1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSymbolXCOFF.h" 78 #include "llvm/Support/AtomicOrdering.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CodeGen.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetMachine.h" 92 #include "llvm/Target/TargetOptions.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <list> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "ppc-lowering" 104 105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisableSCO("disable-ppc-sco", 115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 116 117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 119 120 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 121 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 122 123 STATISTIC(NumTailCalls, "Number of tail calls"); 124 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 125 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 126 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 127 128 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 129 130 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 131 132 // FIXME: Remove this once the bug has been fixed! 133 extern cl::opt<bool> ANDIGlueBug; 134 135 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 136 const PPCSubtarget &STI) 137 : TargetLowering(TM), Subtarget(STI) { 138 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 139 // arguments are at least 4/8 bytes aligned. 140 bool isPPC64 = Subtarget.isPPC64(); 141 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 142 143 // Set up the register classes. 144 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 145 if (!useSoftFloat()) { 146 if (hasSPE()) { 147 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 148 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 149 } else { 150 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 151 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 152 } 153 } 154 155 // Match BITREVERSE to customized fast code sequence in the td file. 156 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 157 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 158 159 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 160 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 161 162 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 163 for (MVT VT : MVT::integer_valuetypes()) { 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 166 } 167 168 if (Subtarget.isISA3_0()) { 169 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 170 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 171 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 172 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 173 } else { 174 // No extending loads from f16 or HW conversions back and forth. 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 176 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 177 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 179 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 180 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 181 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 182 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 183 } 184 185 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 186 187 // PowerPC has pre-inc load and store's. 188 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 189 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 193 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 194 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 198 if (!Subtarget.hasSPE()) { 199 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 200 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 203 } 204 205 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 206 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 207 for (MVT VT : ScalarIntVTs) { 208 setOperationAction(ISD::ADDC, VT, Legal); 209 setOperationAction(ISD::ADDE, VT, Legal); 210 setOperationAction(ISD::SUBC, VT, Legal); 211 setOperationAction(ISD::SUBE, VT, Legal); 212 } 213 214 if (Subtarget.useCRBits()) { 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 216 217 if (isPPC64 || Subtarget.hasFPCVT()) { 218 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 219 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 220 isPPC64 ? MVT::i64 : MVT::i32); 221 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 222 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 223 isPPC64 ? MVT::i64 : MVT::i32); 224 } else { 225 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 226 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 227 } 228 229 // PowerPC does not support direct load/store of condition registers. 230 setOperationAction(ISD::LOAD, MVT::i1, Custom); 231 setOperationAction(ISD::STORE, MVT::i1, Custom); 232 233 // FIXME: Remove this once the ANDI glue bug is fixed: 234 if (ANDIGlueBug) 235 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 236 237 for (MVT VT : MVT::integer_valuetypes()) { 238 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 239 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 240 setTruncStoreAction(VT, MVT::i1, Expand); 241 } 242 243 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 244 } 245 246 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 247 // PPC (the libcall is not available). 248 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 249 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 250 251 // We do not currently implement these libm ops for PowerPC. 252 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 253 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 254 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 258 259 // PowerPC has no SREM/UREM instructions unless we are on P9 260 // On P9 we may use a hardware instruction to compute the remainder. 261 // When the result of both the remainder and the division is required it is 262 // more efficient to compute the remainder from the result of the division 263 // rather than use the remainder instruction. The instructions are legalized 264 // directly because the DivRemPairsPass performs the transformation at the IR 265 // level. 266 if (Subtarget.isISA3_0()) { 267 setOperationAction(ISD::SREM, MVT::i32, Legal); 268 setOperationAction(ISD::UREM, MVT::i32, Legal); 269 setOperationAction(ISD::SREM, MVT::i64, Legal); 270 setOperationAction(ISD::UREM, MVT::i64, Legal); 271 } else { 272 setOperationAction(ISD::SREM, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::SREM, MVT::i64, Expand); 275 setOperationAction(ISD::UREM, MVT::i64, Expand); 276 } 277 278 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 279 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 280 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 282 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 284 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 286 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 287 288 // Handle constrained floating-point operations of scalar. 289 // TODO: Handle SPE specific operation. 290 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 291 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 295 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 296 297 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 298 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 300 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 301 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 302 if (Subtarget.hasVSX()) 303 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 304 305 if (Subtarget.hasFSQRT()) { 306 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 307 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 308 } 309 310 if (Subtarget.hasFPRND()) { 311 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 312 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 314 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 315 316 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 317 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 319 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 320 } 321 322 // We don't support sin/cos/sqrt/fmod/pow 323 setOperationAction(ISD::FSIN , MVT::f64, Expand); 324 setOperationAction(ISD::FCOS , MVT::f64, Expand); 325 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 326 setOperationAction(ISD::FREM , MVT::f64, Expand); 327 setOperationAction(ISD::FPOW , MVT::f64, Expand); 328 setOperationAction(ISD::FSIN , MVT::f32, Expand); 329 setOperationAction(ISD::FCOS , MVT::f32, Expand); 330 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 331 setOperationAction(ISD::FREM , MVT::f32, Expand); 332 setOperationAction(ISD::FPOW , MVT::f32, Expand); 333 if (Subtarget.hasSPE()) { 334 setOperationAction(ISD::FMA , MVT::f64, Expand); 335 setOperationAction(ISD::FMA , MVT::f32, Expand); 336 } else { 337 setOperationAction(ISD::FMA , MVT::f64, Legal); 338 setOperationAction(ISD::FMA , MVT::f32, Legal); 339 } 340 341 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 342 343 // If we're enabling GP optimizations, use hardware square root 344 if (!Subtarget.hasFSQRT() && 345 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 346 Subtarget.hasFRE())) 347 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 348 349 if (!Subtarget.hasFSQRT() && 350 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 351 Subtarget.hasFRES())) 352 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 353 354 if (Subtarget.hasFCPSGN()) { 355 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 356 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 357 } else { 358 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 359 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 360 } 361 362 if (Subtarget.hasFPRND()) { 363 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 364 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 365 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 366 setOperationAction(ISD::FROUND, MVT::f64, Legal); 367 368 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 369 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 370 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 371 setOperationAction(ISD::FROUND, MVT::f32, Legal); 372 } 373 374 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 375 // to speed up scalar BSWAP64. 376 // CTPOP or CTTZ were introduced in P8/P9 respectively 377 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 378 if (Subtarget.hasP9Vector()) 379 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 380 else 381 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 382 if (Subtarget.isISA3_0()) { 383 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 384 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 385 } else { 386 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 387 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 388 } 389 390 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 391 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 392 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 393 } else { 394 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 395 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 396 } 397 398 // PowerPC does not have ROTR 399 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 400 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 401 402 if (!Subtarget.useCRBits()) { 403 // PowerPC does not have Select 404 setOperationAction(ISD::SELECT, MVT::i32, Expand); 405 setOperationAction(ISD::SELECT, MVT::i64, Expand); 406 setOperationAction(ISD::SELECT, MVT::f32, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Expand); 408 } 409 410 // PowerPC wants to turn select_cc of FP into fsel when possible. 411 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 412 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 413 414 // PowerPC wants to optimize integer setcc a bit 415 if (!Subtarget.useCRBits()) 416 setOperationAction(ISD::SETCC, MVT::i32, Custom); 417 418 // PowerPC does not have BRCOND which requires SetCC 419 if (!Subtarget.useCRBits()) 420 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 421 422 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 423 424 if (Subtarget.hasSPE()) { 425 // SPE has built-in conversions 426 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 427 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 428 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 429 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 430 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 431 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 432 } else { 433 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 434 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 435 436 // PowerPC does not have [U|S]INT_TO_FP 437 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 438 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 439 } 440 441 if (Subtarget.hasDirectMove() && isPPC64) { 442 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 443 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 444 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 445 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 446 if (TM.Options.UnsafeFPMath) { 447 setOperationAction(ISD::LRINT, MVT::f64, Legal); 448 setOperationAction(ISD::LRINT, MVT::f32, Legal); 449 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 450 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 451 setOperationAction(ISD::LROUND, MVT::f64, Legal); 452 setOperationAction(ISD::LROUND, MVT::f32, Legal); 453 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 454 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 455 } 456 } else { 457 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 458 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 459 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 460 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 461 } 462 463 // We cannot sextinreg(i1). Expand to shifts. 464 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 465 466 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 467 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 468 // support continuation, user-level threading, and etc.. As a result, no 469 // other SjLj exception interfaces are implemented and please don't build 470 // your own exception handling based on them. 471 // LLVM/Clang supports zero-cost DWARF exception handling. 472 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 473 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 474 475 // We want to legalize GlobalAddress and ConstantPool nodes into the 476 // appropriate instructions to materialize the address. 477 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 478 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 479 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 480 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 481 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 482 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 483 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 484 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 485 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 486 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 487 488 // TRAP is legal. 489 setOperationAction(ISD::TRAP, MVT::Other, Legal); 490 491 // TRAMPOLINE is custom lowered. 492 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 493 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 494 495 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 496 setOperationAction(ISD::VASTART , MVT::Other, Custom); 497 498 if (Subtarget.is64BitELFABI()) { 499 // VAARG always uses double-word chunks, so promote anything smaller. 500 setOperationAction(ISD::VAARG, MVT::i1, Promote); 501 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 502 setOperationAction(ISD::VAARG, MVT::i8, Promote); 503 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 504 setOperationAction(ISD::VAARG, MVT::i16, Promote); 505 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 506 setOperationAction(ISD::VAARG, MVT::i32, Promote); 507 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 508 setOperationAction(ISD::VAARG, MVT::Other, Expand); 509 } else if (Subtarget.is32BitELFABI()) { 510 // VAARG is custom lowered with the 32-bit SVR4 ABI. 511 setOperationAction(ISD::VAARG, MVT::Other, Custom); 512 setOperationAction(ISD::VAARG, MVT::i64, Custom); 513 } else 514 setOperationAction(ISD::VAARG, MVT::Other, Expand); 515 516 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 517 if (Subtarget.is32BitELFABI()) 518 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 519 else 520 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 521 522 // Use the default implementation. 523 setOperationAction(ISD::VAEND , MVT::Other, Expand); 524 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 525 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 526 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 527 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 528 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 529 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 530 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 531 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 532 533 // We want to custom lower some of our intrinsics. 534 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 535 536 // To handle counter-based loop conditions. 537 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 538 539 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 540 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 541 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 542 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 543 544 // Comparisons that require checking two conditions. 545 if (Subtarget.hasSPE()) { 546 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 547 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 548 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 549 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 550 } 551 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 552 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 553 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 554 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 555 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 556 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 557 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 558 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 559 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 560 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 561 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 562 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 563 564 if (Subtarget.has64BitSupport()) { 565 // They also have instructions for converting between i64 and fp. 566 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 567 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 568 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 569 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 570 // This is just the low 32 bits of a (signed) fp->i64 conversion. 571 // We cannot do this with Promote because i64 is not a legal type. 572 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 573 574 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 575 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 576 } else { 577 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 578 if (Subtarget.hasSPE()) { 579 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 580 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 581 } else 582 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 583 } 584 585 // With the instructions enabled under FPCVT, we can do everything. 586 if (Subtarget.hasFPCVT()) { 587 if (Subtarget.has64BitSupport()) { 588 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 589 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 590 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 591 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 592 } 593 594 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 595 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 596 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 597 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 598 } 599 600 if (Subtarget.use64BitRegs()) { 601 // 64-bit PowerPC implementations can support i64 types directly 602 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 603 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 604 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 605 // 64-bit PowerPC wants to expand i128 shifts itself. 606 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 607 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 608 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 609 } else { 610 // 32-bit PowerPC wants to expand i64 shifts itself. 611 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 612 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 613 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 614 } 615 616 if (Subtarget.hasVSX()) { 617 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 618 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 619 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 620 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 621 } 622 623 if (Subtarget.hasAltivec()) { 624 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 625 setOperationAction(ISD::SADDSAT, VT, Legal); 626 setOperationAction(ISD::SSUBSAT, VT, Legal); 627 setOperationAction(ISD::UADDSAT, VT, Legal); 628 setOperationAction(ISD::USUBSAT, VT, Legal); 629 } 630 // First set operation action for all vector types to expand. Then we 631 // will selectively turn on ones that can be effectively codegen'd. 632 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 633 // add/sub are legal for all supported vector VT's. 634 setOperationAction(ISD::ADD, VT, Legal); 635 setOperationAction(ISD::SUB, VT, Legal); 636 637 // For v2i64, these are only valid with P8Vector. This is corrected after 638 // the loop. 639 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 640 setOperationAction(ISD::SMAX, VT, Legal); 641 setOperationAction(ISD::SMIN, VT, Legal); 642 setOperationAction(ISD::UMAX, VT, Legal); 643 setOperationAction(ISD::UMIN, VT, Legal); 644 } 645 else { 646 setOperationAction(ISD::SMAX, VT, Expand); 647 setOperationAction(ISD::SMIN, VT, Expand); 648 setOperationAction(ISD::UMAX, VT, Expand); 649 setOperationAction(ISD::UMIN, VT, Expand); 650 } 651 652 if (Subtarget.hasVSX()) { 653 setOperationAction(ISD::FMAXNUM, VT, Legal); 654 setOperationAction(ISD::FMINNUM, VT, Legal); 655 } 656 657 // Vector instructions introduced in P8 658 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 659 setOperationAction(ISD::CTPOP, VT, Legal); 660 setOperationAction(ISD::CTLZ, VT, Legal); 661 } 662 else { 663 setOperationAction(ISD::CTPOP, VT, Expand); 664 setOperationAction(ISD::CTLZ, VT, Expand); 665 } 666 667 // Vector instructions introduced in P9 668 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 669 setOperationAction(ISD::CTTZ, VT, Legal); 670 else 671 setOperationAction(ISD::CTTZ, VT, Expand); 672 673 // We promote all shuffles to v16i8. 674 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 675 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 676 677 // We promote all non-typed operations to v4i32. 678 setOperationAction(ISD::AND , VT, Promote); 679 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 680 setOperationAction(ISD::OR , VT, Promote); 681 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 682 setOperationAction(ISD::XOR , VT, Promote); 683 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 684 setOperationAction(ISD::LOAD , VT, Promote); 685 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 686 setOperationAction(ISD::SELECT, VT, Promote); 687 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 688 setOperationAction(ISD::VSELECT, VT, Legal); 689 setOperationAction(ISD::SELECT_CC, VT, Promote); 690 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 691 setOperationAction(ISD::STORE, VT, Promote); 692 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 693 694 // No other operations are legal. 695 setOperationAction(ISD::MUL , VT, Expand); 696 setOperationAction(ISD::SDIV, VT, Expand); 697 setOperationAction(ISD::SREM, VT, Expand); 698 setOperationAction(ISD::UDIV, VT, Expand); 699 setOperationAction(ISD::UREM, VT, Expand); 700 setOperationAction(ISD::FDIV, VT, Expand); 701 setOperationAction(ISD::FREM, VT, Expand); 702 setOperationAction(ISD::FNEG, VT, Expand); 703 setOperationAction(ISD::FSQRT, VT, Expand); 704 setOperationAction(ISD::FLOG, VT, Expand); 705 setOperationAction(ISD::FLOG10, VT, Expand); 706 setOperationAction(ISD::FLOG2, VT, Expand); 707 setOperationAction(ISD::FEXP, VT, Expand); 708 setOperationAction(ISD::FEXP2, VT, Expand); 709 setOperationAction(ISD::FSIN, VT, Expand); 710 setOperationAction(ISD::FCOS, VT, Expand); 711 setOperationAction(ISD::FABS, VT, Expand); 712 setOperationAction(ISD::FFLOOR, VT, Expand); 713 setOperationAction(ISD::FCEIL, VT, Expand); 714 setOperationAction(ISD::FTRUNC, VT, Expand); 715 setOperationAction(ISD::FRINT, VT, Expand); 716 setOperationAction(ISD::FNEARBYINT, VT, Expand); 717 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 718 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 719 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 720 setOperationAction(ISD::MULHU, VT, Expand); 721 setOperationAction(ISD::MULHS, VT, Expand); 722 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 723 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 724 setOperationAction(ISD::UDIVREM, VT, Expand); 725 setOperationAction(ISD::SDIVREM, VT, Expand); 726 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 727 setOperationAction(ISD::FPOW, VT, Expand); 728 setOperationAction(ISD::BSWAP, VT, Expand); 729 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 730 setOperationAction(ISD::ROTL, VT, Expand); 731 setOperationAction(ISD::ROTR, VT, Expand); 732 733 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 734 setTruncStoreAction(VT, InnerVT, Expand); 735 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 736 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 737 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 738 } 739 } 740 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 741 if (!Subtarget.hasP8Vector()) { 742 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 743 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 744 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 745 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 746 } 747 748 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 749 setOperationAction(ISD::ABS, VT, Custom); 750 751 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 752 // with merges, splats, etc. 753 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 754 755 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 756 // are cheap, so handle them before they get expanded to scalar. 757 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 758 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 759 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 760 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 761 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 762 763 setOperationAction(ISD::AND , MVT::v4i32, Legal); 764 setOperationAction(ISD::OR , MVT::v4i32, Legal); 765 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 766 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 767 setOperationAction(ISD::SELECT, MVT::v4i32, 768 Subtarget.useCRBits() ? Legal : Expand); 769 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 770 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 771 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 772 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 773 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 774 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 775 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 776 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 777 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 778 779 // Without hasP8Altivec set, v2i64 SMAX isn't available. 780 // But ABS custom lowering requires SMAX support. 781 if (!Subtarget.hasP8Altivec()) 782 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 783 784 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 785 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 786 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 787 if (Subtarget.hasAltivec()) 788 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 789 setOperationAction(ISD::ROTL, VT, Legal); 790 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 791 if (Subtarget.hasP8Altivec()) 792 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 793 794 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 795 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 796 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 797 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 798 799 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 800 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 801 802 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 803 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 804 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 805 } 806 807 if (Subtarget.hasP8Altivec()) 808 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 809 else 810 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 811 812 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 813 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 814 815 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 816 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 817 818 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 819 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 820 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 821 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 822 823 // Altivec does not contain unordered floating-point compare instructions 824 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 825 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 826 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 827 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 828 829 if (Subtarget.hasVSX()) { 830 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 831 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 832 if (Subtarget.hasP8Vector()) { 833 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 834 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 835 } 836 if (Subtarget.hasDirectMove() && isPPC64) { 837 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 838 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 839 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 840 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 841 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 842 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 844 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 845 } 846 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 847 848 // The nearbyint variants are not allowed to raise the inexact exception 849 // so we can only code-gen them with unsafe math. 850 if (TM.Options.UnsafeFPMath) { 851 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 852 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 853 } 854 855 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 856 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 857 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 858 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 859 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 860 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 861 setOperationAction(ISD::FROUND, MVT::f64, Legal); 862 setOperationAction(ISD::FRINT, MVT::f64, Legal); 863 864 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 865 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 866 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 867 setOperationAction(ISD::FROUND, MVT::f32, Legal); 868 setOperationAction(ISD::FRINT, MVT::f32, Legal); 869 870 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 871 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 872 873 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 874 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 875 876 // Share the Altivec comparison restrictions. 877 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 878 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 879 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 880 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 881 882 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 883 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 884 885 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 886 887 if (Subtarget.hasP8Vector()) 888 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 889 890 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 891 892 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 893 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 894 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 895 896 if (Subtarget.hasP8Altivec()) { 897 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 898 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 899 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 900 901 // 128 bit shifts can be accomplished via 3 instructions for SHL and 902 // SRL, but not for SRA because of the instructions available: 903 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 904 // doing 905 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 906 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 907 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 908 909 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 910 } 911 else { 912 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 913 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 914 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 915 916 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 917 918 // VSX v2i64 only supports non-arithmetic operations. 919 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 920 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 921 } 922 923 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 924 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 925 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 926 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 927 928 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 929 930 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 931 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 932 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 933 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 934 935 // Custom handling for partial vectors of integers converted to 936 // floating point. We already have optimal handling for v2i32 through 937 // the DAG combine, so those aren't necessary. 938 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 939 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 940 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 941 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 942 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 943 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 944 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 945 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 946 947 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 948 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 949 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 950 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 951 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 952 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 953 954 if (Subtarget.hasDirectMove()) 955 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 956 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 957 958 // Handle constrained floating-point operations of vector. 959 // The predictor is `hasVSX` because altivec instruction has 960 // no exception but VSX vector instruction has. 961 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 962 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 963 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 964 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 965 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 966 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 967 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 968 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 969 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 970 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 971 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 972 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 973 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 974 975 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 976 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 977 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 978 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 979 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 980 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 981 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 982 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 983 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 984 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 985 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 986 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 987 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 988 989 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 990 } 991 992 if (Subtarget.hasP8Altivec()) { 993 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 994 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 995 } 996 997 if (Subtarget.hasP9Vector()) { 998 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 999 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1000 1001 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1002 // SRL, but not for SRA because of the instructions available: 1003 // VS{RL} and VS{RL}O. 1004 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1005 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1006 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1007 1008 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1009 setOperationAction(ISD::FADD, MVT::f128, Legal); 1010 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1011 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1012 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1013 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1014 // No extending loads to f128 on PPC. 1015 for (MVT FPT : MVT::fp_valuetypes()) 1016 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1017 setOperationAction(ISD::FMA, MVT::f128, Legal); 1018 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1019 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1020 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1021 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1022 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1023 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1024 1025 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1026 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1027 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1028 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1029 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1030 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1031 1032 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1033 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1034 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1035 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1036 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1037 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1038 // No implementation for these ops for PowerPC. 