xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/MC/MCExpr.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/MC/MCSymbolXCOFF.h"
77 #include "llvm/Support/AtomicOrdering.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CodeGen.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/Format.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MachineValueType.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetMachine.h"
91 #include "llvm/Target/TargetOptions.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <list>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 
102 #define DEBUG_TYPE "ppc-lowering"
103 
104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
112 
113 static cl::opt<bool> DisableSCO("disable-ppc-sco",
114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
115 
116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
118 
119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
120 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
121 
122 STATISTIC(NumTailCalls, "Number of tail calls");
123 STATISTIC(NumSiblingCalls, "Number of sibling calls");
124 
125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
126 
127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
128 
129 // FIXME: Remove this once the bug has been fixed!
130 extern cl::opt<bool> ANDIGlueBug;
131 
132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
133                                      const PPCSubtarget &STI)
134     : TargetLowering(TM), Subtarget(STI) {
135   // Use _setjmp/_longjmp instead of setjmp/longjmp.
136   setUseUnderscoreSetJmp(true);
137   setUseUnderscoreLongJmp(true);
138 
139   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
140   // arguments are at least 4/8 bytes aligned.
141   bool isPPC64 = Subtarget.isPPC64();
142   setMinStackArgumentAlignment(isPPC64 ? 8:4);
143 
144   // Set up the register classes.
145   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
146   if (!useSoftFloat()) {
147     if (hasSPE()) {
148       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
149       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
150     } else {
151       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
152       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
153     }
154   }
155 
156   // Match BITREVERSE to customized fast code sequence in the td file.
157   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
158   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
159 
160   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
161   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
162 
163   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
164   for (MVT VT : MVT::integer_valuetypes()) {
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
167   }
168 
169   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
170 
171   // PowerPC has pre-inc load and store's.
172   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
177   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
182   if (!Subtarget.hasSPE()) {
183     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
185     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
187   }
188 
189   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
190   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
191   for (MVT VT : ScalarIntVTs) {
192     setOperationAction(ISD::ADDC, VT, Legal);
193     setOperationAction(ISD::ADDE, VT, Legal);
194     setOperationAction(ISD::SUBC, VT, Legal);
195     setOperationAction(ISD::SUBE, VT, Legal);
196   }
197 
198   if (Subtarget.useCRBits()) {
199     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
200 
201     if (isPPC64 || Subtarget.hasFPCVT()) {
202       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
203       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
204                          isPPC64 ? MVT::i64 : MVT::i32);
205       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
206       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
207                         isPPC64 ? MVT::i64 : MVT::i32);
208     } else {
209       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
210       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
211     }
212 
213     // PowerPC does not support direct load/store of condition registers.
214     setOperationAction(ISD::LOAD, MVT::i1, Custom);
215     setOperationAction(ISD::STORE, MVT::i1, Custom);
216 
217     // FIXME: Remove this once the ANDI glue bug is fixed:
218     if (ANDIGlueBug)
219       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
220 
221     for (MVT VT : MVT::integer_valuetypes()) {
222       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
223       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
224       setTruncStoreAction(VT, MVT::i1, Expand);
225     }
226 
227     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
228   }
229 
230   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
231   // PPC (the libcall is not available).
232   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
233   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
234 
235   // We do not currently implement these libm ops for PowerPC.
236   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
237   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
238   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
239   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
240   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
241   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
242 
243   // PowerPC has no SREM/UREM instructions unless we are on P9
244   // On P9 we may use a hardware instruction to compute the remainder.
245   // The instructions are not legalized directly because in the cases where the
246   // result of both the remainder and the division is required it is more
247   // efficient to compute the remainder from the result of the division rather
248   // than use the remainder instruction.
249   if (Subtarget.isISA3_0()) {
250     setOperationAction(ISD::SREM, MVT::i32, Custom);
251     setOperationAction(ISD::UREM, MVT::i32, Custom);
252     setOperationAction(ISD::SREM, MVT::i64, Custom);
253     setOperationAction(ISD::UREM, MVT::i64, Custom);
254   } else {
255     setOperationAction(ISD::SREM, MVT::i32, Expand);
256     setOperationAction(ISD::UREM, MVT::i32, Expand);
257     setOperationAction(ISD::SREM, MVT::i64, Expand);
258     setOperationAction(ISD::UREM, MVT::i64, Expand);
259   }
260 
261   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
262   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
263   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
265   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
267   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
269   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
270 
271   // We don't support sin/cos/sqrt/fmod/pow
272   setOperationAction(ISD::FSIN , MVT::f64, Expand);
273   setOperationAction(ISD::FCOS , MVT::f64, Expand);
274   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
275   setOperationAction(ISD::FREM , MVT::f64, Expand);
276   setOperationAction(ISD::FPOW , MVT::f64, Expand);
277   setOperationAction(ISD::FSIN , MVT::f32, Expand);
278   setOperationAction(ISD::FCOS , MVT::f32, Expand);
279   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
280   setOperationAction(ISD::FREM , MVT::f32, Expand);
281   setOperationAction(ISD::FPOW , MVT::f32, Expand);
282   if (Subtarget.hasSPE()) {
283     setOperationAction(ISD::FMA  , MVT::f64, Expand);
284     setOperationAction(ISD::FMA  , MVT::f32, Expand);
285   } else {
286     setOperationAction(ISD::FMA  , MVT::f64, Legal);
287     setOperationAction(ISD::FMA  , MVT::f32, Legal);
288   }
289 
290   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
291 
292   // If we're enabling GP optimizations, use hardware square root
293   if (!Subtarget.hasFSQRT() &&
294       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
295         Subtarget.hasFRE()))
296     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
297 
298   if (!Subtarget.hasFSQRT() &&
299       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
300         Subtarget.hasFRES()))
301     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
302 
303   if (Subtarget.hasFCPSGN()) {
304     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
305     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
306   } else {
307     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
308     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
309   }
310 
311   if (Subtarget.hasFPRND()) {
312     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
313     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
314     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
315     setOperationAction(ISD::FROUND, MVT::f64, Legal);
316 
317     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
318     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
319     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
320     setOperationAction(ISD::FROUND, MVT::f32, Legal);
321   }
322 
323   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
324   // to speed up scalar BSWAP64.
325   // CTPOP or CTTZ were introduced in P8/P9 respectively
326   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
327   if (Subtarget.hasP9Vector())
328     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
329   else
330     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
331   if (Subtarget.isISA3_0()) {
332     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
333     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
334   } else {
335     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
336     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
337   }
338 
339   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
340     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
341     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
342   } else {
343     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
344     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
345   }
346 
347   // PowerPC does not have ROTR
348   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
349   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
350 
351   if (!Subtarget.useCRBits()) {
352     // PowerPC does not have Select
353     setOperationAction(ISD::SELECT, MVT::i32, Expand);
354     setOperationAction(ISD::SELECT, MVT::i64, Expand);
355     setOperationAction(ISD::SELECT, MVT::f32, Expand);
356     setOperationAction(ISD::SELECT, MVT::f64, Expand);
357   }
358 
359   // PowerPC wants to turn select_cc of FP into fsel when possible.
360   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
361   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
362 
363   // PowerPC wants to optimize integer setcc a bit
364   if (!Subtarget.useCRBits())
365     setOperationAction(ISD::SETCC, MVT::i32, Custom);
366 
367   // PowerPC does not have BRCOND which requires SetCC
368   if (!Subtarget.useCRBits())
369     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
370 
371   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
372 
373   if (Subtarget.hasSPE()) {
374     // SPE has built-in conversions
375     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
376     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
377     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
378   } else {
379     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
380     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
381 
382     // PowerPC does not have [U|S]INT_TO_FP
383     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
384     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
385   }
386 
387   if (Subtarget.hasDirectMove() && isPPC64) {
388     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
389     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
390     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
391     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
392   } else {
393     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
394     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
395     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
396     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
397   }
398 
399   // We cannot sextinreg(i1).  Expand to shifts.
400   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
401 
402   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
403   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
404   // support continuation, user-level threading, and etc.. As a result, no
405   // other SjLj exception interfaces are implemented and please don't build
406   // your own exception handling based on them.
407   // LLVM/Clang supports zero-cost DWARF exception handling.
408   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
409   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
410 
411   // We want to legalize GlobalAddress and ConstantPool nodes into the
412   // appropriate instructions to materialize the address.
413   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
414   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
415   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
416   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
417   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
418   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
419   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
420   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
421   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
422   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
423 
424   // TRAP is legal.
425   setOperationAction(ISD::TRAP, MVT::Other, Legal);
426 
427   // TRAMPOLINE is custom lowered.
428   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
429   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
430 
431   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
432   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
433 
434   if (Subtarget.isSVR4ABI()) {
435     if (isPPC64) {
436       // VAARG always uses double-word chunks, so promote anything smaller.
437       setOperationAction(ISD::VAARG, MVT::i1, Promote);
438       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
439       setOperationAction(ISD::VAARG, MVT::i8, Promote);
440       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
441       setOperationAction(ISD::VAARG, MVT::i16, Promote);
442       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
443       setOperationAction(ISD::VAARG, MVT::i32, Promote);
444       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
445       setOperationAction(ISD::VAARG, MVT::Other, Expand);
446     } else {
447       // VAARG is custom lowered with the 32-bit SVR4 ABI.
448       setOperationAction(ISD::VAARG, MVT::Other, Custom);
449       setOperationAction(ISD::VAARG, MVT::i64, Custom);
450     }
451   } else
452     setOperationAction(ISD::VAARG, MVT::Other, Expand);
453 
454   if (Subtarget.isSVR4ABI() && !isPPC64)
455     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
456     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
457   else
458     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
459 
460   // Use the default implementation.
461   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
462   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
463   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
464   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
465   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
466   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
467   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
468   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
469   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
470 
471   // We want to custom lower some of our intrinsics.
472   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
473 
474   // To handle counter-based loop conditions.
475   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
476 
477   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
478   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
479   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
480   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
481 
482   // Comparisons that require checking two conditions.
483   if (Subtarget.hasSPE()) {
484     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
485     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
486     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
487     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
488   }
489   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
490   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
491   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
492   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
493   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
494   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
495   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
496   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
497   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
498   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
499   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
500   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
501 
502   if (Subtarget.has64BitSupport()) {
503     // They also have instructions for converting between i64 and fp.
504     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
505     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
506     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
507     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
508     // This is just the low 32 bits of a (signed) fp->i64 conversion.
509     // We cannot do this with Promote because i64 is not a legal type.
510     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
511 
512     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
513       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
514   } else {
515     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
516     if (Subtarget.hasSPE())
517       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
518     else
519       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
520   }
521 
522   // With the instructions enabled under FPCVT, we can do everything.
523   if (Subtarget.hasFPCVT()) {
524     if (Subtarget.has64BitSupport()) {
525       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
526       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
527       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
528       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
529     }
530 
531     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
532     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
533     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
534     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
535   }
536 
537   if (Subtarget.use64BitRegs()) {
538     // 64-bit PowerPC implementations can support i64 types directly
539     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
540     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
541     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
542     // 64-bit PowerPC wants to expand i128 shifts itself.
543     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
544     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
545     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
546   } else {
547     // 32-bit PowerPC wants to expand i64 shifts itself.
548     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
549     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
550     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
551   }
552 
553   if (Subtarget.hasAltivec()) {
554     // First set operation action for all vector types to expand. Then we
555     // will selectively turn on ones that can be effectively codegen'd.
556     for (MVT VT : MVT::vector_valuetypes()) {
557       // add/sub are legal for all supported vector VT's.
558       setOperationAction(ISD::ADD, VT, Legal);
559       setOperationAction(ISD::SUB, VT, Legal);
560 
561       // For v2i64, these are only valid with P8Vector. This is corrected after
562       // the loop.
563       setOperationAction(ISD::SMAX, VT, Legal);
564       setOperationAction(ISD::SMIN, VT, Legal);
565       setOperationAction(ISD::UMAX, VT, Legal);
566       setOperationAction(ISD::UMIN, VT, Legal);
567 
568       if (Subtarget.hasVSX()) {
569         setOperationAction(ISD::FMAXNUM, VT, Legal);
570         setOperationAction(ISD::FMINNUM, VT, Legal);
571       }
572 
573       // Vector instructions introduced in P8
574       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
575         setOperationAction(ISD::CTPOP, VT, Legal);
576         setOperationAction(ISD::CTLZ, VT, Legal);
577       }
578       else {
579         setOperationAction(ISD::CTPOP, VT, Expand);
580         setOperationAction(ISD::CTLZ, VT, Expand);
581       }
582 
583       // Vector instructions introduced in P9
584       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
585         setOperationAction(ISD::CTTZ, VT, Legal);
586       else
587         setOperationAction(ISD::CTTZ, VT, Expand);
588 
589       // We promote all shuffles to v16i8.
590       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
591       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
592 
593       // We promote all non-typed operations to v4i32.
594       setOperationAction(ISD::AND   , VT, Promote);
595       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
596       setOperationAction(ISD::OR    , VT, Promote);
597       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
598       setOperationAction(ISD::XOR   , VT, Promote);
599       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
600       setOperationAction(ISD::LOAD  , VT, Promote);
601       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
602       setOperationAction(ISD::SELECT, VT, Promote);
603       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
604       setOperationAction(ISD::VSELECT, VT, Legal);
605       setOperationAction(ISD::SELECT_CC, VT, Promote);
606       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
607       setOperationAction(ISD::STORE, VT, Promote);
608       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
609 
610       // No other operations are legal.
611       setOperationAction(ISD::MUL , VT, Expand);
612       setOperationAction(ISD::SDIV, VT, Expand);
613       setOperationAction(ISD::SREM, VT, Expand);
614       setOperationAction(ISD::UDIV, VT, Expand);
615       setOperationAction(ISD::UREM, VT, Expand);
616       setOperationAction(ISD::FDIV, VT, Expand);
617       setOperationAction(ISD::FREM, VT, Expand);
618       setOperationAction(ISD::FNEG, VT, Expand);
619       setOperationAction(ISD::FSQRT, VT, Expand);
620       setOperationAction(ISD::FLOG, VT, Expand);
621       setOperationAction(ISD::FLOG10, VT, Expand);
622       setOperationAction(ISD::FLOG2, VT, Expand);
623       setOperationAction(ISD::FEXP, VT, Expand);
624       setOperationAction(ISD::FEXP2, VT, Expand);
625       setOperationAction(ISD::FSIN, VT, Expand);
626       setOperationAction(ISD::FCOS, VT, Expand);
627       setOperationAction(ISD::FABS, VT, Expand);
628       setOperationAction(ISD::FFLOOR, VT, Expand);
629       setOperationAction(ISD::FCEIL,  VT, Expand);
630       setOperationAction(ISD::FTRUNC, VT, Expand);
631       setOperationAction(ISD::FRINT,  VT, Expand);
632       setOperationAction(ISD::FNEARBYINT, VT, Expand);
633       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
634       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
635       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
636       setOperationAction(ISD::MULHU, VT, Expand);
637       setOperationAction(ISD::MULHS, VT, Expand);
638       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
639       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
640       setOperationAction(ISD::UDIVREM, VT, Expand);
641       setOperationAction(ISD::SDIVREM, VT, Expand);
642       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
643       setOperationAction(ISD::FPOW, VT, Expand);
644       setOperationAction(ISD::BSWAP, VT, Expand);
645       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
646       setOperationAction(ISD::ROTL, VT, Expand);
647       setOperationAction(ISD::ROTR, VT, Expand);
648 
649       for (MVT InnerVT : MVT::vector_valuetypes()) {
650         setTruncStoreAction(VT, InnerVT, Expand);
651         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
652         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
653         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
654       }
655     }
656     if (!Subtarget.hasP8Vector()) {
657       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
658       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
659       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
660       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
661     }
662 
663     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
664       setOperationAction(ISD::ABS, VT, Custom);
665 
666     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
667     // with merges, splats, etc.
668     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
669 
670     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
671     // are cheap, so handle them before they get expanded to scalar.
672     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
673     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
674     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
675     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
676     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
677 
678     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
679     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
680     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
681     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
682     setOperationAction(ISD::SELECT, MVT::v4i32,
683                        Subtarget.useCRBits() ? Legal : Expand);
684     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
685     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
686     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
687     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
688     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
689     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
690     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
691     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
692     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
693 
694     // Without hasP8Altivec set, v2i64 SMAX isn't available.
695     // But ABS custom lowering requires SMAX support.
696     if (!Subtarget.hasP8Altivec())
697       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
698 
699     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
700     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
701     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
702     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
703 
704     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
705     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
706 
707     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
708       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
709       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
710     }
711 
712     if (Subtarget.hasP8Altivec())
713       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
714     else
715       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
716 
717     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
718     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
719 
720     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
721     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
722 
723     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
724     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
725     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
726     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
727 
728     // Altivec does not contain unordered floating-point compare instructions
729     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
730     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
731     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
732     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
733 
734     if (Subtarget.hasVSX()) {
735       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
736       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
737       if (Subtarget.hasP8Vector()) {
738         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
739         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
740       }
741       if (Subtarget.hasDirectMove() && isPPC64) {
742         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
743         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
744         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
745         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
746         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
747         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
748         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
749         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
750       }
751       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
752 
753       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
754       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
755       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
756       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
757       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
758 
759       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
760 
761       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
762       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
763 
764       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
765       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
766 
767       // Share the Altivec comparison restrictions.
768       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
769       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
770       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
771       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
772 
773       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
774       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
775 
776       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
777 
778       if (Subtarget.hasP8Vector())
779         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
780 
781       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
782 
783       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
784       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
785       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
786 
787       if (Subtarget.hasP8Altivec()) {
788         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
789         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
790         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
791 
792         // 128 bit shifts can be accomplished via 3 instructions for SHL and
793         // SRL, but not for SRA because of the instructions available:
794         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
795         // doing
796         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
797         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
798         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
799 
800         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
801       }
802       else {
803         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
804         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
805         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
806 
807         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
808 
809         // VSX v2i64 only supports non-arithmetic operations.
810         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
811         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
812       }
813 
814       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
815       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
816       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
817       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
818 
819       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
820 
821       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
822       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
823       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
824       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
825 
826       // Custom handling for partial vectors of integers converted to
827       // floating point. We already have optimal handling for v2i32 through
828       // the DAG combine, so those aren't necessary.
829       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
830       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
831       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
832       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
833       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
834       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
835       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
836       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
837 
838       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
839       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
840       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
841       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
842       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
843       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
844 
845       if (Subtarget.hasDirectMove())
846         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
847       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
848 
849       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
850     }
851 
852     if (Subtarget.hasP8Altivec()) {
853       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
854       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
855     }
856 
857     if (Subtarget.hasP9Vector()) {
858       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
859       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
860 
861       // 128 bit shifts can be accomplished via 3 instructions for SHL and
862       // SRL, but not for SRA because of the instructions available:
863       // VS{RL} and VS{RL}O.
864       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
865       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
866       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
867 
868       if (EnableQuadPrecision) {
869         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
870         setOperationAction(ISD::FADD, MVT::f128, Legal);
871         setOperationAction(ISD::FSUB, MVT::f128, Legal);
872         setOperationAction(ISD::FDIV, MVT::f128, Legal);
873         setOperationAction(ISD::FMUL, MVT::f128, Legal);
874         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
875         // No extending loads to f128 on PPC.
876         for (MVT FPT : MVT::fp_valuetypes())
877           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
878         setOperationAction(ISD::FMA, MVT::f128, Legal);
879         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
880         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
881         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
882         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
883         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
884         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
885 
886         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
887         setOperationAction(ISD::FRINT, MVT::f128, Legal);
888         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
889         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
890         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
891         setOperationAction(ISD::FROUND, MVT::f128, Legal);
892 
893         setOperationAction(ISD::SELECT, MVT::f128, Expand);
894         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
895         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
896         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
897         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
898         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
899         // No implementation for these ops for PowerPC.
900         setOperationAction(ISD::FSIN , MVT::f128, Expand);
901         setOperationAction(ISD::FCOS , MVT::f128, Expand);
902         setOperationAction(ISD::FPOW, MVT::f128, Expand);
903         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
904         setOperationAction(ISD::FREM, MVT::f128, Expand);
905       }
906       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
907 
908     }
909 
910     if (Subtarget.hasP9Altivec()) {
911       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
912       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
913     }
914   }
915 
916   if (Subtarget.hasQPX()) {
917     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
918     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
919     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
920     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
921 
922     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
923     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
924 
925     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
926     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
927 
928     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
929     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
930 
931     if (!Subtarget.useCRBits())
932       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
933     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
934 
935     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
936     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
937     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
938     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
939     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
940     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
941     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
942 
943     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
944     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
945 
946     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
947     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
948     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
949 
950     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
951     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
952     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
953     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
954     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
955     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
956     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
957     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
958     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
959     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
960 
961     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
962     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
963 
964     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
965     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
966 
967     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
968 
969     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
970     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
971     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
972     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
973 
974     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
975     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
976 
977     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
978     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
979 
980     if (!Subtarget.useCRBits())
981       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
982     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
983 
984     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
985     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
986     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
987     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
988     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
989     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
990     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
991 
992     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
993     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
994 
995     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
996     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
997     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
998     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
999     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1000     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1001     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1002     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1003     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1004     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1005 
1006     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1007     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1008 
1009     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1010     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1011 
1012     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1013 
1014     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1015     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1016     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1017 
1018     if (!Subtarget.useCRBits())
1019       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1020     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1021 
1022     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1023     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1024 
1025     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1026     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1027     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1028     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1029     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1030     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1031     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1032 
1033     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1034     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1035 
1036     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1037 
1038     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1039     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1040     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1041     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1042 
1043     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1044     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1045     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1046     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1047 
1048     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1049     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1050 
1051     // These need to set FE_INEXACT, and so cannot be vectorized here.
1052     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1053     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1054 
1055     if (TM.Options.UnsafeFPMath) {
1056       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1057       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1058 
1059       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1060       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1061     } else {
1062       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1063       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1064 
1065       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1066       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1067     }
1068   }
1069 
1070   if (Subtarget.has64BitSupport())
1071     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1072 
1073   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1074 
1075   if (!isPPC64) {
1076     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1077     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1078   }
1079 
1080   setBooleanContents(ZeroOrOneBooleanContent);
1081 
1082   if (Subtarget.hasAltivec()) {
1083     // Altivec instructions set fields to all zeros or all ones.
1084     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1085   }
1086 
1087   if (!isPPC64) {
1088     // These libcalls are not available in 32-bit.
1089     setLibcallName(RTLIB::SHL_I128, nullptr);
1090     setLibcallName(RTLIB::SRL_I128, nullptr);
1091     setLibcallName(RTLIB::SRA_I128, nullptr);
1092   }
1093 
1094   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1095 
1096   // We have target-specific dag combine patterns for the following nodes:
1097   setTargetDAGCombine(ISD::ADD);
1098   setTargetDAGCombine(ISD::SHL);
1099   setTargetDAGCombine(ISD::SRA);
1100   setTargetDAGCombine(ISD::SRL);
1101   setTargetDAGCombine(ISD::MUL);
1102   setTargetDAGCombine(ISD::SINT_TO_FP);
1103   setTargetDAGCombine(ISD::BUILD_VECTOR);
1104   if (Subtarget.hasFPCVT())
1105     setTargetDAGCombine(ISD::UINT_TO_FP);
1106   setTargetDAGCombine(ISD::LOAD);
1107   setTargetDAGCombine(ISD::STORE);
1108   setTargetDAGCombine(ISD::BR_CC);
1109   if (Subtarget.useCRBits())
1110     setTargetDAGCombine(ISD::BRCOND);
1111   setTargetDAGCombine(ISD::BSWAP);
1112   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1113   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1114   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1115 
1116   setTargetDAGCombine(ISD::SIGN_EXTEND);
1117   setTargetDAGCombine(ISD::ZERO_EXTEND);
1118   setTargetDAGCombine(ISD::ANY_EXTEND);
1119 
1120   setTargetDAGCombine(ISD::TRUNCATE);
1121 
1122   if (Subtarget.useCRBits()) {
1123     setTargetDAGCombine(ISD::TRUNCATE);
1124     setTargetDAGCombine(ISD::SETCC);
1125     setTargetDAGCombine(ISD::SELECT_CC);
1126   }
1127 
1128   // Use reciprocal estimates.
1129   if (TM.Options.UnsafeFPMath) {
1130     setTargetDAGCombine(ISD::FDIV);
1131     setTargetDAGCombine(ISD::FSQRT);
1132   }
1133 
1134   if (Subtarget.hasP9Altivec()) {
1135     setTargetDAGCombine(ISD::ABS);
1136     setTargetDAGCombine(ISD::VSELECT);
1137   }
1138 
1139   // Darwin long double math library functions have $LDBL128 appended.
1140   if (Subtarget.isDarwin()) {
1141     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1142     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1143     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1144     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1145     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1146     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1147     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1148     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1149     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1150     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1151   }
1152 
1153   if (EnableQuadPrecision) {
1154     setLibcallName(RTLIB::LOG_F128, "logf128");
1155     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1156     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1157     setLibcallName(RTLIB::EXP_F128, "expf128");
1158     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1159     setLibcallName(RTLIB::SIN_F128, "sinf128");
1160     setLibcallName(RTLIB::COS_F128, "cosf128");
1161     setLibcallName(RTLIB::POW_F128, "powf128");
1162     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1163     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1164     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1165     setLibcallName(RTLIB::REM_F128, "fmodf128");
1166   }
1167 
1168   // With 32 condition bits, we don't need to sink (and duplicate) compares
1169   // aggressively in CodeGenPrep.
1170   if (Subtarget.useCRBits()) {
1171     setHasMultipleConditionRegisters();
1172     setJumpIsExpensive();
1173   }
1174 
1175   setMinFunctionAlignment(2);
1176   if (Subtarget.isDarwin())
1177     setPrefFunctionAlignment(4);
1178 
1179   switch (Subtarget.getDarwinDirective()) {
1180   default: break;
1181   case PPC::DIR_970:
1182   case PPC::DIR_A2:
1183   case PPC::DIR_E500:
1184   case PPC::DIR_E500mc:
1185   case PPC::DIR_E5500:
1186   case PPC::DIR_PWR4:
1187   case PPC::DIR_PWR5:
1188   case PPC::DIR_PWR5X:
1189   case PPC::DIR_PWR6:
1190   case PPC::DIR_PWR6X:
1191   case PPC::DIR_PWR7:
1192   case PPC::DIR_PWR8:
1193   case PPC::DIR_PWR9:
1194     setPrefFunctionAlignment(4);
1195     setPrefLoopAlignment(4);
1196     break;
1197   }
1198 
1199   if (Subtarget.enableMachineScheduler())
1200     setSchedulingPreference(Sched::Source);
1201   else
1202     setSchedulingPreference(Sched::Hybrid);
1203 
1204   computeRegisterProperties(STI.getRegisterInfo());
1205 
1206   // The Freescale cores do better with aggressive inlining of memcpy and
1207   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1208   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1209       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1210     MaxStoresPerMemset = 32;
1211     MaxStoresPerMemsetOptSize = 16;
1212     MaxStoresPerMemcpy = 32;
1213     MaxStoresPerMemcpyOptSize = 8;
1214     MaxStoresPerMemmove = 32;
1215     MaxStoresPerMemmoveOptSize = 8;
1216   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1217     // The A2 also benefits from (very) aggressive inlining of memcpy and
1218     // friends. The overhead of a the function call, even when warm, can be
1219     // over one hundred cycles.
1220     MaxStoresPerMemset = 128;
1221     MaxStoresPerMemcpy = 128;
1222     MaxStoresPerMemmove = 128;
1223     MaxLoadsPerMemcmp = 128;
1224   } else {
1225     MaxLoadsPerMemcmp = 8;
1226     MaxLoadsPerMemcmpOptSize = 4;
1227   }
1228 }
1229 
1230 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1231 /// the desired ByVal argument alignment.
1232 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1233                              unsigned MaxMaxAlign) {
1234   if (MaxAlign == MaxMaxAlign)
1235     return;
1236   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1237     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1238       MaxAlign = 32;
1239     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1240       MaxAlign = 16;
1241   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1242     unsigned EltAlign = 0;
1243     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1244     if (EltAlign > MaxAlign)
1245       MaxAlign = EltAlign;
1246   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1247     for (auto *EltTy : STy->elements()) {
1248       unsigned EltAlign = 0;
1249       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1250       if (EltAlign > MaxAlign)
1251         MaxAlign = EltAlign;
1252       if (MaxAlign == MaxMaxAlign)
1253         break;
1254     }
1255   }
1256 }
1257 
1258 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1259 /// function arguments in the caller parameter area.
1260 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1261                                                   const DataLayout &DL) const {
1262   // Darwin passes everything on 4 byte boundary.
1263   if (Subtarget.isDarwin())
1264     return 4;
1265 
1266   // 16byte and wider vectors are passed on 16byte boundary.
1267   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1268   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1269   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1270     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1271   return Align;
1272 }
1273 
1274 bool PPCTargetLowering::useSoftFloat() const {
1275   return Subtarget.useSoftFloat();
1276 }
1277 
1278 bool PPCTargetLowering::hasSPE() const {
1279   return Subtarget.hasSPE();
1280 }
1281 
1282 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1283   return VT.isScalarInteger();
1284 }
1285 
1286 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1287   switch ((PPCISD::NodeType)Opcode) {
1288   case PPCISD::FIRST_NUMBER:    break;
1289   case PPCISD::FSEL:            return "PPCISD::FSEL";
1290   case PPCISD::FCFID:           return "PPCISD::FCFID";
1291   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1292   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1293   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1294   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1295   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1296   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1297   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1298   case PPCISD::FP_TO_UINT_IN_VSR:
1299                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1300   case PPCISD::FP_TO_SINT_IN_VSR:
1301                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1302   case PPCISD::FRE:             return "PPCISD::FRE";
1303   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1304   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1305   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1306   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1307   case PPCISD::VPERM:           return "PPCISD::VPERM";
1308   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1309   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1310   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1311   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1312   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1313   case PPCISD::CMPB:            return "PPCISD::CMPB";
1314   case PPCISD::Hi:              return "PPCISD::Hi";
1315   case PPCISD::Lo:              return "PPCISD::Lo";
1316   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1317   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1318   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1319   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1320   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1321   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1322   case PPCISD::SRL:             return "PPCISD::SRL";
1323   case PPCISD::SRA:             return "PPCISD::SRA";
1324   case PPCISD::SHL:             return "PPCISD::SHL";
1325   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1326   case PPCISD::CALL:            return "PPCISD::CALL";
1327   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1328   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1329   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1330   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1331   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1332   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1333   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1334   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1335   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1336   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1337   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1338   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1339   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1340   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1341   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1342   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1343   case PPCISD::VCMP:            return "PPCISD::VCMP";
1344   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1345   case PPCISD::LBRX:            return "PPCISD::LBRX";
1346   case PPCISD::STBRX:           return "PPCISD::STBRX";
1347   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1348   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1349   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1350   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1351   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1352   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1353   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1354   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1355   case PPCISD::ST_VSR_SCAL_INT:
1356                                 return "PPCISD::ST_VSR_SCAL_INT";
1357   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1358   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1359   case PPCISD::BDZ:             return "PPCISD::BDZ";
1360   case PPCISD::MFFS:            return "PPCISD::MFFS";
1361   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1362   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1363   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1364   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1365   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1366   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1367   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1368   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1369   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1370   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1371   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1372   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1373   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1374   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1375   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1376   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1377   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1378   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1379   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1380   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1381   case PPCISD::SC:              return "PPCISD::SC";
1382   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1383   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1384   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1385   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1386   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1387   case PPCISD::VABSD:           return "PPCISD::VABSD";
1388   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1389   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1390   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1391   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1392   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1393   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1394   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1395   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1396   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1397   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1398   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1399   case PPCISD::FP_EXTEND_LH:    return "PPCISD::FP_EXTEND_LH";
1400   }
1401   return nullptr;
1402 }
1403 
1404 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1405                                           EVT VT) const {
1406   if (!VT.isVector())
1407     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1408 
1409   if (Subtarget.hasQPX())
1410     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1411 
1412   return VT.changeVectorElementTypeToInteger();
1413 }
1414 
1415 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1416   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1417   return true;
1418 }
1419 
1420 //===----------------------------------------------------------------------===//
1421 // Node matching predicates, for use by the tblgen matching code.
1422 //===----------------------------------------------------------------------===//
1423 
1424 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1425 static bool isFloatingPointZero(SDValue Op) {
1426   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1427     return CFP->getValueAPF().isZero();
1428   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1429     // Maybe this has already been legalized into the constant pool?
1430     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1431       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1432         return CFP->getValueAPF().isZero();
1433   }
1434   return false;
1435 }
1436 
1437 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1438 /// true if Op is undef or if it matches the specified value.
1439 static bool isConstantOrUndef(int Op, int Val) {
1440   return Op < 0 || Op == Val;
1441 }
1442 
1443 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1444 /// VPKUHUM instruction.
1445 /// The ShuffleKind distinguishes between big-endian operations with
1446 /// two different inputs (0), either-endian operations with two identical
1447 /// inputs (1), and little-endian operations with two different inputs (2).
1448 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1449 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1450                                SelectionDAG &DAG) {
1451   bool IsLE = DAG.getDataLayout().isLittleEndian();
1452   if (ShuffleKind == 0) {
1453     if (IsLE)
1454       return false;
1455     for (unsigned i = 0; i != 16; ++i)
1456       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1457         return false;
1458   } else if (ShuffleKind == 2) {
1459     if (!IsLE)
1460       return false;
1461     for (unsigned i = 0; i != 16; ++i)
1462       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1463         return false;
1464   } else if (ShuffleKind == 1) {
1465     unsigned j = IsLE ? 0 : 1;
1466     for (unsigned i = 0; i != 8; ++i)
1467       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1468           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1469         return false;
1470   }
1471   return true;
1472 }
1473 
1474 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1475 /// VPKUWUM instruction.
1476 /// The ShuffleKind distinguishes between big-endian operations with
1477 /// two different inputs (0), either-endian operations with two identical
1478 /// inputs (1), and little-endian operations with two different inputs (2).
1479 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1480 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1481                                SelectionDAG &DAG) {
1482   bool IsLE = DAG.getDataLayout().isLittleEndian();
1483   if (ShuffleKind == 0) {
1484     if (IsLE)
1485       return false;
1486     for (unsigned i = 0; i != 16; i += 2)
1487       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1488           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1489         return false;
1490   } else if (ShuffleKind == 2) {
1491     if (!IsLE)
1492       return false;
1493     for (unsigned i = 0; i != 16; i += 2)
1494       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1495           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1496         return false;
1497   } else if (ShuffleKind == 1) {
1498     unsigned j = IsLE ? 0 : 2;
1499     for (unsigned i = 0; i != 8; i += 2)
1500       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1501           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1502           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1503           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1504         return false;
1505   }
1506   return true;
1507 }
1508 
1509 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1510 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1511 /// current subtarget.
1512 ///
1513 /// The ShuffleKind distinguishes between big-endian operations with
1514 /// two different inputs (0), either-endian operations with two identical
1515 /// inputs (1), and little-endian operations with two different inputs (2).
1516 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1517 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1518                                SelectionDAG &DAG) {
1519   const PPCSubtarget& Subtarget =
1520     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1521   if (!Subtarget.hasP8Vector())
1522     return false;
1523 
1524   bool IsLE = DAG.getDataLayout().isLittleEndian();
1525   if (ShuffleKind == 0) {
1526     if (IsLE)
1527       return false;
1528     for (unsigned i = 0; i != 16; i += 4)
1529       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1530           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1531           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1532           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1533         return false;
1534   } else if (ShuffleKind == 2) {
1535     if (!IsLE)
1536       return false;
1537     for (unsigned i = 0; i != 16; i += 4)
1538       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1539           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1540           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1541           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1542         return false;
1543   } else if (ShuffleKind == 1) {
1544     unsigned j = IsLE ? 0 : 4;
1545     for (unsigned i = 0; i != 8; i += 4)
1546       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1547           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1548           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1549           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1550           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1551           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1552           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1553           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1554         return false;
1555   }
1556   return true;
1557 }
1558 
1559 /// isVMerge - Common function, used to match vmrg* shuffles.
1560 ///
1561 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1562                      unsigned LHSStart, unsigned RHSStart) {
1563   if (N->getValueType(0) != MVT::v16i8)
1564     return false;
1565   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1566          "Unsupported merge size!");
1567 
1568   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1569     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1570       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1571                              LHSStart+j+i*UnitSize) ||
1572           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1573                              RHSStart+j+i*UnitSize))
1574         return false;
1575     }
1576   return true;
1577 }
1578 
1579 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1580 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1581 /// The ShuffleKind distinguishes between big-endian merges with two
1582 /// different inputs (0), either-endian merges with two identical inputs (1),
1583 /// and little-endian merges with two different inputs (2).  For the latter,
1584 /// the input operands are swapped (see PPCInstrAltivec.td).
1585 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1586                              unsigned ShuffleKind, SelectionDAG &DAG) {
1587   if (DAG.getDataLayout().isLittleEndian()) {
1588     if (ShuffleKind == 1) // unary
1589       return isVMerge(N, UnitSize, 0, 0);
1590     else if (ShuffleKind == 2) // swapped
1591       return isVMerge(N, UnitSize, 0, 16);
1592     else
1593       return false;
1594   } else {
1595     if (ShuffleKind == 1) // unary
1596       return isVMerge(N, UnitSize, 8, 8);
1597     else if (ShuffleKind == 0) // normal
1598       return isVMerge(N, UnitSize, 8, 24);
1599     else
1600       return false;
1601   }
1602 }
1603 
1604 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1605 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1606 /// The ShuffleKind distinguishes between big-endian merges with two
1607 /// different inputs (0), either-endian merges with two identical inputs (1),
1608 /// and little-endian merges with two different inputs (2).  For the latter,
1609 /// the input operands are swapped (see PPCInstrAltivec.td).
1610 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1611                              unsigned ShuffleKind, SelectionDAG &DAG) {
1612   if (DAG.getDataLayout().isLittleEndian()) {
1613     if (ShuffleKind == 1) // unary
1614       return isVMerge(N, UnitSize, 8, 8);
1615     else if (ShuffleKind == 2) // swapped
1616       return isVMerge(N, UnitSize, 8, 24);
1617     else
1618       return false;
1619   } else {
1620     if (ShuffleKind == 1) // unary
1621       return isVMerge(N, UnitSize, 0, 0);
1622     else if (ShuffleKind == 0) // normal
1623       return isVMerge(N, UnitSize, 0, 16);
1624     else
1625       return false;
1626   }
1627 }
1628 
1629 /**
1630  * Common function used to match vmrgew and vmrgow shuffles
1631  *
1632  * The indexOffset determines whether to look for even or odd words in
1633  * the shuffle mask. This is based on the of the endianness of the target
1634  * machine.
1635  *   - Little Endian:
1636  *     - Use offset of 0 to check for odd elements
1637  *     - Use offset of 4 to check for even elements
1638  *   - Big Endian:
1639  *     - Use offset of 0 to check for even elements
1640  *     - Use offset of 4 to check for odd elements
1641  * A detailed description of the vector element ordering for little endian and
1642  * big endian can be found at
1643  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1644  * Targeting your applications - what little endian and big endian IBM XL C/C++
1645  * compiler differences mean to you
1646  *
1647  * The mask to the shuffle vector instruction specifies the indices of the
1648  * elements from the two input vectors to place in the result. The elements are
1649  * numbered in array-access order, starting with the first vector. These vectors
1650  * are always of type v16i8, thus each vector will contain 16 elements of size
1651  * 8. More info on the shuffle vector can be found in the
1652  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1653  * Language Reference.
1654  *
1655  * The RHSStartValue indicates whether the same input vectors are used (unary)
1656  * or two different input vectors are used, based on the following:
1657  *   - If the instruction uses the same vector for both inputs, the range of the
1658  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1659  *     be 0.
1660  *   - If the instruction has two different vectors then the range of the
1661  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1662  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1663  *     to 31 specify elements in the second vector).
1664  *
1665  * \param[in] N The shuffle vector SD Node to analyze
1666  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1667  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1668  * vector to the shuffle_vector instruction
1669  * \return true iff this shuffle vector represents an even or odd word merge
1670  */
1671 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1672                      unsigned RHSStartValue) {
1673   if (N->getValueType(0) != MVT::v16i8)
1674     return false;
1675 
1676   for (unsigned i = 0; i < 2; ++i)
1677     for (unsigned j = 0; j < 4; ++j)
1678       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1679                              i*RHSStartValue+j+IndexOffset) ||
1680           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1681                              i*RHSStartValue+j+IndexOffset+8))
1682         return false;
1683   return true;
1684 }
1685 
1686 /**
1687  * Determine if the specified shuffle mask is suitable for the vmrgew or
1688  * vmrgow instructions.
1689  *
1690  * \param[in] N The shuffle vector SD Node to analyze
1691  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1692  * \param[in] ShuffleKind Identify the type of merge:
1693  *   - 0 = big-endian merge with two different inputs;
1694  *   - 1 = either-endian merge with two identical inputs;
1695  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1696  *     little-endian merges).
1697  * \param[in] DAG The current SelectionDAG
1698  * \return true iff this shuffle mask
1699  */
1700 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1701                               unsigned ShuffleKind, SelectionDAG &DAG) {
1702   if (DAG.getDataLayout().isLittleEndian()) {
1703     unsigned indexOffset = CheckEven ? 4 : 0;
1704     if (ShuffleKind == 1) // Unary
1705       return isVMerge(N, indexOffset, 0);
1706     else if (ShuffleKind == 2) // swapped
1707       return isVMerge(N, indexOffset, 16);
1708     else
1709       return false;
1710   }
1711   else {
1712     unsigned indexOffset = CheckEven ? 0 : 4;
1713     if (ShuffleKind == 1) // Unary
1714       return isVMerge(N, indexOffset, 0);
1715     else if (ShuffleKind == 0) // Normal
1716       return isVMerge(N, indexOffset, 16);
1717     else
1718       return false;
1719   }
1720   return false;
1721 }
1722 
1723 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1724 /// amount, otherwise return -1.
1725 /// The ShuffleKind distinguishes between big-endian operations with two
1726 /// different inputs (0), either-endian operations with two identical inputs
1727 /// (1), and little-endian operations with two different inputs (2).  For the
1728 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1729 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1730                              SelectionDAG &DAG) {
1731   if (N->getValueType(0) != MVT::v16i8)
1732     return -1;
1733 
1734   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1735 
1736   // Find the first non-undef value in the shuffle mask.
1737   unsigned i;
1738   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1739     /*search*/;
1740 
1741   if (i == 16) return -1;  // all undef.
1742 
1743   // Otherwise, check to see if the rest of the elements are consecutively
1744   // numbered from this value.
1745   unsigned ShiftAmt = SVOp->getMaskElt(i);
1746   if (ShiftAmt < i) return -1;
1747 
1748   ShiftAmt -= i;
1749   bool isLE = DAG.getDataLayout().isLittleEndian();
1750 
1751   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1752     // Check the rest of the elements to see if they are consecutive.
1753     for (++i; i != 16; ++i)
1754       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1755         return -1;
1756   } else if (ShuffleKind == 1) {
1757     // Check the rest of the elements to see if they are consecutive.
1758     for (++i; i != 16; ++i)
1759       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1760         return -1;
1761   } else
1762     return -1;
1763 
1764   if (isLE)
1765     ShiftAmt = 16 - ShiftAmt;
1766 
1767   return ShiftAmt;
1768 }
1769 
1770 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1771 /// specifies a splat of a single element that is suitable for input to
1772 /// VSPLTB/VSPLTH/VSPLTW.
1773 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1774   assert(N->getValueType(0) == MVT::v16i8 &&
1775          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1776 
1777   // The consecutive indices need to specify an element, not part of two
1778   // different elements.  So abandon ship early if this isn't the case.
1779   if (N->getMaskElt(0) % EltSize != 0)
1780     return false;
1781 
1782   // This is a splat operation if each element of the permute is the same, and
1783   // if the value doesn't reference the second vector.
1784   unsigned ElementBase = N->getMaskElt(0);
1785 
1786   // FIXME: Handle UNDEF elements too!
1787   if (ElementBase >= 16)
1788     return false;
1789 
1790   // Check that the indices are consecutive, in the case of a multi-byte element
1791   // splatted with a v16i8 mask.
1792   for (unsigned i = 1; i != EltSize; ++i)
1793     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1794       return false;
1795 
1796   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1797     if (N->getMaskElt(i) < 0) continue;
1798     for (unsigned j = 0; j != EltSize; ++j)
1799       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1800         return false;
1801   }
1802   return true;
1803 }
1804 
1805 /// Check that the mask is shuffling N byte elements. Within each N byte
1806 /// element of the mask, the indices could be either in increasing or
1807 /// decreasing order as long as they are consecutive.
1808 /// \param[in] N the shuffle vector SD Node to analyze
1809 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1810 /// Word/DoubleWord/QuadWord).
1811 /// \param[in] StepLen the delta indices number among the N byte element, if
1812 /// the mask is in increasing/decreasing order then it is 1/-1.
1813 /// \return true iff the mask is shuffling N byte elements.
1814 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1815                                    int StepLen) {
1816   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1817          "Unexpected element width.");
1818   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1819 
1820   unsigned NumOfElem = 16 / Width;
1821   unsigned MaskVal[16]; //  Width is never greater than 16
1822   for (unsigned i = 0; i < NumOfElem; ++i) {
1823     MaskVal[0] = N->getMaskElt(i * Width);
1824     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1825       return false;
1826     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1827       return false;
1828     }
1829 
1830     for (unsigned int j = 1; j < Width; ++j) {
1831       MaskVal[j] = N->getMaskElt(i * Width + j);
1832       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1833         return false;
1834       }
1835     }
1836   }
1837 
1838   return true;
1839 }
1840 
1841 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1842                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1843   if (!isNByteElemShuffleMask(N, 4, 1))
1844     return false;
1845 
1846   // Now we look at mask elements 0,4,8,12
1847   unsigned M0 = N->getMaskElt(0) / 4;
1848   unsigned M1 = N->getMaskElt(4) / 4;
1849   unsigned M2 = N->getMaskElt(8) / 4;
1850   unsigned M3 = N->getMaskElt(12) / 4;
1851   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1852   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1853 
1854   // Below, let H and L be arbitrary elements of the shuffle mask
1855   // where H is in the range [4,7] and L is in the range [0,3].
1856   // H, 1, 2, 3 or L, 5, 6, 7
1857   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1858       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1859     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1860     InsertAtByte = IsLE ? 12 : 0;
1861     Swap = M0 < 4;
1862     return true;
1863   }
1864   // 0, H, 2, 3 or 4, L, 6, 7
1865   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1866       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1867     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1868     InsertAtByte = IsLE ? 8 : 4;
1869     Swap = M1 < 4;
1870     return true;
1871   }
1872   // 0, 1, H, 3 or 4, 5, L, 7
1873   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1874       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1875     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1876     InsertAtByte = IsLE ? 4 : 8;
1877     Swap = M2 < 4;
1878     return true;
1879   }
1880   // 0, 1, 2, H or 4, 5, 6, L
1881   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1882       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1883     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1884     InsertAtByte = IsLE ? 0 : 12;
1885     Swap = M3 < 4;
1886     return true;
1887   }
1888 
1889   // If both vector operands for the shuffle are the same vector, the mask will
1890   // contain only elements from the first one and the second one will be undef.
1891   if (N->getOperand(1).isUndef()) {
1892     ShiftElts = 0;
1893     Swap = true;
1894     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1895     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1896       InsertAtByte = IsLE ? 12 : 0;
1897       return true;
1898     }
1899     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1900       InsertAtByte = IsLE ? 8 : 4;
1901       return true;
1902     }
1903     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1904       InsertAtByte = IsLE ? 4 : 8;
1905       return true;
1906     }
1907     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1908       InsertAtByte = IsLE ? 0 : 12;
1909       return true;
1910     }
1911   }
1912 
1913   return false;
1914 }
1915 
1916 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1917                                bool &Swap, bool IsLE) {
1918   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1919   // Ensure each byte index of the word is consecutive.
1920   if (!isNByteElemShuffleMask(N, 4, 1))
1921     return false;
1922 
1923   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1924   unsigned M0 = N->getMaskElt(0) / 4;
1925   unsigned M1 = N->getMaskElt(4) / 4;
1926   unsigned M2 = N->getMaskElt(8) / 4;
1927   unsigned M3 = N->getMaskElt(12) / 4;
1928 
1929   // If both vector operands for the shuffle are the same vector, the mask will
1930   // contain only elements from the first one and the second one will be undef.
1931   if (N->getOperand(1).isUndef()) {
1932     assert(M0 < 4 && "Indexing into an undef vector?");
1933     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1934       return false;
1935 
1936     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1937     Swap = false;
1938     return true;
1939   }
1940 
1941   // Ensure each word index of the ShuffleVector Mask is consecutive.
1942   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1943     return false;
1944 
1945   if (IsLE) {
1946     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1947       // Input vectors don't need to be swapped if the leading element
1948       // of the result is one of the 3 left elements of the second vector
1949       // (or if there is no shift to be done at all).
1950       Swap = false;
1951       ShiftElts = (8 - M0) % 8;
1952     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1953       // Input vectors need to be swapped if the leading element
1954       // of the result is one of the 3 left elements of the first vector
1955       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1956       Swap = true;
1957       ShiftElts = (4 - M0) % 4;
1958     }
1959 
1960     return true;
1961   } else {                                          // BE
1962     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1963       // Input vectors don't need to be swapped if the leading element
1964       // of the result is one of the 4 elements of the first vector.
1965       Swap = false;
1966       ShiftElts = M0;
1967     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1968       // Input vectors need to be swapped if the leading element
1969       // of the result is one of the 4 elements of the right vector.
1970       Swap = true;
1971       ShiftElts = M0 - 4;
1972     }
1973 
1974     return true;
1975   }
1976 }
1977 
1978 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1979   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1980 
1981   if (!isNByteElemShuffleMask(N, Width, -1))
1982     return false;
1983 
1984   for (int i = 0; i < 16; i += Width)
1985     if (N->getMaskElt(i) != i + Width - 1)
1986       return false;
1987 
1988   return true;
1989 }
1990 
1991 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1992   return isXXBRShuffleMaskHelper(N, 2);
1993 }
1994 
1995 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1996   return isXXBRShuffleMaskHelper(N, 4);
1997 }
1998 
1999 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2000   return isXXBRShuffleMaskHelper(N, 8);
2001 }
2002 
2003 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2004   return isXXBRShuffleMaskHelper(N, 16);
2005 }
2006 
2007 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2008 /// if the inputs to the instruction should be swapped and set \p DM to the
2009 /// value for the immediate.
2010 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2011 /// AND element 0 of the result comes from the first input (LE) or second input
2012 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2013 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2014 /// mask.
2015 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2016                                bool &Swap, bool IsLE) {
2017   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2018 
2019   // Ensure each byte index of the double word is consecutive.
2020   if (!isNByteElemShuffleMask(N, 8, 1))
2021     return false;
2022 
2023   unsigned M0 = N->getMaskElt(0) / 8;
2024   unsigned M1 = N->getMaskElt(8) / 8;
2025   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2026 
2027   // If both vector operands for the shuffle are the same vector, the mask will
2028   // contain only elements from the first one and the second one will be undef.
2029   if (N->getOperand(1).isUndef()) {
2030     if ((M0 | M1) < 2) {
2031       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2032       Swap = false;
2033       return true;
2034     } else
2035       return false;
2036   }
2037 
2038   if (IsLE) {
2039     if (M0 > 1 && M1 < 2) {
2040       Swap = false;
2041     } else if (M0 < 2 && M1 > 1) {
2042       M0 = (M0 + 2) % 4;
2043       M1 = (M1 + 2) % 4;
2044       Swap = true;
2045     } else
2046       return false;
2047 
2048     // Note: if control flow comes here that means Swap is already set above
2049     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2050     return true;
2051   } else { // BE
2052     if (M0 < 2 && M1 > 1) {
2053       Swap = false;
2054     } else if (M0 > 1 && M1 < 2) {
2055       M0 = (M0 + 2) % 4;
2056       M1 = (M1 + 2) % 4;
2057       Swap = true;
2058     } else
2059       return false;
2060 
2061     // Note: if control flow comes here that means Swap is already set above
2062     DM = (M0 << 1) + (M1 & 1);
2063     return true;
2064   }
2065 }
2066 
2067 
2068 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2069 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2070 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2071                                 SelectionDAG &DAG) {
2072   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2073   assert(isSplatShuffleMask(SVOp, EltSize));
2074   if (DAG.getDataLayout().isLittleEndian())
2075     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2076   else
2077     return SVOp->getMaskElt(0) / EltSize;
2078 }
2079 
2080 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2081 /// by using a vspltis[bhw] instruction of the specified element size, return
2082 /// the constant being splatted.  The ByteSize field indicates the number of
2083 /// bytes of each element [124] -> [bhw].
2084 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2085   SDValue OpVal(nullptr, 0);
2086 
2087   // If ByteSize of the splat is bigger than the element size of the
2088   // build_vector, then we have a case where we are checking for a splat where
2089   // multiple elements of the buildvector are folded together into a single
2090   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2091   unsigned EltSize = 16/N->getNumOperands();
2092   if (EltSize < ByteSize) {
2093     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2094     SDValue UniquedVals[4];
2095     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2096 
2097     // See if all of the elements in the buildvector agree across.
2098     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2099       if (N->getOperand(i).isUndef()) continue;
2100       // If the element isn't a constant, bail fully out.
2101       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2102 
2103       if (!UniquedVals[i&(Multiple-1)].getNode())
2104         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2105       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2106         return SDValue();  // no match.
2107     }
2108 
2109     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2110     // either constant or undef values that are identical for each chunk.  See
2111     // if these chunks can form into a larger vspltis*.
2112 
2113     // Check to see if all of the leading entries are either 0 or -1.  If
2114     // neither, then this won't fit into the immediate field.
2115     bool LeadingZero = true;
2116     bool LeadingOnes = true;
2117     for (unsigned i = 0; i != Multiple-1; ++i) {
2118       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2119 
2120       LeadingZero &= isNullConstant(UniquedVals[i]);
2121       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2122     }
2123     // Finally, check the least significant entry.
2124     if (LeadingZero) {
2125       if (!UniquedVals[Multiple-1].getNode())
2126         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2127       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2128       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2129         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2130     }
2131     if (LeadingOnes) {
2132       if (!UniquedVals[Multiple-1].getNode())
2133         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2134       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2135       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2136         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2137     }
2138 
2139     return SDValue();
2140   }
2141 
2142   // Check to see if this buildvec has a single non-undef value in its elements.
2143   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2144     if (N->getOperand(i).isUndef()) continue;
2145     if (!OpVal.getNode())
2146       OpVal = N->getOperand(i);
2147     else if (OpVal != N->getOperand(i))
2148       return SDValue();
2149   }
2150 
2151   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2152 
2153   unsigned ValSizeInBytes = EltSize;
2154   uint64_t Value = 0;
2155   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2156     Value = CN->getZExtValue();
2157   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2158     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2159     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2160   }
2161 
2162   // If the splat value is larger than the element value, then we can never do
2163   // this splat.  The only case that we could fit the replicated bits into our
2164   // immediate field for would be zero, and we prefer to use vxor for it.
2165   if (ValSizeInBytes < ByteSize) return SDValue();
2166 
2167   // If the element value is larger than the splat value, check if it consists
2168   // of a repeated bit pattern of size ByteSize.
2169   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2170     return SDValue();
2171 
2172   // Properly sign extend the value.
2173   int MaskVal = SignExtend32(Value, ByteSize * 8);
2174 
2175   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2176   if (MaskVal == 0) return SDValue();
2177 
2178   // Finally, if this value fits in a 5 bit sext field, return it
2179   if (SignExtend32<5>(MaskVal) == MaskVal)
2180     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2181   return SDValue();
2182 }
2183 
2184 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2185 /// amount, otherwise return -1.
2186 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2187   EVT VT = N->getValueType(0);
2188   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2189     return -1;
2190 
2191   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2192 
2193   // Find the first non-undef value in the shuffle mask.
2194   unsigned i;
2195   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2196     /*search*/;
2197 
2198   if (i == 4) return -1;  // all undef.
2199 
2200   // Otherwise, check to see if the rest of the elements are consecutively
2201   // numbered from this value.
2202   unsigned ShiftAmt = SVOp->getMaskElt(i);
2203   if (ShiftAmt < i) return -1;
2204   ShiftAmt -= i;
2205 
2206   // Check the rest of the elements to see if they are consecutive.
2207   for (++i; i != 4; ++i)
2208     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2209       return -1;
2210 
2211   return ShiftAmt;
2212 }
2213 
2214 //===----------------------------------------------------------------------===//
2215 //  Addressing Mode Selection
2216 //===----------------------------------------------------------------------===//
2217 
2218 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2219 /// or 64-bit immediate, and if the value can be accurately represented as a
2220 /// sign extension from a 16-bit value.  If so, this returns true and the
2221 /// immediate.
