, a shuffle is added at the end 14754 /// to reorder the vector. 14755 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14756 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14757 "Should be called with a BUILD_VECTOR node"); 14758 14759 SDLoc dl(N); 14760 14761 // Return early for non byte-sized type, as they can't be consecutive. 14762 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14763 return SDValue(); 14764 14765 bool InputsAreConsecutiveLoads = true; 14766 bool InputsAreReverseConsecutive = true; 14767 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14768 SDValue FirstInput = N->getOperand(0); 14769 bool IsRoundOfExtLoad = false; 14770 LoadSDNode *FirstLoad = nullptr; 14771 14772 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14773 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14774 FirstLoad = cast<LoadSDNode>(FirstInput.getOperand(0)); 14775 IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD; 14776 } 14777 // Not a build vector of (possibly fp_rounded) loads. 14778 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14779 N->getNumOperands() == 1) 14780 return SDValue(); 14781 14782 if (!IsRoundOfExtLoad) 14783 FirstLoad = cast<LoadSDNode>(FirstInput); 14784 14785 SmallVector<LoadSDNode *, 4> InputLoads; 14786 InputLoads.push_back(FirstLoad); 14787 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14788 // If any inputs are fp_round(extload), they all must be. 14789 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14790 return SDValue(); 14791 14792 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14793 N->getOperand(i); 14794 if (NextInput.getOpcode() != ISD::LOAD) 14795 return SDValue(); 14796 14797 SDValue PreviousInput = 14798 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14799 LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput); 14800 LoadSDNode *LD2 = cast<LoadSDNode>(NextInput); 14801 14802 // If any inputs are fp_round(extload), they all must be. 14803 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14804 return SDValue(); 14805 14806 // We only care about regular loads. The PPC-specific load intrinsics 14807 // will not lead to a merge opportunity. 14808 if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1)) 14809 InputsAreConsecutiveLoads = false; 14810 if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1)) 14811 InputsAreReverseConsecutive = false; 14812 14813 // Exit early if the loads are neither consecutive nor reverse consecutive. 14814 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14815 return SDValue(); 14816 InputLoads.push_back(LD2); 14817 } 14818 14819 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14820 "The loads cannot be both consecutive and reverse consecutive."); 14821 14822 SDValue WideLoad; 14823 SDValue ReturnSDVal; 14824 if (InputsAreConsecutiveLoads) { 14825 assert(FirstLoad && "Input needs to be a LoadSDNode."); 14826 WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(), 14827 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), 14828 FirstLoad->getAlign()); 14829 ReturnSDVal = WideLoad; 14830 } else if (InputsAreReverseConsecutive) { 14831 LoadSDNode *LastLoad = InputLoads.back(); 14832 assert(LastLoad && "Input needs to be a LoadSDNode."); 14833 WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(), 14834 LastLoad->getBasePtr(), LastLoad->getPointerInfo(), 14835 LastLoad->getAlign()); 14836 SmallVector<int, 16> Ops; 14837 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14838 Ops.push_back(i); 14839 14840 ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad, 14841 DAG.getUNDEF(N->getValueType(0)), Ops); 14842 } else 14843 return SDValue(); 14844 14845 for (auto *LD : InputLoads) 14846 DAG.makeEquivalentMemoryOrdering(LD, WideLoad); 14847 return ReturnSDVal; 14848 } 14849 14850 // This function adds the required vector_shuffle needed to get 14851 // the elements of the vector extract in the correct position 14852 // as specified by the CorrectElems encoding. 14853 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14854 SDValue Input, uint64_t Elems, 14855 uint64_t CorrectElems) { 14856 SDLoc dl(N); 14857 14858 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14859 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14860 14861 // Knowing the element indices being extracted from the original 14862 // vector and the order in which they're being inserted, just put 14863 // them at element indices required for the instruction. 14864 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14865 if (DAG.getDataLayout().isLittleEndian()) 14866 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14867 else 14868 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14869 CorrectElems = CorrectElems >> 8; 14870 Elems = Elems >> 8; 14871 } 14872 14873 SDValue Shuffle = 14874 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14875 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14876 14877 EVT VT = N->getValueType(0); 14878 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14879 14880 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14881 Input.getValueType().getVectorElementType(), 14882 VT.getVectorNumElements()); 14883 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14884 DAG.getValueType(ExtVT)); 14885 } 14886 14887 // Look for build vector patterns where input operands come from sign 14888 // extended vector_extract elements of specific indices. If the correct indices 14889 // aren't used, add a vector shuffle to fix up the indices and create 14890 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14891 // during instruction selection. 14892 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14893 // This array encodes the indices that the vector sign extend instructions 14894 // extract from when extending from one type to another for both BE and LE. 14895 // The right nibble of each byte corresponds to the LE incides. 14896 // and the left nibble of each byte corresponds to the BE incides. 14897 // For example: 0x3074B8FC byte->word 14898 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14899 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14900 // For example: 0x000070F8 byte->double word 14901 // For LE: the allowed indices are: 0x0,0x8 14902 // For BE: the allowed indices are: 0x7,0xF 14903 uint64_t TargetElems[] = { 14904 0x3074B8FC, // b->w 14905 0x000070F8, // b->d 14906 0x10325476, // h->w 14907 0x00003074, // h->d 14908 0x00001032, // w->d 14909 }; 14910 14911 uint64_t Elems = 0; 14912 int Index; 14913 SDValue Input; 14914 14915 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14916 if (!Op) 14917 return false; 14918 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14919 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14920 return false; 14921 14922 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14923 // of the right width. 14924 SDValue Extract = Op.getOperand(0); 14925 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14926 Extract = Extract.getOperand(0); 14927 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14928 return false; 14929 14930 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14931 if (!ExtOp) 14932 return false; 14933 14934 Index = ExtOp->getZExtValue(); 14935 if (Input && Input != Extract.getOperand(0)) 14936 return false; 14937 14938 if (!Input) 14939 Input = Extract.getOperand(0); 14940 14941 Elems = Elems << 8; 14942 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14943 Elems |= Index; 14944 14945 return true; 14946 }; 14947 14948 // If the build vector operands aren't sign extended vector extracts, 14949 // of the same input vector, then return. 14950 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14951 if (!isSExtOfVecExtract(N->getOperand(i))) { 14952 return SDValue(); 14953 } 14954 } 14955 14956 // If the vector extract indices are not correct, add the appropriate 14957 // vector_shuffle. 14958 int TgtElemArrayIdx; 14959 int InputSize = Input.getValueType().getScalarSizeInBits(); 14960 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14961 if (InputSize + OutputSize == 40) 14962 TgtElemArrayIdx = 0; 14963 else if (InputSize + OutputSize == 72) 14964 TgtElemArrayIdx = 1; 14965 else if (InputSize + OutputSize == 48) 14966 TgtElemArrayIdx = 2; 14967 else if (InputSize + OutputSize == 80) 14968 TgtElemArrayIdx = 3; 14969 else if (InputSize + OutputSize == 96) 14970 TgtElemArrayIdx = 4; 14971 else 14972 return SDValue(); 14973 14974 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14975 CorrectElems = DAG.getDataLayout().isLittleEndian() 14976 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14977 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14978 if (Elems != CorrectElems) { 14979 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14980 } 14981 14982 // Regular lowering will catch cases where a shuffle is not needed. 14983 return SDValue(); 14984 } 14985 14986 // Look for the pattern of a load from a narrow width to i128, feeding 14987 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14988 // (LXVRZX). This node represents a zero extending load that will be matched 14989 // to the Load VSX Vector Rightmost instructions. 14990 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14991 SDLoc DL(N); 14992 14993 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14994 if (N->getValueType(0) != MVT::v1i128) 14995 return SDValue(); 14996 14997 SDValue Operand = N->getOperand(0); 14998 // Proceed with the transformation if the operand to the BUILD_VECTOR 14999 // is a load instruction. 15000 if (Operand.getOpcode() != ISD::LOAD) 15001 return SDValue(); 15002 15003 auto *LD = cast<LoadSDNode>(Operand); 15004 EVT MemoryType = LD->getMemoryVT(); 15005 15006 // This transformation is only valid if the we are loading either a byte, 15007 // halfword, word, or doubleword. 15008 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 15009 MemoryType == MVT::i32 || MemoryType == MVT::i64; 15010 15011 // Ensure that the load from the narrow width is being zero extended to i128. 15012 if (!ValidLDType || 15013 (LD->getExtensionType() != ISD::ZEXTLOAD && 15014 LD->getExtensionType() != ISD::EXTLOAD)) 15015 return SDValue(); 15016 15017 SDValue LoadOps[] = { 15018 LD->getChain(), LD->getBasePtr(), 15019 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 15020 15021 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 15022 DAG.getVTList(MVT::v1i128, MVT::Other), 15023 LoadOps, MemoryType, LD->getMemOperand()); 15024 } 15025 15026 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 15027 DAGCombinerInfo &DCI) const { 15028 assert(N->getOpcode() == ISD::BUILD_VECTOR && 15029 "Should be called with a BUILD_VECTOR node"); 15030 15031 SelectionDAG &DAG = DCI.DAG; 15032 SDLoc dl(N); 15033 15034 if (!Subtarget.hasVSX()) 15035 return SDValue(); 15036 15037 // The target independent DAG combiner will leave a build_vector of 15038 // float-to-int conversions intact. We can generate MUCH better code for 15039 // a float-to-int conversion of a vector of floats. 15040 SDValue FirstInput = N->getOperand(0); 15041 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 15042 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 15043 if (Reduced) 15044 return Reduced; 15045 } 15046 15047 // If we're building a vector out of consecutive loads, just load that 15048 // vector type. 15049 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 15050 if (Reduced) 15051 return Reduced; 15052 15053 // If we're building a vector out of extended elements from another vector 15054 // we have P9 vector integer extend instructions. The code assumes legal 15055 // input types (i.e. it can't handle things like v4i16) so do not run before 15056 // legalization. 15057 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 15058 Reduced = combineBVOfVecSExt(N, DAG); 15059 if (Reduced) 15060 return Reduced; 15061 } 15062 15063 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 15064 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 15065 // is a load from <valid narrow width> to i128. 15066 if (Subtarget.isISA3_1()) { 15067 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 15068 if (BVOfZLoad) 15069 return BVOfZLoad; 15070 } 15071 15072 if (N->getValueType(0) != MVT::v2f64) 15073 return SDValue(); 15074 15075 // Looking for: 15076 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 15077 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 15078 FirstInput.getOpcode() != ISD::UINT_TO_FP) 15079 return SDValue(); 15080 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 15081 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 15082 return SDValue(); 15083 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 15084 return SDValue(); 15085 15086 SDValue Ext1 = FirstInput.getOperand(0); 15087 SDValue Ext2 = N->getOperand(1).getOperand(0); 15088 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 15089 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 15090 return SDValue(); 15091 15092 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 15093 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 15094 if (!Ext1Op || !Ext2Op) 15095 return SDValue(); 15096 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 15097 Ext1.getOperand(0) != Ext2.getOperand(0)) 15098 return SDValue(); 15099 15100 int FirstElem = Ext1Op->getZExtValue(); 15101 int SecondElem = Ext2Op->getZExtValue(); 15102 int SubvecIdx; 15103 if (FirstElem == 0 && SecondElem == 1) 15104 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 15105 else if (FirstElem == 2 && SecondElem == 3) 15106 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 15107 else 15108 return SDValue(); 15109 15110 SDValue SrcVec = Ext1.getOperand(0); 15111 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 15112 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 15113 return DAG.getNode(NodeType, dl, MVT::v2f64, 15114 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 15115 } 15116 15117 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 15118 DAGCombinerInfo &DCI) const { 15119 assert((N->getOpcode() == ISD::SINT_TO_FP || 15120 N->getOpcode() == ISD::UINT_TO_FP) && 15121 "Need an int -> FP conversion node here"); 15122 15123 if (useSoftFloat() || !Subtarget.has64BitSupport()) 15124 return SDValue(); 15125 15126 SelectionDAG &DAG = DCI.DAG; 15127 SDLoc dl(N); 15128 SDValue Op(N, 0); 15129 15130 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 15131 // from the hardware. 15132 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 15133 return SDValue(); 15134 if (!Op.getOperand(0).getValueType().isSimple()) 15135 return SDValue(); 15136 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 15137 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 15138 return SDValue(); 15139 15140 SDValue FirstOperand(Op.getOperand(0)); 15141 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 15142 (FirstOperand.getValueType() == MVT::i8 || 15143 FirstOperand.getValueType() == MVT::i16); 15144 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 15145 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 15146 bool DstDouble = Op.getValueType() == MVT::f64; 15147 unsigned ConvOp = Signed ? 15148 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 15149 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 15150 SDValue WidthConst = 15151 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 15152 dl, false); 15153 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 15154 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 15155 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 15156 DAG.getVTList(MVT::f64, MVT::Other), 15157 Ops, MVT::i8, LDN->getMemOperand()); 15158 DAG.makeEquivalentMemoryOrdering(LDN, Ld); 15159 15160 // For signed conversion, we need to sign-extend the value in the VSR 15161 if (Signed) { 15162 SDValue ExtOps[] = { Ld, WidthConst }; 15163 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 15164 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 15165 } else 15166 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 15167 } 15168 15169 15170 // For i32 intermediate values, unfortunately, the conversion functions 15171 // leave the upper 32 bits of the value are undefined. Within the set of 15172 // scalar instructions, we have no method for zero- or sign-extending the 15173 // value. Thus, we cannot handle i32 intermediate values here. 15174 if (Op.getOperand(0).getValueType() == MVT::i32) 15175 return SDValue(); 15176 15177 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 15178 "UINT_TO_FP is supported only with FPCVT"); 15179 15180 // If we have FCFIDS, then use it when converting to single-precision. 15181 // Otherwise, convert to double-precision and then round. 15182 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 15183 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 15184 : PPCISD::FCFIDS) 15185 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 15186 : PPCISD::FCFID); 15187 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 15188 ? MVT::f32 15189 : MVT::f64; 15190 15191 // If we're converting from a float, to an int, and back to a float again, 15192 // then we don't need the store/load pair at all. 15193 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 15194 Subtarget.hasFPCVT()) || 15195 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 15196 SDValue Src = Op.getOperand(0).getOperand(0); 15197 if (Src.getValueType() == MVT::f32) { 15198 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 15199 DCI.AddToWorklist(Src.getNode()); 15200 } else if (Src.getValueType() != MVT::f64) { 15201 // Make sure that we don't pick up a ppc_fp128 source value. 15202 return SDValue(); 15203 } 15204 15205 unsigned FCTOp = 15206 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 15207 PPCISD::FCTIDUZ; 15208 15209 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 15210 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 15211 15212 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 15213 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 15214 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 15215 DCI.AddToWorklist(FP.getNode()); 15216 } 15217 15218 return FP; 15219 } 15220 15221 return SDValue(); 15222 } 15223 15224 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 15225 // builtins) into loads with swaps. 15226 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 15227 DAGCombinerInfo &DCI) const { 15228 // Delay VSX load for LE combine until after LegalizeOps to prioritize other 15229 // load combines. 15230 if (DCI.isBeforeLegalizeOps()) 15231 return SDValue(); 15232 15233 SelectionDAG &DAG = DCI.DAG; 15234 SDLoc dl(N); 15235 SDValue Chain; 15236 SDValue Base; 15237 MachineMemOperand *MMO; 15238 15239 switch (N->getOpcode()) { 15240 default: 15241 llvm_unreachable("Unexpected opcode for little endian VSX load"); 15242 case ISD::LOAD: { 15243 LoadSDNode *LD = cast<LoadSDNode>(N); 15244 Chain = LD->getChain(); 15245 Base = LD->getBasePtr(); 15246 MMO = LD->getMemOperand(); 15247 // If the MMO suggests this isn't a load of a full vector, leave 15248 // things alone. For a built-in, we have to make the change for 15249 // correctness, so if there is a size problem that will be a bug. 15250 if (!MMO->getSize().hasValue() || MMO->getSize().getValue() < 16) 15251 return SDValue(); 15252 break; 15253 } 15254 case ISD::INTRINSIC_W_CHAIN: { 15255 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 15256 Chain = Intrin->getChain(); 15257 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 15258 // us what we want. Get operand 2 instead. 