1039 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1040 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1041 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1042 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1043 setOperationAction(ISD::FREM, MVT::f128, Expand); 1044 1045 // Handle constrained floating-point operations of fp128 1046 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1047 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1048 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1049 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1050 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1051 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1052 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1053 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1054 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1055 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1056 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1057 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1058 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1059 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1060 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1061 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1062 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1063 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1064 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1065 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1066 } 1067 1068 if (Subtarget.hasP9Altivec()) { 1069 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1070 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1071 1072 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1073 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1074 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1075 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1076 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1077 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1078 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1079 } 1080 } 1081 1082 if (Subtarget.hasQPX()) { 1083 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1084 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1085 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1086 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1087 1088 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1089 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1090 1091 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1092 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1093 1094 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1095 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1096 1097 if (!Subtarget.useCRBits()) 1098 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1099 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1100 1101 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1102 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1103 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1104 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1105 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1106 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1107 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1108 1109 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1110 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1111 1112 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1113 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1114 1115 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1116 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1117 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1118 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1119 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1120 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1121 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1122 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1123 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1124 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1125 1126 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1127 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1128 1129 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1130 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1131 1132 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1133 1134 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1135 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1136 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1137 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1138 1139 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1140 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1141 1142 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1143 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1144 1145 if (!Subtarget.useCRBits()) 1146 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1147 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1148 1149 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1150 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1151 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1152 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1153 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1154 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1155 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1156 1157 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1158 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1159 1160 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1161 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1162 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1163 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1164 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1165 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1166 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1167 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1168 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1169 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1170 1171 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1172 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1173 1174 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1175 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1176 1177 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1178 1179 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1180 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1181 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1182 1183 if (!Subtarget.useCRBits()) 1184 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1185 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1186 1187 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1188 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1189 1190 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1191 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1192 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1193 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1194 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1195 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1196 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1197 1198 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1199 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1200 1201 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1202 1203 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1204 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1205 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1206 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1207 1208 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1209 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1210 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1211 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1212 1213 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1214 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1215 1216 // These need to set FE_INEXACT, and so cannot be vectorized here. 1217 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1218 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1219 1220 if (TM.Options.UnsafeFPMath) { 1221 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1222 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1223 1224 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1225 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1226 } else { 1227 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1228 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1229 1230 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1231 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1232 } 1233 1234 // TODO: Handle constrained floating-point operations of v4f64 1235 } 1236 1237 if (Subtarget.has64BitSupport()) 1238 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1239 1240 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1241 1242 if (!isPPC64) { 1243 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1244 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1245 } 1246 1247 setBooleanContents(ZeroOrOneBooleanContent); 1248 1249 if (Subtarget.hasAltivec()) { 1250 // Altivec instructions set fields to all zeros or all ones. 1251 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1252 } 1253 1254 if (!isPPC64) { 1255 // These libcalls are not available in 32-bit. 1256 setLibcallName(RTLIB::SHL_I128, nullptr); 1257 setLibcallName(RTLIB::SRL_I128, nullptr); 1258 setLibcallName(RTLIB::SRA_I128, nullptr); 1259 } 1260 1261 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1262 1263 // We have target-specific dag combine patterns for the following nodes: 1264 setTargetDAGCombine(ISD::ADD); 1265 setTargetDAGCombine(ISD::SHL); 1266 setTargetDAGCombine(ISD::SRA); 1267 setTargetDAGCombine(ISD::SRL); 1268 setTargetDAGCombine(ISD::MUL); 1269 setTargetDAGCombine(ISD::FMA); 1270 setTargetDAGCombine(ISD::SINT_TO_FP); 1271 setTargetDAGCombine(ISD::BUILD_VECTOR); 1272 if (Subtarget.hasFPCVT()) 1273 setTargetDAGCombine(ISD::UINT_TO_FP); 1274 setTargetDAGCombine(ISD::LOAD); 1275 setTargetDAGCombine(ISD::STORE); 1276 setTargetDAGCombine(ISD::BR_CC); 1277 if (Subtarget.useCRBits()) 1278 setTargetDAGCombine(ISD::BRCOND); 1279 setTargetDAGCombine(ISD::BSWAP); 1280 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1281 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1282 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1283 1284 setTargetDAGCombine(ISD::SIGN_EXTEND); 1285 setTargetDAGCombine(ISD::ZERO_EXTEND); 1286 setTargetDAGCombine(ISD::ANY_EXTEND); 1287 1288 setTargetDAGCombine(ISD::TRUNCATE); 1289 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1290 1291 1292 if (Subtarget.useCRBits()) { 1293 setTargetDAGCombine(ISD::TRUNCATE); 1294 setTargetDAGCombine(ISD::SETCC); 1295 setTargetDAGCombine(ISD::SELECT_CC); 1296 } 1297 1298 // Use reciprocal estimates. 1299 if (TM.Options.UnsafeFPMath) { 1300 setTargetDAGCombine(ISD::FDIV); 1301 setTargetDAGCombine(ISD::FSQRT); 1302 } 1303 1304 if (Subtarget.hasP9Altivec()) { 1305 setTargetDAGCombine(ISD::ABS); 1306 setTargetDAGCombine(ISD::VSELECT); 1307 } 1308 1309 setLibcallName(RTLIB::LOG_F128, "logf128"); 1310 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1311 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1312 setLibcallName(RTLIB::EXP_F128, "expf128"); 1313 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1314 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1315 setLibcallName(RTLIB::COS_F128, "cosf128"); 1316 setLibcallName(RTLIB::POW_F128, "powf128"); 1317 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1318 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1319 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1320 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1321 1322 // With 32 condition bits, we don't need to sink (and duplicate) compares 1323 // aggressively in CodeGenPrep. 1324 if (Subtarget.useCRBits()) { 1325 setHasMultipleConditionRegisters(); 1326 setJumpIsExpensive(); 1327 } 1328 1329 setMinFunctionAlignment(Align(4)); 1330 1331 switch (Subtarget.getCPUDirective()) { 1332 default: break; 1333 case PPC::DIR_970: 1334 case PPC::DIR_A2: 1335 case PPC::DIR_E500: 1336 case PPC::DIR_E500mc: 1337 case PPC::DIR_E5500: 1338 case PPC::DIR_PWR4: 1339 case PPC::DIR_PWR5: 1340 case PPC::DIR_PWR5X: 1341 case PPC::DIR_PWR6: 1342 case PPC::DIR_PWR6X: 1343 case PPC::DIR_PWR7: 1344 case PPC::DIR_PWR8: 1345 case PPC::DIR_PWR9: 1346 case PPC::DIR_PWR10: 1347 case PPC::DIR_PWR_FUTURE: 1348 setPrefLoopAlignment(Align(16)); 1349 setPrefFunctionAlignment(Align(16)); 1350 break; 1351 } 1352 1353 if (Subtarget.enableMachineScheduler()) 1354 setSchedulingPreference(Sched::Source); 1355 else 1356 setSchedulingPreference(Sched::Hybrid); 1357 1358 computeRegisterProperties(STI.getRegisterInfo()); 1359 1360 // The Freescale cores do better with aggressive inlining of memcpy and 1361 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1362 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1363 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1364 MaxStoresPerMemset = 32; 1365 MaxStoresPerMemsetOptSize = 16; 1366 MaxStoresPerMemcpy = 32; 1367 MaxStoresPerMemcpyOptSize = 8; 1368 MaxStoresPerMemmove = 32; 1369 MaxStoresPerMemmoveOptSize = 8; 1370 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1371 // The A2 also benefits from (very) aggressive inlining of memcpy and 1372 // friends. The overhead of a the function call, even when warm, can be 1373 // over one hundred cycles. 1374 MaxStoresPerMemset = 128; 1375 MaxStoresPerMemcpy = 128; 1376 MaxStoresPerMemmove = 128; 1377 MaxLoadsPerMemcmp = 128; 1378 } else { 1379 MaxLoadsPerMemcmp = 8; 1380 MaxLoadsPerMemcmpOptSize = 4; 1381 } 1382 1383 // Let the subtarget (CPU) decide if a predictable select is more expensive 1384 // than the corresponding branch. This information is used in CGP to decide 1385 // when to convert selects into branches. 1386 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1387 } 1388 1389 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1390 /// the desired ByVal argument alignment. 1391 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1392 if (MaxAlign == MaxMaxAlign) 1393 return; 1394 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1395 if (MaxMaxAlign >= 32 && 1396 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1397 MaxAlign = Align(32); 1398 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1399 MaxAlign < 16) 1400 MaxAlign = Align(16); 1401 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1402 Align EltAlign; 1403 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1404 if (EltAlign > MaxAlign) 1405 MaxAlign = EltAlign; 1406 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1407 for (auto *EltTy : STy->elements()) { 1408 Align EltAlign; 1409 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1410 if (EltAlign > MaxAlign) 1411 MaxAlign = EltAlign; 1412 if (MaxAlign == MaxMaxAlign) 1413 break; 1414 } 1415 } 1416 } 1417 1418 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1419 /// function arguments in the caller parameter area. 1420 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1421 const DataLayout &DL) const { 1422 // 16byte and wider vectors are passed on 16byte boundary. 1423 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1424 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1425 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1426 getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16)); 1427 return Alignment.value(); 1428 } 1429 1430 bool PPCTargetLowering::useSoftFloat() const { 1431 return Subtarget.useSoftFloat(); 1432 } 1433 1434 bool PPCTargetLowering::hasSPE() const { 1435 return Subtarget.hasSPE(); 1436 } 1437 1438 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1439 return VT.isScalarInteger(); 1440 } 1441 1442 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1443 /// type is cheaper than a multiply followed by a shift. 1444 /// This is true for words and doublewords on 64-bit PowerPC. 1445 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1446 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1447 isOperationLegal(ISD::MULHU, Type))) 1448 return true; 1449 return TargetLowering::isMulhCheaperThanMulShift(Type); 1450 } 1451 1452 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1453 switch ((PPCISD::NodeType)Opcode) { 1454 case PPCISD::FIRST_NUMBER: break; 1455 case PPCISD::FSEL: return "PPCISD::FSEL"; 1456 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1457 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1458 case PPCISD::FCFID: return "PPCISD::FCFID"; 1459 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1460 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1461 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1462 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1463 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1464 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1465 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1466 case PPCISD::FP_TO_UINT_IN_VSR: 1467 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1468 case PPCISD::FP_TO_SINT_IN_VSR: 1469 return "PPCISD::FP_TO_SINT_IN_VSR"; 1470 case PPCISD::FRE: return "PPCISD::FRE"; 1471 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1472 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1473 case PPCISD::VPERM: return "PPCISD::VPERM"; 1474 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1475 case PPCISD::XXSPLTI_SP_TO_DP: 1476 return "PPCISD::XXSPLTI_SP_TO_DP"; 1477 case PPCISD::XXSPLTI32DX: 1478 return "PPCISD::XXSPLTI32DX"; 1479 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1480 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1481 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1482 case PPCISD::CMPB: return "PPCISD::CMPB"; 1483 case PPCISD::Hi: return "PPCISD::Hi"; 1484 case PPCISD::Lo: return "PPCISD::Lo"; 1485 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1486 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1487 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1488 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1489 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1490 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1491 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1492 case PPCISD::SRL: return "PPCISD::SRL"; 1493 case PPCISD::SRA: return "PPCISD::SRA"; 1494 case PPCISD::SHL: return "PPCISD::SHL"; 1495 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1496 case PPCISD::CALL: return "PPCISD::CALL"; 1497 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1498 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1499 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1500 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1501 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1502 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1503 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1504 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1505 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1506 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1507 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1508 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1509 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1510 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1511 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1512 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1513 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1514 case PPCISD::ANDI_rec_1_EQ_BIT: 1515 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1516 case PPCISD::ANDI_rec_1_GT_BIT: 1517 return "PPCISD::ANDI_rec_1_GT_BIT"; 1518 case PPCISD::VCMP: return "PPCISD::VCMP"; 1519 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1520 case PPCISD::LBRX: return "PPCISD::LBRX"; 1521 case PPCISD::STBRX: return "PPCISD::STBRX"; 1522 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1523 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1524 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1525 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1526 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1527 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1528 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1529 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1530 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1531 case PPCISD::ST_VSR_SCAL_INT: 1532 return "PPCISD::ST_VSR_SCAL_INT"; 1533 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1534 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1535 case PPCISD::BDZ: return "PPCISD::BDZ"; 1536 case PPCISD::MFFS: return "PPCISD::MFFS"; 1537 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1538 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1539 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1540 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1541 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1542 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1543 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1544 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1545 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1546 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1547 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1548 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1549 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1550 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1551 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1552 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1553 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1554 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1555 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1556 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1557 case PPCISD::SC: return "PPCISD::SC"; 1558 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1559 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1560 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1561 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1562 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1563 case PPCISD::VABSD: return "PPCISD::VABSD"; 1564 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1565 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1566 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1567 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1568 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1569 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1570 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1571 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1572 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1573 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1574 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1575 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1576 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1577 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1578 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1579 } 1580 return nullptr; 1581 } 1582 1583 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1584 EVT VT) const { 1585 if (!VT.isVector()) 1586 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1587 1588 if (Subtarget.hasQPX()) 1589 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1590 1591 return VT.changeVectorElementTypeToInteger(); 1592 } 1593 1594 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1595 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1596 return true; 1597 } 1598 1599 //===----------------------------------------------------------------------===// 1600 // Node matching predicates, for use by the tblgen matching code. 1601 //===----------------------------------------------------------------------===// 1602 1603 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1604 static bool isFloatingPointZero(SDValue Op) { 1605 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1606 return CFP->getValueAPF().isZero(); 1607 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1608 // Maybe this has already been legalized into the constant pool? 1609 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1610 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1611 return CFP->getValueAPF().isZero(); 1612 } 1613 return false; 1614 } 1615 1616 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1617 /// true if Op is undef or if it matches the specified value. 1618 static bool isConstantOrUndef(int Op, int Val) { 1619 return Op < 0 || Op == Val; 1620 } 1621 1622 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1623 /// VPKUHUM instruction. 1624 /// The ShuffleKind distinguishes between big-endian operations with 1625 /// two different inputs (0), either-endian operations with two identical 1626 /// inputs (1), and little-endian operations with two different inputs (2). 1627 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1628 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1629 SelectionDAG &DAG) { 1630 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1631 if (ShuffleKind == 0) { 1632 if (IsLE) 1633 return false; 1634 for (unsigned i = 0; i != 16; ++i) 1635 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1636 return false; 1637 } else if (ShuffleKind == 2) { 1638 if (!IsLE) 1639 return false; 1640 for (unsigned i = 0; i != 16; ++i) 1641 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1642 return false; 1643 } else if (ShuffleKind == 1) { 1644 unsigned j = IsLE ? 0 : 1; 1645 for (unsigned i = 0; i != 8; ++i) 1646 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1647 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1648 return false; 1649 } 1650 return true; 1651 } 1652 1653 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1654 /// VPKUWUM instruction. 1655 /// The ShuffleKind distinguishes between big-endian operations with 1656 /// two different inputs (0), either-endian operations with two identical 1657 /// inputs (1), and little-endian operations with two different inputs (2). 1658 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1659 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1660 SelectionDAG &DAG) { 1661 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1662 if (ShuffleKind == 0) { 1663 if (IsLE) 1664 return false; 1665 for (unsigned i = 0; i != 16; i += 2) 1666 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1667 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1668 return false; 1669 } else if (ShuffleKind == 2) { 1670 if (!IsLE) 1671 return false; 1672 for (unsigned i = 0; i != 16; i += 2) 1673 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1674 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1675 return false; 1676 } else if (ShuffleKind == 1) { 1677 unsigned j = IsLE ? 0 : 2; 1678 for (unsigned i = 0; i != 8; i += 2) 1679 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1680 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1681 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1682 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1683 return false; 1684 } 1685 return true; 1686 } 1687 1688 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1689 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1690 /// current subtarget. 1691 /// 1692 /// The ShuffleKind distinguishes between big-endian operations with 1693 /// two different inputs (0), either-endian operations with two identical 1694 /// inputs (1), and little-endian operations with two different inputs (2). 1695 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1696 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1697 SelectionDAG &DAG) { 1698 const PPCSubtarget& Subtarget = 1699 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1700 if (!Subtarget.hasP8Vector()) 1701 return false; 1702 1703 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1704 if (ShuffleKind == 0) { 1705 if (IsLE) 1706 return false; 1707 for (unsigned i = 0; i != 16; i += 4) 1708 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1709 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1710 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1711 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1712 return false; 1713 } else if (ShuffleKind == 2) { 1714 if (!IsLE) 1715 return false; 1716 for (unsigned i = 0; i != 16; i += 4) 1717 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1718 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1719 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1720 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1721 return false; 1722 } else if (ShuffleKind == 1) { 1723 unsigned j = IsLE ? 0 : 4; 1724 for (unsigned i = 0; i != 8; i += 4) 1725 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1726 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1727 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1728 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1729 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1730 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1731 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1732 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1733 return false; 1734 } 1735 return true; 1736 } 1737 1738 /// isVMerge - Common function, used to match vmrg* shuffles. 1739 /// 1740 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1741 unsigned LHSStart, unsigned RHSStart) { 1742 if (N->getValueType(0) != MVT::v16i8) 1743 return false; 1744 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1745 "Unsupported merge size!"); 1746 1747 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1748 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1749 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1750 LHSStart+j+i*UnitSize) || 1751 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1752 RHSStart+j+i*UnitSize)) 1753 return false; 1754 } 1755 return true; 1756 } 1757 1758 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1759 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1760 /// The ShuffleKind distinguishes between big-endian merges with two 1761 /// different inputs (0), either-endian merges with two identical inputs (1), 1762 /// and little-endian merges with two different inputs (2). For the latter, 1763 /// the input operands are swapped (see PPCInstrAltivec.td). 1764 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1765 unsigned ShuffleKind, SelectionDAG &DAG) { 1766 if (DAG.getDataLayout().isLittleEndian()) { 1767 if (ShuffleKind == 1) // unary 1768 return isVMerge(N, UnitSize, 0, 0); 1769 else if (ShuffleKind == 2) // swapped 1770 return isVMerge(N, UnitSize, 0, 16); 1771 else 1772 return false; 1773 } else { 1774 if (ShuffleKind == 1) // unary 1775 return isVMerge(N, UnitSize, 8, 8); 1776 else if (ShuffleKind == 0) // normal 1777 return isVMerge(N, UnitSize, 8, 24); 1778 else 1779 return false; 1780 } 1781 } 1782 1783 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1784 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1785 /// The ShuffleKind distinguishes between big-endian merges with two 1786 /// different inputs (0), either-endian merges with two identical inputs (1), 1787 /// and little-endian merges with two different inputs (2). For the latter, 1788 /// the input operands are swapped (see PPCInstrAltivec.td). 1789 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1790 unsigned ShuffleKind, SelectionDAG &DAG) { 1791 if (DAG.getDataLayout().isLittleEndian()) { 1792 if (ShuffleKind == 1) // unary 1793 return isVMerge(N, UnitSize, 8, 8); 1794 else if (ShuffleKind == 2) // swapped 1795 return isVMerge(N, UnitSize, 8, 24); 1796 else 1797 return false; 1798 } else { 1799 if (ShuffleKind == 1) // unary 1800 return isVMerge(N, UnitSize, 0, 0); 1801 else if (ShuffleKind == 0) // normal 1802 return isVMerge(N, UnitSize, 0, 16); 1803 else 1804 return false; 1805 } 1806 } 1807 1808 /** 1809 * Common function used to match vmrgew and vmrgow shuffles 1810 * 1811 * The indexOffset determines whether to look for even or odd words in 1812 * the shuffle mask. This is based on the of the endianness of the target 1813 * machine. 1814 * - Little Endian: 1815 * - Use offset of 0 to check for odd elements 1816 * - Use offset of 4 to check for even elements 1817 * - Big Endian: 1818 * - Use offset of 0 to check for even elements 1819 * - Use offset of 4 to check for odd elements 1820 * A detailed description of the vector element ordering for little endian and 1821 * big endian can be found at 1822 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1823 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1824 * compiler differences mean to you 1825 * 1826 * The mask to the shuffle vector instruction specifies the indices of the 1827 * elements from the two input vectors to place in the result. The elements are 1828 * numbered in array-access order, starting with the first vector. These vectors 1829 * are always of type v16i8, thus each vector will contain 16 elements of size 1830 * 8. More info on the shuffle vector can be found in the 1831 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1832 * Language Reference. 1833 * 1834 * The RHSStartValue indicates whether the same input vectors are used (unary) 1835 * or two different input vectors are used, based on the following: 1836 * - If the instruction uses the same vector for both inputs, the range of the 1837 * indices will be 0 to 15. In this case, the RHSStart value passed should 1838 * be 0. 1839 * - If the instruction has two different vectors then the range of the 1840 * indices will be 0 to 31. In this case, the RHSStart value passed should 1841 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1842 * to 31 specify elements in the second vector). 1843 * 1844 * \param[in] N The shuffle vector SD Node to analyze 1845 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1846 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1847 * vector to the shuffle_vector instruction 1848 * \return true iff this shuffle vector represents an even or odd word merge 1849 */ 1850 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1851 unsigned RHSStartValue) { 1852 if (N->getValueType(0) != MVT::v16i8) 1853 return false; 1854 1855 for (unsigned i = 0; i < 2; ++i) 1856 for (unsigned j = 0; j < 4; ++j) 1857 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1858 i*RHSStartValue+j+IndexOffset) || 1859 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1860 i*RHSStartValue+j+IndexOffset+8)) 1861 return false; 1862 return true; 1863 } 1864 1865 /** 1866 * Determine if the specified shuffle mask is suitable for the vmrgew or 1867 * vmrgow instructions. 1868 * 1869 * \param[in] N The shuffle vector SD Node to analyze 1870 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1871 * \param[in] ShuffleKind Identify the type of merge: 1872 * - 0 = big-endian merge with two different inputs; 1873 * - 1 = either-endian merge with two identical inputs; 1874 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1875 * little-endian merges). 1876 * \param[in] DAG The current SelectionDAG 1877 * \return true iff this shuffle mask 1878 */ 1879 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1880 unsigned ShuffleKind, SelectionDAG &DAG) { 1881 if (DAG.getDataLayout().isLittleEndian()) { 1882 unsigned indexOffset = CheckEven ? 4 : 0; 1883 if (ShuffleKind == 1) // Unary 1884 return isVMerge(N, indexOffset, 0); 1885 else if (ShuffleKind == 2) // swapped 1886 return isVMerge(N, indexOffset, 16); 1887 else 1888 return false; 1889 } 1890 else { 1891 unsigned indexOffset = CheckEven ? 0 : 4; 1892 if (ShuffleKind == 1) // Unary 1893 return isVMerge(N, indexOffset, 0); 1894 else if (ShuffleKind == 0) // Normal 1895 return isVMerge(N, indexOffset, 16); 1896 else 1897 return false; 1898 } 1899 return false; 1900 } 1901 1902 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1903 /// amount, otherwise return -1. 