2222 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2223   if (!isa<ConstantSDNode>(N))
2224     return false;
2225 
2226   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2227   if (N->getValueType(0) == MVT::i32)
2228     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2229   else
2230     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2231 }
2232 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2233   return isIntS16Immediate(Op.getNode(), Imm);
2234 }
2235 
2236 
2237 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2238 /// be represented as an indexed [r+r] operation.
2239 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2240                                                SDValue &Index,
2241                                                SelectionDAG &DAG) const {
2242   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2243       UI != E; ++UI) {
2244     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2245       if (Memop->getMemoryVT() == MVT::f64) {
2246           Base = N.getOperand(0);
2247           Index = N.getOperand(1);
2248           return true;
2249       }
2250     }
2251   }
2252   return false;
2253 }
2254 
2255 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2256 /// can be represented as an indexed [r+r] operation.  Returns false if it
2257 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2258 /// non-zero and N can be represented by a base register plus a signed 16-bit
2259 /// displacement, make a more precise judgement by checking (displacement % \p
2260 /// EncodingAlignment).
2261 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2262                                             SDValue &Index, SelectionDAG &DAG,
2263                                             unsigned EncodingAlignment) const {
2264   int16_t imm = 0;
2265   if (N.getOpcode() == ISD::ADD) {
2266     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2267     // SPE load/store can only handle 8-bit offsets.
2268     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2269         return true;
2270     if (isIntS16Immediate(N.getOperand(1), imm) &&
2271         (!EncodingAlignment || !(imm % EncodingAlignment)))
2272       return false; // r+i
2273     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2274       return false;    // r+i
2275 
2276     Base = N.getOperand(0);
2277     Index = N.getOperand(1);
2278     return true;
2279   } else if (N.getOpcode() == ISD::OR) {
2280     if (isIntS16Immediate(N.getOperand(1), imm) &&
2281         (!EncodingAlignment || !(imm % EncodingAlignment)))
2282       return false; // r+i can fold it if we can.
2283 
2284     // If this is an or of disjoint bitfields, we can codegen this as an add
2285     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2286     // disjoint.
2287     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2288 
2289     if (LHSKnown.Zero.getBoolValue()) {
2290       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2291       // If all of the bits are known zero on the LHS or RHS, the add won't
2292       // carry.
2293       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2294         Base = N.getOperand(0);
2295         Index = N.getOperand(1);
2296         return true;
2297       }
2298     }
2299   }
2300 
2301   return false;
2302 }
2303 
2304 // If we happen to be doing an i64 load or store into a stack slot that has
2305 // less than a 4-byte alignment, then the frame-index elimination may need to
2306 // use an indexed load or store instruction (because the offset may not be a
2307 // multiple of 4). The extra register needed to hold the offset comes from the
2308 // register scavenger, and it is possible that the scavenger will need to use
2309 // an emergency spill slot. As a result, we need to make sure that a spill slot
2310 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2311 // stack slot.
2312 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2313   // FIXME: This does not handle the LWA case.
2314   if (VT != MVT::i64)
2315     return;
2316 
2317   // NOTE: We'll exclude negative FIs here, which come from argument
2318   // lowering, because there are no known test cases triggering this problem
2319   // using packed structures (or similar). We can remove this exclusion if
2320   // we find such a test case. The reason why this is so test-case driven is
2321   // because this entire 'fixup' is only to prevent crashes (from the
2322   // register scavenger) on not-really-valid inputs. For example, if we have:
2323   //   %a = alloca i1
2324   //   %b = bitcast i1* %a to i64*
2325   //   store i64* a, i64 b
2326   // then the store should really be marked as 'align 1', but is not. If it
2327   // were marked as 'align 1' then the indexed form would have been
2328   // instruction-selected initially, and the problem this 'fixup' is preventing
2329   // won't happen regardless.
2330   if (FrameIdx < 0)
2331     return;
2332 
2333   MachineFunction &MF = DAG.getMachineFunction();
2334   MachineFrameInfo &MFI = MF.getFrameInfo();
2335 
2336   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2337   if (Align >= 4)
2338     return;
2339 
2340   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2341   FuncInfo->setHasNonRISpills();
2342 }
2343 
2344 /// Returns true if the address N can be represented by a base register plus
2345 /// a signed 16-bit displacement [r+imm], and if it is not better
2346 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2347 /// displacements that are multiples of that value.
2348 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2349                                             SDValue &Base,
2350                                             SelectionDAG &DAG,
2351                                             unsigned EncodingAlignment) const {
2352   // FIXME dl should come from parent load or store, not from address
2353   SDLoc dl(N);
2354   // If this can be more profitably realized as r+r, fail.
2355   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2356     return false;
2357 
2358   if (N.getOpcode() == ISD::ADD) {
2359     int16_t imm = 0;
2360     if (isIntS16Immediate(N.getOperand(1), imm) &&
2361         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2362       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2363       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2364         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2365         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2366       } else {
2367         Base = N.getOperand(0);
2368       }
2369       return true; // [r+i]
2370     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2371       // Match LOAD (ADD (X, Lo(G))).
2372       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2373              && "Cannot handle constant offsets yet!");
2374       Disp = N.getOperand(1).getOperand(0);  // The global address.
2375       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2376              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2377              Disp.getOpcode() == ISD::TargetConstantPool ||
2378              Disp.getOpcode() == ISD::TargetJumpTable);
2379       Base = N.getOperand(0);
2380       return true;  // [&g+r]
2381     }
2382   } else if (N.getOpcode() == ISD::OR) {
2383     int16_t imm = 0;
2384     if (isIntS16Immediate(N.getOperand(1), imm) &&
2385         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2386       // If this is an or of disjoint bitfields, we can codegen this as an add
2387       // (for better address arithmetic) if the LHS and RHS of the OR are
2388       // provably disjoint.
2389       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2390 
2391       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2392         // If all of the bits are known zero on the LHS or RHS, the add won't
2393         // carry.
2394         if (FrameIndexSDNode *FI =
2395               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2396           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2397           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2398         } else {
2399           Base = N.getOperand(0);
2400         }
2401         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2402         return true;
2403       }
2404     }
2405   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2406     // Loading from a constant address.
2407 
2408     // If this address fits entirely in a 16-bit sext immediate field, codegen
2409     // this as "d, 0"
2410     int16_t Imm;
2411     if (isIntS16Immediate(CN, Imm) &&
2412         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2413       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2414       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2415                              CN->getValueType(0));
2416       return true;
2417     }
2418 
2419     // Handle 32-bit sext immediates with LIS + addr mode.
2420     if ((CN->getValueType(0) == MVT::i32 ||
2421          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2422         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2423       int Addr = (int)CN->getZExtValue();
2424 
2425       // Otherwise, break this down into an LIS + disp.
2426       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2427 
2428       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2429                                    MVT::i32);
2430       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2431       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2432       return true;
2433     }
2434   }
2435 
2436   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2437   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2438     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2439     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2440   } else
2441     Base = N;
2442   return true;      // [r+0]
2443 }
2444 
2445 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2446 /// represented as an indexed [r+r] operation.
2447 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2448                                                 SDValue &Index,
2449                                                 SelectionDAG &DAG) const {
2450   // Check to see if we can easily represent this as an [r+r] address.  This
2451   // will fail if it thinks that the address is more profitably represented as
2452   // reg+imm, e.g. where imm = 0.
2453   if (SelectAddressRegReg(N, Base, Index, DAG))
2454     return true;
2455 
2456   // If the address is the result of an add, we will utilize the fact that the
2457   // address calculation includes an implicit add.  However, we can reduce
2458   // register pressure if we do not materialize a constant just for use as the
2459   // index register.  We only get rid of the add if it is not an add of a
2460   // value and a 16-bit signed constant and both have a single use.
2461   int16_t imm = 0;
2462   if (N.getOpcode() == ISD::ADD &&
2463       (!isIntS16Immediate(N.getOperand(1), imm) ||
2464        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2465     Base = N.getOperand(0);
2466     Index = N.getOperand(1);
2467     return true;
2468   }
2469 
2470   // Otherwise, do it the hard way, using R0 as the base register.
2471   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2472                          N.getValueType());
2473   Index = N;
2474   return true;
2475 }
2476 
2477 /// Returns true if we should use a direct load into vector instruction
2478 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2479 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2480 
2481   // If there are any other uses other than scalar to vector, then we should
2482   // keep it as a scalar load -> direct move pattern to prevent multiple
2483   // loads.
2484   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2485   if (!LD)
2486     return false;
2487 
2488   EVT MemVT = LD->getMemoryVT();
2489   if (!MemVT.isSimple())
2490     return false;
2491   switch(MemVT.getSimpleVT().SimpleTy) {
2492   case MVT::i64:
2493     break;
2494   case MVT::i32:
2495     if (!ST.hasP8Vector())
2496       return false;
2497     break;
2498   case MVT::i16:
2499   case MVT::i8:
2500     if (!ST.hasP9Vector())
2501       return false;
2502     break;
2503   default:
2504     return false;
2505   }
2506 
2507   SDValue LoadedVal(N, 0);
2508   if (!LoadedVal.hasOneUse())
2509     return false;
2510 
2511   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2512        UI != UE; ++UI)
2513     if (UI.getUse().get().getResNo() == 0 &&
2514         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2515       return false;
2516 
2517   return true;
2518 }
2519 
2520 /// getPreIndexedAddressParts - returns true by value, base pointer and
2521 /// offset pointer and addressing mode by reference if the node's address
2522 /// can be legally represented as pre-indexed load / store address.
2523 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2524                                                   SDValue &Offset,
2525                                                   ISD::MemIndexedMode &AM,
2526                                                   SelectionDAG &DAG) const {
2527   if (DisablePPCPreinc) return false;
2528 
2529   bool isLoad = true;
2530   SDValue Ptr;
2531   EVT VT;
2532   unsigned Alignment;
2533   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2534     Ptr = LD->getBasePtr();
2535     VT = LD->getMemoryVT();
2536     Alignment = LD->getAlignment();
2537   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2538     Ptr = ST->getBasePtr();
2539     VT  = ST->getMemoryVT();
2540     Alignment = ST->getAlignment();
2541     isLoad = false;
2542   } else
2543     return false;
2544 
2545   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2546   // instructions because we can fold these into a more efficient instruction
2547   // instead, (such as LXSD).
2548   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2549     return false;
2550   }
2551 
2552   // PowerPC doesn't have preinc load/store instructions for vectors (except
2553   // for QPX, which does have preinc r+r forms).
2554   if (VT.isVector()) {
2555     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2556       return false;
2557     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2558       AM = ISD::PRE_INC;
2559       return true;
2560     }
2561   }
2562 
2563   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2564     // Common code will reject creating a pre-inc form if the base pointer
2565     // is a frame index, or if N is a store and the base pointer is either
2566     // the same as or a predecessor of the value being stored.  Check for
2567     // those situations here, and try with swapped Base/Offset instead.
2568     bool Swap = false;
2569 
2570     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2571       Swap = true;
2572     else if (!isLoad) {
2573       SDValue Val = cast<StoreSDNode>(N)->getValue();
2574       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2575         Swap = true;
2576     }
2577 
2578     if (Swap)
2579       std::swap(Base, Offset);
2580 
2581     AM = ISD::PRE_INC;
2582     return true;
2583   }
2584 
2585   // LDU/STU can only handle immediates that are a multiple of 4.
2586   if (VT != MVT::i64) {
2587     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2588       return false;
2589   } else {
2590     // LDU/STU need an address with at least 4-byte alignment.
2591     if (Alignment < 4)
2592       return false;
2593 
2594     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2595       return false;
2596   }
2597 
2598   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2599     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2600     // sext i32 to i64 when addr mode is r+i.
2601     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2602         LD->getExtensionType() == ISD::SEXTLOAD &&
2603         isa<ConstantSDNode>(Offset))
2604       return false;
2605   }
2606 
2607   AM = ISD::PRE_INC;
2608   return true;
2609 }
2610 
2611 //===----------------------------------------------------------------------===//
2612 //  LowerOperation implementation
2613 //===----------------------------------------------------------------------===//
2614 
2615 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2616 /// and LoOpFlags to the target MO flags.
2617 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2618                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2619                                const GlobalValue *GV = nullptr) {
2620   HiOpFlags = PPCII::MO_HA;
2621   LoOpFlags = PPCII::MO_LO;
2622 
2623   // Don't use the pic base if not in PIC relocation model.
2624   if (IsPIC) {
2625     HiOpFlags |= PPCII::MO_PIC_FLAG;
2626     LoOpFlags |= PPCII::MO_PIC_FLAG;
2627   }
2628 
2629   // If this is a reference to a global value that requires a non-lazy-ptr, make
2630   // sure that instruction lowering adds it.
2631   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2632     HiOpFlags |= PPCII::MO_NLP_FLAG;
2633     LoOpFlags |= PPCII::MO_NLP_FLAG;
2634 
2635     if (GV->hasHiddenVisibility()) {
2636       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2637       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2638     }
2639   }
2640 }
2641 
2642 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2643                              SelectionDAG &DAG) {
2644   SDLoc DL(HiPart);
2645   EVT PtrVT = HiPart.getValueType();
2646   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2647 
2648   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2649   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2650 
2651   // With PIC, the first instruction is actually "GR+hi(&G)".
2652   if (isPIC)
2653     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2654                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2655 
2656   // Generate non-pic code that has direct accesses to the constant pool.
2657   // The address of the global is just (hi(&g)+lo(&g)).
2658   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2659 }
2660 
2661 static void setUsesTOCBasePtr(MachineFunction &MF) {
2662   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2663   FuncInfo->setUsesTOCBasePtr();
2664 }
2665 
2666 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2667   setUsesTOCBasePtr(DAG.getMachineFunction());
2668 }
2669 
2670 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2671                            SDValue GA) {
2672   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2673   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2674                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2675 
2676   SDValue Ops[] = { GA, Reg };
2677   return DAG.getMemIntrinsicNode(
2678       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2679       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2680       MachineMemOperand::MOLoad);
2681 }
2682 
2683 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2684                                              SelectionDAG &DAG) const {
2685   EVT PtrVT = Op.getValueType();
2686   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2687   const Constant *C = CP->getConstVal();
2688 
2689   // 64-bit SVR4 ABI code is always position-independent.
2690   // The actual address of the GlobalValue is stored in the TOC.
2691   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2692     setUsesTOCBasePtr(DAG);
2693     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2694     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2695   }
2696 
2697   unsigned MOHiFlag, MOLoFlag;
2698   bool IsPIC = isPositionIndependent();
2699   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2700 
2701   if (IsPIC && Subtarget.isSVR4ABI()) {
2702     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2703                                            PPCII::MO_PIC_FLAG);
2704     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2705   }
2706 
2707   SDValue CPIHi =
2708     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2709   SDValue CPILo =
2710     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2711   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2712 }
2713 
2714 // For 64-bit PowerPC, prefer the more compact relative encodings.
2715 // This trades 32 bits per jump table entry for one or two instructions
2716 // on the jump site.
2717 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2718   if (isJumpTableRelative())
2719     return MachineJumpTableInfo::EK_LabelDifference32;
2720 
2721   return TargetLowering::getJumpTableEncoding();
2722 }
2723 
2724 bool PPCTargetLowering::isJumpTableRelative() const {
2725   if (Subtarget.isPPC64())
2726     return true;
2727   return TargetLowering::isJumpTableRelative();
2728 }
2729 
2730 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2731                                                     SelectionDAG &DAG) const {
2732   if (!Subtarget.isPPC64())
2733     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2734 
2735   switch (getTargetMachine().getCodeModel()) {
2736   case CodeModel::Small:
2737   case CodeModel::Medium:
2738     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2739   default:
2740     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2741                        getPointerTy(DAG.getDataLayout()));
2742   }
2743 }
2744 
2745 const MCExpr *
2746 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2747                                                 unsigned JTI,
2748                                                 MCContext &Ctx) const {
2749   if (!Subtarget.isPPC64())
2750     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2751 
2752   switch (getTargetMachine().getCodeModel()) {
2753   case CodeModel::Small:
2754   case CodeModel::Medium:
2755     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2756   default:
2757     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2758   }
2759 }
2760 
2761 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2762   EVT PtrVT = Op.getValueType();
2763   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2764 
2765   // 64-bit SVR4 ABI code is always position-independent.
2766   // The actual address of the GlobalValue is stored in the TOC.
2767   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2768     setUsesTOCBasePtr(DAG);
2769     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2770     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2771   }
2772 
2773   unsigned MOHiFlag, MOLoFlag;
2774   bool IsPIC = isPositionIndependent();
2775   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2776 
2777   if (IsPIC && Subtarget.isSVR4ABI()) {
2778     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2779                                         PPCII::MO_PIC_FLAG);
2780     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2781   }
2782 
2783   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2784   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2785   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2786 }
2787 
2788 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2789                                              SelectionDAG &DAG) const {
2790   EVT PtrVT = Op.getValueType();
2791   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2792   const BlockAddress *BA = BASDN->getBlockAddress();
2793 
2794   // 64-bit SVR4 ABI code is always position-independent.
2795   // The actual BlockAddress is stored in the TOC.
2796   if (Subtarget.isSVR4ABI() &&
2797       (Subtarget.isPPC64() || isPositionIndependent())) {
2798     if (Subtarget.isPPC64())
2799       setUsesTOCBasePtr(DAG);
2800     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2801     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2802   }
2803 
2804   unsigned MOHiFlag, MOLoFlag;
2805   bool IsPIC = isPositionIndependent();
2806   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2807   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2808   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2809   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2810 }
2811 
2812 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2813                                               SelectionDAG &DAG) const {
2814   // FIXME: TLS addresses currently use medium model code sequences,
2815   // which is the most useful form.  Eventually support for small and
2816   // large models could be added if users need it, at the cost of
2817   // additional complexity.
2818   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2819   if (DAG.getTarget().useEmulatedTLS())
2820     return LowerToTLSEmulatedModel(GA, DAG);
2821 
2822   SDLoc dl(GA);
2823   const GlobalValue *GV = GA->getGlobal();
2824   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2825   bool is64bit = Subtarget.isPPC64();
2826   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2827   PICLevel::Level picLevel = M->getPICLevel();
2828 
2829   const TargetMachine &TM = getTargetMachine();
2830   TLSModel::Model Model = TM.getTLSModel(GV);
2831 
2832   if (Model == TLSModel::LocalExec) {
2833     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2834                                                PPCII::MO_TPREL_HA);
2835     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2836                                                PPCII::MO_TPREL_LO);
2837     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2838                              : DAG.getRegister(PPC::R2, MVT::i32);
2839 
2840     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2841     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2842   }
2843 
2844   if (Model == TLSModel::InitialExec) {
2845     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2846     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2847                                                 PPCII::MO_TLS);
2848     SDValue GOTPtr;
2849     if (is64bit) {
2850       setUsesTOCBasePtr(DAG);
2851       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2852       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2853                            PtrVT, GOTReg, TGA);
2854     } else {
2855       if (!TM.isPositionIndependent())
2856         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2857       else if (picLevel == PICLevel::SmallPIC)
2858         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2859       else
2860         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2861     }
2862     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2863                                    PtrVT, TGA, GOTPtr);
2864     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2865   }
2866 
2867   if (Model == TLSModel::GeneralDynamic) {
2868     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2869     SDValue GOTPtr;
2870     if (is64bit) {
2871       setUsesTOCBasePtr(DAG);
2872       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2873       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2874                                    GOTReg, TGA);
2875     } else {
2876       if (picLevel == PICLevel::SmallPIC)
2877         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2878       else
2879         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2880     }
2881     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2882                        GOTPtr, TGA, TGA);
2883   }
2884 
2885   if (Model == TLSModel::LocalDynamic) {
2886     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2887     SDValue GOTPtr;
2888     if (is64bit) {
2889       setUsesTOCBasePtr(DAG);
2890       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2891       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2892                            GOTReg, TGA);
2893     } else {
2894       if (picLevel == PICLevel::SmallPIC)
2895         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2896       else
2897         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2898     }
2899     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2900                                   PtrVT, GOTPtr, TGA, TGA);
2901     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2902                                       PtrVT, TLSAddr, TGA);
2903     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2904   }
2905 
2906   llvm_unreachable("Unknown TLS model!");
2907 }
2908 
2909 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2910                                               SelectionDAG &DAG) const {
2911   EVT PtrVT = Op.getValueType();
2912   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2913   SDLoc DL(GSDN);
2914   const GlobalValue *GV = GSDN->getGlobal();
2915 
2916   // 64-bit SVR4 ABI code is always position-independent.
2917   // The actual address of the GlobalValue is stored in the TOC.
2918   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2919     setUsesTOCBasePtr(DAG);
2920     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2921     return getTOCEntry(DAG, DL, true, GA);
2922   }
2923 
2924   unsigned MOHiFlag, MOLoFlag;
2925   bool IsPIC = isPositionIndependent();
2926   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2927 
2928   if (IsPIC && Subtarget.isSVR4ABI()) {
2929     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2930                                             GSDN->getOffset(),
2931                                             PPCII::MO_PIC_FLAG);
2932     return getTOCEntry(DAG, DL, false, GA);
2933   }
2934 
2935   SDValue GAHi =
2936     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2937   SDValue GALo =
2938     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2939 
2940   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2941 
2942   // If the global reference is actually to a non-lazy-pointer, we have to do an
2943   // extra load to get the address of the global.
2944   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2945     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2946   return Ptr;
2947 }
2948 
2949 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2950   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2951   SDLoc dl(Op);
2952 
2953   if (Op.getValueType() == MVT::v2i64) {
2954     // When the operands themselves are v2i64 values, we need to do something
2955     // special because VSX has no underlying comparison operations for these.
2956     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2957       // Equality can be handled by casting to the legal type for Altivec
2958       // comparisons, everything else needs to be expanded.
2959       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2960         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2961                  DAG.getSetCC(dl, MVT::v4i32,
2962                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2963                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2964                    CC));
2965       }
2966 
2967       return SDValue();
2968     }
2969 
2970     // We handle most of these in the usual way.
2971     return Op;
2972   }
2973 
2974   // If we're comparing for equality to zero, expose the fact that this is
2975   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2976   // fold the new nodes.
2977   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2978     return V;
2979 
2980   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2981     // Leave comparisons against 0 and -1 alone for now, since they're usually
2982     // optimized.  FIXME: revisit this when we can custom lower all setcc
2983     // optimizations.
2984     if (C->isAllOnesValue() || C->isNullValue())
2985       return SDValue();
2986   }
2987 
2988   // If we have an integer seteq/setne, turn it into a compare against zero
2989   // by xor'ing the rhs with the lhs, which is faster than setting a
2990   // condition register, reading it back out, and masking the correct bit.  The
2991   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2992   // the result to other bit-twiddling opportunities.
2993   EVT LHSVT = Op.getOperand(0).getValueType();
2994   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2995     EVT VT = Op.getValueType();
2996     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2997                                 Op.getOperand(1));
2998     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2999   }
3000   return SDValue();
3001 }
3002 
3003 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3004   SDNode *Node = Op.getNode();
3005   EVT VT = Node->getValueType(0);
3006   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3007   SDValue InChain = Node->getOperand(0);
3008   SDValue VAListPtr = Node->getOperand(1);
3009   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3010   SDLoc dl(Node);
3011 
3012   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3013 
3014   // gpr_index
3015   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3016                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3017   InChain = GprIndex.getValue(1);
3018 
3019   if (VT == MVT::i64) {
3020     // Check if GprIndex is even
3021     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3022                                  DAG.getConstant(1, dl, MVT::i32));
3023     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3024                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3025     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3026                                           DAG.getConstant(1, dl, MVT::i32));
3027     // Align GprIndex to be even if it isn't
3028     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3029                            GprIndex);
3030   }
3031 
3032   // fpr index is 1 byte after gpr
3033   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3034                                DAG.getConstant(1, dl, MVT::i32));
3035 
3036   // fpr
3037   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3038                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3039   InChain = FprIndex.getValue(1);
3040 
3041   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3042                                        DAG.getConstant(8, dl, MVT::i32));
3043 
3044   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3045                                         DAG.getConstant(4, dl, MVT::i32));
3046 
3047   // areas
3048   SDValue OverflowArea =
3049       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3050   InChain = OverflowArea.getValue(1);
3051 
3052   SDValue RegSaveArea =
3053       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3054   InChain = RegSaveArea.getValue(1);
3055 
3056   // select overflow_area if index > 8
3057   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3058                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3059 
3060   // adjustment constant gpr_index * 4/8
3061   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3062                                     VT.isInteger() ? GprIndex : FprIndex,
3063                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3064                                                     MVT::i32));
3065 
3066   // OurReg = RegSaveArea + RegConstant
3067   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3068                                RegConstant);
3069 
3070   // Floating types are 32 bytes into RegSaveArea
3071   if (VT.isFloatingPoint())
3072     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3073                          DAG.getConstant(32, dl, MVT::i32));
3074 
3075   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3076   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3077                                    VT.isInteger() ? GprIndex : FprIndex,
3078                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3079                                                    MVT::i32));
3080 
3081   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3082                               VT.isInteger() ? VAListPtr : FprPtr,
3083                               MachinePointerInfo(SV), MVT::i8);
3084 
3085   // determine if we should load from reg_save_area or overflow_area
3086   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3087 
3088   // increase overflow_area by 4/8 if gpr/fpr > 8
3089   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3090                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3091                                           dl, MVT::i32));
3092 
3093   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3094                              OverflowAreaPlusN);
3095 
3096   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3097                               MachinePointerInfo(), MVT::i32);
3098 
3099   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3100 }
3101 
3102 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3103   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3104 
3105   // We have to copy the entire va_list struct:
3106   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3107   return DAG.getMemcpy(Op.getOperand(0), Op,
3108                        Op.getOperand(1), Op.getOperand(2),
3109                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3110                        false, MachinePointerInfo(), MachinePointerInfo());
3111 }
3112 
3113 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3114                                                   SelectionDAG &DAG) const {
3115   return Op.getOperand(0);
3116 }
3117 
3118 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3119                                                 SelectionDAG &DAG) const {
3120   SDValue Chain = Op.getOperand(0);
3121   SDValue Trmp = Op.getOperand(1); // trampoline
3122   SDValue FPtr = Op.getOperand(2); // nested function
3123   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3124   SDLoc dl(Op);
3125 
3126   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3127   bool isPPC64 = (PtrVT == MVT::i64);
3128   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3129 
3130   TargetLowering::ArgListTy Args;
3131   TargetLowering::ArgListEntry Entry;
3132 
3133   Entry.Ty = IntPtrTy;
3134   Entry.Node = Trmp; Args.push_back(Entry);
3135 
3136   // TrampSize == (isPPC64 ? 48 : 40);
3137   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3138                                isPPC64 ? MVT::i64 : MVT::i32);
3139   Args.push_back(Entry);
3140 
3141   Entry.Node = FPtr; Args.push_back(Entry);
3142   Entry.Node = Nest; Args.push_back(Entry);
3143 
3144   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3145   TargetLowering::CallLoweringInfo CLI(DAG);
3146   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3147       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3148       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3149 
3150   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3151   return CallResult.second;
3152 }
3153 
3154 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3155   MachineFunction &MF = DAG.getMachineFunction();
3156   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3157   EVT PtrVT = getPointerTy(MF.getDataLayout());
3158 
3159   SDLoc dl(Op);
3160 
3161   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3162     // vastart just stores the address of the VarArgsFrameIndex slot into the
3163     // memory location argument.
3164     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3165     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3166     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3167                         MachinePointerInfo(SV));
3168   }
3169 
3170   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3171   // We suppose the given va_list is already allocated.
3172   //
3173   // typedef struct {
3174   //  char gpr;     /* index into the array of 8 GPRs
3175   //                 * stored in the register save area
3176   //                 * gpr=0 corresponds to r3,
3177   //                 * gpr=1 to r4, etc.
3178   //                 */
3179   //  char fpr;     /* index into the array of 8 FPRs
3180   //                 * stored in the register save area
3181   //                 * fpr=0 corresponds to f1,
3182   //                 * fpr=1 to f2, etc.
3183   //                 */
3184   //  char *overflow_arg_area;
3185   //                /* location on stack that holds
3186   //                 * the next overflow argument
3187   //                 */
3188   //  char *reg_save_area;
3189   //               /* where r3:r10 and f1:f8 (if saved)
3190   //                * are stored
3191   //                */
3192   // } va_list[1];
3193 
3194   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3195   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3196   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3197                                             PtrVT);
3198   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3199                                  PtrVT);
3200 
3201   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3202   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3203 
3204   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3205   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3206 
3207   uint64_t FPROffset = 1;
3208   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3209 
3210   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3211 
3212   // Store first byte : number of int regs
3213   SDValue firstStore =
3214       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3215                         MachinePointerInfo(SV), MVT::i8);
3216   uint64_t nextOffset = FPROffset;
3217   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3218                                   ConstFPROffset);
3219 
3220   // Store second byte : number of float regs
3221   SDValue secondStore =
3222       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3223                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3224   nextOffset += StackOffset;
3225   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3226 
3227   // Store second word : arguments given on stack
3228   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3229                                     MachinePointerInfo(SV, nextOffset));
3230   nextOffset += FrameOffset;
3231   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3232 
3233   // Store third word : arguments given in registers
3234   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3235                       MachinePointerInfo(SV, nextOffset));
3236 }
3237 
3238 /// FPR - The set of FP registers that should be allocated for arguments,
3239 /// on Darwin.
3240 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3241                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3242                                 PPC::F11, PPC::F12, PPC::F13};
3243 
3244 /// QFPR - The set of QPX registers that should be allocated for arguments.
3245 static const MCPhysReg QFPR[] = {
3246     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3247     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3248 
3249 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3250 /// the stack.
3251 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3252                                        unsigned PtrByteSize) {
3253   unsigned ArgSize = ArgVT.getStoreSize();
3254   if (Flags.isByVal())
3255     ArgSize = Flags.getByValSize();
3256 
3257   // Round up to multiples of the pointer size, except for array members,
3258   // which are always packed.
3259   if (!Flags.isInConsecutiveRegs())
3260     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3261 
3262   return ArgSize;
3263 }
3264 
3265 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3266 /// on the stack.
3267 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3268                                             ISD::ArgFlagsTy Flags,
3269                                             unsigned PtrByteSize) {
3270   unsigned Align = PtrByteSize;
3271 
3272   // Altivec parameters are padded to a 16 byte boundary.
3273   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3274       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3275       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3276       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3277     Align = 16;
3278   // QPX vector types stored in double-precision are padded to a 32 byte
3279   // boundary.
3280   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3281     Align = 32;
3282 
3283   // ByVal parameters are aligned as requested.
3284   if (Flags.isByVal()) {
3285     unsigned BVAlign = Flags.getByValAlign();
3286     if (BVAlign > PtrByteSize) {
3287       if (BVAlign % PtrByteSize != 0)
3288           llvm_unreachable(
3289             "ByVal alignment is not a multiple of the pointer size");
3290 
3291       Align = BVAlign;
3292     }
3293   }
3294 
3295   // Array members are always packed to their original alignment.
3296   if (Flags.isInConsecutiveRegs()) {
3297     // If the array member was split into multiple registers, the first
3298     // needs to be aligned to the size of the full type.  (Except for
3299     // ppcf128, which is only aligned as its f64 components.)
3300     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3301       Align = OrigVT.getStoreSize();
3302     else
3303       Align = ArgVT.getStoreSize();
3304   }
3305 
3306   return Align;
3307 }
3308 
3309 /// CalculateStackSlotUsed - Return whether this argument will use its
3310 /// stack slot (instead of being passed in registers).  ArgOffset,
3311 /// AvailableFPRs, and AvailableVRs must hold the current argument
3312 /// position, and will be updated to account for this argument.
3313 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3314                                    ISD::ArgFlagsTy Flags,
3315                                    unsigned PtrByteSize,
3316                                    unsigned LinkageSize,
3317                                    unsigned ParamAreaSize,
3318                                    unsigned &ArgOffset,
3319                                    unsigned &AvailableFPRs,
3320                                    unsigned &AvailableVRs, bool HasQPX) {
3321   bool UseMemory = false;
3322 
3323   // Respect alignment of argument on the stack.
3324   unsigned Align =
3325     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3326   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3327   // If there's no space left in the argument save area, we must
3328   // use memory (this check also catches zero-sized arguments).
3329   if (ArgOffset >= LinkageSize + ParamAreaSize)
3330     UseMemory = true;
3331 
3332   // Allocate argument on the stack.
3333   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3334   if (Flags.isInConsecutiveRegsLast())
3335     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3336   // If we overran the argument save area, we must use memory
3337   // (this check catches arguments passed partially in memory)
3338   if (ArgOffset > LinkageSize + ParamAreaSize)
3339     UseMemory = true;
3340 
3341   // However, if the argument is actually passed in an FPR or a VR,
3342   // we don't use memory after all.
3343   if (!Flags.isByVal()) {
3344     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3345         // QPX registers overlap with the scalar FP registers.
3346         (HasQPX && (ArgVT == MVT::v4f32 ||
3347                     ArgVT == MVT::v4f64 ||
3348                     ArgVT == MVT::v4i1)))
3349       if (AvailableFPRs > 0) {
3350         --AvailableFPRs;
3351         return false;
3352       }
3353     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3354         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3355         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3356         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3357       if (AvailableVRs > 0) {
3358         --AvailableVRs;
3359         return false;
3360       }
3361   }
3362 
3363   return UseMemory;
3364 }
3365 
3366 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3367 /// ensure minimum alignment required for target.
3368 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3369                                      unsigned NumBytes) {
3370   unsigned TargetAlign = Lowering->getStackAlignment();
3371   unsigned AlignMask = TargetAlign - 1;
3372   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3373   return NumBytes;
3374 }
3375 
3376 SDValue PPCTargetLowering::LowerFormalArguments(
3377     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3378     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3379     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3380   if (Subtarget.isSVR4ABI()) {
3381     if (Subtarget.isPPC64())
3382       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3383                                          dl, DAG, InVals);
3384     else
3385       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3386                                          dl, DAG, InVals);
3387   } else {
3388     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3389                                        dl, DAG, InVals);
3390   }
3391 }
3392 
3393 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3394     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3395     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3396     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3397 
3398   // 32-bit SVR4 ABI Stack Frame Layout:
3399   //              +-----------------------------------+
3400   //        +-->  |            Back chain             |
3401   //        |     +-----------------------------------+
3402   //        |     | Floating-point register save area |
3403   //        |     +-----------------------------------+
3404   //        |     |    General register save area     |
3405   //        |     +-----------------------------------+
3406   //        |     |          CR save word             |
3407   //        |     +-----------------------------------+
3408   //        |     |         VRSAVE save word          |
3409   //        |     +-----------------------------------+
3410   //        |     |         Alignment padding         |
3411   //        |     +-----------------------------------+
3412   //        |     |     Vector register save area     |
3413   //        |     +-----------------------------------+
3414   //        |     |       Local variable space        |
3415   //        |     +-----------------------------------+
3416   //        |     |        Parameter list area        |
3417   //        |     +-----------------------------------+
3418   //        |     |           LR save word            |
3419   //        |     +-----------------------------------+
3420   // SP-->  +---  |            Back chain             |
3421   //              +-----------------------------------+
3422   //
3423   // Specifications:
3424   //   System V Application Binary Interface PowerPC Processor Supplement
3425   //   AltiVec Technology Programming Interface Manual
3426 
3427   MachineFunction &MF = DAG.getMachineFunction();
3428   MachineFrameInfo &MFI = MF.getFrameInfo();
3429   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3430 
3431   EVT PtrVT = getPointerTy(MF.getDataLayout());
3432   // Potential tail calls could cause overwriting of argument stack slots.
3433   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3434                        (CallConv == CallingConv::Fast));
3435   unsigned PtrByteSize = 4;
3436 
3437   // Assign locations to all of the incoming arguments.
3438   SmallVector<CCValAssign, 16> ArgLocs;
3439   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3440                  *DAG.getContext());
3441 
3442   // Reserve space for the linkage area on the stack.
3443   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3444   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3445   if (useSoftFloat())
3446     CCInfo.PreAnalyzeFormalArguments(Ins);
3447 
3448   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3449   CCInfo.clearWasPPCF128();
3450 
3451   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3452     CCValAssign &VA = ArgLocs[i];
3453 
3454     // Arguments stored in registers.
3455     if (VA.isRegLoc()) {
3456       const TargetRegisterClass *RC;
3457       EVT ValVT = VA.getValVT();
3458 
3459       switch (ValVT.getSimpleVT().SimpleTy) {
3460         default:
3461           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3462         case MVT::i1:
3463         case MVT::i32:
3464           RC = &PPC::GPRCRegClass;
3465           break;
3466         case MVT::f32:
3467           if (Subtarget.hasP8Vector())
3468             RC = &PPC::VSSRCRegClass;
3469           else if (Subtarget.hasSPE())
3470             RC = &PPC::SPE4RCRegClass;
3471           else
3472             RC = &PPC::F4RCRegClass;
3473           break;
3474         case MVT::f64:
3475           if (Subtarget.hasVSX())
3476             RC = &PPC::VSFRCRegClass;
3477           else if (Subtarget.hasSPE())
3478             // SPE passes doubles in GPR pairs.
3479             RC = &PPC::GPRCRegClass;
3480           else
3481             RC = &PPC::F8RCRegClass;
3482           break;
3483         case MVT::v16i8:
3484         case MVT::v8i16:
3485         case MVT::v4i32:
3486           RC = &PPC::VRRCRegClass;
3487           break;
3488         case MVT::v4f32:
3489           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3490           break;
3491         case MVT::v2f64:
3492         case MVT::v2i64:
3493           RC = &PPC::VRRCRegClass;
3494           break;
3495         case MVT::v4f64:
3496           RC = &PPC::QFRCRegClass;
3497           break;
3498         case MVT::v4i1:
3499           RC = &PPC::QBRCRegClass;
3500           break;
3501       }
3502 
3503       SDValue ArgValue;
3504       // Transform the arguments stored in physical registers into
3505       // virtual ones.
3506       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3507         assert(i + 1 < e && "No second half of double precision argument");
3508         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3509         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3510         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3511         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3512         if (!Subtarget.isLittleEndian())
3513           std::swap (ArgValueLo, ArgValueHi);
3514         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3515                                ArgValueHi);
3516       } else {
3517         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3518         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3519                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3520         if (ValVT == MVT::i1)
3521           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3522       }
3523 
3524       InVals.push_back(ArgValue);
3525     } else {
3526       // Argument stored in memory.
3527       assert(VA.isMemLoc());
3528 
3529       // Get the extended size of the argument type in stack
3530       unsigned ArgSize = VA.getLocVT().getStoreSize();
3531       // Get the actual size of the argument type
3532       unsigned ObjSize = VA.getValVT().getStoreSize();
3533       unsigned ArgOffset = VA.getLocMemOffset();
3534       // Stack objects in PPC32 are right justified.
3535       ArgOffset += ArgSize - ObjSize;
3536       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3537 
3538       // Create load nodes to retrieve arguments from the stack.
3539       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3540       InVals.push_back(
3541           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3542     }
3543   }
3544 
3545   // Assign locations to all of the incoming aggregate by value arguments.
3546   // Aggregates passed by value are stored in the local variable space of the
3547   // caller's stack frame, right above the parameter list area.
3548   SmallVector<CCValAssign, 16> ByValArgLocs;
3549   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3550                       ByValArgLocs, *DAG.getContext());
3551 
3552   // Reserve stack space for the allocations in CCInfo.
3553   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3554 
3555   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3556 
3557   // Area that is at least reserved in the caller of this function.
3558   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3559   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3560 
3561   // Set the size that is at least reserved in caller of this function.  Tail
3562   // call optimized function's reserved stack space needs to be aligned so that
3563   // taking the difference between two stack areas will result in an aligned
3564   // stack.
3565   MinReservedArea =
3566       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3567   FuncInfo->setMinReservedArea(MinReservedArea);
3568 
3569   SmallVector<SDValue, 8> MemOps;
3570 
3571   // If the function takes variable number of arguments, make a frame index for
3572   // the start of the first vararg value... for expansion of llvm.va_start.
3573   if (isVarArg) {
3574     static const MCPhysReg GPArgRegs[] = {
3575       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3576       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3577     };
3578     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3579 
3580     static const MCPhysReg FPArgRegs[] = {
3581       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3582       PPC::F8
3583     };
3584     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3585 
3586     if (useSoftFloat() || hasSPE())
3587        NumFPArgRegs = 0;
3588 
3589     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3590     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3591 
3592     // Make room for NumGPArgRegs and NumFPArgRegs.
3593     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3594                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3595 
3596     FuncInfo->setVarArgsStackOffset(
3597       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3598                             CCInfo.getNextStackOffset(), true));
3599 
3600     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3601     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3602 
3603     // The fixed integer arguments of a variadic function are stored to the
3604     // VarArgsFrameIndex on the stack so that they may be loaded by
3605     // dereferencing the result of va_next.
3606     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3607       // Get an existing live-in vreg, or add a new one.
3608       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3609       if (!VReg)
3610         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3611 
3612       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3613       SDValue Store =
3614           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3615       MemOps.push_back(Store);
3616       // Increment the address by four for the next argument to store
3617       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3618       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3619     }
3620 
3621     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3622     // is set.
3623     // The double arguments are stored to the VarArgsFrameIndex
3624     // on the stack.
3625     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3626       // Get an existing live-in vreg, or add a new one.
3627       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3628       if (!VReg)
3629         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3630 
3631       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3632       SDValue Store =
3633           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3634       MemOps.push_back(Store);
3635       // Increment the address by eight for the next argument to store
3636       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3637                                          PtrVT);
3638       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3639     }
3640   }
3641 
3642   if (!MemOps.empty())
3643     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3644 
3645   return Chain;
3646 }
3647 
3648 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3649 // value to MVT::i64 and then truncate to the correct register size.
3650 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3651                                              EVT ObjectVT, SelectionDAG &DAG,
3652                                              SDValue ArgVal,
3653                                              const SDLoc &dl) const {
3654   if (Flags.isSExt())
3655     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3656                          DAG.getValueType(ObjectVT));
3657   else if (Flags.isZExt())
3658     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3659                          DAG.getValueType(ObjectVT));
3660 
3661   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3662 }
3663 
3664 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3665     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3666     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3667     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3668   // TODO: add description of PPC stack frame format, or at least some docs.
3669   //
3670   bool isELFv2ABI = Subtarget.isELFv2ABI();
3671   bool isLittleEndian = Subtarget.isLittleEndian();
3672   MachineFunction &MF = DAG.getMachineFunction();
3673   MachineFrameInfo &MFI = MF.getFrameInfo();
3674   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3675 
3676   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3677          "fastcc not supported on varargs functions");
3678 
3679   EVT PtrVT = getPointerTy(MF.getDataLayout());
3680   // Potential tail calls could cause overwriting of argument stack slots.
3681   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3682                        (CallConv == CallingConv::Fast));
3683   unsigned PtrByteSize = 8;
3684   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3685 
3686   static const MCPhysReg GPR[] = {
3687     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3688     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3689   };
3690   static const MCPhysReg VR[] = {
3691     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3692     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3693   };
3694 
3695   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3696   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3697   const unsigned Num_VR_Regs  = array_lengthof(VR);
3698   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3699 
3700   // Do a first pass over the arguments to determine whether the ABI
3701   // guarantees that our caller has allocated the parameter save area
3702   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3703   // in the ELFv2 ABI, it is true if this is a vararg function or if
3704   // any parameter is located in a stack slot.
3705 
3706   bool HasParameterArea = !isELFv2ABI || isVarArg;
3707   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3708   unsigned NumBytes = LinkageSize;
3709   unsigned AvailableFPRs = Num_FPR_Regs;
3710   unsigned AvailableVRs = Num_VR_Regs;
3711   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3712     if (Ins[i].Flags.isNest())
3713       continue;
3714 
3715     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3716                                PtrByteSize, LinkageSize, ParamAreaSize,
3717                                NumBytes, AvailableFPRs, AvailableVRs,
3718                                Subtarget.hasQPX()))
3719       HasParameterArea = true;
3720   }
3721 
3722   // Add DAG nodes to load the arguments or copy them out of registers.  On
3723   // entry to a function on PPC, the arguments start after the linkage area,
3724   // although the first ones are often in registers.
3725 
3726   unsigned ArgOffset = LinkageSize;
3727   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3728   unsigned &QFPR_idx = FPR_idx;
3729   SmallVector<SDValue, 8> MemOps;
3730   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3731   unsigned CurArgIdx = 0;
3732   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3733     SDValue ArgVal;
3734     bool needsLoad = false;
3735     EVT ObjectVT = Ins[ArgNo].VT;
3736     EVT OrigVT = Ins[ArgNo].ArgVT;
3737     unsigned ObjSize = ObjectVT.getStoreSize();
3738     unsigned ArgSize = ObjSize;
3739     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3740     if (Ins[ArgNo].isOrigArg()) {
3741       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3742       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3743     }
3744     // We re-align the argument offset for each argument, except when using the
3745     // fast calling convention, when we need to make sure we do that only when
3746     // we'll actually use a stack slot.
3747     unsigned CurArgOffset, Align;
3748     auto ComputeArgOffset = [&]() {
3749       /* Respect alignment of argument on the stack.  */
3750       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3751       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3752       CurArgOffset = ArgOffset;
3753     };
3754 
3755     if (CallConv != CallingConv::Fast) {
3756       ComputeArgOffset();
3757 
3758       /* Compute GPR index associated with argument offset.  */
3759       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3760       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3761     }
3762 
3763     // FIXME the codegen can be much improved in some cases.
3764     // We do not have to keep everything in memory.
3765     if (Flags.isByVal()) {
3766       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3767 
3768       if (CallConv == CallingConv::Fast)
3769         ComputeArgOffset();
3770 
3771       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3772       ObjSize = Flags.getByValSize();
3773       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3774       // Empty aggregate parameters do not take up registers.  Examples:
3775       //   struct { } a;
3776       //   union  { } b;
3777       //   int c[0];
3778       // etc.  However, we have to provide a place-holder in InVals, so
3779       // pretend we have an 8-byte item at the current address for that
3780       // purpose.
3781       if (!ObjSize) {
3782         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3783         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3784         InVals.push_back(FIN);
3785         continue;
3786       }
3787 
3788       // Create a stack object covering all stack doublewords occupied
3789       // by the argument.  If the argument is (fully or partially) on
3790       // the stack, or if the argument is fully in registers but the
3791       // caller has allocated the parameter save anyway, we can refer
3792       // directly to the caller's stack frame.  Otherwise, create a
3793       // local copy in our own frame.
3794       int FI;
3795       if (HasParameterArea ||
3796           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3797         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3798       else
3799         FI = MFI.CreateStackObject(ArgSize, Align, false);
3800       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3801 
3802       // Handle aggregates smaller than 8 bytes.
3803       if (ObjSize < PtrByteSize) {
3804         // The value of the object is its address, which differs from the
3805         // address of the enclosing doubleword on big-endian systems.
3806         SDValue Arg = FIN;
3807         if (!isLittleEndian) {
3808           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3809           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3810         }
3811         InVals.push_back(Arg);
3812 
3813         if (GPR_idx != Num_GPR_Regs) {
3814           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3815           FuncInfo->addLiveInAttr(VReg, Flags);
3816           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3817           SDValue Store;
3818 
3819           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3820             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3821                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3822             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3823                                       MachinePointerInfo(&*FuncArg), ObjType);
3824           } else {
3825             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3826             // store the whole register as-is to the parameter save area
3827             // slot.
3828             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3829                                  MachinePointerInfo(&*FuncArg));
3830           }
3831 
3832           MemOps.push_back(Store);
3833         }
3834         // Whether we copied from a register or not, advance the offset
3835         // into the parameter save area by a full doubleword.
3836         ArgOffset += PtrByteSize;
3837         continue;
3838       }
3839 
3840       // The value of the object is its address, which is the address of
3841       // its first stack doubleword.
3842       InVals.push_back(FIN);
3843 
3844       // Store whatever pieces of the object are in registers to memory.
3845       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3846         if (GPR_idx == Num_GPR_Regs)
3847           break;
3848 
3849         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3850         FuncInfo->addLiveInAttr(VReg, Flags);
3851         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3852         SDValue Addr = FIN;
3853         if (j) {
3854           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3855           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3856         }
3857         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3858                                      MachinePointerInfo(&*FuncArg, j));
3859         MemOps.push_back(Store);
3860         ++GPR_idx;
3861       }
3862       ArgOffset += ArgSize;
3863       continue;
3864     }
3865 
3866     switch (ObjectVT.getSimpleVT().SimpleTy) {
3867     default: llvm_unreachable("Unhandled argument type!");
3868     case MVT::i1:
3869     case MVT::i32:
3870     case MVT::i64:
3871       if (Flags.isNest()) {
3872         // The 'nest' parameter, if any, is passed in R11.
3873         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3874         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3875 
3876         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3877           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3878 
3879         break;
3880       }
3881 
3882       // These can be scalar arguments or elements of an integer array type
3883       // passed directly.  Clang may use those instead of "byval" aggregate
3884       // types to avoid forcing arguments to memory unnecessarily.
3885       if (GPR_idx != Num_GPR_Regs) {
3886         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3887         FuncInfo->addLiveInAttr(VReg, Flags);
3888         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3889 
3890         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3891           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3892           // value to MVT::i64 and then truncate to the correct register size.
3893           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3894       } else {
3895         if (CallConv == CallingConv::Fast)
3896           ComputeArgOffset();
3897 
3898         needsLoad = true;
3899         ArgSize = PtrByteSize;
3900       }
3901       if (CallConv != CallingConv::Fast || needsLoad)
3902         ArgOffset += 8;
3903       break;
3904 
3905     case MVT::f32:
3906     case MVT::f64:
3907       // These can be scalar arguments or elements of a float array type
3908       // passed directly.  The latter are used to implement ELFv2 homogenous
3909       // float aggregates.
3910       if (FPR_idx != Num_FPR_Regs) {
3911         unsigned VReg;
3912 
3913         if (ObjectVT == MVT::f32)
3914           VReg = MF.addLiveIn(FPR[FPR_idx],
3915                               Subtarget.hasP8Vector()
3916                                   ? &PPC::VSSRCRegClass
3917                                   : &PPC::F4RCRegClass);
3918         else
3919           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3920                                                 ? &PPC::VSFRCRegClass
3921                                                 : &PPC::F8RCRegClass);
3922 
3923         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3924         ++FPR_idx;
3925       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3926         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3927         // once we support fp <-> gpr moves.
3928 
3929         // This can only ever happen in the presence of f32 array types,
3930         // since otherwise we never run out of FPRs before running out
3931         // of GPRs.
3932         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3933         FuncInfo->addLiveInAttr(VReg, Flags);
3934         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3935 
3936         if (ObjectVT == MVT::f32) {
3937           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3938             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3939                                  DAG.getConstant(32, dl, MVT::i32));
3940           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3941         }
3942 
3943         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3944       } else {
3945         if (CallConv == CallingConv::Fast)
3946           ComputeArgOffset();
3947 
3948         needsLoad = true;
3949       }
3950 
3951       // When passing an array of floats, the array occupies consecutive
3952       // space in the argument area; only round up to the next doubleword
3953       // at the end of the array.  Otherwise, each float takes 8 bytes.
3954       if (CallConv != CallingConv::Fast || needsLoad) {
3955         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3956         ArgOffset += ArgSize;
3957         if (Flags.isInConsecutiveRegsLast())
3958           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3959       }
3960       break;
3961     case MVT::v4f32:
3962     case MVT::v4i32:
3963     case MVT::v8i16:
3964     case MVT::v16i8:
3965     case MVT::v2f64:
3966     case MVT::v2i64:
3967     case MVT::v1i128:
3968     case MVT::f128:
3969       if (!Subtarget.hasQPX()) {
3970         // These can be scalar arguments or elements of a vector array type
3971         // passed directly.  The latter are used to implement ELFv2 homogenous
3972         // vector aggregates.
3973         if (VR_idx != Num_VR_Regs) {
3974           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3975           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3976           ++VR_idx;
3977         } else {
3978           if (CallConv == CallingConv::Fast)
3979             ComputeArgOffset();
3980           needsLoad = true;
3981         }
3982         if (CallConv != CallingConv::Fast || needsLoad)
3983           ArgOffset += 16;
3984         break;
3985       } // not QPX
3986 
3987       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3988              "Invalid QPX parameter type");
3989       LLVM_FALLTHROUGH;
3990 
3991     case MVT::v4f64:
3992     case MVT::v4i1:
3993       // QPX vectors are treated like their scalar floating-point subregisters
3994       // (except that they're larger).
3995       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3996       if (QFPR_idx != Num_QFPR_Regs) {
3997         const TargetRegisterClass *RC;
3998         switch (ObjectVT.getSimpleVT().SimpleTy) {
3999         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4000         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4001         default:         RC = &PPC::QBRCRegClass; break;
4002         }
4003 
4004         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4005         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4006         ++QFPR_idx;
4007       } else {
4008         if (CallConv == CallingConv::Fast)
4009           ComputeArgOffset();
4010         needsLoad = true;
4011       }
4012       if (CallConv != CallingConv::Fast || needsLoad)
4013         ArgOffset += Sz;
4014       break;
4015     }
4016 
4017     // We need to load the argument to a virtual register if we determined
4018     // above that we ran out of physical registers of the appropriate type.
4019     if (needsLoad) {
4020       if (ObjSize < ArgSize && !isLittleEndian)
4021         CurArgOffset += ArgSize - ObjSize;
4022       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4023       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4024       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4025     }
4026 
4027     InVals.push_back(ArgVal);
4028   }
4029 
4030   // Area that is at least reserved in the caller of this function.
4031   unsigned MinReservedArea;
4032   if (HasParameterArea)
4033     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4034   else
4035     MinReservedArea = LinkageSize;
4036 
4037   // Set the size that is at least reserved in caller of this function.  Tail
4038   // call optimized functions' reserved stack space needs to be aligned so that
4039   // taking the difference between two stack areas will result in an aligned
4040   // stack.
4041   MinReservedArea =
4042       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4043   FuncInfo->setMinReservedArea(MinReservedArea);
4044 
4045   // If the function takes variable number of arguments, make a frame index for
4046   // the start of the first vararg value... for expansion of llvm.va_start.
4047   if (isVarArg) {
4048     int Depth = ArgOffset;
4049 
4050     FuncInfo->setVarArgsFrameIndex(
4051       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4052     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4053 
4054     // If this function is vararg, store any remaining integer argument regs
4055     // to their spots on the stack so that they may be loaded by dereferencing
4056     // the result of va_next.
4057     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4058          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4059       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4060       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4061       SDValue Store =
4062           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4063       MemOps.push_back(Store);
4064       // Increment the address by four for the next argument to store
4065       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4066       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4067     }
4068   }
4069 
4070   if (!MemOps.empty())
4071     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4072 
4073   return Chain;
4074 }
4075 
4076 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4077     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4078     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4079     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4080   // TODO: add description of PPC stack frame format, or at least some docs.
4081   //
4082   MachineFunction &MF = DAG.getMachineFunction();
4083   MachineFrameInfo &MFI = MF.getFrameInfo();
4084   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4085 
4086   EVT PtrVT = getPointerTy(MF.getDataLayout());
4087   bool isPPC64 = PtrVT == MVT::i64;
4088   // Potential tail calls could cause overwriting of argument stack slots.
4089   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4090                        (CallConv == CallingConv::Fast));
4091   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4092   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4093   unsigned ArgOffset = LinkageSize;
4094   // Area that is at least reserved in caller of this function.
4095   unsigned MinReservedArea = ArgOffset;
4096 
4097   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4098     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4099     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4100   };
4101   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4102     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4103     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4104   };
4105   static const MCPhysReg VR[] = {
4106     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4107     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4108   };
4109 
4110   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4111   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4112   const unsigned Num_VR_Regs  = array_lengthof( VR);
4113 
4114   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4115 
4116   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4117 
4118   // In 32-bit non-varargs functions, the stack space for vectors is after the
4119   // stack space for non-vectors.  We do not use this space unless we have
4120   // too many vectors to fit in registers, something that only occurs in
4121   // constructed examples:), but we have to walk the arglist to figure
4122   // that out...for the pathological case, compute VecArgOffset as the
4123   // start of the vector parameter area.  Computing VecArgOffset is the
4124   // entire point of the following loop.