15259 Base = Intrin->getOperand(2); 15260 MMO = Intrin->getMemOperand(); 15261 break; 15262 } 15263 } 15264 15265 MVT VecTy = N->getValueType(0).getSimpleVT(); 15266 15267 SDValue LoadOps[] = { Chain, Base }; 15268 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 15269 DAG.getVTList(MVT::v2f64, MVT::Other), 15270 LoadOps, MVT::v2f64, MMO); 15271 15272 DCI.AddToWorklist(Load.getNode()); 15273 Chain = Load.getValue(1); 15274 SDValue Swap = DAG.getNode( 15275 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 15276 DCI.AddToWorklist(Swap.getNode()); 15277 15278 // Add a bitcast if the resulting load type doesn't match v2f64. 15279 if (VecTy != MVT::v2f64) { 15280 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 15281 DCI.AddToWorklist(N.getNode()); 15282 // Package {bitcast value, swap's chain} to match Load's shape. 15283 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 15284 N, Swap.getValue(1)); 15285 } 15286 15287 return Swap; 15288 } 15289 15290 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 15291 // builtins) into stores with swaps. 15292 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 15293 DAGCombinerInfo &DCI) const { 15294 // Delay VSX store for LE combine until after LegalizeOps to prioritize other 15295 // store combines. 15296 if (DCI.isBeforeLegalizeOps()) 15297 return SDValue(); 15298 15299 SelectionDAG &DAG = DCI.DAG; 15300 SDLoc dl(N); 15301 SDValue Chain; 15302 SDValue Base; 15303 unsigned SrcOpnd; 15304 MachineMemOperand *MMO; 15305 15306 switch (N->getOpcode()) { 15307 default: 15308 llvm_unreachable("Unexpected opcode for little endian VSX store"); 15309 case ISD::STORE: { 15310 StoreSDNode *ST = cast<StoreSDNode>(N); 15311 Chain = ST->getChain(); 15312 Base = ST->getBasePtr(); 15313 MMO = ST->getMemOperand(); 15314 SrcOpnd = 1; 15315 // If the MMO suggests this isn't a store of a full vector, leave 15316 // things alone. For a built-in, we have to make the change for 15317 // correctness, so if there is a size problem that will be a bug. 15318 if (!MMO->getSize().hasValue() || MMO->getSize().getValue() < 16) 15319 return SDValue(); 15320 break; 15321 } 15322 case ISD::INTRINSIC_VOID: { 15323 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 15324 Chain = Intrin->getChain(); 15325 // Intrin->getBasePtr() oddly does not get what we want. 15326 Base = Intrin->getOperand(3); 15327 MMO = Intrin->getMemOperand(); 15328 SrcOpnd = 2; 15329 break; 15330 } 15331 } 15332 15333 SDValue Src = N->getOperand(SrcOpnd); 15334 MVT VecTy = Src.getValueType().getSimpleVT(); 15335 15336 // All stores are done as v2f64 and possible bit cast. 15337 if (VecTy != MVT::v2f64) { 15338 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 15339 DCI.AddToWorklist(Src.getNode()); 15340 } 15341 15342 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 15343 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 15344 DCI.AddToWorklist(Swap.getNode()); 15345 Chain = Swap.getValue(1); 15346 SDValue StoreOps[] = { Chain, Swap, Base }; 15347 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 15348 DAG.getVTList(MVT::Other), 15349 StoreOps, VecTy, MMO); 15350 DCI.AddToWorklist(Store.getNode()); 15351 return Store; 15352 } 15353 15354 // Handle DAG combine for STORE (FP_TO_INT F). 15355 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 15356 DAGCombinerInfo &DCI) const { 15357 SelectionDAG &DAG = DCI.DAG; 15358 SDLoc dl(N); 15359 unsigned Opcode = N->getOperand(1).getOpcode(); 15360 (void)Opcode; 15361 bool Strict = N->getOperand(1)->isStrictFPOpcode(); 15362 15363 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT || 15364 Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT) 15365 && "Not a FP_TO_INT Instruction!"); 15366 15367 SDValue Val = N->getOperand(1).getOperand(Strict ? 1 : 0); 15368 EVT Op1VT = N->getOperand(1).getValueType(); 15369 EVT ResVT = Val.getValueType(); 15370 15371 if (!Subtarget.hasVSX() || !Subtarget.hasFPCVT() || !isTypeLegal(ResVT)) 15372 return SDValue(); 15373 15374 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 15375 bool ValidTypeForStoreFltAsInt = 15376 (Op1VT == MVT::i32 || (Op1VT == MVT::i64 && Subtarget.isPPC64()) || 15377 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 15378 15379 // TODO: Lower conversion from f128 on all VSX targets 15380 if (ResVT == MVT::ppcf128 || (ResVT == MVT::f128 && !Subtarget.hasP9Vector())) 15381 return SDValue(); 15382 15383 if ((Op1VT != MVT::i64 && !Subtarget.hasP8Vector()) || 15384 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 15385 return SDValue(); 15386 15387 Val = convertFPToInt(N->getOperand(1), DAG, Subtarget); 15388 15389 // Set number of bytes being converted. 15390 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 15391 SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2), 15392 DAG.getIntPtrConstant(ByteSize, dl, false), 15393 DAG.getValueType(Op1VT)}; 15394 15395 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 15396 DAG.getVTList(MVT::Other), Ops, 15397 cast<StoreSDNode>(N)->getMemoryVT(), 15398 cast<StoreSDNode>(N)->getMemOperand()); 15399 15400 return Val; 15401 } 15402 15403 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 15404 // Check that the source of the element keeps flipping 15405 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 15406 bool PrevElemFromFirstVec = Mask[0] < NumElts; 15407 for (int i = 1, e = Mask.size(); i < e; i++) { 15408 if (PrevElemFromFirstVec && Mask[i] < NumElts) 15409 return false; 15410 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 15411 return false; 15412 PrevElemFromFirstVec = !PrevElemFromFirstVec; 15413 } 15414 return true; 15415 } 15416 15417 static bool isSplatBV(SDValue Op) { 15418 if (Op.getOpcode() != ISD::BUILD_VECTOR) 15419 return false; 15420 SDValue FirstOp; 15421 15422 // Find first non-undef input. 15423 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 15424 FirstOp = Op.getOperand(i); 15425 if (!FirstOp.isUndef()) 15426 break; 15427 } 15428 15429 // All inputs are undef or the same as the first non-undef input. 15430 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 15431 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 15432 return false; 15433 return true; 15434 } 15435 15436 static SDValue isScalarToVec(SDValue Op) { 15437 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 15438 return Op; 15439 if (Op.getOpcode() != ISD::BITCAST) 15440 return SDValue(); 15441 Op = Op.getOperand(0); 15442 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 15443 return Op; 15444 return SDValue(); 15445 } 15446 15447 // Fix up the shuffle mask to account for the fact that the result of 15448 // scalar_to_vector is not in lane zero. This just takes all values in 15449 // the ranges specified by the min/max indices and adds the number of 15450 // elements required to ensure each element comes from the respective 15451 // position in the valid lane. 15452 // On little endian, that's just the corresponding element in the other 15453 // half of the vector. On big endian, it is in the same half but right 15454 // justified rather than left justified in that half. 15455 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 15456 int LHSMaxIdx, int RHSMinIdx, 15457 int RHSMaxIdx, int HalfVec, 15458 unsigned ValidLaneWidth, 15459 const PPCSubtarget &Subtarget) { 15460 for (int i = 0, e = ShuffV.size(); i < e; i++) { 15461 int Idx = ShuffV[i]; 15462 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 15463 ShuffV[i] += 15464 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 15465 } 15466 } 15467 15468 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 15469 // the original is: 15470 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 15471 // In such a case, just change the shuffle mask to extract the element 15472 // from the permuted index. 15473 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 15474 const PPCSubtarget &Subtarget) { 15475 SDLoc dl(OrigSToV); 15476 EVT VT = OrigSToV.getValueType(); 15477 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 15478 "Expecting a SCALAR_TO_VECTOR here"); 15479 SDValue Input = OrigSToV.getOperand(0); 15480 15481 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 15482 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 15483 SDValue OrigVector = Input.getOperand(0); 15484 15485 // Can't handle non-const element indices or different vector types 15486 // for the input to the extract and the output of the scalar_to_vector. 15487 if (Idx && VT == OrigVector.getValueType()) { 15488 unsigned NumElts = VT.getVectorNumElements(); 15489 assert( 15490 NumElts > 1 && 15491 "Cannot produce a permuted scalar_to_vector for one element vector"); 15492 SmallVector<int, 16> NewMask(NumElts, -1); 15493 unsigned ResultInElt = NumElts / 2; 15494 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 15495 NewMask[ResultInElt] = Idx->getZExtValue(); 15496 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 15497 } 15498 } 15499 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 15500 OrigSToV.getOperand(0)); 15501 } 15502 15503 // On little endian subtargets, combine shuffles such as: 15504 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 15505 // into: 15506 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 15507 // because the latter can be matched to a single instruction merge. 15508 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 15509 // to put the value into element zero. Adjust the shuffle mask so that the 15510 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 15511 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 15512 // nodes with elements smaller than doubleword because all the ways 15513 // of getting scalar data into a vector register put the value in the 15514 // rightmost element of the left half of the vector. 15515 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 15516 SelectionDAG &DAG) const { 15517 SDValue LHS = SVN->getOperand(0); 15518 SDValue RHS = SVN->getOperand(1); 15519 auto Mask = SVN->getMask(); 15520 int NumElts = LHS.getValueType().getVectorNumElements(); 15521 SDValue Res(SVN, 0); 15522 SDLoc dl(SVN); 15523 bool IsLittleEndian = Subtarget.isLittleEndian(); 15524 15525 // On big endian targets this is only useful for subtargets with direct moves. 15526 // On little endian targets it would be useful for all subtargets with VSX. 15527 // However adding special handling for LE subtargets without direct moves 15528 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 15529 // which includes direct moves. 15530 if (!Subtarget.hasDirectMove()) 15531 return Res; 15532 15533 // If this is not a shuffle of a shuffle and the first element comes from 15534 // the second vector, canonicalize to the commuted form. This will make it 15535 // more likely to match one of the single instruction patterns. 15536 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 15537 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 15538 std::swap(LHS, RHS); 15539 Res = DAG.getCommutedVectorShuffle(*SVN); 15540 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 15541 } 15542 15543 // Adjust the shuffle mask if either input vector comes from a 15544 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 15545 // form (to prevent the need for a swap). 15546 SmallVector<int, 16> ShuffV(Mask); 15547 SDValue SToVLHS = isScalarToVec(LHS); 15548 SDValue SToVRHS = isScalarToVec(RHS); 15549 if (SToVLHS || SToVRHS) { 15550 // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the 15551 // same type and have differing element sizes, then do not perform 15552 // the following transformation. The current transformation for 15553 // SCALAR_TO_VECTOR assumes that both input vectors have the same 15554 // element size. This will be updated in the future to account for 15555 // differing sizes of the LHS and RHS. 15556 if (SToVLHS && SToVRHS && 15557 (SToVLHS.getValueType().getScalarSizeInBits() != 15558 SToVRHS.getValueType().getScalarSizeInBits())) 15559 return Res; 15560 15561 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 15562 : SToVRHS.getValueType().getVectorNumElements(); 15563 int NumEltsOut = ShuffV.size(); 15564 // The width of the "valid lane" (i.e. the lane that contains the value that 15565 // is vectorized) needs to be expressed in terms of the number of elements 15566 // of the shuffle. It is thereby the ratio of the values before and after 15567 // any bitcast. 15568 unsigned ValidLaneWidth = 15569 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 15570 LHS.getValueType().getScalarSizeInBits() 15571 : SToVRHS.getValueType().getScalarSizeInBits() / 15572 RHS.getValueType().getScalarSizeInBits(); 15573 15574 // Initially assume that neither input is permuted. These will be adjusted 15575 // accordingly if either input is. 15576 int LHSMaxIdx = -1; 15577 int RHSMinIdx = -1; 15578 int RHSMaxIdx = -1; 15579 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 15580 15581 // Get the permuted scalar to vector nodes for the source(s) that come from 15582 // ISD::SCALAR_TO_VECTOR. 15583 // On big endian systems, this only makes sense for element sizes smaller 15584 // than 64 bits since for 64-bit elements, all instructions already put 15585 // the value into element zero. Since scalar size of LHS and RHS may differ 15586 // after isScalarToVec, this should be checked using their own sizes. 15587 if (SToVLHS) { 15588 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 15589 return Res; 15590 // Set up the values for the shuffle vector fixup. 15591 LHSMaxIdx = NumEltsOut / NumEltsIn; 15592 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 15593 if (SToVLHS.getValueType() != LHS.getValueType()) 15594 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 15595 LHS = SToVLHS; 15596 } 15597 if (SToVRHS) { 15598 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 15599 return Res; 15600 RHSMinIdx = NumEltsOut; 15601 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 15602 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 15603 if (SToVRHS.getValueType() != RHS.getValueType()) 15604 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 15605 RHS = SToVRHS; 15606 } 15607 15608 // Fix up the shuffle mask to reflect where the desired element actually is. 15609 // The minimum and maximum indices that correspond to element zero for both 15610 // the LHS and RHS are computed and will control which shuffle mask entries 15611 // are to be changed. For example, if the RHS is permuted, any shuffle mask 15612 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 15613 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 15614 HalfVec, ValidLaneWidth, Subtarget); 15615 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 15616 15617 // We may have simplified away the shuffle. We won't be able to do anything 15618 // further with it here. 15619 if (!isa<ShuffleVectorSDNode>(Res)) 15620 return Res; 15621 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 15622 } 15623 15624 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 15625 // The common case after we commuted the shuffle is that the RHS is a splat 15626 // and we have elements coming in from the splat at indices that are not 15627 // conducive to using a merge. 15628 // Example: 15629 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 15630 if (!isSplatBV(TheSplat)) 15631 return Res; 15632 15633 // We are looking for a mask such that all even elements are from 15634 // one vector and all odd elements from the other. 15635 if (!isAlternatingShuffMask(Mask, NumElts)) 15636 return Res; 15637 15638 // Adjust the mask so we are pulling in the same index from the splat 15639 // as the index from the interesting vector in consecutive elements. 15640 if (IsLittleEndian) { 15641 // Example (even elements from first vector): 15642 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 15643 if (Mask[0] < NumElts) 15644 for (int i = 1, e = Mask.size(); i < e; i += 2) { 15645 if (ShuffV[i] < 0) 15646 continue; 15647 // If element from non-splat is undef, pick first element from splat. 15648 ShuffV[i] = (ShuffV[i - 1] >= 0 ? ShuffV[i - 1] : 0) + NumElts; 15649 } 15650 // Example (odd elements from first vector): 15651 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 15652 else 15653 for (int i = 0, e = Mask.size(); i < e; i += 2) { 15654 if (ShuffV[i] < 0) 15655 continue; 15656 // If element from non-splat is undef, pick first element from splat. 15657 ShuffV[i] = (ShuffV[i + 1] >= 0 ? ShuffV[i + 1] : 0) + NumElts; 15658 } 15659 } else { 15660 // Example (even elements from first vector): 15661 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 15662 if (Mask[0] < NumElts) 15663 for (int i = 0, e = Mask.size(); i < e; i += 2) { 15664 if (ShuffV[i] < 0) 15665 continue; 15666 // If element from non-splat is undef, pick first element from splat. 15667 ShuffV[i] = ShuffV[i + 1] >= 0 ? ShuffV[i + 1] - NumElts : 0; 15668 } 15669 // Example (odd elements from first vector): 15670 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 15671 else 15672 for (int i = 1, e = Mask.size(); i < e; i += 2) { 15673 if (ShuffV[i] < 0) 15674 continue; 15675 // If element from non-splat is undef, pick first element from splat. 15676 ShuffV[i] = ShuffV[i - 1] >= 0 ? ShuffV[i - 1] - NumElts : 0; 15677 } 15678 } 15679 15680 // If the RHS has undefs, we need to remove them since we may have created 15681 // a shuffle that adds those instead of the splat value. 15682 SDValue SplatVal = 15683 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 15684 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 15685 15686 if (IsLittleEndian) 15687 RHS = TheSplat; 15688 else 15689 LHS = TheSplat; 15690 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 15691 } 15692 15693 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 15694 LSBaseSDNode *LSBase, 15695 DAGCombinerInfo &DCI) const { 15696 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 15697 "Not a reverse memop pattern!"); 15698 15699 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 15700 auto Mask = SVN->getMask(); 15701 int i = 0; 15702 auto I = Mask.rbegin(); 15703 auto E = Mask.rend(); 15704 15705 for (; I != E; ++I) { 15706 if (*I != i) 15707 return false; 15708 i++; 15709 } 15710 return true; 15711 }; 15712 15713 SelectionDAG &DAG = DCI.DAG; 15714 EVT VT = SVN->getValueType(0); 15715 15716 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 15717 return SDValue(); 15718 15719 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 15720 // See comment in PPCVSXSwapRemoval.cpp. 15721 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 15722 if (!Subtarget.hasP9Vector()) 15723 return SDValue(); 15724 15725 if(!IsElementReverse(SVN)) 15726 return SDValue(); 15727 15728 if (LSBase->getOpcode() == ISD::LOAD) { 15729 // If the load return value 0 has more than one user except the 15730 // shufflevector instruction, it is not profitable to replace the 15731 // shufflevector with a reverse load. 15732 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15733 UI != UE; ++UI) 15734 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15735 return SDValue(); 15736 15737 SDLoc dl(LSBase); 15738 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15739 return DAG.getMemIntrinsicNode( 15740 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15741 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15742 } 15743 15744 if (LSBase->getOpcode() == ISD::STORE) { 15745 // If there are other uses of the shuffle, the swap cannot be avoided. 