1904 /// The ShuffleKind distinguishes between big-endian operations with two 1905 /// different inputs (0), either-endian operations with two identical inputs 1906 /// (1), and little-endian operations with two different inputs (2). For the 1907 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1908 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1909 SelectionDAG &DAG) { 1910 if (N->getValueType(0) != MVT::v16i8) 1911 return -1; 1912 1913 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1914 1915 // Find the first non-undef value in the shuffle mask. 1916 unsigned i; 1917 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1918 /*search*/; 1919 1920 if (i == 16) return -1; // all undef. 1921 1922 // Otherwise, check to see if the rest of the elements are consecutively 1923 // numbered from this value. 1924 unsigned ShiftAmt = SVOp->getMaskElt(i); 1925 if (ShiftAmt < i) return -1; 1926 1927 ShiftAmt -= i; 1928 bool isLE = DAG.getDataLayout().isLittleEndian(); 1929 1930 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1931 // Check the rest of the elements to see if they are consecutive. 1932 for (++i; i != 16; ++i) 1933 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1934 return -1; 1935 } else if (ShuffleKind == 1) { 1936 // Check the rest of the elements to see if they are consecutive. 1937 for (++i; i != 16; ++i) 1938 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1939 return -1; 1940 } else 1941 return -1; 1942 1943 if (isLE) 1944 ShiftAmt = 16 - ShiftAmt; 1945 1946 return ShiftAmt; 1947 } 1948 1949 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1950 /// specifies a splat of a single element that is suitable for input to 1951 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1952 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1953 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1954 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1955 1956 // The consecutive indices need to specify an element, not part of two 1957 // different elements. So abandon ship early if this isn't the case. 1958 if (N->getMaskElt(0) % EltSize != 0) 1959 return false; 1960 1961 // This is a splat operation if each element of the permute is the same, and 1962 // if the value doesn't reference the second vector. 1963 unsigned ElementBase = N->getMaskElt(0); 1964 1965 // FIXME: Handle UNDEF elements too! 1966 if (ElementBase >= 16) 1967 return false; 1968 1969 // Check that the indices are consecutive, in the case of a multi-byte element 1970 // splatted with a v16i8 mask. 1971 for (unsigned i = 1; i != EltSize; ++i) 1972 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1973 return false; 1974 1975 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1976 if (N->getMaskElt(i) < 0) continue; 1977 for (unsigned j = 0; j != EltSize; ++j) 1978 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1979 return false; 1980 } 1981 return true; 1982 } 1983 1984 /// Check that the mask is shuffling N byte elements. Within each N byte 1985 /// element of the mask, the indices could be either in increasing or 1986 /// decreasing order as long as they are consecutive. 1987 /// \param[in] N the shuffle vector SD Node to analyze 1988 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1989 /// Word/DoubleWord/QuadWord). 1990 /// \param[in] StepLen the delta indices number among the N byte element, if 1991 /// the mask is in increasing/decreasing order then it is 1/-1. 1992 /// \return true iff the mask is shuffling N byte elements. 1993 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1994 int StepLen) { 1995 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1996 "Unexpected element width."); 1997 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1998 1999 unsigned NumOfElem = 16 / Width; 2000 unsigned MaskVal[16]; // Width is never greater than 16 2001 for (unsigned i = 0; i < NumOfElem; ++i) { 2002 MaskVal[0] = N->getMaskElt(i * Width); 2003 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2004 return false; 2005 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2006 return false; 2007 } 2008 2009 for (unsigned int j = 1; j < Width; ++j) { 2010 MaskVal[j] = N->getMaskElt(i * Width + j); 2011 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2012 return false; 2013 } 2014 } 2015 } 2016 2017 return true; 2018 } 2019 2020 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2021 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2022 if (!isNByteElemShuffleMask(N, 4, 1)) 2023 return false; 2024 2025 // Now we look at mask elements 0,4,8,12 2026 unsigned M0 = N->getMaskElt(0) / 4; 2027 unsigned M1 = N->getMaskElt(4) / 4; 2028 unsigned M2 = N->getMaskElt(8) / 4; 2029 unsigned M3 = N->getMaskElt(12) / 4; 2030 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2031 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2032 2033 // Below, let H and L be arbitrary elements of the shuffle mask 2034 // where H is in the range [4,7] and L is in the range [0,3]. 2035 // H, 1, 2, 3 or L, 5, 6, 7 2036 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2037 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2038 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2039 InsertAtByte = IsLE ? 12 : 0; 2040 Swap = M0 < 4; 2041 return true; 2042 } 2043 // 0, H, 2, 3 or 4, L, 6, 7 2044 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2045 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2046 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2047 InsertAtByte = IsLE ? 8 : 4; 2048 Swap = M1 < 4; 2049 return true; 2050 } 2051 // 0, 1, H, 3 or 4, 5, L, 7 2052 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2053 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2054 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2055 InsertAtByte = IsLE ? 4 : 8; 2056 Swap = M2 < 4; 2057 return true; 2058 } 2059 // 0, 1, 2, H or 4, 5, 6, L 2060 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2061 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2062 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2063 InsertAtByte = IsLE ? 0 : 12; 2064 Swap = M3 < 4; 2065 return true; 2066 } 2067 2068 // If both vector operands for the shuffle are the same vector, the mask will 2069 // contain only elements from the first one and the second one will be undef. 2070 if (N->getOperand(1).isUndef()) { 2071 ShiftElts = 0; 2072 Swap = true; 2073 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2074 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2075 InsertAtByte = IsLE ? 12 : 0; 2076 return true; 2077 } 2078 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2079 InsertAtByte = IsLE ? 8 : 4; 2080 return true; 2081 } 2082 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2083 InsertAtByte = IsLE ? 4 : 8; 2084 return true; 2085 } 2086 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2087 InsertAtByte = IsLE ? 0 : 12; 2088 return true; 2089 } 2090 } 2091 2092 return false; 2093 } 2094 2095 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2096 bool &Swap, bool IsLE) { 2097 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2098 // Ensure each byte index of the word is consecutive. 2099 if (!isNByteElemShuffleMask(N, 4, 1)) 2100 return false; 2101 2102 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2103 unsigned M0 = N->getMaskElt(0) / 4; 2104 unsigned M1 = N->getMaskElt(4) / 4; 2105 unsigned M2 = N->getMaskElt(8) / 4; 2106 unsigned M3 = N->getMaskElt(12) / 4; 2107 2108 // If both vector operands for the shuffle are the same vector, the mask will 2109 // contain only elements from the first one and the second one will be undef. 2110 if (N->getOperand(1).isUndef()) { 2111 assert(M0 < 4 && "Indexing into an undef vector?"); 2112 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2113 return false; 2114 2115 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2116 Swap = false; 2117 return true; 2118 } 2119 2120 // Ensure each word index of the ShuffleVector Mask is consecutive. 2121 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2122 return false; 2123 2124 if (IsLE) { 2125 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2126 // Input vectors don't need to be swapped if the leading element 2127 // of the result is one of the 3 left elements of the second vector 2128 // (or if there is no shift to be done at all). 2129 Swap = false; 2130 ShiftElts = (8 - M0) % 8; 2131 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2132 // Input vectors need to be swapped if the leading element 2133 // of the result is one of the 3 left elements of the first vector 2134 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2135 Swap = true; 2136 ShiftElts = (4 - M0) % 4; 2137 } 2138 2139 return true; 2140 } else { // BE 2141 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2142 // Input vectors don't need to be swapped if the leading element 2143 // of the result is one of the 4 elements of the first vector. 2144 Swap = false; 2145 ShiftElts = M0; 2146 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2147 // Input vectors need to be swapped if the leading element 2148 // of the result is one of the 4 elements of the right vector. 2149 Swap = true; 2150 ShiftElts = M0 - 4; 2151 } 2152 2153 return true; 2154 } 2155 } 2156 2157 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2158 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2159 2160 if (!isNByteElemShuffleMask(N, Width, -1)) 2161 return false; 2162 2163 for (int i = 0; i < 16; i += Width) 2164 if (N->getMaskElt(i) != i + Width - 1) 2165 return false; 2166 2167 return true; 2168 } 2169 2170 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2171 return isXXBRShuffleMaskHelper(N, 2); 2172 } 2173 2174 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2175 return isXXBRShuffleMaskHelper(N, 4); 2176 } 2177 2178 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2179 return isXXBRShuffleMaskHelper(N, 8); 2180 } 2181 2182 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2183 return isXXBRShuffleMaskHelper(N, 16); 2184 } 2185 2186 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2187 /// if the inputs to the instruction should be swapped and set \p DM to the 2188 /// value for the immediate. 2189 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2190 /// AND element 0 of the result comes from the first input (LE) or second input 2191 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2192 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2193 /// mask. 2194 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2195 bool &Swap, bool IsLE) { 2196 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2197 2198 // Ensure each byte index of the double word is consecutive. 2199 if (!isNByteElemShuffleMask(N, 8, 1)) 2200 return false; 2201 2202 unsigned M0 = N->getMaskElt(0) / 8; 2203 unsigned M1 = N->getMaskElt(8) / 8; 2204 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2205 2206 // If both vector operands for the shuffle are the same vector, the mask will 2207 // contain only elements from the first one and the second one will be undef. 2208 if (N->getOperand(1).isUndef()) { 2209 if ((M0 | M1) < 2) { 2210 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2211 Swap = false; 2212 return true; 2213 } else 2214 return false; 2215 } 2216 2217 if (IsLE) { 2218 if (M0 > 1 && M1 < 2) { 2219 Swap = false; 2220 } else if (M0 < 2 && M1 > 1) { 2221 M0 = (M0 + 2) % 4; 2222 M1 = (M1 + 2) % 4; 2223 Swap = true; 2224 } else 2225 return false; 2226 2227 // Note: if control flow comes here that means Swap is already set above 2228 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2229 return true; 2230 } else { // BE 2231 if (M0 < 2 && M1 > 1) { 2232 Swap = false; 2233 } else if (M0 > 1 && M1 < 2) { 2234 M0 = (M0 + 2) % 4; 2235 M1 = (M1 + 2) % 4; 2236 Swap = true; 2237 } else 2238 return false; 2239 2240 // Note: if control flow comes here that means Swap is already set above 2241 DM = (M0 << 1) + (M1 & 1); 2242 return true; 2243 } 2244 } 2245 2246 2247 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2248 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2249 /// elements are counted from the left of the vector register). 2250 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2251 SelectionDAG &DAG) { 2252 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2253 assert(isSplatShuffleMask(SVOp, EltSize)); 2254 if (DAG.getDataLayout().isLittleEndian()) 2255 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2256 else 2257 return SVOp->getMaskElt(0) / EltSize; 2258 } 2259 2260 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2261 /// by using a vspltis[bhw] instruction of the specified element size, return 2262 /// the constant being splatted. The ByteSize field indicates the number of 2263 /// bytes of each element [124] -> [bhw]. 2264 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2265 SDValue OpVal(nullptr, 0); 2266 2267 // If ByteSize of the splat is bigger than the element size of the 2268 // build_vector, then we have a case where we are checking for a splat where 2269 // multiple elements of the buildvector are folded together into a single 2270 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2271 unsigned EltSize = 16/N->getNumOperands(); 2272 if (EltSize < ByteSize) { 2273 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2274 SDValue UniquedVals[4]; 2275 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2276 2277 // See if all of the elements in the buildvector agree across. 2278 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2279 if (N->getOperand(i).isUndef()) continue; 2280 // If the element isn't a constant, bail fully out. 2281 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2282 2283 if (!UniquedVals[i&(Multiple-1)].getNode()) 2284 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2285 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2286 return SDValue(); // no match. 2287 } 2288 2289 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2290 // either constant or undef values that are identical for each chunk. See 2291 // if these chunks can form into a larger vspltis*. 2292 2293 // Check to see if all of the leading entries are either 0 or -1. If 2294 // neither, then this won't fit into the immediate field. 2295 bool LeadingZero = true; 2296 bool LeadingOnes = true; 2297 for (unsigned i = 0; i != Multiple-1; ++i) { 2298 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2299 2300 LeadingZero &= isNullConstant(UniquedVals[i]); 2301 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2302 } 2303 // Finally, check the least significant entry. 2304 if (LeadingZero) { 2305 if (!UniquedVals[Multiple-1].getNode()) 2306 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2307 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2308 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2309 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2310 } 2311 if (LeadingOnes) { 2312 if (!UniquedVals[Multiple-1].getNode()) 2313 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2314 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2315 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2316 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2317 } 2318 2319 return SDValue(); 2320 } 2321 2322 // Check to see if this buildvec has a single non-undef value in its elements. 2323 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2324 if (N->getOperand(i).isUndef()) continue; 2325 if (!OpVal.getNode()) 2326 OpVal = N->getOperand(i); 2327 else if (OpVal != N->getOperand(i)) 2328 return SDValue(); 2329 } 2330 2331 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2332 2333 unsigned ValSizeInBytes = EltSize; 2334 uint64_t Value = 0; 2335 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2336 Value = CN->getZExtValue(); 2337 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2338 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2339 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2340 } 2341 2342 // If the splat value is larger than the element value, then we can never do 2343 // this splat. The only case that we could fit the replicated bits into our 2344 // immediate field for would be zero, and we prefer to use vxor for it. 2345 if (ValSizeInBytes < ByteSize) return SDValue(); 2346 2347 // If the element value is larger than the splat value, check if it consists 2348 // of a repeated bit pattern of size ByteSize. 2349 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2350 return SDValue(); 2351 2352 // Properly sign extend the value. 2353 int MaskVal = SignExtend32(Value, ByteSize * 8); 2354 2355 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2356 if (MaskVal == 0) return SDValue(); 2357 2358 // Finally, if this value fits in a 5 bit sext field, return it 2359 if (SignExtend32<5>(MaskVal) == MaskVal) 2360 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2361 return SDValue(); 2362 } 2363 2364 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2365 /// amount, otherwise return -1. 2366 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2367 EVT VT = N->getValueType(0); 2368 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2369 return -1; 2370 2371 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2372 2373 // Find the first non-undef value in the shuffle mask. 2374 unsigned i; 2375 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2376 /*search*/; 2377 2378 if (i == 4) return -1; // all undef. 2379 2380 // Otherwise, check to see if the rest of the elements are consecutively 2381 // numbered from this value. 2382 unsigned ShiftAmt = SVOp->getMaskElt(i); 2383 if (ShiftAmt < i) return -1; 2384 ShiftAmt -= i; 2385 2386 // Check the rest of the elements to see if they are consecutive. 2387 for (++i; i != 4; ++i) 2388 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2389 return -1; 2390 2391 return ShiftAmt; 2392 } 2393 2394 //===----------------------------------------------------------------------===// 2395 // Addressing Mode Selection 2396 //===----------------------------------------------------------------------===// 2397 2398 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2399 /// or 64-bit immediate, and if the value can be accurately represented as a 2400 /// sign extension from a 16-bit value. If so, this returns true and the 2401 /// immediate. 2402 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2403 if (!isa<ConstantSDNode>(N)) 2404 return false; 2405 2406 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2407 if (N->getValueType(0) == MVT::i32) 2408 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2409 else 2410 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2411 } 2412 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2413 return isIntS16Immediate(Op.getNode(), Imm); 2414 } 2415 2416 2417 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2418 /// be represented as an indexed [r+r] operation. 2419 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2420 SDValue &Index, 2421 SelectionDAG &DAG) const { 2422 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2423 UI != E; ++UI) { 2424 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2425 if (Memop->getMemoryVT() == MVT::f64) { 2426 Base = N.getOperand(0); 2427 Index = N.getOperand(1); 2428 return true; 2429 } 2430 } 2431 } 2432 return false; 2433 } 2434 2435 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2436 /// can be represented as an indexed [r+r] operation. Returns false if it 2437 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2438 /// non-zero and N can be represented by a base register plus a signed 16-bit 2439 /// displacement, make a more precise judgement by checking (displacement % \p 2440 /// EncodingAlignment). 2441 bool PPCTargetLowering::SelectAddressRegReg( 2442 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2443 MaybeAlign EncodingAlignment) const { 2444 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2445 // a [pc+imm]. 2446 if (SelectAddressPCRel(N, Base)) 2447 return false; 2448 2449 int16_t Imm = 0; 2450 if (N.getOpcode() == ISD::ADD) { 2451 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2452 // SPE load/store can only handle 8-bit offsets. 2453 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2454 return true; 2455 if (isIntS16Immediate(N.getOperand(1), Imm) && 2456 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2457 return false; // r+i 2458 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2459 return false; // r+i 2460 2461 Base = N.getOperand(0); 2462 Index = N.getOperand(1); 2463 return true; 2464 } else if (N.getOpcode() == ISD::OR) { 2465 if (isIntS16Immediate(N.getOperand(1), Imm) && 2466 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2467 return false; // r+i can fold it if we can. 2468 2469 // If this is an or of disjoint bitfields, we can codegen this as an add 2470 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2471 // disjoint. 2472 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2473 2474 if (LHSKnown.Zero.getBoolValue()) { 2475 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2476 // If all of the bits are known zero on the LHS or RHS, the add won't 2477 // carry. 2478 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2479 Base = N.getOperand(0); 2480 Index = N.getOperand(1); 2481 return true; 2482 } 2483 } 2484 } 2485 2486 return false; 2487 } 2488 2489 // If we happen to be doing an i64 load or store into a stack slot that has 2490 // less than a 4-byte alignment, then the frame-index elimination may need to 2491 // use an indexed load or store instruction (because the offset may not be a 2492 // multiple of 4). The extra register needed to hold the offset comes from the 2493 // register scavenger, and it is possible that the scavenger will need to use 2494 // an emergency spill slot. As a result, we need to make sure that a spill slot 2495 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2496 // stack slot. 2497 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2498 // FIXME: This does not handle the LWA case. 2499 if (VT != MVT::i64) 2500 return; 2501 2502 // NOTE: We'll exclude negative FIs here, which come from argument 2503 // lowering, because there are no known test cases triggering this problem 2504 // using packed structures (or similar). We can remove this exclusion if 2505 // we find such a test case. The reason why this is so test-case driven is 2506 // because this entire 'fixup' is only to prevent crashes (from the 2507 // register scavenger) on not-really-valid inputs. For example, if we have: 2508 // %a = alloca i1 2509 // %b = bitcast i1* %a to i64* 2510 // store i64* a, i64 b 2511 // then the store should really be marked as 'align 1', but is not. If it 2512 // were marked as 'align 1' then the indexed form would have been 2513 // instruction-selected initially, and the problem this 'fixup' is preventing 2514 // won't happen regardless. 2515 if (FrameIdx < 0) 2516 return; 2517 2518 MachineFunction &MF = DAG.getMachineFunction(); 2519 MachineFrameInfo &MFI = MF.getFrameInfo(); 2520 2521 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2522 return; 2523 2524 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2525 FuncInfo->setHasNonRISpills(); 2526 } 2527 2528 /// Returns true if the address N can be represented by a base register plus 2529 /// a signed 16-bit displacement [r+imm], and if it is not better 2530 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2531 /// displacements that are multiples of that value. 2532 bool PPCTargetLowering::SelectAddressRegImm( 2533 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2534 MaybeAlign EncodingAlignment) const { 2535 // FIXME dl should come from parent load or store, not from address 2536 SDLoc dl(N); 2537 2538 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2539 // a [pc+imm]. 2540 if (SelectAddressPCRel(N, Base)) 2541 return false; 2542 2543 // If this can be more profitably realized as r+r, fail. 2544 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2545 return false; 2546 2547 if (N.getOpcode() == ISD::ADD) { 2548 int16_t imm = 0; 2549 if (isIntS16Immediate(N.getOperand(1), imm) && 2550 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2551 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2552 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2553 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2554 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2555 } else { 2556 Base = N.getOperand(0); 2557 } 2558 return true; // [r+i] 2559 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2560 // Match LOAD (ADD (X, Lo(G))). 2561 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2562 && "Cannot handle constant offsets yet!"); 2563 Disp = N.getOperand(1).getOperand(0); // The global address. 2564 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2565 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2566 Disp.getOpcode() == ISD::TargetConstantPool || 2567 Disp.getOpcode() == ISD::TargetJumpTable); 2568 Base = N.getOperand(0); 2569 return true; // [&g+r] 2570 } 2571 } else if (N.getOpcode() == ISD::OR) { 2572 int16_t imm = 0; 2573 if (isIntS16Immediate(N.getOperand(1), imm) && 2574 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2575 // If this is an or of disjoint bitfields, we can codegen this as an add 2576 // (for better address arithmetic) if the LHS and RHS of the OR are 2577 // provably disjoint. 2578 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2579 2580 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2581 // If all of the bits are known zero on the LHS or RHS, the add won't 2582 // carry. 2583 if (FrameIndexSDNode *FI = 2584 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2585 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2586 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2587 } else { 2588 Base = N.getOperand(0); 2589 } 2590 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2591 return true; 2592 } 2593 } 2594 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2595 // Loading from a constant address. 2596 2597 // If this address fits entirely in a 16-bit sext immediate field, codegen 2598 // this as "d, 0" 2599 int16_t Imm; 2600 if (isIntS16Immediate(CN, Imm) && 2601 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2602 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2603 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2604 CN->getValueType(0)); 2605 return true; 2606 } 2607 2608 // Handle 32-bit sext immediates with LIS + addr mode. 2609 if ((CN->getValueType(0) == MVT::i32 || 2610 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2611 (!EncodingAlignment || 2612 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2613 int Addr = (int)CN->getZExtValue(); 2614 2615 // Otherwise, break this down into an LIS + disp. 2616 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2617 2618 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2619 MVT::i32); 2620 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2621 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2622 return true; 2623 } 2624 } 2625 2626 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2627 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2628 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2629 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2630 } else 2631 Base = N; 2632 return true; // [r+0] 2633 } 2634 2635 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2636 /// represented as an indexed [r+r] operation. 2637 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2638 SDValue &Index, 2639 SelectionDAG &DAG) const { 2640 // Check to see if we can easily represent this as an [r+r] address. This 2641 // will fail if it thinks that the address is more profitably represented as 2642 // reg+imm, e.g. where imm = 0. 2643 if (SelectAddressRegReg(N, Base, Index, DAG)) 2644 return true; 2645 2646 // If the address is the result of an add, we will utilize the fact that the 2647 // address calculation includes an implicit add. However, we can reduce 2648 // register pressure if we do not materialize a constant just for use as the 2649 // index register. We only get rid of the add if it is not an add of a 2650 // value and a 16-bit signed constant and both have a single use. 2651 int16_t imm = 0; 2652 if (N.getOpcode() == ISD::ADD && 2653 (!isIntS16Immediate(N.getOperand(1), imm) || 2654 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2655 Base = N.getOperand(0); 2656 Index = N.getOperand(1); 2657 return true; 2658 } 2659 2660 // Otherwise, do it the hard way, using R0 as the base register. 2661 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2662 N.getValueType()); 2663 Index = N; 2664 return true; 2665 } 2666 2667 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2668 Ty *PCRelCand = dyn_cast<Ty>(N); 2669 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2670 } 2671 2672 /// Returns true if this address is a PC Relative address. 2673 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2674 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2675 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2676 // This is a materialize PC Relative node. Always select this as PC Relative. 2677 Base = N; 2678 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2679 return true; 2680 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2681 isValidPCRelNode<GlobalAddressSDNode>(N) || 2682 isValidPCRelNode<JumpTableSDNode>(N) || 2683 isValidPCRelNode<BlockAddressSDNode>(N)) 2684 return true; 2685 return false; 2686 } 2687 2688 /// Returns true if we should use a direct load into vector instruction 2689 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2690 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2691 2692 // If there are any other uses other than scalar to vector, then we should 2693 // keep it as a scalar load -> direct move pattern to prevent multiple 2694 // loads. 2695 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2696 if (!LD) 2697 return false; 2698 2699 EVT MemVT = LD->getMemoryVT(); 2700 if (!MemVT.isSimple()) 2701 return false; 2702 switch(MemVT.getSimpleVT().SimpleTy) { 2703 case MVT::i64: 2704 break; 2705 case MVT::i32: 2706 if (!ST.hasP8Vector()) 2707 return false; 2708 break; 2709 case MVT::i16: 2710 case MVT::i8: 2711 if (!ST.hasP9Vector()) 2712 return false; 2713 break; 2714 default: 2715 return false; 2716 } 2717 2718 SDValue LoadedVal(N, 0); 2719 if (!LoadedVal.hasOneUse()) 2720 return false; 2721 2722 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2723 UI != UE; ++UI) 2724 if (UI.getUse().get().getResNo() == 0 && 2725 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2726 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2727 return false; 2728 2729 return true; 2730 } 2731 2732 /// getPreIndexedAddressParts - returns true by value, base pointer and 2733 /// offset pointer and addressing mode by reference if the node's address 2734 /// can be legally represented as pre-indexed load / store address. 2735 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2736 SDValue &Offset, 2737 ISD::MemIndexedMode &AM, 2738 SelectionDAG &DAG) const { 2739 if (DisablePPCPreinc) return false; 2740 2741 bool isLoad = true; 2742 SDValue Ptr; 2743 EVT VT; 2744 unsigned Alignment; 2745 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2746 Ptr = LD->getBasePtr(); 2747 VT = LD->getMemoryVT(); 2748 Alignment = LD->getAlignment(); 2749 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2750 Ptr = ST->getBasePtr(); 2751 VT = ST->getMemoryVT(); 2752 Alignment = ST->getAlignment(); 2753 isLoad = false; 2754 } else 2755 return false; 2756 2757 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2758 // instructions because we can fold these into a more efficient instruction 2759 // instead, (such as LXSD). 2760 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2761 return false; 2762 } 2763 2764 // PowerPC doesn't have preinc load/store instructions for vectors (except 2765 // for QPX, which does have preinc r+r forms). 2766 if (VT.isVector()) { 2767 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2768 return false; 2769 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2770 AM = ISD::PRE_INC; 2771 return true; 2772 } 2773 } 2774 2775 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2776 // Common code will reject creating a pre-inc form if the base pointer 2777 // is a frame index, or if N is a store and the base pointer is either 2778 // the same as or a predecessor of the value being stored. Check for 2779 // those situations here, and try with swapped Base/Offset instead. 2780 bool Swap = false; 2781 2782 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2783 Swap = true; 2784 else if (!isLoad) { 2785 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2786 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2787 Swap = true; 2788 } 2789 2790 if (Swap) 2791 std::swap(Base, Offset); 2792 2793 AM = ISD::PRE_INC; 2794 return true; 2795 } 2796 2797 // LDU/STU can only handle immediates that are a multiple of 4. 2798 if (VT != MVT::i64) { 2799 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2800 return false; 2801 } else { 2802 // LDU/STU need an address with at least 4-byte alignment. 2803 if (Alignment < 4) 2804 return false; 2805 2806 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2807 return false; 2808 } 2809 2810 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2811 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2812 // sext i32 to i64 when addr mode is r+i. 2813 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2814 LD->getExtensionType() == ISD::SEXTLOAD && 2815 isa<ConstantSDNode>(Offset)) 2816 return false; 2817 } 2818 2819 AM = ISD::PRE_INC; 2820 return true; 2821 } 2822 2823 //===----------------------------------------------------------------------===// 2824 // LowerOperation implementation 2825 //===----------------------------------------------------------------------===// 2826 2827 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2828 /// and LoOpFlags to the target MO flags. 2829 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2830 unsigned &HiOpFlags, unsigned &LoOpFlags, 2831 const GlobalValue *GV = nullptr) { 2832 HiOpFlags = PPCII::MO_HA; 2833 LoOpFlags = PPCII::MO_LO; 2834 2835 // Don't use the pic base if not in PIC relocation model. 2836 if (IsPIC) { 2837 HiOpFlags |= PPCII::MO_PIC_FLAG; 2838 LoOpFlags |= PPCII::MO_PIC_FLAG; 2839 } 2840 } 2841 2842 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2843 SelectionDAG &DAG) { 2844 SDLoc DL(HiPart); 2845 EVT PtrVT = HiPart.getValueType(); 2846 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2847 2848 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2849 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2850 2851 // With PIC, the first instruction is actually "GR+hi(&G)". 2852 if (isPIC) 2853 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2854 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2855 2856 // Generate non-pic code that has direct accesses to the constant pool. 2857 // The address of the global is just (hi(&g)+lo(&g)). 2858 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2859 } 2860 2861 static void setUsesTOCBasePtr(MachineFunction &MF) { 2862 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2863 FuncInfo->setUsesTOCBasePtr(); 2864 } 2865 2866 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2867 setUsesTOCBasePtr(DAG.getMachineFunction()); 2868 } 2869 2870 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2871 SDValue GA) const { 2872 const bool Is64Bit = Subtarget.isPPC64(); 2873 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2874 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2875 : Subtarget.isAIXABI() 2876 ? DAG.getRegister(PPC::R2, VT) 2877 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2878 SDValue Ops[] = { GA, Reg }; 2879 return DAG.getMemIntrinsicNode( 2880 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2881 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2882 MachineMemOperand::MOLoad); 2883 } 2884 2885 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2886 SelectionDAG &DAG) const { 2887 EVT PtrVT = Op.getValueType(); 2888 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2889 const Constant *C = CP->getConstVal(); 2890 2891 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2892 // The actual address of the GlobalValue is stored in the TOC. 2893 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2894 if (Subtarget.isUsingPCRelativeCalls()) { 2895 SDLoc DL(CP); 2896 EVT Ty = getPointerTy(DAG.getDataLayout()); 2897 SDValue ConstPool = DAG.getTargetConstantPool( 2898 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2899 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2900 } 2901 setUsesTOCBasePtr(DAG); 2902 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2903 return getTOCEntry(DAG, SDLoc(CP), GA); 2904 } 2905 2906 unsigned MOHiFlag, MOLoFlag; 2907 bool IsPIC = isPositionIndependent(); 2908 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2909 2910 if (IsPIC && Subtarget.isSVR4ABI()) { 2911 SDValue GA = 2912 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2913 return getTOCEntry(DAG, SDLoc(CP), GA); 2914 } 2915 2916 SDValue CPIHi = 2917 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2918 SDValue CPILo = 2919 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2920 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2921 } 2922 2923 // For 64-bit PowerPC, prefer the more compact relative encodings. 