4125   unsigned VecArgOffset = ArgOffset;
4126   if (!isVarArg && !isPPC64) {
4127     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4128          ++ArgNo) {
4129       EVT ObjectVT = Ins[ArgNo].VT;
4130       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4131 
4132       if (Flags.isByVal()) {
4133         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4134         unsigned ObjSize = Flags.getByValSize();
4135         unsigned ArgSize =
4136                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4137         VecArgOffset += ArgSize;
4138         continue;
4139       }
4140 
4141       switch(ObjectVT.getSimpleVT().SimpleTy) {
4142       default: llvm_unreachable("Unhandled argument type!");
4143       case MVT::i1:
4144       case MVT::i32:
4145       case MVT::f32:
4146         VecArgOffset += 4;
4147         break;
4148       case MVT::i64:  // PPC64
4149       case MVT::f64:
4150         // FIXME: We are guaranteed to be !isPPC64 at this point.
4151         // Does MVT::i64 apply?
4152         VecArgOffset += 8;
4153         break;
4154       case MVT::v4f32:
4155       case MVT::v4i32:
4156       case MVT::v8i16:
4157       case MVT::v16i8:
4158         // Nothing to do, we're only looking at Nonvector args here.
4159         break;
4160       }
4161     }
4162   }
4163   // We've found where the vector parameter area in memory is.  Skip the
4164   // first 12 parameters; these don't use that memory.
4165   VecArgOffset = ((VecArgOffset+15)/16)*16;
4166   VecArgOffset += 12*16;
4167 
4168   // Add DAG nodes to load the arguments or copy them out of registers.  On
4169   // entry to a function on PPC, the arguments start after the linkage area,
4170   // although the first ones are often in registers.
4171 
4172   SmallVector<SDValue, 8> MemOps;
4173   unsigned nAltivecParamsAtEnd = 0;
4174   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4175   unsigned CurArgIdx = 0;
4176   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4177     SDValue ArgVal;
4178     bool needsLoad = false;
4179     EVT ObjectVT = Ins[ArgNo].VT;
4180     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4181     unsigned ArgSize = ObjSize;
4182     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4183     if (Ins[ArgNo].isOrigArg()) {
4184       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4185       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4186     }
4187     unsigned CurArgOffset = ArgOffset;
4188 
4189     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4190     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4191         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4192       if (isVarArg || isPPC64) {
4193         MinReservedArea = ((MinReservedArea+15)/16)*16;
4194         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4195                                                   Flags,
4196                                                   PtrByteSize);
4197       } else  nAltivecParamsAtEnd++;
4198     } else
4199       // Calculate min reserved area.
4200       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4201                                                 Flags,
4202                                                 PtrByteSize);
4203 
4204     // FIXME the codegen can be much improved in some cases.
4205     // We do not have to keep everything in memory.
4206     if (Flags.isByVal()) {
4207       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4208 
4209       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4210       ObjSize = Flags.getByValSize();
4211       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4212       // Objects of size 1 and 2 are right justified, everything else is
4213       // left justified.  This means the memory address is adjusted forwards.
4214       if (ObjSize==1 || ObjSize==2) {
4215         CurArgOffset = CurArgOffset + (4 - ObjSize);
4216       }
4217       // The value of the object is its address.
4218       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4219       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4220       InVals.push_back(FIN);
4221       if (ObjSize==1 || ObjSize==2) {
4222         if (GPR_idx != Num_GPR_Regs) {
4223           unsigned VReg;
4224           if (isPPC64)
4225             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4226           else
4227             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4228           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4229           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4230           SDValue Store =
4231               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4232                                 MachinePointerInfo(&*FuncArg), ObjType);
4233           MemOps.push_back(Store);
4234           ++GPR_idx;
4235         }
4236 
4237         ArgOffset += PtrByteSize;
4238 
4239         continue;
4240       }
4241       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4242         // Store whatever pieces of the object are in registers
4243         // to memory.  ArgOffset will be the address of the beginning
4244         // of the object.
4245         if (GPR_idx != Num_GPR_Regs) {
4246           unsigned VReg;
4247           if (isPPC64)
4248             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4249           else
4250             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4251           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4252           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4253           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4254           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4255                                        MachinePointerInfo(&*FuncArg, j));
4256           MemOps.push_back(Store);
4257           ++GPR_idx;
4258           ArgOffset += PtrByteSize;
4259         } else {
4260           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4261           break;
4262         }
4263       }
4264       continue;
4265     }
4266 
4267     switch (ObjectVT.getSimpleVT().SimpleTy) {
4268     default: llvm_unreachable("Unhandled argument type!");
4269     case MVT::i1:
4270     case MVT::i32:
4271       if (!isPPC64) {
4272         if (GPR_idx != Num_GPR_Regs) {
4273           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4274           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4275 
4276           if (ObjectVT == MVT::i1)
4277             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4278 
4279           ++GPR_idx;
4280         } else {
4281           needsLoad = true;
4282           ArgSize = PtrByteSize;
4283         }
4284         // All int arguments reserve stack space in the Darwin ABI.
4285         ArgOffset += PtrByteSize;
4286         break;
4287       }
4288       LLVM_FALLTHROUGH;
4289     case MVT::i64:  // PPC64
4290       if (GPR_idx != Num_GPR_Regs) {
4291         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4292         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4293 
4294         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4295           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4296           // value to MVT::i64 and then truncate to the correct register size.
4297           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4298 
4299         ++GPR_idx;
4300       } else {
4301         needsLoad = true;
4302         ArgSize = PtrByteSize;
4303       }
4304       // All int arguments reserve stack space in the Darwin ABI.
4305       ArgOffset += 8;
4306       break;
4307 
4308     case MVT::f32:
4309     case MVT::f64:
4310       // Every 4 bytes of argument space consumes one of the GPRs available for
4311       // argument passing.
4312       if (GPR_idx != Num_GPR_Regs) {
4313         ++GPR_idx;
4314         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4315           ++GPR_idx;
4316       }
4317       if (FPR_idx != Num_FPR_Regs) {
4318         unsigned VReg;
4319 
4320         if (ObjectVT == MVT::f32)
4321           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4322         else
4323           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4324 
4325         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4326         ++FPR_idx;
4327       } else {
4328         needsLoad = true;
4329       }
4330 
4331       // All FP arguments reserve stack space in the Darwin ABI.
4332       ArgOffset += isPPC64 ? 8 : ObjSize;
4333       break;
4334     case MVT::v4f32:
4335     case MVT::v4i32:
4336     case MVT::v8i16:
4337     case MVT::v16i8:
4338       // Note that vector arguments in registers don't reserve stack space,
4339       // except in varargs functions.
4340       if (VR_idx != Num_VR_Regs) {
4341         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4342         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4343         if (isVarArg) {
4344           while ((ArgOffset % 16) != 0) {
4345             ArgOffset += PtrByteSize;
4346             if (GPR_idx != Num_GPR_Regs)
4347               GPR_idx++;
4348           }
4349           ArgOffset += 16;
4350           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4351         }
4352         ++VR_idx;
4353       } else {
4354         if (!isVarArg && !isPPC64) {
4355           // Vectors go after all the nonvectors.
4356           CurArgOffset = VecArgOffset;
4357           VecArgOffset += 16;
4358         } else {
4359           // Vectors are aligned.
4360           ArgOffset = ((ArgOffset+15)/16)*16;
4361           CurArgOffset = ArgOffset;
4362           ArgOffset += 16;
4363         }
4364         needsLoad = true;
4365       }
4366       break;
4367     }
4368 
4369     // We need to load the argument to a virtual register if we determined above
4370     // that we ran out of physical registers of the appropriate type.
4371     if (needsLoad) {
4372       int FI = MFI.CreateFixedObject(ObjSize,
4373                                      CurArgOffset + (ArgSize - ObjSize),
4374                                      isImmutable);
4375       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4376       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4377     }
4378 
4379     InVals.push_back(ArgVal);
4380   }
4381 
4382   // Allow for Altivec parameters at the end, if needed.
4383   if (nAltivecParamsAtEnd) {
4384     MinReservedArea = ((MinReservedArea+15)/16)*16;
4385     MinReservedArea += 16*nAltivecParamsAtEnd;
4386   }
4387 
4388   // Area that is at least reserved in the caller of this function.
4389   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4390 
4391   // Set the size that is at least reserved in caller of this function.  Tail
4392   // call optimized functions' reserved stack space needs to be aligned so that
4393   // taking the difference between two stack areas will result in an aligned
4394   // stack.
4395   MinReservedArea =
4396       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4397   FuncInfo->setMinReservedArea(MinReservedArea);
4398 
4399   // If the function takes variable number of arguments, make a frame index for
4400   // the start of the first vararg value... for expansion of llvm.va_start.
4401   if (isVarArg) {
4402     int Depth = ArgOffset;
4403 
4404     FuncInfo->setVarArgsFrameIndex(
4405       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4406                             Depth, true));
4407     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4408 
4409     // If this function is vararg, store any remaining integer argument regs
4410     // to their spots on the stack so that they may be loaded by dereferencing
4411     // the result of va_next.
4412     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4413       unsigned VReg;
4414 
4415       if (isPPC64)
4416         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4417       else
4418         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4419 
4420       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4421       SDValue Store =
4422           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4423       MemOps.push_back(Store);
4424       // Increment the address by four for the next argument to store
4425       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4426       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4427     }
4428   }
4429 
4430   if (!MemOps.empty())
4431     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4432 
4433   return Chain;
4434 }
4435 
4436 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4437 /// adjusted to accommodate the arguments for the tailcall.
4438 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4439                                    unsigned ParamSize) {
4440 
4441   if (!isTailCall) return 0;
4442 
4443   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4444   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4445   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4446   // Remember only if the new adjustment is bigger.
4447   if (SPDiff < FI->getTailCallSPDelta())
4448     FI->setTailCallSPDelta(SPDiff);
4449 
4450   return SPDiff;
4451 }
4452 
4453 static bool isFunctionGlobalAddress(SDValue Callee);
4454 
4455 static bool
4456 callsShareTOCBase(const Function *Caller, SDValue Callee,
4457                     const TargetMachine &TM) {
4458    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4459    // don't have enough information to determine if the caller and calle share
4460    // the same  TOC base, so we have to pessimistically assume they don't for
4461    // correctness.
4462    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4463    if (!G)
4464      return false;
4465 
4466    const GlobalValue *GV = G->getGlobal();
4467   // The medium and large code models are expected to provide a sufficiently
4468   // large TOC to provide all data addressing needs of a module with a
4469   // single TOC. Since each module will be addressed with a single TOC then we
4470   // only need to check that caller and callee don't cross dso boundaries.
4471   if (CodeModel::Medium == TM.getCodeModel() ||
4472       CodeModel::Large == TM.getCodeModel())
4473     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4474 
4475   // Otherwise we need to ensure callee and caller are in the same section,
4476   // since the linker may allocate multiple TOCs, and we don't know which
4477   // sections will belong to the same TOC base.
4478 
4479   if (!GV->isStrongDefinitionForLinker())
4480     return false;
4481 
4482   // Any explicitly-specified sections and section prefixes must also match.
4483   // Also, if we're using -ffunction-sections, then each function is always in
4484   // a different section (the same is true for COMDAT functions).
4485   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4486       GV->getSection() != Caller->getSection())
4487     return false;
4488   if (const auto *F = dyn_cast<Function>(GV)) {
4489     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4490       return false;
4491   }
4492 
4493   // If the callee might be interposed, then we can't assume the ultimate call
4494   // target will be in the same section. Even in cases where we can assume that
4495   // interposition won't happen, in any case where the linker might insert a
4496   // stub to allow for interposition, we must generate code as though
4497   // interposition might occur. To understand why this matters, consider a
4498   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4499   // in the same section, but a is in a different module (i.e. has a different
4500   // TOC base pointer). If the linker allows for interposition between b and c,
4501   // then it will generate a stub for the call edge between b and c which will
4502   // save the TOC pointer into the designated stack slot allocated by b. If we
4503   // return true here, and therefore allow a tail call between b and c, that
4504   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4505   // pointer into the stack slot allocated by a (where the a -> b stub saved
4506   // a's TOC base pointer). If we're not considering a tail call, but rather,
4507   // whether a nop is needed after the call instruction in b, because the linker
4508   // will insert a stub, it might complain about a missing nop if we omit it
4509   // (although many don't complain in this case).
4510   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4511     return false;
4512 
4513   return true;
4514 }
4515 
4516 static bool
4517 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4518                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4519   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4520 
4521   const unsigned PtrByteSize = 8;
4522   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4523 
4524   static const MCPhysReg GPR[] = {
4525     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4526     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4527   };
4528   static const MCPhysReg VR[] = {
4529     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4530     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4531   };
4532 
4533   const unsigned NumGPRs = array_lengthof(GPR);
4534   const unsigned NumFPRs = 13;
4535   const unsigned NumVRs = array_lengthof(VR);
4536   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4537 
4538   unsigned NumBytes = LinkageSize;
4539   unsigned AvailableFPRs = NumFPRs;
4540   unsigned AvailableVRs = NumVRs;
4541 
4542   for (const ISD::OutputArg& Param : Outs) {
4543     if (Param.Flags.isNest()) continue;
4544 
4545     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4546                                PtrByteSize, LinkageSize, ParamAreaSize,
4547                                NumBytes, AvailableFPRs, AvailableVRs,
4548                                Subtarget.hasQPX()))
4549       return true;
4550   }
4551   return false;
4552 }
4553 
4554 static bool
4555 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4556   if (CS.arg_size() != CallerFn->arg_size())
4557     return false;
4558 
4559   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4560   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4561   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4562 
4563   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4564     const Value* CalleeArg = *CalleeArgIter;
4565     const Value* CallerArg = &(*CallerArgIter);
4566     if (CalleeArg == CallerArg)
4567       continue;
4568 
4569     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4570     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4571     //      }
4572     // 1st argument of callee is undef and has the same type as caller.
4573     if (CalleeArg->getType() == CallerArg->getType() &&
4574         isa<UndefValue>(CalleeArg))
4575       continue;
4576 
4577     return false;
4578   }
4579 
4580   return true;
4581 }
4582 
4583 // Returns true if TCO is possible between the callers and callees
4584 // calling conventions.
4585 static bool
4586 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4587                                     CallingConv::ID CalleeCC) {
4588   // Tail calls are possible with fastcc and ccc.
4589   auto isTailCallableCC  = [] (CallingConv::ID CC){
4590       return  CC == CallingConv::C || CC == CallingConv::Fast;
4591   };
4592   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4593     return false;
4594 
4595   // We can safely tail call both fastcc and ccc callees from a c calling
4596   // convention caller. If the caller is fastcc, we may have less stack space
4597   // than a non-fastcc caller with the same signature so disable tail-calls in
4598   // that case.
4599   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4600 }
4601 
4602 bool
4603 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4604                                     SDValue Callee,
4605                                     CallingConv::ID CalleeCC,
4606                                     ImmutableCallSite CS,
4607                                     bool isVarArg,
4608                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4609                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4610                                     SelectionDAG& DAG) const {
4611   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4612 
4613   if (DisableSCO && !TailCallOpt) return false;
4614 
4615   // Variadic argument functions are not supported.
4616   if (isVarArg) return false;
4617 
4618   auto &Caller = DAG.getMachineFunction().getFunction();
4619   // Check that the calling conventions are compatible for tco.
4620   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4621     return false;
4622 
4623   // Caller contains any byval parameter is not supported.
4624   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4625     return false;
4626 
4627   // Callee contains any byval parameter is not supported, too.
4628   // Note: This is a quick work around, because in some cases, e.g.
4629   // caller's stack size > callee's stack size, we are still able to apply
4630   // sibling call optimization. For example, gcc is able to do SCO for caller1
4631   // in the following example, but not for caller2.
4632   //   struct test {
4633   //     long int a;
4634   //     char ary[56];
4635   //   } gTest;
4636   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4637   //     b->a = v.a;
4638   //     return 0;
4639   //   }
4640   //   void caller1(struct test a, struct test c, struct test *b) {
4641   //     callee(gTest, b); }
4642   //   void caller2(struct test *b) { callee(gTest, b); }
4643   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4644     return false;
4645 
4646   // If callee and caller use different calling conventions, we cannot pass
4647   // parameters on stack since offsets for the parameter area may be different.
4648   if (Caller.getCallingConv() != CalleeCC &&
4649       needStackSlotPassParameters(Subtarget, Outs))
4650     return false;
4651 
4652   // No TCO/SCO on indirect call because Caller have to restore its TOC
4653   if (!isFunctionGlobalAddress(Callee) &&
4654       !isa<ExternalSymbolSDNode>(Callee))
4655     return false;
4656 
4657   // If the caller and callee potentially have different TOC bases then we
4658   // cannot tail call since we need to restore the TOC pointer after the call.
4659   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4660   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4661     return false;
4662 
4663   // TCO allows altering callee ABI, so we don't have to check further.
4664   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4665     return true;
4666 
4667   if (DisableSCO) return false;
4668 
4669   // If callee use the same argument list that caller is using, then we can
4670   // apply SCO on this case. If it is not, then we need to check if callee needs
4671   // stack for passing arguments.
4672   if (!hasSameArgumentList(&Caller, CS) &&
4673       needStackSlotPassParameters(Subtarget, Outs)) {
4674     return false;
4675   }
4676 
4677   return true;
4678 }
4679 
4680 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4681 /// for tail call optimization. Targets which want to do tail call
4682 /// optimization should implement this function.
4683 bool
4684 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4685                                                      CallingConv::ID CalleeCC,
4686                                                      bool isVarArg,
4687                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4688                                                      SelectionDAG& DAG) const {
4689   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4690     return false;
4691 
4692   // Variable argument functions are not supported.
4693   if (isVarArg)
4694     return false;
4695 
4696   MachineFunction &MF = DAG.getMachineFunction();
4697   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4698   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4699     // Functions containing by val parameters are not supported.
4700     for (unsigned i = 0; i != Ins.size(); i++) {
4701        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4702        if (Flags.isByVal()) return false;
4703     }
4704 
4705     // Non-PIC/GOT tail calls are supported.
4706     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4707       return true;
4708 
4709     // At the moment we can only do local tail calls (in same module, hidden
4710     // or protected) if we are generating PIC.
4711     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4712       return G->getGlobal()->hasHiddenVisibility()
4713           || G->getGlobal()->hasProtectedVisibility();
4714   }
4715 
4716   return false;
4717 }
4718 
4719 /// isCallCompatibleAddress - Return the immediate to use if the specified
4720 /// 32-bit value is representable in the immediate field of a BxA instruction.
4721 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4722   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4723   if (!C) return nullptr;
4724 
4725   int Addr = C->getZExtValue();
4726   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4727       SignExtend32<26>(Addr) != Addr)
4728     return nullptr;  // Top 6 bits have to be sext of immediate.
4729 
4730   return DAG
4731       .getConstant(
4732           (int)C->getZExtValue() >> 2, SDLoc(Op),
4733           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4734       .getNode();
4735 }
4736 
4737 namespace {
4738 
4739 struct TailCallArgumentInfo {
4740   SDValue Arg;
4741   SDValue FrameIdxOp;
4742   int FrameIdx = 0;
4743 
4744   TailCallArgumentInfo() = default;
4745 };
4746 
4747 } // end anonymous namespace
4748 
4749 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4750 static void StoreTailCallArgumentsToStackSlot(
4751     SelectionDAG &DAG, SDValue Chain,
4752     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4753     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4754   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4755     SDValue Arg = TailCallArgs[i].Arg;
4756     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4757     int FI = TailCallArgs[i].FrameIdx;
4758     // Store relative to framepointer.
4759     MemOpChains.push_back(DAG.getStore(
4760         Chain, dl, Arg, FIN,
4761         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4762   }
4763 }
4764 
4765 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4766 /// the appropriate stack slot for the tail call optimized function call.
4767 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4768                                              SDValue OldRetAddr, SDValue OldFP,
4769                                              int SPDiff, const SDLoc &dl) {
4770   if (SPDiff) {
4771     // Calculate the new stack slot for the return address.
4772     MachineFunction &MF = DAG.getMachineFunction();
4773     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4774     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4775     bool isPPC64 = Subtarget.isPPC64();
4776     int SlotSize = isPPC64 ? 8 : 4;
4777     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4778     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4779                                                          NewRetAddrLoc, true);
4780     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4781     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4782     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4783                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4784 
4785     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4786     // slot as the FP is never overwritten.
4787     if (Subtarget.isDarwinABI()) {
4788       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4789       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4790                                                          true);
4791       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4792       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4793                            MachinePointerInfo::getFixedStack(
4794                                DAG.getMachineFunction(), NewFPIdx));
4795     }
4796   }
4797   return Chain;
4798 }
4799 
4800 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4801 /// the position of the argument.
4802 static void
4803 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4804                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4805                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4806   int Offset = ArgOffset + SPDiff;
4807   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4808   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4809   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4810   SDValue FIN = DAG.getFrameIndex(FI, VT);
4811   TailCallArgumentInfo Info;
4812   Info.Arg = Arg;
4813   Info.FrameIdxOp = FIN;
4814   Info.FrameIdx = FI;
4815   TailCallArguments.push_back(Info);
4816 }
4817 
4818 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4819 /// stack slot. Returns the chain as result and the loaded frame pointers in
4820 /// LROpOut/FPOpout. Used when tail calling.
4821 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4822     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4823     SDValue &FPOpOut, const SDLoc &dl) const {
4824   if (SPDiff) {
4825     // Load the LR and FP stack slot for later adjusting.
4826     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4827     LROpOut = getReturnAddrFrameIndex(DAG);
4828     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4829     Chain = SDValue(LROpOut.getNode(), 1);
4830 
4831     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4832     // slot as the FP is never overwritten.
4833     if (Subtarget.isDarwinABI()) {
4834       FPOpOut = getFramePointerFrameIndex(DAG);
4835       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4836       Chain = SDValue(FPOpOut.getNode(), 1);
4837     }
4838   }
4839   return Chain;
4840 }
4841 
4842 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4843 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4844 /// specified by the specific parameter attribute. The copy will be passed as
4845 /// a byval function parameter.
4846 /// Sometimes what we are copying is the end of a larger object, the part that
4847 /// does not fit in registers.
4848 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4849                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4850                                          SelectionDAG &DAG, const SDLoc &dl) {
4851   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4852   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4853                        false, false, false, MachinePointerInfo(),
4854                        MachinePointerInfo());
4855 }
4856 
4857 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4858 /// tail calls.
4859 static void LowerMemOpCallTo(
4860     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4861     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4862     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4863     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4864   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4865   if (!isTailCall) {
4866     if (isVector) {
4867       SDValue StackPtr;
4868       if (isPPC64)
4869         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4870       else
4871         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4872       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4873                            DAG.getConstant(ArgOffset, dl, PtrVT));
4874     }
4875     MemOpChains.push_back(
4876         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4877     // Calculate and remember argument location.
4878   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4879                                   TailCallArguments);
4880 }
4881 
4882 static void
4883 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4884                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4885                 SDValue FPOp,
4886                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4887   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4888   // might overwrite each other in case of tail call optimization.
4889   SmallVector<SDValue, 8> MemOpChains2;
4890   // Do not flag preceding copytoreg stuff together with the following stuff.
4891   InFlag = SDValue();
4892   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4893                                     MemOpChains2, dl);
4894   if (!MemOpChains2.empty())
4895     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4896 
4897   // Store the return address to the appropriate stack slot.
4898   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4899 
4900   // Emit callseq_end just before tailcall node.
4901   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4902                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4903   InFlag = Chain.getValue(1);
4904 }
4905 
4906 // Is this global address that of a function that can be called by name? (as
4907 // opposed to something that must hold a descriptor for an indirect call).
4908 static bool isFunctionGlobalAddress(SDValue Callee) {
4909   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4910     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4911         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4912       return false;
4913 
4914     return G->getGlobal()->getValueType()->isFunctionTy();
4915   }
4916 
4917   return false;
4918 }
4919 
4920 static unsigned
4921 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4922             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4923             bool isPatchPoint, bool hasNest,
4924             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4925             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4926             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4927   bool isPPC64 = Subtarget.isPPC64();
4928   bool isSVR4ABI = Subtarget.isSVR4ABI();
4929   bool isELFv2ABI = Subtarget.isELFv2ABI();
4930   bool isAIXABI = Subtarget.isAIXABI();
4931 
4932   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4933   NodeTys.push_back(MVT::Other);   // Returns a chain
4934   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4935 
4936   unsigned CallOpc = PPCISD::CALL;
4937 
4938   bool needIndirectCall = true;
4939   if (!isSVR4ABI || !isPPC64)
4940     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4941       // If this is an absolute destination address, use the munged value.
4942       Callee = SDValue(Dest, 0);
4943       needIndirectCall = false;
4944     }
4945 
4946   // PC-relative references to external symbols should go through $stub, unless
4947   // we're building with the leopard linker or later, which automatically
4948   // synthesizes these stubs.
4949   const TargetMachine &TM = DAG.getTarget();
4950   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4951   const GlobalValue *GV = nullptr;
4952   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4953     GV = G->getGlobal();
4954   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4955   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
4956   // a static relocation model causes some versions of GNU LD (2.17.50, at
4957   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
4958   // built with secure-PLT.
4959   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64 &&
4960     Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
4961 
4962   // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4963   // every direct call is) turn it into a TargetGlobalAddress /
4964   // TargetExternalSymbol node so that legalize doesn't hack it.
4965   if (isFunctionGlobalAddress(Callee)) {
4966     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4967 
4968     // A call to a TLS address is actually an indirect call to a
4969     // thread-specific pointer.
4970     unsigned OpFlags = 0;
4971     if (UsePlt)
4972       OpFlags = PPCII::MO_PLT;
4973 
4974     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4975                                         Callee.getValueType(), 0, OpFlags);
4976     needIndirectCall = false;
4977   }
4978 
4979   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4980     unsigned char OpFlags = 0;
4981 
4982     if (UsePlt)
4983       OpFlags = PPCII::MO_PLT;
4984 
4985     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4986                                          OpFlags);
4987     needIndirectCall = false;
4988   }
4989 
4990   if (isPatchPoint) {
4991     // We'll form an invalid direct call when lowering a patchpoint; the full
4992     // sequence for an indirect call is complicated, and many of the
4993     // instructions introduced might have side effects (and, thus, can't be
4994     // removed later). The call itself will be removed as soon as the
4995     // argument/return lowering is complete, so the fact that it has the wrong
4996     // kind of operands should not really matter.
4997     needIndirectCall = false;
4998   }
4999 
5000   if (needIndirectCall) {
5001     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
5002     // to do the call, we can't use PPCISD::CALL.
5003     SDValue MTCTROps[] = {Chain, Callee, InFlag};
5004 
5005     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
5006       // Function pointers in the 64-bit SVR4 ABI do not point to the function
5007       // entry point, but to the function descriptor (the function entry point
5008       // address is part of the function descriptor though).
5009       // The function descriptor is a three doubleword structure with the
5010       // following fields: function entry point, TOC base address and
5011       // environment pointer.
5012       // Thus for a call through a function pointer, the following actions need
5013       // to be performed:
5014       //   1. Save the TOC of the caller in the TOC save area of its stack
5015       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5016       //   2. Load the address of the function entry point from the function
5017       //      descriptor.
5018       //   3. Load the TOC of the callee from the function descriptor into r2.
5019       //   4. Load the environment pointer from the function descriptor into
5020       //      r11.
5021       //   5. Branch to the function entry point address.
5022       //   6. On return of the callee, the TOC of the caller needs to be
5023       //      restored (this is done in FinishCall()).
5024       //
5025       // The loads are scheduled at the beginning of the call sequence, and the
5026       // register copies are flagged together to ensure that no other
5027       // operations can be scheduled in between. E.g. without flagging the
5028       // copies together, a TOC access in the caller could be scheduled between
5029       // the assignment of the callee TOC and the branch to the callee, which
5030       // results in the TOC access going through the TOC of the callee instead
5031       // of going through the TOC of the caller, which leads to incorrect code.
5032 
5033       // Load the address of the function entry point from the function
5034       // descriptor.
5035       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
5036       if (LDChain.getValueType() == MVT::Glue)
5037         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
5038 
5039       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5040                           ? (MachineMemOperand::MODereferenceable |
5041                              MachineMemOperand::MOInvariant)
5042                           : MachineMemOperand::MONone;
5043 
5044       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5045       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
5046                                         /* Alignment = */ 8, MMOFlags);
5047 
5048       // Load environment pointer into r11.
5049       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
5050       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
5051       SDValue LoadEnvPtr =
5052           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
5053                       /* Alignment = */ 8, MMOFlags);
5054 
5055       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
5056       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
5057       SDValue TOCPtr =
5058           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
5059                       /* Alignment = */ 8, MMOFlags);
5060 
5061       setUsesTOCBasePtr(DAG);
5062       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
5063                                         InFlag);
5064       Chain = TOCVal.getValue(0);
5065       InFlag = TOCVal.getValue(1);
5066 
5067       // If the function call has an explicit 'nest' parameter, it takes the
5068       // place of the environment pointer.
5069       if (!hasNest) {
5070         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
5071                                           InFlag);
5072 
5073         Chain = EnvVal.getValue(0);
5074         InFlag = EnvVal.getValue(1);
5075       }
5076 
5077       MTCTROps[0] = Chain;
5078       MTCTROps[1] = LoadFuncPtr;
5079       MTCTROps[2] = InFlag;
5080     }
5081 
5082     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5083                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5084     InFlag = Chain.getValue(1);
5085 
5086     NodeTys.clear();
5087     NodeTys.push_back(MVT::Other);
5088     NodeTys.push_back(MVT::Glue);
5089     Ops.push_back(Chain);
5090     CallOpc = PPCISD::BCTRL;
5091     Callee.setNode(nullptr);
5092     // Add use of X11 (holding environment pointer)
5093     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5094       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5095     // Add CTR register as callee so a bctr can be emitted later.
5096     if (isTailCall)
5097       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5098   }
5099 
5100   // If this is a direct call, pass the chain and the callee.
5101   if (Callee.getNode()) {
5102     Ops.push_back(Chain);
5103     Ops.push_back(Callee);
5104   }
5105   // If this is a tail call add stack pointer delta.
5106   if (isTailCall)
5107     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5108 
5109   // Add argument registers to the end of the list so that they are known live
5110   // into the call.
5111   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5112     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5113                                   RegsToPass[i].second.getValueType()));
5114 
5115   // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register
5116   // live into the call.
5117   // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT.
5118   if ((isSVR4ABI && isPPC64) || isAIXABI) {
5119     setUsesTOCBasePtr(DAG);
5120 
5121     // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5122     // no way to mark dependencies as implicit here.
5123     // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5124     if (!isPatchPoint)
5125       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2
5126                                             : PPC::R2, PtrVT));
5127   }
5128 
5129   return CallOpc;
5130 }
5131 
5132 SDValue PPCTargetLowering::LowerCallResult(
5133     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5134     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5135     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5136   SmallVector<CCValAssign, 16> RVLocs;
5137   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5138                     *DAG.getContext());
5139 
5140   CCRetInfo.AnalyzeCallResult(
5141       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5142                ? RetCC_PPC_Cold
5143                : RetCC_PPC);
5144 
5145   // Copy all of the result registers out of their specified physreg.
5146   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5147     CCValAssign &VA = RVLocs[i];
5148     assert(VA.isRegLoc() && "Can only return in registers!");
5149 
5150     SDValue Val;
5151 
5152     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5153       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5154                                       InFlag);
5155       Chain = Lo.getValue(1);
5156       InFlag = Lo.getValue(2);
5157       VA = RVLocs[++i]; // skip ahead to next loc
5158       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5159                                       InFlag);
5160       Chain = Hi.getValue(1);
5161       InFlag = Hi.getValue(2);
5162       if (!Subtarget.isLittleEndian())
5163         std::swap (Lo, Hi);
5164       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5165     } else {
5166       Val = DAG.getCopyFromReg(Chain, dl,
5167                                VA.getLocReg(), VA.getLocVT(), InFlag);
5168       Chain = Val.getValue(1);
5169       InFlag = Val.getValue(2);
5170     }
5171 
5172     switch (VA.getLocInfo()) {
5173     default: llvm_unreachable("Unknown loc info!");
5174     case CCValAssign::Full: break;
5175     case CCValAssign::AExt:
5176       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5177       break;
5178     case CCValAssign::ZExt:
5179       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5180                         DAG.getValueType(VA.getValVT()));
5181       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5182       break;
5183     case CCValAssign::SExt:
5184       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5185                         DAG.getValueType(VA.getValVT()));
5186       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5187       break;
5188     }
5189 
5190     InVals.push_back(Val);
5191   }
5192 
5193   return Chain;
5194 }
5195 
5196 SDValue PPCTargetLowering::FinishCall(
5197     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5198     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5199     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5200     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5201     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5202     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5203   std::vector<EVT> NodeTys;
5204   SmallVector<SDValue, 8> Ops;
5205   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5206                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5207                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5208 
5209   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5210   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5211     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5212 
5213   // When performing tail call optimization the callee pops its arguments off
5214   // the stack. Account for this here so these bytes can be pushed back on in
5215   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5216   int BytesCalleePops =
5217     (CallConv == CallingConv::Fast &&
5218      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5219 
5220   // Add a register mask operand representing the call-preserved registers.
5221   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5222   const uint32_t *Mask =
5223       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5224   assert(Mask && "Missing call preserved mask for calling convention");
5225   Ops.push_back(DAG.getRegisterMask(Mask));
5226 
5227   if (InFlag.getNode())
5228     Ops.push_back(InFlag);
5229 
5230   // Emit tail call.
5231   if (isTailCall) {
5232     assert(((Callee.getOpcode() == ISD::Register &&
5233              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5234             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5235             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5236             isa<ConstantSDNode>(Callee)) &&
5237     "Expecting an global address, external symbol, absolute value or register");
5238 
5239     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5240     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5241   }
5242 
5243   // Add a NOP immediately after the branch instruction when using the 64-bit
5244   // SVR4 or the AIX ABI.
5245   // At link time, if caller and callee are in a different module and
5246   // thus have a different TOC, the call will be replaced with a call to a stub
5247   // function which saves the current TOC, loads the TOC of the callee and
5248   // branches to the callee. The NOP will be replaced with a load instruction
5249   // which restores the TOC of the caller from the TOC save slot of the current
5250   // stack frame. If caller and callee belong to the same module (and have the
5251   // same TOC), the NOP will remain unchanged, or become some other NOP.
5252 
5253   MachineFunction &MF = DAG.getMachineFunction();
5254   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5255   if (!isTailCall && !isPatchPoint &&
5256       ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) ||
5257        Subtarget.isAIXABI())) {
5258     if (CallOpc == PPCISD::BCTRL) {
5259       if (Subtarget.isAIXABI())
5260         report_fatal_error("Indirect call on AIX is not implemented.");
5261 
5262       // This is a call through a function pointer.
5263       // Restore the caller TOC from the save area into R2.
5264       // See PrepareCall() for more information about calls through function
5265       // pointers in the 64-bit SVR4 ABI.
5266       // We are using a target-specific load with r2 hard coded, because the
5267       // result of a target-independent load would never go directly into r2,
5268       // since r2 is a reserved register (which prevents the register allocator
5269       // from allocating it), resulting in an additional register being
5270       // allocated and an unnecessary move instruction being generated.
5271       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5272 
5273       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5274       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5275       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5276       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5277 
5278       // The address needs to go after the chain input but before the flag (or
5279       // any other variadic arguments).
5280       Ops.insert(std::next(Ops.begin()), AddTOC);
5281     } else if (CallOpc == PPCISD::CALL &&
5282       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5283       // Otherwise insert NOP for non-local calls.
5284       CallOpc = PPCISD::CALL_NOP;
5285     }
5286   }
5287 
5288   if (Subtarget.isAIXABI() && isFunctionGlobalAddress(Callee)) {
5289     // On AIX, direct function calls reference the symbol for the function's
5290     // entry point, which is named by inserting a "." before the function's
5291     // C-linkage name.
5292     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5293     auto &Context = DAG.getMachineFunction().getMMI().getContext();
5294     MCSymbol *S = Context.getOrCreateSymbol(Twine(".") +
5295                                             Twine(G->getGlobal()->getName()));
5296     Callee = DAG.getMCSymbol(S, PtrVT);
5297     // Replace the GlobalAddressSDNode Callee with the MCSymbolSDNode.
5298     Ops[1] = Callee;
5299   }
5300 
5301   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5302   InFlag = Chain.getValue(1);
5303 
5304   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5305                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5306                              InFlag, dl);
5307   if (!Ins.empty())
5308     InFlag = Chain.getValue(1);
5309 
5310   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5311                          Ins, dl, DAG, InVals);
5312 }
5313 
5314 SDValue
5315 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5316                              SmallVectorImpl<SDValue> &InVals) const {
5317   SelectionDAG &DAG                     = CLI.DAG;
5318   SDLoc &dl                             = CLI.DL;
5319   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5320   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5321   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5322   SDValue Chain                         = CLI.Chain;
5323   SDValue Callee                        = CLI.Callee;
5324   bool &isTailCall                      = CLI.IsTailCall;
5325   CallingConv::ID CallConv              = CLI.CallConv;
5326   bool isVarArg                         = CLI.IsVarArg;
5327   bool isPatchPoint                     = CLI.IsPatchPoint;
5328   ImmutableCallSite CS                  = CLI.CS;
5329 
5330   if (isTailCall) {
5331     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5332       isTailCall = false;
5333     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5334       isTailCall =
5335         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5336                                                  isVarArg, Outs, Ins, DAG);
5337     else
5338       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5339                                                      Ins, DAG);
5340     if (isTailCall) {
5341       ++NumTailCalls;
5342       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5343         ++NumSiblingCalls;
5344 
5345       assert(isa<GlobalAddressSDNode>(Callee) &&
5346              "Callee should be an llvm::Function object.");
5347       LLVM_DEBUG(
5348           const GlobalValue *GV =
5349               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5350           const unsigned Width =
5351               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5352           dbgs() << "TCO caller: "
5353                  << left_justify(DAG.getMachineFunction().getName(), Width)
5354                  << ", callee linkage: " << GV->getVisibility() << ", "
5355                  << GV->getLinkage() << "\n");
5356     }
5357   }
5358 
5359   if (!isTailCall && CS && CS.isMustTailCall())
5360     report_fatal_error("failed to perform tail call elimination on a call "
5361                        "site marked musttail");
5362 
5363   // When long calls (i.e. indirect calls) are always used, calls are always
5364   // made via function pointer. If we have a function name, first translate it
5365   // into a pointer.
5366   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5367       !isTailCall)
5368     Callee = LowerGlobalAddress(Callee, DAG);
5369 
5370   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5371     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5372                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5373                             dl, DAG, InVals, CS);
5374 
5375   if (Subtarget.isSVR4ABI())
5376     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5377                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5378                             dl, DAG, InVals, CS);
5379 
5380   if (Subtarget.isAIXABI())
5381     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5382                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5383                          dl, DAG, InVals, CS);
5384 
5385   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5386                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5387                           dl, DAG, InVals, CS);
5388 }
5389 
5390 SDValue PPCTargetLowering::LowerCall_32SVR4(
5391     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5392     bool isTailCall, bool isPatchPoint,
5393     const SmallVectorImpl<ISD::OutputArg> &Outs,
5394     const SmallVectorImpl<SDValue> &OutVals,
5395     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5396     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5397     ImmutableCallSite CS) const {
5398   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5399   // of the 32-bit SVR4 ABI stack frame layout.
5400 
5401   assert((CallConv == CallingConv::C ||
5402           CallConv == CallingConv::Cold ||
5403           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5404 
5405   unsigned PtrByteSize = 4;
5406 
5407   MachineFunction &MF = DAG.getMachineFunction();
5408 
5409   // Mark this function as potentially containing a function that contains a
5410   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5411   // and restoring the callers stack pointer in this functions epilog. This is
5412   // done because by tail calling the called function might overwrite the value
5413   // in this function's (MF) stack pointer stack slot 0(SP).
5414   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5415       CallConv == CallingConv::Fast)
5416     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5417 
5418   // Count how many bytes are to be pushed on the stack, including the linkage
5419   // area, parameter list area and the part of the local variable space which
5420   // contains copies of aggregates which are passed by value.
5421 
5422   // Assign locations to all of the outgoing arguments.
5423   SmallVector<CCValAssign, 16> ArgLocs;
5424   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5425 
5426   // Reserve space for the linkage area on the stack.
5427   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5428                        PtrByteSize);
5429   if (useSoftFloat())
5430     CCInfo.PreAnalyzeCallOperands(Outs);
5431 
5432   if (isVarArg) {
5433     // Handle fixed and variable vector arguments differently.
5434     // Fixed vector arguments go into registers as long as registers are
5435     // available. Variable vector arguments always go into memory.
5436     unsigned NumArgs = Outs.size();
5437 
5438     for (unsigned i = 0; i != NumArgs; ++i) {
5439       MVT ArgVT = Outs[i].VT;
5440       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5441       bool Result;
5442 
5443       if (Outs[i].IsFixed) {
5444         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5445                                CCInfo);
5446       } else {
5447         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5448                                       ArgFlags, CCInfo);
5449       }
5450 
5451       if (Result) {
5452 #ifndef NDEBUG
5453         errs() << "Call operand #" << i << " has unhandled type "
5454              << EVT(ArgVT).getEVTString() << "\n";
5455 #endif
5456         llvm_unreachable(nullptr);
5457       }
5458     }
5459   } else {
5460     // All arguments are treated the same.
5461     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5462   }
5463   CCInfo.clearWasPPCF128();
5464 
5465   // Assign locations to all of the outgoing aggregate by value arguments.
5466   SmallVector<CCValAssign, 16> ByValArgLocs;
5467   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5468 
5469   // Reserve stack space for the allocations in CCInfo.
5470   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5471 
5472   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5473 
5474   // Size of the linkage area, parameter list area and the part of the local
5475   // space variable where copies of aggregates which are passed by value are
5476   // stored.
5477   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5478 
5479   // Calculate by how many bytes the stack has to be adjusted in case of tail
5480   // call optimization.
5481   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5482 
5483   // Adjust the stack pointer for the new arguments...
5484   // These operations are automatically eliminated by the prolog/epilog pass
5485   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5486   SDValue CallSeqStart = Chain;
5487 
5488   // Load the return address and frame pointer so it can be moved somewhere else
5489   // later.
5490   SDValue LROp, FPOp;
5491   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5492 
5493   // Set up a copy of the stack pointer for use loading and storing any
5494   // arguments that may not fit in the registers available for argument
5495   // passing.
5496   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5497 
5498   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5499   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5500   SmallVector<SDValue, 8> MemOpChains;
5501 
5502   bool seenFloatArg = false;
5503   // Walk the register/memloc assignments, inserting copies/loads.
5504   // i - Tracks the index into the list of registers allocated for the call
5505   // RealArgIdx - Tracks the index into the list of actual function arguments
5506   // j - Tracks the index into the list of byval arguments
5507   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5508        i != e;
5509        ++i, ++RealArgIdx) {
5510     CCValAssign &VA = ArgLocs[i];
5511     SDValue Arg = OutVals[RealArgIdx];
5512     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5513 
5514     if (Flags.isByVal()) {
5515       // Argument is an aggregate which is passed by value, thus we need to
5516       // create a copy of it in the local variable space of the current stack
5517       // frame (which is the stack frame of the caller) and pass the address of
5518       // this copy to the callee.
5519       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5520       CCValAssign &ByValVA = ByValArgLocs[j++];
5521       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5522 
5523       // Memory reserved in the local variable space of the callers stack frame.
5524       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5525 
5526       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5527       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5528                            StackPtr, PtrOff);
5529 
5530       // Create a copy of the argument in the local area of the current
5531       // stack frame.
5532       SDValue MemcpyCall =
5533         CreateCopyOfByValArgument(Arg, PtrOff,
5534                                   CallSeqStart.getNode()->getOperand(0),
5535                                   Flags, DAG, dl);
5536 
5537       // This must go outside the CALLSEQ_START..END.
5538       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5539                                                      SDLoc(MemcpyCall));
5540       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5541                              NewCallSeqStart.getNode());
5542       Chain = CallSeqStart = NewCallSeqStart;
5543 
5544       // Pass the address of the aggregate copy on the stack either in a
5545       // physical register or in the parameter list area of the current stack
5546       // frame to the callee.
5547       Arg = PtrOff;
5548     }
5549 
5550     // When useCRBits() is true, there can be i1 arguments.
5551     // It is because getRegisterType(MVT::i1) => MVT::i1,
5552     // and for other integer types getRegisterType() => MVT::i32.
5553     // Extend i1 and ensure callee will get i32.
5554     if (Arg.getValueType() == MVT::i1)
5555       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5556                         dl, MVT::i32, Arg);
5557 
5558     if (VA.isRegLoc()) {
5559       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5560       // Put argument in a physical register.
5561       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5562         bool IsLE = Subtarget.isLittleEndian();
5563         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5564                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5565         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5566         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5567                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5568         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5569                              SVal.getValue(0)));
5570       } else
5571         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5572     } else {
5573       // Put argument in the parameter list area of the current stack frame.
5574       assert(VA.isMemLoc());
5575       unsigned LocMemOffset = VA.getLocMemOffset();
5576 
5577       if (!isTailCall) {
5578         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5579         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5580                              StackPtr, PtrOff);
5581 
5582         MemOpChains.push_back(
5583             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5584       } else {
5585         // Calculate and remember argument location.
5586         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5587                                  TailCallArguments);
5588       }
5589     }
5590   }
5591 
5592   if (!MemOpChains.empty())
5593     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5594 
5595   // Build a sequence of copy-to-reg nodes chained together with token chain
5596   // and flag operands which copy the outgoing args into the appropriate regs.
5597   SDValue InFlag;
5598   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5599     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5600                              RegsToPass[i].second, InFlag);
5601     InFlag = Chain.getValue(1);
5602   }
5603 
5604   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5605   // registers.
5606   if (isVarArg) {
5607     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5608     SDValue Ops[] = { Chain, InFlag };
5609 
5610     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5611                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5612 
5613     InFlag = Chain.getValue(1);
5614   }
5615 
5616   if (isTailCall)
5617     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5618                     TailCallArguments);
5619 
5620   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5621                     /* unused except on PPC64 ELFv1 */ false, DAG,
5622                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5623                     NumBytes, Ins, InVals, CS);
5624 }
5625 
5626 // Copy an argument into memory, being careful to do this outside the
5627 // call sequence for the call to which the argument belongs.
5628 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5629     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5630     SelectionDAG &DAG, const SDLoc &dl) const {
5631   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5632                         CallSeqStart.getNode()->getOperand(0),
5633                         Flags, DAG, dl);
5634   // The MEMCPY must go outside the CALLSEQ_START..END.
5635   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5636   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5637                                                  SDLoc(MemcpyCall));
5638   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5639                          NewCallSeqStart.getNode());
5640   return NewCallSeqStart;
5641 }
5642 
5643 SDValue PPCTargetLowering::LowerCall_64SVR4(
5644     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5645     bool isTailCall, bool isPatchPoint,
5646     const SmallVectorImpl<ISD::OutputArg> &Outs,
5647     const SmallVectorImpl<SDValue> &OutVals,
5648     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5649     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5650     ImmutableCallSite CS) const {
5651   bool isELFv2ABI = Subtarget.isELFv2ABI();
5652   bool isLittleEndian = Subtarget.isLittleEndian();
5653   unsigned NumOps = Outs.size();
5654   bool hasNest = false;
5655   bool IsSibCall = false;
5656 
5657   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5658   unsigned PtrByteSize = 8;
5659 
5660   MachineFunction &MF = DAG.getMachineFunction();
5661 
5662   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5663     IsSibCall = true;
5664 
5665   // Mark this function as potentially containing a function that contains a
5666   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5667   // and restoring the callers stack pointer in this functions epilog. This is
5668   // done because by tail calling the called function might overwrite the value
5669   // in this function's (MF) stack pointer stack slot 0(SP).
5670   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5671       CallConv == CallingConv::Fast)
5672     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5673 
5674   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5675          "fastcc not supported on varargs functions");
5676 
5677   // Count how many bytes are to be pushed on the stack, including the linkage
5678   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5679   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5680   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5681   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5682   unsigned NumBytes = LinkageSize;
5683   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5684   unsigned &QFPR_idx = FPR_idx;
5685 
5686   static const MCPhysReg GPR[] = {
5687     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5688     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5689   };
5690   static const MCPhysReg VR[] = {
5691     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5692     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5693   };
5694 
5695   const unsigned NumGPRs = array_lengthof(GPR);
5696   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5697   const unsigned NumVRs  = array_lengthof(VR);
5698   const unsigned NumQFPRs = NumFPRs;
5699 
5700   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5701   // can be passed to the callee in registers.
5702   // For the fast calling convention, there is another check below.
5703   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5704   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5705   if (!HasParameterArea) {
5706     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5707     unsigned AvailableFPRs = NumFPRs;
5708     unsigned AvailableVRs = NumVRs;
5709     unsigned NumBytesTmp = NumBytes;
5710     for (unsigned i = 0; i != NumOps; ++i) {
5711       if (Outs[i].Flags.isNest()) continue;
5712       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5713                                 PtrByteSize, LinkageSize, ParamAreaSize,
5714                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5715                                 Subtarget.hasQPX()))
5716         HasParameterArea = true;
5717     }
5718   }
5719 
5720   // When using the fast calling convention, we don't provide backing for
5721   // arguments that will be in registers.
5722   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5723 
5724   // Avoid allocating parameter area for fastcc functions if all the arguments
5725   // can be passed in the registers.
5726   if (CallConv == CallingConv::Fast)
5727     HasParameterArea = false;
5728 
5729   // Add up all the space actually used.
5730   for (unsigned i = 0; i != NumOps; ++i) {
5731     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5732     EVT ArgVT = Outs[i].VT;
5733     EVT OrigVT = Outs[i].ArgVT;
5734 
5735     if (Flags.isNest())
5736       continue;
5737 
5738     if (CallConv == CallingConv::Fast) {
5739       if (Flags.isByVal()) {
5740         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5741         if (NumGPRsUsed > NumGPRs)
5742           HasParameterArea = true;
5743       } else {
5744         switch (ArgVT.getSimpleVT().SimpleTy) {
5745         default: llvm_unreachable("Unexpected ValueType for argument!");
5746         case MVT::i1:
5747         case MVT::i32:
5748         case MVT::i64:
5749           if (++NumGPRsUsed <= NumGPRs)
5750             continue;
5751           break;
5752         case MVT::v4i32:
5753         case MVT::v8i16:
5754         case MVT::v16i8:
5755         case MVT::v2f64:
5756         case MVT::v2i64:
5757         case MVT::v1i128:
5758         case MVT::f128:
5759           if (++NumVRsUsed <= NumVRs)
5760             continue;
5761           break;
5762         case MVT::v4f32:
5763           // When using QPX, this is handled like a FP register, otherwise, it
5764           // is an Altivec register.
5765           if (Subtarget.hasQPX()) {
5766             if (++NumFPRsUsed <= NumFPRs)
5767               continue;
5768           } else {
5769             if (++NumVRsUsed <= NumVRs)
5770               continue;
5771           }
5772           break;
5773         case MVT::f32:
5774         case MVT::f64:
5775         case MVT::v4f64: // QPX
5776         case MVT::v4i1:  // QPX
5777           if (++NumFPRsUsed <= NumFPRs)
5778             continue;
5779           break;
5780         }
5781         HasParameterArea = true;
5782       }
5783     }
5784 
5785     /* Respect alignment of argument on the stack.  */
5786     unsigned Align =
5787       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5788     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5789 
5790     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5791     if (Flags.isInConsecutiveRegsLast())
5792       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5793   }
5794 
5795   unsigned NumBytesActuallyUsed = NumBytes;
5796 
5797   // In the old ELFv1 ABI,
5798   // the prolog code of the callee may store up to 8 GPR argument registers to
5799   // the stack, allowing va_start to index over them in memory if its varargs.
5800   // Because we cannot tell if this is needed on the caller side, we have to
5801   // conservatively assume that it is needed.  As such, make sure we have at
5802   // least enough stack space for the caller to store the 8 GPRs.
5803   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5804   // really requires memory operands, e.g. a vararg function.
5805   if (HasParameterArea)
5806     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5807   else
5808     NumBytes = LinkageSize;
5809 
5810   // Tail call needs the stack to be aligned.
5811   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5812       CallConv == CallingConv::Fast)
5813     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5814 
5815   int SPDiff = 0;
5816 
5817   // Calculate by how many bytes the stack has to be adjusted in case of tail
5818   // call optimization.
5819   if (!IsSibCall)
5820     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5821 
5822   // To protect arguments on the stack from being clobbered in a tail call,
5823   // force all the loads to happen before doing any other lowering.
5824   if (isTailCall)
5825     Chain = DAG.getStackArgumentTokenFactor(Chain);
5826 
5827   // Adjust the stack pointer for the new arguments...
5828   // These operations are automatically eliminated by the prolog/epilog pass
5829   if (!IsSibCall)
5830     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5831   SDValue CallSeqStart = Chain;
5832 
5833   // Load the return address and frame pointer so it can be move somewhere else
5834   // later.
5835   SDValue LROp, FPOp;
5836   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5837 
5838   // Set up a copy of the stack pointer for use loading and storing any
5839   // arguments that may not fit in the registers available for argument
5840   // passing.
5841   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5842 
5843   // Figure out which arguments are going to go in registers, and which in
5844   // memory.  Also, if this is a vararg function, floating point operations
5845   // must be stored to our stack, and loaded into integer regs as well, if
5846   // any integer regs are available for argument passing.
5847   unsigned ArgOffset = LinkageSize;
5848 
5849   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5850   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5851 
5852   SmallVector<SDValue, 8> MemOpChains;
5853   for (unsigned i = 0; i != NumOps; ++i) {
5854     SDValue Arg = OutVals[i];
5855     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5856     EVT ArgVT = Outs[i].VT;
5857     EVT OrigVT = Outs[i].ArgVT;
5858 
5859     // PtrOff will be used to store the current argument to the stack if a
5860     // register cannot be found for it.
5861     SDValue PtrOff;
5862 
5863     // We re-align the argument offset for each argument, except when using the
5864     // fast calling convention, when we need to make sure we do that only when
5865     // we'll actually use a stack slot.
5866     auto ComputePtrOff = [&]() {
5867       /* Respect alignment of argument on the stack.  */
5868       unsigned Align =
5869         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5870       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5871 
5872       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5873 
5874       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5875     };
5876 
5877     if (CallConv != CallingConv::Fast) {
5878       ComputePtrOff();
5879 
5880       /* Compute GPR index associated with argument offset.  */
5881       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5882       GPR_idx = std::min(GPR_idx, NumGPRs);
5883     }
5884 
5885     // Promote integers to 64-bit values.
5886     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5887       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5888       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5889       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5890     }
5891 
5892     // FIXME memcpy is used way more than necessary.  Correctness first.
5893     // Note: "by value" is code for passing a structure by value, not
5894     // basic types.
5895     if (Flags.isByVal()) {
5896       // Note: Size includes alignment padding, so
5897       //   struct x { short a; char b; }
5898       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5899       // These are the proper values we need for right-justifying the
5900       // aggregate in a parameter register.
5901       unsigned Size = Flags.getByValSize();
5902 
5903       // An empty aggregate parameter takes up no storage and no
5904       // registers.
5905       if (Size == 0)
5906         continue;
5907 
5908       if (CallConv == CallingConv::Fast)
5909         ComputePtrOff();
5910 
5911       // All aggregates smaller than 8 bytes must be passed right-justified.
5912       if (Size==1 || Size==2 || Size==4) {
5913         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5914         if (GPR_idx != NumGPRs) {
5915           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5916                                         MachinePointerInfo(), VT);
5917           MemOpChains.push_back(Load.getValue(1));
5918           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5919 
5920           ArgOffset += PtrByteSize;
5921           continue;
5922         }
5923       }
5924 
5925       if (GPR_idx == NumGPRs && Size < 8) {
5926         SDValue AddPtr = PtrOff;
5927         if (!isLittleEndian) {
5928           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5929                                           PtrOff.getValueType());
5930           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5931         }
5932         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5933                                                           CallSeqStart,
5934                                                           Flags, DAG, dl);
5935         ArgOffset += PtrByteSize;
5936         continue;
5937       }
5938       // Copy entire object into memory.  There are cases where gcc-generated
5939       // code assumes it is there, even if it could be put entirely into
5940       // registers.  (This is not what the doc says.)
5941 
5942       // FIXME: The above statement is likely due to a misunderstanding of the
5943       // documents.  All arguments must be copied into the parameter area BY
5944       // THE CALLEE in the event that the callee takes the address of any
5945       // formal argument.  That has not yet been implemented.  However, it is
5946       // reasonable to use the stack area as a staging area for the register
5947       // load.
5948 
5949       // Skip this for small aggregates, as we will use the same slot for a
5950       // right-justified copy, below.
5951       if (Size >= 8)
5952         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5953                                                           CallSeqStart,
5954                                                           Flags, DAG, dl);
5955 
5956       // When a register is available, pass a small aggregate right-justified.