15746 // Forcing the use of an X-Form (since swapped stores only have 15747 // X-Forms) without removing the swap is unprofitable. 15748 if (!SVN->hasOneUse()) 15749 return SDValue(); 15750 15751 SDLoc dl(LSBase); 15752 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15753 LSBase->getBasePtr()}; 15754 return DAG.getMemIntrinsicNode( 15755 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15756 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15757 } 15758 15759 llvm_unreachable("Expected a load or store node here"); 15760 } 15761 15762 static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) { 15763 unsigned IntrinsicID = Intrin.getConstantOperandVal(1); 15764 if (IntrinsicID == Intrinsic::ppc_stdcx) 15765 StoreWidth = 8; 15766 else if (IntrinsicID == Intrinsic::ppc_stwcx) 15767 StoreWidth = 4; 15768 else if (IntrinsicID == Intrinsic::ppc_sthcx) 15769 StoreWidth = 2; 15770 else if (IntrinsicID == Intrinsic::ppc_stbcx) 15771 StoreWidth = 1; 15772 else 15773 return false; 15774 return true; 15775 } 15776 15777 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15778 DAGCombinerInfo &DCI) const { 15779 SelectionDAG &DAG = DCI.DAG; 15780 SDLoc dl(N); 15781 switch (N->getOpcode()) { 15782 default: break; 15783 case ISD::ADD: 15784 return combineADD(N, DCI); 15785 case ISD::AND: { 15786 // We don't want (and (zext (shift...)), C) if C fits in the width of the 15787 // original input as that will prevent us from selecting optimal rotates. 15788 // This only matters if the input to the extend is i32 widened to i64. 15789 SDValue Op1 = N->getOperand(0); 15790 SDValue Op2 = N->getOperand(1); 15791 if ((Op1.getOpcode() != ISD::ZERO_EXTEND && 15792 Op1.getOpcode() != ISD::ANY_EXTEND) || 15793 !isa<ConstantSDNode>(Op2) || N->getValueType(0) != MVT::i64 || 15794 Op1.getOperand(0).getValueType() != MVT::i32) 15795 break; 15796 SDValue NarrowOp = Op1.getOperand(0); 15797 if (NarrowOp.getOpcode() != ISD::SHL && NarrowOp.getOpcode() != ISD::SRL && 15798 NarrowOp.getOpcode() != ISD::ROTL && NarrowOp.getOpcode() != ISD::ROTR) 15799 break; 15800 15801 uint64_t Imm = Op2->getAsZExtVal(); 15802 // Make sure that the constant is narrow enough to fit in the narrow type. 15803 if (!isUInt<32>(Imm)) 15804 break; 15805 SDValue ConstOp = DAG.getConstant(Imm, dl, MVT::i32); 15806 SDValue NarrowAnd = DAG.getNode(ISD::AND, dl, MVT::i32, NarrowOp, ConstOp); 15807 return DAG.getZExtOrTrunc(NarrowAnd, dl, N->getValueType(0)); 15808 } 15809 case ISD::SHL: 15810 return combineSHL(N, DCI); 15811 case ISD::SRA: 15812 return combineSRA(N, DCI); 15813 case ISD::SRL: 15814 return combineSRL(N, DCI); 15815 case ISD::MUL: 15816 return combineMUL(N, DCI); 15817 case ISD::FMA: 15818 case PPCISD::FNMSUB: 15819 return combineFMALike(N, DCI); 15820 case PPCISD::SHL: 15821 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15822 return N->getOperand(0); 15823 break; 15824 case PPCISD::SRL: 15825 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15826 return N->getOperand(0); 15827 break; 15828 case PPCISD::SRA: 15829 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15830 if (C->isZero() || // 0 >>s V -> 0. 15831 C->isAllOnes()) // -1 >>s V -> -1. 15832 return N->getOperand(0); 15833 } 15834 break; 15835 case ISD::SIGN_EXTEND: 15836 case ISD::ZERO_EXTEND: 15837 case ISD::ANY_EXTEND: 15838 return DAGCombineExtBoolTrunc(N, DCI); 15839 case ISD::TRUNCATE: 15840 return combineTRUNCATE(N, DCI); 15841 case ISD::SETCC: 15842 if (SDValue CSCC = combineSetCC(N, DCI)) 15843 return CSCC; 15844 [[fallthrough]]; 15845 case ISD::SELECT_CC: 15846 return DAGCombineTruncBoolExt(N, DCI); 15847 case ISD::SINT_TO_FP: 15848 case ISD::UINT_TO_FP: 15849 return combineFPToIntToFP(N, DCI); 15850 case ISD::VECTOR_SHUFFLE: 15851 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15852 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15853 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15854 } 15855 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15856 case ISD::STORE: { 15857 15858 EVT Op1VT = N->getOperand(1).getValueType(); 15859 unsigned Opcode = N->getOperand(1).getOpcode(); 15860 15861 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT || 15862 Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT) { 15863 SDValue Val = combineStoreFPToInt(N, DCI); 15864 if (Val) 15865 return Val; 15866 } 15867 15868 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15869 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15870 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15871 if (Val) 15872 return Val; 15873 } 15874 15875 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15876 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15877 N->getOperand(1).getNode()->hasOneUse() && 15878 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15879 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15880 15881 // STBRX can only handle simple types and it makes no sense to store less 15882 // two bytes in byte-reversed order. 15883 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15884 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15885 break; 15886 15887 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15888 // Do an any-extend to 32-bits if this is a half-word input. 15889 if (BSwapOp.getValueType() == MVT::i16) 15890 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15891 15892 // If the type of BSWAP operand is wider than stored memory width 15893 // it need to be shifted to the right side before STBRX. 15894 if (Op1VT.bitsGT(mVT)) { 15895 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15896 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15897 DAG.getConstant(Shift, dl, MVT::i32)); 15898 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15899 if (Op1VT == MVT::i64) 15900 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15901 } 15902 15903 SDValue Ops[] = { 15904 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15905 }; 15906 return 15907 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15908 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15909 cast<StoreSDNode>(N)->getMemOperand()); 15910 } 15911 15912 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15913 // So it can increase the chance of CSE constant construction. 15914 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15915 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15916 // Need to sign-extended to 64-bits to handle negative values. 15917 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15918 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15919 MemVT.getSizeInBits()); 15920 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15921 15922 // DAG.getTruncStore() can't be used here because it doesn't accept 15923 // the general (base + offset) addressing mode. 15924 // So we use UpdateNodeOperands and setTruncatingStore instead. 15925 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15926 N->getOperand(3)); 15927 cast<StoreSDNode>(N)->setTruncatingStore(true); 15928 return SDValue(N, 0); 15929 } 15930 15931 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15932 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15933 if (Op1VT.isSimple()) { 15934 MVT StoreVT = Op1VT.getSimpleVT(); 15935 if (Subtarget.needsSwapsForVSXMemOps() && 15936 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15937 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15938 return expandVSXStoreForLE(N, DCI); 15939 } 15940 break; 15941 } 15942 case ISD::LOAD: { 15943 LoadSDNode *LD = cast<LoadSDNode>(N); 15944 EVT VT = LD->getValueType(0); 15945 15946 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15947 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15948 if (VT.isSimple()) { 15949 MVT LoadVT = VT.getSimpleVT(); 15950 if (Subtarget.needsSwapsForVSXMemOps() && 15951 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15952 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15953 return expandVSXLoadForLE(N, DCI); 15954 } 15955 15956 // We sometimes end up with a 64-bit integer load, from which we extract 15957 // two single-precision floating-point numbers. This happens with 15958 // std::complex<float>, and other similar structures, because of the way we 15959 // canonicalize structure copies. However, if we lack direct moves, 15960 // then the final bitcasts from the extracted integer values to the 15961 // floating-point numbers turn into store/load pairs. Even with direct moves, 15962 // just loading the two floating-point numbers is likely better. 15963 auto ReplaceTwoFloatLoad = [&]() { 15964 if (VT != MVT::i64) 15965 return false; 15966 15967 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15968 LD->isVolatile()) 15969 return false; 15970 15971 // We're looking for a sequence like this: 15972 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15973 // t16: i64 = srl t13, Constant:i32<32> 15974 // t17: i32 = truncate t16 15975 // t18: f32 = bitcast t17 15976 // t19: i32 = truncate t13 15977 // t20: f32 = bitcast t19 15978 15979 if (!LD->hasNUsesOfValue(2, 0)) 15980 return false; 15981 15982 auto UI = LD->use_begin(); 15983 while (UI.getUse().getResNo() != 0) ++UI; 15984 SDNode *Trunc = *UI++; 15985 while (UI.getUse().getResNo() != 0) ++UI; 15986 SDNode *RightShift = *UI; 15987 if (Trunc->getOpcode() != ISD::TRUNCATE) 15988 std::swap(Trunc, RightShift); 15989 15990 if (Trunc->getOpcode() != ISD::TRUNCATE || 15991 Trunc->getValueType(0) != MVT::i32 || 15992 !Trunc->hasOneUse()) 15993 return false; 15994 if (RightShift->getOpcode() != ISD::SRL || 15995 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15996 RightShift->getConstantOperandVal(1) != 32 || 15997 !RightShift->hasOneUse()) 15998 return false; 15999 16000 SDNode *Trunc2 = *RightShift->use_begin(); 16001 if (Trunc2->getOpcode() != ISD::TRUNCATE || 16002 Trunc2->getValueType(0) != MVT::i32 || 16003 !Trunc2->hasOneUse()) 16004 return false; 16005 16006 SDNode *Bitcast = *Trunc->use_begin(); 16007 SDNode *Bitcast2 = *Trunc2->use_begin(); 16008 16009 if (Bitcast->getOpcode() != ISD::BITCAST || 16010 Bitcast->getValueType(0) != MVT::f32) 16011 return false; 16012 if (Bitcast2->getOpcode() != ISD::BITCAST || 16013 Bitcast2->getValueType(0) != MVT::f32) 16014 return false; 16015 16016 if (Subtarget.isLittleEndian()) 16017 std::swap(Bitcast, Bitcast2); 16018 16019 // Bitcast has the second float (in memory-layout order) and Bitcast2 16020 // has the first one. 16021 16022 SDValue BasePtr = LD->getBasePtr(); 16023 if (LD->isIndexed()) { 16024 assert(LD->getAddressingMode() == ISD::PRE_INC && 16025 "Non-pre-inc AM on PPC?"); 16026 BasePtr = 16027 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 16028 LD->getOffset()); 16029 } 16030 16031 auto MMOFlags = 16032 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 16033 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 16034 LD->getPointerInfo(), LD->getAlign(), 16035 MMOFlags, LD->getAAInfo()); 16036 SDValue AddPtr = 16037 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 16038 BasePtr, DAG.getIntPtrConstant(4, dl)); 16039 SDValue FloatLoad2 = DAG.getLoad( 16040 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 16041 LD->getPointerInfo().getWithOffset(4), 16042 commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo()); 16043 16044 if (LD->isIndexed()) { 16045 // Note that DAGCombine should re-form any pre-increment load(s) from 16046 // what is produced here if that makes sense. 16047 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 16048 } 16049 16050 DCI.CombineTo(Bitcast2, FloatLoad); 16051 DCI.CombineTo(Bitcast, FloatLoad2); 16052 16053 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 16054 SDValue(FloatLoad2.getNode(), 1)); 16055 return true; 16056 }; 16057 16058 if (ReplaceTwoFloatLoad()) 16059 return SDValue(N, 0); 16060 16061 EVT MemVT = LD->getMemoryVT(); 16062 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 16063 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 16064 if (LD->isUnindexed() && VT.isVector() && 16065 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 16066 // P8 and later hardware should just use LOAD. 16067 !Subtarget.hasP8Vector() && 16068 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 16069 VT == MVT::v4f32))) && 16070 LD->getAlign() < ABIAlignment) { 16071 // This is a type-legal unaligned Altivec load. 16072 SDValue Chain = LD->getChain(); 16073 SDValue Ptr = LD->getBasePtr(); 16074 bool isLittleEndian = Subtarget.isLittleEndian(); 16075 16076 // This implements the loading of unaligned vectors as described in 16077 // the venerable Apple Velocity Engine overview. Specifically: 16078 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 16079 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 16080 // 16081 // The general idea is to expand a sequence of one or more unaligned 16082 // loads into an alignment-based permutation-control instruction (lvsl 16083 // or lvsr), a series of regular vector loads (which always truncate 16084 // their input address to an aligned address), and a series of 16085 // permutations. The results of these permutations are the requested 16086 // loaded values. The trick is that the last "extra" load is not taken 16087 // from the address you might suspect (sizeof(vector) bytes after the 16088 // last requested load), but rather sizeof(vector) - 1 bytes after the 16089 // last requested vector. The point of this is to avoid a page fault if 16090 // the base address happened to be aligned. This works because if the 16091 // base address is aligned, then adding less than a full vector length 16092 // will cause the last vector in the sequence to be (re)loaded. 16093 // Otherwise, the next vector will be fetched as you might suspect was 16094 // necessary. 16095 16096 // We might be able to reuse the permutation generation from 16097 // a different base address offset from this one by an aligned amount. 16098 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 16099 // optimization later. 16100 Intrinsic::ID Intr, IntrLD, IntrPerm; 16101 MVT PermCntlTy, PermTy, LDTy; 16102 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 16103 : Intrinsic::ppc_altivec_lvsl; 16104 IntrLD = Intrinsic::ppc_altivec_lvx; 16105 IntrPerm = Intrinsic::ppc_altivec_vperm; 16106 PermCntlTy = MVT::v16i8; 16107 PermTy = MVT::v4i32; 16108 LDTy = MVT::v4i32; 16109 16110 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 16111 16112 // Create the new MMO for the new base load. It is like the original MMO, 16113 // but represents an area in memory almost twice the vector size centered 16114 // on the original address. If the address is unaligned, we might start 16115 // reading up to (sizeof(vector)-1) bytes below the address of the 16116 // original unaligned load. 16117 MachineFunction &MF = DAG.getMachineFunction(); 16118 MachineMemOperand *BaseMMO = 16119 MF.getMachineMemOperand(LD->getMemOperand(), 16120 -(int64_t)MemVT.getStoreSize()+1, 16121 2*MemVT.getStoreSize()-1); 16122 16123 // Create the new base load. 16124 SDValue LDXIntID = 16125 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 16126 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 16127 SDValue BaseLoad = 16128 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 16129 DAG.getVTList(PermTy, MVT::Other), 16130 BaseLoadOps, LDTy, BaseMMO); 16131 16132 // Note that the value of IncOffset (which is provided to the next 16133 // load's pointer info offset value, and thus used to calculate the 16134 // alignment), and the value of IncValue (which is actually used to 16135 // increment the pointer value) are different! This is because we 16136 // require the next load to appear to be aligned, even though it 16137 // is actually offset from the base pointer by a lesser amount. 16138 int IncOffset = VT.getSizeInBits() / 8; 16139 int IncValue = IncOffset; 16140 16141 // Walk (both up and down) the chain looking for another load at the real 16142 // (aligned) offset (the alignment of the other load does not matter in 16143 // this case). If found, then do not use the offset reduction trick, as 16144 // that will prevent the loads from being later combined (as they would 16145 // otherwise be duplicates). 16146 if (!findConsecutiveLoad(LD, DAG)) 16147 --IncValue; 16148 16149 SDValue Increment = 16150 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 16151 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 16152 16153 MachineMemOperand *ExtraMMO = 16154 MF.getMachineMemOperand(LD->getMemOperand(), 16155 1, 2*MemVT.getStoreSize()-1); 16156 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 16157 SDValue ExtraLoad = 16158 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 16159 DAG.getVTList(PermTy, MVT::Other), 16160 ExtraLoadOps, LDTy, ExtraMMO); 16161 16162 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 16163 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 16164 16165 // Because vperm has a big-endian bias, we must reverse the order 16166 // of the input vectors and complement the permute control vector 16167 // when generating little endian code. We have already handled the 16168 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 16169 // and ExtraLoad here. 16170 SDValue Perm; 16171 if (isLittleEndian) 16172 Perm = BuildIntrinsicOp(IntrPerm, 16173 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 16174 else 16175 Perm = BuildIntrinsicOp(IntrPerm, 16176 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 16177 16178 if (VT != PermTy) 16179 Perm = Subtarget.hasAltivec() 16180 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 16181 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 16182 DAG.getTargetConstant(1, dl, MVT::i64)); 16183 // second argument is 1 because this rounding 16184 // is always exact. 16185 16186 // The output of the permutation is our loaded result, the TokenFactor is 16187 // our new chain. 16188 DCI.CombineTo(N, Perm, TF); 16189 return SDValue(N, 0); 16190 } 16191 } 16192 break; 16193 case ISD::INTRINSIC_WO_CHAIN: { 16194 bool isLittleEndian = Subtarget.isLittleEndian(); 16195 unsigned IID = N->getConstantOperandVal(0); 16196 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 16197 : Intrinsic::ppc_altivec_lvsl); 16198 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 16199 SDValue Add = N->getOperand(1); 16200 16201 int Bits = 4 /* 16 byte alignment */; 16202 16203 if (DAG.MaskedValueIsZero(Add->getOperand(1), 16204 APInt::getAllOnes(Bits /* alignment */) 16205 .zext(Add.getScalarValueSizeInBits()))) { 16206 SDNode *BasePtr = Add->getOperand(0).getNode(); 16207 for (SDNode *U : BasePtr->uses()) { 16208 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 16209 U->getConstantOperandVal(0) == IID) { 16210 // We've found another LVSL/LVSR, and this address is an aligned 16211 // multiple of that one. The results will be the same, so use the 16212 // one we've just found instead. 