2924 // This trades 32 bits per jump table entry for one or two instructions 2925 // on the jump site. 2926 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2927 if (isJumpTableRelative()) 2928 return MachineJumpTableInfo::EK_LabelDifference32; 2929 2930 return TargetLowering::getJumpTableEncoding(); 2931 } 2932 2933 bool PPCTargetLowering::isJumpTableRelative() const { 2934 if (UseAbsoluteJumpTables) 2935 return false; 2936 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2937 return true; 2938 return TargetLowering::isJumpTableRelative(); 2939 } 2940 2941 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2942 SelectionDAG &DAG) const { 2943 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2944 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2945 2946 switch (getTargetMachine().getCodeModel()) { 2947 case CodeModel::Small: 2948 case CodeModel::Medium: 2949 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2950 default: 2951 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2952 getPointerTy(DAG.getDataLayout())); 2953 } 2954 } 2955 2956 const MCExpr * 2957 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2958 unsigned JTI, 2959 MCContext &Ctx) const { 2960 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2961 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2962 2963 switch (getTargetMachine().getCodeModel()) { 2964 case CodeModel::Small: 2965 case CodeModel::Medium: 2966 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2967 default: 2968 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2969 } 2970 } 2971 2972 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2973 EVT PtrVT = Op.getValueType(); 2974 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2975 2976 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2977 if (Subtarget.isUsingPCRelativeCalls()) { 2978 SDLoc DL(JT); 2979 EVT Ty = getPointerTy(DAG.getDataLayout()); 2980 SDValue GA = 2981 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2982 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2983 return MatAddr; 2984 } 2985 2986 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2987 // The actual address of the GlobalValue is stored in the TOC. 2988 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2989 setUsesTOCBasePtr(DAG); 2990 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2991 return getTOCEntry(DAG, SDLoc(JT), GA); 2992 } 2993 2994 unsigned MOHiFlag, MOLoFlag; 2995 bool IsPIC = isPositionIndependent(); 2996 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2997 2998 if (IsPIC && Subtarget.isSVR4ABI()) { 2999 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3000 PPCII::MO_PIC_FLAG); 3001 return getTOCEntry(DAG, SDLoc(GA), GA); 3002 } 3003 3004 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3005 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3006 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3007 } 3008 3009 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3010 SelectionDAG &DAG) const { 3011 EVT PtrVT = Op.getValueType(); 3012 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3013 const BlockAddress *BA = BASDN->getBlockAddress(); 3014 3015 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3016 if (Subtarget.isUsingPCRelativeCalls()) { 3017 SDLoc DL(BASDN); 3018 EVT Ty = getPointerTy(DAG.getDataLayout()); 3019 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3020 PPCII::MO_PCREL_FLAG); 3021 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3022 return MatAddr; 3023 } 3024 3025 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3026 // The actual BlockAddress is stored in the TOC. 3027 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3028 setUsesTOCBasePtr(DAG); 3029 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3030 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3031 } 3032 3033 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3034 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3035 return getTOCEntry( 3036 DAG, SDLoc(BASDN), 3037 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3038 3039 unsigned MOHiFlag, MOLoFlag; 3040 bool IsPIC = isPositionIndependent(); 3041 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3042 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3043 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3044 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3045 } 3046 3047 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3048 SelectionDAG &DAG) const { 3049 // FIXME: TLS addresses currently use medium model code sequences, 3050 // which is the most useful form. Eventually support for small and 3051 // large models could be added if users need it, at the cost of 3052 // additional complexity. 3053 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3054 if (DAG.getTarget().useEmulatedTLS()) 3055 return LowerToTLSEmulatedModel(GA, DAG); 3056 3057 SDLoc dl(GA); 3058 const GlobalValue *GV = GA->getGlobal(); 3059 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3060 bool is64bit = Subtarget.isPPC64(); 3061 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3062 PICLevel::Level picLevel = M->getPICLevel(); 3063 3064 const TargetMachine &TM = getTargetMachine(); 3065 TLSModel::Model Model = TM.getTLSModel(GV); 3066 3067 if (Model == TLSModel::LocalExec) { 3068 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3069 PPCII::MO_TPREL_HA); 3070 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3071 PPCII::MO_TPREL_LO); 3072 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3073 : DAG.getRegister(PPC::R2, MVT::i32); 3074 3075 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3076 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3077 } 3078 3079 if (Model == TLSModel::InitialExec) { 3080 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3081 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3082 PPCII::MO_TLS); 3083 SDValue GOTPtr; 3084 if (is64bit) { 3085 setUsesTOCBasePtr(DAG); 3086 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3087 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 3088 PtrVT, GOTReg, TGA); 3089 } else { 3090 if (!TM.isPositionIndependent()) 3091 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3092 else if (picLevel == PICLevel::SmallPIC) 3093 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3094 else 3095 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3096 } 3097 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 3098 PtrVT, TGA, GOTPtr); 3099 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3100 } 3101 3102 if (Model == TLSModel::GeneralDynamic) { 3103 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3104 SDValue GOTPtr; 3105 if (is64bit) { 3106 setUsesTOCBasePtr(DAG); 3107 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3108 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3109 GOTReg, TGA); 3110 } else { 3111 if (picLevel == PICLevel::SmallPIC) 3112 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3113 else 3114 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3115 } 3116 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3117 GOTPtr, TGA, TGA); 3118 } 3119 3120 if (Model == TLSModel::LocalDynamic) { 3121 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3122 SDValue GOTPtr; 3123 if (is64bit) { 3124 setUsesTOCBasePtr(DAG); 3125 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3126 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3127 GOTReg, TGA); 3128 } else { 3129 if (picLevel == PICLevel::SmallPIC) 3130 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3131 else 3132 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3133 } 3134 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3135 PtrVT, GOTPtr, TGA, TGA); 3136 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3137 PtrVT, TLSAddr, TGA); 3138 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3139 } 3140 3141 llvm_unreachable("Unknown TLS model!"); 3142 } 3143 3144 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3145 SelectionDAG &DAG) const { 3146 EVT PtrVT = Op.getValueType(); 3147 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3148 SDLoc DL(GSDN); 3149 const GlobalValue *GV = GSDN->getGlobal(); 3150 3151 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3152 // The actual address of the GlobalValue is stored in the TOC. 3153 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3154 if (Subtarget.isUsingPCRelativeCalls()) { 3155 EVT Ty = getPointerTy(DAG.getDataLayout()); 3156 if (isAccessedAsGotIndirect(Op)) { 3157 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3158 PPCII::MO_PCREL_FLAG | 3159 PPCII::MO_GOT_FLAG); 3160 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3161 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3162 MachinePointerInfo()); 3163 return Load; 3164 } else { 3165 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3166 PPCII::MO_PCREL_FLAG); 3167 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3168 } 3169 } 3170 setUsesTOCBasePtr(DAG); 3171 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3172 return getTOCEntry(DAG, DL, GA); 3173 } 3174 3175 unsigned MOHiFlag, MOLoFlag; 3176 bool IsPIC = isPositionIndependent(); 3177 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3178 3179 if (IsPIC && Subtarget.isSVR4ABI()) { 3180 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3181 GSDN->getOffset(), 3182 PPCII::MO_PIC_FLAG); 3183 return getTOCEntry(DAG, DL, GA); 3184 } 3185 3186 SDValue GAHi = 3187 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3188 SDValue GALo = 3189 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3190 3191 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3192 } 3193 3194 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3195 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3196 SDLoc dl(Op); 3197 3198 if (Op.getValueType() == MVT::v2i64) { 3199 // When the operands themselves are v2i64 values, we need to do something 3200 // special because VSX has no underlying comparison operations for these. 3201 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3202 // Equality can be handled by casting to the legal type for Altivec 3203 // comparisons, everything else needs to be expanded. 3204 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3205 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3206 DAG.getSetCC(dl, MVT::v4i32, 3207 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3208 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3209 CC)); 3210 } 3211 3212 return SDValue(); 3213 } 3214 3215 // We handle most of these in the usual way. 3216 return Op; 3217 } 3218 3219 // If we're comparing for equality to zero, expose the fact that this is 3220 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3221 // fold the new nodes. 3222 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3223 return V; 3224 3225 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3226 // Leave comparisons against 0 and -1 alone for now, since they're usually 3227 // optimized. FIXME: revisit this when we can custom lower all setcc 3228 // optimizations. 3229 if (C->isAllOnesValue() || C->isNullValue()) 3230 return SDValue(); 3231 } 3232 3233 // If we have an integer seteq/setne, turn it into a compare against zero 3234 // by xor'ing the rhs with the lhs, which is faster than setting a 3235 // condition register, reading it back out, and masking the correct bit. The 3236 // normal approach here uses sub to do this instead of xor. Using xor exposes 3237 // the result to other bit-twiddling opportunities. 3238 EVT LHSVT = Op.getOperand(0).getValueType(); 3239 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3240 EVT VT = Op.getValueType(); 3241 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3242 Op.getOperand(1)); 3243 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3244 } 3245 return SDValue(); 3246 } 3247 3248 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3249 SDNode *Node = Op.getNode(); 3250 EVT VT = Node->getValueType(0); 3251 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3252 SDValue InChain = Node->getOperand(0); 3253 SDValue VAListPtr = Node->getOperand(1); 3254 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3255 SDLoc dl(Node); 3256 3257 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3258 3259 // gpr_index 3260 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3261 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3262 InChain = GprIndex.getValue(1); 3263 3264 if (VT == MVT::i64) { 3265 // Check if GprIndex is even 3266 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3267 DAG.getConstant(1, dl, MVT::i32)); 3268 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3269 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3270 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3271 DAG.getConstant(1, dl, MVT::i32)); 3272 // Align GprIndex to be even if it isn't 3273 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3274 GprIndex); 3275 } 3276 3277 // fpr index is 1 byte after gpr 3278 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3279 DAG.getConstant(1, dl, MVT::i32)); 3280 3281 // fpr 3282 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3283 FprPtr, MachinePointerInfo(SV), MVT::i8); 3284 InChain = FprIndex.getValue(1); 3285 3286 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3287 DAG.getConstant(8, dl, MVT::i32)); 3288 3289 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3290 DAG.getConstant(4, dl, MVT::i32)); 3291 3292 // areas 3293 SDValue OverflowArea = 3294 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3295 InChain = OverflowArea.getValue(1); 3296 3297 SDValue RegSaveArea = 3298 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3299 InChain = RegSaveArea.getValue(1); 3300 3301 // select overflow_area if index > 8 3302 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3303 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3304 3305 // adjustment constant gpr_index * 4/8 3306 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3307 VT.isInteger() ? GprIndex : FprIndex, 3308 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3309 MVT::i32)); 3310 3311 // OurReg = RegSaveArea + RegConstant 3312 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3313 RegConstant); 3314 3315 // Floating types are 32 bytes into RegSaveArea 3316 if (VT.isFloatingPoint()) 3317 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3318 DAG.getConstant(32, dl, MVT::i32)); 3319 3320 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3321 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3322 VT.isInteger() ? GprIndex : FprIndex, 3323 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3324 MVT::i32)); 3325 3326 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3327 VT.isInteger() ? VAListPtr : FprPtr, 3328 MachinePointerInfo(SV), MVT::i8); 3329 3330 // determine if we should load from reg_save_area or overflow_area 3331 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3332 3333 // increase overflow_area by 4/8 if gpr/fpr > 8 3334 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3335 DAG.getConstant(VT.isInteger() ? 4 : 8, 3336 dl, MVT::i32)); 3337 3338 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3339 OverflowAreaPlusN); 3340 3341 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3342 MachinePointerInfo(), MVT::i32); 3343 3344 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3345 } 3346 3347 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3348 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3349 3350 // We have to copy the entire va_list struct: 3351 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3352 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3353 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3354 false, true, false, MachinePointerInfo(), 3355 MachinePointerInfo()); 3356 } 3357 3358 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3359 SelectionDAG &DAG) const { 3360 if (Subtarget.isAIXABI()) 3361 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3362 3363 return Op.getOperand(0); 3364 } 3365 3366 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3367 SelectionDAG &DAG) const { 3368 if (Subtarget.isAIXABI()) 3369 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3370 3371 SDValue Chain = Op.getOperand(0); 3372 SDValue Trmp = Op.getOperand(1); // trampoline 3373 SDValue FPtr = Op.getOperand(2); // nested function 3374 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3375 SDLoc dl(Op); 3376 3377 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3378 bool isPPC64 = (PtrVT == MVT::i64); 3379 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3380 3381 TargetLowering::ArgListTy Args; 3382 TargetLowering::ArgListEntry Entry; 3383 3384 Entry.Ty = IntPtrTy; 3385 Entry.Node = Trmp; Args.push_back(Entry); 3386 3387 // TrampSize == (isPPC64 ? 48 : 40); 3388 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3389 isPPC64 ? MVT::i64 : MVT::i32); 3390 Args.push_back(Entry); 3391 3392 Entry.Node = FPtr; Args.push_back(Entry); 3393 Entry.Node = Nest; Args.push_back(Entry); 3394 3395 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3396 TargetLowering::CallLoweringInfo CLI(DAG); 3397 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3398 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3399 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3400 3401 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3402 return CallResult.second; 3403 } 3404 3405 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3406 MachineFunction &MF = DAG.getMachineFunction(); 3407 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3408 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3409 3410 SDLoc dl(Op); 3411 3412 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3413 // vastart just stores the address of the VarArgsFrameIndex slot into the 3414 // memory location argument. 3415 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3416 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3417 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3418 MachinePointerInfo(SV)); 3419 } 3420 3421 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3422 // We suppose the given va_list is already allocated. 3423 // 3424 // typedef struct { 3425 // char gpr; /* index into the array of 8 GPRs 3426 // * stored in the register save area 3427 // * gpr=0 corresponds to r3, 3428 // * gpr=1 to r4, etc. 3429 // */ 3430 // char fpr; /* index into the array of 8 FPRs 3431 // * stored in the register save area 3432 // * fpr=0 corresponds to f1, 3433 // * fpr=1 to f2, etc. 3434 // */ 3435 // char *overflow_arg_area; 3436 // /* location on stack that holds 3437 // * the next overflow argument 3438 // */ 3439 // char *reg_save_area; 3440 // /* where r3:r10 and f1:f8 (if saved) 3441 // * are stored 3442 // */ 3443 // } va_list[1]; 3444 3445 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3446 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3447 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3448 PtrVT); 3449 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3450 PtrVT); 3451 3452 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3453 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3454 3455 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3456 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3457 3458 uint64_t FPROffset = 1; 3459 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3460 3461 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3462 3463 // Store first byte : number of int regs 3464 SDValue firstStore = 3465 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3466 MachinePointerInfo(SV), MVT::i8); 3467 uint64_t nextOffset = FPROffset; 3468 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3469 ConstFPROffset); 3470 3471 // Store second byte : number of float regs 3472 SDValue secondStore = 3473 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3474 MachinePointerInfo(SV, nextOffset), MVT::i8); 3475 nextOffset += StackOffset; 3476 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3477 3478 // Store second word : arguments given on stack 3479 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3480 MachinePointerInfo(SV, nextOffset)); 3481 nextOffset += FrameOffset; 3482 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3483 3484 // Store third word : arguments given in registers 3485 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3486 MachinePointerInfo(SV, nextOffset)); 3487 } 3488 3489 /// FPR - The set of FP registers that should be allocated for arguments 3490 /// on Darwin and AIX. 3491 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3492 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3493 PPC::F11, PPC::F12, PPC::F13}; 3494 3495 /// QFPR - The set of QPX registers that should be allocated for arguments. 3496 static const MCPhysReg QFPR[] = { 3497 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3498 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3499 3500 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3501 /// the stack. 3502 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3503 unsigned PtrByteSize) { 3504 unsigned ArgSize = ArgVT.getStoreSize(); 3505 if (Flags.isByVal()) 3506 ArgSize = Flags.getByValSize(); 3507 3508 // Round up to multiples of the pointer size, except for array members, 3509 // which are always packed. 3510 if (!Flags.isInConsecutiveRegs()) 3511 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3512 3513 return ArgSize; 3514 } 3515 3516 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3517 /// on the stack. 3518 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3519 ISD::ArgFlagsTy Flags, 3520 unsigned PtrByteSize) { 3521 Align Alignment(PtrByteSize); 3522 3523 // Altivec parameters are padded to a 16 byte boundary. 3524 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3525 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3526 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3527 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3528 Alignment = Align(16); 3529 // QPX vector types stored in double-precision are padded to a 32 byte 3530 // boundary. 3531 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3532 Alignment = Align(32); 3533 3534 // ByVal parameters are aligned as requested. 3535 if (Flags.isByVal()) { 3536 auto BVAlign = Flags.getNonZeroByValAlign(); 3537 if (BVAlign > PtrByteSize) { 3538 if (BVAlign.value() % PtrByteSize != 0) 3539 llvm_unreachable( 3540 "ByVal alignment is not a multiple of the pointer size"); 3541 3542 Alignment = BVAlign; 3543 } 3544 } 3545 3546 // Array members are always packed to their original alignment. 3547 if (Flags.isInConsecutiveRegs()) { 3548 // If the array member was split into multiple registers, the first 3549 // needs to be aligned to the size of the full type. (Except for 3550 // ppcf128, which is only aligned as its f64 components.) 3551 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3552 Alignment = Align(OrigVT.getStoreSize()); 3553 else 3554 Alignment = Align(ArgVT.getStoreSize()); 3555 } 3556 3557 return Alignment; 3558 } 3559 3560 /// CalculateStackSlotUsed - Return whether this argument will use its 3561 /// stack slot (instead of being passed in registers). ArgOffset, 3562 /// AvailableFPRs, and AvailableVRs must hold the current argument 3563 /// position, and will be updated to account for this argument. 3564 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3565 ISD::ArgFlagsTy Flags, 3566 unsigned PtrByteSize, 3567 unsigned LinkageSize, 3568 unsigned ParamAreaSize, 3569 unsigned &ArgOffset, 3570 unsigned &AvailableFPRs, 3571 unsigned &AvailableVRs, bool HasQPX) { 3572 bool UseMemory = false; 3573 3574 // Respect alignment of argument on the stack. 3575 Align Alignment = 3576 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3577 ArgOffset = alignTo(ArgOffset, Alignment); 3578 // If there's no space left in the argument save area, we must 3579 // use memory (this check also catches zero-sized arguments). 3580 if (ArgOffset >= LinkageSize + ParamAreaSize) 3581 UseMemory = true; 3582 3583 // Allocate argument on the stack. 3584 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3585 if (Flags.isInConsecutiveRegsLast()) 3586 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3587 // If we overran the argument save area, we must use memory 3588 // (this check catches arguments passed partially in memory) 3589 if (ArgOffset > LinkageSize + ParamAreaSize) 3590 UseMemory = true; 3591 3592 // However, if the argument is actually passed in an FPR or a VR, 3593 // we don't use memory after all. 3594 if (!Flags.isByVal()) { 3595 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3596 // QPX registers overlap with the scalar FP registers. 3597 (HasQPX && (ArgVT == MVT::v4f32 || 3598 ArgVT == MVT::v4f64 || 3599 ArgVT == MVT::v4i1))) 3600 if (AvailableFPRs > 0) { 3601 --AvailableFPRs; 3602 return false; 3603 } 3604 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3605 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3606 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3607 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3608 if (AvailableVRs > 0) { 3609 --AvailableVRs; 3610 return false; 3611 } 3612 } 3613 3614 return UseMemory; 3615 } 3616 3617 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3618 /// ensure minimum alignment required for target. 3619 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3620 unsigned NumBytes) { 3621 return alignTo(NumBytes, Lowering->getStackAlign()); 3622 } 3623 3624 SDValue PPCTargetLowering::LowerFormalArguments( 3625 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3626 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3627 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3628 if (Subtarget.isAIXABI()) 3629 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3630 InVals); 3631 if (Subtarget.is64BitELFABI()) 3632 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3633 InVals); 3634 if (Subtarget.is32BitELFABI()) 3635 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3636 InVals); 3637 3638 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3639 InVals); 3640 } 3641 3642 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3643 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3644 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3645 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3646 3647 // 32-bit SVR4 ABI Stack Frame Layout: 3648 // +-----------------------------------+ 3649 // +--> | Back chain | 3650 // | +-----------------------------------+ 3651 // | | Floating-point register save area | 3652 // | +-----------------------------------+ 3653 // | | General register save area | 3654 // | +-----------------------------------+ 3655 // | | CR save word | 3656 // | +-----------------------------------+ 3657 // | | VRSAVE save word | 3658 // | +-----------------------------------+ 3659 // | | Alignment padding | 3660 // | +-----------------------------------+ 3661 // | | Vector register save area | 3662 // | +-----------------------------------+ 3663 // | | Local variable space | 3664 // | +-----------------------------------+ 3665 // | | Parameter list area | 3666 // | +-----------------------------------+ 3667 // | | LR save word | 3668 // | +-----------------------------------+ 3669 // SP--> +--- | Back chain | 3670 // +-----------------------------------+ 3671 // 3672 // Specifications: 3673 // System V Application Binary Interface PowerPC Processor Supplement 3674 // AltiVec Technology Programming Interface Manual 3675 3676 MachineFunction &MF = DAG.getMachineFunction(); 3677 MachineFrameInfo &MFI = MF.getFrameInfo(); 3678 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3679 3680 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3681 // Potential tail calls could cause overwriting of argument stack slots. 3682 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3683 (CallConv == CallingConv::Fast)); 3684 const Align PtrAlign(4); 3685 3686 // Assign locations to all of the incoming arguments. 3687 SmallVector<CCValAssign, 16> ArgLocs; 3688 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3689 *DAG.getContext()); 3690 3691 // Reserve space for the linkage area on the stack. 3692 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3693 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3694 if (useSoftFloat()) 3695 CCInfo.PreAnalyzeFormalArguments(Ins); 3696 3697 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3698 CCInfo.clearWasPPCF128(); 3699 3700 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3701 CCValAssign &VA = ArgLocs[i]; 3702 3703 // Arguments stored in registers. 3704 if (VA.isRegLoc()) { 3705 const TargetRegisterClass *RC; 3706 EVT ValVT = VA.getValVT(); 3707 3708 switch (ValVT.getSimpleVT().SimpleTy) { 3709 default: 3710 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3711 case MVT::i1: 3712 case MVT::i32: 3713 RC = &PPC::GPRCRegClass; 3714 break; 3715 case MVT::f32: 3716 if (Subtarget.hasP8Vector()) 3717 RC = &PPC::VSSRCRegClass; 3718 else if (Subtarget.hasSPE()) 3719 RC = &PPC::GPRCRegClass; 3720 else 3721 RC = &PPC::F4RCRegClass; 3722 break; 3723 case MVT::f64: 3724 if (Subtarget.hasVSX()) 3725 RC = &PPC::VSFRCRegClass; 3726 else if (Subtarget.hasSPE()) 3727 // SPE passes doubles in GPR pairs. 3728 RC = &PPC::GPRCRegClass; 3729 else 3730 RC = &PPC::F8RCRegClass; 3731 break; 3732 case MVT::v16i8: 3733 case MVT::v8i16: 3734 case MVT::v4i32: 3735 RC = &PPC::VRRCRegClass; 3736 break; 3737 case MVT::v4f32: 3738 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3739 break; 3740 case MVT::v2f64: 3741 case MVT::v2i64: 3742 RC = &PPC::VRRCRegClass; 3743 break; 3744 case MVT::v4f64: 3745 RC = &PPC::QFRCRegClass; 3746 break; 3747 case MVT::v4i1: 3748 RC = &PPC::QBRCRegClass; 3749 break; 3750 } 3751 3752 SDValue ArgValue; 3753 // Transform the arguments stored in physical registers into 3754 // virtual ones. 3755 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3756 assert(i + 1 < e && "No second half of double precision argument"); 3757 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3758 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3759 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3760 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3761 if (!Subtarget.isLittleEndian()) 3762 std::swap (ArgValueLo, ArgValueHi); 3763 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3764 ArgValueHi); 3765 } else { 3766 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3767 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3768 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3769 if (ValVT == MVT::i1) 3770 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3771 } 3772 3773 InVals.push_back(ArgValue); 3774 } else { 3775 // Argument stored in memory. 3776 assert(VA.isMemLoc()); 3777 3778 // Get the extended size of the argument type in stack 3779 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3780 // Get the actual size of the argument type 3781 unsigned ObjSize = VA.getValVT().getStoreSize(); 3782 unsigned ArgOffset = VA.getLocMemOffset(); 3783 // Stack objects in PPC32 are right justified. 3784 ArgOffset += ArgSize - ObjSize; 3785 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3786 3787 // Create load nodes to retrieve arguments from the stack. 3788 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3789 InVals.push_back( 3790 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3791 } 3792 } 3793 3794 // Assign locations to all of the incoming aggregate by value arguments. 3795 // Aggregates passed by value are stored in the local variable space of the 3796 // caller's stack frame, right above the parameter list area. 3797 SmallVector<CCValAssign, 16> ByValArgLocs; 3798 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3799 ByValArgLocs, *DAG.getContext()); 3800 3801 // Reserve stack space for the allocations in CCInfo. 3802 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3803 3804 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3805 3806 // Area that is at least reserved in the caller of this function. 3807 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3808 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3809 3810 // Set the size that is at least reserved in caller of this function. Tail 3811 // call optimized function's reserved stack space needs to be aligned so that 3812 // taking the difference between two stack areas will result in an aligned 3813 // stack. 3814 MinReservedArea = 3815 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3816 FuncInfo->setMinReservedArea(MinReservedArea); 3817 3818 SmallVector<SDValue, 8> MemOps; 3819 3820 // If the function takes variable number of arguments, make a frame index for 3821 // the start of the first vararg value... for expansion of llvm.va_start. 3822 if (isVarArg) { 3823 static const MCPhysReg GPArgRegs[] = { 3824 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3825 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3826 }; 3827 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3828 3829 static const MCPhysReg FPArgRegs[] = { 3830 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3831 PPC::F8 3832 }; 3833 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3834 3835 if (useSoftFloat() || hasSPE()) 3836 NumFPArgRegs = 0; 3837 3838 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3839 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3840 3841 // Make room for NumGPArgRegs and NumFPArgRegs. 3842 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3843 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3844 3845 FuncInfo->setVarArgsStackOffset( 3846 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3847 CCInfo.getNextStackOffset(), true)); 3848 3849 FuncInfo->setVarArgsFrameIndex( 3850 MFI.CreateStackObject(Depth, Align(8), false)); 3851 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3852 3853 // The fixed integer arguments of a variadic function are stored to the 3854 // VarArgsFrameIndex on the stack so that they may be loaded by 3855 // dereferencing the result of va_next. 3856 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3857 // Get an existing live-in vreg, or add a new one. 3858 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3859 if (!VReg) 3860 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3861 3862 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3863 SDValue Store = 3864 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3865 MemOps.push_back(Store); 3866 // Increment the address by four for the next argument to store 3867 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3868 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3869 } 3870 3871 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3872 // is set. 3873 // The double arguments are stored to the VarArgsFrameIndex 3874 // on the stack. 3875 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3876 // Get an existing live-in vreg, or add a new one. 3877 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3878 if (!VReg) 3879 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3880 3881 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3882 SDValue Store = 3883 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3884 MemOps.push_back(Store); 3885 // Increment the address by eight for the next argument to store 3886 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3887 PtrVT); 3888 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3889 } 3890 } 3891 3892 if (!MemOps.empty()) 3893 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3894 3895 return Chain; 3896 } 3897 3898 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3899 // value to MVT::i64 and then truncate to the correct register size. 3900 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3901 EVT ObjectVT, SelectionDAG &DAG, 3902 SDValue ArgVal, 3903 const SDLoc &dl) const { 3904 if (Flags.isSExt()) 3905 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3906 DAG.getValueType(ObjectVT)); 3907 else if (Flags.isZExt()) 3908 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3909 DAG.getValueType(ObjectVT)); 3910 3911 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3912 } 3913 3914 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3915 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3916 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3917 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3918 // TODO: add description of PPC stack frame format, or at least some docs. 3919 // 3920 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3921 bool isLittleEndian = Subtarget.isLittleEndian(); 3922 MachineFunction &MF = DAG.getMachineFunction(); 3923 MachineFrameInfo &MFI = MF.getFrameInfo(); 3924 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3925 3926 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3927 "fastcc not supported on varargs functions"); 3928 3929 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3930 // Potential tail calls could cause overwriting of argument stack slots. 3931 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3932 (CallConv == CallingConv::Fast)); 3933 unsigned PtrByteSize = 8; 3934 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3935 3936 static const MCPhysReg GPR[] = { 3937 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3938 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3939 }; 3940 static const MCPhysReg VR[] = { 3941 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3942 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3943 }; 3944 3945 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3946 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3947 const unsigned Num_VR_Regs = array_lengthof(VR); 3948 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3949 3950 // Do a first pass over the arguments to determine whether the ABI 3951 // guarantees that our caller has allocated the parameter save area 3952 // on its stack frame. In the ELFv1 ABI, this is always the case; 3953 // in the ELFv2 ABI, it is true if this is a vararg function or if 3954 // any parameter is located in a stack slot. 3955 3956 bool HasParameterArea = !isELFv2ABI || isVarArg; 3957 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3958 unsigned NumBytes = LinkageSize; 3959 unsigned AvailableFPRs = Num_FPR_Regs; 3960 unsigned AvailableVRs = Num_VR_Regs; 3961 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3962 if (Ins[i].Flags.isNest()) 3963 continue; 3964 3965 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3966 PtrByteSize, LinkageSize, ParamAreaSize, 3967 NumBytes, AvailableFPRs, AvailableVRs, 3968 Subtarget.hasQPX())) 3969 HasParameterArea = true; 3970 } 3971 3972 // Add DAG nodes to load the arguments or copy them out of registers. On 3973 // entry to a function on PPC, the arguments start after the linkage area, 3974 // although the first ones are often in registers. 