5957       if (Size < 8 && GPR_idx != NumGPRs) {
5958         // The easiest way to get this right-justified in a register
5959         // is to copy the structure into the rightmost portion of a
5960         // local variable slot, then load the whole slot into the
5961         // register.
5962         // FIXME: The memcpy seems to produce pretty awful code for
5963         // small aggregates, particularly for packed ones.
5964         // FIXME: It would be preferable to use the slot in the
5965         // parameter save area instead of a new local variable.
5966         SDValue AddPtr = PtrOff;
5967         if (!isLittleEndian) {
5968           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5969           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5970         }
5971         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5972                                                           CallSeqStart,
5973                                                           Flags, DAG, dl);
5974 
5975         // Load the slot into the register.
5976         SDValue Load =
5977             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5978         MemOpChains.push_back(Load.getValue(1));
5979         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5980 
5981         // Done with this argument.
5982         ArgOffset += PtrByteSize;
5983         continue;
5984       }
5985 
5986       // For aggregates larger than PtrByteSize, copy the pieces of the
5987       // object that fit into registers from the parameter save area.
5988       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5989         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5990         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5991         if (GPR_idx != NumGPRs) {
5992           SDValue Load =
5993               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5994           MemOpChains.push_back(Load.getValue(1));
5995           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5996           ArgOffset += PtrByteSize;
5997         } else {
5998           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5999           break;
6000         }
6001       }
6002       continue;
6003     }
6004 
6005     switch (Arg.getSimpleValueType().SimpleTy) {
6006     default: llvm_unreachable("Unexpected ValueType for argument!");
6007     case MVT::i1:
6008     case MVT::i32:
6009     case MVT::i64:
6010       if (Flags.isNest()) {
6011         // The 'nest' parameter, if any, is passed in R11.
6012         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6013         hasNest = true;
6014         break;
6015       }
6016 
6017       // These can be scalar arguments or elements of an integer array type
6018       // passed directly.  Clang may use those instead of "byval" aggregate
6019       // types to avoid forcing arguments to memory unnecessarily.
6020       if (GPR_idx != NumGPRs) {
6021         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6022       } else {
6023         if (CallConv == CallingConv::Fast)
6024           ComputePtrOff();
6025 
6026         assert(HasParameterArea &&
6027                "Parameter area must exist to pass an argument in memory.");
6028         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6029                          true, isTailCall, false, MemOpChains,
6030                          TailCallArguments, dl);
6031         if (CallConv == CallingConv::Fast)
6032           ArgOffset += PtrByteSize;
6033       }
6034       if (CallConv != CallingConv::Fast)
6035         ArgOffset += PtrByteSize;
6036       break;
6037     case MVT::f32:
6038     case MVT::f64: {
6039       // These can be scalar arguments or elements of a float array type
6040       // passed directly.  The latter are used to implement ELFv2 homogenous
6041       // float aggregates.
6042 
6043       // Named arguments go into FPRs first, and once they overflow, the
6044       // remaining arguments go into GPRs and then the parameter save area.
6045       // Unnamed arguments for vararg functions always go to GPRs and
6046       // then the parameter save area.  For now, put all arguments to vararg
6047       // routines always in both locations (FPR *and* GPR or stack slot).
6048       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6049       bool NeededLoad = false;
6050 
6051       // First load the argument into the next available FPR.
6052       if (FPR_idx != NumFPRs)
6053         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6054 
6055       // Next, load the argument into GPR or stack slot if needed.
6056       if (!NeedGPROrStack)
6057         ;
6058       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6059         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6060         // once we support fp <-> gpr moves.
6061 
6062         // In the non-vararg case, this can only ever happen in the
6063         // presence of f32 array types, since otherwise we never run
6064         // out of FPRs before running out of GPRs.
6065         SDValue ArgVal;
6066 
6067         // Double values are always passed in a single GPR.
6068         if (Arg.getValueType() != MVT::f32) {
6069           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6070 
6071         // Non-array float values are extended and passed in a GPR.
6072         } else if (!Flags.isInConsecutiveRegs()) {
6073           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6074           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6075 
6076         // If we have an array of floats, we collect every odd element
6077         // together with its predecessor into one GPR.
6078         } else if (ArgOffset % PtrByteSize != 0) {
6079           SDValue Lo, Hi;
6080           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6081           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6082           if (!isLittleEndian)
6083             std::swap(Lo, Hi);
6084           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6085 
6086         // The final element, if even, goes into the first half of a GPR.
6087         } else if (Flags.isInConsecutiveRegsLast()) {
6088           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6089           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6090           if (!isLittleEndian)
6091             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6092                                  DAG.getConstant(32, dl, MVT::i32));
6093 
6094         // Non-final even elements are skipped; they will be handled
6095         // together the with subsequent argument on the next go-around.
6096         } else
6097           ArgVal = SDValue();
6098 
6099         if (ArgVal.getNode())
6100           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6101       } else {
6102         if (CallConv == CallingConv::Fast)
6103           ComputePtrOff();
6104 
6105         // Single-precision floating-point values are mapped to the
6106         // second (rightmost) word of the stack doubleword.
6107         if (Arg.getValueType() == MVT::f32 &&
6108             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6109           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6110           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6111         }
6112 
6113         assert(HasParameterArea &&
6114                "Parameter area must exist to pass an argument in memory.");
6115         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6116                          true, isTailCall, false, MemOpChains,
6117                          TailCallArguments, dl);
6118 
6119         NeededLoad = true;
6120       }
6121       // When passing an array of floats, the array occupies consecutive
6122       // space in the argument area; only round up to the next doubleword
6123       // at the end of the array.  Otherwise, each float takes 8 bytes.
6124       if (CallConv != CallingConv::Fast || NeededLoad) {
6125         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6126                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6127         if (Flags.isInConsecutiveRegsLast())
6128           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6129       }
6130       break;
6131     }
6132     case MVT::v4f32:
6133     case MVT::v4i32:
6134     case MVT::v8i16:
6135     case MVT::v16i8:
6136     case MVT::v2f64:
6137     case MVT::v2i64:
6138     case MVT::v1i128:
6139     case MVT::f128:
6140       if (!Subtarget.hasQPX()) {
6141       // These can be scalar arguments or elements of a vector array type
6142       // passed directly.  The latter are used to implement ELFv2 homogenous
6143       // vector aggregates.
6144 
6145       // For a varargs call, named arguments go into VRs or on the stack as
6146       // usual; unnamed arguments always go to the stack or the corresponding
6147       // GPRs when within range.  For now, we always put the value in both
6148       // locations (or even all three).
6149       if (isVarArg) {
6150         assert(HasParameterArea &&
6151                "Parameter area must exist if we have a varargs call.");
6152         // We could elide this store in the case where the object fits
6153         // entirely in R registers.  Maybe later.
6154         SDValue Store =
6155             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6156         MemOpChains.push_back(Store);
6157         if (VR_idx != NumVRs) {
6158           SDValue Load =
6159               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6160           MemOpChains.push_back(Load.getValue(1));
6161           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6162         }
6163         ArgOffset += 16;
6164         for (unsigned i=0; i<16; i+=PtrByteSize) {
6165           if (GPR_idx == NumGPRs)
6166             break;
6167           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6168                                    DAG.getConstant(i, dl, PtrVT));
6169           SDValue Load =
6170               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6171           MemOpChains.push_back(Load.getValue(1));
6172           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6173         }
6174         break;
6175       }
6176 
6177       // Non-varargs Altivec params go into VRs or on the stack.
6178       if (VR_idx != NumVRs) {
6179         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6180       } else {
6181         if (CallConv == CallingConv::Fast)
6182           ComputePtrOff();
6183 
6184         assert(HasParameterArea &&
6185                "Parameter area must exist to pass an argument in memory.");
6186         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6187                          true, isTailCall, true, MemOpChains,
6188                          TailCallArguments, dl);
6189         if (CallConv == CallingConv::Fast)
6190           ArgOffset += 16;
6191       }
6192 
6193       if (CallConv != CallingConv::Fast)
6194         ArgOffset += 16;
6195       break;
6196       } // not QPX
6197 
6198       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6199              "Invalid QPX parameter type");
6200 
6201       LLVM_FALLTHROUGH;
6202     case MVT::v4f64:
6203     case MVT::v4i1: {
6204       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6205       if (isVarArg) {
6206         assert(HasParameterArea &&
6207                "Parameter area must exist if we have a varargs call.");
6208         // We could elide this store in the case where the object fits
6209         // entirely in R registers.  Maybe later.
6210         SDValue Store =
6211             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6212         MemOpChains.push_back(Store);
6213         if (QFPR_idx != NumQFPRs) {
6214           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6215                                      PtrOff, MachinePointerInfo());
6216           MemOpChains.push_back(Load.getValue(1));
6217           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6218         }
6219         ArgOffset += (IsF32 ? 16 : 32);
6220         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6221           if (GPR_idx == NumGPRs)
6222             break;
6223           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6224                                    DAG.getConstant(i, dl, PtrVT));
6225           SDValue Load =
6226               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6227           MemOpChains.push_back(Load.getValue(1));
6228           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6229         }
6230         break;
6231       }
6232 
6233       // Non-varargs QPX params go into registers or on the stack.
6234       if (QFPR_idx != NumQFPRs) {
6235         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6236       } else {
6237         if (CallConv == CallingConv::Fast)
6238           ComputePtrOff();
6239 
6240         assert(HasParameterArea &&
6241                "Parameter area must exist to pass an argument in memory.");
6242         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6243                          true, isTailCall, true, MemOpChains,
6244                          TailCallArguments, dl);
6245         if (CallConv == CallingConv::Fast)
6246           ArgOffset += (IsF32 ? 16 : 32);
6247       }
6248 
6249       if (CallConv != CallingConv::Fast)
6250         ArgOffset += (IsF32 ? 16 : 32);
6251       break;
6252       }
6253     }
6254   }
6255 
6256   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6257          "mismatch in size of parameter area");
6258   (void)NumBytesActuallyUsed;
6259 
6260   if (!MemOpChains.empty())
6261     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6262 
6263   // Check if this is an indirect call (MTCTR/BCTRL).
6264   // See PrepareCall() for more information about calls through function
6265   // pointers in the 64-bit SVR4 ABI.
6266   if (!isTailCall && !isPatchPoint &&
6267       !isFunctionGlobalAddress(Callee) &&
6268       !isa<ExternalSymbolSDNode>(Callee)) {
6269     // Load r2 into a virtual register and store it to the TOC save area.
6270     setUsesTOCBasePtr(DAG);
6271     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6272     // TOC save area offset.
6273     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6274     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6275     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6276     Chain = DAG.getStore(
6277         Val.getValue(1), dl, Val, AddPtr,
6278         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6279     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6280     // This does not mean the MTCTR instruction must use R12; it's easier
6281     // to model this as an extra parameter, so do that.
6282     if (isELFv2ABI && !isPatchPoint)
6283       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6284   }
6285 
6286   // Build a sequence of copy-to-reg nodes chained together with token chain
6287   // and flag operands which copy the outgoing args into the appropriate regs.
6288   SDValue InFlag;
6289   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6290     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6291                              RegsToPass[i].second, InFlag);
6292     InFlag = Chain.getValue(1);
6293   }
6294 
6295   if (isTailCall && !IsSibCall)
6296     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6297                     TailCallArguments);
6298 
6299   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6300                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6301                     SPDiff, NumBytes, Ins, InVals, CS);
6302 }
6303 
6304 SDValue PPCTargetLowering::LowerCall_Darwin(
6305     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6306     bool isTailCall, bool isPatchPoint,
6307     const SmallVectorImpl<ISD::OutputArg> &Outs,
6308     const SmallVectorImpl<SDValue> &OutVals,
6309     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6310     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6311     ImmutableCallSite CS) const {
6312   unsigned NumOps = Outs.size();
6313 
6314   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6315   bool isPPC64 = PtrVT == MVT::i64;
6316   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6317 
6318   MachineFunction &MF = DAG.getMachineFunction();
6319 
6320   // Mark this function as potentially containing a function that contains a
6321   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6322   // and restoring the callers stack pointer in this functions epilog. This is
6323   // done because by tail calling the called function might overwrite the value
6324   // in this function's (MF) stack pointer stack slot 0(SP).
6325   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6326       CallConv == CallingConv::Fast)
6327     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6328 
6329   // Count how many bytes are to be pushed on the stack, including the linkage
6330   // area, and parameter passing area.  We start with 24/48 bytes, which is
6331   // prereserved space for [SP][CR][LR][3 x unused].
6332   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6333   unsigned NumBytes = LinkageSize;
6334 
6335   // Add up all the space actually used.
6336   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6337   // they all go in registers, but we must reserve stack space for them for
6338   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6339   // assigned stack space in order, with padding so Altivec parameters are
6340   // 16-byte aligned.
6341   unsigned nAltivecParamsAtEnd = 0;
6342   for (unsigned i = 0; i != NumOps; ++i) {
6343     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6344     EVT ArgVT = Outs[i].VT;
6345     // Varargs Altivec parameters are padded to a 16 byte boundary.
6346     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6347         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6348         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6349       if (!isVarArg && !isPPC64) {
6350         // Non-varargs Altivec parameters go after all the non-Altivec
6351         // parameters; handle those later so we know how much padding we need.
6352         nAltivecParamsAtEnd++;
6353         continue;
6354       }
6355       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6356       NumBytes = ((NumBytes+15)/16)*16;
6357     }
6358     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6359   }
6360 
6361   // Allow for Altivec parameters at the end, if needed.
6362   if (nAltivecParamsAtEnd) {
6363     NumBytes = ((NumBytes+15)/16)*16;
6364     NumBytes += 16*nAltivecParamsAtEnd;
6365   }
6366 
6367   // The prolog code of the callee may store up to 8 GPR argument registers to
6368   // the stack, allowing va_start to index over them in memory if its varargs.
6369   // Because we cannot tell if this is needed on the caller side, we have to
6370   // conservatively assume that it is needed.  As such, make sure we have at
6371   // least enough stack space for the caller to store the 8 GPRs.
6372   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6373 
6374   // Tail call needs the stack to be aligned.
6375   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6376       CallConv == CallingConv::Fast)
6377     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6378 
6379   // Calculate by how many bytes the stack has to be adjusted in case of tail
6380   // call optimization.
6381   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6382 
6383   // To protect arguments on the stack from being clobbered in a tail call,
6384   // force all the loads to happen before doing any other lowering.
6385   if (isTailCall)
6386     Chain = DAG.getStackArgumentTokenFactor(Chain);
6387 
6388   // Adjust the stack pointer for the new arguments...
6389   // These operations are automatically eliminated by the prolog/epilog pass
6390   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6391   SDValue CallSeqStart = Chain;
6392 
6393   // Load the return address and frame pointer so it can be move somewhere else
6394   // later.
6395   SDValue LROp, FPOp;
6396   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6397 
6398   // Set up a copy of the stack pointer for use loading and storing any
6399   // arguments that may not fit in the registers available for argument
6400   // passing.
6401   SDValue StackPtr;
6402   if (isPPC64)
6403     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6404   else
6405     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6406 
6407   // Figure out which arguments are going to go in registers, and which in
6408   // memory.  Also, if this is a vararg function, floating point operations
6409   // must be stored to our stack, and loaded into integer regs as well, if
6410   // any integer regs are available for argument passing.
6411   unsigned ArgOffset = LinkageSize;
6412   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6413 
6414   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6415     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6416     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6417   };
6418   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6419     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6420     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6421   };
6422   static const MCPhysReg VR[] = {
6423     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6424     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6425   };
6426   const unsigned NumGPRs = array_lengthof(GPR_32);
6427   const unsigned NumFPRs = 13;
6428   const unsigned NumVRs  = array_lengthof(VR);
6429 
6430   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6431 
6432   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6433   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6434 
6435   SmallVector<SDValue, 8> MemOpChains;
6436   for (unsigned i = 0; i != NumOps; ++i) {
6437     SDValue Arg = OutVals[i];
6438     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6439 
6440     // PtrOff will be used to store the current argument to the stack if a
6441     // register cannot be found for it.
6442     SDValue PtrOff;
6443 
6444     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6445 
6446     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6447 
6448     // On PPC64, promote integers to 64-bit values.
6449     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6450       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6451       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6452       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6453     }
6454 
6455     // FIXME memcpy is used way more than necessary.  Correctness first.
6456     // Note: "by value" is code for passing a structure by value, not
6457     // basic types.
6458     if (Flags.isByVal()) {
6459       unsigned Size = Flags.getByValSize();
6460       // Very small objects are passed right-justified.  Everything else is
6461       // passed left-justified.
6462       if (Size==1 || Size==2) {
6463         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6464         if (GPR_idx != NumGPRs) {
6465           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6466                                         MachinePointerInfo(), VT);
6467           MemOpChains.push_back(Load.getValue(1));
6468           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6469 
6470           ArgOffset += PtrByteSize;
6471         } else {
6472           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6473                                           PtrOff.getValueType());
6474           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6475           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6476                                                             CallSeqStart,
6477                                                             Flags, DAG, dl);
6478           ArgOffset += PtrByteSize;
6479         }
6480         continue;
6481       }
6482       // Copy entire object into memory.  There are cases where gcc-generated
6483       // code assumes it is there, even if it could be put entirely into
6484       // registers.  (This is not what the doc says.)
6485       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6486                                                         CallSeqStart,
6487                                                         Flags, DAG, dl);
6488 
6489       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6490       // copy the pieces of the object that fit into registers from the
6491       // parameter save area.
6492       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6493         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6494         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6495         if (GPR_idx != NumGPRs) {
6496           SDValue Load =
6497               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6498           MemOpChains.push_back(Load.getValue(1));
6499           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6500           ArgOffset += PtrByteSize;
6501         } else {
6502           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6503           break;
6504         }
6505       }
6506       continue;
6507     }
6508 
6509     switch (Arg.getSimpleValueType().SimpleTy) {
6510     default: llvm_unreachable("Unexpected ValueType for argument!");
6511     case MVT::i1:
6512     case MVT::i32:
6513     case MVT::i64:
6514       if (GPR_idx != NumGPRs) {
6515         if (Arg.getValueType() == MVT::i1)
6516           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6517 
6518         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6519       } else {
6520         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6521                          isPPC64, isTailCall, false, MemOpChains,
6522                          TailCallArguments, dl);
6523       }
6524       ArgOffset += PtrByteSize;
6525       break;
6526     case MVT::f32:
6527     case MVT::f64:
6528       if (FPR_idx != NumFPRs) {
6529         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6530 
6531         if (isVarArg) {
6532           SDValue Store =
6533               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6534           MemOpChains.push_back(Store);
6535 
6536           // Float varargs are always shadowed in available integer registers
6537           if (GPR_idx != NumGPRs) {
6538             SDValue Load =
6539                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6540             MemOpChains.push_back(Load.getValue(1));
6541             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6542           }
6543           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6544             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6545             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6546             SDValue Load =
6547                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6548             MemOpChains.push_back(Load.getValue(1));
6549             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6550           }
6551         } else {
6552           // If we have any FPRs remaining, we may also have GPRs remaining.
6553           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6554           // GPRs.
6555           if (GPR_idx != NumGPRs)
6556             ++GPR_idx;
6557           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6558               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6559             ++GPR_idx;
6560         }
6561       } else
6562         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6563                          isPPC64, isTailCall, false, MemOpChains,
6564                          TailCallArguments, dl);
6565       if (isPPC64)
6566         ArgOffset += 8;
6567       else
6568         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6569       break;
6570     case MVT::v4f32:
6571     case MVT::v4i32:
6572     case MVT::v8i16:
6573     case MVT::v16i8:
6574       if (isVarArg) {
6575         // These go aligned on the stack, or in the corresponding R registers
6576         // when within range.  The Darwin PPC ABI doc claims they also go in
6577         // V registers; in fact gcc does this only for arguments that are
6578         // prototyped, not for those that match the ...  We do it for all
6579         // arguments, seems to work.
6580         while (ArgOffset % 16 !=0) {
6581           ArgOffset += PtrByteSize;
6582           if (GPR_idx != NumGPRs)
6583             GPR_idx++;
6584         }
6585         // We could elide this store in the case where the object fits
6586         // entirely in R registers.  Maybe later.
6587         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6588                              DAG.getConstant(ArgOffset, dl, PtrVT));
6589         SDValue Store =
6590             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6591         MemOpChains.push_back(Store);
6592         if (VR_idx != NumVRs) {
6593           SDValue Load =
6594               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6595           MemOpChains.push_back(Load.getValue(1));
6596           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6597         }
6598         ArgOffset += 16;
6599         for (unsigned i=0; i<16; i+=PtrByteSize) {
6600           if (GPR_idx == NumGPRs)
6601             break;
6602           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6603                                    DAG.getConstant(i, dl, PtrVT));
6604           SDValue Load =
6605               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6606           MemOpChains.push_back(Load.getValue(1));
6607           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6608         }
6609         break;
6610       }
6611 
6612       // Non-varargs Altivec params generally go in registers, but have
6613       // stack space allocated at the end.
6614       if (VR_idx != NumVRs) {
6615         // Doesn't have GPR space allocated.
6616         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6617       } else if (nAltivecParamsAtEnd==0) {
6618         // We are emitting Altivec params in order.
6619         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6620                          isPPC64, isTailCall, true, MemOpChains,
6621                          TailCallArguments, dl);
6622         ArgOffset += 16;
6623       }
6624       break;
6625     }
6626   }
6627   // If all Altivec parameters fit in registers, as they usually do,
6628   // they get stack space following the non-Altivec parameters.  We
6629   // don't track this here because nobody below needs it.
6630   // If there are more Altivec parameters than fit in registers emit
6631   // the stores here.
6632   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6633     unsigned j = 0;
6634     // Offset is aligned; skip 1st 12 params which go in V registers.
6635     ArgOffset = ((ArgOffset+15)/16)*16;
6636     ArgOffset += 12*16;
6637     for (unsigned i = 0; i != NumOps; ++i) {
6638       SDValue Arg = OutVals[i];
6639       EVT ArgType = Outs[i].VT;
6640       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6641           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6642         if (++j > NumVRs) {
6643           SDValue PtrOff;
6644           // We are emitting Altivec params in order.
6645           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6646                            isPPC64, isTailCall, true, MemOpChains,
6647                            TailCallArguments, dl);
6648           ArgOffset += 16;
6649         }
6650       }
6651     }
6652   }
6653 
6654   if (!MemOpChains.empty())
6655     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6656 
6657   // On Darwin, R12 must contain the address of an indirect callee.  This does
6658   // not mean the MTCTR instruction must use R12; it's easier to model this as
6659   // an extra parameter, so do that.
6660   if (!isTailCall &&
6661       !isFunctionGlobalAddress(Callee) &&
6662       !isa<ExternalSymbolSDNode>(Callee) &&
6663       !isBLACompatibleAddress(Callee, DAG))
6664     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6665                                                    PPC::R12), Callee));
6666 
6667   // Build a sequence of copy-to-reg nodes chained together with token chain
6668   // and flag operands which copy the outgoing args into the appropriate regs.
6669   SDValue InFlag;
6670   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6671     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6672                              RegsToPass[i].second, InFlag);
6673     InFlag = Chain.getValue(1);
6674   }
6675 
6676   if (isTailCall)
6677     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6678                     TailCallArguments);
6679 
6680   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6681                     /* unused except on PPC64 ELFv1 */ false, DAG,
6682                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6683                     NumBytes, Ins, InVals, CS);
6684 }
6685 
6686 
6687 SDValue PPCTargetLowering::LowerCall_AIX(
6688     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6689     bool isTailCall, bool isPatchPoint,
6690     const SmallVectorImpl<ISD::OutputArg> &Outs,
6691     const SmallVectorImpl<SDValue> &OutVals,
6692     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6693     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6694     ImmutableCallSite CS) const {
6695 
6696   assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) &&
6697          "Unimplemented calling convention!");
6698   if (isVarArg || isPatchPoint)
6699     report_fatal_error("This call type is unimplemented on AIX.");
6700 
6701   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6702   bool isPPC64 = PtrVT == MVT::i64;
6703   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6704   unsigned NumOps = Outs.size();
6705 
6706 
6707   // Count how many bytes are to be pushed on the stack, including the linkage
6708   // area, parameter list area.
6709   // On XCOFF, we start with 24/48, which is reserved space for
6710   // [SP][CR][LR][2 x reserved][TOC].
6711   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6712 
6713   // The prolog code of the callee may store up to 8 GPR argument registers to
6714   // the stack, allowing va_start to index over them in memory if the callee
6715   // is variadic.
6716   // Because we cannot tell if this is needed on the caller side, we have to
6717   // conservatively assume that it is needed.  As such, make sure we have at
6718   // least enough stack space for the caller to store the 8 GPRs.
6719   unsigned NumBytes = LinkageSize + 8 * PtrByteSize;
6720 
6721   // Adjust the stack pointer for the new arguments...
6722   // These operations are automatically eliminated by the prolog/epilog
6723   // inserter pass.
6724   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6725   SDValue CallSeqStart = Chain;
6726 
6727   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6728     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6729     PPC::R7, PPC::R8, PPC::R9, PPC::R10
6730   };
6731   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6732     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6733     PPC::X7, PPC::X8, PPC::X9, PPC::X10
6734   };
6735 
6736   const unsigned NumGPRs = isPPC64 ? array_lengthof(GPR_64)
6737                                    : array_lengthof(GPR_32);
6738   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6739   unsigned GPR_idx = 0;
6740 
6741   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6742 
6743   if (isTailCall)
6744     report_fatal_error("Handling of tail call is unimplemented!");
6745   int SPDiff = 0;
6746 
6747   for (unsigned i = 0; i != NumOps; ++i) {
6748     SDValue Arg = OutVals[i];
6749     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6750 
6751     // Promote integers if needed.
6752     if (Arg.getValueType() == MVT::i1 ||
6753         (isPPC64 && Arg.getValueType() == MVT::i32)) {
6754       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6755       Arg = DAG.getNode(ExtOp, dl, PtrVT, Arg);
6756     }
6757 
6758     // Note: "by value" is code for passing a structure by value, not
6759     // basic types.
6760     if (Flags.isByVal())
6761       report_fatal_error("Passing structure by value is unimplemented!");
6762 
6763     switch (Arg.getSimpleValueType().SimpleTy) {
6764     default: llvm_unreachable("Unexpected ValueType for argument!");
6765     case MVT::i1:
6766     case MVT::i32:
6767     case MVT::i64:
6768       if (GPR_idx != NumGPRs)
6769         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6770       else
6771         report_fatal_error("Handling of placing parameters on the stack is "
6772                            "unimplemented!");
6773       break;
6774     case MVT::f32:
6775     case MVT::f64:
6776     case MVT::v4f32:
6777     case MVT::v4i32:
6778     case MVT::v8i16:
6779     case MVT::v16i8:
6780     case MVT::v2f64:
6781     case MVT::v2i64:
6782     case MVT::v1i128:
6783     case MVT::f128:
6784     case MVT::v4f64:
6785     case MVT::v4i1:
6786       report_fatal_error("Handling of this parameter type is unimplemented!");
6787     }
6788   }
6789 
6790   if (!isFunctionGlobalAddress(Callee) &&
6791       !isa<ExternalSymbolSDNode>(Callee))
6792     report_fatal_error("Handling of indirect call is unimplemented!");
6793 
6794   // Build a sequence of copy-to-reg nodes chained together with token chain
6795   // and flag operands which copy the outgoing args into the appropriate regs.
6796   SDValue InFlag;
6797   for (auto Reg : RegsToPass) {
6798     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
6799     InFlag = Chain.getValue(1);
6800   }
6801 
6802   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6803                     /* unused except on PPC64 ELFv1 */ false, DAG,
6804                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6805                     NumBytes, Ins, InVals, CS);
6806 }
6807 
6808 bool
6809 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6810                                   MachineFunction &MF, bool isVarArg,
6811                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6812                                   LLVMContext &Context) const {
6813   SmallVector<CCValAssign, 16> RVLocs;
6814   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6815   return CCInfo.CheckReturn(
6816       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6817                 ? RetCC_PPC_Cold
6818                 : RetCC_PPC);
6819 }
6820 
6821 SDValue
6822 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6823                                bool isVarArg,
6824                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6825                                const SmallVectorImpl<SDValue> &OutVals,
6826                                const SDLoc &dl, SelectionDAG &DAG) const {
6827   SmallVector<CCValAssign, 16> RVLocs;
6828   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6829                  *DAG.getContext());
6830   CCInfo.AnalyzeReturn(Outs,
6831                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6832                            ? RetCC_PPC_Cold
6833                            : RetCC_PPC);
6834 
6835   SDValue Flag;
6836   SmallVector<SDValue, 4> RetOps(1, Chain);
6837 
6838   // Copy the result values into the output registers.
6839   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
6840     CCValAssign &VA = RVLocs[i];
6841     assert(VA.isRegLoc() && "Can only return in registers!");
6842 
6843     SDValue Arg = OutVals[RealResIdx];
6844 
6845     switch (VA.getLocInfo()) {
6846     default: llvm_unreachable("Unknown loc info!");
6847     case CCValAssign::Full: break;
6848     case CCValAssign::AExt:
6849       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6850       break;
6851     case CCValAssign::ZExt:
6852       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6853       break;
6854     case CCValAssign::SExt:
6855       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6856       break;
6857     }
6858     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
6859       bool isLittleEndian = Subtarget.isLittleEndian();
6860       // Legalize ret f64 -> ret 2 x i32.
6861       SDValue SVal =
6862           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6863                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
6864       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
6865       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6866       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6867                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
6868       Flag = Chain.getValue(1);
6869       VA = RVLocs[++i]; // skip ahead to next loc
6870       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
6871     } else
6872       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6873     Flag = Chain.getValue(1);
6874     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6875   }
6876 
6877   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6878   const MCPhysReg *I =
6879     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6880   if (I) {
6881     for (; *I; ++I) {
6882 
6883       if (PPC::G8RCRegClass.contains(*I))
6884         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6885       else if (PPC::F8RCRegClass.contains(*I))
6886         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6887       else if (PPC::CRRCRegClass.contains(*I))
6888         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6889       else if (PPC::VRRCRegClass.contains(*I))
6890         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6891       else
6892         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6893     }
6894   }
6895 
6896   RetOps[0] = Chain;  // Update chain.
6897 
6898   // Add the flag if we have it.
6899   if (Flag.getNode())
6900     RetOps.push_back(Flag);
6901 
6902   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6903 }
6904 
6905 SDValue
6906 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6907                                                 SelectionDAG &DAG) const {
6908   SDLoc dl(Op);
6909 
6910   // Get the correct type for integers.
6911   EVT IntVT = Op.getValueType();
6912 
6913   // Get the inputs.
6914   SDValue Chain = Op.getOperand(0);
6915   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6916   // Build a DYNAREAOFFSET node.
6917   SDValue Ops[2] = {Chain, FPSIdx};
6918   SDVTList VTs = DAG.getVTList(IntVT);
6919   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6920 }
6921 
6922 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6923                                              SelectionDAG &DAG) const {
6924   // When we pop the dynamic allocation we need to restore the SP link.
6925   SDLoc dl(Op);
6926 
6927   // Get the correct type for pointers.
6928   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6929 
6930   // Construct the stack pointer operand.
6931   bool isPPC64 = Subtarget.isPPC64();
6932   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6933   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6934 
6935   // Get the operands for the STACKRESTORE.
6936   SDValue Chain = Op.getOperand(0);
6937   SDValue SaveSP = Op.getOperand(1);
6938 
6939   // Load the old link SP.
6940   SDValue LoadLinkSP =
6941       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6942 
6943   // Restore the stack pointer.
6944   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6945 
6946   // Store the old link SP.
6947   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6948 }
6949 
6950 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6951   MachineFunction &MF = DAG.getMachineFunction();
6952   bool isPPC64 = Subtarget.isPPC64();
6953   EVT PtrVT = getPointerTy(MF.getDataLayout());
6954 
6955   // Get current frame pointer save index.  The users of this index will be
6956   // primarily DYNALLOC instructions.
6957   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6958   int RASI = FI->getReturnAddrSaveIndex();
6959 
6960   // If the frame pointer save index hasn't been defined yet.
6961   if (!RASI) {
6962     // Find out what the fix offset of the frame pointer save area.
6963     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6964     // Allocate the frame index for frame pointer save area.
6965     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6966     // Save the result.
6967     FI->setReturnAddrSaveIndex(RASI);
6968   }
6969   return DAG.getFrameIndex(RASI, PtrVT);
6970 }
6971 
6972 SDValue
6973 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6974   MachineFunction &MF = DAG.getMachineFunction();
6975   bool isPPC64 = Subtarget.isPPC64();
6976   EVT PtrVT = getPointerTy(MF.getDataLayout());
6977 
6978   // Get current frame pointer save index.  The users of this index will be
6979   // primarily DYNALLOC instructions.
6980   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6981   int FPSI = FI->getFramePointerSaveIndex();
6982 
6983   // If the frame pointer save index hasn't been defined yet.
6984   if (!FPSI) {
6985     // Find out what the fix offset of the frame pointer save area.
6986     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6987     // Allocate the frame index for frame pointer save area.
6988     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6989     // Save the result.
6990     FI->setFramePointerSaveIndex(FPSI);
6991   }
6992   return DAG.getFrameIndex(FPSI, PtrVT);
6993 }
6994 
6995 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6996                                                    SelectionDAG &DAG) const {
6997   // Get the inputs.
6998   SDValue Chain = Op.getOperand(0);
6999   SDValue Size  = Op.getOperand(1);
7000   SDLoc dl(Op);
7001 
7002   // Get the correct type for pointers.
7003   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7004   // Negate the size.
7005   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7006                                 DAG.getConstant(0, dl, PtrVT), Size);
7007   // Construct a node for the frame pointer save index.
7008   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7009   // Build a DYNALLOC node.
7010   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7011   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7012   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7013 }
7014 
7015 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7016                                                      SelectionDAG &DAG) const {
7017   MachineFunction &MF = DAG.getMachineFunction();
7018 
7019   bool isPPC64 = Subtarget.isPPC64();
7020   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7021 
7022   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7023   return DAG.getFrameIndex(FI, PtrVT);
7024 }
7025 
7026 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7027                                                SelectionDAG &DAG) const {
7028   SDLoc DL(Op);
7029   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7030                      DAG.getVTList(MVT::i32, MVT::Other),
7031                      Op.getOperand(0), Op.getOperand(1));
7032 }
7033 
7034 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7035                                                 SelectionDAG &DAG) const {
7036   SDLoc DL(Op);
7037   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7038                      Op.getOperand(0), Op.getOperand(1));
7039 }
7040 
7041 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7042   if (Op.getValueType().isVector())
7043     return LowerVectorLoad(Op, DAG);
7044 
7045   assert(Op.getValueType() == MVT::i1 &&
7046          "Custom lowering only for i1 loads");
7047 
7048   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7049 
7050   SDLoc dl(Op);
7051   LoadSDNode *LD = cast<LoadSDNode>(Op);
7052 
7053   SDValue Chain = LD->getChain();
7054   SDValue BasePtr = LD->getBasePtr();
7055   MachineMemOperand *MMO = LD->getMemOperand();
7056 
7057   SDValue NewLD =
7058       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7059                      BasePtr, MVT::i8, MMO);
7060   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7061 
7062   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7063   return DAG.getMergeValues(Ops, dl);
7064 }
7065 
7066 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7067   if (Op.getOperand(1).getValueType().isVector())
7068     return LowerVectorStore(Op, DAG);
7069 
7070   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7071          "Custom lowering only for i1 stores");
7072 
7073   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7074 
7075   SDLoc dl(Op);
7076   StoreSDNode *ST = cast<StoreSDNode>(Op);
7077 
7078   SDValue Chain = ST->getChain();
7079   SDValue BasePtr = ST->getBasePtr();
7080   SDValue Value = ST->getValue();
7081   MachineMemOperand *MMO = ST->getMemOperand();
7082 
7083   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7084                       Value);
7085   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7086 }
7087 
7088 // FIXME: Remove this once the ANDI glue bug is fixed:
7089 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7090   assert(Op.getValueType() == MVT::i1 &&
7091          "Custom lowering only for i1 results");
7092 
7093   SDLoc DL(Op);
7094   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
7095                      Op.getOperand(0));
7096 }
7097 
7098 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7099                                                SelectionDAG &DAG) const {
7100 
7101   // Implements a vector truncate that fits in a vector register as a shuffle.
7102   // We want to legalize vector truncates down to where the source fits in
7103   // a vector register (and target is therefore smaller than vector register
7104   // size).  At that point legalization will try to custom lower the sub-legal
7105   // result and get here - where we can contain the truncate as a single target
7106   // operation.
7107 
7108   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7109   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7110   //
7111   // We will implement it for big-endian ordering as this (where x denotes
7112   // undefined):
7113   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7114   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7115   //
7116   // The same operation in little-endian ordering will be:
7117   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7118   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7119 
7120   assert(Op.getValueType().isVector() && "Vector type expected.");
7121 
7122   SDLoc DL(Op);
7123   SDValue N1 = Op.getOperand(0);
7124   unsigned SrcSize = N1.getValueType().getSizeInBits();
7125   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7126   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7127 
7128   EVT TrgVT = Op.getValueType();
7129   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7130   EVT EltVT = TrgVT.getVectorElementType();
7131   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7132   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7133 
7134   // First list the elements we want to keep.
7135   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7136   SmallVector<int, 16> ShuffV;
7137   if (Subtarget.isLittleEndian())
7138     for (unsigned i = 0; i < TrgNumElts; ++i)
7139       ShuffV.push_back(i * SizeMult);
7140   else
7141     for (unsigned i = 1; i <= TrgNumElts; ++i)
7142       ShuffV.push_back(i * SizeMult - 1);
7143 
7144   // Populate the remaining elements with undefs.
7145   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7146     // ShuffV.push_back(i + WideNumElts);
7147     ShuffV.push_back(WideNumElts + 1);
7148 
7149   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7150   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7151 }
7152 
7153 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7154 /// possible.
7155 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7156   // Not FP? Not a fsel.
7157   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7158       !Op.getOperand(2).getValueType().isFloatingPoint())
7159     return Op;
7160 
7161   // We might be able to do better than this under some circumstances, but in
7162   // general, fsel-based lowering of select is a finite-math-only optimization.
7163   // For more information, see section F.3 of the 2.06 ISA specification.
7164   if (!DAG.getTarget().Options.NoInfsFPMath ||
7165       !DAG.getTarget().Options.NoNaNsFPMath)
7166     return Op;
7167   // TODO: Propagate flags from the select rather than global settings.
7168   SDNodeFlags Flags;
7169   Flags.setNoInfs(true);
7170   Flags.setNoNaNs(true);
7171 
7172   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7173 
7174   EVT ResVT = Op.getValueType();
7175   EVT CmpVT = Op.getOperand(0).getValueType();
7176   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7177   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7178   SDLoc dl(Op);
7179 
7180   // If the RHS of the comparison is a 0.0, we don't need to do the
7181   // subtraction at all.
7182   SDValue Sel1;
7183   if (isFloatingPointZero(RHS))
7184     switch (CC) {
7185     default: break;       // SETUO etc aren't handled by fsel.
7186     case ISD::SETNE:
7187       std::swap(TV, FV);
7188       LLVM_FALLTHROUGH;
7189     case ISD::SETEQ:
7190       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7191         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7192       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7193       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7194         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7195       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7196                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7197     case ISD::SETULT:
7198     case ISD::SETLT:
7199       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7200       LLVM_FALLTHROUGH;
7201     case ISD::SETOGE:
7202     case ISD::SETGE:
7203       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7204         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7205       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7206     case ISD::SETUGT:
7207     case ISD::SETGT:
7208       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7209       LLVM_FALLTHROUGH;
7210     case ISD::SETOLE:
7211     case ISD::SETLE:
7212       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7213         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7214       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7215                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7216     }
7217 
7218   SDValue Cmp;
7219   switch (CC) {
7220   default: break;       // SETUO etc aren't handled by fsel.
7221   case ISD::SETNE:
7222     std::swap(TV, FV);
7223     LLVM_FALLTHROUGH;
7224   case ISD::SETEQ:
7225     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7226     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7227       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7228     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7229     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7230       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7231     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7232                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7233   case ISD::SETULT:
7234   case ISD::SETLT:
7235     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7236     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7237       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7238     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7239   case ISD::SETOGE:
7240   case ISD::SETGE:
7241     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7242     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7243       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7244     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7245   case ISD::SETUGT:
7246   case ISD::SETGT:
7247     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7248     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7249       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7250     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7251   case ISD::SETOLE:
7252   case ISD::SETLE:
7253     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7254     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7255       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7256     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7257   }
7258   return Op;
7259 }
7260 
7261 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7262                                                SelectionDAG &DAG,
7263                                                const SDLoc &dl) const {
7264   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7265   SDValue Src = Op.getOperand(0);
7266   if (Src.getValueType() == MVT::f32)
7267     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7268 
7269   SDValue Tmp;
7270   switch (Op.getSimpleValueType().SimpleTy) {
7271   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7272   case MVT::i32:
7273     Tmp = DAG.getNode(
7274         Op.getOpcode() == ISD::FP_TO_SINT
7275             ? PPCISD::FCTIWZ
7276             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7277         dl, MVT::f64, Src);
7278     break;
7279   case MVT::i64:
7280     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7281            "i64 FP_TO_UINT is supported only with FPCVT");
7282     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7283                                                         PPCISD::FCTIDUZ,
7284                       dl, MVT::f64, Src);
7285     break;
7286   }
7287 
7288   // Convert the FP value to an int value through memory.
7289   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7290     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7291   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7292   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7293   MachinePointerInfo MPI =
7294       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7295 
7296   // Emit a store to the stack slot.
7297   SDValue Chain;
7298   if (i32Stack) {
7299     MachineFunction &MF = DAG.getMachineFunction();
7300     MachineMemOperand *MMO =
7301       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7302     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7303     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7304               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7305   } else
7306     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7307 
7308   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7309   // add in a bias on big endian.
7310   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7311     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7312                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7313     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7314   }
7315 
7316   RLI.Chain = Chain;
7317   RLI.Ptr = FIPtr;
7318   RLI.MPI = MPI;
7319 }
7320 
7321 /// Custom lowers floating point to integer conversions to use
7322 /// the direct move instructions available in ISA 2.07 to avoid the
7323 /// need for load/store combinations.
7324 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7325                                                     SelectionDAG &DAG,
7326                                                     const SDLoc &dl) const {
7327   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7328   SDValue Src = Op.getOperand(0);
7329 
7330   if (Src.getValueType() == MVT::f32)
7331     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7332 
7333   SDValue Tmp;
7334   switch (Op.getSimpleValueType().SimpleTy) {
7335   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7336   case MVT::i32:
7337     Tmp = DAG.getNode(
7338         Op.getOpcode() == ISD::FP_TO_SINT
7339             ? PPCISD::FCTIWZ
7340             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7341         dl, MVT::f64, Src);
7342     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7343     break;
7344   case MVT::i64:
7345     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7346            "i64 FP_TO_UINT is supported only with FPCVT");
7347     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7348                                                         PPCISD::FCTIDUZ,
7349                       dl, MVT::f64, Src);
7350     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7351     break;
7352   }
7353   return Tmp;
7354 }
7355 
7356 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7357                                           const SDLoc &dl) const {
7358 
7359   // FP to INT conversions are legal for f128.
7360   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7361     return Op;
7362 
7363   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7364   // PPC (the libcall is not available).
7365   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7366     if (Op.getValueType() == MVT::i32) {
7367       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7368         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7369                                  MVT::f64, Op.getOperand(0),
7370                                  DAG.getIntPtrConstant(0, dl));
7371         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7372                                  MVT::f64, Op.getOperand(0),
7373                                  DAG.getIntPtrConstant(1, dl));
7374 
7375         // Add the two halves of the long double in round-to-zero mode.
7376         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7377 
7378         // Now use a smaller FP_TO_SINT.
7379         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7380       }
7381       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7382         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7383         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7384         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7385         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7386         // FIXME: generated code sucks.
7387         // TODO: Are there fast-math-flags to propagate to this FSUB?
7388         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7389                                    Op.getOperand(0), Tmp);
7390         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7391         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7392                            DAG.getConstant(0x80000000, dl, MVT::i32));
7393         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7394                                     Op.getOperand(0));
7395         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7396                                ISD::SETGE);
7397       }
7398     }
7399 
7400     return SDValue();
7401   }
7402 
7403   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7404     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7405 
7406   ReuseLoadInfo RLI;
7407   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7408 
7409   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7410                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7411 }
7412 
7413 // We're trying to insert a regular store, S, and then a load, L. If the
7414 // incoming value, O, is a load, we might just be able to have our load use the
7415 // address used by O. However, we don't know if anything else will store to
7416 // that address before we can load from it. To prevent this situation, we need
7417 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7418 // the same chain operand as O, we create a token factor from the chain results
7419 // of O and L, and we replace all uses of O's chain result with that token
7420 // factor (see spliceIntoChain below for this last part).
7421 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7422                                             ReuseLoadInfo &RLI,
7423                                             SelectionDAG &DAG,
7424                                             ISD::LoadExtType ET) const {
7425   SDLoc dl(Op);
7426   if (ET == ISD::NON_EXTLOAD &&
7427       (Op.getOpcode() == ISD::FP_TO_UINT ||
7428        Op.getOpcode() == ISD::FP_TO_SINT) &&
7429       isOperationLegalOrCustom(Op.getOpcode(),
7430                                Op.getOperand(0).getValueType())) {
7431 
7432     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7433     return true;
7434   }
7435 
7436   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7437   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7438       LD->isNonTemporal())
7439     return false;
7440   if (LD->getMemoryVT() != MemVT)
7441     return false;
7442 
7443   RLI.Ptr = LD->getBasePtr();
7444   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7445     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7446            "Non-pre-inc AM on PPC?");
7447     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7448                           LD->getOffset());
7449   }
7450 
7451   RLI.Chain = LD->getChain();
7452   RLI.MPI = LD->getPointerInfo();
7453   RLI.IsDereferenceable = LD->isDereferenceable();
7454   RLI.IsInvariant = LD->isInvariant();
7455   RLI.Alignment = LD->getAlignment();
7456   RLI.AAInfo = LD->getAAInfo();
7457   RLI.Ranges = LD->getRanges();
7458 
7459   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7460   return true;
7461 }
7462 
7463 // Given the head of the old chain, ResChain, insert a token factor containing
7464 // it and NewResChain, and make users of ResChain now be users of that token
7465 // factor.
7466 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7467 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7468                                         SDValue NewResChain,
7469                                         SelectionDAG &DAG) const {
7470   if (!ResChain)
7471     return;
7472 
7473   SDLoc dl(NewResChain);
7474 
7475   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7476                            NewResChain, DAG.getUNDEF(MVT::Other));
7477   assert(TF.getNode() != NewResChain.getNode() &&
7478          "A new TF really is required here");
7479 
7480   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7481   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7482 }
7483 
7484 /// Analyze profitability of direct move
7485 /// prefer float load to int load plus direct move
7486 /// when there is no integer use of int load
7487 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7488   SDNode *Origin = Op.getOperand(0).getNode();
7489   if (Origin->getOpcode() != ISD::LOAD)
7490     return true;
7491 
7492   // If there is no LXSIBZX/LXSIHZX, like Power8,
7493   // prefer direct move if the memory size is 1 or 2 bytes.
7494   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7495   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7496     return true;
7497 
7498   for (SDNode::use_iterator UI = Origin->use_begin(),
7499                             UE = Origin->use_end();
7500        UI != UE; ++UI) {
7501 
7502     // Only look at the users of the loaded value.
7503     if (UI.getUse().get().getResNo() != 0)
7504       continue;
7505 
7506     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7507         UI->getOpcode() != ISD::UINT_TO_FP)
7508       return true;
7509   }
7510 
7511   return false;
7512 }
7513 
7514 /// Custom lowers integer to floating point conversions to use
7515 /// the direct move instructions available in ISA 2.07 to avoid the
7516 /// need for load/store combinations.
7517 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7518                                                     SelectionDAG &DAG,
7519                                                     const SDLoc &dl) const {
7520   assert((Op.getValueType() == MVT::f32 ||
7521           Op.getValueType() == MVT::f64) &&
7522          "Invalid floating point type as target of conversion");
7523   assert(Subtarget.hasFPCVT() &&
7524          "Int to FP conversions with direct moves require FPCVT");
7525   SDValue FP;
7526   SDValue Src = Op.getOperand(0);
7527   bool SinglePrec = Op.getValueType() == MVT::f32;
7528   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7529   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7530   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7531                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7532 
7533   if (WordInt) {
7534     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7535                      dl, MVT::f64, Src);
7536     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7537   }
7538   else {
7539     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7540     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7541   }
7542 
7543   return FP;
7544 }
7545 
7546 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7547 
7548   EVT VecVT = Vec.getValueType();
7549   assert(VecVT.isVector() && "Expected a vector type.");
7550   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7551 
7552   EVT EltVT = VecVT.getVectorElementType();
7553   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7554   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7555 
7556   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7557   SmallVector<SDValue, 16> Ops(NumConcat);
7558   Ops[0] = Vec;
7559   SDValue UndefVec = DAG.getUNDEF(VecVT);
7560   for (unsigned i = 1; i < NumConcat; ++i)
7561     Ops[i] = UndefVec;
7562 
7563   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7564 }
7565 
7566 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7567                                                 const SDLoc &dl) const {
7568 
7569   unsigned Opc = Op.getOpcode();
7570   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7571          "Unexpected conversion type");
7572   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7573          "Supports conversions to v2f64/v4f32 only.");
7574 
7575   bool SignedConv = Opc == ISD::SINT_TO_FP;
7576   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7577 
7578   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7579   EVT WideVT = Wide.getValueType();
7580   unsigned WideNumElts = WideVT.getVectorNumElements();
7581   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7582 
7583   SmallVector<int, 16> ShuffV;
7584   for (unsigned i = 0; i < WideNumElts; ++i)
7585     ShuffV.push_back(i + WideNumElts);
7586 
7587   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7588   int SaveElts = FourEltRes ? 4 : 2;
7589   if (Subtarget.isLittleEndian())
7590     for (int i = 0; i < SaveElts; i++)
7591       ShuffV[i * Stride] = i;
7592   else
7593     for (int i = 1; i <= SaveElts; i++)
7594       ShuffV[i * Stride - 1] = i - 1;
7595 
7596   SDValue ShuffleSrc2 =
7597       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7598   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7599   unsigned ExtendOp =
7600       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7601 
7602   SDValue Extend;
7603   if (!Subtarget.hasP9Altivec() && SignedConv) {
7604     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7605     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7606                          DAG.getValueType(Op.getOperand(0).getValueType()));
7607   } else
7608     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7609 
7610   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7611 }
7612 
7613 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7614                                           SelectionDAG &DAG) const {
7615   SDLoc dl(Op);
7616 
7617   EVT InVT = Op.getOperand(0).getValueType();
7618   EVT OutVT = Op.getValueType();
7619   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7620       isOperationCustom(Op.getOpcode(), InVT))
7621     return LowerINT_TO_FPVector(Op, DAG, dl);
7622 
7623   // Conversions to f128 are legal.
7624   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7625     return Op;
7626 
7627   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7628     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7629       return SDValue();
7630 
7631     SDValue Value = Op.getOperand(0);
7632     // The values are now known to be -1 (false) or 1 (true). To convert this
7633     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7634     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7635     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7636 
7637     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7638 
7639     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7640 
7641     if (Op.getValueType() != MVT::v4f64)
7642       Value = DAG.getNode(ISD::FP_ROUND, dl,
7643                           Op.getValueType(), Value,
7644                           DAG.getIntPtrConstant(1, dl));
7645     return Value;
7646   }
7647 
7648   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7649   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7650     return SDValue();
7651 
7652   if (Op.getOperand(0).getValueType() == MVT::i1)
7653     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7654                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7655                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7656 
7657   // If we have direct moves, we can do all the conversion, skip the store/load
7658   // however, without FPCVT we can't do most conversions.
7659   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7660       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7661     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7662 
7663   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7664          "UINT_TO_FP is supported only with FPCVT");
7665 
7666   // If we have FCFIDS, then use it when converting to single-precision.
7667   // Otherwise, convert to double-precision and then round.
7668   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7669                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7670                                                             : PPCISD::FCFIDS)
7671                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7672                                                             : PPCISD::FCFID);
7673   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7674                   ? MVT::f32
7675                   : MVT::f64;
7676 
7677   if (Op.getOperand(0).getValueType() == MVT::i64) {
7678     SDValue SINT = Op.getOperand(0);
7679     // When converting to single-precision, we actually need to convert
7680     // to double-precision first and then round to single-precision.
7681     // To avoid double-rounding effects during that operation, we have
7682     // to prepare the input operand.  Bits that might be truncated when
7683     // converting to double-precision are replaced by a bit that won't
7684     // be lost at this stage, but is below the single-precision rounding
7685     // position.
7686     //
7687     // However, if -enable-unsafe-fp-math is in effect, accept double
7688     // rounding to avoid the extra overhead.
7689     if (Op.getValueType() == MVT::f32 &&
7690         !Subtarget.hasFPCVT() &&
7691         !DAG.getTarget().Options.UnsafeFPMath) {
7692 
7693       // Twiddle input to make sure the low 11 bits are zero.  (If this
7694       // is the case, we are guaranteed the value will fit into the 53 bit
7695       // mantissa of an IEEE double-precision value without rounding.)
7696       // If any of those low 11 bits were not zero originally, make sure
7697       // bit 12 (value 2048) is set instead, so that the final rounding
7698       // to single-precision gets the correct result.
7699       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7700                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7701       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7702                           Round, DAG.getConstant(2047, dl, MVT::i64));
7703       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7704       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7705                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7706 
7707       // However, we cannot use that value unconditionally: if the magnitude
7708       // of the input value is small, the bit-twiddling we did above might
7709       // end up visibly changing the output.  Fortunately, in that case, we
7710       // don't need to twiddle bits since the original input will convert
7711       // exactly to double-precision floating-point already.  Therefore,
7712       // construct a conditional to use the original value if the top 11
7713       // bits are all sign-bit copies, and use the rounded value computed
7714       // above otherwise.
7715       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7716                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7717       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7718                          Cond, DAG.getConstant(1, dl, MVT::i64));
7719       Cond = DAG.getSetCC(dl, MVT::i32,
7720                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7721 
7722       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7723     }
7724 
7725     ReuseLoadInfo RLI;
7726     SDValue Bits;
7727 
7728     MachineFunction &MF = DAG.getMachineFunction();
7729     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7730       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7731                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7732       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7733     } else if (Subtarget.hasLFIWAX() &&
7734                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7735       MachineMemOperand *MMO =
7736         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7737                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7738       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7739       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7740                                      DAG.getVTList(MVT::f64, MVT::Other),
7741                                      Ops, MVT::i32, MMO);
7742       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7743     } else if (Subtarget.hasFPCVT() &&
7744                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7745       MachineMemOperand *MMO =
7746         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7747                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7748       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7749       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7750                                      DAG.getVTList(MVT::f64, MVT::Other),
7751                                      Ops, MVT::i32, MMO);
7752       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7753     } else if (((Subtarget.hasLFIWAX() &&
7754                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7755                 (Subtarget.hasFPCVT() &&
7756                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7757                SINT.getOperand(0).getValueType() == MVT::i32) {
7758       MachineFrameInfo &MFI = MF.getFrameInfo();
7759       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7760 
7761       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7762       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7763 
7764       SDValue Store =
7765           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7766                        MachinePointerInfo::getFixedStack(
7767                            DAG.getMachineFunction(), FrameIdx));
7768 
7769       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7770              "Expected an i32 store");
7771 
7772       RLI.Ptr = FIdx;
7773       RLI.Chain = Store;
7774       RLI.MPI =
7775           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7776       RLI.Alignment = 4;
7777 
7778       MachineMemOperand *MMO =
7779         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7780                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7781       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7782       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7783                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7784                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7785                                      Ops, MVT::i32, MMO);
7786     } else
7787       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7788 
7789     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7790 
7791     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7792       FP = DAG.getNode(ISD::FP_ROUND, dl,
7793                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7794     return FP;
7795   }
7796 
7797   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7798          "Unhandled INT_TO_FP type in custom expander!");
7799   // Since we only generate this in 64-bit mode, we can take advantage of
7800   // 64-bit registers.  In particular, sign extend the input value into the
7801   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7802   // then lfd it and fcfid it.