16213 16214 return SDValue(U, 0); 16215 } 16216 } 16217 } 16218 16219 if (isa<ConstantSDNode>(Add->getOperand(1))) { 16220 SDNode *BasePtr = Add->getOperand(0).getNode(); 16221 for (SDNode *U : BasePtr->uses()) { 16222 if (U->getOpcode() == ISD::ADD && 16223 isa<ConstantSDNode>(U->getOperand(1)) && 16224 (Add->getConstantOperandVal(1) - U->getConstantOperandVal(1)) % 16225 (1ULL << Bits) == 16226 0) { 16227 SDNode *OtherAdd = U; 16228 for (SDNode *V : OtherAdd->uses()) { 16229 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 16230 V->getConstantOperandVal(0) == IID) { 16231 return SDValue(V, 0); 16232 } 16233 } 16234 } 16235 } 16236 } 16237 } 16238 16239 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 16240 // Expose the vabsduw/h/b opportunity for down stream 16241 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 16242 (IID == Intrinsic::ppc_altivec_vmaxsw || 16243 IID == Intrinsic::ppc_altivec_vmaxsh || 16244 IID == Intrinsic::ppc_altivec_vmaxsb)) { 16245 SDValue V1 = N->getOperand(1); 16246 SDValue V2 = N->getOperand(2); 16247 if ((V1.getSimpleValueType() == MVT::v4i32 || 16248 V1.getSimpleValueType() == MVT::v8i16 || 16249 V1.getSimpleValueType() == MVT::v16i8) && 16250 V1.getSimpleValueType() == V2.getSimpleValueType()) { 16251 // (0-a, a) 16252 if (V1.getOpcode() == ISD::SUB && 16253 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 16254 V1.getOperand(1) == V2) { 16255 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 16256 } 16257 // (a, 0-a) 16258 if (V2.getOpcode() == ISD::SUB && 16259 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 16260 V2.getOperand(1) == V1) { 16261 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 16262 } 16263 // (x-y, y-x) 16264 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 16265 V1.getOperand(0) == V2.getOperand(1) && 16266 V1.getOperand(1) == V2.getOperand(0)) { 16267 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 16268 } 16269 } 16270 } 16271 } 16272 16273 break; 16274 case ISD::INTRINSIC_W_CHAIN: 16275 switch (N->getConstantOperandVal(1)) { 16276 default: 16277 break; 16278 case Intrinsic::ppc_altivec_vsum4sbs: 16279 case Intrinsic::ppc_altivec_vsum4shs: 16280 case Intrinsic::ppc_altivec_vsum4ubs: { 16281 // These sum-across intrinsics only have a chain due to the side effect 16282 // that they may set the SAT bit. If we know the SAT bit will not be set 16283 // for some inputs, we can replace any uses of their chain with the 16284 // input chain. 16285 if (BuildVectorSDNode *BVN = 16286 dyn_cast<BuildVectorSDNode>(N->getOperand(3))) { 16287 APInt APSplatBits, APSplatUndef; 16288 unsigned SplatBitSize; 16289 bool HasAnyUndefs; 16290 bool BVNIsConstantSplat = BVN->isConstantSplat( 16291 APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, 16292 !Subtarget.isLittleEndian()); 16293 // If the constant splat vector is 0, the SAT bit will not be set. 16294 if (BVNIsConstantSplat && APSplatBits == 0) 16295 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), N->getOperand(0)); 16296 } 16297 return SDValue(); 16298 } 16299 case Intrinsic::ppc_vsx_lxvw4x: 16300 case Intrinsic::ppc_vsx_lxvd2x: 16301 // For little endian, VSX loads require generating lxvd2x/xxswapd. 16302 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 16303 if (Subtarget.needsSwapsForVSXMemOps()) 16304 return expandVSXLoadForLE(N, DCI); 16305 break; 16306 } 16307 break; 16308 case ISD::INTRINSIC_VOID: 16309 // For little endian, VSX stores require generating xxswapd/stxvd2x. 16310 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 16311 if (Subtarget.needsSwapsForVSXMemOps()) { 16312 switch (N->getConstantOperandVal(1)) { 16313 default: 16314 break; 16315 case Intrinsic::ppc_vsx_stxvw4x: 16316 case Intrinsic::ppc_vsx_stxvd2x: 16317 return expandVSXStoreForLE(N, DCI); 16318 } 16319 } 16320 break; 16321 case ISD::BSWAP: { 16322 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 16323 // For subtargets without LDBRX, we can still do better than the default 16324 // expansion even for 64-bit BSWAP (LOAD). 16325 bool Is64BitBswapOn64BitTgt = 16326 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 16327 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 16328 N->getOperand(0).hasOneUse(); 16329 if (IsSingleUseNormalLd && 16330 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 16331 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 16332 SDValue Load = N->getOperand(0); 16333 LoadSDNode *LD = cast<LoadSDNode>(Load); 16334 // Create the byte-swapping load. 16335 SDValue Ops[] = { 16336 LD->getChain(), // Chain 16337 LD->getBasePtr(), // Ptr 16338 DAG.getValueType(N->getValueType(0)) // VT 16339 }; 16340 SDValue BSLoad = 16341 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 16342 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 16343 MVT::i64 : MVT::i32, MVT::Other), 16344 Ops, LD->getMemoryVT(), LD->getMemOperand()); 16345 16346 // If this is an i16 load, insert the truncate. 16347 SDValue ResVal = BSLoad; 16348 if (N->getValueType(0) == MVT::i16) 16349 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 16350 16351 // First, combine the bswap away. This makes the value produced by the 16352 // load dead. 16353 DCI.CombineTo(N, ResVal); 16354 16355 // Next, combine the load away, we give it a bogus result value but a real 16356 // chain result. The result value is dead because the bswap is dead. 16357 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 16358 16359 // Return N so it doesn't get rechecked! 16360 return SDValue(N, 0); 16361 } 16362 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 16363 // before legalization so that the BUILD_PAIR is handled correctly. 16364 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 16365 !IsSingleUseNormalLd) 16366 return SDValue(); 16367 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 16368 16369 // Can't split volatile or atomic loads. 16370 if (!LD->isSimple()) 16371 return SDValue(); 16372 SDValue BasePtr = LD->getBasePtr(); 16373 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 16374 LD->getPointerInfo(), LD->getAlign()); 16375 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 16376 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 16377 DAG.getIntPtrConstant(4, dl)); 16378 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 16379 LD->getMemOperand(), 4, 4); 16380 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 16381 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 16382 SDValue Res; 16383 if (Subtarget.isLittleEndian()) 16384 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 16385 else 16386 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 16387 SDValue TF = 16388 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 16389 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 16390 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 16391 return Res; 16392 } 16393 case PPCISD::VCMP: 16394 // If a VCMP_rec node already exists with exactly the same operands as this 16395 // node, use its result instead of this node (VCMP_rec computes both a CR6 16396 // and a normal output). 16397 // 16398 if (!N->getOperand(0).hasOneUse() && 16399 !N->getOperand(1).hasOneUse() && 16400 !N->getOperand(2).hasOneUse()) { 16401 16402 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 16403 SDNode *VCMPrecNode = nullptr; 16404 16405 SDNode *LHSN = N->getOperand(0).getNode(); 16406 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 16407 UI != E; ++UI) 16408 if (UI->getOpcode() == PPCISD::VCMP_rec && 16409 UI->getOperand(1) == N->getOperand(1) && 16410 UI->getOperand(2) == N->getOperand(2) && 16411 UI->getOperand(0) == N->getOperand(0)) { 16412 VCMPrecNode = *UI; 16413 break; 16414 } 16415 16416 // If there is no VCMP_rec node, or if the flag value has a single use, 16417 // don't transform this. 16418 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 16419 break; 16420 16421 // Look at the (necessarily single) use of the flag value. If it has a 16422 // chain, this transformation is more complex. Note that multiple things 16423 // could use the value result, which we should ignore. 16424 SDNode *FlagUser = nullptr; 16425 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 16426 FlagUser == nullptr; ++UI) { 16427 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 16428 SDNode *User = *UI; 16429 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 16430 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 16431 FlagUser = User; 16432 break; 16433 } 16434 } 16435 } 16436 16437 // If the user is a MFOCRF instruction, we know this is safe. 16438 // Otherwise we give up for right now. 16439 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 16440 return SDValue(VCMPrecNode, 0); 16441 } 16442 break; 16443 case ISD::BR_CC: { 16444 // If this is a branch on an altivec predicate comparison, lower this so 16445 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 16446 // lowering is done pre-legalize, because the legalizer lowers the predicate 16447 // compare down to code that is difficult to reassemble. 16448 // This code also handles branches that depend on the result of a store 16449 // conditional. 16450 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 16451 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 16452 16453 int CompareOpc; 16454 bool isDot; 16455 16456 if (!isa<ConstantSDNode>(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE)) 16457 break; 16458 16459 // Since we are doing this pre-legalize, the RHS can be a constant of 16460 // arbitrary bitwidth which may cause issues when trying to get the value 16461 // from the underlying APInt. 16462 auto RHSAPInt = RHS->getAsAPIntVal(); 16463 if (!RHSAPInt.isIntN(64)) 16464 break; 16465 16466 unsigned Val = RHSAPInt.getZExtValue(); 16467 auto isImpossibleCompare = [&]() { 16468 // If this is a comparison against something other than 0/1, then we know 16469 // that the condition is never/always true. 16470 if (Val != 0 && Val != 1) { 16471 if (CC == ISD::SETEQ) // Cond never true, remove branch. 16472 return N->getOperand(0); 16473 // Always !=, turn it into an unconditional branch. 16474 return DAG.getNode(ISD::BR, dl, MVT::Other, 16475 N->getOperand(0), N->getOperand(4)); 16476 } 16477 return SDValue(); 16478 }; 16479 // Combine branches fed by store conditional instructions (st[bhwd]cx). 16480 unsigned StoreWidth = 0; 16481 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 16482 isStoreConditional(LHS, StoreWidth)) { 16483 if (SDValue Impossible = isImpossibleCompare()) 16484 return Impossible; 16485 PPC::Predicate CompOpc; 16486 // eq 0 => ne 16487 // ne 0 => eq 16488 // eq 1 => eq 16489 // ne 1 => ne 16490 if (Val == 0) 16491 CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ; 16492 else 16493 CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE; 16494 16495 SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3), 16496 DAG.getConstant(StoreWidth, dl, MVT::i32)}; 16497 auto *MemNode = cast<MemSDNode>(LHS); 16498 SDValue ConstSt = DAG.getMemIntrinsicNode( 16499 PPCISD::STORE_COND, dl, 16500 DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops, 16501 MemNode->getMemoryVT(), MemNode->getMemOperand()); 16502 16503 SDValue InChain; 16504 // Unchain the branch from the original store conditional. 16505 if (N->getOperand(0) == LHS.getValue(1)) 16506 InChain = LHS.getOperand(0); 16507 else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) { 16508 SmallVector<SDValue, 4> InChains; 16509 SDValue InTF = N->getOperand(0); 16510 for (int i = 0, e = InTF.getNumOperands(); i < e; i++) 16511 if (InTF.getOperand(i) != LHS.getValue(1)) 16512 InChains.push_back(InTF.getOperand(i)); 16513 InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains); 16514 } 16515 16516 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain, 16517 DAG.getConstant(CompOpc, dl, MVT::i32), 16518 DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4), 16519 ConstSt.getValue(2)); 16520 } 16521 16522 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 16523 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 16524 assert(isDot && "Can't compare against a vector result!"); 16525 16526 if (SDValue Impossible = isImpossibleCompare()) 16527 return Impossible; 16528 16529 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 16530 // Create the PPCISD altivec 'dot' comparison node. 16531 SDValue Ops[] = { 16532 LHS.getOperand(2), // LHS of compare 16533 LHS.getOperand(3), // RHS of compare 16534 DAG.getConstant(CompareOpc, dl, MVT::i32) 16535 }; 16536 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 16537 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 16538 16539 // Unpack the result based on how the target uses it. 16540 PPC::Predicate CompOpc; 16541 switch (LHS.getConstantOperandVal(1)) { 16542 default: // Can't happen, don't crash on invalid number though. 16543 case 0: // Branch on the value of the EQ bit of CR6. 16544 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 16545 break; 16546 case 1: // Branch on the inverted value of the EQ bit of CR6. 16547 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 16548 break; 16549 case 2: // Branch on the value of the LT bit of CR6. 16550 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 16551 break; 16552 case 3: // Branch on the inverted value of the LT bit of CR6. 16553 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 16554 break; 16555 } 16556 16557 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 16558 DAG.getConstant(CompOpc, dl, MVT::i32), 16559 DAG.getRegister(PPC::CR6, MVT::i32), 16560 N->getOperand(4), CompNode.getValue(1)); 16561 } 16562 break; 16563 } 16564 case ISD::BUILD_VECTOR: 16565 return DAGCombineBuildVector(N, DCI); 16566 } 16567 16568 return SDValue(); 16569 } 16570 16571 SDValue 16572 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 16573 SelectionDAG &DAG, 16574 SmallVectorImpl<SDNode *> &Created) const { 16575 // fold (sdiv X, pow2) 16576 EVT VT = N->getValueType(0); 16577 if (VT == MVT::i64 && !Subtarget.isPPC64()) 16578 return SDValue(); 16579 if ((VT != MVT::i32 && VT != MVT::i64) || 16580 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 16581 return SDValue(); 16582 16583 SDLoc DL(N); 16584 SDValue N0 = N->getOperand(0); 16585 16586 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 16587 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countr_zero(); 16588 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 16589 16590 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 16591 Created.push_back(Op.getNode()); 16592 16593 if (IsNegPow2) { 16594 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 16595 Created.push_back(Op.getNode()); 16596 } 16597 16598 return Op; 16599 } 16600 16601 //===----------------------------------------------------------------------===// 16602 // Inline Assembly Support 16603 //===----------------------------------------------------------------------===// 16604 16605 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 16606 KnownBits &Known, 16607 const APInt &DemandedElts, 16608 const SelectionDAG &DAG, 16609 unsigned Depth) const { 16610 Known.resetAll(); 16611 switch (Op.getOpcode()) { 16612 default: break; 16613 case PPCISD::LBRX: { 16614 // lhbrx is known to have the top bits cleared out. 16615 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 16616 Known.Zero = 0xFFFF0000; 16617 break; 16618 } 16619 case ISD::INTRINSIC_WO_CHAIN: { 16620 switch (Op.getConstantOperandVal(0)) { 16621 default: break; 16622 case Intrinsic::ppc_altivec_vcmpbfp_p: 16623 case Intrinsic::ppc_altivec_vcmpeqfp_p: 16624 case Intrinsic::ppc_altivec_vcmpequb_p: 16625 case Intrinsic::ppc_altivec_vcmpequh_p: 16626 case Intrinsic::ppc_altivec_vcmpequw_p: 16627 case Intrinsic::ppc_altivec_vcmpequd_p: 16628 case Intrinsic::ppc_altivec_vcmpequq_p: 16629 case Intrinsic::ppc_altivec_vcmpgefp_p: 16630 case Intrinsic::ppc_altivec_vcmpgtfp_p: 16631 case Intrinsic::ppc_altivec_vcmpgtsb_p: 16632 case Intrinsic::ppc_altivec_vcmpgtsh_p: 16633 case Intrinsic::ppc_altivec_vcmpgtsw_p: 16634 case Intrinsic::ppc_altivec_vcmpgtsd_p: 16635 case Intrinsic::ppc_altivec_vcmpgtsq_p: 16636 case Intrinsic::ppc_altivec_vcmpgtub_p: 16637 case Intrinsic::ppc_altivec_vcmpgtuh_p: 16638 case Intrinsic::ppc_altivec_vcmpgtuw_p: 16639 case Intrinsic::ppc_altivec_vcmpgtud_p: 16640 case Intrinsic::ppc_altivec_vcmpgtuq_p: 16641 Known.Zero = ~1U; // All bits but the low one are known to be zero. 16642 break; 16643 } 16644 break; 16645 } 16646 case ISD::INTRINSIC_W_CHAIN: { 16647 switch (Op.getConstantOperandVal(1)) { 16648 default: 16649 break; 16650 case Intrinsic::ppc_load2r: 16651 // Top bits are cleared for load2r (which is the same as lhbrx). 16652 Known.Zero = 0xFFFF0000; 16653 break; 16654 } 16655 break; 16656 } 16657 } 16658 } 16659 16660 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 16661 switch (Subtarget.getCPUDirective()) { 16662 default: break; 16663 case PPC::DIR_970: 16664 case PPC::DIR_PWR4: 16665 case PPC::DIR_PWR5: 16666 case PPC::DIR_PWR5X: 16667 case PPC::DIR_PWR6: 16668 case PPC::DIR_PWR6X: 16669 case PPC::DIR_PWR7: 16670 case PPC::DIR_PWR8: 16671 case PPC::DIR_PWR9: 16672 case PPC::DIR_PWR10: 16673 case PPC::DIR_PWR11: 16674 case PPC::DIR_PWR_FUTURE: { 16675 if (!ML) 16676 break; 16677 16678 if (!DisableInnermostLoopAlign32) { 16679 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 16680 // so that we can decrease cache misses and branch-prediction misses. 16681 // Actual alignment of the loop will depend on the hotness check and other 16682 // logic in alignBlocks. 16683 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 16684 return Align(32); 16685 } 16686 16687 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 16688 16689 // For small loops (between 5 and 8 instructions), align to a 32-byte 16690 // boundary so that the entire loop fits in one instruction-cache line. 16691 uint64_t LoopSize = 0; 16692 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 16693 for (const MachineInstr &J : **I) { 16694 LoopSize += TII->getInstSizeInBytes(J); 16695 if (LoopSize > 32) 16696 break; 16697 } 16698 16699 if (LoopSize > 16 && LoopSize <= 32) 16700 return Align(32); 16701 16702 break; 16703 } 16704 } 16705 16706 return TargetLowering::getPrefLoopAlignment(ML); 16707 } 16708 16709 /// getConstraintType - Given a constraint, return the type of 16710 /// constraint it is for this target. 16711 PPCTargetLowering::ConstraintType 16712 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 16713 if (Constraint.size() == 1) { 16714 switch (Constraint[0]) { 16715 default: break; 16716 case 'b': 16717 case 'r': 16718 case 'f': 16719 case 'd': 16720 case 'v': 16721 case 'y': 16722 return C_RegisterClass; 16723 case 'Z': 16724 // FIXME: While Z does indicate a memory constraint, it specifically 16725 // indicates an r+r address (used in conjunction with the 'y' modifier 16726 // in the replacement string). Currently, we're forcing the base 16727 // register to be r0 in the asm printer (which is interpreted as zero) 16728 // and forming the complete address in the second register. This is 16729 // suboptimal. 16730 return C_Memory; 16731 } 16732 } else if (Constraint == "wc") { // individual CR bits. 16733 return C_RegisterClass; 16734 } else if (Constraint == "wa" || Constraint == "wd" || 16735 Constraint == "wf" || Constraint == "ws" || 16736 Constraint == "wi" || Constraint == "ww") { 16737 return C_RegisterClass; // VSX registers. 16738 } 16739 return TargetLowering::getConstraintType(Constraint); 16740 } 16741 16742 /// Examine constraint type and operand type and determine a weight value. 