3975 3976 unsigned ArgOffset = LinkageSize; 3977 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3978 unsigned &QFPR_idx = FPR_idx; 3979 SmallVector<SDValue, 8> MemOps; 3980 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3981 unsigned CurArgIdx = 0; 3982 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3983 SDValue ArgVal; 3984 bool needsLoad = false; 3985 EVT ObjectVT = Ins[ArgNo].VT; 3986 EVT OrigVT = Ins[ArgNo].ArgVT; 3987 unsigned ObjSize = ObjectVT.getStoreSize(); 3988 unsigned ArgSize = ObjSize; 3989 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3990 if (Ins[ArgNo].isOrigArg()) { 3991 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3992 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3993 } 3994 // We re-align the argument offset for each argument, except when using the 3995 // fast calling convention, when we need to make sure we do that only when 3996 // we'll actually use a stack slot. 3997 unsigned CurArgOffset; 3998 Align Alignment; 3999 auto ComputeArgOffset = [&]() { 4000 /* Respect alignment of argument on the stack. */ 4001 Alignment = 4002 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4003 ArgOffset = alignTo(ArgOffset, Alignment); 4004 CurArgOffset = ArgOffset; 4005 }; 4006 4007 if (CallConv != CallingConv::Fast) { 4008 ComputeArgOffset(); 4009 4010 /* Compute GPR index associated with argument offset. */ 4011 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4012 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4013 } 4014 4015 // FIXME the codegen can be much improved in some cases. 4016 // We do not have to keep everything in memory. 4017 if (Flags.isByVal()) { 4018 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4019 4020 if (CallConv == CallingConv::Fast) 4021 ComputeArgOffset(); 4022 4023 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4024 ObjSize = Flags.getByValSize(); 4025 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4026 // Empty aggregate parameters do not take up registers. Examples: 4027 // struct { } a; 4028 // union { } b; 4029 // int c[0]; 4030 // etc. However, we have to provide a place-holder in InVals, so 4031 // pretend we have an 8-byte item at the current address for that 4032 // purpose. 4033 if (!ObjSize) { 4034 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4035 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4036 InVals.push_back(FIN); 4037 continue; 4038 } 4039 4040 // Create a stack object covering all stack doublewords occupied 4041 // by the argument. If the argument is (fully or partially) on 4042 // the stack, or if the argument is fully in registers but the 4043 // caller has allocated the parameter save anyway, we can refer 4044 // directly to the caller's stack frame. Otherwise, create a 4045 // local copy in our own frame. 4046 int FI; 4047 if (HasParameterArea || 4048 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4049 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4050 else 4051 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4052 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4053 4054 // Handle aggregates smaller than 8 bytes. 4055 if (ObjSize < PtrByteSize) { 4056 // The value of the object is its address, which differs from the 4057 // address of the enclosing doubleword on big-endian systems. 4058 SDValue Arg = FIN; 4059 if (!isLittleEndian) { 4060 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4061 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4062 } 4063 InVals.push_back(Arg); 4064 4065 if (GPR_idx != Num_GPR_Regs) { 4066 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4067 FuncInfo->addLiveInAttr(VReg, Flags); 4068 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4069 SDValue Store; 4070 4071 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4072 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4073 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4074 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4075 MachinePointerInfo(&*FuncArg), ObjType); 4076 } else { 4077 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4078 // store the whole register as-is to the parameter save area 4079 // slot. 4080 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4081 MachinePointerInfo(&*FuncArg)); 4082 } 4083 4084 MemOps.push_back(Store); 4085 } 4086 // Whether we copied from a register or not, advance the offset 4087 // into the parameter save area by a full doubleword. 4088 ArgOffset += PtrByteSize; 4089 continue; 4090 } 4091 4092 // The value of the object is its address, which is the address of 4093 // its first stack doubleword. 4094 InVals.push_back(FIN); 4095 4096 // Store whatever pieces of the object are in registers to memory. 4097 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4098 if (GPR_idx == Num_GPR_Regs) 4099 break; 4100 4101 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4102 FuncInfo->addLiveInAttr(VReg, Flags); 4103 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4104 SDValue Addr = FIN; 4105 if (j) { 4106 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4107 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4108 } 4109 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4110 MachinePointerInfo(&*FuncArg, j)); 4111 MemOps.push_back(Store); 4112 ++GPR_idx; 4113 } 4114 ArgOffset += ArgSize; 4115 continue; 4116 } 4117 4118 switch (ObjectVT.getSimpleVT().SimpleTy) { 4119 default: llvm_unreachable("Unhandled argument type!"); 4120 case MVT::i1: 4121 case MVT::i32: 4122 case MVT::i64: 4123 if (Flags.isNest()) { 4124 // The 'nest' parameter, if any, is passed in R11. 4125 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4126 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4127 4128 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4129 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4130 4131 break; 4132 } 4133 4134 // These can be scalar arguments or elements of an integer array type 4135 // passed directly. Clang may use those instead of "byval" aggregate 4136 // types to avoid forcing arguments to memory unnecessarily. 4137 if (GPR_idx != Num_GPR_Regs) { 4138 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4139 FuncInfo->addLiveInAttr(VReg, Flags); 4140 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4141 4142 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4143 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4144 // value to MVT::i64 and then truncate to the correct register size. 4145 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4146 } else { 4147 if (CallConv == CallingConv::Fast) 4148 ComputeArgOffset(); 4149 4150 needsLoad = true; 4151 ArgSize = PtrByteSize; 4152 } 4153 if (CallConv != CallingConv::Fast || needsLoad) 4154 ArgOffset += 8; 4155 break; 4156 4157 case MVT::f32: 4158 case MVT::f64: 4159 // These can be scalar arguments or elements of a float array type 4160 // passed directly. The latter are used to implement ELFv2 homogenous 4161 // float aggregates. 4162 if (FPR_idx != Num_FPR_Regs) { 4163 unsigned VReg; 4164 4165 if (ObjectVT == MVT::f32) 4166 VReg = MF.addLiveIn(FPR[FPR_idx], 4167 Subtarget.hasP8Vector() 4168 ? &PPC::VSSRCRegClass 4169 : &PPC::F4RCRegClass); 4170 else 4171 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4172 ? &PPC::VSFRCRegClass 4173 : &PPC::F8RCRegClass); 4174 4175 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4176 ++FPR_idx; 4177 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4178 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4179 // once we support fp <-> gpr moves. 4180 4181 // This can only ever happen in the presence of f32 array types, 4182 // since otherwise we never run out of FPRs before running out 4183 // of GPRs. 4184 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4185 FuncInfo->addLiveInAttr(VReg, Flags); 4186 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4187 4188 if (ObjectVT == MVT::f32) { 4189 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4190 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4191 DAG.getConstant(32, dl, MVT::i32)); 4192 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4193 } 4194 4195 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4196 } else { 4197 if (CallConv == CallingConv::Fast) 4198 ComputeArgOffset(); 4199 4200 needsLoad = true; 4201 } 4202 4203 // When passing an array of floats, the array occupies consecutive 4204 // space in the argument area; only round up to the next doubleword 4205 // at the end of the array. Otherwise, each float takes 8 bytes. 4206 if (CallConv != CallingConv::Fast || needsLoad) { 4207 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4208 ArgOffset += ArgSize; 4209 if (Flags.isInConsecutiveRegsLast()) 4210 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4211 } 4212 break; 4213 case MVT::v4f32: 4214 case MVT::v4i32: 4215 case MVT::v8i16: 4216 case MVT::v16i8: 4217 case MVT::v2f64: 4218 case MVT::v2i64: 4219 case MVT::v1i128: 4220 case MVT::f128: 4221 if (!Subtarget.hasQPX()) { 4222 // These can be scalar arguments or elements of a vector array type 4223 // passed directly. The latter are used to implement ELFv2 homogenous 4224 // vector aggregates. 4225 if (VR_idx != Num_VR_Regs) { 4226 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4227 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4228 ++VR_idx; 4229 } else { 4230 if (CallConv == CallingConv::Fast) 4231 ComputeArgOffset(); 4232 needsLoad = true; 4233 } 4234 if (CallConv != CallingConv::Fast || needsLoad) 4235 ArgOffset += 16; 4236 break; 4237 } // not QPX 4238 4239 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4240 "Invalid QPX parameter type"); 4241 LLVM_FALLTHROUGH; 4242 4243 case MVT::v4f64: 4244 case MVT::v4i1: 4245 // QPX vectors are treated like their scalar floating-point subregisters 4246 // (except that they're larger). 4247 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4248 if (QFPR_idx != Num_QFPR_Regs) { 4249 const TargetRegisterClass *RC; 4250 switch (ObjectVT.getSimpleVT().SimpleTy) { 4251 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4252 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4253 default: RC = &PPC::QBRCRegClass; break; 4254 } 4255 4256 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4257 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4258 ++QFPR_idx; 4259 } else { 4260 if (CallConv == CallingConv::Fast) 4261 ComputeArgOffset(); 4262 needsLoad = true; 4263 } 4264 if (CallConv != CallingConv::Fast || needsLoad) 4265 ArgOffset += Sz; 4266 break; 4267 } 4268 4269 // We need to load the argument to a virtual register if we determined 4270 // above that we ran out of physical registers of the appropriate type. 4271 if (needsLoad) { 4272 if (ObjSize < ArgSize && !isLittleEndian) 4273 CurArgOffset += ArgSize - ObjSize; 4274 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4275 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4276 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4277 } 4278 4279 InVals.push_back(ArgVal); 4280 } 4281 4282 // Area that is at least reserved in the caller of this function. 4283 unsigned MinReservedArea; 4284 if (HasParameterArea) 4285 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4286 else 4287 MinReservedArea = LinkageSize; 4288 4289 // Set the size that is at least reserved in caller of this function. Tail 4290 // call optimized functions' reserved stack space needs to be aligned so that 4291 // taking the difference between two stack areas will result in an aligned 4292 // stack. 4293 MinReservedArea = 4294 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4295 FuncInfo->setMinReservedArea(MinReservedArea); 4296 4297 // If the function takes variable number of arguments, make a frame index for 4298 // the start of the first vararg value... for expansion of llvm.va_start. 4299 // On ELFv2ABI spec, it writes: 4300 // C programs that are intended to be *portable* across different compilers 4301 // and architectures must use the header file <stdarg.h> to deal with variable 4302 // argument lists. 4303 if (isVarArg && MFI.hasVAStart()) { 4304 int Depth = ArgOffset; 4305 4306 FuncInfo->setVarArgsFrameIndex( 4307 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4308 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4309 4310 // If this function is vararg, store any remaining integer argument regs 4311 // to their spots on the stack so that they may be loaded by dereferencing 4312 // the result of va_next. 4313 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4314 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4315 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4316 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4317 SDValue Store = 4318 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4319 MemOps.push_back(Store); 4320 // Increment the address by four for the next argument to store 4321 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4322 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4323 } 4324 } 4325 4326 if (!MemOps.empty()) 4327 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4328 4329 return Chain; 4330 } 4331 4332 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4333 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4334 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4335 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4336 // TODO: add description of PPC stack frame format, or at least some docs. 4337 // 4338 MachineFunction &MF = DAG.getMachineFunction(); 4339 MachineFrameInfo &MFI = MF.getFrameInfo(); 4340 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4341 4342 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4343 bool isPPC64 = PtrVT == MVT::i64; 4344 // Potential tail calls could cause overwriting of argument stack slots. 4345 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4346 (CallConv == CallingConv::Fast)); 4347 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4348 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4349 unsigned ArgOffset = LinkageSize; 4350 // Area that is at least reserved in caller of this function. 4351 unsigned MinReservedArea = ArgOffset; 4352 4353 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4354 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4355 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4356 }; 4357 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4358 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4359 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4360 }; 4361 static const MCPhysReg VR[] = { 4362 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4363 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4364 }; 4365 4366 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4367 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4368 const unsigned Num_VR_Regs = array_lengthof( VR); 4369 4370 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4371 4372 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4373 4374 // In 32-bit non-varargs functions, the stack space for vectors is after the 4375 // stack space for non-vectors. We do not use this space unless we have 4376 // too many vectors to fit in registers, something that only occurs in 4377 // constructed examples:), but we have to walk the arglist to figure 4378 // that out...for the pathological case, compute VecArgOffset as the 4379 // start of the vector parameter area. Computing VecArgOffset is the 4380 // entire point of the following loop. 4381 unsigned VecArgOffset = ArgOffset; 4382 if (!isVarArg && !isPPC64) { 4383 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4384 ++ArgNo) { 4385 EVT ObjectVT = Ins[ArgNo].VT; 4386 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4387 4388 if (Flags.isByVal()) { 4389 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4390 unsigned ObjSize = Flags.getByValSize(); 4391 unsigned ArgSize = 4392 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4393 VecArgOffset += ArgSize; 4394 continue; 4395 } 4396 4397 switch(ObjectVT.getSimpleVT().SimpleTy) { 4398 default: llvm_unreachable("Unhandled argument type!"); 4399 case MVT::i1: 4400 case MVT::i32: 4401 case MVT::f32: 4402 VecArgOffset += 4; 4403 break; 4404 case MVT::i64: // PPC64 4405 case MVT::f64: 4406 // FIXME: We are guaranteed to be !isPPC64 at this point. 4407 // Does MVT::i64 apply? 4408 VecArgOffset += 8; 4409 break; 4410 case MVT::v4f32: 4411 case MVT::v4i32: 4412 case MVT::v8i16: 4413 case MVT::v16i8: 4414 // Nothing to do, we're only looking at Nonvector args here. 4415 break; 4416 } 4417 } 4418 } 4419 // We've found where the vector parameter area in memory is. Skip the 4420 // first 12 parameters; these don't use that memory. 4421 VecArgOffset = ((VecArgOffset+15)/16)*16; 4422 VecArgOffset += 12*16; 4423 4424 // Add DAG nodes to load the arguments or copy them out of registers. On 4425 // entry to a function on PPC, the arguments start after the linkage area, 4426 // although the first ones are often in registers. 4427 4428 SmallVector<SDValue, 8> MemOps; 4429 unsigned nAltivecParamsAtEnd = 0; 4430 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4431 unsigned CurArgIdx = 0; 4432 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4433 SDValue ArgVal; 4434 bool needsLoad = false; 4435 EVT ObjectVT = Ins[ArgNo].VT; 4436 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4437 unsigned ArgSize = ObjSize; 4438 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4439 if (Ins[ArgNo].isOrigArg()) { 4440 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4441 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4442 } 4443 unsigned CurArgOffset = ArgOffset; 4444 4445 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4446 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4447 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4448 if (isVarArg || isPPC64) { 4449 MinReservedArea = ((MinReservedArea+15)/16)*16; 4450 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4451 Flags, 4452 PtrByteSize); 4453 } else nAltivecParamsAtEnd++; 4454 } else 4455 // Calculate min reserved area. 4456 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4457 Flags, 4458 PtrByteSize); 4459 4460 // FIXME the codegen can be much improved in some cases. 4461 // We do not have to keep everything in memory. 4462 if (Flags.isByVal()) { 4463 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4464 4465 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4466 ObjSize = Flags.getByValSize(); 4467 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4468 // Objects of size 1 and 2 are right justified, everything else is 4469 // left justified. This means the memory address is adjusted forwards. 4470 if (ObjSize==1 || ObjSize==2) { 4471 CurArgOffset = CurArgOffset + (4 - ObjSize); 4472 } 4473 // The value of the object is its address. 4474 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4475 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4476 InVals.push_back(FIN); 4477 if (ObjSize==1 || ObjSize==2) { 4478 if (GPR_idx != Num_GPR_Regs) { 4479 unsigned VReg; 4480 if (isPPC64) 4481 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4482 else 4483 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4484 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4485 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4486 SDValue Store = 4487 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4488 MachinePointerInfo(&*FuncArg), ObjType); 4489 MemOps.push_back(Store); 4490 ++GPR_idx; 4491 } 4492 4493 ArgOffset += PtrByteSize; 4494 4495 continue; 4496 } 4497 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4498 // Store whatever pieces of the object are in registers 4499 // to memory. ArgOffset will be the address of the beginning 4500 // of the object. 4501 if (GPR_idx != Num_GPR_Regs) { 4502 unsigned VReg; 4503 if (isPPC64) 4504 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4505 else 4506 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4507 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4508 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4509 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4510 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4511 MachinePointerInfo(&*FuncArg, j)); 4512 MemOps.push_back(Store); 4513 ++GPR_idx; 4514 ArgOffset += PtrByteSize; 4515 } else { 4516 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4517 break; 4518 } 4519 } 4520 continue; 4521 } 4522 4523 switch (ObjectVT.getSimpleVT().SimpleTy) { 4524 default: llvm_unreachable("Unhandled argument type!"); 4525 case MVT::i1: 4526 case MVT::i32: 4527 if (!isPPC64) { 4528 if (GPR_idx != Num_GPR_Regs) { 4529 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4530 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4531 4532 if (ObjectVT == MVT::i1) 4533 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4534 4535 ++GPR_idx; 4536 } else { 4537 needsLoad = true; 4538 ArgSize = PtrByteSize; 4539 } 4540 // All int arguments reserve stack space in the Darwin ABI. 4541 ArgOffset += PtrByteSize; 4542 break; 4543 } 4544 LLVM_FALLTHROUGH; 4545 case MVT::i64: // PPC64 4546 if (GPR_idx != Num_GPR_Regs) { 4547 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4548 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4549 4550 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4551 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4552 // value to MVT::i64 and then truncate to the correct register size. 4553 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4554 4555 ++GPR_idx; 4556 } else { 4557 needsLoad = true; 4558 ArgSize = PtrByteSize; 4559 } 4560 // All int arguments reserve stack space in the Darwin ABI. 4561 ArgOffset += 8; 4562 break; 4563 4564 case MVT::f32: 4565 case MVT::f64: 4566 // Every 4 bytes of argument space consumes one of the GPRs available for 4567 // argument passing. 4568 if (GPR_idx != Num_GPR_Regs) { 4569 ++GPR_idx; 4570 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4571 ++GPR_idx; 4572 } 4573 if (FPR_idx != Num_FPR_Regs) { 4574 unsigned VReg; 4575 4576 if (ObjectVT == MVT::f32) 4577 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4578 else 4579 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4580 4581 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4582 ++FPR_idx; 4583 } else { 4584 needsLoad = true; 4585 } 4586 4587 // All FP arguments reserve stack space in the Darwin ABI. 4588 ArgOffset += isPPC64 ? 8 : ObjSize; 4589 break; 4590 case MVT::v4f32: 4591 case MVT::v4i32: 4592 case MVT::v8i16: 4593 case MVT::v16i8: 4594 // Note that vector arguments in registers don't reserve stack space, 4595 // except in varargs functions. 4596 if (VR_idx != Num_VR_Regs) { 4597 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4598 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4599 if (isVarArg) { 4600 while ((ArgOffset % 16) != 0) { 4601 ArgOffset += PtrByteSize; 4602 if (GPR_idx != Num_GPR_Regs) 4603 GPR_idx++; 4604 } 4605 ArgOffset += 16; 4606 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4607 } 4608 ++VR_idx; 4609 } else { 4610 if (!isVarArg && !isPPC64) { 4611 // Vectors go after all the nonvectors. 4612 CurArgOffset = VecArgOffset; 4613 VecArgOffset += 16; 4614 } else { 4615 // Vectors are aligned. 4616 ArgOffset = ((ArgOffset+15)/16)*16; 4617 CurArgOffset = ArgOffset; 4618 ArgOffset += 16; 4619 } 4620 needsLoad = true; 4621 } 4622 break; 4623 } 4624 4625 // We need to load the argument to a virtual register if we determined above 4626 // that we ran out of physical registers of the appropriate type. 4627 if (needsLoad) { 4628 int FI = MFI.CreateFixedObject(ObjSize, 4629 CurArgOffset + (ArgSize - ObjSize), 4630 isImmutable); 4631 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4632 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4633 } 4634 4635 InVals.push_back(ArgVal); 4636 } 4637 4638 // Allow for Altivec parameters at the end, if needed. 4639 if (nAltivecParamsAtEnd) { 4640 MinReservedArea = ((MinReservedArea+15)/16)*16; 4641 MinReservedArea += 16*nAltivecParamsAtEnd; 4642 } 4643 4644 // Area that is at least reserved in the caller of this function. 4645 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4646 4647 // Set the size that is at least reserved in caller of this function. Tail 4648 // call optimized functions' reserved stack space needs to be aligned so that 4649 // taking the difference between two stack areas will result in an aligned 4650 // stack. 4651 MinReservedArea = 4652 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4653 FuncInfo->setMinReservedArea(MinReservedArea); 4654 4655 // If the function takes variable number of arguments, make a frame index for 4656 // the start of the first vararg value... for expansion of llvm.va_start. 4657 if (isVarArg) { 4658 int Depth = ArgOffset; 4659 4660 FuncInfo->setVarArgsFrameIndex( 4661 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4662 Depth, true)); 4663 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4664 4665 // If this function is vararg, store any remaining integer argument regs 4666 // to their spots on the stack so that they may be loaded by dereferencing 4667 // the result of va_next. 4668 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4669 unsigned VReg; 4670 4671 if (isPPC64) 4672 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4673 else 4674 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4675 4676 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4677 SDValue Store = 4678 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4679 MemOps.push_back(Store); 4680 // Increment the address by four for the next argument to store 4681 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4682 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4683 } 4684 } 4685 4686 if (!MemOps.empty()) 4687 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4688 4689 return Chain; 4690 } 4691 4692 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4693 /// adjusted to accommodate the arguments for the tailcall. 4694 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4695 unsigned ParamSize) { 4696 4697 if (!isTailCall) return 0; 4698 4699 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4700 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4701 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4702 // Remember only if the new adjustment is bigger. 4703 if (SPDiff < FI->getTailCallSPDelta()) 4704 FI->setTailCallSPDelta(SPDiff); 4705 4706 return SPDiff; 4707 } 4708 4709 static bool isFunctionGlobalAddress(SDValue Callee); 4710 4711 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4712 const TargetMachine &TM) { 4713 // It does not make sense to call callsShareTOCBase() with a caller that 4714 // is PC Relative since PC Relative callers do not have a TOC. 4715 #ifndef NDEBUG 4716 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4717 assert(!STICaller->isUsingPCRelativeCalls() && 4718 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4719 #endif 4720 4721 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4722 // don't have enough information to determine if the caller and callee share 4723 // the same TOC base, so we have to pessimistically assume they don't for 4724 // correctness. 4725 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4726 if (!G) 4727 return false; 4728 4729 const GlobalValue *GV = G->getGlobal(); 4730 4731 // If the callee is preemptable, then the static linker will use a plt-stub 4732 // which saves the toc to the stack, and needs a nop after the call 4733 // instruction to convert to a toc-restore. 4734 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4735 return false; 4736 4737 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4738 // We may need a TOC restore in the situation where the caller requires a 4739 // valid TOC but the callee is PC Relative and does not. 4740 const Function *F = dyn_cast<Function>(GV); 4741 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4742 4743 // If we have an Alias we can try to get the function from there. 4744 if (Alias) { 4745 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4746 F = dyn_cast<Function>(GlobalObj); 4747 } 4748 4749 // If we still have no valid function pointer we do not have enough 4750 // information to determine if the callee uses PC Relative calls so we must 4751 // assume that it does. 4752 if (!F) 4753 return false; 4754 4755 // If the callee uses PC Relative we cannot guarantee that the callee won't 4756 // clobber the TOC of the caller and so we must assume that the two 4757 // functions do not share a TOC base. 4758 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4759 if (STICallee->isUsingPCRelativeCalls()) 4760 return false; 4761 4762 // The medium and large code models are expected to provide a sufficiently 4763 // large TOC to provide all data addressing needs of a module with a 4764 // single TOC. 4765 if (CodeModel::Medium == TM.getCodeModel() || 4766 CodeModel::Large == TM.getCodeModel()) 4767 return true; 4768 4769 // Otherwise we need to ensure callee and caller are in the same section, 4770 // since the linker may allocate multiple TOCs, and we don't know which 4771 // sections will belong to the same TOC base. 4772 if (!GV->isStrongDefinitionForLinker()) 4773 return false; 4774 4775 // Any explicitly-specified sections and section prefixes must also match. 4776 // Also, if we're using -ffunction-sections, then each function is always in 4777 // a different section (the same is true for COMDAT functions). 4778 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4779 GV->getSection() != Caller->getSection()) 4780 return false; 4781 if (const auto *F = dyn_cast<Function>(GV)) { 4782 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4783 return false; 4784 } 4785 4786 return true; 4787 } 4788 4789 static bool 4790 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4791 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4792 assert(Subtarget.is64BitELFABI()); 4793 4794 const unsigned PtrByteSize = 8; 4795 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4796 4797 static const MCPhysReg GPR[] = { 4798 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4799 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4800 }; 4801 static const MCPhysReg VR[] = { 4802 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4803 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4804 }; 4805 4806 const unsigned NumGPRs = array_lengthof(GPR); 4807 const unsigned NumFPRs = 13; 4808 const unsigned NumVRs = array_lengthof(VR); 4809 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4810 4811 unsigned NumBytes = LinkageSize; 4812 unsigned AvailableFPRs = NumFPRs; 4813 unsigned AvailableVRs = NumVRs; 4814 4815 for (const ISD::OutputArg& Param : Outs) { 4816 if (Param.Flags.isNest()) continue; 4817 4818 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4819 PtrByteSize, LinkageSize, ParamAreaSize, 4820 NumBytes, AvailableFPRs, AvailableVRs, 4821 Subtarget.hasQPX())) 4822 return true; 4823 } 4824 return false; 4825 } 4826 4827 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4828 if (CB.arg_size() != CallerFn->arg_size()) 4829 return false; 4830 4831 auto CalleeArgIter = CB.arg_begin(); 4832 auto CalleeArgEnd = CB.arg_end(); 4833 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4834 4835 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4836 const Value* CalleeArg = *CalleeArgIter; 4837 const Value* CallerArg = &(*CallerArgIter); 4838 if (CalleeArg == CallerArg) 4839 continue; 4840 4841 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4842 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4843 // } 4844 // 1st argument of callee is undef and has the same type as caller. 4845 if (CalleeArg->getType() == CallerArg->getType() && 4846 isa<UndefValue>(CalleeArg)) 4847 continue; 4848 4849 return false; 4850 } 4851 4852 return true; 4853 } 4854 4855 // Returns true if TCO is possible between the callers and callees 4856 // calling conventions. 4857 static bool 4858 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4859 CallingConv::ID CalleeCC) { 4860 // Tail calls are possible with fastcc and ccc. 4861 auto isTailCallableCC = [] (CallingConv::ID CC){ 4862 return CC == CallingConv::C || CC == CallingConv::Fast; 4863 }; 4864 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4865 return false; 4866 4867 // We can safely tail call both fastcc and ccc callees from a c calling 4868 // convention caller. If the caller is fastcc, we may have less stack space 4869 // than a non-fastcc caller with the same signature so disable tail-calls in 4870 // that case. 4871 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4872 } 4873 4874 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4875 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4876 const SmallVectorImpl<ISD::OutputArg> &Outs, 4877 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4878 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4879 4880 if (DisableSCO && !TailCallOpt) return false; 4881 4882 // Variadic argument functions are not supported. 4883 if (isVarArg) return false; 4884 4885 auto &Caller = DAG.getMachineFunction().getFunction(); 4886 // Check that the calling conventions are compatible for tco. 4887 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4888 return false; 4889 4890 // Caller contains any byval parameter is not supported. 4891 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4892 return false; 4893 4894 // Callee contains any byval parameter is not supported, too. 4895 // Note: This is a quick work around, because in some cases, e.g. 4896 // caller's stack size > callee's stack size, we are still able to apply 4897 // sibling call optimization. For example, gcc is able to do SCO for caller1 4898 // in the following example, but not for caller2. 4899 // struct test { 4900 // long int a; 4901 // char ary[56]; 4902 // } gTest; 4903 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4904 // b->a = v.a; 4905 // return 0; 4906 // } 4907 // void caller1(struct test a, struct test c, struct test *b) { 4908 // callee(gTest, b); } 4909 // void caller2(struct test *b) { callee(gTest, b); } 4910 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4911 return false; 4912 4913 // If callee and caller use different calling conventions, we cannot pass 4914 // parameters on stack since offsets for the parameter area may be different. 4915 if (Caller.getCallingConv() != CalleeCC && 4916 needStackSlotPassParameters(Subtarget, Outs)) 4917 return false; 4918 4919 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4920 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4921 // callee potentially have different TOC bases then we cannot tail call since 4922 // we need to restore the TOC pointer after the call. 4923 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4924 // We cannot guarantee this for indirect calls or calls to external functions. 4925 // When PC-Relative addressing is used, the concept of the TOC is no longer 4926 // applicable so this check is not required. 4927 // Check first for indirect calls. 4928 if (!Subtarget.isUsingPCRelativeCalls() && 4929 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4930 return false; 4931 4932 // Check if we share the TOC base. 4933 if (!Subtarget.isUsingPCRelativeCalls() && 4934 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4935 return false; 4936 4937 // TCO allows altering callee ABI, so we don't have to check further. 4938 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4939 return true; 4940 4941 if (DisableSCO) return false; 4942 4943 // If callee use the same argument list that caller is using, then we can 4944 // apply SCO on this case. If it is not, then we need to check if callee needs 4945 // stack for passing arguments. 4946 // PC Relative tail calls may not have a CallBase. 4947 // If there is no CallBase we cannot verify if we have the same argument 4948 // list so assume that we don't have the same argument list. 4949 if (CB && !hasSameArgumentList(&Caller, *CB) && 4950 needStackSlotPassParameters(Subtarget, Outs)) 4951 return false; 4952 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4953 return false; 4954 4955 return true; 4956 } 4957 4958 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4959 /// for tail call optimization. Targets which want to do tail call 4960 /// optimization should implement this function. 4961 bool 4962 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4963 CallingConv::ID CalleeCC, 4964 bool isVarArg, 4965 const SmallVectorImpl<ISD::InputArg> &Ins, 4966 SelectionDAG& DAG) const { 4967 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4968 return false; 4969 4970 // Variable argument functions are not supported. 4971 if (isVarArg) 4972 return false; 4973 4974 MachineFunction &MF = DAG.getMachineFunction(); 4975 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4976 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4977 // Functions containing by val parameters are not supported. 4978 for (unsigned i = 0; i != Ins.size(); i++) { 4979 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4980 if (Flags.isByVal()) return false; 4981 } 4982 4983 // Non-PIC/GOT tail calls are supported. 4984 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4985 return true; 4986 4987 // At the moment we can only do local tail calls (in same module, hidden 4988 // or protected) if we are generating PIC. 4989 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4990 return G->getGlobal()->hasHiddenVisibility() 4991 || G->getGlobal()->hasProtectedVisibility(); 4992 } 4993 4994 return false; 4995 } 4996 4997 /// isCallCompatibleAddress - Return the immediate to use if the specified 4998 /// 32-bit value is representable in the immediate field of a BxA instruction. 4999 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 5000 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 5001 if (!C) return nullptr; 5002 5003 int Addr = C->getZExtValue(); 5004 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5005 SignExtend32<26>(Addr) != Addr) 5006 return nullptr; // Top 6 bits have to be sext of immediate. 