7803   MachineFunction &MF = DAG.getMachineFunction();
7804   MachineFrameInfo &MFI = MF.getFrameInfo();
7805   EVT PtrVT = getPointerTy(MF.getDataLayout());
7806 
7807   SDValue Ld;
7808   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7809     ReuseLoadInfo RLI;
7810     bool ReusingLoad;
7811     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7812                                             DAG))) {
7813       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7814       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7815 
7816       SDValue Store =
7817           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7818                        MachinePointerInfo::getFixedStack(
7819                            DAG.getMachineFunction(), FrameIdx));
7820 
7821       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7822              "Expected an i32 store");
7823 
7824       RLI.Ptr = FIdx;
7825       RLI.Chain = Store;
7826       RLI.MPI =
7827           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7828       RLI.Alignment = 4;
7829     }
7830 
7831     MachineMemOperand *MMO =
7832       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7833                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7834     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7835     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7836                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7837                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7838                                  Ops, MVT::i32, MMO);
7839     if (ReusingLoad)
7840       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7841   } else {
7842     assert(Subtarget.isPPC64() &&
7843            "i32->FP without LFIWAX supported only on PPC64");
7844 
7845     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7846     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7847 
7848     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7849                                 Op.getOperand(0));
7850 
7851     // STD the extended value into the stack slot.
7852     SDValue Store = DAG.getStore(
7853         DAG.getEntryNode(), dl, Ext64, FIdx,
7854         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7855 
7856     // Load the value as a double.
7857     Ld = DAG.getLoad(
7858         MVT::f64, dl, Store, FIdx,
7859         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7860   }
7861 
7862   // FCFID it and return it.
7863   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7864   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7865     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7866                      DAG.getIntPtrConstant(0, dl));
7867   return FP;
7868 }
7869 
7870 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7871                                             SelectionDAG &DAG) const {
7872   SDLoc dl(Op);
7873   /*
7874    The rounding mode is in bits 30:31 of FPSR, and has the following
7875    settings:
7876      00 Round to nearest
7877      01 Round to 0
7878      10 Round to +inf
7879      11 Round to -inf
7880 
7881   FLT_ROUNDS, on the other hand, expects the following:
7882     -1 Undefined
7883      0 Round to 0
7884      1 Round to nearest
7885      2 Round to +inf
7886      3 Round to -inf
7887 
7888   To perform the conversion, we do:
7889     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7890   */
7891 
7892   MachineFunction &MF = DAG.getMachineFunction();
7893   EVT VT = Op.getValueType();
7894   EVT PtrVT = getPointerTy(MF.getDataLayout());
7895 
7896   // Save FP Control Word to register
7897   EVT NodeTys[] = {
7898     MVT::f64,    // return register
7899     MVT::Glue    // unused in this context
7900   };
7901   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7902 
7903   // Save FP register to stack slot
7904   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7905   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7906   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7907                                MachinePointerInfo());
7908 
7909   // Load FP Control Word from low 32 bits of stack slot.
7910   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7911   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7912   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7913 
7914   // Transform as necessary
7915   SDValue CWD1 =
7916     DAG.getNode(ISD::AND, dl, MVT::i32,
7917                 CWD, DAG.getConstant(3, dl, MVT::i32));
7918   SDValue CWD2 =
7919     DAG.getNode(ISD::SRL, dl, MVT::i32,
7920                 DAG.getNode(ISD::AND, dl, MVT::i32,
7921                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7922                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7923                             DAG.getConstant(3, dl, MVT::i32)),
7924                 DAG.getConstant(1, dl, MVT::i32));
7925 
7926   SDValue RetVal =
7927     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7928 
7929   return DAG.getNode((VT.getSizeInBits() < 16 ?
7930                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7931 }
7932 
7933 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7934   EVT VT = Op.getValueType();
7935   unsigned BitWidth = VT.getSizeInBits();
7936   SDLoc dl(Op);
7937   assert(Op.getNumOperands() == 3 &&
7938          VT == Op.getOperand(1).getValueType() &&
7939          "Unexpected SHL!");
7940 
7941   // Expand into a bunch of logical ops.  Note that these ops
7942   // depend on the PPC behavior for oversized shift amounts.
7943   SDValue Lo = Op.getOperand(0);
7944   SDValue Hi = Op.getOperand(1);
7945   SDValue Amt = Op.getOperand(2);
7946   EVT AmtVT = Amt.getValueType();
7947 
7948   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7949                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7950   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7951   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7952   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7953   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7954                              DAG.getConstant(-BitWidth, dl, AmtVT));
7955   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7956   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7957   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7958   SDValue OutOps[] = { OutLo, OutHi };
7959   return DAG.getMergeValues(OutOps, dl);
7960 }
7961 
7962 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7963   EVT VT = Op.getValueType();
7964   SDLoc dl(Op);
7965   unsigned BitWidth = VT.getSizeInBits();
7966   assert(Op.getNumOperands() == 3 &&
7967          VT == Op.getOperand(1).getValueType() &&
7968          "Unexpected SRL!");
7969 
7970   // Expand into a bunch of logical ops.  Note that these ops
7971   // depend on the PPC behavior for oversized shift amounts.
7972   SDValue Lo = Op.getOperand(0);
7973   SDValue Hi = Op.getOperand(1);
7974   SDValue Amt = Op.getOperand(2);
7975   EVT AmtVT = Amt.getValueType();
7976 
7977   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7978                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7979   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7980   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7981   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7982   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7983                              DAG.getConstant(-BitWidth, dl, AmtVT));
7984   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7985   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7986   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7987   SDValue OutOps[] = { OutLo, OutHi };
7988   return DAG.getMergeValues(OutOps, dl);
7989 }
7990 
7991 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7992   SDLoc dl(Op);
7993   EVT VT = Op.getValueType();
7994   unsigned BitWidth = VT.getSizeInBits();
7995   assert(Op.getNumOperands() == 3 &&
7996          VT == Op.getOperand(1).getValueType() &&
7997          "Unexpected SRA!");
7998 
7999   // Expand into a bunch of logical ops, followed by a select_cc.
8000   SDValue Lo = Op.getOperand(0);
8001   SDValue Hi = Op.getOperand(1);
8002   SDValue Amt = Op.getOperand(2);
8003   EVT AmtVT = Amt.getValueType();
8004 
8005   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8006                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8007   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8008   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8009   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8010   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8011                              DAG.getConstant(-BitWidth, dl, AmtVT));
8012   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8013   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8014   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8015                                   Tmp4, Tmp6, ISD::SETLE);
8016   SDValue OutOps[] = { OutLo, OutHi };
8017   return DAG.getMergeValues(OutOps, dl);
8018 }
8019 
8020 //===----------------------------------------------------------------------===//
8021 // Vector related lowering.
8022 //
8023 
8024 /// BuildSplatI - Build a canonical splati of Val with an element size of
8025 /// SplatSize.  Cast the result to VT.
8026 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8027                            SelectionDAG &DAG, const SDLoc &dl) {
8028   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
8029 
8030   static const MVT VTys[] = { // canonical VT to use for each size.
8031     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8032   };
8033 
8034   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8035 
8036   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8037   if (Val == -1)
8038     SplatSize = 1;
8039 
8040   EVT CanonicalVT = VTys[SplatSize-1];
8041 
8042   // Build a canonical splat for this value.
8043   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8044 }
8045 
8046 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8047 /// specified intrinsic ID.
8048 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8049                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8050   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8051   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8052                      DAG.getConstant(IID, dl, MVT::i32), Op);
8053 }
8054 
8055 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8056 /// specified intrinsic ID.
8057 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8058                                 SelectionDAG &DAG, const SDLoc &dl,
8059                                 EVT DestVT = MVT::Other) {
8060   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8061   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8062                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8063 }
8064 
8065 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8066 /// specified intrinsic ID.
8067 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8068                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8069                                 EVT DestVT = MVT::Other) {
8070   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8071   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8072                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8073 }
8074 
8075 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8076 /// amount.  The result has the specified value type.
8077 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8078                            SelectionDAG &DAG, const SDLoc &dl) {
8079   // Force LHS/RHS to be the right type.
8080   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8081   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8082 
8083   int Ops[16];
8084   for (unsigned i = 0; i != 16; ++i)
8085     Ops[i] = i + Amt;
8086   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8087   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8088 }
8089 
8090 /// Do we have an efficient pattern in a .td file for this node?
8091 ///
8092 /// \param V - pointer to the BuildVectorSDNode being matched
8093 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8094 ///
8095 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8096 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8097 /// the opposite is true (expansion is beneficial) are:
8098 /// - The node builds a vector out of integers that are not 32 or 64-bits
8099 /// - The node builds a vector out of constants
8100 /// - The node is a "load-and-splat"
8101 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8102 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8103                                             bool HasDirectMove,
8104                                             bool HasP8Vector) {
8105   EVT VecVT = V->getValueType(0);
8106   bool RightType = VecVT == MVT::v2f64 ||
8107     (HasP8Vector && VecVT == MVT::v4f32) ||
8108     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8109   if (!RightType)
8110     return false;
8111 
8112   bool IsSplat = true;
8113   bool IsLoad = false;
8114   SDValue Op0 = V->getOperand(0);
8115 
8116   // This function is called in a block that confirms the node is not a constant
8117   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8118   // different constants.
8119   if (V->isConstant())
8120     return false;
8121   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8122     if (V->getOperand(i).isUndef())
8123       return false;
8124     // We want to expand nodes that represent load-and-splat even if the
8125     // loaded value is a floating point truncation or conversion to int.
8126     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8127         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8128          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8129         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8130          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8131         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8132          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8133       IsLoad = true;
8134     // If the operands are different or the input is not a load and has more
8135     // uses than just this BV node, then it isn't a splat.
8136     if (V->getOperand(i) != Op0 ||
8137         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8138       IsSplat = false;
8139   }
8140   return !(IsSplat && IsLoad);
8141 }
8142 
8143 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8144 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8145 
8146   SDLoc dl(Op);
8147   SDValue Op0 = Op->getOperand(0);
8148 
8149   if (!EnableQuadPrecision ||
8150       (Op.getValueType() != MVT::f128 ) ||
8151       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8152       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8153       (Op0.getOperand(1).getValueType() != MVT::i64))
8154     return SDValue();
8155 
8156   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8157                      Op0.getOperand(1));
8158 }
8159 
8160 // If this is a case we can't handle, return null and let the default
8161 // expansion code take care of it.  If we CAN select this case, and if it
8162 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8163 // this case more efficiently than a constant pool load, lower it to the
8164 // sequence of ops that should be used.
8165 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8166                                              SelectionDAG &DAG) const {
8167   SDLoc dl(Op);
8168   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8169   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8170 
8171   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8172     // We first build an i32 vector, load it into a QPX register,
8173     // then convert it to a floating-point vector and compare it
8174     // to a zero vector to get the boolean result.
8175     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8176     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8177     MachinePointerInfo PtrInfo =
8178         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8179     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8180     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8181 
8182     assert(BVN->getNumOperands() == 4 &&
8183       "BUILD_VECTOR for v4i1 does not have 4 operands");
8184 
8185     bool IsConst = true;
8186     for (unsigned i = 0; i < 4; ++i) {
8187       if (BVN->getOperand(i).isUndef()) continue;
8188       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8189         IsConst = false;
8190         break;
8191       }
8192     }
8193 
8194     if (IsConst) {
8195       Constant *One =
8196         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8197       Constant *NegOne =
8198         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8199 
8200       Constant *CV[4];
8201       for (unsigned i = 0; i < 4; ++i) {
8202         if (BVN->getOperand(i).isUndef())
8203           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8204         else if (isNullConstant(BVN->getOperand(i)))
8205           CV[i] = NegOne;
8206         else
8207           CV[i] = One;
8208       }
8209 
8210       Constant *CP = ConstantVector::get(CV);
8211       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8212                                           16 /* alignment */);
8213 
8214       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8215       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8216       return DAG.getMemIntrinsicNode(
8217           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8218           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8219     }
8220 
8221     SmallVector<SDValue, 4> Stores;
8222     for (unsigned i = 0; i < 4; ++i) {
8223       if (BVN->getOperand(i).isUndef()) continue;
8224 
8225       unsigned Offset = 4*i;
8226       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8227       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8228 
8229       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8230       if (StoreSize > 4) {
8231         Stores.push_back(
8232             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8233                               PtrInfo.getWithOffset(Offset), MVT::i32));
8234       } else {
8235         SDValue StoreValue = BVN->getOperand(i);
8236         if (StoreSize < 4)
8237           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8238 
8239         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8240                                       PtrInfo.getWithOffset(Offset)));
8241       }
8242     }
8243 
8244     SDValue StoreChain;
8245     if (!Stores.empty())
8246       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8247     else
8248       StoreChain = DAG.getEntryNode();
8249 
8250     // Now load from v4i32 into the QPX register; this will extend it to
8251     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8252     // is typed as v4f64 because the QPX register integer states are not
8253     // explicitly represented.
8254 
8255     SDValue Ops[] = {StoreChain,
8256                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8257                      FIdx};
8258     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8259 
8260     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8261       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8262     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8263       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8264       LoadedVect);
8265 
8266     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8267 
8268     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8269   }
8270 
8271   // All other QPX vectors are handled by generic code.
8272   if (Subtarget.hasQPX())
8273     return SDValue();
8274 
8275   // Check if this is a splat of a constant value.
8276   APInt APSplatBits, APSplatUndef;
8277   unsigned SplatBitSize;
8278   bool HasAnyUndefs;
8279   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8280                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8281       SplatBitSize > 32) {
8282     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8283     // lowered to VSX instructions under certain conditions.
8284     // Without VSX, there is no pattern more efficient than expanding the node.
8285     if (Subtarget.hasVSX() &&
8286         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8287                                         Subtarget.hasP8Vector()))
8288       return Op;
8289     return SDValue();
8290   }
8291 
8292   unsigned SplatBits = APSplatBits.getZExtValue();
8293   unsigned SplatUndef = APSplatUndef.getZExtValue();
8294   unsigned SplatSize = SplatBitSize / 8;
8295 
8296   // First, handle single instruction cases.
8297 
8298   // All zeros?
8299   if (SplatBits == 0) {
8300     // Canonicalize all zero vectors to be v4i32.
8301     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8302       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8303       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8304     }
8305     return Op;
8306   }
8307 
8308   // We have XXSPLTIB for constant splats one byte wide
8309   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8310     // This is a splat of 1-byte elements with some elements potentially undef.
8311     // Rather than trying to match undef in the SDAG patterns, ensure that all
8312     // elements are the same constant.
8313     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8314       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8315                                                        dl, MVT::i32));
8316       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8317       if (Op.getValueType() != MVT::v16i8)
8318         return DAG.getBitcast(Op.getValueType(), NewBV);
8319       return NewBV;
8320     }
8321 
8322     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8323     // detect that constant splats like v8i16: 0xABAB are really just splats
8324     // of a 1-byte constant. In this case, we need to convert the node to a
8325     // splat of v16i8 and a bitcast.
8326     if (Op.getValueType() != MVT::v16i8)
8327       return DAG.getBitcast(Op.getValueType(),
8328                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8329 
8330     return Op;
8331   }
8332 
8333   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8334   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8335                     (32-SplatBitSize));
8336   if (SextVal >= -16 && SextVal <= 15)
8337     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8338 
8339   // Two instruction sequences.
8340 
8341   // If this value is in the range [-32,30] and is even, use:
8342   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8343   // If this value is in the range [17,31] and is odd, use:
8344   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8345   // If this value is in the range [-31,-17] and is odd, use:
8346   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8347   // Note the last two are three-instruction sequences.
8348   if (SextVal >= -32 && SextVal <= 31) {
8349     // To avoid having these optimizations undone by constant folding,
8350     // we convert to a pseudo that will be expanded later into one of
8351     // the above forms.
8352     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8353     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8354               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8355     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8356     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8357     if (VT == Op.getValueType())
8358       return RetVal;
8359     else
8360       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8361   }
8362 
8363   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8364   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8365   // for fneg/fabs.
8366   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8367     // Make -1 and vspltisw -1:
8368     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8369 
8370     // Make the VSLW intrinsic, computing 0x8000_0000.
8371     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8372                                    OnesV, DAG, dl);
8373 
8374     // xor by OnesV to invert it.
8375     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8376     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8377   }
8378 
8379   // Check to see if this is a wide variety of vsplti*, binop self cases.
8380   static const signed char SplatCsts[] = {
8381     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8382     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8383   };
8384 
8385   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8386     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8387     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8388     int i = SplatCsts[idx];
8389 
8390     // Figure out what shift amount will be used by altivec if shifted by i in
8391     // this splat size.
8392     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8393 
8394     // vsplti + shl self.
8395     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8396       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8397       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8398         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8399         Intrinsic::ppc_altivec_vslw
8400       };
8401       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8402       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8403     }
8404 
8405     // vsplti + srl self.
8406     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8407       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8408       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8409         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8410         Intrinsic::ppc_altivec_vsrw
8411       };
8412       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8413       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8414     }
8415 
8416     // vsplti + sra self.
8417     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8418       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8419       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8420         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8421         Intrinsic::ppc_altivec_vsraw
8422       };
8423       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8424       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8425     }
8426 
8427     // vsplti + rol self.
8428     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8429                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8430       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8431       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8432         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8433         Intrinsic::ppc_altivec_vrlw
8434       };
8435       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8436       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8437     }
8438 
8439     // t = vsplti c, result = vsldoi t, t, 1
8440     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8441       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8442       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8443       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8444     }
8445     // t = vsplti c, result = vsldoi t, t, 2
8446     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8447       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8448       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8449       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8450     }
8451     // t = vsplti c, result = vsldoi t, t, 3
8452     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8453       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8454       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8455       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8456     }
8457   }
8458 
8459   return SDValue();
8460 }
8461 
8462 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8463 /// the specified operations to build the shuffle.
8464 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8465                                       SDValue RHS, SelectionDAG &DAG,
8466                                       const SDLoc &dl) {
8467   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8468   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8469   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8470 
8471   enum {
8472     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8473     OP_VMRGHW,
8474     OP_VMRGLW,
8475     OP_VSPLTISW0,
8476     OP_VSPLTISW1,
8477     OP_VSPLTISW2,
8478     OP_VSPLTISW3,
8479     OP_VSLDOI4,
8480     OP_VSLDOI8,
8481     OP_VSLDOI12
8482   };
8483 
8484   if (OpNum == OP_COPY) {
8485     if (LHSID == (1*9+2)*9+3) return LHS;
8486     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8487     return RHS;
8488   }
8489 
8490   SDValue OpLHS, OpRHS;
8491   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8492   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8493 
8494   int ShufIdxs[16];
8495   switch (OpNum) {
8496   default: llvm_unreachable("Unknown i32 permute!");
8497   case OP_VMRGHW:
8498     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8499     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8500     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8501     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8502     break;
8503   case OP_VMRGLW:
8504     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8505     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8506     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8507     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8508     break;
8509   case OP_VSPLTISW0:
8510     for (unsigned i = 0; i != 16; ++i)
8511       ShufIdxs[i] = (i&3)+0;
8512     break;
8513   case OP_VSPLTISW1:
8514     for (unsigned i = 0; i != 16; ++i)
8515       ShufIdxs[i] = (i&3)+4;
8516     break;
8517   case OP_VSPLTISW2:
8518     for (unsigned i = 0; i != 16; ++i)
8519       ShufIdxs[i] = (i&3)+8;
8520     break;
8521   case OP_VSPLTISW3:
8522     for (unsigned i = 0; i != 16; ++i)
8523       ShufIdxs[i] = (i&3)+12;
8524     break;
8525   case OP_VSLDOI4:
8526     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8527   case OP_VSLDOI8:
8528     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8529   case OP_VSLDOI12:
8530     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8531   }
8532   EVT VT = OpLHS.getValueType();
8533   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8534   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8535   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8536   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8537 }
8538 
8539 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8540 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8541 /// SDValue.
8542 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8543                                            SelectionDAG &DAG) const {
8544   const unsigned BytesInVector = 16;
8545   bool IsLE = Subtarget.isLittleEndian();
8546   SDLoc dl(N);
8547   SDValue V1 = N->getOperand(0);
8548   SDValue V2 = N->getOperand(1);
8549   unsigned ShiftElts = 0, InsertAtByte = 0;
8550   bool Swap = false;
8551 
8552   // Shifts required to get the byte we want at element 7.
8553   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8554                                    0, 15, 14, 13, 12, 11, 10, 9};
8555   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8556                                 1, 2,  3,  4,  5,  6,  7,  8};
8557 
8558   ArrayRef<int> Mask = N->getMask();
8559   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8560 
8561   // For each mask element, find out if we're just inserting something
8562   // from V2 into V1 or vice versa.
8563   // Possible permutations inserting an element from V2 into V1:
8564   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8565   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8566   //   ...
8567   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8568   // Inserting from V1 into V2 will be similar, except mask range will be
8569   // [16,31].
8570 
8571   bool FoundCandidate = false;
8572   // If both vector operands for the shuffle are the same vector, the mask
8573   // will contain only elements from the first one and the second one will be
8574   // undef.
8575   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8576   // Go through the mask of half-words to find an element that's being moved
8577   // from one vector to the other.
8578   for (unsigned i = 0; i < BytesInVector; ++i) {
8579     unsigned CurrentElement = Mask[i];
8580     // If 2nd operand is undefined, we should only look for element 7 in the
8581     // Mask.
8582     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8583       continue;
8584 
8585     bool OtherElementsInOrder = true;
8586     // Examine the other elements in the Mask to see if they're in original
8587     // order.
8588     for (unsigned j = 0; j < BytesInVector; ++j) {
8589       if (j == i)
8590         continue;
8591       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8592       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8593       // in which we always assume we're always picking from the 1st operand.
8594       int MaskOffset =
8595           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8596       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8597         OtherElementsInOrder = false;
8598         break;
8599       }
8600     }
8601     // If other elements are in original order, we record the number of shifts
8602     // we need to get the element we want into element 7. Also record which byte
8603     // in the vector we should insert into.
8604     if (OtherElementsInOrder) {
8605       // If 2nd operand is undefined, we assume no shifts and no swapping.
8606       if (V2.isUndef()) {
8607         ShiftElts = 0;
8608         Swap = false;
8609       } else {
8610         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8611         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8612                          : BigEndianShifts[CurrentElement & 0xF];
8613         Swap = CurrentElement < BytesInVector;
8614       }
8615       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8616       FoundCandidate = true;
8617       break;
8618     }
8619   }
8620 
8621   if (!FoundCandidate)
8622     return SDValue();
8623 
8624   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8625   // optionally with VECSHL if shift is required.
8626   if (Swap)
8627     std::swap(V1, V2);
8628   if (V2.isUndef())
8629     V2 = V1;
8630   if (ShiftElts) {
8631     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8632                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8633     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8634                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8635   }
8636   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8637                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8638 }
8639 
8640 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8641 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8642 /// SDValue.
8643 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8644                                            SelectionDAG &DAG) const {
8645   const unsigned NumHalfWords = 8;
8646   const unsigned BytesInVector = NumHalfWords * 2;
8647   // Check that the shuffle is on half-words.
8648   if (!isNByteElemShuffleMask(N, 2, 1))
8649     return SDValue();
8650 
8651   bool IsLE = Subtarget.isLittleEndian();
8652   SDLoc dl(N);
8653   SDValue V1 = N->getOperand(0);
8654   SDValue V2 = N->getOperand(1);
8655   unsigned ShiftElts = 0, InsertAtByte = 0;
8656   bool Swap = false;
8657 
8658   // Shifts required to get the half-word we want at element 3.
8659   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8660   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8661 
8662   uint32_t Mask = 0;
8663   uint32_t OriginalOrderLow = 0x1234567;
8664   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8665   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8666   // 32-bit space, only need 4-bit nibbles per element.
8667   for (unsigned i = 0; i < NumHalfWords; ++i) {
8668     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8669     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8670   }
8671 
8672   // For each mask element, find out if we're just inserting something
8673   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8674   // from V2 into V1:
8675   //   X, 1, 2, 3, 4, 5, 6, 7
8676   //   0, X, 2, 3, 4, 5, 6, 7
8677   //   0, 1, X, 3, 4, 5, 6, 7
8678   //   0, 1, 2, X, 4, 5, 6, 7
8679   //   0, 1, 2, 3, X, 5, 6, 7
8680   //   0, 1, 2, 3, 4, X, 6, 7
8681   //   0, 1, 2, 3, 4, 5, X, 7
8682   //   0, 1, 2, 3, 4, 5, 6, X
8683   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8684 
8685   bool FoundCandidate = false;
8686   // Go through the mask of half-words to find an element that's being moved
8687   // from one vector to the other.
8688   for (unsigned i = 0; i < NumHalfWords; ++i) {
8689     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8690     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8691     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8692     uint32_t TargetOrder = 0x0;
8693 
8694     // If both vector operands for the shuffle are the same vector, the mask
8695     // will contain only elements from the first one and the second one will be
8696     // undef.
8697     if (V2.isUndef()) {
8698       ShiftElts = 0;
8699       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8700       TargetOrder = OriginalOrderLow;
8701       Swap = false;
8702       // Skip if not the correct element or mask of other elements don't equal
8703       // to our expected order.
8704       if (MaskOneElt == VINSERTHSrcElem &&
8705           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8706         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8707         FoundCandidate = true;
8708         break;
8709       }
8710     } else { // If both operands are defined.
8711       // Target order is [8,15] if the current mask is between [0,7].
8712       TargetOrder =
8713           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8714       // Skip if mask of other elements don't equal our expected order.
8715       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8716         // We only need the last 3 bits for the number of shifts.
8717         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8718                          : BigEndianShifts[MaskOneElt & 0x7];
8719         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8720         Swap = MaskOneElt < NumHalfWords;
8721         FoundCandidate = true;
8722         break;
8723       }
8724     }
8725   }
8726 
8727   if (!FoundCandidate)
8728     return SDValue();
8729 
8730   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8731   // optionally with VECSHL if shift is required.
8732   if (Swap)
8733     std::swap(V1, V2);
8734   if (V2.isUndef())
8735     V2 = V1;
8736   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8737   if (ShiftElts) {
8738     // Double ShiftElts because we're left shifting on v16i8 type.
8739     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8740                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8741     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8742     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8743                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8744     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8745   }
8746   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8747   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8748                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8749   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8750 }
8751 
8752 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8753 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8754 /// return the code it can be lowered into.  Worst case, it can always be
8755 /// lowered into a vperm.
8756 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8757                                                SelectionDAG &DAG) const {
8758   SDLoc dl(Op);
8759   SDValue V1 = Op.getOperand(0);
8760   SDValue V2 = Op.getOperand(1);
8761   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8762   EVT VT = Op.getValueType();
8763   bool isLittleEndian = Subtarget.isLittleEndian();
8764 
8765   unsigned ShiftElts, InsertAtByte;
8766   bool Swap = false;
8767   if (Subtarget.hasP9Vector() &&
8768       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8769                            isLittleEndian)) {
8770     if (Swap)
8771       std::swap(V1, V2);
8772     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8773     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8774     if (ShiftElts) {
8775       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8776                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8777       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8778                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8779       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8780     }
8781     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8782                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8783     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8784   }
8785 
8786   if (Subtarget.hasP9Altivec()) {
8787     SDValue NewISDNode;
8788     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8789       return NewISDNode;
8790 
8791     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8792       return NewISDNode;
8793   }
8794 
8795   if (Subtarget.hasVSX() &&
8796       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8797     if (Swap)
8798       std::swap(V1, V2);
8799     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8800     SDValue Conv2 =
8801         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8802 
8803     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8804                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8805     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8806   }
8807 
8808   if (Subtarget.hasVSX() &&
8809     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8810     if (Swap)
8811       std::swap(V1, V2);
8812     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8813     SDValue Conv2 =
8814         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8815 
8816     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8817                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8818     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8819   }
8820 
8821   if (Subtarget.hasP9Vector()) {
8822      if (PPC::isXXBRHShuffleMask(SVOp)) {
8823       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8824       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8825       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8826     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8827       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8828       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8829       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8830     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8831       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8832       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8833       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8834     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8835       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8836       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8837       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8838     }
8839   }
8840 
8841   if (Subtarget.hasVSX()) {
8842     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8843       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8844 
8845       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8846       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8847                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8848       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8849     }
8850 
8851     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8852     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8853       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8854       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8855       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8856     }
8857   }
8858 
8859   if (Subtarget.hasQPX()) {
8860     if (VT.getVectorNumElements() != 4)
8861       return SDValue();
8862 
8863     if (V2.isUndef()) V2 = V1;
8864 
8865     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8866     if (AlignIdx != -1) {
8867       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8868                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8869     } else if (SVOp->isSplat()) {
8870       int SplatIdx = SVOp->getSplatIndex();
8871       if (SplatIdx >= 4) {
8872         std::swap(V1, V2);
8873         SplatIdx -= 4;
8874       }
8875 
8876       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8877                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8878     }
8879 
8880     // Lower this into a qvgpci/qvfperm pair.
8881 
8882     // Compute the qvgpci literal
8883     unsigned idx = 0;
8884     for (unsigned i = 0; i < 4; ++i) {
8885       int m = SVOp->getMaskElt(i);
8886       unsigned mm = m >= 0 ? (unsigned) m : i;
8887       idx |= mm << (3-i)*3;
8888     }
8889 
8890     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8891                              DAG.getConstant(idx, dl, MVT::i32));
8892     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8893   }
8894 
8895   // Cases that are handled by instructions that take permute immediates
8896   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8897   // selected by the instruction selector.
8898   if (V2.isUndef()) {
8899     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8900         PPC::isSplatShuffleMask(SVOp, 2) ||
8901         PPC::isSplatShuffleMask(SVOp, 4) ||
8902         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8903         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8904         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8905         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8906         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8907         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8908         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8909         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8910         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8911         (Subtarget.hasP8Altivec() && (
8912          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8913          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8914          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8915       return Op;
8916     }
8917   }
8918 
8919   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8920   // and produce a fixed permutation.  If any of these match, do not lower to
8921   // VPERM.
8922   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8923   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8924       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8925       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8926       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8927       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8928       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8929       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8930       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8931       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8932       (Subtarget.hasP8Altivec() && (
8933        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8934        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8935        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8936     return Op;
8937 
8938   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8939   // perfect shuffle table to emit an optimal matching sequence.
8940   ArrayRef<int> PermMask = SVOp->getMask();
8941 
8942   unsigned PFIndexes[4];
8943   bool isFourElementShuffle = true;
8944   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8945     unsigned EltNo = 8;   // Start out undef.
8946     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8947       if (PermMask[i*4+j] < 0)
8948         continue;   // Undef, ignore it.
8949 
8950       unsigned ByteSource = PermMask[i*4+j];
8951       if ((ByteSource & 3) != j) {
8952         isFourElementShuffle = false;
8953         break;
8954       }
8955 
8956       if (EltNo == 8) {
8957         EltNo = ByteSource/4;
8958       } else if (EltNo != ByteSource/4) {
8959         isFourElementShuffle = false;
8960         break;
8961       }
8962     }
8963     PFIndexes[i] = EltNo;
8964   }
8965 
8966   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8967   // perfect shuffle vector to determine if it is cost effective to do this as
8968   // discrete instructions, or whether we should use a vperm.
8969   // For now, we skip this for little endian until such time as we have a
8970   // little-endian perfect shuffle table.
8971   if (isFourElementShuffle && !isLittleEndian) {
8972     // Compute the index in the perfect shuffle table.
8973     unsigned PFTableIndex =
8974       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8975 
8976     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8977     unsigned Cost  = (PFEntry >> 30);
8978 
8979     // Determining when to avoid vperm is tricky.  Many things affect the cost
8980     // of vperm, particularly how many times the perm mask needs to be computed.
8981     // For example, if the perm mask can be hoisted out of a loop or is already
8982     // used (perhaps because there are multiple permutes with the same shuffle
8983     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8984     // the loop requires an extra register.
8985     //
8986     // As a compromise, we only emit discrete instructions if the shuffle can be
8987     // generated in 3 or fewer operations.  When we have loop information
8988     // available, if this block is within a loop, we should avoid using vperm
8989     // for 3-operation perms and use a constant pool load instead.
8990     if (Cost < 3)
8991       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8992   }
8993 
8994   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8995   // vector that will get spilled to the constant pool.
8996   if (V2.isUndef()) V2 = V1;
8997 
8998   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8999   // that it is in input element units, not in bytes.  Convert now.
9000 
9001   // For little endian, the order of the input vectors is reversed, and
9002   // the permutation mask is complemented with respect to 31.  This is
9003   // necessary to produce proper semantics with the big-endian-biased vperm
9004   // instruction.
9005   EVT EltVT = V1.getValueType().getVectorElementType();
9006   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9007 
9008   SmallVector<SDValue, 16> ResultMask;
9009   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9010     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9011 
9012     for (unsigned j = 0; j != BytesPerElement; ++j)
9013       if (isLittleEndian)
9014         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9015                                              dl, MVT::i32));
9016       else
9017         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9018                                              MVT::i32));
9019   }
9020 
9021   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9022   if (isLittleEndian)
9023     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9024                        V2, V1, VPermMask);
9025   else
9026     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9027                        V1, V2, VPermMask);
9028 }
9029 
9030 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9031 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9032 /// information about the intrinsic.
9033 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9034                                  bool &isDot, const PPCSubtarget &Subtarget) {
9035   unsigned IntrinsicID =
9036       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9037   CompareOpc = -1;
9038   isDot = false;
9039   switch (IntrinsicID) {
9040   default:
9041     return false;
9042   // Comparison predicates.
9043   case Intrinsic::ppc_altivec_vcmpbfp_p:
9044     CompareOpc = 966;
9045     isDot = true;
9046     break;
9047   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9048     CompareOpc = 198;
9049     isDot = true;
9050     break;
9051   case Intrinsic::ppc_altivec_vcmpequb_p:
9052     CompareOpc = 6;
9053     isDot = true;
9054     break;
9055   case Intrinsic::ppc_altivec_vcmpequh_p:
9056     CompareOpc = 70;
9057     isDot = true;
9058     break;
9059   case Intrinsic::ppc_altivec_vcmpequw_p:
9060     CompareOpc = 134;
9061     isDot = true;
9062     break;
9063   case Intrinsic::ppc_altivec_vcmpequd_p:
9064     if (Subtarget.hasP8Altivec()) {
9065       CompareOpc = 199;
9066       isDot = true;
9067     } else
9068       return false;
9069     break;
9070   case Intrinsic::ppc_altivec_vcmpneb_p:
9071   case Intrinsic::ppc_altivec_vcmpneh_p:
9072   case Intrinsic::ppc_altivec_vcmpnew_p:
9073   case Intrinsic::ppc_altivec_vcmpnezb_p:
9074   case Intrinsic::ppc_altivec_vcmpnezh_p:
9075   case Intrinsic::ppc_altivec_vcmpnezw_p:
9076     if (Subtarget.hasP9Altivec()) {
9077       switch (IntrinsicID) {
9078       default:
9079         llvm_unreachable("Unknown comparison intrinsic.");
9080       case Intrinsic::ppc_altivec_vcmpneb_p:
9081         CompareOpc = 7;
9082         break;
9083       case Intrinsic::ppc_altivec_vcmpneh_p:
9084         CompareOpc = 71;
9085         break;
9086       case Intrinsic::ppc_altivec_vcmpnew_p:
9087         CompareOpc = 135;
9088         break;
9089       case Intrinsic::ppc_altivec_vcmpnezb_p:
9090         CompareOpc = 263;
9091         break;
9092       case Intrinsic::ppc_altivec_vcmpnezh_p:
9093         CompareOpc = 327;
9094         break;
9095       case Intrinsic::ppc_altivec_vcmpnezw_p:
9096         CompareOpc = 391;
9097         break;
9098       }
9099       isDot = true;
9100     } else
9101       return false;
9102     break;
9103   case Intrinsic::ppc_altivec_vcmpgefp_p:
9104     CompareOpc = 454;
9105     isDot = true;
9106     break;
9107   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9108     CompareOpc = 710;
9109     isDot = true;
9110     break;
9111   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9112     CompareOpc = 774;
9113     isDot = true;
9114     break;
9115   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9116     CompareOpc = 838;
9117     isDot = true;
9118     break;
9119   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9120     CompareOpc = 902;
9121     isDot = true;
9122     break;
9123   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9124     if (Subtarget.hasP8Altivec()) {
9125       CompareOpc = 967;
9126       isDot = true;
9127     } else
9128       return false;
9129     break;
9130   case Intrinsic::ppc_altivec_vcmpgtub_p:
9131     CompareOpc = 518;
9132     isDot = true;
9133     break;
9134   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9135     CompareOpc = 582;
9136     isDot = true;
9137     break;
9138   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9139     CompareOpc = 646;
9140     isDot = true;
9141     break;
9142   case Intrinsic::ppc_altivec_vcmpgtud_p:
9143     if (Subtarget.hasP8Altivec()) {
9144       CompareOpc = 711;
9145       isDot = true;
9146     } else
9147       return false;
9148     break;
9149 
9150   // VSX predicate comparisons use the same infrastructure
9151   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9152   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9153   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9154   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9155   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9156   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9157     if (Subtarget.hasVSX()) {
9158       switch (IntrinsicID) {
9159       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9160         CompareOpc = 99;
9161         break;
9162       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9163         CompareOpc = 115;
9164         break;
9165       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9166         CompareOpc = 107;
9167         break;
9168       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9169         CompareOpc = 67;
9170         break;
9171       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9172         CompareOpc = 83;
9173         break;
9174       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9175         CompareOpc = 75;
9176         break;
9177       }
9178       isDot = true;
9179     } else
9180       return false;
9181     break;
9182 
9183   // Normal Comparisons.
9184   case Intrinsic::ppc_altivec_vcmpbfp:
9185     CompareOpc = 966;
9186     break;
9187   case Intrinsic::ppc_altivec_vcmpeqfp:
9188     CompareOpc = 198;
9189     break;
9190   case Intrinsic::ppc_altivec_vcmpequb:
9191     CompareOpc = 6;
9192     break;
9193   case Intrinsic::ppc_altivec_vcmpequh:
9194     CompareOpc = 70;
9195     break;
9196   case Intrinsic::ppc_altivec_vcmpequw:
9197     CompareOpc = 134;
9198     break;
9199   case Intrinsic::ppc_altivec_vcmpequd:
9200     if (Subtarget.hasP8Altivec())
9201       CompareOpc = 199;
9202     else
9203       return false;
9204     break;
9205   case Intrinsic::ppc_altivec_vcmpneb:
9206   case Intrinsic::ppc_altivec_vcmpneh:
9207   case Intrinsic::ppc_altivec_vcmpnew:
9208   case Intrinsic::ppc_altivec_vcmpnezb:
9209   case Intrinsic::ppc_altivec_vcmpnezh:
9210   case Intrinsic::ppc_altivec_vcmpnezw:
9211     if (Subtarget.hasP9Altivec())
9212       switch (IntrinsicID) {
9213       default:
9214         llvm_unreachable("Unknown comparison intrinsic.");
9215       case Intrinsic::ppc_altivec_vcmpneb:
9216         CompareOpc = 7;
9217         break;
9218       case Intrinsic::ppc_altivec_vcmpneh:
9219         CompareOpc = 71;
9220         break;
9221       case Intrinsic::ppc_altivec_vcmpnew:
9222         CompareOpc = 135;
9223         break;
9224       case Intrinsic::ppc_altivec_vcmpnezb:
9225         CompareOpc = 263;
9226         break;
9227       case Intrinsic::ppc_altivec_vcmpnezh:
9228         CompareOpc = 327;
9229         break;
9230       case Intrinsic::ppc_altivec_vcmpnezw:
9231         CompareOpc = 391;
9232         break;
9233       }
9234     else
9235       return false;
9236     break;
9237   case Intrinsic::ppc_altivec_vcmpgefp:
9238     CompareOpc = 454;
9239     break;
9240   case Intrinsic::ppc_altivec_vcmpgtfp:
9241     CompareOpc = 710;
9242     break;
9243   case Intrinsic::ppc_altivec_vcmpgtsb:
9244     CompareOpc = 774;
9245     break;
9246   case Intrinsic::ppc_altivec_vcmpgtsh:
9247     CompareOpc = 838;
9248     break;
9249   case Intrinsic::ppc_altivec_vcmpgtsw:
9250     CompareOpc = 902;
9251     break;
9252   case Intrinsic::ppc_altivec_vcmpgtsd:
9253     if (Subtarget.hasP8Altivec())
9254       CompareOpc = 967;
9255     else
9256       return false;
9257     break;
9258   case Intrinsic::ppc_altivec_vcmpgtub:
9259     CompareOpc = 518;
9260     break;
9261   case Intrinsic::ppc_altivec_vcmpgtuh:
9262     CompareOpc = 582;
9263     break;
9264   case Intrinsic::ppc_altivec_vcmpgtuw:
9265     CompareOpc = 646;
9266     break;
9267   case Intrinsic::ppc_altivec_vcmpgtud:
9268     if (Subtarget.hasP8Altivec())
9269       CompareOpc = 711;
9270     else
9271       return false;
9272     break;
9273   }
9274   return true;
9275 }
9276 
9277 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9278 /// lower, do it, otherwise return null.
9279 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9280                                                    SelectionDAG &DAG) const {
9281   unsigned IntrinsicID =
9282     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9283 
9284   SDLoc dl(Op);
9285 
9286   if (IntrinsicID == Intrinsic::thread_pointer) {
9287     // Reads the thread pointer register, used for __builtin_thread_pointer.
9288     if (Subtarget.isPPC64())
9289       return DAG.getRegister(PPC::X13, MVT::i64);
9290     return DAG.getRegister(PPC::R2, MVT::i32);
9291   }
9292 
9293   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9294   // opcode number of the comparison.
9295   int CompareOpc;
9296   bool isDot;
9297   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9298     return SDValue();    // Don't custom lower most intrinsics.
9299 
9300   // If this is a non-dot comparison, make the VCMP node and we are done.
9301   if (!isDot) {
9302     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9303                               Op.getOperand(1), Op.getOperand(2),
9304                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9305     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9306   }
9307 
9308   // Create the PPCISD altivec 'dot' comparison node.
9309   SDValue Ops[] = {
9310     Op.getOperand(2),  // LHS
9311     Op.getOperand(3),  // RHS
9312     DAG.getConstant(CompareOpc, dl, MVT::i32)
9313   };
9314   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9315   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9316 
9317   // Now that we have the comparison, emit a copy from the CR to a GPR.
9318   // This is flagged to the above dot comparison.
9319   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9320                                 DAG.getRegister(PPC::CR6, MVT::i32),
9321                                 CompNode.getValue(1));
9322 
9323   // Unpack the result based on how the target uses it.
9324   unsigned BitNo;   // Bit # of CR6.
9325   bool InvertBit;   // Invert result?
9326   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9327   default:  // Can't happen, don't crash on invalid number though.
9328   case 0:   // Return the value of the EQ bit of CR6.
9329     BitNo = 0; InvertBit = false;
9330     break;
9331   case 1:   // Return the inverted value of the EQ bit of CR6.
9332     BitNo = 0; InvertBit = true;
9333     break;
9334   case 2:   // Return the value of the LT bit of CR6.
9335     BitNo = 2; InvertBit = false;
9336     break;
9337   case 3:   // Return the inverted value of the LT bit of CR6.
9338     BitNo = 2; InvertBit = true;
9339     break;
9340   }
9341 
9342   // Shift the bit into the low position.
9343   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9344                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9345   // Isolate the bit.
9346   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9347                       DAG.getConstant(1, dl, MVT::i32));
9348 
9349   // If we are supposed to, toggle the bit.
9350   if (InvertBit)
9351     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9352                         DAG.getConstant(1, dl, MVT::i32));
9353   return Flags;
9354 }
9355 
9356 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9357                                                SelectionDAG &DAG) const {
9358   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9359   // the beginning of the argument list.
9360   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9361   SDLoc DL(Op);
9362   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9363   case Intrinsic::ppc_cfence: {
9364     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9365     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9366     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9367                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9368                                                   Op.getOperand(ArgStart + 1)),
9369                                       Op.getOperand(0)),
9370                    0);
9371   }
9372   default:
9373     break;
9374   }
9375   return SDValue();
9376 }
9377 
9378 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9379   // Check for a DIV with the same operands as this REM.
9380   for (auto UI : Op.getOperand(1)->uses()) {
9381     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9382         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9383       if (UI->getOperand(0) == Op.getOperand(0) &&
9384           UI->getOperand(1) == Op.getOperand(1))
9385         return SDValue();
9386   }
9387   return Op;
9388 }
9389 
9390 // Lower scalar BSWAP64 to xxbrd.
9391 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9392   SDLoc dl(Op);
9393   // MTVSRDD
9394   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9395                    Op.getOperand(0));
9396   // XXBRD
9397   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9398   // MFVSRD
9399   int VectorIndex = 0;
9400   if (Subtarget.isLittleEndian())
9401     VectorIndex = 1;
9402   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9403                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9404   return Op;
9405 }
9406 
9407 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9408 // compared to a value that is atomically loaded (atomic loads zero-extend).
9409 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9410                                                 SelectionDAG &DAG) const {
9411   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9412          "Expecting an atomic compare-and-swap here.");
9413   SDLoc dl(Op);
9414   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9415   EVT MemVT = AtomicNode->getMemoryVT();
9416   if (MemVT.getSizeInBits() >= 32)
9417     return Op;
9418 
9419   SDValue CmpOp = Op.getOperand(2);
9420   // If this is already correctly zero-extended, leave it alone.
9421   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9422   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9423     return Op;
9424 
9425   // Clear the high bits of the compare operand.
9426   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9427   SDValue NewCmpOp =
9428     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9429                 DAG.getConstant(MaskVal, dl, MVT::i32));
9430 
9431   // Replace the existing compare operand with the properly zero-extended one.
9432   SmallVector<SDValue, 4> Ops;
9433   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9434     Ops.push_back(AtomicNode->getOperand(i));
9435   Ops[2] = NewCmpOp;
9436   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9437   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9438   auto NodeTy =
9439     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9440   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9441 }
9442 
9443 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9444                                                  SelectionDAG &DAG) const {
9445   SDLoc dl(Op);
9446   // Create a stack slot that is 16-byte aligned.
9447   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9448   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9449   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9450   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9451 
9452   // Store the input value into Value#0 of the stack slot.
9453   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9454                                MachinePointerInfo());
9455   // Load it out.
9456   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9457 }
9458 
9459 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9460                                                   SelectionDAG &DAG) const {
9461   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9462          "Should only be called for ISD::INSERT_VECTOR_ELT");
9463 
9464   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9465   // We have legal lowering for constant indices but not for variable ones.
9466   if (!C)
9467     return SDValue();
9468 
9469   EVT VT = Op.getValueType();
9470   SDLoc dl(Op);
9471   SDValue V1 = Op.getOperand(0);
9472   SDValue V2 = Op.getOperand(1);
9473   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9474   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9475     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9476     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9477     unsigned InsertAtElement = C->getZExtValue();
9478     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9479     if (Subtarget.isLittleEndian()) {
9480       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9481     }
9482     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9483                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9484   }
9485   return Op;
9486 }
9487 
9488 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9489                                                    SelectionDAG &DAG) const {
9490   SDLoc dl(Op);
9491   SDNode *N = Op.getNode();
9492 
9493   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9494          "Unknown extract_vector_elt type");
9495 
9496   SDValue Value = N->getOperand(0);
9497 
9498   // The first part of this is like the store lowering except that we don't
9499   // need to track the chain.
9500 
9501   // The values are now known to be -1 (false) or 1 (true). To convert this
9502   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9503   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9504   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9505 
9506   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9507   // understand how to form the extending load.
9508   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9509 
9510   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9511 
9512   // Now convert to an integer and store.
9513   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9514     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9515     Value);
9516 
9517   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9518   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9519   MachinePointerInfo PtrInfo =
9520       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9521   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9522   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9523 
9524   SDValue StoreChain = DAG.getEntryNode();
9525   SDValue Ops[] = {StoreChain,
9526                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9527                    Value, FIdx};
9528   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9529 
9530   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9531     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9532 
9533   // Extract the value requested.
9534   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9535   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9536   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9537 
9538   SDValue IntVal =
9539       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9540 
9541   if (!Subtarget.useCRBits())
9542     return IntVal;
9543 
9544   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9545 }
9546 
9547 /// Lowering for QPX v4i1 loads
9548 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9549                                            SelectionDAG &DAG) const {
9550   SDLoc dl(Op);
9551   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9552   SDValue LoadChain = LN->getChain();
9553   SDValue BasePtr = LN->getBasePtr();
9554 
9555   if (Op.getValueType() == MVT::v4f64 ||
9556       Op.getValueType() == MVT::v4f32) {
9557     EVT MemVT = LN->getMemoryVT();
9558     unsigned Alignment = LN->getAlignment();
9559 
9560     // If this load is properly aligned, then it is legal.
9561     if (Alignment >= MemVT.getStoreSize())
9562       return Op;
9563 
9564     EVT ScalarVT = Op.getValueType().getScalarType(),
9565         ScalarMemVT = MemVT.getScalarType();
9566     unsigned Stride = ScalarMemVT.getStoreSize();
9567 
9568     SDValue Vals[4], LoadChains[4];
9569     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9570       SDValue Load;
9571       if (ScalarVT != ScalarMemVT)
9572         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9573                               BasePtr,
9574                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9575                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9576                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9577       else
9578         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9579                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9580                            MinAlign(Alignment, Idx * Stride),
9581                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9582 
9583       if (Idx == 0 && LN->isIndexed()) {
9584         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9585                "Unknown addressing mode on vector load");
9586         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9587                                   LN->getAddressingMode());
9588       }
9589 
9590       Vals[Idx] = Load;
9591       LoadChains[Idx] = Load.getValue(1);
9592 
9593       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9594                             DAG.getConstant(Stride, dl,
9595                                             BasePtr.getValueType()));
9596     }
9597 
9598     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9599     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9600 
9601     if (LN->isIndexed()) {
9602       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9603       return DAG.getMergeValues(RetOps, dl);
9604     }
9605 
9606     SDValue RetOps[] = { Value, TF };
9607     return DAG.getMergeValues(RetOps, dl);
9608   }
9609 
9610   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9611   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9612 
9613   // To lower v4i1 from a byte array, we load the byte elements of the
9614   // vector and then reuse the BUILD_VECTOR logic.
9615 
9616   SDValue VectElmts[4], VectElmtChains[4];
9617   for (unsigned i = 0; i < 4; ++i) {
9618     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9619     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9620 
9621     VectElmts[i] = DAG.getExtLoad(
9622         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9623         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9624         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9625     VectElmtChains[i] = VectElmts[i].getValue(1);
9626   }
9627 
9628   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9629   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9630 
9631   SDValue RVals[] = { Value, LoadChain };
9632   return DAG.getMergeValues(RVals, dl);
9633 }
9634 
9635 /// Lowering for QPX v4i1 stores
9636 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9637                                             SelectionDAG &DAG) const {
9638   SDLoc dl(Op);
9639   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9640   SDValue StoreChain = SN->getChain();
9641   SDValue BasePtr = SN->getBasePtr();
9642   SDValue Value = SN->getValue();
9643 
9644   if (Value.getValueType() == MVT::v4f64 ||
9645       Value.getValueType() == MVT::v4f32) {
9646     EVT MemVT = SN->getMemoryVT();
9647     unsigned Alignment = SN->getAlignment();
9648 
9649     // If this store is properly aligned, then it is legal.
9650     if (Alignment >= MemVT.getStoreSize())
9651       return Op;
9652 
9653     EVT ScalarVT = Value.getValueType().getScalarType(),
9654         ScalarMemVT = MemVT.getScalarType();
9655     unsigned Stride = ScalarMemVT.getStoreSize();
9656 
9657     SDValue Stores[4];
9658     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9659       SDValue Ex = DAG.getNode(
9660           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9661           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9662       SDValue Store;
9663       if (ScalarVT != ScalarMemVT)
9664         Store =
9665             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9666                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9667                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9668                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9669       else
9670         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9671                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9672                              MinAlign(Alignment, Idx * Stride),
9673                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9674 
9675       if (Idx == 0 && SN->isIndexed()) {
9676         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9677                "Unknown addressing mode on vector store");
9678         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9679                                     SN->getAddressingMode());
9680       }
9681 
9682       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9683                             DAG.getConstant(Stride, dl,
9684                                             BasePtr.getValueType()));
9685       Stores[Idx] = Store;
9686     }
9687 
9688     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9689 
9690     if (SN->isIndexed()) {
9691       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9692       return DAG.getMergeValues(RetOps, dl);
9693     }
9694 
9695     return TF;
9696   }
9697 
9698   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9699   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9700 
9701   // The values are now known to be -1 (false) or 1 (true). To convert this
9702   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9703   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9704   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9705 
9706   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9707   // understand how to form the extending load.
9708   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9709 
9710   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9711 
9712   // Now convert to an integer and store.
9713   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9714     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9715     Value);
9716 
9717   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9718   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9719   MachinePointerInfo PtrInfo =
9720       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9721   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9722   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9723 
9724   SDValue Ops[] = {StoreChain,
9725                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9726                    Value, FIdx};
9727   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9728 
9729   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9730     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9731 
9732   // Move data into the byte array.
9733   SDValue Loads[4], LoadChains[4];
9734   for (unsigned i = 0; i < 4; ++i) {
9735     unsigned Offset = 4*i;
9736     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9737     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9738 
9739     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9740                            PtrInfo.getWithOffset(Offset));
9741     LoadChains[i] = Loads[i].getValue(1);
9742   }
9743 
9744   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9745 
9746   SDValue Stores[4];
9747   for (unsigned i = 0; i < 4; ++i) {
9748     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9749     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9750 
9751     Stores[i] = DAG.getTruncStore(
9752         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9753         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9754         SN->getAAInfo());
9755   }
9756 
9757   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9758 
9759   return StoreChain;
9760 }
9761 
9762 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9763   SDLoc dl(Op);
9764   if (Op.getValueType() == MVT::v4i32) {
9765     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9766 
9767     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9768     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9769 
9770     SDValue RHSSwap =   // = vrlw RHS, 16
9771       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9772 
9773     // Shrinkify inputs to v8i16.
9774     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9775     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9776     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9777 
9778     // Low parts multiplied together, generating 32-bit results (we ignore the
9779     // top parts).
9780     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9781                                         LHS, RHS, DAG, dl, MVT::v4i32);
9782 
9783     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9784                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9785     // Shift the high parts up 16 bits.
9786     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9787                               Neg16, DAG, dl);
9788     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9789   } else if (Op.getValueType() == MVT::v8i16) {
9790     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9791 
9792     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9793 
9794     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9795                             LHS, RHS, Zero, DAG, dl);
9796   } else if (Op.getValueType() == MVT::v16i8) {
9797     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9798     bool isLittleEndian = Subtarget.isLittleEndian();
9799 
9800     // Multiply the even 8-bit parts, producing 16-bit sums.
9801     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9802                                            LHS, RHS, DAG, dl, MVT::v8i16);
9803     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9804 
9805     // Multiply the odd 8-bit parts, producing 16-bit sums.
9806     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9807                                           LHS, RHS, DAG, dl, MVT::v8i16);
9808     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9809 
9810     // Merge the results together.  Because vmuleub and vmuloub are
9811     // instructions with a big-endian bias, we must reverse the
9812     // element numbering and reverse the meaning of "odd" and "even"
9813     // when generating little endian code.
9814     int Ops[16];
9815     for (unsigned i = 0; i != 8; ++i) {
9816       if (isLittleEndian) {
9817         Ops[i*2  ] = 2*i;
9818         Ops[i*2+1] = 2*i+16;
9819       } else {
9820         Ops[i*2  ] = 2*i+1;
9821         Ops[i*2+1] = 2*i+1+16;
9822       }
9823     }
9824     if (isLittleEndian)
9825       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9826     else
9827       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9828   } else {
9829     llvm_unreachable("Unknown mul to lower!");
9830   }
9831 }
9832 
9833 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9834 
9835   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9836 
9837   EVT VT = Op.getValueType();
9838   assert(VT.isVector() &&
9839          "Only set vector abs as custom, scalar abs shouldn't reach here!");
9840   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9841           VT == MVT::v16i8) &&
9842          "Unexpected vector element type!");
9843   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9844          "Current subtarget doesn't support smax v2i64!");
9845 
9846   // For vector abs, it can be lowered to:
9847   // abs x
9848   // ==>
9849   // y = -x
9850   // smax(x, y)
9851 
9852   SDLoc dl(Op);
9853   SDValue X = Op.getOperand(0);
9854   SDValue Zero = DAG.getConstant(0, dl, VT);
9855   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9856 
9857   // SMAX patch https://reviews.llvm.org/D47332
9858   // hasn't landed yet, so use intrinsic first here.
9859   // TODO: Should use SMAX directly once SMAX patch landed
9860   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9861   if (VT == MVT::v2i64)
9862     BifID = Intrinsic::ppc_altivec_vmaxsd;
9863   else if (VT == MVT::v8i16)
9864     BifID = Intrinsic::ppc_altivec_vmaxsh;
9865   else if (VT == MVT::v16i8)
9866     BifID = Intrinsic::ppc_altivec_vmaxsb;
9867 
9868   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9869 }
9870 
9871 // Custom lowering for fpext vf32 to v2f64
9872 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
9873 
9874   assert(Op.getOpcode() == ISD::FP_EXTEND &&
9875          "Should only be called for ISD::FP_EXTEND");
9876 
9877   // We only want to custom lower an extend from v2f32 to v2f64.