16743 /// This object must already have been set up with the operand type 16744 /// and the current alternative constraint selected. 16745 TargetLowering::ConstraintWeight 16746 PPCTargetLowering::getSingleConstraintMatchWeight( 16747 AsmOperandInfo &info, const char *constraint) const { 16748 ConstraintWeight weight = CW_Invalid; 16749 Value *CallOperandVal = info.CallOperandVal; 16750 // If we don't have a value, we can't do a match, 16751 // but allow it at the lowest weight. 16752 if (!CallOperandVal) 16753 return CW_Default; 16754 Type *type = CallOperandVal->getType(); 16755 16756 // Look at the constraint type. 16757 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 16758 return CW_Register; // an individual CR bit. 16759 else if ((StringRef(constraint) == "wa" || 16760 StringRef(constraint) == "wd" || 16761 StringRef(constraint) == "wf") && 16762 type->isVectorTy()) 16763 return CW_Register; 16764 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 16765 return CW_Register; // just hold 64-bit integers data. 16766 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 16767 return CW_Register; 16768 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 16769 return CW_Register; 16770 16771 switch (*constraint) { 16772 default: 16773 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 16774 break; 16775 case 'b': 16776 if (type->isIntegerTy()) 16777 weight = CW_Register; 16778 break; 16779 case 'f': 16780 if (type->isFloatTy()) 16781 weight = CW_Register; 16782 break; 16783 case 'd': 16784 if (type->isDoubleTy()) 16785 weight = CW_Register; 16786 break; 16787 case 'v': 16788 if (type->isVectorTy()) 16789 weight = CW_Register; 16790 break; 16791 case 'y': 16792 weight = CW_Register; 16793 break; 16794 case 'Z': 16795 weight = CW_Memory; 16796 break; 16797 } 16798 return weight; 16799 } 16800 16801 std::pair<unsigned, const TargetRegisterClass *> 16802 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16803 StringRef Constraint, 16804 MVT VT) const { 16805 if (Constraint.size() == 1) { 16806 // GCC RS6000 Constraint Letters 16807 switch (Constraint[0]) { 16808 case 'b': // R1-R31 16809 if (VT == MVT::i64 && Subtarget.isPPC64()) 16810 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16811 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16812 case 'r': // R0-R31 16813 if (VT == MVT::i64 && Subtarget.isPPC64()) 16814 return std::make_pair(0U, &PPC::G8RCRegClass); 16815 return std::make_pair(0U, &PPC::GPRCRegClass); 16816 // 'd' and 'f' constraints are both defined to be "the floating point 16817 // registers", where one is for 32-bit and the other for 64-bit. We don't 16818 // really care overly much here so just give them all the same reg classes. 16819 case 'd': 16820 case 'f': 16821 if (Subtarget.hasSPE()) { 16822 if (VT == MVT::f32 || VT == MVT::i32) 16823 return std::make_pair(0U, &PPC::GPRCRegClass); 16824 if (VT == MVT::f64 || VT == MVT::i64) 16825 return std::make_pair(0U, &PPC::SPERCRegClass); 16826 } else { 16827 if (VT == MVT::f32 || VT == MVT::i32) 16828 return std::make_pair(0U, &PPC::F4RCRegClass); 16829 if (VT == MVT::f64 || VT == MVT::i64) 16830 return std::make_pair(0U, &PPC::F8RCRegClass); 16831 } 16832 break; 16833 case 'v': 16834 if (Subtarget.hasAltivec() && VT.isVector()) 16835 return std::make_pair(0U, &PPC::VRRCRegClass); 16836 else if (Subtarget.hasVSX()) 16837 // Scalars in Altivec registers only make sense with VSX. 16838 return std::make_pair(0U, &PPC::VFRCRegClass); 16839 break; 16840 case 'y': // crrc 16841 return std::make_pair(0U, &PPC::CRRCRegClass); 16842 } 16843 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16844 // An individual CR bit. 16845 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16846 } else if ((Constraint == "wa" || Constraint == "wd" || 16847 Constraint == "wf" || Constraint == "wi") && 16848 Subtarget.hasVSX()) { 16849 // A VSX register for either a scalar (FP) or vector. There is no 16850 // support for single precision scalars on subtargets prior to Power8. 16851 if (VT.isVector()) 16852 return std::make_pair(0U, &PPC::VSRCRegClass); 16853 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16854 return std::make_pair(0U, &PPC::VSSRCRegClass); 16855 return std::make_pair(0U, &PPC::VSFRCRegClass); 16856 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16857 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16858 return std::make_pair(0U, &PPC::VSSRCRegClass); 16859 else 16860 return std::make_pair(0U, &PPC::VSFRCRegClass); 16861 } else if (Constraint == "lr") { 16862 if (VT == MVT::i64) 16863 return std::make_pair(0U, &PPC::LR8RCRegClass); 16864 else 16865 return std::make_pair(0U, &PPC::LRRCRegClass); 16866 } 16867 16868 // Handle special cases of physical registers that are not properly handled 16869 // by the base class. 16870 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16871 // If we name a VSX register, we can't defer to the base class because it 16872 // will not recognize the correct register (their names will be VSL{0-31} 16873 // and V{0-31} so they won't match). So we match them here. 16874 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16875 int VSNum = atoi(Constraint.data() + 3); 16876 assert(VSNum >= 0 && VSNum <= 63 && 16877 "Attempted to access a vsr out of range"); 16878 if (VSNum < 32) 16879 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16880 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16881 } 16882 16883 // For float registers, we can't defer to the base class as it will match 16884 // the SPILLTOVSRRC class. 16885 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16886 int RegNum = atoi(Constraint.data() + 2); 16887 if (RegNum > 31 || RegNum < 0) 16888 report_fatal_error("Invalid floating point register number"); 16889 if (VT == MVT::f32 || VT == MVT::i32) 16890 return Subtarget.hasSPE() 16891 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16892 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16893 if (VT == MVT::f64 || VT == MVT::i64) 16894 return Subtarget.hasSPE() 16895 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16896 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16897 } 16898 } 16899 16900 std::pair<unsigned, const TargetRegisterClass *> R = 16901 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16902 16903 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16904 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16905 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16906 // register. 16907 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16908 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16909 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16910 PPC::GPRCRegClass.contains(R.first)) 16911 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16912 PPC::sub_32, &PPC::G8RCRegClass), 16913 &PPC::G8RCRegClass); 16914 16915 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16916 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16917 R.first = PPC::CR0; 16918 R.second = &PPC::CRRCRegClass; 16919 } 16920 // FIXME: This warning should ideally be emitted in the front end. 16921 const auto &TM = getTargetMachine(); 16922 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16923 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16924 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16925 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16926 errs() << "warning: vector registers 20 to 32 are reserved in the " 16927 "default AIX AltiVec ABI and cannot be used\n"; 16928 } 16929 16930 return R; 16931 } 16932 16933 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16934 /// vector. If it is invalid, don't add anything to Ops. 16935 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16936 StringRef Constraint, 16937 std::vector<SDValue> &Ops, 16938 SelectionDAG &DAG) const { 16939 SDValue Result; 16940 16941 // Only support length 1 constraints. 16942 if (Constraint.size() > 1) 16943 return; 16944 16945 char Letter = Constraint[0]; 16946 switch (Letter) { 16947 default: break; 16948 case 'I': 16949 case 'J': 16950 case 'K': 16951 case 'L': 16952 case 'M': 16953 case 'N': 16954 case 'O': 16955 case 'P': { 16956 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16957 if (!CST) return; // Must be an immediate to match. 16958 SDLoc dl(Op); 16959 int64_t Value = CST->getSExtValue(); 16960 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16961 // numbers are printed as such. 16962 switch (Letter) { 16963 default: llvm_unreachable("Unknown constraint letter!"); 16964 case 'I': // "I" is a signed 16-bit constant. 16965 if (isInt<16>(Value)) 16966 Result = DAG.getTargetConstant(Value, dl, TCVT); 16967 break; 16968 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16969 if (isShiftedUInt<16, 16>(Value)) 16970 Result = DAG.getTargetConstant(Value, dl, TCVT); 16971 break; 16972 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16973 if (isShiftedInt<16, 16>(Value)) 16974 Result = DAG.getTargetConstant(Value, dl, TCVT); 16975 break; 16976 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16977 if (isUInt<16>(Value)) 16978 Result = DAG.getTargetConstant(Value, dl, TCVT); 16979 break; 16980 case 'M': // "M" is a constant that is greater than 31. 16981 if (Value > 31) 16982 Result = DAG.getTargetConstant(Value, dl, TCVT); 16983 break; 16984 case 'N': // "N" is a positive constant that is an exact power of two. 16985 if (Value > 0 && isPowerOf2_64(Value)) 16986 Result = DAG.getTargetConstant(Value, dl, TCVT); 16987 break; 16988 case 'O': // "O" is the constant zero. 16989 if (Value == 0) 16990 Result = DAG.getTargetConstant(Value, dl, TCVT); 16991 break; 16992 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16993 if (isInt<16>(-Value)) 16994 Result = DAG.getTargetConstant(Value, dl, TCVT); 16995 break; 16996 } 16997 break; 16998 } 16999 } 17000 17001 if (Result.getNode()) { 17002 Ops.push_back(Result); 17003 return; 17004 } 17005 17006 // Handle standard constraint letters. 17007 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 17008 } 17009 17010 void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I, 17011 SmallVectorImpl<SDValue> &Ops, 17012 SelectionDAG &DAG) const { 17013 if (I.getNumOperands() <= 1) 17014 return; 17015 if (!isa<ConstantSDNode>(Ops[1].getNode())) 17016 return; 17017 auto IntrinsicID = Ops[1].getNode()->getAsZExtVal(); 17018 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && 17019 IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap) 17020 return; 17021 17022 if (MDNode *MDN = I.getMetadata(LLVMContext::MD_annotation)) 17023 Ops.push_back(DAG.getMDNode(MDN)); 17024 } 17025 17026 // isLegalAddressingMode - Return true if the addressing mode represented 17027 // by AM is legal for this target, for a load/store of the specified type. 17028 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 17029 const AddrMode &AM, Type *Ty, 17030 unsigned AS, 17031 Instruction *I) const { 17032 // Vector type r+i form is supported since power9 as DQ form. We don't check 17033 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 17034 // imm form is preferred and the offset can be adjusted to use imm form later 17035 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 17036 // max offset to check legal addressing mode, we should be a little aggressive 17037 // to contain other offsets for that LSRUse. 17038 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 17039 return false; 17040 17041 // PPC allows a sign-extended 16-bit immediate field. 17042 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 17043 return false; 17044 17045 // No global is ever allowed as a base. 17046 if (AM.BaseGV) 17047 return false; 17048 17049 // PPC only support r+r, 17050 switch (AM.Scale) { 17051 case 0: // "r+i" or just "i", depending on HasBaseReg. 17052 break; 17053 case 1: 17054 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 17055 return false; 17056 // Otherwise we have r+r or r+i. 17057 break; 17058 case 2: 17059 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 17060 return false; 17061 // Allow 2*r as r+r. 17062 break; 17063 default: 17064 // No other scales are supported. 17065 return false; 17066 } 17067 17068 return true; 17069 } 17070 17071 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 17072 SelectionDAG &DAG) const { 17073 MachineFunction &MF = DAG.getMachineFunction(); 17074 MachineFrameInfo &MFI = MF.getFrameInfo(); 17075 MFI.setReturnAddressIsTaken(true); 17076 17077 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 17078 return SDValue(); 17079 17080 SDLoc dl(Op); 17081 unsigned Depth = Op.getConstantOperandVal(0); 17082 17083 // Make sure the function does not optimize away the store of the RA to 17084 // the stack. 17085 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 17086 FuncInfo->setLRStoreRequired(); 17087 bool isPPC64 = Subtarget.isPPC64(); 17088 auto PtrVT = getPointerTy(MF.getDataLayout()); 17089 17090 if (Depth > 0) { 17091 // The link register (return address) is saved in the caller's frame 17092 // not the callee's stack frame. So we must get the caller's frame 17093 // address and load the return address at the LR offset from there. 17094 SDValue FrameAddr = 17095 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 17096 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 17097 SDValue Offset = 17098 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 17099 isPPC64 ? MVT::i64 : MVT::i32); 17100 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 17101 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 17102 MachinePointerInfo()); 17103 } 17104 17105 // Just load the return address off the stack. 17106 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 17107 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 17108 MachinePointerInfo()); 17109 } 17110 17111 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 17112 SelectionDAG &DAG) const { 17113 SDLoc dl(Op); 17114 unsigned Depth = Op.getConstantOperandVal(0); 17115 17116 MachineFunction &MF = DAG.getMachineFunction(); 17117 MachineFrameInfo &MFI = MF.getFrameInfo(); 17118 MFI.setFrameAddressIsTaken(true); 17119 17120 EVT PtrVT = getPointerTy(MF.getDataLayout()); 17121 bool isPPC64 = PtrVT == MVT::i64; 17122 17123 // Naked functions never have a frame pointer, and so we use r1. For all 17124 // other functions, this decision must be delayed until during PEI. 17125 unsigned FrameReg; 17126 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 17127 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 17128 else 17129 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 17130 17131 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 17132 PtrVT); 17133 while (Depth--) 17134 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 17135 FrameAddr, MachinePointerInfo()); 17136 return FrameAddr; 17137 } 17138 17139 // FIXME? Maybe this could be a TableGen attribute on some registers and 17140 // this table could be generated automatically from RegInfo. 17141 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 17142 const MachineFunction &MF) const { 17143 bool isPPC64 = Subtarget.isPPC64(); 17144 17145 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 17146 if (!is64Bit && VT != LLT::scalar(32)) 17147 report_fatal_error("Invalid register global variable type"); 17148 17149 Register Reg = StringSwitch<Register>(RegName) 17150 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 17151 .Case("r2", isPPC64 ? Register() : PPC::R2) 17152 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 17153 .Default(Register()); 17154 17155 if (Reg) 17156 return Reg; 17157 report_fatal_error("Invalid register name global variable"); 17158 } 17159 17160 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 17161 // 32-bit SVR4 ABI access everything as got-indirect. 17162 if (Subtarget.is32BitELFABI()) 17163 return true; 17164 17165 // AIX accesses everything indirectly through the TOC, which is similar to 17166 // the GOT. 17167 if (Subtarget.isAIXABI()) 17168 return true; 17169 17170 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 17171 // If it is small or large code model, module locals are accessed 17172 // indirectly by loading their address from .toc/.got. 17173 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 17174 return true; 17175 17176 // JumpTable and BlockAddress are accessed as got-indirect. 17177 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 17178 return true; 17179 17180 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 17181 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 17182 17183 return false; 17184 } 17185 17186 bool 17187 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 17188 // The PowerPC target isn't yet aware of offsets. 17189 return false; 17190 } 17191 17192 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 17193 const CallInst &I, 17194 MachineFunction &MF, 17195 unsigned Intrinsic) const { 17196 switch (Intrinsic) { 17197 case Intrinsic::ppc_atomicrmw_xchg_i128: 17198 case Intrinsic::ppc_atomicrmw_add_i128: 17199 case Intrinsic::ppc_atomicrmw_sub_i128: 17200 case Intrinsic::ppc_atomicrmw_nand_i128: 17201 case Intrinsic::ppc_atomicrmw_and_i128: 17202 case Intrinsic::ppc_atomicrmw_or_i128: 17203 case Intrinsic::ppc_atomicrmw_xor_i128: 17204 case Intrinsic::ppc_cmpxchg_i128: 17205 Info.opc = ISD::INTRINSIC_W_CHAIN; 17206 Info.memVT = MVT::i128; 17207 Info.ptrVal = I.getArgOperand(0); 17208 Info.offset = 0; 17209 Info.align = Align(16); 17210 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 17211 MachineMemOperand::MOVolatile; 17212 return true; 17213 case Intrinsic::ppc_atomic_load_i128: 17214 Info.opc = ISD::INTRINSIC_W_CHAIN; 17215 Info.memVT = MVT::i128; 17216 Info.ptrVal = I.getArgOperand(0); 17217 Info.offset = 0; 17218 Info.align = Align(16); 17219 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 17220 return true; 17221 case Intrinsic::ppc_atomic_store_i128: 17222 Info.opc = ISD::INTRINSIC_VOID; 17223 Info.memVT = MVT::i128; 17224 Info.ptrVal = I.getArgOperand(2); 17225 Info.offset = 0; 17226 Info.align = Align(16); 17227 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 17228 return true; 17229 case Intrinsic::ppc_altivec_lvx: 17230 case Intrinsic::ppc_altivec_lvxl: 17231 case Intrinsic::ppc_altivec_lvebx: 17232 case Intrinsic::ppc_altivec_lvehx: 17233 case Intrinsic::ppc_altivec_lvewx: 17234 case Intrinsic::ppc_vsx_lxvd2x: 17235 case Intrinsic::ppc_vsx_lxvw4x: 17236 case Intrinsic::ppc_vsx_lxvd2x_be: 17237 case Intrinsic::ppc_vsx_lxvw4x_be: 17238 case Intrinsic::ppc_vsx_lxvl: 17239 case Intrinsic::ppc_vsx_lxvll: { 17240 EVT VT; 17241 switch (Intrinsic) { 17242 case Intrinsic::ppc_altivec_lvebx: 17243 VT = MVT::i8; 17244 break; 17245 case Intrinsic::ppc_altivec_lvehx: 17246 VT = MVT::i16; 17247 break; 17248 case Intrinsic::ppc_altivec_lvewx: 17249 VT = MVT::i32; 17250 break; 17251 case Intrinsic::ppc_vsx_lxvd2x: 17252 case Intrinsic::ppc_vsx_lxvd2x_be: 17253 VT = MVT::v2f64; 17254 break; 17255 default: 17256 VT = MVT::v4i32; 17257 break; 17258 } 17259 17260 Info.opc = ISD::INTRINSIC_W_CHAIN; 17261 Info.memVT = VT; 17262 Info.ptrVal = I.getArgOperand(0); 17263 Info.offset = -VT.getStoreSize()+1; 17264 Info.size = 2*VT.getStoreSize()-1; 17265 Info.align = Align(1); 17266 Info.flags = MachineMemOperand::MOLoad; 17267 return true; 17268 } 17269 case Intrinsic::ppc_altivec_stvx: 17270 case Intrinsic::ppc_altivec_stvxl: 17271 case Intrinsic::ppc_altivec_stvebx: 17272 case Intrinsic::ppc_altivec_stvehx: 17273 case Intrinsic::ppc_altivec_stvewx: 17274 case Intrinsic::ppc_vsx_stxvd2x: 17275 case Intrinsic::ppc_vsx_stxvw4x: 17276 case Intrinsic::ppc_vsx_stxvd2x_be: 17277 case Intrinsic::ppc_vsx_stxvw4x_be: 17278 case Intrinsic::ppc_vsx_stxvl: 17279 case Intrinsic::ppc_vsx_stxvll: { 17280 EVT VT; 17281 switch (Intrinsic) { 17282 case Intrinsic::ppc_altivec_stvebx: 17283 VT = MVT::i8; 17284 break; 17285 case Intrinsic::ppc_altivec_stvehx: 17286 VT = MVT::i16; 17287 break; 17288 case Intrinsic::ppc_altivec_stvewx: 17289 VT = MVT::i32; 17290 break; 17291 case Intrinsic::ppc_vsx_stxvd2x: 17292 case Intrinsic::ppc_vsx_stxvd2x_be: 17293 VT = MVT::v2f64; 17294 break; 17295 default: 17296 VT = MVT::v4i32; 17297 break; 17298 } 17299 17300 Info.opc = ISD::INTRINSIC_VOID; 17301 Info.memVT = VT; 17302 Info.ptrVal = I.getArgOperand(1); 17303 Info.offset = -VT.getStoreSize()+1; 17304 Info.size = 2*VT.getStoreSize()-1; 17305 Info.align = Align(1); 17306 Info.flags = MachineMemOperand::MOStore; 17307 return true; 17308 } 17309 case Intrinsic::ppc_stdcx: 17310 case Intrinsic::ppc_stwcx: 17311 case Intrinsic::ppc_sthcx: 17312 case Intrinsic::ppc_stbcx: { 17313 EVT VT; 17314 auto Alignment = Align(8); 17315 switch (Intrinsic) { 17316 case Intrinsic::ppc_stdcx: 17317 VT = MVT::i64; 17318 break; 17319 case Intrinsic::ppc_stwcx: 17320 VT = MVT::i32; 17321 Alignment = Align(4); 17322 break; 17323 case Intrinsic::ppc_sthcx: 17324 VT = MVT::i16; 17325 Alignment = Align(2); 17326 break; 17327 case Intrinsic::ppc_stbcx: 17328 VT = MVT::i8; 17329 Alignment = Align(1); 17330 break; 17331 } 17332 Info.opc = ISD::INTRINSIC_W_CHAIN; 17333 Info.memVT = VT; 17334 Info.ptrVal = I.getArgOperand(0); 17335 Info.offset = 0; 17336 Info.align = Alignment; 17337 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 17338 return true; 17339 } 17340 default: 17341 break; 17342 } 17343 17344 return false; 17345 } 17346 17347 /// It returns EVT::Other if the type should be determined using generic 17348 /// target-independent logic. 