5007 5008 return DAG 5009 .getConstant( 5010 (int)C->getZExtValue() >> 2, SDLoc(Op), 5011 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5012 .getNode(); 5013 } 5014 5015 namespace { 5016 5017 struct TailCallArgumentInfo { 5018 SDValue Arg; 5019 SDValue FrameIdxOp; 5020 int FrameIdx = 0; 5021 5022 TailCallArgumentInfo() = default; 5023 }; 5024 5025 } // end anonymous namespace 5026 5027 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5028 static void StoreTailCallArgumentsToStackSlot( 5029 SelectionDAG &DAG, SDValue Chain, 5030 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5031 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5032 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5033 SDValue Arg = TailCallArgs[i].Arg; 5034 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5035 int FI = TailCallArgs[i].FrameIdx; 5036 // Store relative to framepointer. 5037 MemOpChains.push_back(DAG.getStore( 5038 Chain, dl, Arg, FIN, 5039 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5040 } 5041 } 5042 5043 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5044 /// the appropriate stack slot for the tail call optimized function call. 5045 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5046 SDValue OldRetAddr, SDValue OldFP, 5047 int SPDiff, const SDLoc &dl) { 5048 if (SPDiff) { 5049 // Calculate the new stack slot for the return address. 5050 MachineFunction &MF = DAG.getMachineFunction(); 5051 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5052 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5053 bool isPPC64 = Subtarget.isPPC64(); 5054 int SlotSize = isPPC64 ? 8 : 4; 5055 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5056 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5057 NewRetAddrLoc, true); 5058 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5059 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5060 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5061 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5062 } 5063 return Chain; 5064 } 5065 5066 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5067 /// the position of the argument. 5068 static void 5069 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5070 SDValue Arg, int SPDiff, unsigned ArgOffset, 5071 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5072 int Offset = ArgOffset + SPDiff; 5073 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5074 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5075 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5076 SDValue FIN = DAG.getFrameIndex(FI, VT); 5077 TailCallArgumentInfo Info; 5078 Info.Arg = Arg; 5079 Info.FrameIdxOp = FIN; 5080 Info.FrameIdx = FI; 5081 TailCallArguments.push_back(Info); 5082 } 5083 5084 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5085 /// stack slot. Returns the chain as result and the loaded frame pointers in 5086 /// LROpOut/FPOpout. Used when tail calling. 5087 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5088 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5089 SDValue &FPOpOut, const SDLoc &dl) const { 5090 if (SPDiff) { 5091 // Load the LR and FP stack slot for later adjusting. 5092 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5093 LROpOut = getReturnAddrFrameIndex(DAG); 5094 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5095 Chain = SDValue(LROpOut.getNode(), 1); 5096 } 5097 return Chain; 5098 } 5099 5100 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5101 /// by "Src" to address "Dst" of size "Size". Alignment information is 5102 /// specified by the specific parameter attribute. The copy will be passed as 5103 /// a byval function parameter. 5104 /// Sometimes what we are copying is the end of a larger object, the part that 5105 /// does not fit in registers. 5106 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5107 SDValue Chain, ISD::ArgFlagsTy Flags, 5108 SelectionDAG &DAG, const SDLoc &dl) { 5109 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5110 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5111 Flags.getNonZeroByValAlign(), false, false, false, 5112 MachinePointerInfo(), MachinePointerInfo()); 5113 } 5114 5115 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5116 /// tail calls. 5117 static void LowerMemOpCallTo( 5118 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5119 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5120 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5121 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5122 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5123 if (!isTailCall) { 5124 if (isVector) { 5125 SDValue StackPtr; 5126 if (isPPC64) 5127 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5128 else 5129 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5130 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5131 DAG.getConstant(ArgOffset, dl, PtrVT)); 5132 } 5133 MemOpChains.push_back( 5134 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5135 // Calculate and remember argument location. 5136 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5137 TailCallArguments); 5138 } 5139 5140 static void 5141 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5142 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5143 SDValue FPOp, 5144 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5145 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5146 // might overwrite each other in case of tail call optimization. 5147 SmallVector<SDValue, 8> MemOpChains2; 5148 // Do not flag preceding copytoreg stuff together with the following stuff. 5149 InFlag = SDValue(); 5150 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5151 MemOpChains2, dl); 5152 if (!MemOpChains2.empty()) 5153 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5154 5155 // Store the return address to the appropriate stack slot. 5156 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5157 5158 // Emit callseq_end just before tailcall node. 5159 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5160 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5161 InFlag = Chain.getValue(1); 5162 } 5163 5164 // Is this global address that of a function that can be called by name? (as 5165 // opposed to something that must hold a descriptor for an indirect call). 5166 static bool isFunctionGlobalAddress(SDValue Callee) { 5167 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5168 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5169 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5170 return false; 5171 5172 return G->getGlobal()->getValueType()->isFunctionTy(); 5173 } 5174 5175 return false; 5176 } 5177 5178 SDValue PPCTargetLowering::LowerCallResult( 5179 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5180 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5181 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5182 SmallVector<CCValAssign, 16> RVLocs; 5183 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5184 *DAG.getContext()); 5185 5186 CCRetInfo.AnalyzeCallResult( 5187 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5188 ? RetCC_PPC_Cold 5189 : RetCC_PPC); 5190 5191 // Copy all of the result registers out of their specified physreg. 5192 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5193 CCValAssign &VA = RVLocs[i]; 5194 assert(VA.isRegLoc() && "Can only return in registers!"); 5195 5196 SDValue Val; 5197 5198 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5199 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5200 InFlag); 5201 Chain = Lo.getValue(1); 5202 InFlag = Lo.getValue(2); 5203 VA = RVLocs[++i]; // skip ahead to next loc 5204 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5205 InFlag); 5206 Chain = Hi.getValue(1); 5207 InFlag = Hi.getValue(2); 5208 if (!Subtarget.isLittleEndian()) 5209 std::swap (Lo, Hi); 5210 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5211 } else { 5212 Val = DAG.getCopyFromReg(Chain, dl, 5213 VA.getLocReg(), VA.getLocVT(), InFlag); 5214 Chain = Val.getValue(1); 5215 InFlag = Val.getValue(2); 5216 } 5217 5218 switch (VA.getLocInfo()) { 5219 default: llvm_unreachable("Unknown loc info!"); 5220 case CCValAssign::Full: break; 5221 case CCValAssign::AExt: 5222 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5223 break; 5224 case CCValAssign::ZExt: 5225 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5226 DAG.getValueType(VA.getValVT())); 5227 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5228 break; 5229 case CCValAssign::SExt: 5230 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5231 DAG.getValueType(VA.getValVT())); 5232 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5233 break; 5234 } 5235 5236 InVals.push_back(Val); 5237 } 5238 5239 return Chain; 5240 } 5241 5242 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5243 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5244 // PatchPoint calls are not indirect. 5245 if (isPatchPoint) 5246 return false; 5247 5248 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5249 return false; 5250 5251 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5252 // becuase the immediate function pointer points to a descriptor instead of 5253 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5254 // pointer immediate points to the global entry point, while the BLA would 5255 // need to jump to the local entry point (see rL211174). 5256 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5257 isBLACompatibleAddress(Callee, DAG)) 5258 return false; 5259 5260 return true; 5261 } 5262 5263 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5264 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5265 return Subtarget.isAIXABI() || 5266 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5267 } 5268 5269 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5270 const Function &Caller, 5271 const SDValue &Callee, 5272 const PPCSubtarget &Subtarget, 5273 const TargetMachine &TM) { 5274 if (CFlags.IsTailCall) 5275 return PPCISD::TC_RETURN; 5276 5277 // This is a call through a function pointer. 5278 if (CFlags.IsIndirect) { 5279 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5280 // indirect calls. The save of the caller's TOC pointer to the stack will be 5281 // inserted into the DAG as part of call lowering. The restore of the TOC 5282 // pointer is modeled by using a pseudo instruction for the call opcode that 5283 // represents the 2 instruction sequence of an indirect branch and link, 5284 // immediately followed by a load of the TOC pointer from the the stack save 5285 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5286 // as it is not saved or used. 5287 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5288 : PPCISD::BCTRL; 5289 } 5290 5291 if (Subtarget.isUsingPCRelativeCalls()) { 5292 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5293 return PPCISD::CALL_NOTOC; 5294 } 5295 5296 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5297 // immediately following the call instruction if the caller and callee may 5298 // have different TOC bases. At link time if the linker determines the calls 5299 // may not share a TOC base, the call is redirected to a trampoline inserted 5300 // by the linker. The trampoline will (among other things) save the callers 5301 // TOC pointer at an ABI designated offset in the linkage area and the linker 5302 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5303 // into gpr2. 5304 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5305 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5306 : PPCISD::CALL_NOP; 5307 5308 return PPCISD::CALL; 5309 } 5310 5311 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5312 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5313 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5314 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5315 return SDValue(Dest, 0); 5316 5317 // Returns true if the callee is local, and false otherwise. 5318 auto isLocalCallee = [&]() { 5319 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5320 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5321 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5322 5323 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5324 !dyn_cast_or_null<GlobalIFunc>(GV); 5325 }; 5326 5327 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5328 // a static relocation model causes some versions of GNU LD (2.17.50, at 5329 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5330 // built with secure-PLT. 5331 bool UsePlt = 5332 Subtarget.is32BitELFABI() && !isLocalCallee() && 5333 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5334 5335 // On AIX, direct function calls reference the symbol for the function's 5336 // entry point, which is named by prepending a "." before the function's 5337 // C-linkage name. 5338 const auto getAIXFuncEntryPointSymbolSDNode = 5339 [&](StringRef FuncName, bool IsDeclaration, 5340 const XCOFF::StorageClass &SC) { 5341 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5342 5343 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5344 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5345 5346 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5347 // On AIX, an undefined symbol needs to be associated with a 5348 // MCSectionXCOFF to get the correct storage mapping class. 5349 // In this case, XCOFF::XMC_PR. 5350 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5351 S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5352 SectionKind::getMetadata()); 5353 S->setRepresentedCsect(Sec); 5354 } 5355 5356 MVT PtrVT = 5357 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5358 return DAG.getMCSymbol(S, PtrVT); 5359 }; 5360 5361 if (isFunctionGlobalAddress(Callee)) { 5362 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5363 const GlobalValue *GV = G->getGlobal(); 5364 5365 if (!Subtarget.isAIXABI()) 5366 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5367 UsePlt ? PPCII::MO_PLT : 0); 5368 5369 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5370 const GlobalObject *GO = cast<GlobalObject>(GV); 5371 const XCOFF::StorageClass SC = 5372 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5373 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5374 SC); 5375 } 5376 5377 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5378 const char *SymName = S->getSymbol(); 5379 if (!Subtarget.isAIXABI()) 5380 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5381 UsePlt ? PPCII::MO_PLT : 0); 5382 5383 // If there exists a user-declared function whose name is the same as the 5384 // ExternalSymbol's, then we pick up the user-declared version. 5385 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5386 if (const Function *F = 5387 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5388 const XCOFF::StorageClass SC = 5389 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5390 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5391 SC); 5392 } 5393 5394 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5395 } 5396 5397 // No transformation needed. 5398 assert(Callee.getNode() && "What no callee?"); 5399 return Callee; 5400 } 5401 5402 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5403 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5404 "Expected a CALLSEQ_STARTSDNode."); 5405 5406 // The last operand is the chain, except when the node has glue. If the node 5407 // has glue, then the last operand is the glue, and the chain is the second 5408 // last operand. 5409 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5410 if (LastValue.getValueType() != MVT::Glue) 5411 return LastValue; 5412 5413 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5414 } 5415 5416 // Creates the node that moves a functions address into the count register 5417 // to prepare for an indirect call instruction. 5418 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5419 SDValue &Glue, SDValue &Chain, 5420 const SDLoc &dl) { 5421 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5422 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5423 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5424 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5425 // The glue is the second value produced. 5426 Glue = Chain.getValue(1); 5427 } 5428 5429 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5430 SDValue &Glue, SDValue &Chain, 5431 SDValue CallSeqStart, 5432 const CallBase *CB, const SDLoc &dl, 5433 bool hasNest, 5434 const PPCSubtarget &Subtarget) { 5435 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5436 // entry point, but to the function descriptor (the function entry point 5437 // address is part of the function descriptor though). 5438 // The function descriptor is a three doubleword structure with the 5439 // following fields: function entry point, TOC base address and 5440 // environment pointer. 5441 // Thus for a call through a function pointer, the following actions need 5442 // to be performed: 5443 // 1. Save the TOC of the caller in the TOC save area of its stack 5444 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5445 // 2. Load the address of the function entry point from the function 5446 // descriptor. 5447 // 3. Load the TOC of the callee from the function descriptor into r2. 5448 // 4. Load the environment pointer from the function descriptor into 5449 // r11. 5450 // 5. Branch to the function entry point address. 5451 // 6. On return of the callee, the TOC of the caller needs to be 5452 // restored (this is done in FinishCall()). 5453 // 5454 // The loads are scheduled at the beginning of the call sequence, and the 5455 // register copies are flagged together to ensure that no other 5456 // operations can be scheduled in between. E.g. without flagging the 5457 // copies together, a TOC access in the caller could be scheduled between 5458 // the assignment of the callee TOC and the branch to the callee, which leads 5459 // to incorrect code. 5460 5461 // Start by loading the function address from the descriptor. 5462 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5463 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5464 ? (MachineMemOperand::MODereferenceable | 5465 MachineMemOperand::MOInvariant) 5466 : MachineMemOperand::MONone; 5467 5468 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5469 5470 // Registers used in building the DAG. 5471 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5472 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5473 5474 // Offsets of descriptor members. 5475 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5476 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5477 5478 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5479 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5480 5481 // One load for the functions entry point address. 5482 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5483 Alignment, MMOFlags); 5484 5485 // One for loading the TOC anchor for the module that contains the called 5486 // function. 5487 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5488 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5489 SDValue TOCPtr = 5490 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5491 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5492 5493 // One for loading the environment pointer. 5494 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5495 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5496 SDValue LoadEnvPtr = 5497 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5498 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5499 5500 5501 // Then copy the newly loaded TOC anchor to the TOC pointer. 5502 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5503 Chain = TOCVal.getValue(0); 5504 Glue = TOCVal.getValue(1); 5505 5506 // If the function call has an explicit 'nest' parameter, it takes the 5507 // place of the environment pointer. 5508 assert((!hasNest || !Subtarget.isAIXABI()) && 5509 "Nest parameter is not supported on AIX."); 5510 if (!hasNest) { 5511 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5512 Chain = EnvVal.getValue(0); 5513 Glue = EnvVal.getValue(1); 5514 } 5515 5516 // The rest of the indirect call sequence is the same as the non-descriptor 5517 // DAG. 5518 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5519 } 5520 5521 static void 5522 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5523 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5524 SelectionDAG &DAG, 5525 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5526 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5527 const PPCSubtarget &Subtarget) { 5528 const bool IsPPC64 = Subtarget.isPPC64(); 5529 // MVT for a general purpose register. 5530 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5531 5532 // First operand is always the chain. 5533 Ops.push_back(Chain); 5534 5535 // If it's a direct call pass the callee as the second operand. 5536 if (!CFlags.IsIndirect) 5537 Ops.push_back(Callee); 5538 else { 5539 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5540 5541 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5542 // on the stack (this would have been done in `LowerCall_64SVR4` or 5543 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5544 // represents both the indirect branch and a load that restores the TOC 5545 // pointer from the linkage area. The operand for the TOC restore is an add 5546 // of the TOC save offset to the stack pointer. This must be the second 5547 // operand: after the chain input but before any other variadic arguments. 5548 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5549 // saved or used. 5550 if (isTOCSaveRestoreRequired(Subtarget)) { 5551 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5552 5553 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5554 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5555 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5556 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5557 Ops.push_back(AddTOC); 5558 } 5559 5560 // Add the register used for the environment pointer. 5561 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5562 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5563 RegVT)); 5564 5565 5566 // Add CTR register as callee so a bctr can be emitted later. 5567 if (CFlags.IsTailCall) 5568 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5569 } 5570 5571 // If this is a tail call add stack pointer delta. 5572 if (CFlags.IsTailCall) 5573 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5574 5575 // Add argument registers to the end of the list so that they are known live 5576 // into the call. 5577 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5578 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5579 RegsToPass[i].second.getValueType())); 5580 5581 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5582 // no way to mark dependencies as implicit here. 5583 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5584 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5585 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5586 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5587 5588 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5589 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5590 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5591 5592 // Add a register mask operand representing the call-preserved registers. 5593 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5594 const uint32_t *Mask = 5595 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5596 assert(Mask && "Missing call preserved mask for calling convention"); 5597 Ops.push_back(DAG.getRegisterMask(Mask)); 5598 5599 // If the glue is valid, it is the last operand. 5600 if (Glue.getNode()) 5601 Ops.push_back(Glue); 5602 } 5603 5604 SDValue PPCTargetLowering::FinishCall( 5605 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5606 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5607 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5608 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5609 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5610 5611 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5612 Subtarget.isAIXABI()) 5613 setUsesTOCBasePtr(DAG); 5614 5615 unsigned CallOpc = 5616 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5617 Subtarget, DAG.getTarget()); 5618 5619 if (!CFlags.IsIndirect) 5620 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5621 else if (Subtarget.usesFunctionDescriptors()) 5622 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5623 dl, CFlags.HasNest, Subtarget); 5624 else 5625 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5626 5627 // Build the operand list for the call instruction. 5628 SmallVector<SDValue, 8> Ops; 5629 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5630 SPDiff, Subtarget); 5631 5632 // Emit tail call. 5633 if (CFlags.IsTailCall) { 5634 // Indirect tail call when using PC Relative calls do not have the same 5635 // constraints. 5636 assert(((Callee.getOpcode() == ISD::Register && 5637 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5638 Callee.getOpcode() == ISD::TargetExternalSymbol || 5639 Callee.getOpcode() == ISD::TargetGlobalAddress || 5640 isa<ConstantSDNode>(Callee) || 5641 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5642 "Expecting a global address, external symbol, absolute value, " 5643 "register or an indirect tail call when PC Relative calls are " 5644 "used."); 5645 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5646 assert(CallOpc == PPCISD::TC_RETURN && 5647 "Unexpected call opcode for a tail call."); 5648 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5649 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5650 } 5651 5652 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5653 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5654 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5655 Glue = Chain.getValue(1); 5656 5657 // When performing tail call optimization the callee pops its arguments off 5658 // the stack. Account for this here so these bytes can be pushed back on in 5659 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5660 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5661 getTargetMachine().Options.GuaranteedTailCallOpt) 5662 ? NumBytes 5663 : 0; 5664 5665 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5666 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5667 Glue, dl); 5668 Glue = Chain.getValue(1); 5669 5670 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5671 DAG, InVals); 5672 } 5673 5674 SDValue 5675 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5676 SmallVectorImpl<SDValue> &InVals) const { 5677 SelectionDAG &DAG = CLI.DAG; 5678 SDLoc &dl = CLI.DL; 5679 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5680 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5681 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5682 SDValue Chain = CLI.Chain; 5683 SDValue Callee = CLI.Callee; 5684 bool &isTailCall = CLI.IsTailCall; 5685 CallingConv::ID CallConv = CLI.CallConv; 5686 bool isVarArg = CLI.IsVarArg; 5687 bool isPatchPoint = CLI.IsPatchPoint; 5688 const CallBase *CB = CLI.CB; 5689 5690 if (isTailCall) { 5691 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5692 isTailCall = false; 5693 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5694 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5695 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5696 else 5697 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5698 Ins, DAG); 5699 if (isTailCall) { 5700 ++NumTailCalls; 5701 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5702 ++NumSiblingCalls; 5703 5704 // PC Relative calls no longer guarantee that the callee is a Global 5705 // Address Node. The callee could be an indirect tail call in which 5706 // case the SDValue for the callee could be a load (to load the address 5707 // of a function pointer) or it may be a register copy (to move the 5708 // address of the callee from a function parameter into a virtual 5709 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5710 assert((Subtarget.isUsingPCRelativeCalls() || 5711 isa<GlobalAddressSDNode>(Callee)) && 5712 "Callee should be an llvm::Function object."); 5713 5714 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5715 << "\nTCO callee: "); 5716 LLVM_DEBUG(Callee.dump()); 5717 } 5718 } 5719 5720 if (!isTailCall && CB && CB->isMustTailCall()) 5721 report_fatal_error("failed to perform tail call elimination on a call " 5722 "site marked musttail"); 5723 5724 // When long calls (i.e. indirect calls) are always used, calls are always 5725 // made via function pointer. If we have a function name, first translate it 5726 // into a pointer. 5727 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5728 !isTailCall) 5729 Callee = LowerGlobalAddress(Callee, DAG); 5730 5731 CallFlags CFlags( 5732 CallConv, isTailCall, isVarArg, isPatchPoint, 5733 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5734 // hasNest 5735 Subtarget.is64BitELFABI() && 5736 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5737 CLI.NoMerge); 5738 5739 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5740 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5741 InVals, CB); 5742 5743 if (Subtarget.isSVR4ABI()) 5744 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5745 InVals, CB); 5746 5747 if (Subtarget.isAIXABI()) 5748 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5749 InVals, CB); 5750 5751 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5752 InVals, CB); 5753 } 5754 5755 SDValue PPCTargetLowering::LowerCall_32SVR4( 5756 SDValue Chain, SDValue Callee, CallFlags CFlags, 5757 const SmallVectorImpl<ISD::OutputArg> &Outs, 5758 const SmallVectorImpl<SDValue> &OutVals, 5759 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5760 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5761 const CallBase *CB) const { 5762 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5763 // of the 32-bit SVR4 ABI stack frame layout. 5764 5765 const CallingConv::ID CallConv = CFlags.CallConv; 5766 const bool IsVarArg = CFlags.IsVarArg; 5767 const bool IsTailCall = CFlags.IsTailCall; 5768 5769 assert((CallConv == CallingConv::C || 5770 CallConv == CallingConv::Cold || 5771 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5772 5773 const Align PtrAlign(4); 5774 5775 MachineFunction &MF = DAG.getMachineFunction(); 5776 5777 // Mark this function as potentially containing a function that contains a 5778 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5779 // and restoring the callers stack pointer in this functions epilog. This is 5780 // done because by tail calling the called function might overwrite the value 5781 // in this function's (MF) stack pointer stack slot 0(SP). 5782 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5783 CallConv == CallingConv::Fast) 5784 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5785 5786 // Count how many bytes are to be pushed on the stack, including the linkage 5787 // area, parameter list area and the part of the local variable space which 5788 // contains copies of aggregates which are passed by value. 5789 5790 // Assign locations to all of the outgoing arguments. 5791 SmallVector<CCValAssign, 16> ArgLocs; 5792 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5793 5794 // Reserve space for the linkage area on the stack. 5795 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5796 PtrAlign); 5797 if (useSoftFloat()) 5798 CCInfo.PreAnalyzeCallOperands(Outs); 5799 5800 if (IsVarArg) { 5801 // Handle fixed and variable vector arguments differently. 5802 // Fixed vector arguments go into registers as long as registers are 5803 // available. Variable vector arguments always go into memory. 5804 unsigned NumArgs = Outs.size(); 5805 5806 for (unsigned i = 0; i != NumArgs; ++i) { 5807 MVT ArgVT = Outs[i].VT; 5808 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5809 bool Result; 5810 5811 if (Outs[i].IsFixed) { 5812 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5813 CCInfo); 5814 } else { 5815 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5816 ArgFlags, CCInfo); 5817 } 5818 5819 if (Result) { 5820 #ifndef NDEBUG 5821 errs() << "Call operand #" << i << " has unhandled type " 5822 << EVT(ArgVT).getEVTString() << "\n"; 5823 #endif 5824 llvm_unreachable(nullptr); 5825 } 5826 } 5827 } else { 5828 // All arguments are treated the same. 5829 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5830 } 5831 CCInfo.clearWasPPCF128(); 5832 5833 // Assign locations to all of the outgoing aggregate by value arguments. 5834 SmallVector<CCValAssign, 16> ByValArgLocs; 5835 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5836 5837 // Reserve stack space for the allocations in CCInfo. 5838 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5839 5840 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5841 5842 // Size of the linkage area, parameter list area and the part of the local 5843 // space variable where copies of aggregates which are passed by value are 5844 // stored. 5845 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5846 5847 // Calculate by how many bytes the stack has to be adjusted in case of tail 5848 // call optimization. 5849 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5850 5851 // Adjust the stack pointer for the new arguments... 5852 // These operations are automatically eliminated by the prolog/epilog pass 5853 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5854 SDValue CallSeqStart = Chain; 5855 5856 // Load the return address and frame pointer so it can be moved somewhere else 5857 // later. 5858 SDValue LROp, FPOp; 5859 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5860 5861 // Set up a copy of the stack pointer for use loading and storing any 5862 // arguments that may not fit in the registers available for argument 5863 // passing. 5864 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5865 5866 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5867 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5868 SmallVector<SDValue, 8> MemOpChains; 5869 5870 bool seenFloatArg = false; 5871 // Walk the register/memloc assignments, inserting copies/loads. 5872 // i - Tracks the index into the list of registers allocated for the call 5873 // RealArgIdx - Tracks the index into the list of actual function arguments 5874 // j - Tracks the index into the list of byval arguments 5875 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5876 i != e; 5877 ++i, ++RealArgIdx) { 5878 CCValAssign &VA = ArgLocs[i]; 5879 SDValue Arg = OutVals[RealArgIdx]; 5880 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5881 5882 if (Flags.isByVal()) { 5883 // Argument is an aggregate which is passed by value, thus we need to 5884 // create a copy of it in the local variable space of the current stack 5885 // frame (which is the stack frame of the caller) and pass the address of 5886 // this copy to the callee. 5887 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5888 CCValAssign &ByValVA = ByValArgLocs[j++]; 5889 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5890 5891 // Memory reserved in the local variable space of the callers stack frame. 5892 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5893 5894 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5895 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5896 StackPtr, PtrOff); 5897 5898 // Create a copy of the argument in the local area of the current 5899 // stack frame. 5900 SDValue MemcpyCall = 5901 CreateCopyOfByValArgument(Arg, PtrOff, 5902 CallSeqStart.getNode()->getOperand(0), 5903 Flags, DAG, dl); 5904 5905 // This must go outside the CALLSEQ_START..END. 5906 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5907 SDLoc(MemcpyCall)); 5908 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5909 NewCallSeqStart.getNode()); 5910 Chain = CallSeqStart = NewCallSeqStart; 5911 5912 // Pass the address of the aggregate copy on the stack either in a 5913 // physical register or in the parameter list area of the current stack 5914 // frame to the callee. 5915 Arg = PtrOff; 5916 } 5917 5918 // When useCRBits() is true, there can be i1 arguments. 5919 // It is because getRegisterType(MVT::i1) => MVT::i1, 5920 // and for other integer types getRegisterType() => MVT::i32. 5921 // Extend i1 and ensure callee will get i32. 5922 if (Arg.getValueType() == MVT::i1) 5923 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5924 dl, MVT::i32, Arg); 5925 5926 if (VA.isRegLoc()) { 5927 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5928 // Put argument in a physical register. 5929 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5930 bool IsLE = Subtarget.isLittleEndian(); 5931 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5932 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5933 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5934 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5935 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5936 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5937 SVal.getValue(0))); 5938 } else 5939 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5940 } else { 5941 // Put argument in the parameter list area of the current stack frame. 5942 assert(VA.isMemLoc()); 5943 unsigned LocMemOffset = VA.getLocMemOffset(); 5944 5945 if (!IsTailCall) { 5946 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5947 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5948 StackPtr, PtrOff); 5949 5950 MemOpChains.push_back( 5951 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5952 } else { 5953 // Calculate and remember argument location. 5954 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5955 TailCallArguments); 5956 } 5957 } 5958 } 5959 5960 if (!MemOpChains.empty()) 5961 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5962 5963 // Build a sequence of copy-to-reg nodes chained together with token chain 5964 // and flag operands which copy the outgoing args into the appropriate regs. 5965 SDValue InFlag; 5966 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5967 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5968 RegsToPass[i].second, InFlag); 5969 InFlag = Chain.getValue(1); 5970 } 5971 5972 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5973 // registers. 