9878   if (Op.getValueType() != MVT::v2f64 ||
9879       Op.getOperand(0).getValueType() != MVT::v2f32)
9880     return SDValue();
9881 
9882   SDLoc dl(Op);
9883   SDValue Op0 = Op.getOperand(0);
9884 
9885   switch (Op0.getOpcode()) {
9886   default:
9887     return SDValue();
9888   case ISD::FADD:
9889   case ISD::FMUL:
9890   case ISD::FSUB: {
9891     SDValue NewLoad[2];
9892     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
9893       // Ensure both input are loads.
9894       SDValue LdOp = Op0.getOperand(i);
9895       if (LdOp.getOpcode() != ISD::LOAD)
9896         return SDValue();
9897       // Generate new load node.
9898       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
9899       SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() };
9900       NewLoad[i] =
9901         DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl,
9902                                 DAG.getVTList(MVT::v4f32, MVT::Other),
9903                                 LoadOps, LD->getMemoryVT(),
9904                                 LD->getMemOperand());
9905     }
9906     SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32,
9907                               NewLoad[0], NewLoad[1],
9908                               Op0.getNode()->getFlags());
9909     return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewOp);
9910   }
9911   case ISD::LOAD: {
9912     LoadSDNode *LD = cast<LoadSDNode>(Op0);
9913     SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() };
9914     SDValue NewLd =
9915       DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl,
9916                               DAG.getVTList(MVT::v4f32, MVT::Other),
9917                               LoadOps, LD->getMemoryVT(), LD->getMemOperand());
9918     return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewLd);
9919   }
9920   }
9921   llvm_unreachable("ERROR:Should return for all cases within swtich.");
9922 }
9923 
9924 /// LowerOperation - Provide custom lowering hooks for some operations.
9925 ///
9926 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9927   switch (Op.getOpcode()) {
9928   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9929   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9930   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9931   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9932   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9933   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9934   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9935   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9936   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9937 
9938   // Variable argument lowering.
9939   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9940   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9941   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9942 
9943   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9944   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9945   case ISD::GET_DYNAMIC_AREA_OFFSET:
9946     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9947 
9948   // Exception handling lowering.
9949   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9950   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9951   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9952 
9953   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9954   case ISD::STORE:              return LowerSTORE(Op, DAG);
9955   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9956   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9957   case ISD::FP_TO_UINT:
9958   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9959   case ISD::UINT_TO_FP:
9960   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9961   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9962 
9963   // Lower 64-bit shifts.
9964   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9965   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9966   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9967 
9968   // Vector-related lowering.
9969   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9970   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9971   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9972   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9973   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9974   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9975   case ISD::MUL:                return LowerMUL(Op, DAG);
9976   case ISD::ABS:                return LowerABS(Op, DAG);
9977   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
9978 
9979   // For counter-based loop handling.
9980   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9981 
9982   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9983 
9984   // Frame & Return address.
9985   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9986   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9987 
9988   case ISD::INTRINSIC_VOID:
9989     return LowerINTRINSIC_VOID(Op, DAG);
9990   case ISD::SREM:
9991   case ISD::UREM:
9992     return LowerREM(Op, DAG);
9993   case ISD::BSWAP:
9994     return LowerBSWAP(Op, DAG);
9995   case ISD::ATOMIC_CMP_SWAP:
9996     return LowerATOMIC_CMP_SWAP(Op, DAG);
9997   }
9998 }
9999 
10000 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10001                                            SmallVectorImpl<SDValue>&Results,
10002                                            SelectionDAG &DAG) const {
10003   SDLoc dl(N);
10004   switch (N->getOpcode()) {
10005   default:
10006     llvm_unreachable("Do not know how to custom type legalize this operation!");
10007   case ISD::READCYCLECOUNTER: {
10008     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10009     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10010 
10011     Results.push_back(RTB);
10012     Results.push_back(RTB.getValue(1));
10013     Results.push_back(RTB.getValue(2));
10014     break;
10015   }
10016   case ISD::INTRINSIC_W_CHAIN: {
10017     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10018         Intrinsic::loop_decrement)
10019       break;
10020 
10021     assert(N->getValueType(0) == MVT::i1 &&
10022            "Unexpected result type for CTR decrement intrinsic");
10023     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10024                                  N->getValueType(0));
10025     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10026     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10027                                  N->getOperand(1));
10028 
10029     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10030     Results.push_back(NewInt.getValue(1));
10031     break;
10032   }
10033   case ISD::VAARG: {
10034     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10035       return;
10036 
10037     EVT VT = N->getValueType(0);
10038 
10039     if (VT == MVT::i64) {
10040       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10041 
10042       Results.push_back(NewNode);
10043       Results.push_back(NewNode.getValue(1));
10044     }
10045     return;
10046   }
10047   case ISD::FP_TO_SINT:
10048   case ISD::FP_TO_UINT:
10049     // LowerFP_TO_INT() can only handle f32 and f64.
10050     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10051       return;
10052     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10053     return;
10054   case ISD::TRUNCATE: {
10055     EVT TrgVT = N->getValueType(0);
10056     if (TrgVT.isVector() &&
10057         isOperationCustom(N->getOpcode(), TrgVT) &&
10058         N->getOperand(0).getValueType().getSizeInBits() <= 128)
10059       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10060     return;
10061   }
10062   case ISD::BITCAST:
10063     // Don't handle bitcast here.
10064     return;
10065   }
10066 }
10067 
10068 //===----------------------------------------------------------------------===//
10069 //  Other Lowering Code
10070 //===----------------------------------------------------------------------===//
10071 
10072 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10073   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10074   Function *Func = Intrinsic::getDeclaration(M, Id);
10075   return Builder.CreateCall(Func, {});
10076 }
10077 
10078 // The mappings for emitLeading/TrailingFence is taken from
10079 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10080 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10081                                                  Instruction *Inst,
10082                                                  AtomicOrdering Ord) const {
10083   if (Ord == AtomicOrdering::SequentiallyConsistent)
10084     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10085   if (isReleaseOrStronger(Ord))
10086     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10087   return nullptr;
10088 }
10089 
10090 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10091                                                   Instruction *Inst,
10092                                                   AtomicOrdering Ord) const {
10093   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10094     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10095     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10096     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10097     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10098       return Builder.CreateCall(
10099           Intrinsic::getDeclaration(
10100               Builder.GetInsertBlock()->getParent()->getParent(),
10101               Intrinsic::ppc_cfence, {Inst->getType()}),
10102           {Inst});
10103     // FIXME: Can use isync for rmw operation.
10104     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10105   }
10106   return nullptr;
10107 }
10108 
10109 MachineBasicBlock *
10110 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10111                                     unsigned AtomicSize,
10112                                     unsigned BinOpcode,
10113                                     unsigned CmpOpcode,
10114                                     unsigned CmpPred) const {
10115   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10116   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10117 
10118   auto LoadMnemonic = PPC::LDARX;
10119   auto StoreMnemonic = PPC::STDCX;
10120   switch (AtomicSize) {
10121   default:
10122     llvm_unreachable("Unexpected size of atomic entity");
10123   case 1:
10124     LoadMnemonic = PPC::LBARX;
10125     StoreMnemonic = PPC::STBCX;
10126     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10127     break;
10128   case 2:
10129     LoadMnemonic = PPC::LHARX;
10130     StoreMnemonic = PPC::STHCX;
10131     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10132     break;
10133   case 4:
10134     LoadMnemonic = PPC::LWARX;
10135     StoreMnemonic = PPC::STWCX;
10136     break;
10137   case 8:
10138     LoadMnemonic = PPC::LDARX;
10139     StoreMnemonic = PPC::STDCX;
10140     break;
10141   }
10142 
10143   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10144   MachineFunction *F = BB->getParent();
10145   MachineFunction::iterator It = ++BB->getIterator();
10146 
10147   Register dest = MI.getOperand(0).getReg();
10148   Register ptrA = MI.getOperand(1).getReg();
10149   Register ptrB = MI.getOperand(2).getReg();
10150   Register incr = MI.getOperand(3).getReg();
10151   DebugLoc dl = MI.getDebugLoc();
10152 
10153   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10154   MachineBasicBlock *loop2MBB =
10155     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10156   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10157   F->insert(It, loopMBB);
10158   if (CmpOpcode)
10159     F->insert(It, loop2MBB);
10160   F->insert(It, exitMBB);
10161   exitMBB->splice(exitMBB->begin(), BB,
10162                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10163   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10164 
10165   MachineRegisterInfo &RegInfo = F->getRegInfo();
10166   Register TmpReg = (!BinOpcode) ? incr :
10167     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10168                                            : &PPC::GPRCRegClass);
10169 
10170   //  thisMBB:
10171   //   ...
10172   //   fallthrough --> loopMBB
10173   BB->addSuccessor(loopMBB);
10174 
10175   //  loopMBB:
10176   //   l[wd]arx dest, ptr
10177   //   add r0, dest, incr
10178   //   st[wd]cx. r0, ptr
10179   //   bne- loopMBB
10180   //   fallthrough --> exitMBB
10181 
10182   // For max/min...
10183   //  loopMBB:
10184   //   l[wd]arx dest, ptr
10185   //   cmpl?[wd] incr, dest
10186   //   bgt exitMBB
10187   //  loop2MBB:
10188   //   st[wd]cx. dest, ptr
10189   //   bne- loopMBB
10190   //   fallthrough --> exitMBB
10191 
10192   BB = loopMBB;
10193   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10194     .addReg(ptrA).addReg(ptrB);
10195   if (BinOpcode)
10196     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10197   if (CmpOpcode) {
10198     // Signed comparisons of byte or halfword values must be sign-extended.
10199     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10200       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10201       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10202               ExtReg).addReg(dest);
10203       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10204         .addReg(incr).addReg(ExtReg);
10205     } else
10206       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10207         .addReg(incr).addReg(dest);
10208 
10209     BuildMI(BB, dl, TII->get(PPC::BCC))
10210       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10211     BB->addSuccessor(loop2MBB);
10212     BB->addSuccessor(exitMBB);
10213     BB = loop2MBB;
10214   }
10215   BuildMI(BB, dl, TII->get(StoreMnemonic))
10216     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10217   BuildMI(BB, dl, TII->get(PPC::BCC))
10218     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10219   BB->addSuccessor(loopMBB);
10220   BB->addSuccessor(exitMBB);
10221 
10222   //  exitMBB:
10223   //   ...
10224   BB = exitMBB;
10225   return BB;
10226 }
10227 
10228 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10229     MachineInstr &MI, MachineBasicBlock *BB,
10230     bool is8bit, // operation
10231     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10232   // If we support part-word atomic mnemonics, just use them
10233   if (Subtarget.hasPartwordAtomics())
10234     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10235                             CmpPred);
10236 
10237   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10238   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10239   // In 64 bit mode we have to use 64 bits for addresses, even though the
10240   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10241   // registers without caring whether they're 32 or 64, but here we're
10242   // doing actual arithmetic on the addresses.
10243   bool is64bit = Subtarget.isPPC64();
10244   bool isLittleEndian = Subtarget.isLittleEndian();
10245   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10246 
10247   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10248   MachineFunction *F = BB->getParent();
10249   MachineFunction::iterator It = ++BB->getIterator();
10250 
10251   unsigned dest = MI.getOperand(0).getReg();
10252   unsigned ptrA = MI.getOperand(1).getReg();
10253   unsigned ptrB = MI.getOperand(2).getReg();
10254   unsigned incr = MI.getOperand(3).getReg();
10255   DebugLoc dl = MI.getDebugLoc();
10256 
10257   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10258   MachineBasicBlock *loop2MBB =
10259       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10260   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10261   F->insert(It, loopMBB);
10262   if (CmpOpcode)
10263     F->insert(It, loop2MBB);
10264   F->insert(It, exitMBB);
10265   exitMBB->splice(exitMBB->begin(), BB,
10266                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10267   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10268 
10269   MachineRegisterInfo &RegInfo = F->getRegInfo();
10270   const TargetRegisterClass *RC =
10271       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10272   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10273 
10274   Register PtrReg = RegInfo.createVirtualRegister(RC);
10275   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10276   Register ShiftReg =
10277       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10278   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10279   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10280   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10281   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10282   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10283   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10284   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10285   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10286   Register Ptr1Reg;
10287   Register TmpReg =
10288       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10289 
10290   //  thisMBB:
10291   //   ...
10292   //   fallthrough --> loopMBB
10293   BB->addSuccessor(loopMBB);
10294 
10295   // The 4-byte load must be aligned, while a char or short may be
10296   // anywhere in the word.  Hence all this nasty bookkeeping code.
10297   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10298   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10299   //   xori shift, shift1, 24 [16]
10300   //   rlwinm ptr, ptr1, 0, 0, 29
10301   //   slw incr2, incr, shift
10302   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10303   //   slw mask, mask2, shift
10304   //  loopMBB:
10305   //   lwarx tmpDest, ptr
10306   //   add tmp, tmpDest, incr2
10307   //   andc tmp2, tmpDest, mask
10308   //   and tmp3, tmp, mask
10309   //   or tmp4, tmp3, tmp2
10310   //   stwcx. tmp4, ptr
10311   //   bne- loopMBB
10312   //   fallthrough --> exitMBB
10313   //   srw dest, tmpDest, shift
10314   if (ptrA != ZeroReg) {
10315     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10316     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10317         .addReg(ptrA)
10318         .addReg(ptrB);
10319   } else {
10320     Ptr1Reg = ptrB;
10321   }
10322   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10323   // mode.
10324   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10325       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10326       .addImm(3)
10327       .addImm(27)
10328       .addImm(is8bit ? 28 : 27);
10329   if (!isLittleEndian)
10330     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10331         .addReg(Shift1Reg)
10332         .addImm(is8bit ? 24 : 16);
10333   if (is64bit)
10334     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10335         .addReg(Ptr1Reg)
10336         .addImm(0)
10337         .addImm(61);
10338   else
10339     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10340         .addReg(Ptr1Reg)
10341         .addImm(0)
10342         .addImm(0)
10343         .addImm(29);
10344   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10345   if (is8bit)
10346     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10347   else {
10348     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10349     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10350         .addReg(Mask3Reg)
10351         .addImm(65535);
10352   }
10353   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10354       .addReg(Mask2Reg)
10355       .addReg(ShiftReg);
10356 
10357   BB = loopMBB;
10358   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10359       .addReg(ZeroReg)
10360       .addReg(PtrReg);
10361   if (BinOpcode)
10362     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10363         .addReg(Incr2Reg)
10364         .addReg(TmpDestReg);
10365   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10366       .addReg(TmpDestReg)
10367       .addReg(MaskReg);
10368   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10369   if (CmpOpcode) {
10370     // For unsigned comparisons, we can directly compare the shifted values.
10371     // For signed comparisons we shift and sign extend.
10372     unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10373     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10374         .addReg(TmpDestReg)
10375         .addReg(MaskReg);
10376     unsigned ValueReg = SReg;
10377     unsigned CmpReg = Incr2Reg;
10378     if (CmpOpcode == PPC::CMPW) {
10379       ValueReg = RegInfo.createVirtualRegister(GPRC);
10380       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10381           .addReg(SReg)
10382           .addReg(ShiftReg);
10383       unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10384       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10385           .addReg(ValueReg);
10386       ValueReg = ValueSReg;
10387       CmpReg = incr;
10388     }
10389     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10390         .addReg(CmpReg)
10391         .addReg(ValueReg);
10392     BuildMI(BB, dl, TII->get(PPC::BCC))
10393         .addImm(CmpPred)
10394         .addReg(PPC::CR0)
10395         .addMBB(exitMBB);
10396     BB->addSuccessor(loop2MBB);
10397     BB->addSuccessor(exitMBB);
10398     BB = loop2MBB;
10399   }
10400   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10401   BuildMI(BB, dl, TII->get(PPC::STWCX))
10402       .addReg(Tmp4Reg)
10403       .addReg(ZeroReg)
10404       .addReg(PtrReg);
10405   BuildMI(BB, dl, TII->get(PPC::BCC))
10406       .addImm(PPC::PRED_NE)
10407       .addReg(PPC::CR0)
10408       .addMBB(loopMBB);
10409   BB->addSuccessor(loopMBB);
10410   BB->addSuccessor(exitMBB);
10411 
10412   //  exitMBB:
10413   //   ...
10414   BB = exitMBB;
10415   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10416       .addReg(TmpDestReg)
10417       .addReg(ShiftReg);
10418   return BB;
10419 }
10420 
10421 llvm::MachineBasicBlock *
10422 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10423                                     MachineBasicBlock *MBB) const {
10424   DebugLoc DL = MI.getDebugLoc();
10425   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10426   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10427 
10428   MachineFunction *MF = MBB->getParent();
10429   MachineRegisterInfo &MRI = MF->getRegInfo();
10430 
10431   const BasicBlock *BB = MBB->getBasicBlock();
10432   MachineFunction::iterator I = ++MBB->getIterator();
10433 
10434   unsigned DstReg = MI.getOperand(0).getReg();
10435   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10436   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10437   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10438   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10439 
10440   MVT PVT = getPointerTy(MF->getDataLayout());
10441   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10442          "Invalid Pointer Size!");
10443   // For v = setjmp(buf), we generate
10444   //
10445   // thisMBB:
10446   //  SjLjSetup mainMBB
10447   //  bl mainMBB
10448   //  v_restore = 1
10449   //  b sinkMBB
10450   //
10451   // mainMBB:
10452   //  buf[LabelOffset] = LR
10453   //  v_main = 0
10454   //
10455   // sinkMBB:
10456   //  v = phi(main, restore)
10457   //
10458 
10459   MachineBasicBlock *thisMBB = MBB;
10460   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10461   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10462   MF->insert(I, mainMBB);
10463   MF->insert(I, sinkMBB);
10464 
10465   MachineInstrBuilder MIB;
10466 
10467   // Transfer the remainder of BB and its successor edges to sinkMBB.
10468   sinkMBB->splice(sinkMBB->begin(), MBB,
10469                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10470   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10471 
10472   // Note that the structure of the jmp_buf used here is not compatible
10473   // with that used by libc, and is not designed to be. Specifically, it
10474   // stores only those 'reserved' registers that LLVM does not otherwise
10475   // understand how to spill. Also, by convention, by the time this
10476   // intrinsic is called, Clang has already stored the frame address in the
10477   // first slot of the buffer and stack address in the third. Following the
10478   // X86 target code, we'll store the jump address in the second slot. We also
10479   // need to save the TOC pointer (R2) to handle jumps between shared
10480   // libraries, and that will be stored in the fourth slot. The thread
10481   // identifier (R13) is not affected.
10482 
10483   // thisMBB:
10484   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10485   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10486   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10487 
10488   // Prepare IP either in reg.
10489   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10490   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10491   unsigned BufReg = MI.getOperand(1).getReg();
10492 
10493   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10494     setUsesTOCBasePtr(*MBB->getParent());
10495     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10496               .addReg(PPC::X2)
10497               .addImm(TOCOffset)
10498               .addReg(BufReg)
10499               .cloneMemRefs(MI);
10500   }
10501 
10502   // Naked functions never have a base pointer, and so we use r1. For all
10503   // other functions, this decision must be delayed until during PEI.
10504   unsigned BaseReg;
10505   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10506     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10507   else
10508     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10509 
10510   MIB = BuildMI(*thisMBB, MI, DL,
10511                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10512             .addReg(BaseReg)
10513             .addImm(BPOffset)
10514             .addReg(BufReg)
10515             .cloneMemRefs(MI);
10516 
10517   // Setup
10518   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10519   MIB.addRegMask(TRI->getNoPreservedMask());
10520 
10521   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10522 
10523   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10524           .addMBB(mainMBB);
10525   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10526 
10527   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10528   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10529 
10530   // mainMBB:
10531   //  mainDstReg = 0
10532   MIB =
10533       BuildMI(mainMBB, DL,
10534               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10535 
10536   // Store IP
10537   if (Subtarget.isPPC64()) {
10538     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10539             .addReg(LabelReg)
10540             .addImm(LabelOffset)
10541             .addReg(BufReg);
10542   } else {
10543     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10544             .addReg(LabelReg)
10545             .addImm(LabelOffset)
10546             .addReg(BufReg);
10547   }
10548   MIB.cloneMemRefs(MI);
10549 
10550   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10551   mainMBB->addSuccessor(sinkMBB);
10552 
10553   // sinkMBB:
10554   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10555           TII->get(PPC::PHI), DstReg)
10556     .addReg(mainDstReg).addMBB(mainMBB)
10557     .addReg(restoreDstReg).addMBB(thisMBB);
10558 
10559   MI.eraseFromParent();
10560   return sinkMBB;
10561 }
10562 
10563 MachineBasicBlock *
10564 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10565                                      MachineBasicBlock *MBB) const {
10566   DebugLoc DL = MI.getDebugLoc();
10567   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10568 
10569   MachineFunction *MF = MBB->getParent();
10570   MachineRegisterInfo &MRI = MF->getRegInfo();
10571 
10572   MVT PVT = getPointerTy(MF->getDataLayout());
10573   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10574          "Invalid Pointer Size!");
10575 
10576   const TargetRegisterClass *RC =
10577     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10578   unsigned Tmp = MRI.createVirtualRegister(RC);
10579   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10580   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10581   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10582   unsigned BP =
10583       (PVT == MVT::i64)
10584           ? PPC::X30
10585           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10586                                                               : PPC::R30);
10587 
10588   MachineInstrBuilder MIB;
10589 
10590   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10591   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10592   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10593   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10594 
10595   unsigned BufReg = MI.getOperand(0).getReg();
10596 
10597   // Reload FP (the jumped-to function may not have had a
10598   // frame pointer, and if so, then its r31 will be restored
10599   // as necessary).
10600   if (PVT == MVT::i64) {
10601     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10602             .addImm(0)
10603             .addReg(BufReg);
10604   } else {
10605     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10606             .addImm(0)
10607             .addReg(BufReg);
10608   }
10609   MIB.cloneMemRefs(MI);
10610 
10611   // Reload IP
10612   if (PVT == MVT::i64) {
10613     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10614             .addImm(LabelOffset)
10615             .addReg(BufReg);
10616   } else {
10617     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10618             .addImm(LabelOffset)
10619             .addReg(BufReg);
10620   }
10621   MIB.cloneMemRefs(MI);
10622 
10623   // Reload SP
10624   if (PVT == MVT::i64) {
10625     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10626             .addImm(SPOffset)
10627             .addReg(BufReg);
10628   } else {
10629     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10630             .addImm(SPOffset)
10631             .addReg(BufReg);
10632   }
10633   MIB.cloneMemRefs(MI);
10634 
10635   // Reload BP
10636   if (PVT == MVT::i64) {
10637     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10638             .addImm(BPOffset)
10639             .addReg(BufReg);
10640   } else {
10641     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10642             .addImm(BPOffset)
10643             .addReg(BufReg);
10644   }
10645   MIB.cloneMemRefs(MI);
10646 
10647   // Reload TOC
10648   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10649     setUsesTOCBasePtr(*MBB->getParent());
10650     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10651               .addImm(TOCOffset)
10652               .addReg(BufReg)
10653               .cloneMemRefs(MI);
10654   }
10655 
10656   // Jump
10657   BuildMI(*MBB, MI, DL,
10658           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10659   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10660 
10661   MI.eraseFromParent();
10662   return MBB;
10663 }
10664 
10665 MachineBasicBlock *
10666 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10667                                                MachineBasicBlock *BB) const {
10668   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10669       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10670     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10671         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10672       // Call lowering should have added an r2 operand to indicate a dependence
10673       // on the TOC base pointer value. It can't however, because there is no
10674       // way to mark the dependence as implicit there, and so the stackmap code
10675       // will confuse it with a regular operand. Instead, add the dependence
10676       // here.
10677       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10678     }
10679 
10680     return emitPatchPoint(MI, BB);
10681   }
10682 
10683   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10684       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10685     return emitEHSjLjSetJmp(MI, BB);
10686   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10687              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10688     return emitEHSjLjLongJmp(MI, BB);
10689   }
10690 
10691   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10692 
10693   // To "insert" these instructions we actually have to insert their
10694   // control-flow patterns.
10695   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10696   MachineFunction::iterator It = ++BB->getIterator();
10697 
10698   MachineFunction *F = BB->getParent();
10699 
10700   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10701       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10702       MI.getOpcode() == PPC::SELECT_I8) {
10703     SmallVector<MachineOperand, 2> Cond;
10704     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10705         MI.getOpcode() == PPC::SELECT_CC_I8)
10706       Cond.push_back(MI.getOperand(4));
10707     else
10708       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10709     Cond.push_back(MI.getOperand(1));
10710 
10711     DebugLoc dl = MI.getDebugLoc();
10712     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10713                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10714   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10715              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10716              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10717              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10718              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10719              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10720              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10721              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10722              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10723              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10724              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10725              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10726              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10727              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10728              MI.getOpcode() == PPC::SELECT_I4 ||
10729              MI.getOpcode() == PPC::SELECT_I8 ||
10730              MI.getOpcode() == PPC::SELECT_F4 ||
10731              MI.getOpcode() == PPC::SELECT_F8 ||
10732              MI.getOpcode() == PPC::SELECT_F16 ||
10733              MI.getOpcode() == PPC::SELECT_QFRC ||
10734              MI.getOpcode() == PPC::SELECT_QSRC ||
10735              MI.getOpcode() == PPC::SELECT_QBRC ||
10736              MI.getOpcode() == PPC::SELECT_SPE ||
10737              MI.getOpcode() == PPC::SELECT_SPE4 ||
10738              MI.getOpcode() == PPC::SELECT_VRRC ||
10739              MI.getOpcode() == PPC::SELECT_VSFRC ||
10740              MI.getOpcode() == PPC::SELECT_VSSRC ||
10741              MI.getOpcode() == PPC::SELECT_VSRC) {
10742     // The incoming instruction knows the destination vreg to set, the
10743     // condition code register to branch on, the true/false values to
10744     // select between, and a branch opcode to use.
10745 
10746     //  thisMBB:
10747     //  ...
10748     //   TrueVal = ...
10749     //   cmpTY ccX, r1, r2
10750     //   bCC copy1MBB
10751     //   fallthrough --> copy0MBB
10752     MachineBasicBlock *thisMBB = BB;
10753     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10754     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10755     DebugLoc dl = MI.getDebugLoc();
10756     F->insert(It, copy0MBB);
10757     F->insert(It, sinkMBB);
10758 
10759     // Transfer the remainder of BB and its successor edges to sinkMBB.
10760     sinkMBB->splice(sinkMBB->begin(), BB,
10761                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10762     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10763 
10764     // Next, add the true and fallthrough blocks as its successors.
10765     BB->addSuccessor(copy0MBB);
10766     BB->addSuccessor(sinkMBB);
10767 
10768     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10769         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10770         MI.getOpcode() == PPC::SELECT_F16 ||
10771         MI.getOpcode() == PPC::SELECT_SPE4 ||
10772         MI.getOpcode() == PPC::SELECT_SPE ||
10773         MI.getOpcode() == PPC::SELECT_QFRC ||
10774         MI.getOpcode() == PPC::SELECT_QSRC ||
10775         MI.getOpcode() == PPC::SELECT_QBRC ||
10776         MI.getOpcode() == PPC::SELECT_VRRC ||
10777         MI.getOpcode() == PPC::SELECT_VSFRC ||
10778         MI.getOpcode() == PPC::SELECT_VSSRC ||
10779         MI.getOpcode() == PPC::SELECT_VSRC) {
10780       BuildMI(BB, dl, TII->get(PPC::BC))
10781           .addReg(MI.getOperand(1).getReg())
10782           .addMBB(sinkMBB);
10783     } else {
10784       unsigned SelectPred = MI.getOperand(4).getImm();
10785       BuildMI(BB, dl, TII->get(PPC::BCC))
10786           .addImm(SelectPred)
10787           .addReg(MI.getOperand(1).getReg())
10788           .addMBB(sinkMBB);
10789     }
10790 
10791     //  copy0MBB:
10792     //   %FalseValue = ...
10793     //   # fallthrough to sinkMBB
10794     BB = copy0MBB;
10795 
10796     // Update machine-CFG edges
10797     BB->addSuccessor(sinkMBB);
10798 
10799     //  sinkMBB:
10800     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10801     //  ...
10802     BB = sinkMBB;
10803     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10804         .addReg(MI.getOperand(3).getReg())
10805         .addMBB(copy0MBB)
10806         .addReg(MI.getOperand(2).getReg())
10807         .addMBB(thisMBB);
10808   } else if (MI.getOpcode() == PPC::ReadTB) {
10809     // To read the 64-bit time-base register on a 32-bit target, we read the
10810     // two halves. Should the counter have wrapped while it was being read, we
10811     // need to try again.
10812     // ...
10813     // readLoop:
10814     // mfspr Rx,TBU # load from TBU
10815     // mfspr Ry,TB  # load from TB
10816     // mfspr Rz,TBU # load from TBU
10817     // cmpw crX,Rx,Rz # check if 'old'='new'
10818     // bne readLoop   # branch if they're not equal
10819     // ...
10820 
10821     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10822     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10823     DebugLoc dl = MI.getDebugLoc();
10824     F->insert(It, readMBB);
10825     F->insert(It, sinkMBB);
10826 
10827     // Transfer the remainder of BB and its successor edges to sinkMBB.
10828     sinkMBB->splice(sinkMBB->begin(), BB,
10829                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10830     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10831 
10832     BB->addSuccessor(readMBB);
10833     BB = readMBB;
10834 
10835     MachineRegisterInfo &RegInfo = F->getRegInfo();
10836     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10837     unsigned LoReg = MI.getOperand(0).getReg();
10838     unsigned HiReg = MI.getOperand(1).getReg();
10839 
10840     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10841     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10842     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10843 
10844     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10845 
10846     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10847         .addReg(HiReg)
10848         .addReg(ReadAgainReg);
10849     BuildMI(BB, dl, TII->get(PPC::BCC))
10850         .addImm(PPC::PRED_NE)
10851         .addReg(CmpReg)
10852         .addMBB(readMBB);
10853 
10854     BB->addSuccessor(readMBB);
10855     BB->addSuccessor(sinkMBB);
10856   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10857     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10858   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10859     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10860   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10861     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10862   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10863     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10864 
10865   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10866     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10867   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10868     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10869   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10870     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10871   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10872     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10873 
10874   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10875     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10876   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10877     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10878   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10879     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10880   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10881     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10882 
10883   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10884     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10885   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10886     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10887   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10888     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10889   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10890     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10891 
10892   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10893     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10894   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10895     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10896   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10897     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10898   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10899     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10900 
10901   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10902     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10903   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10904     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10905   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10906     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10907   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10908     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10909 
10910   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10911     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10912   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10913     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10914   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10915     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10916   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10917     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10918 
10919   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10920     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10921   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10922     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10923   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10924     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10925   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10926     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10927 
10928   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10929     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10930   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10931     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10932   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10933     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10934   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10935     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10936 
10937   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10938     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10939   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10940     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10941   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10942     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10943   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10944     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10945 
10946   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10947     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10948   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10949     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10950   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10951     BB = EmitAtomicBinary(MI, BB, 4, 0);
10952   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10953     BB = EmitAtomicBinary(MI, BB, 8, 0);
10954   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10955            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10956            (Subtarget.hasPartwordAtomics() &&
10957             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10958            (Subtarget.hasPartwordAtomics() &&
10959             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10960     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10961 
10962     auto LoadMnemonic = PPC::LDARX;
10963     auto StoreMnemonic = PPC::STDCX;
10964     switch (MI.getOpcode()) {
10965     default:
10966       llvm_unreachable("Compare and swap of unknown size");
10967     case PPC::ATOMIC_CMP_SWAP_I8:
10968       LoadMnemonic = PPC::LBARX;
10969       StoreMnemonic = PPC::STBCX;
10970       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10971       break;
10972     case PPC::ATOMIC_CMP_SWAP_I16:
10973       LoadMnemonic = PPC::LHARX;
10974       StoreMnemonic = PPC::STHCX;
10975       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10976       break;
10977     case PPC::ATOMIC_CMP_SWAP_I32:
10978       LoadMnemonic = PPC::LWARX;
10979       StoreMnemonic = PPC::STWCX;
10980       break;
10981     case PPC::ATOMIC_CMP_SWAP_I64:
10982       LoadMnemonic = PPC::LDARX;
10983       StoreMnemonic = PPC::STDCX;
10984       break;
10985     }
10986     unsigned dest = MI.getOperand(0).getReg();
10987     unsigned ptrA = MI.getOperand(1).getReg();
10988     unsigned ptrB = MI.getOperand(2).getReg();
10989     unsigned oldval = MI.getOperand(3).getReg();
10990     unsigned newval = MI.getOperand(4).getReg();
10991     DebugLoc dl = MI.getDebugLoc();
10992 
10993     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10994     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10995     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10996     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10997     F->insert(It, loop1MBB);
10998     F->insert(It, loop2MBB);
10999     F->insert(It, midMBB);
11000     F->insert(It, exitMBB);
11001     exitMBB->splice(exitMBB->begin(), BB,
11002                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11003     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11004 
11005     //  thisMBB:
11006     //   ...
11007     //   fallthrough --> loopMBB
11008     BB->addSuccessor(loop1MBB);
11009 
11010     // loop1MBB:
11011     //   l[bhwd]arx dest, ptr
11012     //   cmp[wd] dest, oldval
11013     //   bne- midMBB
11014     // loop2MBB:
11015     //   st[bhwd]cx. newval, ptr
11016     //   bne- loopMBB
11017     //   b exitBB
11018     // midMBB:
11019     //   st[bhwd]cx. dest, ptr
11020     // exitBB:
11021     BB = loop1MBB;
11022     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11023     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11024         .addReg(oldval)
11025         .addReg(dest);
11026     BuildMI(BB, dl, TII->get(PPC::BCC))
11027         .addImm(PPC::PRED_NE)
11028         .addReg(PPC::CR0)
11029         .addMBB(midMBB);
11030     BB->addSuccessor(loop2MBB);
11031     BB->addSuccessor(midMBB);
11032 
11033     BB = loop2MBB;
11034     BuildMI(BB, dl, TII->get(StoreMnemonic))
11035         .addReg(newval)
11036         .addReg(ptrA)
11037         .addReg(ptrB);
11038     BuildMI(BB, dl, TII->get(PPC::BCC))
11039         .addImm(PPC::PRED_NE)
11040         .addReg(PPC::CR0)
11041         .addMBB(loop1MBB);
11042     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11043     BB->addSuccessor(loop1MBB);
11044     BB->addSuccessor(exitMBB);
11045 
11046     BB = midMBB;
11047     BuildMI(BB, dl, TII->get(StoreMnemonic))
11048         .addReg(dest)
11049         .addReg(ptrA)
11050         .addReg(ptrB);
11051     BB->addSuccessor(exitMBB);
11052 
11053     //  exitMBB:
11054     //   ...
11055     BB = exitMBB;
11056   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11057              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11058     // We must use 64-bit registers for addresses when targeting 64-bit,
11059     // since we're actually doing arithmetic on them.  Other registers
11060     // can be 32-bit.
11061     bool is64bit = Subtarget.isPPC64();
11062     bool isLittleEndian = Subtarget.isLittleEndian();
11063     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11064 
11065     unsigned dest = MI.getOperand(0).getReg();
11066     unsigned ptrA = MI.getOperand(1).getReg();
11067     unsigned ptrB = MI.getOperand(2).getReg();
11068     unsigned oldval = MI.getOperand(3).getReg();
11069     unsigned newval = MI.getOperand(4).getReg();
11070     DebugLoc dl = MI.getDebugLoc();
11071 
11072     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11073     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11074     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11075     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11076     F->insert(It, loop1MBB);
11077     F->insert(It, loop2MBB);
11078     F->insert(It, midMBB);
11079     F->insert(It, exitMBB);
11080     exitMBB->splice(exitMBB->begin(), BB,
11081                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11082     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11083 
11084     MachineRegisterInfo &RegInfo = F->getRegInfo();
11085     const TargetRegisterClass *RC =
11086         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11087     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11088 
11089     Register PtrReg = RegInfo.createVirtualRegister(RC);
11090     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11091     Register ShiftReg =
11092         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11093     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11094     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11095     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11096     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11097     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11098     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11099     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11100     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11101     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11102     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11103     Register Ptr1Reg;
11104     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11105     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11106     //  thisMBB:
11107     //   ...
11108     //   fallthrough --> loopMBB
11109     BB->addSuccessor(loop1MBB);
11110 
11111     // The 4-byte load must be aligned, while a char or short may be
11112     // anywhere in the word.  Hence all this nasty bookkeeping code.
11113     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11114     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11115     //   xori shift, shift1, 24 [16]
11116     //   rlwinm ptr, ptr1, 0, 0, 29
11117     //   slw newval2, newval, shift
11118     //   slw oldval2, oldval,shift
11119     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11120     //   slw mask, mask2, shift
11121     //   and newval3, newval2, mask
11122     //   and oldval3, oldval2, mask
11123     // loop1MBB:
11124     //   lwarx tmpDest, ptr
11125     //   and tmp, tmpDest, mask
11126     //   cmpw tmp, oldval3
11127     //   bne- midMBB
11128     // loop2MBB:
11129     //   andc tmp2, tmpDest, mask
11130     //   or tmp4, tmp2, newval3
11131     //   stwcx. tmp4, ptr
11132     //   bne- loop1MBB
11133     //   b exitBB
11134     // midMBB:
11135     //   stwcx. tmpDest, ptr
11136     // exitBB:
11137     //   srw dest, tmpDest, shift
11138     if (ptrA != ZeroReg) {
11139       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11140       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11141           .addReg(ptrA)
11142           .addReg(ptrB);
11143     } else {
11144       Ptr1Reg = ptrB;
11145     }
11146 
11147     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11148     // mode.
11149     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11150         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11151         .addImm(3)
11152         .addImm(27)
11153         .addImm(is8bit ? 28 : 27);
11154     if (!isLittleEndian)
11155       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11156           .addReg(Shift1Reg)
11157           .addImm(is8bit ? 24 : 16);
11158     if (is64bit)
11159       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11160           .addReg(Ptr1Reg)
11161           .addImm(0)
11162           .addImm(61);
11163     else
11164       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11165           .addReg(Ptr1Reg)
11166           .addImm(0)
11167           .addImm(0)
11168           .addImm(29);
11169     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11170         .addReg(newval)
11171         .addReg(ShiftReg);
11172     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11173         .addReg(oldval)
11174         .addReg(ShiftReg);
11175     if (is8bit)
11176       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11177     else {
11178       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11179       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11180           .addReg(Mask3Reg)
11181           .addImm(65535);
11182     }
11183     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11184         .addReg(Mask2Reg)
11185         .addReg(ShiftReg);
11186     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11187         .addReg(NewVal2Reg)
11188         .addReg(MaskReg);
11189     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11190         .addReg(OldVal2Reg)
11191         .addReg(MaskReg);
11192 
11193     BB = loop1MBB;
11194     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11195         .addReg(ZeroReg)
11196         .addReg(PtrReg);
11197     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11198         .addReg(TmpDestReg)
11199         .addReg(MaskReg);
11200     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11201         .addReg(TmpReg)
11202         .addReg(OldVal3Reg);
11203     BuildMI(BB, dl, TII->get(PPC::BCC))
11204         .addImm(PPC::PRED_NE)
11205         .addReg(PPC::CR0)
11206         .addMBB(midMBB);
11207     BB->addSuccessor(loop2MBB);
11208     BB->addSuccessor(midMBB);
11209 
11210     BB = loop2MBB;
11211     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11212         .addReg(TmpDestReg)
11213         .addReg(MaskReg);
11214     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11215         .addReg(Tmp2Reg)
11216         .addReg(NewVal3Reg);
11217     BuildMI(BB, dl, TII->get(PPC::STWCX))
11218         .addReg(Tmp4Reg)
11219         .addReg(ZeroReg)
11220         .addReg(PtrReg);
11221     BuildMI(BB, dl, TII->get(PPC::BCC))
11222         .addImm(PPC::PRED_NE)
11223         .addReg(PPC::CR0)
11224         .addMBB(loop1MBB);
11225     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11226     BB->addSuccessor(loop1MBB);
11227     BB->addSuccessor(exitMBB);
11228 
11229     BB = midMBB;
11230     BuildMI(BB, dl, TII->get(PPC::STWCX))
11231         .addReg(TmpDestReg)
11232         .addReg(ZeroReg)
11233         .addReg(PtrReg);
11234     BB->addSuccessor(exitMBB);
11235 
11236     //  exitMBB:
11237     //   ...
11238     BB = exitMBB;
11239     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11240         .addReg(TmpReg)
11241         .addReg(ShiftReg);
11242   } else if (MI.getOpcode() == PPC::FADDrtz) {
11243     // This pseudo performs an FADD with rounding mode temporarily forced
11244     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11245     // is not modeled at the SelectionDAG level.
11246     unsigned Dest = MI.getOperand(0).getReg();
11247     unsigned Src1 = MI.getOperand(1).getReg();
11248     unsigned Src2 = MI.getOperand(2).getReg();
11249     DebugLoc dl = MI.getDebugLoc();
11250 
11251     MachineRegisterInfo &RegInfo = F->getRegInfo();
11252     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11253 
11254     // Save FPSCR value.
11255     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11256 
11257     // Set rounding mode to round-to-zero.
11258     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11259     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11260 
11261     // Perform addition.
11262     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11263 
11264     // Restore FPSCR value.
11265     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11266   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11267              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
11268              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11269              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
11270     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11271                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
11272                           ? PPC::ANDIo8
11273                           : PPC::ANDIo;
11274     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11275                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
11276 
11277     MachineRegisterInfo &RegInfo = F->getRegInfo();
11278     unsigned Dest = RegInfo.createVirtualRegister(
11279         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11280 
11281     DebugLoc dl = MI.getDebugLoc();
11282     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
11283         .addReg(MI.getOperand(1).getReg())
11284         .addImm(1);
11285     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
11286             MI.getOperand(0).getReg())
11287         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
11288   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11289     DebugLoc Dl = MI.getDebugLoc();
11290     MachineRegisterInfo &RegInfo = F->getRegInfo();
11291     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11292     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11293     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11294             MI.getOperand(0).getReg())
11295         .addReg(CRReg);
11296   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11297     DebugLoc Dl = MI.getDebugLoc();
11298     unsigned Imm = MI.getOperand(1).getImm();
11299     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11300     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11301             MI.getOperand(0).getReg())
11302         .addReg(PPC::CR0EQ);
11303   } else if (MI.getOpcode() == PPC::SETRNDi) {
11304     DebugLoc dl = MI.getDebugLoc();
11305     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
11306 
11307     // Save FPSCR value.
11308     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11309 
11310     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11311     // the following settings:
11312     //   00 Round to nearest
11313     //   01 Round to 0
11314     //   10 Round to +inf
11315     //   11 Round to -inf
11316 
11317     // When the operand is immediate, using the two least significant bits of
11318     // the immediate to set the bits 62:63 of FPSCR.
11319     unsigned Mode = MI.getOperand(1).getImm();
11320     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11321       .addImm(31);
11322 
11323     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11324       .addImm(30);
11325   } else if (MI.getOpcode() == PPC::SETRND) {
11326     DebugLoc dl = MI.getDebugLoc();
11327 
11328     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11329     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11330     // If the target doesn't have DirectMove, we should use stack to do the
11331     // conversion, because the target doesn't have the instructions like mtvsrd
11332     // or mfvsrd to do this conversion directly.
11333     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11334       if (Subtarget.hasDirectMove()) {
11335         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11336           .addReg(SrcReg);
11337       } else {
11338         // Use stack to do the register copy.
11339         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11340         MachineRegisterInfo &RegInfo = F->getRegInfo();
11341         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11342         if (RC == &PPC::F8RCRegClass) {
11343           // Copy register from F8RCRegClass to G8RCRegclass.
11344           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11345                  "Unsupported RegClass.");
11346 
11347           StoreOp = PPC::STFD;
11348           LoadOp = PPC::LD;
11349         } else {
11350           // Copy register from G8RCRegClass to F8RCRegclass.
11351           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11352                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11353                  "Unsupported RegClass.");
11354         }
11355 
11356         MachineFrameInfo &MFI = F->getFrameInfo();
11357         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11358 
11359         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11360           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11361           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11362           MFI.getObjectAlignment(FrameIdx));
11363 
11364         // Store the SrcReg into the stack.
11365         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11366           .addReg(SrcReg)
11367           .addImm(0)
11368           .addFrameIndex(FrameIdx)
11369           .addMemOperand(MMOStore);
11370 
11371         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11372           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11373           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11374           MFI.getObjectAlignment(FrameIdx));
11375 
11376         // Load from the stack where SrcReg is stored, and save to DestReg,
11377         // so we have done the RegClass conversion from RegClass::SrcReg to
11378         // RegClass::DestReg.
11379         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11380           .addImm(0)
11381           .addFrameIndex(FrameIdx)
11382           .addMemOperand(MMOLoad);
11383       }
11384     };
11385 
11386     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
11387 
11388     // Save FPSCR value.
11389     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11390 
11391     // When the operand is gprc register, use two least significant bits of the
11392     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11393     //
11394     // copy OldFPSCRTmpReg, OldFPSCRReg
11395     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11396     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11397     // copy NewFPSCRReg, NewFPSCRTmpReg
11398     // mtfsf 255, NewFPSCRReg
11399     MachineOperand SrcOp = MI.getOperand(1);
11400     MachineRegisterInfo &RegInfo = F->getRegInfo();
11401     unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11402 
11403     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11404 
11405     unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11406     unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11407 
11408     // The first operand of INSERT_SUBREG should be a register which has
11409     // subregisters, we only care about its RegClass, so we should use an
11410     // IMPLICIT_DEF register.
11411     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11412     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11413       .addReg(ImDefReg)
11414       .add(SrcOp)
11415       .addImm(1);
11416 
11417     unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11418     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11419       .addReg(OldFPSCRTmpReg)
11420       .addReg(ExtSrcReg)
11421       .addImm(0)
11422       .addImm(62);
11423 
11424     unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11425     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11426 
11427     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11428     // bits of FPSCR.
11429     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11430       .addImm(255)
11431       .addReg(NewFPSCRReg)
11432       .addImm(0)
11433       .addImm(0);
11434   } else {
11435     llvm_unreachable("Unexpected instr type to insert");
11436   }
11437 
11438   MI.eraseFromParent(); // The pseudo instruction is gone now.
11439   return BB;
11440 }
11441 
11442 //===----------------------------------------------------------------------===//
11443 // Target Optimization Hooks
11444 //===----------------------------------------------------------------------===//
11445 
11446 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11447   // For the estimates, convergence is quadratic, so we essentially double the
11448   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11449   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11450   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11451   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11452   if (VT.getScalarType() == MVT::f64)
11453     RefinementSteps++;
11454   return RefinementSteps;
11455 }
11456 
11457 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11458                                            int Enabled, int &RefinementSteps,
11459                                            bool &UseOneConstNR,
11460                                            bool Reciprocal) const {
11461   EVT VT = Operand.getValueType();
11462   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11463       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11464       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11465       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11466       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11467       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11468     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11469       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11470 
11471     // The Newton-Raphson computation with a single constant does not provide
11472     // enough accuracy on some CPUs.
11473     UseOneConstNR = !Subtarget.needsTwoConstNR();
11474     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11475   }
11476   return SDValue();
11477 }
11478 
11479 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11480                                             int Enabled,
11481                                             int &RefinementSteps) const {
11482   EVT VT = Operand.getValueType();
11483   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11484       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11485       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11486       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11487       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11488       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11489     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11490       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11491     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11492   }
11493   return SDValue();
11494 }
11495 
11496 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11497   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11498   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11499   // enabled for division), this functionality is redundant with the default
11500   // combiner logic (once the division -> reciprocal/multiply transformation
11501   // has taken place). As a result, this matters more for older cores than for
11502   // newer ones.
11503 
11504   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11505   // reciprocal if there are two or more FDIVs (for embedded cores with only
11506   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11507   switch (Subtarget.getDarwinDirective()) {
11508   default:
11509     return 3;
11510   case PPC::DIR_440:
11511   case PPC::DIR_A2:
11512   case PPC::DIR_E500:
11513   case PPC::DIR_E500mc:
11514   case PPC::DIR_E5500:
11515     return 2;
11516   }
11517 }
11518 
11519 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11520 // collapsed, and so we need to look through chains of them.
11521 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11522                                      int64_t& Offset, SelectionDAG &DAG) {
11523   if (DAG.isBaseWithConstantOffset(Loc)) {
11524     Base = Loc.getOperand(0);
11525     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11526 
11527     // The base might itself be a base plus an offset, and if so, accumulate
11528     // that as well.
11529     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11530   }
11531 }
11532 
11533 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11534                             unsigned Bytes, int Dist,
11535                             SelectionDAG &DAG) {
11536   if (VT.getSizeInBits() / 8 != Bytes)
11537     return false;
11538 
11539   SDValue BaseLoc = Base->getBasePtr();
11540   if (Loc.getOpcode() == ISD::FrameIndex) {
11541     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11542       return false;
11543     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11544     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11545     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11546     int FS  = MFI.getObjectSize(FI);
11547     int BFS = MFI.getObjectSize(BFI);
11548     if (FS != BFS || FS != (int)Bytes) return false;
11549     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11550   }
11551 
11552   SDValue Base1 = Loc, Base2 = BaseLoc;
11553   int64_t Offset1 = 0, Offset2 = 0;
11554   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11555   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11556   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11557     return true;
11558 
11559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11560   const GlobalValue *GV1 = nullptr;
11561   const GlobalValue *GV2 = nullptr;
11562   Offset1 = 0;
11563   Offset2 = 0;
11564   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11565   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11566   if (isGA1 && isGA2 && GV1 == GV2)
11567     return Offset1 == (Offset2 + Dist*Bytes);
11568   return false;
11569 }
11570 
11571 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11572 // not enforce equality of the chain operands.
11573 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11574                             unsigned Bytes, int Dist,
11575                             SelectionDAG &DAG) {
11576   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11577     EVT VT = LS->getMemoryVT();
11578     SDValue Loc = LS->getBasePtr();
11579     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11580   }
11581 
11582   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11583     EVT VT;
11584     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11585     default: return false;
11586     case Intrinsic::ppc_qpx_qvlfd:
11587     case Intrinsic::ppc_qpx_qvlfda:
11588       VT = MVT::v4f64;
11589       break;
11590     case Intrinsic::ppc_qpx_qvlfs:
11591     case Intrinsic::ppc_qpx_qvlfsa:
11592       VT = MVT::v4f32;
11593       break;
11594     case Intrinsic::ppc_qpx_qvlfcd:
11595     case Intrinsic::ppc_qpx_qvlfcda:
11596       VT = MVT::v2f64;
11597       break;
11598     case Intrinsic::ppc_qpx_qvlfcs:
11599     case Intrinsic::ppc_qpx_qvlfcsa:
11600       VT = MVT::v2f32;
11601       break;
11602     case Intrinsic::ppc_qpx_qvlfiwa:
11603     case Intrinsic::ppc_qpx_qvlfiwz:
11604     case Intrinsic::ppc_altivec_lvx:
11605     case Intrinsic::ppc_altivec_lvxl:
11606     case Intrinsic::ppc_vsx_lxvw4x:
11607     case Intrinsic::ppc_vsx_lxvw4x_be:
11608       VT = MVT::v4i32;
11609       break;
11610     case Intrinsic::ppc_vsx_lxvd2x:
11611     case Intrinsic::ppc_vsx_lxvd2x_be:
11612       VT = MVT::v2f64;
11613       break;
11614     case Intrinsic::ppc_altivec_lvebx:
11615       VT = MVT::i8;
11616       break;
11617     case Intrinsic::ppc_altivec_lvehx:
11618       VT = MVT::i16;
11619       break;
11620     case Intrinsic::ppc_altivec_lvewx:
11621       VT = MVT::i32;
11622       break;
11623     }
11624 
11625     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11626   }
11627 
11628   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11629     EVT VT;
11630     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11631     default: return false;
11632     case Intrinsic::ppc_qpx_qvstfd:
11633     case Intrinsic::ppc_qpx_qvstfda:
11634       VT = MVT::v4f64;
11635       break;
11636     case Intrinsic::ppc_qpx_qvstfs:
11637     case Intrinsic::ppc_qpx_qvstfsa:
11638       VT = MVT::v4f32;
11639       break;
11640     case Intrinsic::ppc_qpx_qvstfcd:
11641     case Intrinsic::ppc_qpx_qvstfcda:
11642       VT = MVT::v2f64;
11643       break;
11644     case Intrinsic::ppc_qpx_qvstfcs:
11645     case Intrinsic::ppc_qpx_qvstfcsa:
11646       VT = MVT::v2f32;
11647       break;
11648     case Intrinsic::ppc_qpx_qvstfiw:
11649     case Intrinsic::ppc_qpx_qvstfiwa:
11650     case Intrinsic::ppc_altivec_stvx:
11651     case Intrinsic::ppc_altivec_stvxl:
11652     case Intrinsic::ppc_vsx_stxvw4x:
11653       VT = MVT::v4i32;
11654       break;
11655     case Intrinsic::ppc_vsx_stxvd2x:
11656       VT = MVT::v2f64;
11657       break;
11658     case Intrinsic::ppc_vsx_stxvw4x_be:
11659       VT = MVT::v4i32;
11660       break;
11661     case Intrinsic::ppc_vsx_stxvd2x_be:
11662       VT = MVT::v2f64;
11663       break;
11664     case Intrinsic::ppc_altivec_stvebx:
11665       VT = MVT::i8;
11666       break;
11667     case Intrinsic::ppc_altivec_stvehx:
11668       VT = MVT::i16;
11669       break;
11670     case Intrinsic::ppc_altivec_stvewx:
11671       VT = MVT::i32;
11672       break;
11673     }
11674 
11675     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11676   }
11677 
11678   return false;
11679 }
11680 
11681 // Return true is there is a nearyby consecutive load to the one provided
11682 // (regardless of alignment). We search up and down the chain, looking though
11683 // token factors and other loads (but nothing else). As a result, a true result
11684 // indicates that it is safe to create a new consecutive load adjacent to the
11685 // load provided.
11686 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11687   SDValue Chain = LD->getChain();
11688   EVT VT = LD->getMemoryVT();
11689 
11690   SmallSet<SDNode *, 16> LoadRoots;
11691   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11692   SmallSet<SDNode *, 16> Visited;
11693 
11694   // First, search up the chain, branching to follow all token-factor operands.
11695   // If we find a consecutive load, then we're done, otherwise, record all
11696   // nodes just above the top-level loads and token factors.
11697   while (!Queue.empty()) {
11698     SDNode *ChainNext = Queue.pop_back_val();
11699     if (!Visited.insert(ChainNext).second)
11700       continue;
11701 
11702     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11703       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11704         return true;
11705 
11706       if (!Visited.count(ChainLD->getChain().getNode()))
11707         Queue.push_back(ChainLD->getChain().getNode());
11708     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11709       for (const SDUse &O : ChainNext->ops())
11710         if (!Visited.count(O.getNode()))
11711           Queue.push_back(O.getNode());
11712     } else
11713       LoadRoots.insert(ChainNext);
11714   }
11715 
11716   // Second, search down the chain, starting from the top-level nodes recorded
11717   // in the first phase. These top-level nodes are the nodes just above all
11718   // loads and token factors. Starting with their uses, recursively look though
11719   // all loads (just the chain uses) and token factors to find a consecutive
11720   // load.
11721   Visited.clear();
11722   Queue.clear();
11723 
11724   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11725        IE = LoadRoots.end(); I != IE; ++I) {
11726     Queue.push_back(*I);
11727 
11728     while (!Queue.empty()) {
11729       SDNode *LoadRoot = Queue.pop_back_val();
11730       if (!Visited.insert(LoadRoot).second)
11731         continue;
11732 
11733       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11734         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11735           return true;
11736 
11737       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11738            UE = LoadRoot->use_end(); UI != UE; ++UI)
11739         if (((isa<MemSDNode>(*UI) &&
11740             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11741             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11742           Queue.push_back(*UI);
11743     }
11744   }
11745 
11746   return false;
11747 }
11748 
11749 /// This function is called when we have proved that a SETCC node can be replaced
11750 /// by subtraction (and other supporting instructions) so that the result of
11751 /// comparison is kept in a GPR instead of CR. This function is purely for
11752 /// codegen purposes and has some flags to guide the codegen process.
11753 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11754                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11755   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11756 
11757   // Zero extend the operands to the largest legal integer. Originally, they
11758   // must be of a strictly smaller size.