17349 EVT PPCTargetLowering::getOptimalMemOpType( 17350 const MemOp &Op, const AttributeList &FuncAttributes) const { 17351 if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None) { 17352 // We should use Altivec/VSX loads and stores when available. For unaligned 17353 // addresses, unaligned VSX loads are only fast starting with the P8. 17354 if (Subtarget.hasAltivec() && Op.size() >= 16) { 17355 if (Op.isMemset() && Subtarget.hasVSX()) { 17356 uint64_t TailSize = Op.size() % 16; 17357 // For memset lowering, EXTRACT_VECTOR_ELT tries to return constant 17358 // element if vector element type matches tail store. For tail size 17359 // 3/4, the tail store is i32, v4i32 cannot be used, need a legal one. 17360 if (TailSize > 2 && TailSize <= 4) { 17361 return MVT::v8i16; 17362 } 17363 return MVT::v4i32; 17364 } 17365 if (Op.isAligned(Align(16)) || Subtarget.hasP8Vector()) 17366 return MVT::v4i32; 17367 } 17368 } 17369 17370 if (Subtarget.isPPC64()) { 17371 return MVT::i64; 17372 } 17373 17374 return MVT::i32; 17375 } 17376 17377 /// Returns true if it is beneficial to convert a load of a constant 17378 /// to just the constant itself. 17379 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 17380 Type *Ty) const { 17381 assert(Ty->isIntegerTy()); 17382 17383 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 17384 return !(BitSize == 0 || BitSize > 64); 17385 } 17386 17387 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 17388 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 17389 return false; 17390 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 17391 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 17392 return NumBits1 == 64 && NumBits2 == 32; 17393 } 17394 17395 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 17396 if (!VT1.isInteger() || !VT2.isInteger()) 17397 return false; 17398 unsigned NumBits1 = VT1.getSizeInBits(); 17399 unsigned NumBits2 = VT2.getSizeInBits(); 17400 return NumBits1 == 64 && NumBits2 == 32; 17401 } 17402 17403 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 17404 // Generally speaking, zexts are not free, but they are free when they can be 17405 // folded with other operations. 17406 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 17407 EVT MemVT = LD->getMemoryVT(); 17408 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 17409 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 17410 (LD->getExtensionType() == ISD::NON_EXTLOAD || 17411 LD->getExtensionType() == ISD::ZEXTLOAD)) 17412 return true; 17413 } 17414 17415 // FIXME: Add other cases... 17416 // - 32-bit shifts with a zext to i64 17417 // - zext after ctlz, bswap, etc. 17418 // - zext after and by a constant mask 17419 17420 return TargetLowering::isZExtFree(Val, VT2); 17421 } 17422 17423 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 17424 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 17425 "invalid fpext types"); 17426 // Extending to float128 is not free. 17427 if (DestVT == MVT::f128) 17428 return false; 17429 return true; 17430 } 17431 17432 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 17433 return isInt<16>(Imm) || isUInt<16>(Imm); 17434 } 17435 17436 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 17437 return isInt<16>(Imm) || isUInt<16>(Imm); 17438 } 17439 17440 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 17441 MachineMemOperand::Flags, 17442 unsigned *Fast) const { 17443 if (DisablePPCUnaligned) 17444 return false; 17445 17446 // PowerPC supports unaligned memory access for simple non-vector types. 17447 // Although accessing unaligned addresses is not as efficient as accessing 17448 // aligned addresses, it is generally more efficient than manual expansion, 17449 // and generally only traps for software emulation when crossing page 17450 // boundaries. 17451 17452 if (!VT.isSimple()) 17453 return false; 17454 17455 if (VT.isFloatingPoint() && !VT.isVector() && 17456 !Subtarget.allowsUnalignedFPAccess()) 17457 return false; 17458 17459 if (VT.getSimpleVT().isVector()) { 17460 if (Subtarget.hasVSX()) { 17461 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 17462 VT != MVT::v4f32 && VT != MVT::v4i32) 17463 return false; 17464 } else { 17465 return false; 17466 } 17467 } 17468 17469 if (VT == MVT::ppcf128) 17470 return false; 17471 17472 if (Fast) 17473 *Fast = 1; 17474 17475 return true; 17476 } 17477 17478 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 17479 SDValue C) const { 17480 // Check integral scalar types. 17481 if (!VT.isScalarInteger()) 17482 return false; 17483 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 17484 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 17485 return false; 17486 // This transformation will generate >= 2 operations. But the following 17487 // cases will generate <= 2 instructions during ISEL. So exclude them. 17488 // 1. If the constant multiplier fits 16 bits, it can be handled by one 17489 // HW instruction, ie. MULLI 17490 // 2. If the multiplier after shifted fits 16 bits, an extra shift 17491 // instruction is needed than case 1, ie. MULLI and RLDICR 17492 int64_t Imm = ConstNode->getSExtValue(); 17493 unsigned Shift = llvm::countr_zero<uint64_t>(Imm); 17494 Imm >>= Shift; 17495 if (isInt<16>(Imm)) 17496 return false; 17497 uint64_t UImm = static_cast<uint64_t>(Imm); 17498 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 17499 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 17500 return true; 17501 } 17502 return false; 17503 } 17504 17505 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 17506 EVT VT) const { 17507 return isFMAFasterThanFMulAndFAdd( 17508 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 17509 } 17510 17511 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 17512 Type *Ty) const { 17513 if (Subtarget.hasSPE() || Subtarget.useSoftFloat()) 17514 return false; 17515 switch (Ty->getScalarType()->getTypeID()) { 17516 case Type::FloatTyID: 17517 case Type::DoubleTyID: 17518 return true; 17519 case Type::FP128TyID: 17520 return Subtarget.hasP9Vector(); 17521 default: 17522 return false; 17523 } 17524 } 17525 17526 // FIXME: add more patterns which are not profitable to hoist. 17527 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 17528 if (!I->hasOneUse()) 17529 return true; 17530 17531 Instruction *User = I->user_back(); 17532 assert(User && "A single use instruction with no uses."); 17533 17534 switch (I->getOpcode()) { 17535 case Instruction::FMul: { 17536 // Don't break FMA, PowerPC prefers FMA. 17537 if (User->getOpcode() != Instruction::FSub && 17538 User->getOpcode() != Instruction::FAdd) 17539 return true; 17540 17541 const TargetOptions &Options = getTargetMachine().Options; 17542 const Function *F = I->getFunction(); 17543 const DataLayout &DL = F->getDataLayout(); 17544 Type *Ty = User->getOperand(0)->getType(); 17545 17546 return !( 17547 isFMAFasterThanFMulAndFAdd(*F, Ty) && 17548 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 17549 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 17550 } 17551 case Instruction::Load: { 17552 // Don't break "store (load float*)" pattern, this pattern will be combined 17553 // to "store (load int32)" in later InstCombine pass. See function 17554 // combineLoadToOperationType. On PowerPC, loading a float point takes more 17555 // cycles than loading a 32 bit integer. 17556 LoadInst *LI = cast<LoadInst>(I); 17557 // For the loads that combineLoadToOperationType does nothing, like 17558 // ordered load, it should be profitable to hoist them. 17559 // For swifterror load, it can only be used for pointer to pointer type, so 17560 // later type check should get rid of this case. 17561 if (!LI->isUnordered()) 17562 return true; 17563 17564 if (User->getOpcode() != Instruction::Store) 17565 return true; 17566 17567 if (I->getType()->getTypeID() != Type::FloatTyID) 17568 return true; 17569 17570 return false; 17571 } 17572 default: 17573 return true; 17574 } 17575 return true; 17576 } 17577 17578 const MCPhysReg * 17579 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 17580 // LR is a callee-save register, but we must treat it as clobbered by any call 17581 // site. Hence we include LR in the scratch registers, which are in turn added 17582 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 17583 // to CTR, which is used by any indirect call. 17584 static const MCPhysReg ScratchRegs[] = { 17585 PPC::X12, PPC::LR8, PPC::CTR8, 0 17586 }; 17587 17588 return ScratchRegs; 17589 } 17590 17591 Register PPCTargetLowering::getExceptionPointerRegister( 17592 const Constant *PersonalityFn) const { 17593 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 17594 } 17595 17596 Register PPCTargetLowering::getExceptionSelectorRegister( 17597 const Constant *PersonalityFn) const { 17598 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 17599 } 17600 17601 bool 17602 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 17603 EVT VT , unsigned DefinedValues) const { 17604 if (VT == MVT::v2i64) 17605 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 17606 17607 if (Subtarget.hasVSX()) 17608 return true; 17609 17610 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 17611 } 17612 17613 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 17614 if (DisableILPPref || Subtarget.enableMachineScheduler()) 17615 return TargetLowering::getSchedulingPreference(N); 17616 17617 return Sched::ILP; 17618 } 17619 17620 // Create a fast isel object. 17621 FastISel * 17622 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 17623 const TargetLibraryInfo *LibInfo) const { 17624 return PPC::createFastISel(FuncInfo, LibInfo); 17625 } 17626 17627 // 'Inverted' means the FMA opcode after negating one multiplicand. 17628 // For example, (fma -a b c) = (fnmsub a b c) 17629 static unsigned invertFMAOpcode(unsigned Opc) { 17630 switch (Opc) { 17631 default: 17632 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 17633 case ISD::FMA: 17634 return PPCISD::FNMSUB; 17635 case PPCISD::FNMSUB: 17636 return ISD::FMA; 17637 } 17638 } 17639 17640 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 17641 bool LegalOps, bool OptForSize, 17642 NegatibleCost &Cost, 17643 unsigned Depth) const { 17644 if (Depth > SelectionDAG::MaxRecursionDepth) 17645 return SDValue(); 17646 17647 unsigned Opc = Op.getOpcode(); 17648 EVT VT = Op.getValueType(); 17649 SDNodeFlags Flags = Op.getNode()->getFlags(); 17650 17651 switch (Opc) { 17652 case PPCISD::FNMSUB: 17653 if (!Op.hasOneUse() || !isTypeLegal(VT)) 17654 break; 17655 17656 const TargetOptions &Options = getTargetMachine().Options; 17657 SDValue N0 = Op.getOperand(0); 17658 SDValue N1 = Op.getOperand(1); 17659 SDValue N2 = Op.getOperand(2); 17660 SDLoc Loc(Op); 17661 17662 NegatibleCost N2Cost = NegatibleCost::Expensive; 17663 SDValue NegN2 = 17664 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 17665 17666 if (!NegN2) 17667 return SDValue(); 17668 17669 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 17670 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 17671 // These transformations may change sign of zeroes. For example, 17672 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 17673 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 17674 // Try and choose the cheaper one to negate. 17675 NegatibleCost N0Cost = NegatibleCost::Expensive; 17676 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 17677 N0Cost, Depth + 1); 17678 17679 NegatibleCost N1Cost = NegatibleCost::Expensive; 17680 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 17681 N1Cost, Depth + 1); 17682 17683 if (NegN0 && N0Cost <= N1Cost) { 17684 Cost = std::min(N0Cost, N2Cost); 17685 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 17686 } else if (NegN1) { 17687 Cost = std::min(N1Cost, N2Cost); 17688 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 17689 } 17690 } 17691 17692 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 17693 if (isOperationLegal(ISD::FMA, VT)) { 17694 Cost = N2Cost; 17695 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 17696 } 17697 17698 break; 17699 } 17700 17701 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 17702 Cost, Depth); 17703 } 17704 17705 // Override to enable LOAD_STACK_GUARD lowering on Linux. 17706 bool PPCTargetLowering::useLoadStackGuardNode() const { 17707 if (!Subtarget.isTargetLinux()) 17708 return TargetLowering::useLoadStackGuardNode(); 17709 return true; 17710 } 17711 17712 // Override to disable global variable loading on Linux and insert AIX canary 17713 // word declaration. 17714 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 17715 if (Subtarget.isAIXABI()) { 17716 M.getOrInsertGlobal(AIXSSPCanaryWordName, 17717 PointerType::getUnqual(M.getContext())); 17718 return; 17719 } 17720 if (!Subtarget.isTargetLinux()) 17721 return TargetLowering::insertSSPDeclarations(M); 17722 } 17723 17724 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 17725 if (Subtarget.isAIXABI()) 17726 return M.getGlobalVariable(AIXSSPCanaryWordName); 17727 return TargetLowering::getSDagStackGuard(M); 17728 } 17729 17730 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 17731 bool ForCodeSize) const { 17732 if (!VT.isSimple() || !Subtarget.hasVSX()) 17733 return false; 17734 17735 switch(VT.getSimpleVT().SimpleTy) { 17736 default: 17737 // For FP types that are currently not supported by PPC backend, return 17738 // false. Examples: f16, f80. 17739 return false; 17740 case MVT::f32: 17741 case MVT::f64: { 17742 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) { 17743 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 17744 return true; 17745 } 17746 bool IsExact; 17747 APSInt IntResult(16, false); 17748 // The rounding mode doesn't really matter because we only care about floats 17749 // that can be converted to integers exactly. 17750 Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact); 17751 // For exact values in the range [-16, 15] we can materialize the float. 17752 if (IsExact && IntResult <= 15 && IntResult >= -16) 17753 return true; 17754 return Imm.isZero(); 17755 } 17756 case MVT::ppcf128: 17757 return Imm.isPosZero(); 17758 } 17759 } 17760 17761 // For vector shift operation op, fold 17762 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 17763 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 17764 SelectionDAG &DAG) { 17765 SDValue N0 = N->getOperand(0); 17766 SDValue N1 = N->getOperand(1); 17767 EVT VT = N0.getValueType(); 17768 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 17769 unsigned Opcode = N->getOpcode(); 17770 unsigned TargetOpcode; 17771 17772 switch (Opcode) { 17773 default: 17774 llvm_unreachable("Unexpected shift operation"); 17775 case ISD::SHL: 17776 TargetOpcode = PPCISD::SHL; 17777 break; 17778 case ISD::SRL: 17779 TargetOpcode = PPCISD::SRL; 17780 break; 17781 case ISD::SRA: 17782 TargetOpcode = PPCISD::SRA; 17783 break; 17784 } 17785 17786 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 17787 N1->getOpcode() == ISD::AND) 17788 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 17789 if (Mask->getZExtValue() == OpSizeInBits - 1) 17790 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 17791 17792 return SDValue(); 17793 } 17794 17795 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 17796 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17797 return Value; 17798 17799 SDValue N0 = N->getOperand(0); 17800 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 17801 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 17802 N0.getOpcode() != ISD::SIGN_EXTEND || 17803 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 17804 N->getValueType(0) != MVT::i64) 17805 return SDValue(); 17806 17807 // We can't save an operation here if the value is already extended, and 17808 // the existing shift is easier to combine. 17809 SDValue ExtsSrc = N0.getOperand(0); 17810 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 17811 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 17812 return SDValue(); 17813 17814 SDLoc DL(N0); 17815 SDValue ShiftBy = SDValue(CN1, 0); 17816 // We want the shift amount to be i32 on the extswli, but the shift could 17817 // have an i64. 17818 if (ShiftBy.getValueType() == MVT::i64) 17819 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 17820 17821 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 17822 ShiftBy); 17823 } 17824 17825 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 17826 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17827 return Value; 17828 17829 return SDValue(); 17830 } 17831 17832 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 17833 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17834 return Value; 17835 17836 return SDValue(); 17837 } 17838 17839 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 17840 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 17841 // When C is zero, the equation (addi Z, -C) can be simplified to Z 17842 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 17843 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 17844 const PPCSubtarget &Subtarget) { 17845 if (!Subtarget.isPPC64()) 17846 return SDValue(); 17847 17848 SDValue LHS = N->getOperand(0); 17849 SDValue RHS = N->getOperand(1); 17850 17851 auto isZextOfCompareWithConstant = [](SDValue Op) { 17852 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 17853 Op.getValueType() != MVT::i64) 17854 return false; 17855 17856 SDValue Cmp = Op.getOperand(0); 17857 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 17858 Cmp.getOperand(0).getValueType() != MVT::i64) 17859 return false; 17860 17861 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 17862 int64_t NegConstant = 0 - Constant->getSExtValue(); 17863 // Due to the limitations of the addi instruction, 17864 // -C is required to be [-32768, 32767]. 