5974 if (IsVarArg) { 5975 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5976 SDValue Ops[] = { Chain, InFlag }; 5977 5978 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5979 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5980 5981 InFlag = Chain.getValue(1); 5982 } 5983 5984 if (IsTailCall) 5985 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5986 TailCallArguments); 5987 5988 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5989 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5990 } 5991 5992 // Copy an argument into memory, being careful to do this outside the 5993 // call sequence for the call to which the argument belongs. 5994 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5995 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5996 SelectionDAG &DAG, const SDLoc &dl) const { 5997 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5998 CallSeqStart.getNode()->getOperand(0), 5999 Flags, DAG, dl); 6000 // The MEMCPY must go outside the CALLSEQ_START..END. 6001 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6002 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6003 SDLoc(MemcpyCall)); 6004 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6005 NewCallSeqStart.getNode()); 6006 return NewCallSeqStart; 6007 } 6008 6009 SDValue PPCTargetLowering::LowerCall_64SVR4( 6010 SDValue Chain, SDValue Callee, CallFlags CFlags, 6011 const SmallVectorImpl<ISD::OutputArg> &Outs, 6012 const SmallVectorImpl<SDValue> &OutVals, 6013 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6014 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6015 const CallBase *CB) const { 6016 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6017 bool isLittleEndian = Subtarget.isLittleEndian(); 6018 unsigned NumOps = Outs.size(); 6019 bool IsSibCall = false; 6020 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6021 6022 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6023 unsigned PtrByteSize = 8; 6024 6025 MachineFunction &MF = DAG.getMachineFunction(); 6026 6027 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6028 IsSibCall = true; 6029 6030 // Mark this function as potentially containing a function that contains a 6031 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6032 // and restoring the callers stack pointer in this functions epilog. This is 6033 // done because by tail calling the called function might overwrite the value 6034 // in this function's (MF) stack pointer stack slot 0(SP). 6035 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6036 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6037 6038 assert(!(IsFastCall && CFlags.IsVarArg) && 6039 "fastcc not supported on varargs functions"); 6040 6041 // Count how many bytes are to be pushed on the stack, including the linkage 6042 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6043 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6044 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6045 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6046 unsigned NumBytes = LinkageSize; 6047 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6048 unsigned &QFPR_idx = FPR_idx; 6049 6050 static const MCPhysReg GPR[] = { 6051 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6052 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6053 }; 6054 static const MCPhysReg VR[] = { 6055 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6056 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6057 }; 6058 6059 const unsigned NumGPRs = array_lengthof(GPR); 6060 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6061 const unsigned NumVRs = array_lengthof(VR); 6062 const unsigned NumQFPRs = NumFPRs; 6063 6064 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6065 // can be passed to the callee in registers. 6066 // For the fast calling convention, there is another check below. 6067 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6068 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6069 if (!HasParameterArea) { 6070 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6071 unsigned AvailableFPRs = NumFPRs; 6072 unsigned AvailableVRs = NumVRs; 6073 unsigned NumBytesTmp = NumBytes; 6074 for (unsigned i = 0; i != NumOps; ++i) { 6075 if (Outs[i].Flags.isNest()) continue; 6076 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6077 PtrByteSize, LinkageSize, ParamAreaSize, 6078 NumBytesTmp, AvailableFPRs, AvailableVRs, 6079 Subtarget.hasQPX())) 6080 HasParameterArea = true; 6081 } 6082 } 6083 6084 // When using the fast calling convention, we don't provide backing for 6085 // arguments that will be in registers. 6086 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6087 6088 // Avoid allocating parameter area for fastcc functions if all the arguments 6089 // can be passed in the registers. 6090 if (IsFastCall) 6091 HasParameterArea = false; 6092 6093 // Add up all the space actually used. 6094 for (unsigned i = 0; i != NumOps; ++i) { 6095 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6096 EVT ArgVT = Outs[i].VT; 6097 EVT OrigVT = Outs[i].ArgVT; 6098 6099 if (Flags.isNest()) 6100 continue; 6101 6102 if (IsFastCall) { 6103 if (Flags.isByVal()) { 6104 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6105 if (NumGPRsUsed > NumGPRs) 6106 HasParameterArea = true; 6107 } else { 6108 switch (ArgVT.getSimpleVT().SimpleTy) { 6109 default: llvm_unreachable("Unexpected ValueType for argument!"); 6110 case MVT::i1: 6111 case MVT::i32: 6112 case MVT::i64: 6113 if (++NumGPRsUsed <= NumGPRs) 6114 continue; 6115 break; 6116 case MVT::v4i32: 6117 case MVT::v8i16: 6118 case MVT::v16i8: 6119 case MVT::v2f64: 6120 case MVT::v2i64: 6121 case MVT::v1i128: 6122 case MVT::f128: 6123 if (++NumVRsUsed <= NumVRs) 6124 continue; 6125 break; 6126 case MVT::v4f32: 6127 // When using QPX, this is handled like a FP register, otherwise, it 6128 // is an Altivec register. 6129 if (Subtarget.hasQPX()) { 6130 if (++NumFPRsUsed <= NumFPRs) 6131 continue; 6132 } else { 6133 if (++NumVRsUsed <= NumVRs) 6134 continue; 6135 } 6136 break; 6137 case MVT::f32: 6138 case MVT::f64: 6139 case MVT::v4f64: // QPX 6140 case MVT::v4i1: // QPX 6141 if (++NumFPRsUsed <= NumFPRs) 6142 continue; 6143 break; 6144 } 6145 HasParameterArea = true; 6146 } 6147 } 6148 6149 /* Respect alignment of argument on the stack. */ 6150 auto Alignement = 6151 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6152 NumBytes = alignTo(NumBytes, Alignement); 6153 6154 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6155 if (Flags.isInConsecutiveRegsLast()) 6156 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6157 } 6158 6159 unsigned NumBytesActuallyUsed = NumBytes; 6160 6161 // In the old ELFv1 ABI, 6162 // the prolog code of the callee may store up to 8 GPR argument registers to 6163 // the stack, allowing va_start to index over them in memory if its varargs. 6164 // Because we cannot tell if this is needed on the caller side, we have to 6165 // conservatively assume that it is needed. As such, make sure we have at 6166 // least enough stack space for the caller to store the 8 GPRs. 6167 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6168 // really requires memory operands, e.g. a vararg function. 6169 if (HasParameterArea) 6170 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6171 else 6172 NumBytes = LinkageSize; 6173 6174 // Tail call needs the stack to be aligned. 6175 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6176 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6177 6178 int SPDiff = 0; 6179 6180 // Calculate by how many bytes the stack has to be adjusted in case of tail 6181 // call optimization. 6182 if (!IsSibCall) 6183 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6184 6185 // To protect arguments on the stack from being clobbered in a tail call, 6186 // force all the loads to happen before doing any other lowering. 6187 if (CFlags.IsTailCall) 6188 Chain = DAG.getStackArgumentTokenFactor(Chain); 6189 6190 // Adjust the stack pointer for the new arguments... 6191 // These operations are automatically eliminated by the prolog/epilog pass 6192 if (!IsSibCall) 6193 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6194 SDValue CallSeqStart = Chain; 6195 6196 // Load the return address and frame pointer so it can be move somewhere else 6197 // later. 6198 SDValue LROp, FPOp; 6199 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6200 6201 // Set up a copy of the stack pointer for use loading and storing any 6202 // arguments that may not fit in the registers available for argument 6203 // passing. 6204 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6205 6206 // Figure out which arguments are going to go in registers, and which in 6207 // memory. Also, if this is a vararg function, floating point operations 6208 // must be stored to our stack, and loaded into integer regs as well, if 6209 // any integer regs are available for argument passing. 6210 unsigned ArgOffset = LinkageSize; 6211 6212 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6213 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6214 6215 SmallVector<SDValue, 8> MemOpChains; 6216 for (unsigned i = 0; i != NumOps; ++i) { 6217 SDValue Arg = OutVals[i]; 6218 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6219 EVT ArgVT = Outs[i].VT; 6220 EVT OrigVT = Outs[i].ArgVT; 6221 6222 // PtrOff will be used to store the current argument to the stack if a 6223 // register cannot be found for it. 6224 SDValue PtrOff; 6225 6226 // We re-align the argument offset for each argument, except when using the 6227 // fast calling convention, when we need to make sure we do that only when 6228 // we'll actually use a stack slot. 6229 auto ComputePtrOff = [&]() { 6230 /* Respect alignment of argument on the stack. */ 6231 auto Alignment = 6232 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6233 ArgOffset = alignTo(ArgOffset, Alignment); 6234 6235 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6236 6237 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6238 }; 6239 6240 if (!IsFastCall) { 6241 ComputePtrOff(); 6242 6243 /* Compute GPR index associated with argument offset. */ 6244 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6245 GPR_idx = std::min(GPR_idx, NumGPRs); 6246 } 6247 6248 // Promote integers to 64-bit values. 6249 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6250 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6251 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6252 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6253 } 6254 6255 // FIXME memcpy is used way more than necessary. Correctness first. 6256 // Note: "by value" is code for passing a structure by value, not 6257 // basic types. 6258 if (Flags.isByVal()) { 6259 // Note: Size includes alignment padding, so 6260 // struct x { short a; char b; } 6261 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6262 // These are the proper values we need for right-justifying the 6263 // aggregate in a parameter register. 6264 unsigned Size = Flags.getByValSize(); 6265 6266 // An empty aggregate parameter takes up no storage and no 6267 // registers. 6268 if (Size == 0) 6269 continue; 6270 6271 if (IsFastCall) 6272 ComputePtrOff(); 6273 6274 // All aggregates smaller than 8 bytes must be passed right-justified. 6275 if (Size==1 || Size==2 || Size==4) { 6276 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6277 if (GPR_idx != NumGPRs) { 6278 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6279 MachinePointerInfo(), VT); 6280 MemOpChains.push_back(Load.getValue(1)); 6281 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6282 6283 ArgOffset += PtrByteSize; 6284 continue; 6285 } 6286 } 6287 6288 if (GPR_idx == NumGPRs && Size < 8) { 6289 SDValue AddPtr = PtrOff; 6290 if (!isLittleEndian) { 6291 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6292 PtrOff.getValueType()); 6293 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6294 } 6295 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6296 CallSeqStart, 6297 Flags, DAG, dl); 6298 ArgOffset += PtrByteSize; 6299 continue; 6300 } 6301 // Copy entire object into memory. There are cases where gcc-generated 6302 // code assumes it is there, even if it could be put entirely into 6303 // registers. (This is not what the doc says.) 6304 6305 // FIXME: The above statement is likely due to a misunderstanding of the 6306 // documents. All arguments must be copied into the parameter area BY 6307 // THE CALLEE in the event that the callee takes the address of any 6308 // formal argument. That has not yet been implemented. However, it is 6309 // reasonable to use the stack area as a staging area for the register 6310 // load. 6311 6312 // Skip this for small aggregates, as we will use the same slot for a 6313 // right-justified copy, below. 6314 if (Size >= 8) 6315 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6316 CallSeqStart, 6317 Flags, DAG, dl); 6318 6319 // When a register is available, pass a small aggregate right-justified. 6320 if (Size < 8 && GPR_idx != NumGPRs) { 6321 // The easiest way to get this right-justified in a register 6322 // is to copy the structure into the rightmost portion of a 6323 // local variable slot, then load the whole slot into the 6324 // register. 6325 // FIXME: The memcpy seems to produce pretty awful code for 6326 // small aggregates, particularly for packed ones. 6327 // FIXME: It would be preferable to use the slot in the 6328 // parameter save area instead of a new local variable. 6329 SDValue AddPtr = PtrOff; 6330 if (!isLittleEndian) { 6331 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6332 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6333 } 6334 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6335 CallSeqStart, 6336 Flags, DAG, dl); 6337 6338 // Load the slot into the register. 6339 SDValue Load = 6340 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6341 MemOpChains.push_back(Load.getValue(1)); 6342 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6343 6344 // Done with this argument. 6345 ArgOffset += PtrByteSize; 6346 continue; 6347 } 6348 6349 // For aggregates larger than PtrByteSize, copy the pieces of the 6350 // object that fit into registers from the parameter save area. 6351 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6352 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6353 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6354 if (GPR_idx != NumGPRs) { 6355 SDValue Load = 6356 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6357 MemOpChains.push_back(Load.getValue(1)); 6358 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6359 ArgOffset += PtrByteSize; 6360 } else { 6361 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6362 break; 6363 } 6364 } 6365 continue; 6366 } 6367 6368 switch (Arg.getSimpleValueType().SimpleTy) { 6369 default: llvm_unreachable("Unexpected ValueType for argument!"); 6370 case MVT::i1: 6371 case MVT::i32: 6372 case MVT::i64: 6373 if (Flags.isNest()) { 6374 // The 'nest' parameter, if any, is passed in R11. 6375 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6376 break; 6377 } 6378 6379 // These can be scalar arguments or elements of an integer array type 6380 // passed directly. Clang may use those instead of "byval" aggregate 6381 // types to avoid forcing arguments to memory unnecessarily. 6382 if (GPR_idx != NumGPRs) { 6383 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6384 } else { 6385 if (IsFastCall) 6386 ComputePtrOff(); 6387 6388 assert(HasParameterArea && 6389 "Parameter area must exist to pass an argument in memory."); 6390 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6391 true, CFlags.IsTailCall, false, MemOpChains, 6392 TailCallArguments, dl); 6393 if (IsFastCall) 6394 ArgOffset += PtrByteSize; 6395 } 6396 if (!IsFastCall) 6397 ArgOffset += PtrByteSize; 6398 break; 6399 case MVT::f32: 6400 case MVT::f64: { 6401 // These can be scalar arguments or elements of a float array type 6402 // passed directly. The latter are used to implement ELFv2 homogenous 6403 // float aggregates. 6404 6405 // Named arguments go into FPRs first, and once they overflow, the 6406 // remaining arguments go into GPRs and then the parameter save area. 6407 // Unnamed arguments for vararg functions always go to GPRs and 6408 // then the parameter save area. For now, put all arguments to vararg 6409 // routines always in both locations (FPR *and* GPR or stack slot). 6410 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6411 bool NeededLoad = false; 6412 6413 // First load the argument into the next available FPR. 6414 if (FPR_idx != NumFPRs) 6415 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6416 6417 // Next, load the argument into GPR or stack slot if needed. 6418 if (!NeedGPROrStack) 6419 ; 6420 else if (GPR_idx != NumGPRs && !IsFastCall) { 6421 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6422 // once we support fp <-> gpr moves. 6423 6424 // In the non-vararg case, this can only ever happen in the 6425 // presence of f32 array types, since otherwise we never run 6426 // out of FPRs before running out of GPRs. 6427 SDValue ArgVal; 6428 6429 // Double values are always passed in a single GPR. 6430 if (Arg.getValueType() != MVT::f32) { 6431 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6432 6433 // Non-array float values are extended and passed in a GPR. 6434 } else if (!Flags.isInConsecutiveRegs()) { 6435 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6436 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6437 6438 // If we have an array of floats, we collect every odd element 6439 // together with its predecessor into one GPR. 6440 } else if (ArgOffset % PtrByteSize != 0) { 6441 SDValue Lo, Hi; 6442 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6443 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6444 if (!isLittleEndian) 6445 std::swap(Lo, Hi); 6446 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6447 6448 // The final element, if even, goes into the first half of a GPR. 6449 } else if (Flags.isInConsecutiveRegsLast()) { 6450 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6451 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6452 if (!isLittleEndian) 6453 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6454 DAG.getConstant(32, dl, MVT::i32)); 6455 6456 // Non-final even elements are skipped; they will be handled 6457 // together the with subsequent argument on the next go-around. 6458 } else 6459 ArgVal = SDValue(); 6460 6461 if (ArgVal.getNode()) 6462 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6463 } else { 6464 if (IsFastCall) 6465 ComputePtrOff(); 6466 6467 // Single-precision floating-point values are mapped to the 6468 // second (rightmost) word of the stack doubleword. 6469 if (Arg.getValueType() == MVT::f32 && 6470 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6471 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6472 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6473 } 6474 6475 assert(HasParameterArea && 6476 "Parameter area must exist to pass an argument in memory."); 6477 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6478 true, CFlags.IsTailCall, false, MemOpChains, 6479 TailCallArguments, dl); 6480 6481 NeededLoad = true; 6482 } 6483 // When passing an array of floats, the array occupies consecutive 6484 // space in the argument area; only round up to the next doubleword 6485 // at the end of the array. Otherwise, each float takes 8 bytes. 6486 if (!IsFastCall || NeededLoad) { 6487 ArgOffset += (Arg.getValueType() == MVT::f32 && 6488 Flags.isInConsecutiveRegs()) ? 4 : 8; 6489 if (Flags.isInConsecutiveRegsLast()) 6490 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6491 } 6492 break; 6493 } 6494 case MVT::v4f32: 6495 case MVT::v4i32: 6496 case MVT::v8i16: 6497 case MVT::v16i8: 6498 case MVT::v2f64: 6499 case MVT::v2i64: 6500 case MVT::v1i128: 6501 case MVT::f128: 6502 if (!Subtarget.hasQPX()) { 6503 // These can be scalar arguments or elements of a vector array type 6504 // passed directly. The latter are used to implement ELFv2 homogenous 6505 // vector aggregates. 6506 6507 // For a varargs call, named arguments go into VRs or on the stack as 6508 // usual; unnamed arguments always go to the stack or the corresponding 6509 // GPRs when within range. For now, we always put the value in both 6510 // locations (or even all three). 6511 if (CFlags.IsVarArg) { 6512 assert(HasParameterArea && 6513 "Parameter area must exist if we have a varargs call."); 6514 // We could elide this store in the case where the object fits 6515 // entirely in R registers. Maybe later. 6516 SDValue Store = 6517 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6518 MemOpChains.push_back(Store); 6519 if (VR_idx != NumVRs) { 6520 SDValue Load = 6521 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6522 MemOpChains.push_back(Load.getValue(1)); 6523 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6524 } 6525 ArgOffset += 16; 6526 for (unsigned i=0; i<16; i+=PtrByteSize) { 6527 if (GPR_idx == NumGPRs) 6528 break; 6529 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6530 DAG.getConstant(i, dl, PtrVT)); 6531 SDValue Load = 6532 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6533 MemOpChains.push_back(Load.getValue(1)); 6534 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6535 } 6536 break; 6537 } 6538 6539 // Non-varargs Altivec params go into VRs or on the stack. 6540 if (VR_idx != NumVRs) { 6541 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6542 } else { 6543 if (IsFastCall) 6544 ComputePtrOff(); 6545 6546 assert(HasParameterArea && 6547 "Parameter area must exist to pass an argument in memory."); 6548 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6549 true, CFlags.IsTailCall, true, MemOpChains, 6550 TailCallArguments, dl); 6551 if (IsFastCall) 6552 ArgOffset += 16; 6553 } 6554 6555 if (!IsFastCall) 6556 ArgOffset += 16; 6557 break; 6558 } // not QPX 6559 6560 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6561 "Invalid QPX parameter type"); 6562 6563 LLVM_FALLTHROUGH; 6564 case MVT::v4f64: 6565 case MVT::v4i1: { 6566 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6567 if (CFlags.IsVarArg) { 6568 assert(HasParameterArea && 6569 "Parameter area must exist if we have a varargs call."); 6570 // We could elide this store in the case where the object fits 6571 // entirely in R registers. Maybe later. 6572 SDValue Store = 6573 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6574 MemOpChains.push_back(Store); 6575 if (QFPR_idx != NumQFPRs) { 6576 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6577 PtrOff, MachinePointerInfo()); 6578 MemOpChains.push_back(Load.getValue(1)); 6579 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6580 } 6581 ArgOffset += (IsF32 ? 16 : 32); 6582 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6583 if (GPR_idx == NumGPRs) 6584 break; 6585 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6586 DAG.getConstant(i, dl, PtrVT)); 6587 SDValue Load = 6588 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6589 MemOpChains.push_back(Load.getValue(1)); 6590 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6591 } 6592 break; 6593 } 6594 6595 // Non-varargs QPX params go into registers or on the stack. 6596 if (QFPR_idx != NumQFPRs) { 6597 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6598 } else { 6599 if (IsFastCall) 6600 ComputePtrOff(); 6601 6602 assert(HasParameterArea && 6603 "Parameter area must exist to pass an argument in memory."); 6604 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6605 true, CFlags.IsTailCall, true, MemOpChains, 6606 TailCallArguments, dl); 6607 if (IsFastCall) 6608 ArgOffset += (IsF32 ? 16 : 32); 6609 } 6610 6611 if (!IsFastCall) 6612 ArgOffset += (IsF32 ? 16 : 32); 6613 break; 6614 } 6615 } 6616 } 6617 6618 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6619 "mismatch in size of parameter area"); 6620 (void)NumBytesActuallyUsed; 6621 6622 if (!MemOpChains.empty()) 6623 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6624 6625 // Check if this is an indirect call (MTCTR/BCTRL). 6626 // See prepareDescriptorIndirectCall and buildCallOperands for more 6627 // information about calls through function pointers in the 64-bit SVR4 ABI. 6628 if (CFlags.IsIndirect) { 6629 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6630 // caller in the TOC save area. 6631 if (isTOCSaveRestoreRequired(Subtarget)) { 6632 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6633 // Load r2 into a virtual register and store it to the TOC save area. 6634 setUsesTOCBasePtr(DAG); 6635 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6636 // TOC save area offset. 6637 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6638 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6639 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6640 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6641 MachinePointerInfo::getStack( 6642 DAG.getMachineFunction(), TOCSaveOffset)); 6643 } 6644 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6645 // This does not mean the MTCTR instruction must use R12; it's easier 6646 // to model this as an extra parameter, so do that. 6647 if (isELFv2ABI && !CFlags.IsPatchPoint) 6648 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6649 } 6650 6651 // Build a sequence of copy-to-reg nodes chained together with token chain 6652 // and flag operands which copy the outgoing args into the appropriate regs. 6653 SDValue InFlag; 6654 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6655 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6656 RegsToPass[i].second, InFlag); 6657 InFlag = Chain.getValue(1); 6658 } 6659 6660 if (CFlags.IsTailCall && !IsSibCall) 6661 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6662 TailCallArguments); 6663 6664 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6665 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6666 } 6667 6668 SDValue PPCTargetLowering::LowerCall_Darwin( 6669 SDValue Chain, SDValue Callee, CallFlags CFlags, 6670 const SmallVectorImpl<ISD::OutputArg> &Outs, 6671 const SmallVectorImpl<SDValue> &OutVals, 6672 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6673 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6674 const CallBase *CB) const { 6675 unsigned NumOps = Outs.size(); 6676 6677 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6678 bool isPPC64 = PtrVT == MVT::i64; 6679 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6680 6681 MachineFunction &MF = DAG.getMachineFunction(); 6682 6683 // Mark this function as potentially containing a function that contains a 6684 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6685 // and restoring the callers stack pointer in this functions epilog. This is 6686 // done because by tail calling the called function might overwrite the value 6687 // in this function's (MF) stack pointer stack slot 0(SP). 6688 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6689 CFlags.CallConv == CallingConv::Fast) 6690 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6691 6692 // Count how many bytes are to be pushed on the stack, including the linkage 6693 // area, and parameter passing area. We start with 24/48 bytes, which is 6694 // prereserved space for [SP][CR][LR][3 x unused]. 6695 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6696 unsigned NumBytes = LinkageSize; 6697 6698 // Add up all the space actually used. 6699 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6700 // they all go in registers, but we must reserve stack space for them for 6701 // possible use by the caller. In varargs or 64-bit calls, parameters are 6702 // assigned stack space in order, with padding so Altivec parameters are 6703 // 16-byte aligned. 6704 unsigned nAltivecParamsAtEnd = 0; 6705 for (unsigned i = 0; i != NumOps; ++i) { 6706 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6707 EVT ArgVT = Outs[i].VT; 6708 // Varargs Altivec parameters are padded to a 16 byte boundary. 6709 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6710 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6711 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6712 if (!CFlags.IsVarArg && !isPPC64) { 6713 // Non-varargs Altivec parameters go after all the non-Altivec 6714 // parameters; handle those later so we know how much padding we need. 6715 nAltivecParamsAtEnd++; 6716 continue; 6717 } 6718 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6719 NumBytes = ((NumBytes+15)/16)*16; 6720 } 6721 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6722 } 6723 6724 // Allow for Altivec parameters at the end, if needed. 6725 if (nAltivecParamsAtEnd) { 6726 NumBytes = ((NumBytes+15)/16)*16; 6727 NumBytes += 16*nAltivecParamsAtEnd; 6728 } 6729 6730 // The prolog code of the callee may store up to 8 GPR argument registers to 6731 // the stack, allowing va_start to index over them in memory if its varargs. 6732 // Because we cannot tell if this is needed on the caller side, we have to 6733 // conservatively assume that it is needed. As such, make sure we have at 6734 // least enough stack space for the caller to store the 8 GPRs. 6735 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6736 6737 // Tail call needs the stack to be aligned. 6738 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6739 CFlags.CallConv == CallingConv::Fast) 6740 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6741 6742 // Calculate by how many bytes the stack has to be adjusted in case of tail 6743 // call optimization. 6744 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6745 6746 // To protect arguments on the stack from being clobbered in a tail call, 6747 // force all the loads to happen before doing any other lowering. 6748 if (CFlags.IsTailCall) 6749 Chain = DAG.getStackArgumentTokenFactor(Chain); 6750 6751 // Adjust the stack pointer for the new arguments... 6752 // These operations are automatically eliminated by the prolog/epilog pass 6753 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6754 SDValue CallSeqStart = Chain; 6755 6756 // Load the return address and frame pointer so it can be move somewhere else 6757 // later. 6758 SDValue LROp, FPOp; 6759 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6760 6761 // Set up a copy of the stack pointer for use loading and storing any 6762 // arguments that may not fit in the registers available for argument 6763 // passing. 6764 SDValue StackPtr; 6765 if (isPPC64) 6766 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6767 else 6768 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6769 6770 // Figure out which arguments are going to go in registers, and which in 6771 // memory. Also, if this is a vararg function, floating point operations 6772 // must be stored to our stack, and loaded into integer regs as well, if 6773 // any integer regs are available for argument passing. 6774 unsigned ArgOffset = LinkageSize; 6775 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6776 6777 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6778 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6779 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6780 }; 6781 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6782 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6783 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6784 }; 6785 static const MCPhysReg VR[] = { 6786 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6787 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6788 }; 6789 const unsigned NumGPRs = array_lengthof(GPR_32); 6790 const unsigned NumFPRs = 13; 6791 const unsigned NumVRs = array_lengthof(VR); 6792 6793 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6794 6795 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6796 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6797 6798 SmallVector<SDValue, 8> MemOpChains; 6799 for (unsigned i = 0; i != NumOps; ++i) { 6800 SDValue Arg = OutVals[i]; 6801 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6802 6803 // PtrOff will be used to store the current argument to the stack if a 6804 // register cannot be found for it. 6805 SDValue PtrOff; 6806 6807 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6808 6809 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6810 6811 // On PPC64, promote integers to 64-bit values. 6812 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6813 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6814 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6815 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6816 } 6817 6818 // FIXME memcpy is used way more than necessary. Correctness first. 6819 // Note: "by value" is code for passing a structure by value, not 6820 // basic types. 6821 if (Flags.isByVal()) { 6822 unsigned Size = Flags.getByValSize(); 6823 // Very small objects are passed right-justified. Everything else is 6824 // passed left-justified. 6825 if (Size==1 || Size==2) { 6826 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6827 if (GPR_idx != NumGPRs) { 6828 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6829 MachinePointerInfo(), VT); 6830 MemOpChains.push_back(Load.getValue(1)); 6831 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6832 6833 ArgOffset += PtrByteSize; 6834 } else { 6835 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6836 PtrOff.getValueType()); 6837 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6838 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6839 CallSeqStart, 6840 Flags, DAG, dl); 6841 ArgOffset += PtrByteSize; 6842 } 6843 continue; 6844 } 6845 // Copy entire object into memory. There are cases where gcc-generated 6846 // code assumes it is there, even if it could be put entirely into 6847 // registers. (This is not what the doc says.) 6848 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6849 CallSeqStart, 6850 Flags, DAG, dl); 6851 6852 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6853 // copy the pieces of the object that fit into registers from the 6854 // parameter save area. 6855 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6856 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6857 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6858 if (GPR_idx != NumGPRs) { 6859 SDValue Load = 6860 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6861 MemOpChains.push_back(Load.getValue(1)); 6862 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6863 ArgOffset += PtrByteSize; 6864 } else { 6865 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6866 break; 6867 } 6868 } 6869 continue; 6870 } 6871 6872 switch (Arg.getSimpleValueType().SimpleTy) { 6873 default: llvm_unreachable("Unexpected ValueType for argument!"); 6874 case MVT::i1: 6875 case MVT::i32: 6876 case MVT::i64: 6877 if (GPR_idx != NumGPRs) { 6878 if (Arg.getValueType() == MVT::i1) 6879 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6880 6881 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6882 } else { 6883 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6884 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6885 TailCallArguments, dl); 6886 } 6887 ArgOffset += PtrByteSize; 6888 break; 6889 case MVT::f32: 6890 case MVT::f64: 6891 if (FPR_idx != NumFPRs) { 6892 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6893 6894 if (CFlags.IsVarArg) { 6895 SDValue Store = 6896 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6897 MemOpChains.push_back(Store); 6898 6899 // Float varargs are always shadowed in available integer registers 6900 if (GPR_idx != NumGPRs) { 6901 SDValue Load = 6902 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6903 MemOpChains.push_back(Load.getValue(1)); 6904 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6905 } 6906 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6907 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6908 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6909 SDValue Load = 6910 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6911 MemOpChains.push_back(Load.getValue(1)); 6912 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6913 } 6914 } else { 6915 // If we have any FPRs remaining, we may also have GPRs remaining. 6916 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6917 // GPRs. 6918 if (GPR_idx != NumGPRs) 6919 ++GPR_idx; 6920 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6921 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6922 ++GPR_idx; 6923 } 6924 } else 6925 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6926 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6927 TailCallArguments, dl); 6928 if (isPPC64) 6929 ArgOffset += 8; 6930 else 6931 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6932 break; 6933 case MVT::v4f32: 6934 case MVT::v4i32: 6935 case MVT::v8i16: 6936 case MVT::v16i8: 6937 if (CFlags.IsVarArg) { 6938 // These go aligned on the stack, or in the corresponding R registers 6939 // when within range. The Darwin PPC ABI doc claims they also go in 6940 // V registers; in fact gcc does this only for arguments that are 6941 // prototyped, not for those that match the ... We do it for all 6942 // arguments, seems to work. 6943 while (ArgOffset % 16 !=0) { 6944 ArgOffset += PtrByteSize; 6945 if (GPR_idx != NumGPRs) 6946 GPR_idx++; 6947 } 6948 // We could elide this store in the case where the object fits 6949 // entirely in R registers. Maybe later. 6950 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6951 DAG.getConstant(ArgOffset, dl, PtrVT)); 6952 SDValue Store = 6953 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6954 MemOpChains.push_back(Store); 6955 if (VR_idx != NumVRs) { 6956 SDValue Load = 6957 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6958 MemOpChains.push_back(Load.getValue(1)); 6959 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6960 } 6961 ArgOffset += 16; 6962 for (unsigned i=0; i<16; i+=PtrByteSize) { 6963 if (GPR_idx == NumGPRs) 6964 break; 6965 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6966 DAG.getConstant(i, dl, PtrVT)); 6967 SDValue Load = 6968 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6969 MemOpChains.push_back(Load.getValue(1)); 6970 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6971 } 6972 break; 6973 } 6974 6975 // Non-varargs Altivec params generally go in registers, but have 6976 // stack space allocated at the end. 6977 if (VR_idx != NumVRs) { 6978 // Doesn't have GPR space allocated. 