11759   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11760                          DAG.getConstant(Size, DL, MVT::i32));
11761   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11762                          DAG.getConstant(Size, DL, MVT::i32));
11763 
11764   // Swap if needed. Depends on the condition code.
11765   if (Swap)
11766     std::swap(Op0, Op1);
11767 
11768   // Subtract extended integers.
11769   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11770 
11771   // Move the sign bit to the least significant position and zero out the rest.
11772   // Now the least significant bit carries the result of original comparison.
11773   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11774                              DAG.getConstant(Size - 1, DL, MVT::i32));
11775   auto Final = Shifted;
11776 
11777   // Complement the result if needed. Based on the condition code.
11778   if (Complement)
11779     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11780                         DAG.getConstant(1, DL, MVT::i64));
11781 
11782   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11783 }
11784 
11785 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11786                                                   DAGCombinerInfo &DCI) const {
11787   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11788 
11789   SelectionDAG &DAG = DCI.DAG;
11790   SDLoc DL(N);
11791 
11792   // Size of integers being compared has a critical role in the following
11793   // analysis, so we prefer to do this when all types are legal.
11794   if (!DCI.isAfterLegalizeDAG())
11795     return SDValue();
11796 
11797   // If all users of SETCC extend its value to a legal integer type
11798   // then we replace SETCC with a subtraction
11799   for (SDNode::use_iterator UI = N->use_begin(),
11800        UE = N->use_end(); UI != UE; ++UI) {
11801     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11802       return SDValue();
11803   }
11804 
11805   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11806   auto OpSize = N->getOperand(0).getValueSizeInBits();
11807 
11808   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11809 
11810   if (OpSize < Size) {
11811     switch (CC) {
11812     default: break;
11813     case ISD::SETULT:
11814       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11815     case ISD::SETULE:
11816       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11817     case ISD::SETUGT:
11818       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11819     case ISD::SETUGE:
11820       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11821     }
11822   }
11823 
11824   return SDValue();
11825 }
11826 
11827 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11828                                                   DAGCombinerInfo &DCI) const {
11829   SelectionDAG &DAG = DCI.DAG;
11830   SDLoc dl(N);
11831 
11832   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11833   // If we're tracking CR bits, we need to be careful that we don't have:
11834   //   trunc(binary-ops(zext(x), zext(y)))
11835   // or
11836   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11837   // such that we're unnecessarily moving things into GPRs when it would be
11838   // better to keep them in CR bits.
11839 
11840   // Note that trunc here can be an actual i1 trunc, or can be the effective
11841   // truncation that comes from a setcc or select_cc.
11842   if (N->getOpcode() == ISD::TRUNCATE &&
11843       N->getValueType(0) != MVT::i1)
11844     return SDValue();
11845 
11846   if (N->getOperand(0).getValueType() != MVT::i32 &&
11847       N->getOperand(0).getValueType() != MVT::i64)
11848     return SDValue();
11849 
11850   if (N->getOpcode() == ISD::SETCC ||
11851       N->getOpcode() == ISD::SELECT_CC) {
11852     // If we're looking at a comparison, then we need to make sure that the
11853     // high bits (all except for the first) don't matter the result.
11854     ISD::CondCode CC =
11855       cast<CondCodeSDNode>(N->getOperand(
11856         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11857     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11858 
11859     if (ISD::isSignedIntSetCC(CC)) {
11860       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11861           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11862         return SDValue();
11863     } else if (ISD::isUnsignedIntSetCC(CC)) {
11864       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11865                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11866           !DAG.MaskedValueIsZero(N->getOperand(1),
11867                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11868         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11869                                              : SDValue());
11870     } else {
11871       // This is neither a signed nor an unsigned comparison, just make sure
11872       // that the high bits are equal.
11873       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11874       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11875 
11876       // We don't really care about what is known about the first bit (if
11877       // anything), so clear it in all masks prior to comparing them.
11878       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11879       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11880 
11881       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11882         return SDValue();
11883     }
11884   }
11885 
11886   // We now know that the higher-order bits are irrelevant, we just need to
11887   // make sure that all of the intermediate operations are bit operations, and
11888   // all inputs are extensions.
11889   if (N->getOperand(0).getOpcode() != ISD::AND &&
11890       N->getOperand(0).getOpcode() != ISD::OR  &&
11891       N->getOperand(0).getOpcode() != ISD::XOR &&
11892       N->getOperand(0).getOpcode() != ISD::SELECT &&
11893       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11894       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11895       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11896       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11897       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11898     return SDValue();
11899 
11900   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11901       N->getOperand(1).getOpcode() != ISD::AND &&
11902       N->getOperand(1).getOpcode() != ISD::OR  &&
11903       N->getOperand(1).getOpcode() != ISD::XOR &&
11904       N->getOperand(1).getOpcode() != ISD::SELECT &&
11905       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11906       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11907       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11908       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11909       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11910     return SDValue();
11911 
11912   SmallVector<SDValue, 4> Inputs;
11913   SmallVector<SDValue, 8> BinOps, PromOps;
11914   SmallPtrSet<SDNode *, 16> Visited;
11915 
11916   for (unsigned i = 0; i < 2; ++i) {
11917     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11918           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11919           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11920           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11921         isa<ConstantSDNode>(N->getOperand(i)))
11922       Inputs.push_back(N->getOperand(i));
11923     else
11924       BinOps.push_back(N->getOperand(i));
11925 
11926     if (N->getOpcode() == ISD::TRUNCATE)
11927       break;
11928   }
11929 
11930   // Visit all inputs, collect all binary operations (and, or, xor and
11931   // select) that are all fed by extensions.
11932   while (!BinOps.empty()) {
11933     SDValue BinOp = BinOps.back();
11934     BinOps.pop_back();
11935 
11936     if (!Visited.insert(BinOp.getNode()).second)
11937       continue;
11938 
11939     PromOps.push_back(BinOp);
11940 
11941     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11942       // The condition of the select is not promoted.
11943       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11944         continue;
11945       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11946         continue;
11947 
11948       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11949             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11950             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11951            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11952           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11953         Inputs.push_back(BinOp.getOperand(i));
11954       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11955                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11956                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11957                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11958                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11959                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11960                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11961                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11962                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11963         BinOps.push_back(BinOp.getOperand(i));
11964       } else {
11965         // We have an input that is not an extension or another binary
11966         // operation; we'll abort this transformation.
11967         return SDValue();
11968       }
11969     }
11970   }
11971 
11972   // Make sure that this is a self-contained cluster of operations (which
11973   // is not quite the same thing as saying that everything has only one
11974   // use).
11975   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11976     if (isa<ConstantSDNode>(Inputs[i]))
11977       continue;
11978 
11979     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11980                               UE = Inputs[i].getNode()->use_end();
11981          UI != UE; ++UI) {
11982       SDNode *User = *UI;
11983       if (User != N && !Visited.count(User))
11984         return SDValue();
11985 
11986       // Make sure that we're not going to promote the non-output-value
11987       // operand(s) or SELECT or SELECT_CC.
11988       // FIXME: Although we could sometimes handle this, and it does occur in
11989       // practice that one of the condition inputs to the select is also one of
11990       // the outputs, we currently can't deal with this.
11991       if (User->getOpcode() == ISD::SELECT) {
11992         if (User->getOperand(0) == Inputs[i])
11993           return SDValue();
11994       } else if (User->getOpcode() == ISD::SELECT_CC) {
11995         if (User->getOperand(0) == Inputs[i] ||
11996             User->getOperand(1) == Inputs[i])
11997           return SDValue();
11998       }
11999     }
12000   }
12001 
12002   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12003     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12004                               UE = PromOps[i].getNode()->use_end();
12005          UI != UE; ++UI) {
12006       SDNode *User = *UI;
12007       if (User != N && !Visited.count(User))
12008         return SDValue();
12009 
12010       // Make sure that we're not going to promote the non-output-value
12011       // operand(s) or SELECT or SELECT_CC.
12012       // FIXME: Although we could sometimes handle this, and it does occur in
12013       // practice that one of the condition inputs to the select is also one of
12014       // the outputs, we currently can't deal with this.
12015       if (User->getOpcode() == ISD::SELECT) {
12016         if (User->getOperand(0) == PromOps[i])
12017           return SDValue();
12018       } else if (User->getOpcode() == ISD::SELECT_CC) {
12019         if (User->getOperand(0) == PromOps[i] ||
12020             User->getOperand(1) == PromOps[i])
12021           return SDValue();
12022       }
12023     }
12024   }
12025 
12026   // Replace all inputs with the extension operand.
12027   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12028     // Constants may have users outside the cluster of to-be-promoted nodes,
12029     // and so we need to replace those as we do the promotions.
12030     if (isa<ConstantSDNode>(Inputs[i]))
12031       continue;
12032     else
12033       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12034   }
12035 
12036   std::list<HandleSDNode> PromOpHandles;
12037   for (auto &PromOp : PromOps)
12038     PromOpHandles.emplace_back(PromOp);
12039 
12040   // Replace all operations (these are all the same, but have a different
12041   // (i1) return type). DAG.getNode will validate that the types of
12042   // a binary operator match, so go through the list in reverse so that
12043   // we've likely promoted both operands first. Any intermediate truncations or
12044   // extensions disappear.
12045   while (!PromOpHandles.empty()) {
12046     SDValue PromOp = PromOpHandles.back().getValue();
12047     PromOpHandles.pop_back();
12048 
12049     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12050         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12051         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12052         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12053       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12054           PromOp.getOperand(0).getValueType() != MVT::i1) {
12055         // The operand is not yet ready (see comment below).
12056         PromOpHandles.emplace_front(PromOp);
12057         continue;
12058       }
12059 
12060       SDValue RepValue = PromOp.getOperand(0);
12061       if (isa<ConstantSDNode>(RepValue))
12062         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12063 
12064       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12065       continue;
12066     }
12067 
12068     unsigned C;
12069     switch (PromOp.getOpcode()) {
12070     default:             C = 0; break;
12071     case ISD::SELECT:    C = 1; break;
12072     case ISD::SELECT_CC: C = 2; break;
12073     }
12074 
12075     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12076          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12077         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12078          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12079       // The to-be-promoted operands of this node have not yet been
12080       // promoted (this should be rare because we're going through the
12081       // list backward, but if one of the operands has several users in
12082       // this cluster of to-be-promoted nodes, it is possible).
12083       PromOpHandles.emplace_front(PromOp);
12084       continue;
12085     }
12086 
12087     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12088                                 PromOp.getNode()->op_end());
12089 
12090     // If there are any constant inputs, make sure they're replaced now.
12091     for (unsigned i = 0; i < 2; ++i)
12092       if (isa<ConstantSDNode>(Ops[C+i]))
12093         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12094 
12095     DAG.ReplaceAllUsesOfValueWith(PromOp,
12096       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12097   }
12098 
12099   // Now we're left with the initial truncation itself.
12100   if (N->getOpcode() == ISD::TRUNCATE)
12101     return N->getOperand(0);
12102 
12103   // Otherwise, this is a comparison. The operands to be compared have just
12104   // changed type (to i1), but everything else is the same.
12105   return SDValue(N, 0);
12106 }
12107 
12108 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12109                                                   DAGCombinerInfo &DCI) const {
12110   SelectionDAG &DAG = DCI.DAG;
12111   SDLoc dl(N);
12112 
12113   // If we're tracking CR bits, we need to be careful that we don't have:
12114   //   zext(binary-ops(trunc(x), trunc(y)))
12115   // or
12116   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12117   // such that we're unnecessarily moving things into CR bits that can more
12118   // efficiently stay in GPRs. Note that if we're not certain that the high
12119   // bits are set as required by the final extension, we still may need to do
12120   // some masking to get the proper behavior.
12121 
12122   // This same functionality is important on PPC64 when dealing with
12123   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12124   // the return values of functions. Because it is so similar, it is handled
12125   // here as well.
12126 
12127   if (N->getValueType(0) != MVT::i32 &&
12128       N->getValueType(0) != MVT::i64)
12129     return SDValue();
12130 
12131   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12132         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12133     return SDValue();
12134 
12135   if (N->getOperand(0).getOpcode() != ISD::AND &&
12136       N->getOperand(0).getOpcode() != ISD::OR  &&
12137       N->getOperand(0).getOpcode() != ISD::XOR &&
12138       N->getOperand(0).getOpcode() != ISD::SELECT &&
12139       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12140     return SDValue();
12141 
12142   SmallVector<SDValue, 4> Inputs;
12143   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12144   SmallPtrSet<SDNode *, 16> Visited;
12145 
12146   // Visit all inputs, collect all binary operations (and, or, xor and
12147   // select) that are all fed by truncations.
12148   while (!BinOps.empty()) {
12149     SDValue BinOp = BinOps.back();
12150     BinOps.pop_back();
12151 
12152     if (!Visited.insert(BinOp.getNode()).second)
12153       continue;
12154 
12155     PromOps.push_back(BinOp);
12156 
12157     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12158       // The condition of the select is not promoted.
12159       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12160         continue;
12161       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12162         continue;
12163 
12164       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12165           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12166         Inputs.push_back(BinOp.getOperand(i));
12167       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12168                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12169                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12170                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12171                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12172         BinOps.push_back(BinOp.getOperand(i));
12173       } else {
12174         // We have an input that is not a truncation or another binary
12175         // operation; we'll abort this transformation.
12176         return SDValue();
12177       }
12178     }
12179   }
12180 
12181   // The operands of a select that must be truncated when the select is
12182   // promoted because the operand is actually part of the to-be-promoted set.
12183   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12184 
12185   // Make sure that this is a self-contained cluster of operations (which
12186   // is not quite the same thing as saying that everything has only one
12187   // use).
12188   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12189     if (isa<ConstantSDNode>(Inputs[i]))
12190       continue;
12191 
12192     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12193                               UE = Inputs[i].getNode()->use_end();
12194          UI != UE; ++UI) {
12195       SDNode *User = *UI;
12196       if (User != N && !Visited.count(User))
12197         return SDValue();
12198 
12199       // If we're going to promote the non-output-value operand(s) or SELECT or
12200       // SELECT_CC, record them for truncation.
12201       if (User->getOpcode() == ISD::SELECT) {
12202         if (User->getOperand(0) == Inputs[i])
12203           SelectTruncOp[0].insert(std::make_pair(User,
12204                                     User->getOperand(0).getValueType()));
12205       } else if (User->getOpcode() == ISD::SELECT_CC) {
12206         if (User->getOperand(0) == Inputs[i])
12207           SelectTruncOp[0].insert(std::make_pair(User,
12208                                     User->getOperand(0).getValueType()));
12209         if (User->getOperand(1) == Inputs[i])
12210           SelectTruncOp[1].insert(std::make_pair(User,
12211                                     User->getOperand(1).getValueType()));
12212       }
12213     }
12214   }
12215 
12216   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12217     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12218                               UE = PromOps[i].getNode()->use_end();
12219          UI != UE; ++UI) {
12220       SDNode *User = *UI;
12221       if (User != N && !Visited.count(User))
12222         return SDValue();
12223 
12224       // If we're going to promote the non-output-value operand(s) or SELECT or
12225       // SELECT_CC, record them for truncation.
12226       if (User->getOpcode() == ISD::SELECT) {
12227         if (User->getOperand(0) == PromOps[i])
12228           SelectTruncOp[0].insert(std::make_pair(User,
12229                                     User->getOperand(0).getValueType()));
12230       } else if (User->getOpcode() == ISD::SELECT_CC) {
12231         if (User->getOperand(0) == PromOps[i])
12232           SelectTruncOp[0].insert(std::make_pair(User,
12233                                     User->getOperand(0).getValueType()));
12234         if (User->getOperand(1) == PromOps[i])
12235           SelectTruncOp[1].insert(std::make_pair(User,
12236                                     User->getOperand(1).getValueType()));
12237       }
12238     }
12239   }
12240 
12241   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12242   bool ReallyNeedsExt = false;
12243   if (N->getOpcode() != ISD::ANY_EXTEND) {
12244     // If all of the inputs are not already sign/zero extended, then
12245     // we'll still need to do that at the end.
12246     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12247       if (isa<ConstantSDNode>(Inputs[i]))
12248         continue;
12249 
12250       unsigned OpBits =
12251         Inputs[i].getOperand(0).getValueSizeInBits();
12252       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12253 
12254       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12255            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12256                                   APInt::getHighBitsSet(OpBits,
12257                                                         OpBits-PromBits))) ||
12258           (N->getOpcode() == ISD::SIGN_EXTEND &&
12259            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12260              (OpBits-(PromBits-1)))) {
12261         ReallyNeedsExt = true;
12262         break;
12263       }
12264     }
12265   }
12266 
12267   // Replace all inputs, either with the truncation operand, or a
12268   // truncation or extension to the final output type.
12269   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12270     // Constant inputs need to be replaced with the to-be-promoted nodes that
12271     // use them because they might have users outside of the cluster of
12272     // promoted nodes.
12273     if (isa<ConstantSDNode>(Inputs[i]))
12274       continue;
12275 
12276     SDValue InSrc = Inputs[i].getOperand(0);
12277     if (Inputs[i].getValueType() == N->getValueType(0))
12278       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12279     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12280       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12281         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12282     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12283       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12284         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12285     else
12286       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12287         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12288   }
12289 
12290   std::list<HandleSDNode> PromOpHandles;
12291   for (auto &PromOp : PromOps)
12292     PromOpHandles.emplace_back(PromOp);
12293 
12294   // Replace all operations (these are all the same, but have a different
12295   // (promoted) return type). DAG.getNode will validate that the types of
12296   // a binary operator match, so go through the list in reverse so that
12297   // we've likely promoted both operands first.
12298   while (!PromOpHandles.empty()) {
12299     SDValue PromOp = PromOpHandles.back().getValue();
12300     PromOpHandles.pop_back();
12301 
12302     unsigned C;
12303     switch (PromOp.getOpcode()) {
12304     default:             C = 0; break;
12305     case ISD::SELECT:    C = 1; break;
12306     case ISD::SELECT_CC: C = 2; break;
12307     }
12308 
12309     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12310          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12311         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12312          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12313       // The to-be-promoted operands of this node have not yet been
12314       // promoted (this should be rare because we're going through the
12315       // list backward, but if one of the operands has several users in
12316       // this cluster of to-be-promoted nodes, it is possible).
12317       PromOpHandles.emplace_front(PromOp);
12318       continue;
12319     }
12320 
12321     // For SELECT and SELECT_CC nodes, we do a similar check for any
12322     // to-be-promoted comparison inputs.
12323     if (PromOp.getOpcode() == ISD::SELECT ||
12324         PromOp.getOpcode() == ISD::SELECT_CC) {
12325       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12326            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12327           (SelectTruncOp[1].count(PromOp.getNode()) &&
12328            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12329         PromOpHandles.emplace_front(PromOp);
12330         continue;
12331       }
12332     }
12333 
12334     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12335                                 PromOp.getNode()->op_end());
12336 
12337     // If this node has constant inputs, then they'll need to be promoted here.
12338     for (unsigned i = 0; i < 2; ++i) {
12339       if (!isa<ConstantSDNode>(Ops[C+i]))
12340         continue;
12341       if (Ops[C+i].getValueType() == N->getValueType(0))
12342         continue;
12343 
12344       if (N->getOpcode() == ISD::SIGN_EXTEND)
12345         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12346       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12347         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12348       else
12349         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12350     }
12351 
12352     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12353     // truncate them again to the original value type.
12354     if (PromOp.getOpcode() == ISD::SELECT ||
12355         PromOp.getOpcode() == ISD::SELECT_CC) {
12356       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12357       if (SI0 != SelectTruncOp[0].end())
12358         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12359       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12360       if (SI1 != SelectTruncOp[1].end())
12361         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12362     }
12363 
12364     DAG.ReplaceAllUsesOfValueWith(PromOp,
12365       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12366   }
12367 
12368   // Now we're left with the initial extension itself.
12369   if (!ReallyNeedsExt)
12370     return N->getOperand(0);
12371 
12372   // To zero extend, just mask off everything except for the first bit (in the
12373   // i1 case).
12374   if (N->getOpcode() == ISD::ZERO_EXTEND)
12375     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12376                        DAG.getConstant(APInt::getLowBitsSet(
12377                                          N->getValueSizeInBits(0), PromBits),
12378                                        dl, N->getValueType(0)));
12379 
12380   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12381          "Invalid extension type");
12382   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12383   SDValue ShiftCst =
12384       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12385   return DAG.getNode(
12386       ISD::SRA, dl, N->getValueType(0),
12387       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12388       ShiftCst);
12389 }
12390 
12391 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12392                                         DAGCombinerInfo &DCI) const {
12393   assert(N->getOpcode() == ISD::SETCC &&
12394          "Should be called with a SETCC node");
12395 
12396   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12397   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12398     SDValue LHS = N->getOperand(0);
12399     SDValue RHS = N->getOperand(1);
12400 
12401     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12402     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12403         LHS.hasOneUse())
12404       std::swap(LHS, RHS);
12405 
12406     // x == 0-y --> x+y == 0
12407     // x != 0-y --> x+y != 0
12408     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12409         RHS.hasOneUse()) {
12410       SDLoc DL(N);
12411       SelectionDAG &DAG = DCI.DAG;
12412       EVT VT = N->getValueType(0);
12413       EVT OpVT = LHS.getValueType();
12414       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12415       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12416     }
12417   }
12418 
12419   return DAGCombineTruncBoolExt(N, DCI);
12420 }
12421 
12422 // Is this an extending load from an f32 to an f64?
12423 static bool isFPExtLoad(SDValue Op) {
12424   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12425     return LD->getExtensionType() == ISD::EXTLOAD &&
12426       Op.getValueType() == MVT::f64;
12427   return false;
12428 }
12429 
12430 /// Reduces the number of fp-to-int conversion when building a vector.
12431 ///
12432 /// If this vector is built out of floating to integer conversions,
12433 /// transform it to a vector built out of floating point values followed by a
12434 /// single floating to integer conversion of the vector.
12435 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12436 /// becomes (fptosi (build_vector ($A, $B, ...)))
12437 SDValue PPCTargetLowering::
12438 combineElementTruncationToVectorTruncation(SDNode *N,
12439                                            DAGCombinerInfo &DCI) const {
12440   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12441          "Should be called with a BUILD_VECTOR node");
12442 
12443   SelectionDAG &DAG = DCI.DAG;
12444   SDLoc dl(N);
12445 
12446   SDValue FirstInput = N->getOperand(0);
12447   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12448          "The input operand must be an fp-to-int conversion.");
12449 
12450   // This combine happens after legalization so the fp_to_[su]i nodes are
12451   // already converted to PPCSISD nodes.
12452   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12453   if (FirstConversion == PPCISD::FCTIDZ ||
12454       FirstConversion == PPCISD::FCTIDUZ ||
12455       FirstConversion == PPCISD::FCTIWZ ||
12456       FirstConversion == PPCISD::FCTIWUZ) {
12457     bool IsSplat = true;
12458     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12459       FirstConversion == PPCISD::FCTIWUZ;
12460     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12461     SmallVector<SDValue, 4> Ops;
12462     EVT TargetVT = N->getValueType(0);
12463     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12464       SDValue NextOp = N->getOperand(i);
12465       if (NextOp.getOpcode() != PPCISD::MFVSR)
12466         return SDValue();
12467       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12468       if (NextConversion != FirstConversion)
12469         return SDValue();
12470       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12471       // This is not valid if the input was originally double precision. It is
12472       // also not profitable to do unless this is an extending load in which
12473       // case doing this combine will allow us to combine consecutive loads.
12474       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12475         return SDValue();
12476       if (N->getOperand(i) != FirstInput)
12477         IsSplat = false;
12478     }
12479 
12480     // If this is a splat, we leave it as-is since there will be only a single
12481     // fp-to-int conversion followed by a splat of the integer. This is better
12482     // for 32-bit and smaller ints and neutral for 64-bit ints.
12483     if (IsSplat)
12484       return SDValue();
12485 
12486     // Now that we know we have the right type of node, get its operands
12487     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12488       SDValue In = N->getOperand(i).getOperand(0);
12489       if (Is32Bit) {
12490         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12491         // here, we know that all inputs are extending loads so this is safe).
12492         if (In.isUndef())
12493           Ops.push_back(DAG.getUNDEF(SrcVT));
12494         else {
12495           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12496                                       MVT::f32, In.getOperand(0),
12497                                       DAG.getIntPtrConstant(1, dl));
12498           Ops.push_back(Trunc);
12499         }
12500       } else
12501         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12502     }
12503 
12504     unsigned Opcode;
12505     if (FirstConversion == PPCISD::FCTIDZ ||
12506         FirstConversion == PPCISD::FCTIWZ)
12507       Opcode = ISD::FP_TO_SINT;
12508     else
12509       Opcode = ISD::FP_TO_UINT;
12510 
12511     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12512     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12513     return DAG.getNode(Opcode, dl, TargetVT, BV);
12514   }
12515   return SDValue();
12516 }
12517 
12518 /// Reduce the number of loads when building a vector.
12519 ///
12520 /// Building a vector out of multiple loads can be converted to a load
12521 /// of the vector type if the loads are consecutive. If the loads are
12522 /// consecutive but in descending order, a shuffle is added at the end
12523 /// to reorder the vector.
12524 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12525   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12526          "Should be called with a BUILD_VECTOR node");
12527 
12528   SDLoc dl(N);
12529 
12530   // Return early for non byte-sized type, as they can't be consecutive.
12531   if (!N->getValueType(0).getVectorElementType().isByteSized())
12532     return SDValue();
12533 
12534   bool InputsAreConsecutiveLoads = true;
12535   bool InputsAreReverseConsecutive = true;
12536   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
12537   SDValue FirstInput = N->getOperand(0);
12538   bool IsRoundOfExtLoad = false;
12539 
12540   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12541       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12542     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12543     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12544   }
12545   // Not a build vector of (possibly fp_rounded) loads.
12546   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12547       N->getNumOperands() == 1)
12548     return SDValue();
12549 
12550   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12551     // If any inputs are fp_round(extload), they all must be.
12552     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12553       return SDValue();
12554 
12555     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12556       N->getOperand(i);
12557     if (NextInput.getOpcode() != ISD::LOAD)
12558       return SDValue();
12559 
12560     SDValue PreviousInput =
12561       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12562     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12563     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12564 
12565     // If any inputs are fp_round(extload), they all must be.
12566     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12567       return SDValue();
12568 
12569     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12570       InputsAreConsecutiveLoads = false;
12571     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12572       InputsAreReverseConsecutive = false;
12573 
12574     // Exit early if the loads are neither consecutive nor reverse consecutive.
12575     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12576       return SDValue();
12577   }
12578 
12579   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12580          "The loads cannot be both consecutive and reverse consecutive.");
12581 
12582   SDValue FirstLoadOp =
12583     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12584   SDValue LastLoadOp =
12585     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12586                        N->getOperand(N->getNumOperands()-1);
12587 
12588   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12589   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12590   if (InputsAreConsecutiveLoads) {
12591     assert(LD1 && "Input needs to be a LoadSDNode.");
12592     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12593                        LD1->getBasePtr(), LD1->getPointerInfo(),
12594                        LD1->getAlignment());
12595   }
12596   if (InputsAreReverseConsecutive) {
12597     assert(LDL && "Input needs to be a LoadSDNode.");
12598     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12599                                LDL->getBasePtr(), LDL->getPointerInfo(),
12600                                LDL->getAlignment());
12601     SmallVector<int, 16> Ops;
12602     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12603       Ops.push_back(i);
12604 
12605     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12606                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12607   }
12608   return SDValue();
12609 }
12610 
12611 // This function adds the required vector_shuffle needed to get
12612 // the elements of the vector extract in the correct position
12613 // as specified by the CorrectElems encoding.
12614 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12615                                       SDValue Input, uint64_t Elems,
12616                                       uint64_t CorrectElems) {
12617   SDLoc dl(N);
12618 
12619   unsigned NumElems = Input.getValueType().getVectorNumElements();
12620   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12621 
12622   // Knowing the element indices being extracted from the original
12623   // vector and the order in which they're being inserted, just put
12624   // them at element indices required for the instruction.
12625   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12626     if (DAG.getDataLayout().isLittleEndian())
12627       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12628     else
12629       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12630     CorrectElems = CorrectElems >> 8;
12631     Elems = Elems >> 8;
12632   }
12633 
12634   SDValue Shuffle =
12635       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12636                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12637 
12638   EVT Ty = N->getValueType(0);
12639   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12640   return BV;
12641 }
12642 
12643 // Look for build vector patterns where input operands come from sign
12644 // extended vector_extract elements of specific indices. If the correct indices
12645 // aren't used, add a vector shuffle to fix up the indices and create a new
12646 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12647 // during instruction selection.
12648 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12649   // This array encodes the indices that the vector sign extend instructions
12650   // extract from when extending from one type to another for both BE and LE.
12651   // The right nibble of each byte corresponds to the LE incides.
12652   // and the left nibble of each byte corresponds to the BE incides.
12653   // For example: 0x3074B8FC  byte->word
12654   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12655   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12656   // For example: 0x000070F8  byte->double word
12657   // For LE: the allowed indices are: 0x0,0x8
12658   // For BE: the allowed indices are: 0x7,0xF
12659   uint64_t TargetElems[] = {
12660       0x3074B8FC, // b->w
12661       0x000070F8, // b->d
12662       0x10325476, // h->w
12663       0x00003074, // h->d
12664       0x00001032, // w->d
12665   };
12666 
12667   uint64_t Elems = 0;
12668   int Index;
12669   SDValue Input;
12670 
12671   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12672     if (!Op)
12673       return false;
12674     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12675         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12676       return false;
12677 
12678     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12679     // of the right width.
12680     SDValue Extract = Op.getOperand(0);
12681     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12682       Extract = Extract.getOperand(0);
12683     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12684       return false;
12685 
12686     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12687     if (!ExtOp)
12688       return false;
12689 
12690     Index = ExtOp->getZExtValue();
12691     if (Input && Input != Extract.getOperand(0))
12692       return false;
12693 
12694     if (!Input)
12695       Input = Extract.getOperand(0);
12696 
12697     Elems = Elems << 8;
12698     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12699     Elems |= Index;
12700 
12701     return true;
12702   };
12703 
12704   // If the build vector operands aren't sign extended vector extracts,
12705   // of the same input vector, then return.
12706   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12707     if (!isSExtOfVecExtract(N->getOperand(i))) {
12708       return SDValue();
12709     }
12710   }
12711 
12712   // If the vector extract indicies are not correct, add the appropriate
12713   // vector_shuffle.
12714   int TgtElemArrayIdx;
12715   int InputSize = Input.getValueType().getScalarSizeInBits();
12716   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12717   if (InputSize + OutputSize == 40)
12718     TgtElemArrayIdx = 0;
12719   else if (InputSize + OutputSize == 72)
12720     TgtElemArrayIdx = 1;
12721   else if (InputSize + OutputSize == 48)
12722     TgtElemArrayIdx = 2;
12723   else if (InputSize + OutputSize == 80)
12724     TgtElemArrayIdx = 3;
12725   else if (InputSize + OutputSize == 96)
12726     TgtElemArrayIdx = 4;
12727   else
12728     return SDValue();
12729 
12730   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12731   CorrectElems = DAG.getDataLayout().isLittleEndian()
12732                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12733                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12734   if (Elems != CorrectElems) {
12735     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12736   }
12737 
12738   // Regular lowering will catch cases where a shuffle is not needed.
12739   return SDValue();
12740 }
12741 
12742 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12743                                                  DAGCombinerInfo &DCI) const {
12744   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12745          "Should be called with a BUILD_VECTOR node");
12746 
12747   SelectionDAG &DAG = DCI.DAG;
12748   SDLoc dl(N);
12749 
12750   if (!Subtarget.hasVSX())
12751     return SDValue();
12752 
12753   // The target independent DAG combiner will leave a build_vector of
12754   // float-to-int conversions intact. We can generate MUCH better code for
12755   // a float-to-int conversion of a vector of floats.
12756   SDValue FirstInput = N->getOperand(0);
12757   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12758     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12759     if (Reduced)
12760       return Reduced;
12761   }
12762 
12763   // If we're building a vector out of consecutive loads, just load that
12764   // vector type.
12765   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12766   if (Reduced)
12767     return Reduced;
12768 
12769   // If we're building a vector out of extended elements from another vector
12770   // we have P9 vector integer extend instructions. The code assumes legal
12771   // input types (i.e. it can't handle things like v4i16) so do not run before
12772   // legalization.
12773   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12774     Reduced = combineBVOfVecSExt(N, DAG);
12775     if (Reduced)
12776       return Reduced;
12777   }
12778 
12779 
12780   if (N->getValueType(0) != MVT::v2f64)
12781     return SDValue();
12782 
12783   // Looking for:
12784   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12785   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12786       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12787     return SDValue();
12788   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12789       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12790     return SDValue();
12791   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12792     return SDValue();
12793 
12794   SDValue Ext1 = FirstInput.getOperand(0);
12795   SDValue Ext2 = N->getOperand(1).getOperand(0);
12796   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12797      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12798     return SDValue();
12799 
12800   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12801   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12802   if (!Ext1Op || !Ext2Op)
12803     return SDValue();
12804   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
12805       Ext1.getOperand(0) != Ext2.getOperand(0))
12806     return SDValue();
12807 
12808   int FirstElem = Ext1Op->getZExtValue();
12809   int SecondElem = Ext2Op->getZExtValue();
12810   int SubvecIdx;
12811   if (FirstElem == 0 && SecondElem == 1)
12812     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12813   else if (FirstElem == 2 && SecondElem == 3)
12814     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12815   else
12816     return SDValue();
12817 
12818   SDValue SrcVec = Ext1.getOperand(0);
12819   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12820     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12821   return DAG.getNode(NodeType, dl, MVT::v2f64,
12822                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12823 }
12824 
12825 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12826                                               DAGCombinerInfo &DCI) const {
12827   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12828           N->getOpcode() == ISD::UINT_TO_FP) &&
12829          "Need an int -> FP conversion node here");
12830 
12831   if (useSoftFloat() || !Subtarget.has64BitSupport())
12832     return SDValue();
12833 
12834   SelectionDAG &DAG = DCI.DAG;
12835   SDLoc dl(N);
12836   SDValue Op(N, 0);
12837 
12838   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12839   // from the hardware.
12840   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12841     return SDValue();
12842   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12843       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12844     return SDValue();
12845 
12846   SDValue FirstOperand(Op.getOperand(0));
12847   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12848     (FirstOperand.getValueType() == MVT::i8 ||
12849      FirstOperand.getValueType() == MVT::i16);
12850   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12851     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12852     bool DstDouble = Op.getValueType() == MVT::f64;
12853     unsigned ConvOp = Signed ?
12854       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12855       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12856     SDValue WidthConst =
12857       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12858                             dl, false);
12859     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12860     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12861     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12862                                          DAG.getVTList(MVT::f64, MVT::Other),
12863                                          Ops, MVT::i8, LDN->getMemOperand());
12864 
12865     // For signed conversion, we need to sign-extend the value in the VSR
12866     if (Signed) {
12867       SDValue ExtOps[] = { Ld, WidthConst };
12868       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12869       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12870     } else
12871       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12872   }
12873 
12874 
12875   // For i32 intermediate values, unfortunately, the conversion functions
12876   // leave the upper 32 bits of the value are undefined. Within the set of
12877   // scalar instructions, we have no method for zero- or sign-extending the
12878   // value. Thus, we cannot handle i32 intermediate values here.
12879   if (Op.getOperand(0).getValueType() == MVT::i32)
12880     return SDValue();
12881 
12882   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12883          "UINT_TO_FP is supported only with FPCVT");
12884 
12885   // If we have FCFIDS, then use it when converting to single-precision.
12886   // Otherwise, convert to double-precision and then round.
12887   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12888                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12889                                                             : PPCISD::FCFIDS)
12890                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12891                                                             : PPCISD::FCFID);
12892   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12893                   ? MVT::f32
12894                   : MVT::f64;
12895 
12896   // If we're converting from a float, to an int, and back to a float again,
12897   // then we don't need the store/load pair at all.
12898   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12899        Subtarget.hasFPCVT()) ||
12900       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12901     SDValue Src = Op.getOperand(0).getOperand(0);
12902     if (Src.getValueType() == MVT::f32) {
12903       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12904       DCI.AddToWorklist(Src.getNode());
12905     } else if (Src.getValueType() != MVT::f64) {
12906       // Make sure that we don't pick up a ppc_fp128 source value.
12907       return SDValue();
12908     }
12909 
12910     unsigned FCTOp =
12911       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12912                                                         PPCISD::FCTIDUZ;
12913 
12914     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12915     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12916 
12917     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12918       FP = DAG.getNode(ISD::FP_ROUND, dl,
12919                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12920       DCI.AddToWorklist(FP.getNode());
12921     }
12922 
12923     return FP;
12924   }
12925 
12926   return SDValue();
12927 }
12928 
12929 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12930 // builtins) into loads with swaps.
12931 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12932                                               DAGCombinerInfo &DCI) const {
12933   SelectionDAG &DAG = DCI.DAG;
12934   SDLoc dl(N);
12935   SDValue Chain;
12936   SDValue Base;
12937   MachineMemOperand *MMO;
12938 
12939   switch (N->getOpcode()) {
12940   default:
12941     llvm_unreachable("Unexpected opcode for little endian VSX load");
12942   case ISD::LOAD: {
12943     LoadSDNode *LD = cast<LoadSDNode>(N);
12944     Chain = LD->getChain();
12945     Base = LD->getBasePtr();
12946     MMO = LD->getMemOperand();
12947     // If the MMO suggests this isn't a load of a full vector, leave
12948     // things alone.  For a built-in, we have to make the change for
12949     // correctness, so if there is a size problem that will be a bug.
12950     if (MMO->getSize() < 16)
12951       return SDValue();
12952     break;
12953   }
12954   case ISD::INTRINSIC_W_CHAIN: {
12955     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12956     Chain = Intrin->getChain();
12957     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12958     // us what we want. Get operand 2 instead.
12959     Base = Intrin->getOperand(2);
12960     MMO = Intrin->getMemOperand();
12961     break;
12962   }
12963   }
12964 
12965   MVT VecTy = N->getValueType(0).getSimpleVT();
12966 
12967   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12968   // aligned and the type is a vector with elements up to 4 bytes
12969   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12970       && VecTy.getScalarSizeInBits() <= 32 ) {
12971     return SDValue();
12972   }
12973 
12974   SDValue LoadOps[] = { Chain, Base };
12975   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12976                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12977                                          LoadOps, MVT::v2f64, MMO);
12978 
12979   DCI.AddToWorklist(Load.getNode());
12980   Chain = Load.getValue(1);
12981   SDValue Swap = DAG.getNode(
12982       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12983   DCI.AddToWorklist(Swap.getNode());
12984 
12985   // Add a bitcast if the resulting load type doesn't match v2f64.
12986   if (VecTy != MVT::v2f64) {
12987     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12988     DCI.AddToWorklist(N.getNode());
12989     // Package {bitcast value, swap's chain} to match Load's shape.
12990     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12991                        N, Swap.getValue(1));
12992   }
12993 
12994   return Swap;
12995 }
12996 
12997 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12998 // builtins) into stores with swaps.
12999 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13000                                                DAGCombinerInfo &DCI) const {
13001   SelectionDAG &DAG = DCI.DAG;
13002   SDLoc dl(N);
13003   SDValue Chain;
13004   SDValue Base;
13005   unsigned SrcOpnd;
13006   MachineMemOperand *MMO;
13007 
13008   switch (N->getOpcode()) {
13009   default:
13010     llvm_unreachable("Unexpected opcode for little endian VSX store");
13011   case ISD::STORE: {
13012     StoreSDNode *ST = cast<StoreSDNode>(N);
13013     Chain = ST->getChain();
13014     Base = ST->getBasePtr();
13015     MMO = ST->getMemOperand();
13016     SrcOpnd = 1;
13017     // If the MMO suggests this isn't a store of a full vector, leave
13018     // things alone.  For a built-in, we have to make the change for
13019     // correctness, so if there is a size problem that will be a bug.
13020     if (MMO->getSize() < 16)
13021       return SDValue();
13022     break;
13023   }
13024   case ISD::INTRINSIC_VOID: {
13025     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13026     Chain = Intrin->getChain();
13027     // Intrin->getBasePtr() oddly does not get what we want.
13028     Base = Intrin->getOperand(3);
13029     MMO = Intrin->getMemOperand();
13030     SrcOpnd = 2;
13031     break;
13032   }
13033   }
13034 
13035   SDValue Src = N->getOperand(SrcOpnd);
13036   MVT VecTy = Src.getValueType().getSimpleVT();
13037 
13038   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13039   // aligned and the type is a vector with elements up to 4 bytes
13040   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13041       && VecTy.getScalarSizeInBits() <= 32 ) {
13042     return SDValue();
13043   }
13044 
13045   // All stores are done as v2f64 and possible bit cast.
13046   if (VecTy != MVT::v2f64) {
13047     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13048     DCI.AddToWorklist(Src.getNode());
13049   }
13050 
13051   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13052                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13053   DCI.AddToWorklist(Swap.getNode());
13054   Chain = Swap.getValue(1);
13055   SDValue StoreOps[] = { Chain, Swap, Base };
13056   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13057                                           DAG.getVTList(MVT::Other),
13058                                           StoreOps, VecTy, MMO);
13059   DCI.AddToWorklist(Store.getNode());
13060   return Store;
13061 }
13062 
13063 // Handle DAG combine for STORE (FP_TO_INT F).
13064 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13065                                                DAGCombinerInfo &DCI) const {
13066 
13067   SelectionDAG &DAG = DCI.DAG;
13068   SDLoc dl(N);
13069   unsigned Opcode = N->getOperand(1).getOpcode();
13070 
13071   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13072          && "Not a FP_TO_INT Instruction!");
13073 
13074   SDValue Val = N->getOperand(1).getOperand(0);
13075   EVT Op1VT = N->getOperand(1).getValueType();
13076   EVT ResVT = Val.getValueType();
13077 
13078   // Floating point types smaller than 32 bits are not legal on Power.
13079   if (ResVT.getScalarSizeInBits() < 32)
13080     return SDValue();
13081 
13082   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13083   bool ValidTypeForStoreFltAsInt =
13084         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13085          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13086 
13087   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13088       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13089     return SDValue();
13090 
13091   // Extend f32 values to f64
13092   if (ResVT.getScalarSizeInBits() == 32) {
13093     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13094     DCI.AddToWorklist(Val.getNode());
13095   }
13096 
13097   // Set signed or unsigned conversion opcode.
13098   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13099                           PPCISD::FP_TO_SINT_IN_VSR :
13100                           PPCISD::FP_TO_UINT_IN_VSR;
13101 
13102   Val = DAG.getNode(ConvOpcode,
13103                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13104   DCI.AddToWorklist(Val.getNode());
13105 
13106   // Set number of bytes being converted.
13107   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13108   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13109                     DAG.getIntPtrConstant(ByteSize, dl, false),
13110                     DAG.getValueType(Op1VT) };
13111 
13112   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13113           DAG.getVTList(MVT::Other), Ops,
13114           cast<StoreSDNode>(N)->getMemoryVT(),
13115           cast<StoreSDNode>(N)->getMemOperand());
13116 
13117   DCI.AddToWorklist(Val.getNode());
13118   return Val;
13119 }
13120 
13121 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13122                                              DAGCombinerInfo &DCI) const {
13123   SelectionDAG &DAG = DCI.DAG;
13124   SDLoc dl(N);
13125   switch (N->getOpcode()) {
13126   default: break;
13127   case ISD::ADD:
13128     return combineADD(N, DCI);
13129   case ISD::SHL:
13130     return combineSHL(N, DCI);
13131   case ISD::SRA:
13132     return combineSRA(N, DCI);
13133   case ISD::SRL:
13134     return combineSRL(N, DCI);
13135   case ISD::MUL:
13136     return combineMUL(N, DCI);
13137   case PPCISD::SHL:
13138     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13139         return N->getOperand(0);
13140     break;
13141   case PPCISD::SRL:
13142     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13143         return N->getOperand(0);
13144     break;
13145   case PPCISD::SRA:
13146     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13147       if (C->isNullValue() ||   //  0 >>s V -> 0.
13148           C->isAllOnesValue())    // -1 >>s V -> -1.
13149         return N->getOperand(0);
13150     }
13151     break;
13152   case ISD::SIGN_EXTEND:
13153   case ISD::ZERO_EXTEND:
13154   case ISD::ANY_EXTEND:
13155     return DAGCombineExtBoolTrunc(N, DCI);
13156   case ISD::TRUNCATE:
13157     return combineTRUNCATE(N, DCI);
13158   case ISD::SETCC:
13159     if (SDValue CSCC = combineSetCC(N, DCI))
13160       return CSCC;
13161     LLVM_FALLTHROUGH;
13162   case ISD::SELECT_CC:
13163     return DAGCombineTruncBoolExt(N, DCI);
13164   case ISD::SINT_TO_FP:
13165   case ISD::UINT_TO_FP:
13166     return combineFPToIntToFP(N, DCI);
13167   case ISD::STORE: {
13168 
13169     EVT Op1VT = N->getOperand(1).getValueType();
13170     unsigned Opcode = N->getOperand(1).getOpcode();
13171 
13172     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13173       SDValue Val= combineStoreFPToInt(N, DCI);
13174       if (Val)
13175         return Val;
13176     }
13177 
13178     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13179     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13180         N->getOperand(1).getNode()->hasOneUse() &&
13181         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13182          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13183 
13184       // STBRX can only handle simple types and it makes no sense to store less
13185       // two bytes in byte-reversed order.
13186       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13187       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13188         break;
13189 
13190       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13191       // Do an any-extend to 32-bits if this is a half-word input.
13192       if (BSwapOp.getValueType() == MVT::i16)
13193         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13194 
13195       // If the type of BSWAP operand is wider than stored memory width
13196       // it need to be shifted to the right side before STBRX.
13197       if (Op1VT.bitsGT(mVT)) {
13198         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13199         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13200                               DAG.getConstant(Shift, dl, MVT::i32));
13201         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13202         if (Op1VT == MVT::i64)
13203           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13204       }
13205 
13206       SDValue Ops[] = {
13207         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13208       };
13209       return
13210         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13211                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13212                                 cast<StoreSDNode>(N)->getMemOperand());
13213     }
13214 
13215     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13216     // So it can increase the chance of CSE constant construction.
13217     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13218         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13219       // Need to sign-extended to 64-bits to handle negative values.
13220       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13221       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13222                                     MemVT.getSizeInBits());
13223       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13224 
13225       // DAG.getTruncStore() can't be used here because it doesn't accept
13226       // the general (base + offset) addressing mode.
13227       // So we use UpdateNodeOperands and setTruncatingStore instead.
13228       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13229                              N->getOperand(3));
13230       cast<StoreSDNode>(N)->setTruncatingStore(true);
13231       return SDValue(N, 0);
13232     }
13233 
13234     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13235     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13236     if (Op1VT.isSimple()) {
13237       MVT StoreVT = Op1VT.getSimpleVT();
13238       if (Subtarget.needsSwapsForVSXMemOps() &&
13239           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13240            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13241         return expandVSXStoreForLE(N, DCI);
13242     }
13243     break;
13244   }
13245   case ISD::LOAD: {
13246     LoadSDNode *LD = cast<LoadSDNode>(N);
13247     EVT VT = LD->getValueType(0);
13248 
13249     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13250     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13251     if (VT.isSimple()) {
13252       MVT LoadVT = VT.getSimpleVT();
13253       if (Subtarget.needsSwapsForVSXMemOps() &&
13254           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13255            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13256         return expandVSXLoadForLE(N, DCI);
13257     }
13258 
13259     // We sometimes end up with a 64-bit integer load, from which we extract
13260     // two single-precision floating-point numbers. This happens with
13261     // std::complex<float>, and other similar structures, because of the way we
13262     // canonicalize structure copies. However, if we lack direct moves,
13263     // then the final bitcasts from the extracted integer values to the
13264     // floating-point numbers turn into store/load pairs. Even with direct moves,
13265     // just loading the two floating-point numbers is likely better.
13266     auto ReplaceTwoFloatLoad = [&]() {
13267       if (VT != MVT::i64)
13268         return false;
13269 
13270       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13271           LD->isVolatile())
13272         return false;
13273 
13274       //  We're looking for a sequence like this:
13275       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13276       //      t16: i64 = srl t13, Constant:i32<32>
13277       //    t17: i32 = truncate t16
13278       //  t18: f32 = bitcast t17
13279       //    t19: i32 = truncate t13
13280       //  t20: f32 = bitcast t19
13281 
13282       if (!LD->hasNUsesOfValue(2, 0))
13283         return false;
13284 
13285       auto UI = LD->use_begin();
13286       while (UI.getUse().getResNo() != 0) ++UI;
13287       SDNode *Trunc = *UI++;
13288       while (UI.getUse().getResNo() != 0) ++UI;
13289       SDNode *RightShift = *UI;
13290       if (Trunc->getOpcode() != ISD::TRUNCATE)
13291         std::swap(Trunc, RightShift);
13292 
13293       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13294           Trunc->getValueType(0) != MVT::i32 ||
13295           !Trunc->hasOneUse())
13296         return false;
13297       if (RightShift->getOpcode() != ISD::SRL ||
13298           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13299           RightShift->getConstantOperandVal(1) != 32 ||
13300           !RightShift->hasOneUse())
13301         return false;
13302 
13303       SDNode *Trunc2 = *RightShift->use_begin();
13304       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13305           Trunc2->getValueType(0) != MVT::i32 ||
13306           !Trunc2->hasOneUse())
13307         return false;
13308 
13309       SDNode *Bitcast = *Trunc->use_begin();
13310       SDNode *Bitcast2 = *Trunc2->use_begin();
13311 
13312       if (Bitcast->getOpcode() != ISD::BITCAST ||
13313           Bitcast->getValueType(0) != MVT::f32)
13314         return false;
13315       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13316           Bitcast2->getValueType(0) != MVT::f32)
13317         return false;
13318 
13319       if (Subtarget.isLittleEndian())
13320         std::swap(Bitcast, Bitcast2);
13321 
13322       // Bitcast has the second float (in memory-layout order) and Bitcast2
13323       // has the first one.
13324 
13325       SDValue BasePtr = LD->getBasePtr();
13326       if (LD->isIndexed()) {
13327         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13328                "Non-pre-inc AM on PPC?");
13329         BasePtr =
13330           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13331                       LD->getOffset());
13332       }
13333 
13334       auto MMOFlags =
13335           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13336       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13337                                       LD->getPointerInfo(), LD->getAlignment(),
13338                                       MMOFlags, LD->getAAInfo());
13339       SDValue AddPtr =
13340         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13341                     BasePtr, DAG.getIntPtrConstant(4, dl));
13342       SDValue FloatLoad2 = DAG.getLoad(
13343           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13344           LD->getPointerInfo().getWithOffset(4),
13345           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13346 
13347       if (LD->isIndexed()) {
13348         // Note that DAGCombine should re-form any pre-increment load(s) from
13349         // what is produced here if that makes sense.
13350         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13351       }
13352 
13353       DCI.CombineTo(Bitcast2, FloatLoad);
13354       DCI.CombineTo(Bitcast, FloatLoad2);
13355 
13356       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13357                                     SDValue(FloatLoad2.getNode(), 1));
13358       return true;
13359     };
13360 
13361     if (ReplaceTwoFloatLoad())
13362       return SDValue(N, 0);
13363 
13364     EVT MemVT = LD->getMemoryVT();
13365     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13366     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13367     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13368     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13369     if (LD->isUnindexed() && VT.isVector() &&
13370         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13371           // P8 and later hardware should just use LOAD.
13372           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13373                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13374          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13375           LD->getAlignment() >= ScalarABIAlignment)) &&
13376         LD->getAlignment() < ABIAlignment) {
13377       // This is a type-legal unaligned Altivec or QPX load.
13378       SDValue Chain = LD->getChain();
13379       SDValue Ptr = LD->getBasePtr();
13380       bool isLittleEndian = Subtarget.isLittleEndian();
13381 
13382       // This implements the loading of unaligned vectors as described in
13383       // the venerable Apple Velocity Engine overview. Specifically:
13384       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13385       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13386       //
13387       // The general idea is to expand a sequence of one or more unaligned
13388       // loads into an alignment-based permutation-control instruction (lvsl
13389       // or lvsr), a series of regular vector loads (which always truncate
13390       // their input address to an aligned address), and a series of
13391       // permutations.  The results of these permutations are the requested
13392       // loaded values.  The trick is that the last "extra" load is not taken
13393       // from the address you might suspect (sizeof(vector) bytes after the
13394       // last requested load), but rather sizeof(vector) - 1 bytes after the
13395       // last requested vector. The point of this is to avoid a page fault if
13396       // the base address happened to be aligned. This works because if the
13397       // base address is aligned, then adding less than a full vector length
13398       // will cause the last vector in the sequence to be (re)loaded.
13399       // Otherwise, the next vector will be fetched as you might suspect was
13400       // necessary.
13401 
13402       // We might be able to reuse the permutation generation from
13403       // a different base address offset from this one by an aligned amount.
13404       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13405       // optimization later.
13406       Intrinsic::ID Intr, IntrLD, IntrPerm;
13407       MVT PermCntlTy, PermTy, LDTy;
13408       if (Subtarget.hasAltivec()) {
13409         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13410                                  Intrinsic::ppc_altivec_lvsl;
13411         IntrLD = Intrinsic::ppc_altivec_lvx;
13412         IntrPerm = Intrinsic::ppc_altivec_vperm;
13413         PermCntlTy = MVT::v16i8;
13414         PermTy = MVT::v4i32;
13415         LDTy = MVT::v4i32;
13416       } else {
13417         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13418                                        Intrinsic::ppc_qpx_qvlpcls;
13419         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13420                                        Intrinsic::ppc_qpx_qvlfs;
13421         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13422         PermCntlTy = MVT::v4f64;
13423         PermTy = MVT::v4f64;
13424         LDTy = MemVT.getSimpleVT();
13425       }
13426 
13427       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13428 
13429       // Create the new MMO for the new base load. It is like the original MMO,
13430       // but represents an area in memory almost twice the vector size centered
13431       // on the original address. If the address is unaligned, we might start
13432       // reading up to (sizeof(vector)-1) bytes below the address of the
13433       // original unaligned load.
13434       MachineFunction &MF = DAG.getMachineFunction();
13435       MachineMemOperand *BaseMMO =
13436         MF.getMachineMemOperand(LD->getMemOperand(),
13437                                 -(long)MemVT.getStoreSize()+1,
13438                                 2*MemVT.getStoreSize()-1);
13439 
13440       // Create the new base load.
13441       SDValue LDXIntID =
13442           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13443       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13444       SDValue BaseLoad =
13445         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13446                                 DAG.getVTList(PermTy, MVT::Other),
13447                                 BaseLoadOps, LDTy, BaseMMO);
13448 
13449       // Note that the value of IncOffset (which is provided to the next
13450       // load's pointer info offset value, and thus used to calculate the
13451       // alignment), and the value of IncValue (which is actually used to
13452       // increment the pointer value) are different! This is because we
13453       // require the next load to appear to be aligned, even though it
13454       // is actually offset from the base pointer by a lesser amount.
13455       int IncOffset = VT.getSizeInBits() / 8;
13456       int IncValue = IncOffset;
13457 
13458       // Walk (both up and down) the chain looking for another load at the real
13459       // (aligned) offset (the alignment of the other load does not matter in
13460       // this case). If found, then do not use the offset reduction trick, as
13461       // that will prevent the loads from being later combined (as they would
13462       // otherwise be duplicates).
13463       if (!findConsecutiveLoad(LD, DAG))
13464         --IncValue;
13465 
13466       SDValue Increment =
13467           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13468       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13469 
13470       MachineMemOperand *ExtraMMO =
13471         MF.getMachineMemOperand(LD->getMemOperand(),
13472                                 1, 2*MemVT.getStoreSize()-1);
13473       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13474       SDValue ExtraLoad =
13475         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13476                                 DAG.getVTList(PermTy, MVT::Other),
13477                                 ExtraLoadOps, LDTy, ExtraMMO);
13478 
13479       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13480         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13481 
13482       // Because vperm has a big-endian bias, we must reverse the order
13483       // of the input vectors and complement the permute control vector
13484       // when generating little endian code.  We have already handled the
13485       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13486       // and ExtraLoad here.
13487       SDValue Perm;
13488       if (isLittleEndian)
13489         Perm = BuildIntrinsicOp(IntrPerm,
13490                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13491       else
13492         Perm = BuildIntrinsicOp(IntrPerm,
13493                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13494 
13495       if (VT != PermTy)
13496         Perm = Subtarget.hasAltivec() ?
13497                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13498                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13499                                DAG.getTargetConstant(1, dl, MVT::i64));
13500                                // second argument is 1 because this rounding
13501                                // is always exact.