17865 return isInt<16>(NegConstant); 17866 } 17867 17868 return false; 17869 }; 17870 17871 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17872 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17873 17874 // If there is a pattern, canonicalize a zext operand to the RHS. 17875 if (LHSHasPattern && !RHSHasPattern) 17876 std::swap(LHS, RHS); 17877 else if (!LHSHasPattern && !RHSHasPattern) 17878 return SDValue(); 17879 17880 SDLoc DL(N); 17881 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17882 SDValue Cmp = RHS.getOperand(0); 17883 SDValue Z = Cmp.getOperand(0); 17884 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17885 int64_t NegConstant = 0 - Constant->getSExtValue(); 17886 17887 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17888 default: break; 17889 case ISD::SETNE: { 17890 // when C == 0 17891 // --> addze X, (addic Z, -1).carry 17892 // / 17893 // add X, (zext(setne Z, C))-- 17894 // \ when -32768 <= -C <= 32767 && C != 0 17895 // --> addze X, (addic (addi Z, -C), -1).carry 17896 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17897 DAG.getConstant(NegConstant, DL, MVT::i64)); 17898 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17899 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17900 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17901 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17902 SDValue(Addc.getNode(), 1)); 17903 } 17904 case ISD::SETEQ: { 17905 // when C == 0 17906 // --> addze X, (subfic Z, 0).carry 17907 // / 17908 // add X, (zext(sete Z, C))-- 17909 // \ when -32768 <= -C <= 32767 && C != 0 17910 // --> addze X, (subfic (addi Z, -C), 0).carry 17911 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17912 DAG.getConstant(NegConstant, DL, MVT::i64)); 17913 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17914 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17915 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17916 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17917 SDValue(Subc.getNode(), 1)); 17918 } 17919 } 17920 17921 return SDValue(); 17922 } 17923 17924 // Transform 17925 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17926 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17927 // In this case both C1 and C2 must be known constants. 17928 // C1+C2 must fit into a 34 bit signed integer. 17929 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17930 const PPCSubtarget &Subtarget) { 17931 if (!Subtarget.isUsingPCRelativeCalls()) 17932 return SDValue(); 17933 17934 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17935 // If we find that node try to cast the Global Address and the Constant. 17936 SDValue LHS = N->getOperand(0); 17937 SDValue RHS = N->getOperand(1); 17938 17939 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17940 std::swap(LHS, RHS); 17941 17942 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17943 return SDValue(); 17944 17945 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17946 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17947 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17948 17949 // Check that both casts succeeded. 17950 if (!GSDN || !ConstNode) 17951 return SDValue(); 17952 17953 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17954 SDLoc DL(GSDN); 17955 17956 // The signed int offset needs to fit in 34 bits. 17957 if (!isInt<34>(NewOffset)) 17958 return SDValue(); 17959 17960 // The new global address is a copy of the old global address except 17961 // that it has the updated Offset. 17962 SDValue GA = 17963 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17964 NewOffset, GSDN->getTargetFlags()); 17965 SDValue MatPCRel = 17966 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17967 return MatPCRel; 17968 } 17969 17970 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17971 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17972 return Value; 17973 17974 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17975 return Value; 17976 17977 return SDValue(); 17978 } 17979 17980 // Detect TRUNCATE operations on bitcasts of float128 values. 17981 // What we are looking for here is the situtation where we extract a subset 17982 // of bits from a 128 bit float. 17983 // This can be of two forms: 17984 // 1) BITCAST of f128 feeding TRUNCATE 17985 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17986 // The reason this is required is because we do not have a legal i128 type 17987 // and so we want to prevent having to store the f128 and then reload part 17988 // of it. 17989 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17990 DAGCombinerInfo &DCI) const { 17991 // If we are using CRBits then try that first. 17992 if (Subtarget.useCRBits()) { 17993 // Check if CRBits did anything and return that if it did. 17994 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17995 return CRTruncValue; 17996 } 17997 17998 SDLoc dl(N); 17999 SDValue Op0 = N->getOperand(0); 18000 18001 // Looking for a truncate of i128 to i64. 18002 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 18003 return SDValue(); 18004 18005 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 18006 18007 // SRL feeding TRUNCATE. 18008 if (Op0.getOpcode() == ISD::SRL) { 18009 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 18010 // The right shift has to be by 64 bits. 18011 if (!ConstNode || ConstNode->getZExtValue() != 64) 18012 return SDValue(); 18013 18014 // Switch the element number to extract. 18015 EltToExtract = EltToExtract ? 0 : 1; 18016 // Update Op0 past the SRL. 18017 Op0 = Op0.getOperand(0); 18018 } 18019 18020 // BITCAST feeding a TRUNCATE possibly via SRL. 18021 if (Op0.getOpcode() == ISD::BITCAST && 18022 Op0.getValueType() == MVT::i128 && 18023 Op0.getOperand(0).getValueType() == MVT::f128) { 18024 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 18025 return DCI.DAG.getNode( 18026 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 18027 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 18028 } 18029 return SDValue(); 18030 } 18031 18032 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 18033 SelectionDAG &DAG = DCI.DAG; 18034 18035 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 18036 if (!ConstOpOrElement) 18037 return SDValue(); 18038 18039 // An imul is usually smaller than the alternative sequence for legal type. 18040 if (DAG.getMachineFunction().getFunction().hasMinSize() && 18041 isOperationLegal(ISD::MUL, N->getValueType(0))) 18042 return SDValue(); 18043 18044 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 18045 switch (this->Subtarget.getCPUDirective()) { 18046 default: 18047 // TODO: enhance the condition for subtarget before pwr8 18048 return false; 18049 case PPC::DIR_PWR8: 18050 // type mul add shl 18051 // scalar 4 1 1 18052 // vector 7 2 2 18053 return true; 18054 case PPC::DIR_PWR9: 18055 case PPC::DIR_PWR10: 18056 case PPC::DIR_PWR11: 18057 case PPC::DIR_PWR_FUTURE: 18058 // type mul add shl 18059 // scalar 5 2 2 18060 // vector 7 2 2 18061 18062 // The cycle RATIO of related operations are showed as a table above. 18063 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 18064 // scalar and vector type. For 2 instrs patterns, add/sub + shl 18065 // are 4, it is always profitable; but for 3 instrs patterns 18066 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 18067 // So we should only do it for vector type. 18068 return IsAddOne && IsNeg ? VT.isVector() : true; 18069 } 18070 }; 18071 18072 EVT VT = N->getValueType(0); 18073 SDLoc DL(N); 18074 18075 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 18076 bool IsNeg = MulAmt.isNegative(); 18077 APInt MulAmtAbs = MulAmt.abs(); 18078 18079 if ((MulAmtAbs - 1).isPowerOf2()) { 18080 // (mul x, 2^N + 1) => (add (shl x, N), x) 18081 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 18082 18083 if (!IsProfitable(IsNeg, true, VT)) 18084 return SDValue(); 18085 18086 SDValue Op0 = N->getOperand(0); 18087 SDValue Op1 = 18088 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 18089 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 18090 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 18091 18092 if (!IsNeg) 18093 return Res; 18094 18095 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 18096 } else if ((MulAmtAbs + 1).isPowerOf2()) { 18097 // (mul x, 2^N - 1) => (sub (shl x, N), x) 18098 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 18099 18100 if (!IsProfitable(IsNeg, false, VT)) 18101 return SDValue(); 18102 18103 SDValue Op0 = N->getOperand(0); 18104 SDValue Op1 = 18105 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 18106 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 18107 18108 if (!IsNeg) 18109 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 18110 else 18111 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 18112 18113 } else { 18114 return SDValue(); 18115 } 18116 } 18117 18118 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 18119 // in combiner since we need to check SD flags and other subtarget features. 18120 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 18121 DAGCombinerInfo &DCI) const { 18122 SDValue N0 = N->getOperand(0); 18123 SDValue N1 = N->getOperand(1); 18124 SDValue N2 = N->getOperand(2); 18125 SDNodeFlags Flags = N->getFlags(); 18126 EVT VT = N->getValueType(0); 18127 SelectionDAG &DAG = DCI.DAG; 18128 const TargetOptions &Options = getTargetMachine().Options; 18129 unsigned Opc = N->getOpcode(); 18130 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 18131 bool LegalOps = !DCI.isBeforeLegalizeOps(); 18132 SDLoc Loc(N); 18133 18134 if (!isOperationLegal(ISD::FMA, VT)) 18135 return SDValue(); 18136 18137 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 18138 // since (fnmsub a b c)=-0 while c-ab=+0. 18139 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 18140 return SDValue(); 18141 18142 // (fma (fneg a) b c) => (fnmsub a b c) 18143 // (fnmsub (fneg a) b c) => (fma a b c) 18144 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 18145 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 18146 18147 // (fma a (fneg b) c) => (fnmsub a b c) 18148 // (fnmsub a (fneg b) c) => (fma a b c) 18149 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 18150 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 18151 18152 return SDValue(); 18153 } 18154 18155 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 18156 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 18157 if (!Subtarget.is64BitELFABI()) 18158 return false; 18159 18160 // If not a tail call then no need to proceed. 18161 if (!CI->isTailCall()) 18162 return false; 18163 18164 // If sibling calls have been disabled and tail-calls aren't guaranteed 18165 // there is no reason to duplicate. 18166 auto &TM = getTargetMachine(); 18167 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 18168 return false; 18169 18170 // Can't tail call a function called indirectly, or if it has variadic args. 18171 const Function *Callee = CI->getCalledFunction(); 18172 if (!Callee || Callee->isVarArg()) 18173 return false; 18174 18175 // Make sure the callee and caller calling conventions are eligible for tco. 18176 const Function *Caller = CI->getParent()->getParent(); 18177 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 18178 CI->getCallingConv())) 18179 return false; 18180 18181 // If the function is local then we have a good chance at tail-calling it 18182 return getTargetMachine().shouldAssumeDSOLocal(Callee); 18183 } 18184 18185 bool PPCTargetLowering:: 18186 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 18187 const Value *Mask = AndI.getOperand(1); 18188 // If the mask is suitable for andi. or andis. we should sink the and. 18189 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 18190 // Can't handle constants wider than 64-bits. 18191 if (CI->getBitWidth() > 64) 18192 return false; 18193 int64_t ConstVal = CI->getZExtValue(); 18194 return isUInt<16>(ConstVal) || 18195 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 18196 } 18197 18198 // For non-constant masks, we can always use the record-form and. 18199 return true; 18200 } 18201 18202 /// getAddrModeForFlags - Based on the set of address flags, select the most 18203 /// optimal instruction format to match by. 18204 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 18205 // This is not a node we should be handling here. 18206 if (Flags == PPC::MOF_None) 18207 return PPC::AM_None; 18208 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 18209 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 18210 if ((Flags & FlagSet) == FlagSet) 18211 return PPC::AM_DForm; 18212 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 18213 if ((Flags & FlagSet) == FlagSet) 18214 return PPC::AM_DSForm; 18215 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 18216 if ((Flags & FlagSet) == FlagSet) 18217 return PPC::AM_DQForm; 18218 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 18219 if ((Flags & FlagSet) == FlagSet) 18220 return PPC::AM_PrefixDForm; 18221 // If no other forms are selected, return an X-Form as it is the most 18222 // general addressing mode. 18223 return PPC::AM_XForm; 18224 } 18225 18226 /// Set alignment flags based on whether or not the Frame Index is aligned. 18227 /// Utilized when computing flags for address computation when selecting 18228 /// load and store instructions. 18229 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 18230 SelectionDAG &DAG) { 18231 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 18232 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 18233 if (!FI) 18234 return; 18235 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 18236 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 18237 // If this is (add $FI, $S16Imm), the alignment flags are already set 18238 // based on the immediate. We just need to clear the alignment flags 18239 // if the FI alignment is weaker. 18240 if ((FrameIndexAlign % 4) != 0) 18241 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 18242 if ((FrameIndexAlign % 16) != 0) 18243 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 18244 // If the address is a plain FrameIndex, set alignment flags based on 18245 // FI alignment. 18246 if (!IsAdd) { 18247 if ((FrameIndexAlign % 4) == 0) 18248 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 18249 if ((FrameIndexAlign % 16) == 0) 18250 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 18251 } 18252 } 18253 18254 /// Given a node, compute flags that are used for address computation when 18255 /// selecting load and store instructions. The flags computed are stored in 18256 /// FlagSet. This function takes into account whether the node is a constant, 18257 /// an ADD, OR, or a constant, and computes the address flags accordingly. 18258 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 18259 SelectionDAG &DAG) { 18260 // Set the alignment flags for the node depending on if the node is 18261 // 4-byte or 16-byte aligned. 18262 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 18263 if ((Imm & 0x3) == 0) 18264 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 18265 if ((Imm & 0xf) == 0) 18266 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 18267 }; 18268 18269 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 18270 // All 32-bit constants can be computed as LIS + Disp. 18271 const APInt &ConstImm = CN->getAPIntValue(); 18272 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 18273 FlagSet |= PPC::MOF_AddrIsSImm32; 18274 SetAlignFlagsForImm(ConstImm.getZExtValue()); 18275 setAlignFlagsForFI(N, FlagSet, DAG); 18276 } 18277 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 18278 FlagSet |= PPC::MOF_RPlusSImm34; 18279 else // Let constant materialization handle large constants. 18280 FlagSet |= PPC::MOF_NotAddNorCst; 18281 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 18282 // This address can be represented as an addition of: 18283 // - Register + Imm16 (possibly a multiple of 4/16) 18284 // - Register + Imm34 18285 // - Register + PPCISD::Lo 18286 // - Register + Register 18287 // In any case, we won't have to match this as Base + Zero. 18288 SDValue RHS = N.getOperand(1); 18289 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 18290 const APInt &ConstImm = CN->getAPIntValue(); 18291 if (ConstImm.isSignedIntN(16)) { 18292 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 18293 SetAlignFlagsForImm(ConstImm.getZExtValue()); 18294 setAlignFlagsForFI(N, FlagSet, DAG); 18295 } 18296 if (ConstImm.isSignedIntN(34)) 18297 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 18298 else 18299 FlagSet |= PPC::MOF_RPlusR; // Register. 18300 } else if (RHS.getOpcode() == PPCISD::Lo && !RHS.getConstantOperandVal(1)) 18301 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 18302 else 18303 FlagSet |= PPC::MOF_RPlusR; 18304 } else { // The address computation is not a constant or an addition. 18305 setAlignFlagsForFI(N, FlagSet, DAG); 18306 FlagSet |= PPC::MOF_NotAddNorCst; 18307 } 18308 } 18309 18310 static bool isPCRelNode(SDValue N) { 18311 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 18312 isValidPCRelNode<ConstantPoolSDNode>(N) || 18313 isValidPCRelNode<GlobalAddressSDNode>(N) || 18314 isValidPCRelNode<JumpTableSDNode>(N) || 18315 isValidPCRelNode<BlockAddressSDNode>(N)); 18316 } 18317 18318 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 18319 /// the address flags of the load/store instruction that is to be matched. 18320 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 18321 SelectionDAG &DAG) const { 18322 unsigned FlagSet = PPC::MOF_None; 18323 18324 // Compute subtarget flags. 18325 if (!Subtarget.hasP9Vector()) 18326 FlagSet |= PPC::MOF_SubtargetBeforeP9; 18327 else 18328 FlagSet |= PPC::MOF_SubtargetP9; 18329 18330 if (Subtarget.hasPrefixInstrs()) 18331 FlagSet |= PPC::MOF_SubtargetP10; 18332 18333 if (Subtarget.hasSPE()) 18334 FlagSet |= PPC::MOF_SubtargetSPE; 18335 18336 // Check if we have a PCRel node and return early. 18337 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 18338 return FlagSet; 18339 18340 // If the node is the paired load/store intrinsics, compute flags for 18341 // address computation and return early. 18342 unsigned ParentOp = Parent->getOpcode(); 18343 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 18344 (ParentOp == ISD::INTRINSIC_VOID))) { 18345 unsigned ID = Parent->getConstantOperandVal(1); 18346 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 18347 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 18348 ? Parent->getOperand(2) 18349 : Parent->getOperand(3); 18350 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 18351 FlagSet |= PPC::MOF_Vector; 18352 return FlagSet; 18353 } 18354 } 18355 18356 // Mark this as something we don't want to handle here if it is atomic 18357 // or pre-increment instruction. 