13502 
13503       // The output of the permutation is our loaded result, the TokenFactor is
13504       // our new chain.
13505       DCI.CombineTo(N, Perm, TF);
13506       return SDValue(N, 0);
13507     }
13508     }
13509     break;
13510     case ISD::INTRINSIC_WO_CHAIN: {
13511       bool isLittleEndian = Subtarget.isLittleEndian();
13512       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13513       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13514                                            : Intrinsic::ppc_altivec_lvsl);
13515       if ((IID == Intr ||
13516            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13517            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13518         N->getOperand(1)->getOpcode() == ISD::ADD) {
13519         SDValue Add = N->getOperand(1);
13520 
13521         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13522                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13523 
13524         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13525                                   APInt::getAllOnesValue(Bits /* alignment */)
13526                                       .zext(Add.getScalarValueSizeInBits()))) {
13527           SDNode *BasePtr = Add->getOperand(0).getNode();
13528           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13529                                     UE = BasePtr->use_end();
13530                UI != UE; ++UI) {
13531             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13532                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13533               // We've found another LVSL/LVSR, and this address is an aligned
13534               // multiple of that one. The results will be the same, so use the
13535               // one we've just found instead.
13536 
13537               return SDValue(*UI, 0);
13538             }
13539           }
13540         }
13541 
13542         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13543           SDNode *BasePtr = Add->getOperand(0).getNode();
13544           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13545                UE = BasePtr->use_end(); UI != UE; ++UI) {
13546             if (UI->getOpcode() == ISD::ADD &&
13547                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13548                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13549                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13550                 (1ULL << Bits) == 0) {
13551               SDNode *OtherAdd = *UI;
13552               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13553                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13554                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13555                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13556                   return SDValue(*VI, 0);
13557                 }
13558               }
13559             }
13560           }
13561         }
13562       }
13563 
13564       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13565       // Expose the vabsduw/h/b opportunity for down stream
13566       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13567           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13568            IID == Intrinsic::ppc_altivec_vmaxsh ||
13569            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13570         SDValue V1 = N->getOperand(1);
13571         SDValue V2 = N->getOperand(2);
13572         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13573              V1.getSimpleValueType() == MVT::v8i16 ||
13574              V1.getSimpleValueType() == MVT::v16i8) &&
13575             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13576           // (0-a, a)
13577           if (V1.getOpcode() == ISD::SUB &&
13578               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13579               V1.getOperand(1) == V2) {
13580             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13581           }
13582           // (a, 0-a)
13583           if (V2.getOpcode() == ISD::SUB &&
13584               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13585               V2.getOperand(1) == V1) {
13586             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13587           }
13588           // (x-y, y-x)
13589           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13590               V1.getOperand(0) == V2.getOperand(1) &&
13591               V1.getOperand(1) == V2.getOperand(0)) {
13592             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13593           }
13594         }
13595       }
13596     }
13597 
13598     break;
13599   case ISD::INTRINSIC_W_CHAIN:
13600     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13601     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13602     if (Subtarget.needsSwapsForVSXMemOps()) {
13603       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13604       default:
13605         break;
13606       case Intrinsic::ppc_vsx_lxvw4x:
13607       case Intrinsic::ppc_vsx_lxvd2x:
13608         return expandVSXLoadForLE(N, DCI);
13609       }
13610     }
13611     break;
13612   case ISD::INTRINSIC_VOID:
13613     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13614     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13615     if (Subtarget.needsSwapsForVSXMemOps()) {
13616       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13617       default:
13618         break;
13619       case Intrinsic::ppc_vsx_stxvw4x:
13620       case Intrinsic::ppc_vsx_stxvd2x:
13621         return expandVSXStoreForLE(N, DCI);
13622       }
13623     }
13624     break;
13625   case ISD::BSWAP:
13626     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13627     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13628         N->getOperand(0).hasOneUse() &&
13629         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13630          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13631           N->getValueType(0) == MVT::i64))) {
13632       SDValue Load = N->getOperand(0);
13633       LoadSDNode *LD = cast<LoadSDNode>(Load);
13634       // Create the byte-swapping load.
13635       SDValue Ops[] = {
13636         LD->getChain(),    // Chain
13637         LD->getBasePtr(),  // Ptr
13638         DAG.getValueType(N->getValueType(0)) // VT
13639       };
13640       SDValue BSLoad =
13641         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13642                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13643                                               MVT::i64 : MVT::i32, MVT::Other),
13644                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13645 
13646       // If this is an i16 load, insert the truncate.
13647       SDValue ResVal = BSLoad;
13648       if (N->getValueType(0) == MVT::i16)
13649         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13650 
13651       // First, combine the bswap away.  This makes the value produced by the
13652       // load dead.
13653       DCI.CombineTo(N, ResVal);
13654 
13655       // Next, combine the load away, we give it a bogus result value but a real
13656       // chain result.  The result value is dead because the bswap is dead.
13657       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13658 
13659       // Return N so it doesn't get rechecked!
13660       return SDValue(N, 0);
13661     }
13662     break;
13663   case PPCISD::VCMP:
13664     // If a VCMPo node already exists with exactly the same operands as this
13665     // node, use its result instead of this node (VCMPo computes both a CR6 and
13666     // a normal output).
13667     //
13668     if (!N->getOperand(0).hasOneUse() &&
13669         !N->getOperand(1).hasOneUse() &&
13670         !N->getOperand(2).hasOneUse()) {
13671 
13672       // Scan all of the users of the LHS, looking for VCMPo's that match.
13673       SDNode *VCMPoNode = nullptr;
13674 
13675       SDNode *LHSN = N->getOperand(0).getNode();
13676       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13677            UI != E; ++UI)
13678         if (UI->getOpcode() == PPCISD::VCMPo &&
13679             UI->getOperand(1) == N->getOperand(1) &&
13680             UI->getOperand(2) == N->getOperand(2) &&
13681             UI->getOperand(0) == N->getOperand(0)) {
13682           VCMPoNode = *UI;
13683           break;
13684         }
13685 
13686       // If there is no VCMPo node, or if the flag value has a single use, don't
13687       // transform this.
13688       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13689         break;
13690 
13691       // Look at the (necessarily single) use of the flag value.  If it has a
13692       // chain, this transformation is more complex.  Note that multiple things
13693       // could use the value result, which we should ignore.
13694       SDNode *FlagUser = nullptr;
13695       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13696            FlagUser == nullptr; ++UI) {
13697         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13698         SDNode *User = *UI;
13699         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13700           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13701             FlagUser = User;
13702             break;
13703           }
13704         }
13705       }
13706 
13707       // If the user is a MFOCRF instruction, we know this is safe.
13708       // Otherwise we give up for right now.
13709       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13710         return SDValue(VCMPoNode, 0);
13711     }
13712     break;
13713   case ISD::BRCOND: {
13714     SDValue Cond = N->getOperand(1);
13715     SDValue Target = N->getOperand(2);
13716 
13717     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13718         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13719           Intrinsic::loop_decrement) {
13720 
13721       // We now need to make the intrinsic dead (it cannot be instruction
13722       // selected).
13723       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13724       assert(Cond.getNode()->hasOneUse() &&
13725              "Counter decrement has more than one use");
13726 
13727       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13728                          N->getOperand(0), Target);
13729     }
13730   }
13731   break;
13732   case ISD::BR_CC: {
13733     // If this is a branch on an altivec predicate comparison, lower this so
13734     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13735     // lowering is done pre-legalize, because the legalizer lowers the predicate
13736     // compare down to code that is difficult to reassemble.
13737     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13738     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13739 
13740     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13741     // value. If so, pass-through the AND to get to the intrinsic.
13742     if (LHS.getOpcode() == ISD::AND &&
13743         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13744         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13745           Intrinsic::loop_decrement &&
13746         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13747         !isNullConstant(LHS.getOperand(1)))
13748       LHS = LHS.getOperand(0);
13749 
13750     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13751         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13752           Intrinsic::loop_decrement &&
13753         isa<ConstantSDNode>(RHS)) {
13754       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13755              "Counter decrement comparison is not EQ or NE");
13756 
13757       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13758       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13759                     (CC == ISD::SETNE && !Val);
13760 
13761       // We now need to make the intrinsic dead (it cannot be instruction
13762       // selected).
13763       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13764       assert(LHS.getNode()->hasOneUse() &&
13765              "Counter decrement has more than one use");
13766 
13767       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13768                          N->getOperand(0), N->getOperand(4));
13769     }
13770 
13771     int CompareOpc;
13772     bool isDot;
13773 
13774     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13775         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13776         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13777       assert(isDot && "Can't compare against a vector result!");
13778 
13779       // If this is a comparison against something other than 0/1, then we know
13780       // that the condition is never/always true.
13781       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13782       if (Val != 0 && Val != 1) {
13783         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13784           return N->getOperand(0);
13785         // Always !=, turn it into an unconditional branch.
13786         return DAG.getNode(ISD::BR, dl, MVT::Other,
13787                            N->getOperand(0), N->getOperand(4));
13788       }
13789 
13790       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13791 
13792       // Create the PPCISD altivec 'dot' comparison node.
13793       SDValue Ops[] = {
13794         LHS.getOperand(2),  // LHS of compare
13795         LHS.getOperand(3),  // RHS of compare
13796         DAG.getConstant(CompareOpc, dl, MVT::i32)
13797       };
13798       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13799       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13800 
13801       // Unpack the result based on how the target uses it.
13802       PPC::Predicate CompOpc;
13803       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13804       default:  // Can't happen, don't crash on invalid number though.
13805       case 0:   // Branch on the value of the EQ bit of CR6.
13806         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13807         break;
13808       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13809         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13810         break;
13811       case 2:   // Branch on the value of the LT bit of CR6.
13812         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13813         break;
13814       case 3:   // Branch on the inverted value of the LT bit of CR6.
13815         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13816         break;
13817       }
13818 
13819       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13820                          DAG.getConstant(CompOpc, dl, MVT::i32),
13821                          DAG.getRegister(PPC::CR6, MVT::i32),
13822                          N->getOperand(4), CompNode.getValue(1));
13823     }
13824     break;
13825   }
13826   case ISD::BUILD_VECTOR:
13827     return DAGCombineBuildVector(N, DCI);
13828   case ISD::ABS:
13829     return combineABS(N, DCI);
13830   case ISD::VSELECT:
13831     return combineVSelect(N, DCI);
13832   }
13833 
13834   return SDValue();
13835 }
13836 
13837 SDValue
13838 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13839                                  SelectionDAG &DAG,
13840                                  SmallVectorImpl<SDNode *> &Created) const {
13841   // fold (sdiv X, pow2)
13842   EVT VT = N->getValueType(0);
13843   if (VT == MVT::i64 && !Subtarget.isPPC64())
13844     return SDValue();
13845   if ((VT != MVT::i32 && VT != MVT::i64) ||
13846       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13847     return SDValue();
13848 
13849   SDLoc DL(N);
13850   SDValue N0 = N->getOperand(0);
13851 
13852   bool IsNegPow2 = (-Divisor).isPowerOf2();
13853   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13854   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13855 
13856   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13857   Created.push_back(Op.getNode());
13858 
13859   if (IsNegPow2) {
13860     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13861     Created.push_back(Op.getNode());
13862   }
13863 
13864   return Op;
13865 }
13866 
13867 //===----------------------------------------------------------------------===//
13868 // Inline Assembly Support
13869 //===----------------------------------------------------------------------===//
13870 
13871 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13872                                                       KnownBits &Known,
13873                                                       const APInt &DemandedElts,
13874                                                       const SelectionDAG &DAG,
13875                                                       unsigned Depth) const {
13876   Known.resetAll();
13877   switch (Op.getOpcode()) {
13878   default: break;
13879   case PPCISD::LBRX: {
13880     // lhbrx is known to have the top bits cleared out.
13881     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13882       Known.Zero = 0xFFFF0000;
13883     break;
13884   }
13885   case ISD::INTRINSIC_WO_CHAIN: {
13886     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13887     default: break;
13888     case Intrinsic::ppc_altivec_vcmpbfp_p:
13889     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13890     case Intrinsic::ppc_altivec_vcmpequb_p:
13891     case Intrinsic::ppc_altivec_vcmpequh_p:
13892     case Intrinsic::ppc_altivec_vcmpequw_p:
13893     case Intrinsic::ppc_altivec_vcmpequd_p:
13894     case Intrinsic::ppc_altivec_vcmpgefp_p:
13895     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13896     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13897     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13898     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13899     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13900     case Intrinsic::ppc_altivec_vcmpgtub_p:
13901     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13902     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13903     case Intrinsic::ppc_altivec_vcmpgtud_p:
13904       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13905       break;
13906     }
13907   }
13908   }
13909 }
13910 
13911 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13912   switch (Subtarget.getDarwinDirective()) {
13913   default: break;
13914   case PPC::DIR_970:
13915   case PPC::DIR_PWR4:
13916   case PPC::DIR_PWR5:
13917   case PPC::DIR_PWR5X:
13918   case PPC::DIR_PWR6:
13919   case PPC::DIR_PWR6X:
13920   case PPC::DIR_PWR7:
13921   case PPC::DIR_PWR8:
13922   case PPC::DIR_PWR9: {
13923     if (!ML)
13924       break;
13925 
13926     if (!DisableInnermostLoopAlign32) {
13927       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
13928       // so that we can decrease cache misses and branch-prediction misses.
13929       // Actual alignment of the loop will depend on the hotness check and other
13930       // logic in alignBlocks.
13931       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
13932         return 5;
13933     }
13934 
13935     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13936 
13937     // For small loops (between 5 and 8 instructions), align to a 32-byte
13938     // boundary so that the entire loop fits in one instruction-cache line.
13939     uint64_t LoopSize = 0;
13940     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13941       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13942         LoopSize += TII->getInstSizeInBytes(*J);
13943         if (LoopSize > 32)
13944           break;
13945       }
13946 
13947     if (LoopSize > 16 && LoopSize <= 32)
13948       return 5;
13949 
13950     break;
13951   }
13952   }
13953 
13954   return TargetLowering::getPrefLoopAlignment(ML);
13955 }
13956 
13957 /// getConstraintType - Given a constraint, return the type of
13958 /// constraint it is for this target.
13959 PPCTargetLowering::ConstraintType
13960 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13961   if (Constraint.size() == 1) {
13962     switch (Constraint[0]) {
13963     default: break;
13964     case 'b':
13965     case 'r':
13966     case 'f':
13967     case 'd':
13968     case 'v':
13969     case 'y':
13970       return C_RegisterClass;
13971     case 'Z':
13972       // FIXME: While Z does indicate a memory constraint, it specifically
13973       // indicates an r+r address (used in conjunction with the 'y' modifier
13974       // in the replacement string). Currently, we're forcing the base
13975       // register to be r0 in the asm printer (which is interpreted as zero)
13976       // and forming the complete address in the second register. This is
13977       // suboptimal.
13978       return C_Memory;
13979     }
13980   } else if (Constraint == "wc") { // individual CR bits.
13981     return C_RegisterClass;
13982   } else if (Constraint == "wa" || Constraint == "wd" ||
13983              Constraint == "wf" || Constraint == "ws" ||
13984              Constraint == "wi" || Constraint == "ww") {
13985     return C_RegisterClass; // VSX registers.
13986   }
13987   return TargetLowering::getConstraintType(Constraint);
13988 }
13989 
13990 /// Examine constraint type and operand type and determine a weight value.
13991 /// This object must already have been set up with the operand type
13992 /// and the current alternative constraint selected.
13993 TargetLowering::ConstraintWeight
13994 PPCTargetLowering::getSingleConstraintMatchWeight(
13995     AsmOperandInfo &info, const char *constraint) const {
13996   ConstraintWeight weight = CW_Invalid;
13997   Value *CallOperandVal = info.CallOperandVal;
13998     // If we don't have a value, we can't do a match,
13999     // but allow it at the lowest weight.
14000   if (!CallOperandVal)
14001     return CW_Default;
14002   Type *type = CallOperandVal->getType();
14003 
14004   // Look at the constraint type.
14005   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14006     return CW_Register; // an individual CR bit.
14007   else if ((StringRef(constraint) == "wa" ||
14008             StringRef(constraint) == "wd" ||
14009             StringRef(constraint) == "wf") &&
14010            type->isVectorTy())
14011     return CW_Register;
14012   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14013     return CW_Register; // just hold 64-bit integers data.
14014   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14015     return CW_Register;
14016   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14017     return CW_Register;
14018 
14019   switch (*constraint) {
14020   default:
14021     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14022     break;
14023   case 'b':
14024     if (type->isIntegerTy())
14025       weight = CW_Register;
14026     break;
14027   case 'f':
14028     if (type->isFloatTy())
14029       weight = CW_Register;
14030     break;
14031   case 'd':
14032     if (type->isDoubleTy())
14033       weight = CW_Register;
14034     break;
14035   case 'v':
14036     if (type->isVectorTy())
14037       weight = CW_Register;
14038     break;
14039   case 'y':
14040     weight = CW_Register;
14041     break;
14042   case 'Z':
14043     weight = CW_Memory;
14044     break;
14045   }
14046   return weight;
14047 }
14048 
14049 std::pair<unsigned, const TargetRegisterClass *>
14050 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14051                                                 StringRef Constraint,
14052                                                 MVT VT) const {
14053   if (Constraint.size() == 1) {
14054     // GCC RS6000 Constraint Letters
14055     switch (Constraint[0]) {
14056     case 'b':   // R1-R31
14057       if (VT == MVT::i64 && Subtarget.isPPC64())
14058         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14059       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14060     case 'r':   // R0-R31
14061       if (VT == MVT::i64 && Subtarget.isPPC64())
14062         return std::make_pair(0U, &PPC::G8RCRegClass);
14063       return std::make_pair(0U, &PPC::GPRCRegClass);
14064     // 'd' and 'f' constraints are both defined to be "the floating point
14065     // registers", where one is for 32-bit and the other for 64-bit. We don't
14066     // really care overly much here so just give them all the same reg classes.
14067     case 'd':
14068     case 'f':
14069       if (Subtarget.hasSPE()) {
14070         if (VT == MVT::f32 || VT == MVT::i32)
14071           return std::make_pair(0U, &PPC::SPE4RCRegClass);
14072         if (VT == MVT::f64 || VT == MVT::i64)
14073           return std::make_pair(0U, &PPC::SPERCRegClass);
14074       } else {
14075         if (VT == MVT::f32 || VT == MVT::i32)
14076           return std::make_pair(0U, &PPC::F4RCRegClass);
14077         if (VT == MVT::f64 || VT == MVT::i64)
14078           return std::make_pair(0U, &PPC::F8RCRegClass);
14079         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14080           return std::make_pair(0U, &PPC::QFRCRegClass);
14081         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14082           return std::make_pair(0U, &PPC::QSRCRegClass);
14083       }
14084       break;
14085     case 'v':
14086       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14087         return std::make_pair(0U, &PPC::QFRCRegClass);
14088       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14089         return std::make_pair(0U, &PPC::QSRCRegClass);
14090       if (Subtarget.hasAltivec())
14091         return std::make_pair(0U, &PPC::VRRCRegClass);
14092       break;
14093     case 'y':   // crrc
14094       return std::make_pair(0U, &PPC::CRRCRegClass);
14095     }
14096   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14097     // An individual CR bit.
14098     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14099   } else if ((Constraint == "wa" || Constraint == "wd" ||
14100              Constraint == "wf" || Constraint == "wi") &&
14101              Subtarget.hasVSX()) {
14102     return std::make_pair(0U, &PPC::VSRCRegClass);
14103   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14104     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14105       return std::make_pair(0U, &PPC::VSSRCRegClass);
14106     else
14107       return std::make_pair(0U, &PPC::VSFRCRegClass);
14108   }
14109 
14110   std::pair<unsigned, const TargetRegisterClass *> R =
14111       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14112 
14113   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14114   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14115   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14116   // register.
14117   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14118   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14119   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14120       PPC::GPRCRegClass.contains(R.first))
14121     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14122                             PPC::sub_32, &PPC::G8RCRegClass),
14123                           &PPC::G8RCRegClass);
14124 
14125   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14126   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14127     R.first = PPC::CR0;
14128     R.second = &PPC::CRRCRegClass;
14129   }
14130 
14131   return R;
14132 }
14133 
14134 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14135 /// vector.  If it is invalid, don't add anything to Ops.
14136 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14137                                                      std::string &Constraint,
14138                                                      std::vector<SDValue>&Ops,
14139                                                      SelectionDAG &DAG) const {
14140   SDValue Result;
14141 
14142   // Only support length 1 constraints.
14143   if (Constraint.length() > 1) return;
14144 
14145   char Letter = Constraint[0];
14146   switch (Letter) {
14147   default: break;
14148   case 'I':
14149   case 'J':
14150   case 'K':
14151   case 'L':
14152   case 'M':
14153   case 'N':
14154   case 'O':
14155   case 'P': {
14156     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14157     if (!CST) return; // Must be an immediate to match.
14158     SDLoc dl(Op);
14159     int64_t Value = CST->getSExtValue();
14160     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14161                          // numbers are printed as such.
14162     switch (Letter) {
14163     default: llvm_unreachable("Unknown constraint letter!");
14164     case 'I':  // "I" is a signed 16-bit constant.
14165       if (isInt<16>(Value))
14166         Result = DAG.getTargetConstant(Value, dl, TCVT);
14167       break;
14168     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14169       if (isShiftedUInt<16, 16>(Value))
14170         Result = DAG.getTargetConstant(Value, dl, TCVT);
14171       break;
14172     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14173       if (isShiftedInt<16, 16>(Value))
14174         Result = DAG.getTargetConstant(Value, dl, TCVT);
14175       break;
14176     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14177       if (isUInt<16>(Value))
14178         Result = DAG.getTargetConstant(Value, dl, TCVT);
14179       break;
14180     case 'M':  // "M" is a constant that is greater than 31.
14181       if (Value > 31)
14182         Result = DAG.getTargetConstant(Value, dl, TCVT);
14183       break;
14184     case 'N':  // "N" is a positive constant that is an exact power of two.
14185       if (Value > 0 && isPowerOf2_64(Value))
14186         Result = DAG.getTargetConstant(Value, dl, TCVT);
14187       break;
14188     case 'O':  // "O" is the constant zero.
14189       if (Value == 0)
14190         Result = DAG.getTargetConstant(Value, dl, TCVT);
14191       break;
14192     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14193       if (isInt<16>(-Value))
14194         Result = DAG.getTargetConstant(Value, dl, TCVT);
14195       break;
14196     }
14197     break;
14198   }
14199   }
14200 
14201   if (Result.getNode()) {
14202     Ops.push_back(Result);
14203     return;
14204   }
14205 
14206   // Handle standard constraint letters.
14207   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14208 }
14209 
14210 // isLegalAddressingMode - Return true if the addressing mode represented
14211 // by AM is legal for this target, for a load/store of the specified type.
14212 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14213                                               const AddrMode &AM, Type *Ty,
14214                                               unsigned AS, Instruction *I) const {
14215   // PPC does not allow r+i addressing modes for vectors!
14216   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14217     return false;
14218 
14219   // PPC allows a sign-extended 16-bit immediate field.
14220   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14221     return false;
14222 
14223   // No global is ever allowed as a base.
14224   if (AM.BaseGV)
14225     return false;
14226 
14227   // PPC only support r+r,
14228   switch (AM.Scale) {
14229   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14230     break;
14231   case 1:
14232     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14233       return false;
14234     // Otherwise we have r+r or r+i.
14235     break;
14236   case 2:
14237     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14238       return false;
14239     // Allow 2*r as r+r.
14240     break;
14241   default:
14242     // No other scales are supported.
14243     return false;
14244   }
14245 
14246   return true;
14247 }
14248 
14249 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14250                                            SelectionDAG &DAG) const {
14251   MachineFunction &MF = DAG.getMachineFunction();
14252   MachineFrameInfo &MFI = MF.getFrameInfo();
14253   MFI.setReturnAddressIsTaken(true);
14254 
14255   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14256     return SDValue();
14257 
14258   SDLoc dl(Op);
14259   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14260 
14261   // Make sure the function does not optimize away the store of the RA to
14262   // the stack.
14263   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14264   FuncInfo->setLRStoreRequired();
14265   bool isPPC64 = Subtarget.isPPC64();
14266   auto PtrVT = getPointerTy(MF.getDataLayout());
14267 
14268   if (Depth > 0) {
14269     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14270     SDValue Offset =
14271         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14272                         isPPC64 ? MVT::i64 : MVT::i32);
14273     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14274                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14275                        MachinePointerInfo());
14276   }
14277 
14278   // Just load the return address off the stack.
14279   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14280   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14281                      MachinePointerInfo());
14282 }
14283 
14284 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14285                                           SelectionDAG &DAG) const {
14286   SDLoc dl(Op);
14287   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14288 
14289   MachineFunction &MF = DAG.getMachineFunction();
14290   MachineFrameInfo &MFI = MF.getFrameInfo();
14291   MFI.setFrameAddressIsTaken(true);
14292 
14293   EVT PtrVT = getPointerTy(MF.getDataLayout());
14294   bool isPPC64 = PtrVT == MVT::i64;
14295 
14296   // Naked functions never have a frame pointer, and so we use r1. For all
14297   // other functions, this decision must be delayed until during PEI.
14298   unsigned FrameReg;
14299   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14300     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14301   else
14302     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14303 
14304   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14305                                          PtrVT);
14306   while (Depth--)
14307     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14308                             FrameAddr, MachinePointerInfo());
14309   return FrameAddr;
14310 }
14311 
14312 // FIXME? Maybe this could be a TableGen attribute on some registers and
14313 // this table could be generated automatically from RegInfo.
14314 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
14315                                               SelectionDAG &DAG) const {
14316   bool isPPC64 = Subtarget.isPPC64();
14317   bool isDarwinABI = Subtarget.isDarwinABI();
14318 
14319   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
14320       (!isPPC64 && VT != MVT::i32))
14321     report_fatal_error("Invalid register global variable type");
14322 
14323   bool is64Bit = isPPC64 && VT == MVT::i64;
14324   unsigned Reg = StringSwitch<unsigned>(RegName)
14325                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14326                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
14327                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
14328                                   (is64Bit ? PPC::X13 : PPC::R13))
14329                    .Default(0);
14330 
14331   if (Reg)
14332     return Reg;
14333   report_fatal_error("Invalid register name global variable");
14334 }
14335 
14336 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14337   // 32-bit SVR4 ABI access everything as got-indirect.
14338   if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
14339     return true;
14340 
14341   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14342   // If it is small or large code model, module locals are accessed
14343   // indirectly by loading their address from .toc/.got. The difference
14344   // is that for large code model we have ADDISTocHa + LDtocL and for
14345   // small code model we simply have LDtoc.
14346   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14347     return true;
14348 
14349   // JumpTable and BlockAddress are accessed as got-indirect.
14350   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14351     return true;
14352 
14353   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
14354     const GlobalValue *GV = G->getGlobal();
14355     unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
14356     // The NLP flag indicates that a global access has to use an
14357     // extra indirection.
14358     if (GVFlags & PPCII::MO_NLP_FLAG)
14359       return true;
14360   }
14361 
14362   return false;
14363 }
14364 
14365 bool
14366 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14367   // The PowerPC target isn't yet aware of offsets.
14368   return false;
14369 }
14370 
14371 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14372                                            const CallInst &I,
14373                                            MachineFunction &MF,
14374                                            unsigned Intrinsic) const {
14375   switch (Intrinsic) {
14376   case Intrinsic::ppc_qpx_qvlfd:
14377   case Intrinsic::ppc_qpx_qvlfs:
14378   case Intrinsic::ppc_qpx_qvlfcd:
14379   case Intrinsic::ppc_qpx_qvlfcs:
14380   case Intrinsic::ppc_qpx_qvlfiwa:
14381   case Intrinsic::ppc_qpx_qvlfiwz:
14382   case Intrinsic::ppc_altivec_lvx:
14383   case Intrinsic::ppc_altivec_lvxl:
14384   case Intrinsic::ppc_altivec_lvebx:
14385   case Intrinsic::ppc_altivec_lvehx:
14386   case Intrinsic::ppc_altivec_lvewx:
14387   case Intrinsic::ppc_vsx_lxvd2x:
14388   case Intrinsic::ppc_vsx_lxvw4x: {
14389     EVT VT;
14390     switch (Intrinsic) {
14391     case Intrinsic::ppc_altivec_lvebx:
14392       VT = MVT::i8;
14393       break;
14394     case Intrinsic::ppc_altivec_lvehx:
14395       VT = MVT::i16;
14396       break;
14397     case Intrinsic::ppc_altivec_lvewx:
14398       VT = MVT::i32;
14399       break;
14400     case Intrinsic::ppc_vsx_lxvd2x:
14401       VT = MVT::v2f64;
14402       break;
14403     case Intrinsic::ppc_qpx_qvlfd:
14404       VT = MVT::v4f64;
14405       break;
14406     case Intrinsic::ppc_qpx_qvlfs:
14407       VT = MVT::v4f32;
14408       break;
14409     case Intrinsic::ppc_qpx_qvlfcd:
14410       VT = MVT::v2f64;
14411       break;
14412     case Intrinsic::ppc_qpx_qvlfcs:
14413       VT = MVT::v2f32;
14414       break;
14415     default:
14416       VT = MVT::v4i32;
14417       break;
14418     }
14419 
14420     Info.opc = ISD::INTRINSIC_W_CHAIN;
14421     Info.memVT = VT;
14422     Info.ptrVal = I.getArgOperand(0);
14423     Info.offset = -VT.getStoreSize()+1;
14424     Info.size = 2*VT.getStoreSize()-1;
14425     Info.align = 1;
14426     Info.flags = MachineMemOperand::MOLoad;
14427     return true;
14428   }
14429   case Intrinsic::ppc_qpx_qvlfda:
14430   case Intrinsic::ppc_qpx_qvlfsa:
14431   case Intrinsic::ppc_qpx_qvlfcda:
14432   case Intrinsic::ppc_qpx_qvlfcsa:
14433   case Intrinsic::ppc_qpx_qvlfiwaa:
14434   case Intrinsic::ppc_qpx_qvlfiwza: {
14435     EVT VT;
14436     switch (Intrinsic) {
14437     case Intrinsic::ppc_qpx_qvlfda:
14438       VT = MVT::v4f64;
14439       break;
14440     case Intrinsic::ppc_qpx_qvlfsa:
14441       VT = MVT::v4f32;
14442       break;
14443     case Intrinsic::ppc_qpx_qvlfcda:
14444       VT = MVT::v2f64;
14445       break;
14446     case Intrinsic::ppc_qpx_qvlfcsa:
14447       VT = MVT::v2f32;
14448       break;
14449     default:
14450       VT = MVT::v4i32;
14451       break;
14452     }
14453 
14454     Info.opc = ISD::INTRINSIC_W_CHAIN;
14455     Info.memVT = VT;
14456     Info.ptrVal = I.getArgOperand(0);
14457     Info.offset = 0;
14458     Info.size = VT.getStoreSize();
14459     Info.align = 1;
14460     Info.flags = MachineMemOperand::MOLoad;
14461     return true;
14462   }
14463   case Intrinsic::ppc_qpx_qvstfd:
14464   case Intrinsic::ppc_qpx_qvstfs:
14465   case Intrinsic::ppc_qpx_qvstfcd:
14466   case Intrinsic::ppc_qpx_qvstfcs:
14467   case Intrinsic::ppc_qpx_qvstfiw:
14468   case Intrinsic::ppc_altivec_stvx:
14469   case Intrinsic::ppc_altivec_stvxl:
14470   case Intrinsic::ppc_altivec_stvebx:
14471   case Intrinsic::ppc_altivec_stvehx:
14472   case Intrinsic::ppc_altivec_stvewx:
14473   case Intrinsic::ppc_vsx_stxvd2x:
14474   case Intrinsic::ppc_vsx_stxvw4x: {
14475     EVT VT;
14476     switch (Intrinsic) {
14477     case Intrinsic::ppc_altivec_stvebx:
14478       VT = MVT::i8;
14479       break;
14480     case Intrinsic::ppc_altivec_stvehx:
14481       VT = MVT::i16;
14482       break;
14483     case Intrinsic::ppc_altivec_stvewx:
14484       VT = MVT::i32;
14485       break;
14486     case Intrinsic::ppc_vsx_stxvd2x:
14487       VT = MVT::v2f64;
14488       break;
14489     case Intrinsic::ppc_qpx_qvstfd:
14490       VT = MVT::v4f64;
14491       break;
14492     case Intrinsic::ppc_qpx_qvstfs:
14493       VT = MVT::v4f32;
14494       break;
14495     case Intrinsic::ppc_qpx_qvstfcd:
14496       VT = MVT::v2f64;
14497       break;
14498     case Intrinsic::ppc_qpx_qvstfcs:
14499       VT = MVT::v2f32;
14500       break;
14501     default:
14502       VT = MVT::v4i32;
14503       break;
14504     }
14505 
14506     Info.opc = ISD::INTRINSIC_VOID;
14507     Info.memVT = VT;
14508     Info.ptrVal = I.getArgOperand(1);
14509     Info.offset = -VT.getStoreSize()+1;
14510     Info.size = 2*VT.getStoreSize()-1;
14511     Info.align = 1;
14512     Info.flags = MachineMemOperand::MOStore;
14513     return true;
14514   }
14515   case Intrinsic::ppc_qpx_qvstfda:
14516   case Intrinsic::ppc_qpx_qvstfsa:
14517   case Intrinsic::ppc_qpx_qvstfcda:
14518   case Intrinsic::ppc_qpx_qvstfcsa:
14519   case Intrinsic::ppc_qpx_qvstfiwa: {
14520     EVT VT;
14521     switch (Intrinsic) {
14522     case Intrinsic::ppc_qpx_qvstfda:
14523       VT = MVT::v4f64;
14524       break;
14525     case Intrinsic::ppc_qpx_qvstfsa:
14526       VT = MVT::v4f32;
14527       break;
14528     case Intrinsic::ppc_qpx_qvstfcda:
14529       VT = MVT::v2f64;
14530       break;
14531     case Intrinsic::ppc_qpx_qvstfcsa:
14532       VT = MVT::v2f32;
14533       break;
14534     default:
14535       VT = MVT::v4i32;
14536       break;
14537     }
14538 
14539     Info.opc = ISD::INTRINSIC_VOID;
14540     Info.memVT = VT;
14541     Info.ptrVal = I.getArgOperand(1);
14542     Info.offset = 0;
14543     Info.size = VT.getStoreSize();
14544     Info.align = 1;
14545     Info.flags = MachineMemOperand::MOStore;
14546     return true;
14547   }
14548   default:
14549     break;
14550   }
14551 
14552   return false;
14553 }
14554 
14555 /// getOptimalMemOpType - Returns the target specific optimal type for load
14556 /// and store operations as a result of memset, memcpy, and memmove
14557 /// lowering. If DstAlign is zero that means it's safe to destination
14558 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14559 /// means there isn't a need to check it against alignment requirement,
14560 /// probably because the source does not need to be loaded. If 'IsMemset' is
14561 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14562 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14563 /// source is constant so it does not need to be loaded.
14564 /// It returns EVT::Other if the type should be determined using generic
14565 /// target-independent logic.
14566 EVT PPCTargetLowering::getOptimalMemOpType(
14567     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14568     bool ZeroMemset, bool MemcpyStrSrc,
14569     const AttributeList &FuncAttributes) const {
14570   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14571     // When expanding a memset, require at least two QPX instructions to cover
14572     // the cost of loading the value to be stored from the constant pool.
14573     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14574        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14575         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14576       return MVT::v4f64;
14577     }
14578 
14579     // We should use Altivec/VSX loads and stores when available. For unaligned
14580     // addresses, unaligned VSX loads are only fast starting with the P8.
14581     if (Subtarget.hasAltivec() && Size >= 16 &&
14582         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14583          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14584       return MVT::v4i32;
14585   }
14586 
14587   if (Subtarget.isPPC64()) {
14588     return MVT::i64;
14589   }
14590 
14591   return MVT::i32;
14592 }
14593 
14594 /// Returns true if it is beneficial to convert a load of a constant
14595 /// to just the constant itself.
14596 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14597                                                           Type *Ty) const {
14598   assert(Ty->isIntegerTy());
14599 
14600   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14601   return !(BitSize == 0 || BitSize > 64);
14602 }
14603 
14604 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14605   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14606     return false;
14607   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14608   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14609   return NumBits1 == 64 && NumBits2 == 32;
14610 }
14611 
14612 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14613   if (!VT1.isInteger() || !VT2.isInteger())
14614     return false;
14615   unsigned NumBits1 = VT1.getSizeInBits();
14616   unsigned NumBits2 = VT2.getSizeInBits();
14617   return NumBits1 == 64 && NumBits2 == 32;
14618 }
14619 
14620 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14621   // Generally speaking, zexts are not free, but they are free when they can be
14622   // folded with other operations.
14623   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14624     EVT MemVT = LD->getMemoryVT();
14625     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14626          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14627         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14628          LD->getExtensionType() == ISD::ZEXTLOAD))
14629       return true;
14630   }
14631 
14632   // FIXME: Add other cases...
14633   //  - 32-bit shifts with a zext to i64
14634   //  - zext after ctlz, bswap, etc.
14635   //  - zext after and by a constant mask
14636 
14637   return TargetLowering::isZExtFree(Val, VT2);
14638 }
14639 
14640 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14641   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14642          "invalid fpext types");
14643   // Extending to float128 is not free.
14644   if (DestVT == MVT::f128)
14645     return false;
14646   return true;
14647 }
14648 
14649 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14650   return isInt<16>(Imm) || isUInt<16>(Imm);
14651 }
14652 
14653 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14654   return isInt<16>(Imm) || isUInt<16>(Imm);
14655 }
14656 
14657 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14658                                                        unsigned,
14659                                                        unsigned,
14660                                                        MachineMemOperand::Flags,
14661                                                        bool *Fast) const {
14662   if (DisablePPCUnaligned)
14663     return false;
14664 
14665   // PowerPC supports unaligned memory access for simple non-vector types.
14666   // Although accessing unaligned addresses is not as efficient as accessing
14667   // aligned addresses, it is generally more efficient than manual expansion,
14668   // and generally only traps for software emulation when crossing page
14669   // boundaries.
14670 
14671   if (!VT.isSimple())
14672     return false;
14673 
14674   if (VT.getSimpleVT().isVector()) {
14675     if (Subtarget.hasVSX()) {
14676       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14677           VT != MVT::v4f32 && VT != MVT::v4i32)
14678         return false;
14679     } else {
14680       return false;
14681     }
14682   }
14683 
14684   if (VT == MVT::ppcf128)
14685     return false;
14686 
14687   if (Fast)
14688     *Fast = true;
14689 
14690   return true;
14691 }
14692 
14693 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14694   VT = VT.getScalarType();
14695 
14696   if (!VT.isSimple())
14697     return false;
14698 
14699   switch (VT.getSimpleVT().SimpleTy) {
14700   case MVT::f32:
14701   case MVT::f64:
14702     return true;
14703   case MVT::f128:
14704     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14705   default:
14706     break;
14707   }
14708 
14709   return false;
14710 }
14711 
14712 const MCPhysReg *
14713 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14714   // LR is a callee-save register, but we must treat it as clobbered by any call
14715   // site. Hence we include LR in the scratch registers, which are in turn added
14716   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14717   // to CTR, which is used by any indirect call.
14718   static const MCPhysReg ScratchRegs[] = {
14719     PPC::X12, PPC::LR8, PPC::CTR8, 0
14720   };
14721 
14722   return ScratchRegs;
14723 }
14724 
14725 unsigned PPCTargetLowering::getExceptionPointerRegister(
14726     const Constant *PersonalityFn) const {
14727   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14728 }
14729 
14730 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14731     const Constant *PersonalityFn) const {
14732   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14733 }
14734 
14735 bool
14736 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14737                      EVT VT , unsigned DefinedValues) const {
14738   if (VT == MVT::v2i64)
14739     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14740 
14741   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14742     return true;
14743 
14744   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14745 }
14746 
14747 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14748   if (DisableILPPref || Subtarget.enableMachineScheduler())
14749     return TargetLowering::getSchedulingPreference(N);
14750 
14751   return Sched::ILP;
14752 }
14753 
14754 // Create a fast isel object.
14755 FastISel *
14756 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14757                                   const TargetLibraryInfo *LibInfo) const {
14758   return PPC::createFastISel(FuncInfo, LibInfo);
14759 }
14760 
14761 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14762   if (Subtarget.isDarwinABI()) return;
14763   if (!Subtarget.isPPC64()) return;
14764 
14765   // Update IsSplitCSR in PPCFunctionInfo
14766   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14767   PFI->setIsSplitCSR(true);
14768 }
14769 
14770 void PPCTargetLowering::insertCopiesSplitCSR(
14771   MachineBasicBlock *Entry,
14772   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14773   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14774   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14775   if (!IStart)
14776     return;
14777 
14778   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14779   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14780   MachineBasicBlock::iterator MBBI = Entry->begin();
14781   for (const MCPhysReg *I = IStart; *I; ++I) {
14782     const TargetRegisterClass *RC = nullptr;
14783     if (PPC::G8RCRegClass.contains(*I))
14784       RC = &PPC::G8RCRegClass;
14785     else if (PPC::F8RCRegClass.contains(*I))
14786       RC = &PPC::F8RCRegClass;
14787     else if (PPC::CRRCRegClass.contains(*I))
14788       RC = &PPC::CRRCRegClass;
14789     else if (PPC::VRRCRegClass.contains(*I))
14790       RC = &PPC::VRRCRegClass;
14791     else
14792       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14793 
14794     unsigned NewVR = MRI->createVirtualRegister(RC);
14795     // Create copy from CSR to a virtual register.
14796     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14797     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14798     // nounwind. If we want to generalize this later, we may need to emit
14799     // CFI pseudo-instructions.
14800     assert(Entry->getParent()->getFunction().hasFnAttribute(
14801              Attribute::NoUnwind) &&
14802            "Function should be nounwind in insertCopiesSplitCSR!");
14803     Entry->addLiveIn(*I);
14804     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14805       .addReg(*I);
14806 
14807     // Insert the copy-back instructions right before the terminator.
14808     for (auto *Exit : Exits)
14809       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14810               TII->get(TargetOpcode::COPY), *I)
14811         .addReg(NewVR);
14812   }
14813 }
14814 
14815 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14816 bool PPCTargetLowering::useLoadStackGuardNode() const {
14817   if (!Subtarget.isTargetLinux())
14818     return TargetLowering::useLoadStackGuardNode();
14819   return true;
14820 }
14821 
14822 // Override to disable global variable loading on Linux.
14823 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14824   if (!Subtarget.isTargetLinux())
14825     return TargetLowering::insertSSPDeclarations(M);
14826 }
14827 
14828 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
14829                                      bool ForCodeSize) const {
14830   if (!VT.isSimple() || !Subtarget.hasVSX())
14831     return false;
14832 
14833   switch(VT.getSimpleVT().SimpleTy) {
14834   default:
14835     // For FP types that are currently not supported by PPC backend, return
14836     // false. Examples: f16, f80.
14837     return false;
14838   case MVT::f32:
14839   case MVT::f64:
14840   case MVT::ppcf128:
14841     return Imm.isPosZero();
14842   }
14843 }
14844 
14845 // For vector shift operation op, fold
14846 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14847 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14848                                   SelectionDAG &DAG) {
14849   SDValue N0 = N->getOperand(0);
14850   SDValue N1 = N->getOperand(1);
14851   EVT VT = N0.getValueType();
14852   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14853   unsigned Opcode = N->getOpcode();
14854   unsigned TargetOpcode;
14855 
14856   switch (Opcode) {
14857   default:
14858     llvm_unreachable("Unexpected shift operation");
14859   case ISD::SHL:
14860     TargetOpcode = PPCISD::SHL;
14861     break;
14862   case ISD::SRL:
14863     TargetOpcode = PPCISD::SRL;
14864     break;
14865   case ISD::SRA:
14866     TargetOpcode = PPCISD::SRA;
14867     break;
14868   }
14869 
14870   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14871       N1->getOpcode() == ISD::AND)
14872     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14873       if (Mask->getZExtValue() == OpSizeInBits - 1)
14874         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14875 
14876   return SDValue();
14877 }
14878 
14879 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14880   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14881     return Value;
14882 
14883   SDValue N0 = N->getOperand(0);
14884   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14885   if (!Subtarget.isISA3_0() ||
14886       N0.getOpcode() != ISD::SIGN_EXTEND ||
14887       N0.getOperand(0).getValueType() != MVT::i32 ||
14888       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14889     return SDValue();
14890 
14891   // We can't save an operation here if the value is already extended, and
14892   // the existing shift is easier to combine.
14893   SDValue ExtsSrc = N0.getOperand(0);
14894   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14895       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14896     return SDValue();
14897 
14898   SDLoc DL(N0);
14899   SDValue ShiftBy = SDValue(CN1, 0);
14900   // We want the shift amount to be i32 on the extswli, but the shift could
14901   // have an i64.
14902   if (ShiftBy.getValueType() == MVT::i64)
14903     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14904 
14905   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14906                          ShiftBy);
14907 }
14908 
14909 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14910   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14911     return Value;
14912 
14913   return SDValue();
14914 }
14915 
14916 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14917   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14918     return Value;
14919 
14920   return SDValue();
14921 }
14922 
14923 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14924 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14925 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14926 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14927 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14928                                  const PPCSubtarget &Subtarget) {
14929   if (!Subtarget.isPPC64())
14930     return SDValue();
14931 
14932   SDValue LHS = N->getOperand(0);
14933   SDValue RHS = N->getOperand(1);
14934 
14935   auto isZextOfCompareWithConstant = [](SDValue Op) {
14936     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14937         Op.getValueType() != MVT::i64)
14938       return false;
14939 
14940     SDValue Cmp = Op.getOperand(0);
14941     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14942         Cmp.getOperand(0).getValueType() != MVT::i64)
14943       return false;
14944 
14945     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14946       int64_t NegConstant = 0 - Constant->getSExtValue();
14947       // Due to the limitations of the addi instruction,
14948       // -C is required to be [-32768, 32767].
14949       return isInt<16>(NegConstant);
14950     }
14951 
14952     return false;
14953   };
14954 
14955   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14956   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14957 
14958   // If there is a pattern, canonicalize a zext operand to the RHS.
14959   if (LHSHasPattern && !RHSHasPattern)
14960     std::swap(LHS, RHS);
14961   else if (!LHSHasPattern && !RHSHasPattern)
14962     return SDValue();
14963 
14964   SDLoc DL(N);
14965   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14966   SDValue Cmp = RHS.getOperand(0);
14967   SDValue Z = Cmp.getOperand(0);
14968   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14969 
14970   assert(Constant && "Constant Should not be a null pointer.");
14971   int64_t NegConstant = 0 - Constant->getSExtValue();
14972 
14973   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14974   default: break;
14975   case ISD::SETNE: {
14976     //                                 when C == 0
14977     //                             --> addze X, (addic Z, -1).carry
14978     //                            /
14979     // add X, (zext(setne Z, C))--
14980     //                            \    when -32768 <= -C <= 32767 && C != 0
14981     //                             --> addze X, (addic (addi Z, -C), -1).carry
14982     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14983                               DAG.getConstant(NegConstant, DL, MVT::i64));
14984     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14985     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14986                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14987     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14988                        SDValue(Addc.getNode(), 1));
14989     }
14990   case ISD::SETEQ: {
14991     //                                 when C == 0
14992     //                             --> addze X, (subfic Z, 0).carry
14993     //                            /
14994     // add X, (zext(sete  Z, C))--
14995     //                            \    when -32768 <= -C <= 32767 && C != 0
14996     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14997     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14998                               DAG.getConstant(NegConstant, DL, MVT::i64));
14999     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15000     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15001                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15002     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15003                        SDValue(Subc.getNode(), 1));
15004     }
15005   }
15006 
15007   return SDValue();
15008 }
15009 
15010 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15011   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15012     return Value;
15013 
15014   return SDValue();
15015 }
15016 
15017 // Detect TRUNCATE operations on bitcasts of float128 values.
15018 // What we are looking for here is the situtation where we extract a subset
15019 // of bits from a 128 bit float.
15020 // This can be of two forms:
15021 // 1) BITCAST of f128 feeding TRUNCATE
15022 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15023 // The reason this is required is because we do not have a legal i128 type
15024 // and so we want to prevent having to store the f128 and then reload part
15025 // of it.
15026 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15027                                            DAGCombinerInfo &DCI) const {
15028   // If we are using CRBits then try that first.
15029   if (Subtarget.useCRBits()) {
15030     // Check if CRBits did anything and return that if it did.
15031     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15032       return CRTruncValue;
15033   }
15034 
15035   SDLoc dl(N);
15036   SDValue Op0 = N->getOperand(0);
15037 
15038   // Looking for a truncate of i128 to i64.
15039   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15040     return SDValue();
15041 
15042   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15043 
15044   // SRL feeding TRUNCATE.
15045   if (Op0.getOpcode() == ISD::SRL) {
15046     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15047     // The right shift has to be by 64 bits.
15048     if (!ConstNode || ConstNode->getZExtValue() != 64)
15049       return SDValue();
15050 
15051     // Switch the element number to extract.
15052     EltToExtract = EltToExtract ? 0 : 1;
15053     // Update Op0 past the SRL.
15054     Op0 = Op0.getOperand(0);
15055   }
15056 
15057   // BITCAST feeding a TRUNCATE possibly via SRL.
15058   if (Op0.getOpcode() == ISD::BITCAST &&
15059       Op0.getValueType() == MVT::i128 &&
15060       Op0.getOperand(0).getValueType() == MVT::f128) {
15061     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15062     return DCI.DAG.getNode(
15063         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15064         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15065   }
15066   return SDValue();
15067 }
15068 
15069 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15070   SelectionDAG &DAG = DCI.DAG;
15071 
15072   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15073   if (!ConstOpOrElement)
15074     return SDValue();
15075 
15076   // An imul is usually smaller than the alternative sequence for legal type.
15077   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15078       isOperationLegal(ISD::MUL, N->getValueType(0)))
15079     return SDValue();
15080 
15081   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15082     switch (this->Subtarget.getDarwinDirective()) {
15083     default:
15084       // TODO: enhance the condition for subtarget before pwr8
15085       return false;
15086     case PPC::DIR_PWR8:
15087       //  type        mul     add    shl
15088       // scalar        4       1      1
15089       // vector        7       2      2
15090       return true;
15091     case PPC::DIR_PWR9:
15092       //  type        mul     add    shl
15093       // scalar        5       2      2
15094       // vector        7       2      2
15095 
15096       // The cycle RATIO of related operations are showed as a table above.
15097       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15098       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15099       // are 4, it is always profitable; but for 3 instrs patterns
15100       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15101       // So we should only do it for vector type.
15102       return IsAddOne && IsNeg ? VT.isVector() : true;
15103     }
15104   };
15105 
15106   EVT VT = N->getValueType(0);
15107   SDLoc DL(N);
15108 
15109   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15110   bool IsNeg = MulAmt.isNegative();
15111   APInt MulAmtAbs = MulAmt.abs();
15112 
15113   if ((MulAmtAbs - 1).isPowerOf2()) {
15114     // (mul x, 2^N + 1) => (add (shl x, N), x)
15115     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15116 
15117     if (!IsProfitable(IsNeg, true, VT))
15118       return SDValue();
15119 
15120     SDValue Op0 = N->getOperand(0);
15121     SDValue Op1 =
15122         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15123                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15124     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15125 
15126     if (!IsNeg)
15127       return Res;
15128 
15129     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15130   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15131     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15132     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15133 
15134     if (!IsProfitable(IsNeg, false, VT))
15135       return SDValue();
15136 
15137     SDValue Op0 = N->getOperand(0);
15138     SDValue Op1 =
15139         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15140                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15141 
15142     if (!IsNeg)
15143       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15144     else
15145       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15146 
15147   } else {
15148     return SDValue();
15149   }
15150 }
15151 
15152 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15153   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15154   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
15155     return false;
15156 
15157   // If not a tail call then no need to proceed.
15158   if (!CI->isTailCall())
15159     return false;
15160 
15161   // If tail calls are disabled for the caller then we are done.
15162   const Function *Caller = CI->getParent()->getParent();
15163   auto Attr = Caller->getFnAttribute("disable-tail-calls");
15164   if (Attr.getValueAsString() == "true")
15165     return false;
15166 
15167   // If sibling calls have been disabled and tail-calls aren't guaranteed
15168   // there is no reason to duplicate.
15169   auto &TM = getTargetMachine();
15170   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15171     return false;
15172 
15173   // Can't tail call a function called indirectly, or if it has variadic args.
15174   const Function *Callee = CI->getCalledFunction();
15175   if (!Callee || Callee->isVarArg())
15176     return false;
15177 
15178   // Make sure the callee and caller calling conventions are eligible for tco.
15179   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15180                                            CI->getCallingConv()))
15181       return false;
15182 
15183   // If the function is local then we have a good chance at tail-calling it
15184   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15185 }
15186 
15187 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15188   if (!Subtarget.hasVSX())
15189     return false;
15190   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15191     return true;
15192   return VT == MVT::f32 || VT == MVT::f64 ||
15193     VT == MVT::v4f32 || VT == MVT::v2f64;
15194 }
15195 
15196 bool PPCTargetLowering::
15197 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15198   const Value *Mask = AndI.getOperand(1);
15199   // If the mask is suitable for andi. or andis. we should sink the and.
15200   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15201     // Can't handle constants wider than 64-bits.
15202     if (CI->getBitWidth() > 64)
15203       return false;
15204     int64_t ConstVal = CI->getZExtValue();
15205     return isUInt<16>(ConstVal) ||
15206       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15207   }
15208 
15209   // For non-constant masks, we can always use the record-form and.
15210   return true;
15211 }
15212 
15213 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15214 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15215 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15216 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15217 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15218 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15219   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15220   assert(Subtarget.hasP9Altivec() &&
15221          "Only combine this when P9 altivec supported!");
15222   EVT VT = N->getValueType(0);
15223   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15224     return SDValue();
15225 
15226   SelectionDAG &DAG = DCI.DAG;
15227   SDLoc dl(N);
15228   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15229     // Even for signed integers, if it's known to be positive (as signed
15230     // integer) due to zero-extended inputs.
15231     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15232     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15233     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15234          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15235         (SubOpcd1 == ISD::ZERO_EXTEND ||
15236          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15237       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15238                          N->getOperand(0)->getOperand(0),
15239                          N->getOperand(0)->getOperand(1),
15240                          DAG.getTargetConstant(0, dl, MVT::i32));
15241     }
15242 
15243     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15244     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15245         N->getOperand(0).hasOneUse()) {
15246       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15247                          N->getOperand(0)->getOperand(0),
15248                          N->getOperand(0)->getOperand(1),
15249                          DAG.getTargetConstant(1, dl, MVT::i32));
15250     }
15251   }
15252 
15253   return SDValue();
15254 }
15255 
15256 // For type v4i32/v8ii16/v16i8, transform
15257 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15258 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15259 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15260 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15261 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15262                                           DAGCombinerInfo &DCI) const {
15263   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15264   assert(Subtarget.hasP9Altivec() &&
15265          "Only combine this when P9 altivec supported!");
15266 
15267   SelectionDAG &DAG = DCI.DAG;
15268   SDLoc dl(N);
15269   SDValue Cond = N->getOperand(0);
15270   SDValue TrueOpnd = N->getOperand(1);
15271   SDValue FalseOpnd = N->getOperand(2);
15272   EVT VT = N->getOperand(1).getValueType();
15273 
15274   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15275       FalseOpnd.getOpcode() != ISD::SUB)
15276     return SDValue();
15277 
15278   // ABSD only available for type v4i32/v8i16/v16i8
15279   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15280     return SDValue();
15281 
15282   // At least to save one more dependent computation
15283   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15284     return SDValue();
15285 
15286   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15287 
15288   // Can only handle unsigned comparison here
15289   switch (CC) {
15290   default:
15291     return SDValue();
15292   case ISD::SETUGT:
15293   case ISD::SETUGE:
15294     break;
15295   case ISD::SETULT:
15296   case ISD::SETULE:
15297     std::swap(TrueOpnd, FalseOpnd);
15298     break;
15299   }
15300 
15301   SDValue CmpOpnd1 = Cond.getOperand(0);
15302   SDValue CmpOpnd2 = Cond.getOperand(1);
15303 
15304   // SETCC CmpOpnd1 CmpOpnd2 cond
15305   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15306   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15307   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15308       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15309       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15310       FalseOpnd.getOperand(1) == CmpOpnd1) {
15311     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15312                        CmpOpnd1, CmpOpnd2,
15313                        DAG.getTargetConstant(0, dl, MVT::i32));
15314   }
15315 
15316   return SDValue();
15317 }
15318