18358 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 18359 if (LSB->isIndexed()) 18360 return PPC::MOF_None; 18361 18362 // Compute in-memory type flags. This is based on if there are scalars, 18363 // floats or vectors. 18364 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 18365 assert(MN && "Parent should be a MemSDNode!"); 18366 EVT MemVT = MN->getMemoryVT(); 18367 unsigned Size = MemVT.getSizeInBits(); 18368 if (MemVT.isScalarInteger()) { 18369 assert(Size <= 128 && 18370 "Not expecting scalar integers larger than 16 bytes!"); 18371 if (Size < 32) 18372 FlagSet |= PPC::MOF_SubWordInt; 18373 else if (Size == 32) 18374 FlagSet |= PPC::MOF_WordInt; 18375 else 18376 FlagSet |= PPC::MOF_DoubleWordInt; 18377 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 18378 if (Size == 128) 18379 FlagSet |= PPC::MOF_Vector; 18380 else if (Size == 256) { 18381 assert(Subtarget.pairedVectorMemops() && 18382 "256-bit vectors are only available when paired vector memops is " 18383 "enabled!"); 18384 FlagSet |= PPC::MOF_Vector; 18385 } else 18386 llvm_unreachable("Not expecting illegal vectors!"); 18387 } else { // Floating point type: can be scalar, f128 or vector types. 18388 if (Size == 32 || Size == 64) 18389 FlagSet |= PPC::MOF_ScalarFloat; 18390 else if (MemVT == MVT::f128 || MemVT.isVector()) 18391 FlagSet |= PPC::MOF_Vector; 18392 else 18393 llvm_unreachable("Not expecting illegal scalar floats!"); 18394 } 18395 18396 // Compute flags for address computation. 18397 computeFlagsForAddressComputation(N, FlagSet, DAG); 18398 18399 // Compute type extension flags. 18400 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 18401 switch (LN->getExtensionType()) { 18402 case ISD::SEXTLOAD: 18403 FlagSet |= PPC::MOF_SExt; 18404 break; 18405 case ISD::EXTLOAD: 18406 case ISD::ZEXTLOAD: 18407 FlagSet |= PPC::MOF_ZExt; 18408 break; 18409 case ISD::NON_EXTLOAD: 18410 FlagSet |= PPC::MOF_NoExt; 18411 break; 18412 } 18413 } else 18414 FlagSet |= PPC::MOF_NoExt; 18415 18416 // For integers, no extension is the same as zero extension. 18417 // We set the extension mode to zero extension so we don't have 18418 // to add separate entries in AddrModesMap for loads and stores. 18419 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 18420 FlagSet |= PPC::MOF_ZExt; 18421 FlagSet &= ~PPC::MOF_NoExt; 18422 } 18423 18424 // If we don't have prefixed instructions, 34-bit constants should be 18425 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 18426 bool IsNonP1034BitConst = 18427 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 18428 FlagSet) == PPC::MOF_RPlusSImm34; 18429 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 18430 IsNonP1034BitConst) 18431 FlagSet |= PPC::MOF_NotAddNorCst; 18432 18433 return FlagSet; 18434 } 18435 18436 /// SelectForceXFormMode - Given the specified address, force it to be 18437 /// represented as an indexed [r+r] operation (an XForm instruction). 18438 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 18439 SDValue &Base, 18440 SelectionDAG &DAG) const { 18441 18442 PPC::AddrMode Mode = PPC::AM_XForm; 18443 int16_t ForceXFormImm = 0; 18444 if (provablyDisjointOr(DAG, N) && 18445 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 18446 Disp = N.getOperand(0); 18447 Base = N.getOperand(1); 18448 return Mode; 18449 } 18450 18451 // If the address is the result of an add, we will utilize the fact that the 18452 // address calculation includes an implicit add. However, we can reduce 18453 // register pressure if we do not materialize a constant just for use as the 18454 // index register. We only get rid of the add if it is not an add of a 18455 // value and a 16-bit signed constant and both have a single use. 18456 if (N.getOpcode() == ISD::ADD && 18457 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 18458 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 18459 Disp = N.getOperand(0); 18460 Base = N.getOperand(1); 18461 return Mode; 18462 } 18463 18464 // Otherwise, use R0 as the base register. 18465 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18466 N.getValueType()); 18467 Base = N; 18468 18469 return Mode; 18470 } 18471 18472 bool PPCTargetLowering::splitValueIntoRegisterParts( 18473 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 18474 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 18475 EVT ValVT = Val.getValueType(); 18476 // If we are splitting a scalar integer into f64 parts (i.e. so they 18477 // can be placed into VFRC registers), we need to zero extend and 18478 // bitcast the values. This will ensure the value is placed into a 18479 // VSR using direct moves or stack operations as needed. 18480 if (PartVT == MVT::f64 && 18481 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 18482 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 18483 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 18484 Parts[0] = Val; 18485 return true; 18486 } 18487 return false; 18488 } 18489 18490 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 18491 SelectionDAG &DAG) const { 18492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18493 TargetLowering::CallLoweringInfo CLI(DAG); 18494 EVT RetVT = Op.getValueType(); 18495 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 18496 SDValue Callee = 18497 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 18498 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 18499 TargetLowering::ArgListTy Args; 18500 TargetLowering::ArgListEntry Entry; 18501 for (const SDValue &N : Op->op_values()) { 18502 EVT ArgVT = N.getValueType(); 18503 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 18504 Entry.Node = N; 18505 Entry.Ty = ArgTy; 18506 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 18507 Entry.IsZExt = !Entry.IsSExt; 18508 Args.push_back(Entry); 18509 } 18510 18511 SDValue InChain = DAG.getEntryNode(); 18512 SDValue TCChain = InChain; 18513 const Function &F = DAG.getMachineFunction().getFunction(); 18514 bool isTailCall = 18515 TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && 18516 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 18517 if (isTailCall) 18518 InChain = TCChain; 18519 CLI.setDebugLoc(SDLoc(Op)) 18520 .setChain(InChain) 18521 .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) 18522 .setTailCall(isTailCall) 18523 .setSExtResult(SignExtend) 18524 .setZExtResult(!SignExtend) 18525 .setIsPostTypeLegalization(true); 18526 return TLI.LowerCallTo(CLI).first; 18527 } 18528 18529 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 18530 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 18531 SelectionDAG &DAG) const { 18532 if (Op.getValueType() == MVT::f32) 18533 return lowerToLibCall(LibCallFloatName, Op, DAG); 18534 18535 if (Op.getValueType() == MVT::f64) 18536 return lowerToLibCall(LibCallDoubleName, Op, DAG); 18537 18538 return SDValue(); 18539 } 18540 18541 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 18542 SDNodeFlags Flags = Op.getNode()->getFlags(); 18543 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 18544 Flags.hasNoNaNs() && Flags.hasNoInfs(); 18545 } 18546 18547 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 18548 return Op.getNode()->getFlags().hasApproximateFuncs(); 18549 } 18550 18551 bool PPCTargetLowering::isScalarMASSConversionEnabled() const { 18552 return getTargetMachine().Options.PPCGenScalarMASSEntries; 18553 } 18554 18555 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 18556 const char *LibCallFloatName, 18557 const char *LibCallDoubleNameFinite, 18558 const char *LibCallFloatNameFinite, 18559 SDValue Op, 18560 SelectionDAG &DAG) const { 18561 if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op)) 18562 return SDValue(); 18563 18564 if (!isLowringToMASSFiniteSafe(Op)) 18565 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 18566 DAG); 18567 18568 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 18569 LibCallDoubleNameFinite, Op, DAG); 18570 } 18571 18572 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 18573 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 18574 "__xl_powf_finite", Op, DAG); 18575 } 18576 18577 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 18578 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 18579 "__xl_sinf_finite", Op, DAG); 18580 } 18581 18582 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 18583 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 18584 "__xl_cosf_finite", Op, DAG); 18585 } 18586 18587 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 18588 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 18589 "__xl_logf_finite", Op, DAG); 18590 } 18591 18592 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 18593 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 18594 "__xl_log10f_finite", Op, DAG); 18595 } 18596 18597 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 18598 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 18599 "__xl_expf_finite", Op, DAG); 18600 } 18601 18602 // If we happen to match to an aligned D-Form, check if the Frame Index is 18603 // adequately aligned. If it is not, reset the mode to match to X-Form. 18604 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 18605 PPC::AddrMode &Mode) { 18606 if (!isa<FrameIndexSDNode>(N)) 18607 return; 18608 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 18609 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 18610 Mode = PPC::AM_XForm; 18611 } 18612 18613 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 18614 /// compute the address flags of the node, get the optimal address mode based 18615 /// on the flags, and set the Base and Disp based on the address mode. 18616 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 18617 SDValue N, SDValue &Disp, 18618 SDValue &Base, 18619 SelectionDAG &DAG, 18620 MaybeAlign Align) const { 18621 SDLoc DL(Parent); 18622 18623 // Compute the address flags. 18624 unsigned Flags = computeMOFlags(Parent, N, DAG); 18625 18626 // Get the optimal address mode based on the Flags. 18627 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 18628 18629 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 18630 // Select an X-Form load if it is not. 18631 setXFormForUnalignedFI(N, Flags, Mode); 18632 18633 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 18634 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 18635 assert(Subtarget.isUsingPCRelativeCalls() && 18636 "Must be using PC-Relative calls when a valid PC-Relative node is " 18637 "present!"); 18638 Mode = PPC::AM_PCRel; 18639 } 18640 18641 // Set Base and Disp accordingly depending on the address mode. 18642 switch (Mode) { 18643 case PPC::AM_DForm: 18644 case PPC::AM_DSForm: 18645 case PPC::AM_DQForm: { 18646 // This is a register plus a 16-bit immediate. The base will be the 18647 // register and the displacement will be the immediate unless it 18648 // isn't sufficiently aligned. 18649 if (Flags & PPC::MOF_RPlusSImm16) { 18650 SDValue Op0 = N.getOperand(0); 18651 SDValue Op1 = N.getOperand(1); 18652 int16_t Imm = Op1->getAsZExtVal(); 18653 if (!Align || isAligned(*Align, Imm)) { 18654 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 18655 Base = Op0; 18656 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 18657 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18658 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 18659 } 18660 break; 18661 } 18662 } 18663 // This is a register plus the @lo relocation. The base is the register 18664 // and the displacement is the global address. 18665 else if (Flags & PPC::MOF_RPlusLo) { 18666 Disp = N.getOperand(1).getOperand(0); // The global address. 18667 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 18668 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 18669 Disp.getOpcode() == ISD::TargetConstantPool || 18670 Disp.getOpcode() == ISD::TargetJumpTable); 18671 Base = N.getOperand(0); 18672 break; 18673 } 18674 // This is a constant address at most 32 bits. The base will be 18675 // zero or load-immediate-shifted and the displacement will be 18676 // the low 16 bits of the address. 18677 else if (Flags & PPC::MOF_AddrIsSImm32) { 18678 auto *CN = cast<ConstantSDNode>(N); 18679 EVT CNType = CN->getValueType(0); 18680 uint64_t CNImm = CN->getZExtValue(); 18681 // If this address fits entirely in a 16-bit sext immediate field, codegen 18682 // this as "d, 0". 18683 int16_t Imm; 18684 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 18685 Disp = DAG.getTargetConstant(Imm, DL, CNType); 18686 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18687 CNType); 18688 break; 18689 } 18690 // Handle 32-bit sext immediate with LIS + Addr mode. 18691 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 18692 (!Align || isAligned(*Align, CNImm))) { 18693 int32_t Addr = (int32_t)CNImm; 18694 // Otherwise, break this down into LIS + Disp. 18695 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 18696 Base = 18697 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 18698 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 18699 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 18700 break; 18701 } 18702 } 18703 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 18704 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 18705 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 18706 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18707 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 18708 } else 18709 Base = N; 18710 break; 18711 } 18712 case PPC::AM_PrefixDForm: { 18713 int64_t Imm34 = 0; 18714 unsigned Opcode = N.getOpcode(); 18715 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 18716 (isIntS34Immediate(N.getOperand(1), Imm34))) { 18717 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 18718 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18719 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 18720 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18721 else 18722 Base = N.getOperand(0); 18723 } else if (isIntS34Immediate(N, Imm34)) { 18724 // The address is a 34-bit signed immediate. 18725 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18726 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 18727 } 18728 break; 18729 } 18730 case PPC::AM_PCRel: { 18731 // When selecting PC-Relative instructions, "Base" is not utilized as 18732 // we select the address as [PC+imm]. 18733 Disp = N; 18734 break; 18735 } 18736 case PPC::AM_None: 18737 break; 18738 default: { // By default, X-Form is always available to be selected. 18739 // When a frame index is not aligned, we also match by XForm. 18740 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 18741 Base = FI ? N : N.getOperand(1); 18742 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18743 N.getValueType()) 18744 : N.getOperand(0); 18745 break; 18746 } 18747 } 18748 return Mode; 18749 } 18750 18751 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18752 bool Return, 18753 bool IsVarArg) const { 18754 switch (CC) { 18755 case CallingConv::Cold: 18756 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF); 18757 default: 18758 return CC_PPC64_ELF; 18759 } 18760 } 18761 18762 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const { 18763 return Subtarget.isPPC64() && Subtarget.hasQuadwordAtomics(); 18764 } 18765 18766 TargetLowering::AtomicExpansionKind 18767 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18768 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18769 if (shouldInlineQuadwordAtomics() && Size == 128) 18770 return AtomicExpansionKind::MaskedIntrinsic; 18771 18772 switch (AI->getOperation()) { 18773 case AtomicRMWInst::UIncWrap: 18774 case AtomicRMWInst::UDecWrap: 18775 return AtomicExpansionKind::CmpXChg; 18776 default: 18777 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18778 } 18779 18780 llvm_unreachable("unreachable atomicrmw operation"); 18781 } 18782 18783 TargetLowering::AtomicExpansionKind 18784 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18785 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18786 if (shouldInlineQuadwordAtomics() && Size == 128) 18787 return AtomicExpansionKind::MaskedIntrinsic; 18788 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18789 } 18790 18791 static Intrinsic::ID 18792 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18793 switch (BinOp) { 18794 default: 18795 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18796 case AtomicRMWInst::Xchg: 18797 return Intrinsic::ppc_atomicrmw_xchg_i128; 18798 case AtomicRMWInst::Add: 18799 return Intrinsic::ppc_atomicrmw_add_i128; 18800 case AtomicRMWInst::Sub: 18801 return Intrinsic::ppc_atomicrmw_sub_i128; 18802 case AtomicRMWInst::And: 18803 return Intrinsic::ppc_atomicrmw_and_i128; 18804 case AtomicRMWInst::Or: 18805 return Intrinsic::ppc_atomicrmw_or_i128; 18806 case AtomicRMWInst::Xor: 18807 return Intrinsic::ppc_atomicrmw_xor_i128; 18808 case AtomicRMWInst::Nand: 18809 return Intrinsic::ppc_atomicrmw_nand_i128; 18810 } 18811 } 18812 18813 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18814 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18815 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18816 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18817 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18818 Type *ValTy = Incr->getType(); 18819 assert(ValTy->getPrimitiveSizeInBits() == 128); 18820 Function *RMW = Intrinsic::getDeclaration( 18821 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18822 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18823 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18824 Value *IncrHi = 18825 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18826 Value *LoHi = Builder.CreateCall(RMW, {AlignedAddr, IncrLo, IncrHi}); 18827 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18828 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18829 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18830 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18831 return Builder.CreateOr( 18832 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18833 } 18834 18835 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18836 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18837 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18838 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18839 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18840 Type *ValTy = CmpVal->getType(); 18841 assert(ValTy->getPrimitiveSizeInBits() == 128); 18842 Function *IntCmpXchg = 18843 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18844 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18845 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18846 Value *CmpHi = 18847 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18848 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18849 Value *NewHi = 18850 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18851 emitLeadingFence(Builder, CI, Ord); 18852 Value *LoHi = 18853 Builder.CreateCall(IntCmpXchg, {AlignedAddr, CmpLo, CmpHi, NewLo, NewHi}); 18854 emitTrailingFence(Builder, CI, Ord); 18855 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18856 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18857 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18858 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18859 return Builder.CreateOr( 18860 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18861 } 18862