6979 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6980 } else if (nAltivecParamsAtEnd==0) { 6981 // We are emitting Altivec params in order. 6982 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6983 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6984 TailCallArguments, dl); 6985 ArgOffset += 16; 6986 } 6987 break; 6988 } 6989 } 6990 // If all Altivec parameters fit in registers, as they usually do, 6991 // they get stack space following the non-Altivec parameters. We 6992 // don't track this here because nobody below needs it. 6993 // If there are more Altivec parameters than fit in registers emit 6994 // the stores here. 6995 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6996 unsigned j = 0; 6997 // Offset is aligned; skip 1st 12 params which go in V registers. 6998 ArgOffset = ((ArgOffset+15)/16)*16; 6999 ArgOffset += 12*16; 7000 for (unsigned i = 0; i != NumOps; ++i) { 7001 SDValue Arg = OutVals[i]; 7002 EVT ArgType = Outs[i].VT; 7003 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 7004 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 7005 if (++j > NumVRs) { 7006 SDValue PtrOff; 7007 // We are emitting Altivec params in order. 7008 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 7009 isPPC64, CFlags.IsTailCall, true, MemOpChains, 7010 TailCallArguments, dl); 7011 ArgOffset += 16; 7012 } 7013 } 7014 } 7015 } 7016 7017 if (!MemOpChains.empty()) 7018 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7019 7020 // On Darwin, R12 must contain the address of an indirect callee. This does 7021 // not mean the MTCTR instruction must use R12; it's easier to model this as 7022 // an extra parameter, so do that. 7023 if (CFlags.IsIndirect) { 7024 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7025 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 7026 PPC::R12), Callee)); 7027 } 7028 7029 // Build a sequence of copy-to-reg nodes chained together with token chain 7030 // and flag operands which copy the outgoing args into the appropriate regs. 7031 SDValue InFlag; 7032 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 7033 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 7034 RegsToPass[i].second, InFlag); 7035 InFlag = Chain.getValue(1); 7036 } 7037 7038 if (CFlags.IsTailCall) 7039 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 7040 TailCallArguments); 7041 7042 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7043 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7044 } 7045 7046 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 7047 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 7048 CCState &State) { 7049 7050 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 7051 State.getMachineFunction().getSubtarget()); 7052 const bool IsPPC64 = Subtarget.isPPC64(); 7053 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 7054 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 7055 7056 assert((!ValVT.isInteger() || 7057 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 7058 "Integer argument exceeds register size: should have been legalized"); 7059 7060 if (ValVT == MVT::f128) 7061 report_fatal_error("f128 is unimplemented on AIX."); 7062 7063 if (ArgFlags.isNest()) 7064 report_fatal_error("Nest arguments are unimplemented."); 7065 7066 if (ValVT.isVector() || LocVT.isVector()) 7067 report_fatal_error("Vector arguments are unimplemented on AIX."); 7068 7069 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7070 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7071 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7072 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7073 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7074 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7075 7076 if (ArgFlags.isByVal()) { 7077 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7078 report_fatal_error("Pass-by-value arguments with alignment greater than " 7079 "register width are not supported."); 7080 7081 const unsigned ByValSize = ArgFlags.getByValSize(); 7082 7083 // An empty aggregate parameter takes up no storage and no registers, 7084 // but needs a MemLoc for a stack slot for the formal arguments side. 7085 if (ByValSize == 0) { 7086 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7087 State.getNextStackOffset(), RegVT, 7088 LocInfo)); 7089 return false; 7090 } 7091 7092 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7093 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7094 for (const unsigned E = Offset + StackSize; Offset < E; 7095 Offset += PtrAlign.value()) { 7096 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7097 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7098 else { 7099 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7100 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7101 LocInfo)); 7102 break; 7103 } 7104 } 7105 return false; 7106 } 7107 7108 // Arguments always reserve parameter save area. 7109 switch (ValVT.SimpleTy) { 7110 default: 7111 report_fatal_error("Unhandled value type for argument."); 7112 case MVT::i64: 7113 // i64 arguments should have been split to i32 for PPC32. 7114 assert(IsPPC64 && "PPC32 should have split i64 values."); 7115 LLVM_FALLTHROUGH; 7116 case MVT::i1: 7117 case MVT::i32: { 7118 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7119 // AIX integer arguments are always passed in register width. 7120 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 7121 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7122 : CCValAssign::LocInfo::ZExt; 7123 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7124 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7125 else 7126 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7127 7128 return false; 7129 } 7130 case MVT::f32: 7131 case MVT::f64: { 7132 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7133 const unsigned StoreSize = LocVT.getStoreSize(); 7134 // Floats are always 4-byte aligned in the PSA on AIX. 7135 // This includes f64 in 64-bit mode for ABI compatibility. 7136 const unsigned Offset = 7137 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7138 unsigned FReg = State.AllocateReg(FPR); 7139 if (FReg) 7140 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7141 7142 // Reserve and initialize GPRs or initialize the PSA as required. 7143 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7144 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7145 assert(FReg && "An FPR should be available when a GPR is reserved."); 7146 if (State.isVarArg()) { 7147 // Successfully reserved GPRs are only initialized for vararg calls. 7148 // Custom handling is required for: 7149 // f64 in PPC32 needs to be split into 2 GPRs. 7150 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7151 State.addLoc( 7152 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7153 } 7154 } else { 7155 // If there are insufficient GPRs, the PSA needs to be initialized. 7156 // Initialization occurs even if an FPR was initialized for 7157 // compatibility with the AIX XL compiler. The full memory for the 7158 // argument will be initialized even if a prior word is saved in GPR. 7159 // A custom memLoc is used when the argument also passes in FPR so 7160 // that the callee handling can skip over it easily. 7161 State.addLoc( 7162 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7163 LocInfo) 7164 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7165 break; 7166 } 7167 } 7168 7169 return false; 7170 } 7171 } 7172 return true; 7173 } 7174 7175 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7176 bool IsPPC64) { 7177 assert((IsPPC64 || SVT != MVT::i64) && 7178 "i64 should have been split for 32-bit codegen."); 7179 7180 switch (SVT) { 7181 default: 7182 report_fatal_error("Unexpected value type for formal argument"); 7183 case MVT::i1: 7184 case MVT::i32: 7185 case MVT::i64: 7186 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7187 case MVT::f32: 7188 return &PPC::F4RCRegClass; 7189 case MVT::f64: 7190 return &PPC::F8RCRegClass; 7191 } 7192 } 7193 7194 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7195 SelectionDAG &DAG, SDValue ArgValue, 7196 MVT LocVT, const SDLoc &dl) { 7197 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7198 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7199 7200 if (Flags.isSExt()) 7201 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7202 DAG.getValueType(ValVT)); 7203 else if (Flags.isZExt()) 7204 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7205 DAG.getValueType(ValVT)); 7206 7207 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7208 } 7209 7210 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7211 const unsigned LASize = FL->getLinkageSize(); 7212 7213 if (PPC::GPRCRegClass.contains(Reg)) { 7214 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7215 "Reg must be a valid argument register!"); 7216 return LASize + 4 * (Reg - PPC::R3); 7217 } 7218 7219 if (PPC::G8RCRegClass.contains(Reg)) { 7220 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7221 "Reg must be a valid argument register!"); 7222 return LASize + 8 * (Reg - PPC::X3); 7223 } 7224 7225 llvm_unreachable("Only general purpose registers expected."); 7226 } 7227 7228 // AIX ABI Stack Frame Layout: 7229 // 7230 // Low Memory +--------------------------------------------+ 7231 // SP +---> | Back chain | ---+ 7232 // | +--------------------------------------------+ | 7233 // | | Saved Condition Register | | 7234 // | +--------------------------------------------+ | 7235 // | | Saved Linkage Register | | 7236 // | +--------------------------------------------+ | Linkage Area 7237 // | | Reserved for compilers | | 7238 // | +--------------------------------------------+ | 7239 // | | Reserved for binders | | 7240 // | +--------------------------------------------+ | 7241 // | | Saved TOC pointer | ---+ 7242 // | +--------------------------------------------+ 7243 // | | Parameter save area | 7244 // | +--------------------------------------------+ 7245 // | | Alloca space | 7246 // | +--------------------------------------------+ 7247 // | | Local variable space | 7248 // | +--------------------------------------------+ 7249 // | | Float/int conversion temporary | 7250 // | +--------------------------------------------+ 7251 // | | Save area for AltiVec registers | 7252 // | +--------------------------------------------+ 7253 // | | AltiVec alignment padding | 7254 // | +--------------------------------------------+ 7255 // | | Save area for VRSAVE register | 7256 // | +--------------------------------------------+ 7257 // | | Save area for General Purpose registers | 7258 // | +--------------------------------------------+ 7259 // | | Save area for Floating Point registers | 7260 // | +--------------------------------------------+ 7261 // +---- | Back chain | 7262 // High Memory +--------------------------------------------+ 7263 // 7264 // Specifications: 7265 // AIX 7.2 Assembler Language Reference 7266 // Subroutine linkage convention 7267 7268 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7269 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7270 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7271 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7272 7273 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7274 CallConv == CallingConv::Fast) && 7275 "Unexpected calling convention!"); 7276 7277 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7278 report_fatal_error("Tail call support is unimplemented on AIX."); 7279 7280 if (useSoftFloat()) 7281 report_fatal_error("Soft float support is unimplemented on AIX."); 7282 7283 const PPCSubtarget &Subtarget = 7284 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7285 if (Subtarget.hasQPX()) 7286 report_fatal_error("QPX support is not supported on AIX."); 7287 7288 const bool IsPPC64 = Subtarget.isPPC64(); 7289 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7290 7291 // Assign locations to all of the incoming arguments. 7292 SmallVector<CCValAssign, 16> ArgLocs; 7293 MachineFunction &MF = DAG.getMachineFunction(); 7294 MachineFrameInfo &MFI = MF.getFrameInfo(); 7295 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7296 7297 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7298 // Reserve space for the linkage area on the stack. 7299 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7300 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7301 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7302 7303 SmallVector<SDValue, 8> MemOps; 7304 7305 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7306 CCValAssign &VA = ArgLocs[I++]; 7307 MVT LocVT = VA.getLocVT(); 7308 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7309 7310 // For compatibility with the AIX XL compiler, the float args in the 7311 // parameter save area are initialized even if the argument is available 7312 // in register. The caller is required to initialize both the register 7313 // and memory, however, the callee can choose to expect it in either. 7314 // The memloc is dismissed here because the argument is retrieved from 7315 // the register. 7316 if (VA.isMemLoc() && VA.needsCustom()) 7317 continue; 7318 7319 if (Flags.isByVal() && VA.isMemLoc()) { 7320 const unsigned Size = 7321 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7322 PtrByteSize); 7323 const int FI = MF.getFrameInfo().CreateFixedObject( 7324 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7325 /* IsAliased */ true); 7326 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7327 InVals.push_back(FIN); 7328 7329 continue; 7330 } 7331 7332 if (Flags.isByVal()) { 7333 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7334 7335 const MCPhysReg ArgReg = VA.getLocReg(); 7336 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7337 7338 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7339 report_fatal_error("Over aligned byvals not supported yet."); 7340 7341 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7342 const int FI = MF.getFrameInfo().CreateFixedObject( 7343 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7344 /* IsAliased */ true); 7345 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7346 InVals.push_back(FIN); 7347 7348 // Add live ins for all the RegLocs for the same ByVal. 7349 const TargetRegisterClass *RegClass = 7350 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7351 7352 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7353 unsigned Offset) { 7354 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7355 // Since the callers side has left justified the aggregate in the 7356 // register, we can simply store the entire register into the stack 7357 // slot. 7358 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7359 // The store to the fixedstack object is needed becuase accessing a 7360 // field of the ByVal will use a gep and load. Ideally we will optimize 7361 // to extracting the value from the register directly, and elide the 7362 // stores when the arguments address is not taken, but that will need to 7363 // be future work. 7364 SDValue Store = 7365 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7366 DAG.getObjectPtrOffset(dl, FIN, Offset), 7367 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7368 7369 MemOps.push_back(Store); 7370 }; 7371 7372 unsigned Offset = 0; 7373 HandleRegLoc(VA.getLocReg(), Offset); 7374 Offset += PtrByteSize; 7375 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7376 Offset += PtrByteSize) { 7377 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7378 "RegLocs should be for ByVal argument."); 7379 7380 const CCValAssign RL = ArgLocs[I++]; 7381 HandleRegLoc(RL.getLocReg(), Offset); 7382 } 7383 7384 if (Offset != StackSize) { 7385 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7386 "Expected MemLoc for remaining bytes."); 7387 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7388 // Consume the MemLoc.The InVal has already been emitted, so nothing 7389 // more needs to be done. 7390 ++I; 7391 } 7392 7393 continue; 7394 } 7395 7396 EVT ValVT = VA.getValVT(); 7397 if (VA.isRegLoc() && !VA.needsCustom()) { 7398 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7399 unsigned VReg = 7400 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7401 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7402 if (ValVT.isScalarInteger() && 7403 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7404 ArgValue = 7405 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7406 } 7407 InVals.push_back(ArgValue); 7408 continue; 7409 } 7410 if (VA.isMemLoc()) { 7411 const unsigned LocSize = LocVT.getStoreSize(); 7412 const unsigned ValSize = ValVT.getStoreSize(); 7413 assert((ValSize <= LocSize) && 7414 "Object size is larger than size of MemLoc"); 7415 int CurArgOffset = VA.getLocMemOffset(); 7416 // Objects are right-justified because AIX is big-endian. 7417 if (LocSize > ValSize) 7418 CurArgOffset += LocSize - ValSize; 7419 // Potential tail calls could cause overwriting of argument stack slots. 7420 const bool IsImmutable = 7421 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7422 (CallConv == CallingConv::Fast)); 7423 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7424 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7425 SDValue ArgValue = 7426 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7427 InVals.push_back(ArgValue); 7428 continue; 7429 } 7430 } 7431 7432 // On AIX a minimum of 8 words is saved to the parameter save area. 7433 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7434 // Area that is at least reserved in the caller of this function. 7435 unsigned CallerReservedArea = 7436 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7437 7438 // Set the size that is at least reserved in caller of this function. Tail 7439 // call optimized function's reserved stack space needs to be aligned so 7440 // that taking the difference between two stack areas will result in an 7441 // aligned stack. 7442 CallerReservedArea = 7443 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7444 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7445 FuncInfo->setMinReservedArea(CallerReservedArea); 7446 7447 if (isVarArg) { 7448 FuncInfo->setVarArgsFrameIndex( 7449 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7450 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7451 7452 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7453 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7454 7455 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7456 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7457 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7458 7459 // The fixed integer arguments of a variadic function are stored to the 7460 // VarArgsFrameIndex on the stack so that they may be loaded by 7461 // dereferencing the result of va_next. 7462 for (unsigned GPRIndex = 7463 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7464 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7465 7466 const unsigned VReg = 7467 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7468 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7469 7470 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7471 SDValue Store = 7472 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7473 MemOps.push_back(Store); 7474 // Increment the address for the next argument to store. 7475 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7476 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7477 } 7478 } 7479 7480 if (!MemOps.empty()) 7481 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7482 7483 return Chain; 7484 } 7485 7486 SDValue PPCTargetLowering::LowerCall_AIX( 7487 SDValue Chain, SDValue Callee, CallFlags CFlags, 7488 const SmallVectorImpl<ISD::OutputArg> &Outs, 7489 const SmallVectorImpl<SDValue> &OutVals, 7490 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7491 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7492 const CallBase *CB) const { 7493 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7494 // AIX ABI stack frame layout. 7495 7496 assert((CFlags.CallConv == CallingConv::C || 7497 CFlags.CallConv == CallingConv::Cold || 7498 CFlags.CallConv == CallingConv::Fast) && 7499 "Unexpected calling convention!"); 7500 7501 if (CFlags.IsPatchPoint) 7502 report_fatal_error("This call type is unimplemented on AIX."); 7503 7504 const PPCSubtarget& Subtarget = 7505 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7506 if (Subtarget.hasQPX()) 7507 report_fatal_error("QPX is not supported on AIX."); 7508 if (Subtarget.hasAltivec()) 7509 report_fatal_error("Altivec support is unimplemented on AIX."); 7510 7511 MachineFunction &MF = DAG.getMachineFunction(); 7512 SmallVector<CCValAssign, 16> ArgLocs; 7513 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7514 *DAG.getContext()); 7515 7516 // Reserve space for the linkage save area (LSA) on the stack. 7517 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7518 // [SP][CR][LR][2 x reserved][TOC]. 7519 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7520 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7521 const bool IsPPC64 = Subtarget.isPPC64(); 7522 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7523 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7524 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7525 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7526 7527 // The prolog code of the callee may store up to 8 GPR argument registers to 7528 // the stack, allowing va_start to index over them in memory if the callee 7529 // is variadic. 7530 // Because we cannot tell if this is needed on the caller side, we have to 7531 // conservatively assume that it is needed. As such, make sure we have at 7532 // least enough stack space for the caller to store the 8 GPRs. 7533 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7534 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7535 CCInfo.getNextStackOffset()); 7536 7537 // Adjust the stack pointer for the new arguments... 7538 // These operations are automatically eliminated by the prolog/epilog pass. 7539 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7540 SDValue CallSeqStart = Chain; 7541 7542 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7543 SmallVector<SDValue, 8> MemOpChains; 7544 7545 // Set up a copy of the stack pointer for loading and storing any 7546 // arguments that may not fit in the registers available for argument 7547 // passing. 7548 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7549 : DAG.getRegister(PPC::R1, MVT::i32); 7550 7551 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7552 const unsigned ValNo = ArgLocs[I].getValNo(); 7553 SDValue Arg = OutVals[ValNo]; 7554 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7555 7556 if (Flags.isByVal()) { 7557 const unsigned ByValSize = Flags.getByValSize(); 7558 7559 // Nothing to do for zero-sized ByVals on the caller side. 7560 if (!ByValSize) { 7561 ++I; 7562 continue; 7563 } 7564 7565 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7566 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7567 (LoadOffset != 0) 7568 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7569 : Arg, 7570 MachinePointerInfo(), VT); 7571 }; 7572 7573 unsigned LoadOffset = 0; 7574 7575 // Initialize registers, which are fully occupied by the by-val argument. 7576 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7577 SDValue Load = GetLoad(PtrVT, LoadOffset); 7578 MemOpChains.push_back(Load.getValue(1)); 7579 LoadOffset += PtrByteSize; 7580 const CCValAssign &ByValVA = ArgLocs[I++]; 7581 assert(ByValVA.getValNo() == ValNo && 7582 "Unexpected location for pass-by-value argument."); 7583 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7584 } 7585 7586 if (LoadOffset == ByValSize) 7587 continue; 7588 7589 // There must be one more loc to handle the remainder. 7590 assert(ArgLocs[I].getValNo() == ValNo && 7591 "Expected additional location for by-value argument."); 7592 7593 if (ArgLocs[I].isMemLoc()) { 7594 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7595 const CCValAssign &ByValVA = ArgLocs[I++]; 7596 ISD::ArgFlagsTy MemcpyFlags = Flags; 7597 // Only memcpy the bytes that don't pass in register. 7598 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7599 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7600 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7601 : Arg, 7602 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7603 CallSeqStart, MemcpyFlags, DAG, dl); 7604 continue; 7605 } 7606 7607 // Initialize the final register residue. 7608 // Any residue that occupies the final by-val arg register must be 7609 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7610 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7611 // 2 and 1 byte loads. 7612 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7613 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7614 "Unexpected register residue for by-value argument."); 7615 SDValue ResidueVal; 7616 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7617 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7618 const MVT VT = 7619 N == 1 ? MVT::i8 7620 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7621 SDValue Load = GetLoad(VT, LoadOffset); 7622 MemOpChains.push_back(Load.getValue(1)); 7623 LoadOffset += N; 7624 Bytes += N; 7625 7626 // By-val arguments are passed left-justfied in register. 7627 // Every load here needs to be shifted, otherwise a full register load 7628 // should have been used. 7629 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7630 "Unexpected load emitted during handling of pass-by-value " 7631 "argument."); 7632 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7633 EVT ShiftAmountTy = 7634 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7635 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7636 SDValue ShiftedLoad = 7637 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7638 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7639 ShiftedLoad) 7640 : ShiftedLoad; 7641 } 7642 7643 const CCValAssign &ByValVA = ArgLocs[I++]; 7644 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7645 continue; 7646 } 7647 7648 CCValAssign &VA = ArgLocs[I++]; 7649 const MVT LocVT = VA.getLocVT(); 7650 const MVT ValVT = VA.getValVT(); 7651 7652 switch (VA.getLocInfo()) { 7653 default: 7654 report_fatal_error("Unexpected argument extension type."); 7655 case CCValAssign::Full: 7656 break; 7657 case CCValAssign::ZExt: 7658 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7659 break; 7660 case CCValAssign::SExt: 7661 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7662 break; 7663 } 7664 7665 if (VA.isRegLoc() && !VA.needsCustom()) { 7666 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7667 continue; 7668 } 7669 7670 if (VA.isMemLoc()) { 7671 SDValue PtrOff = 7672 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7673 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7674 MemOpChains.push_back( 7675 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7676 7677 continue; 7678 } 7679 7680 // Custom handling is used for GPR initializations for vararg float 7681 // arguments. 7682 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7683 ValVT.isFloatingPoint() && LocVT.isInteger() && 7684 "Unexpected register handling for calling convention."); 7685 7686 SDValue ArgAsInt = 7687 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7688 7689 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7690 // f32 in 32-bit GPR 7691 // f64 in 64-bit GPR 7692 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7693 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7694 // f32 in 64-bit GPR. 7695 RegsToPass.push_back(std::make_pair( 7696 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7697 else { 7698 // f64 in two 32-bit GPRs 7699 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7700 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7701 "Unexpected custom register for argument!"); 7702 CCValAssign &GPR1 = VA; 7703 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7704 DAG.getConstant(32, dl, MVT::i8)); 7705 RegsToPass.push_back(std::make_pair( 7706 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7707 7708 if (I != E) { 7709 // If only 1 GPR was available, there will only be one custom GPR and 7710 // the argument will also pass in memory. 7711 CCValAssign &PeekArg = ArgLocs[I]; 7712 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7713 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7714 CCValAssign &GPR2 = ArgLocs[I++]; 7715 RegsToPass.push_back(std::make_pair( 7716 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7717 } 7718 } 7719 } 7720 } 7721 7722 if (!MemOpChains.empty()) 7723 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7724 7725 // For indirect calls, we need to save the TOC base to the stack for 7726 // restoration after the call. 7727 if (CFlags.IsIndirect) { 7728 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7729 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7730 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7731 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7732 const unsigned TOCSaveOffset = 7733 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7734 7735 setUsesTOCBasePtr(DAG); 7736 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7737 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7738 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7739 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7740 Chain = DAG.getStore( 7741 Val.getValue(1), dl, Val, AddPtr, 7742 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7743 } 7744 7745 // Build a sequence of copy-to-reg nodes chained together with token chain 7746 // and flag operands which copy the outgoing args into the appropriate regs. 7747 SDValue InFlag; 7748 for (auto Reg : RegsToPass) { 7749 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7750 InFlag = Chain.getValue(1); 7751 } 7752 7753 const int SPDiff = 0; 7754 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7755 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7756 } 7757 7758 bool 7759 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7760 MachineFunction &MF, bool isVarArg, 7761 const SmallVectorImpl<ISD::OutputArg> &Outs, 7762 LLVMContext &Context) const { 7763 SmallVector<CCValAssign, 16> RVLocs; 7764 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7765 return CCInfo.CheckReturn( 7766 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7767 ? RetCC_PPC_Cold 7768 : RetCC_PPC); 7769 } 7770 7771 SDValue 7772 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7773 bool isVarArg, 7774 const SmallVectorImpl<ISD::OutputArg> &Outs, 7775 const SmallVectorImpl<SDValue> &OutVals, 7776 const SDLoc &dl, SelectionDAG &DAG) const { 7777 SmallVector<CCValAssign, 16> RVLocs; 7778 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7779 *DAG.getContext()); 7780 CCInfo.AnalyzeReturn(Outs, 7781 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7782 ? RetCC_PPC_Cold 7783 : RetCC_PPC); 7784 7785 SDValue Flag; 7786 SmallVector<SDValue, 4> RetOps(1, Chain); 7787 7788 // Copy the result values into the output registers. 7789 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7790 CCValAssign &VA = RVLocs[i]; 7791 assert(VA.isRegLoc() && "Can only return in registers!"); 7792 7793 SDValue Arg = OutVals[RealResIdx]; 7794 7795 switch (VA.getLocInfo()) { 7796 default: llvm_unreachable("Unknown loc info!"); 7797 case CCValAssign::Full: break; 7798 case CCValAssign::AExt: 7799 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7800 break; 7801 case CCValAssign::ZExt: 7802 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7803 break; 7804 case CCValAssign::SExt: 7805 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7806 break; 7807 } 7808 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7809 bool isLittleEndian = Subtarget.isLittleEndian(); 7810 // Legalize ret f64 -> ret 2 x i32. 7811 SDValue SVal = 7812 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7813 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7814 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7815 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7816 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7817 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7818 Flag = Chain.getValue(1); 7819 VA = RVLocs[++i]; // skip ahead to next loc 7820 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7821 } else 7822 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7823 Flag = Chain.getValue(1); 7824 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7825 } 7826 7827 RetOps[0] = Chain; // Update chain. 7828 7829 // Add the flag if we have it. 7830 if (Flag.getNode()) 7831 RetOps.push_back(Flag); 7832 7833 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7834 } 7835 7836 SDValue 7837 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7838 SelectionDAG &DAG) const { 7839 SDLoc dl(Op); 7840 7841 // Get the correct type for integers. 7842 EVT IntVT = Op.getValueType(); 7843 7844 // Get the inputs. 7845 SDValue Chain = Op.getOperand(0); 7846 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7847 // Build a DYNAREAOFFSET node. 7848 SDValue Ops[2] = {Chain, FPSIdx}; 7849 SDVTList VTs = DAG.getVTList(IntVT); 7850 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7851 } 7852 7853 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7854 SelectionDAG &DAG) const { 7855 // When we pop the dynamic allocation we need to restore the SP link. 7856 SDLoc dl(Op); 7857 7858 // Get the correct type for pointers. 7859 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7860 7861 // Construct the stack pointer operand. 7862 bool isPPC64 = Subtarget.isPPC64(); 7863 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7864 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7865 7866 // Get the operands for the STACKRESTORE. 7867 SDValue Chain = Op.getOperand(0); 7868 SDValue SaveSP = Op.getOperand(1); 7869 7870 // Load the old link SP. 7871 SDValue LoadLinkSP = 7872 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7873 7874 // Restore the stack pointer. 7875 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7876 7877 // Store the old link SP. 7878 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7879 } 7880 7881 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7882 MachineFunction &MF = DAG.getMachineFunction(); 7883 bool isPPC64 = Subtarget.isPPC64(); 7884 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7885 7886 // Get current frame pointer save index. The users of this index will be 7887 // primarily DYNALLOC instructions. 7888 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7889 int RASI = FI->getReturnAddrSaveIndex(); 7890 7891 // If the frame pointer save index hasn't been defined yet. 7892 if (!RASI) { 7893 // Find out what the fix offset of the frame pointer save area. 7894 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7895 // Allocate the frame index for frame pointer save area. 7896 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7897 // Save the result. 7898 FI->setReturnAddrSaveIndex(RASI); 7899 } 7900 return DAG.getFrameIndex(RASI, PtrVT); 7901 } 7902 7903 SDValue 7904 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7905 MachineFunction &MF = DAG.getMachineFunction(); 7906 bool isPPC64 = Subtarget.isPPC64(); 7907 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7908 7909 // Get current frame pointer save index. The users of this index will be 7910 // primarily DYNALLOC instructions. 7911 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7912 int FPSI = FI->getFramePointerSaveIndex(); 7913 7914 // If the frame pointer save index hasn't been defined yet. 7915 if (!FPSI) { 7916 // Find out what the fix offset of the frame pointer save area. 7917 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7918 // Allocate the frame index for frame pointer save area. 7919 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7920 // Save the result. 7921 FI->setFramePointerSaveIndex(FPSI); 7922 } 7923 return DAG.getFrameIndex(FPSI, PtrVT); 7924 } 7925 7926 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7927 SelectionDAG &DAG) const { 7928 MachineFunction &MF = DAG.getMachineFunction(); 7929 // Get the inputs. 7930 SDValue Chain = Op.getOperand(0); 7931 SDValue Size = Op.getOperand(1); 7932 SDLoc dl(Op); 7933 7934 // Get the correct type for pointers. 7935 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7936 // Negate the size. 7937 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7938 DAG.getConstant(0, dl, PtrVT), Size); 7939 // Construct a node for the frame pointer save index. 7940 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7941 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7942 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7943 if (hasInlineStackProbe(MF)) 7944 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7945 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7946 } 7947 7948 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7949 SelectionDAG &DAG) const { 7950 MachineFunction &MF = DAG.getMachineFunction(); 7951 7952 bool isPPC64 = Subtarget.isPPC64(); 7953 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7954 7955 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7956 return DAG.getFrameIndex(FI, PtrVT); 7957 } 7958 7959 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7960 SelectionDAG &DAG) const { 7961 SDLoc DL(Op); 7962 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7963 DAG.getVTList(MVT::i32, MVT::Other), 7964 Op.getOperand(0), Op.getOperand(1)); 7965 } 7966 7967 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7968 SelectionDAG &DAG) const { 7969 SDLoc DL(Op); 7970 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7971 Op.getOperand(0), Op.getOperand(1)); 7972 } 7973 7974 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7975 if (Op.getValueType().isVector()) 7976 return LowerVectorLoad(Op, DAG); 7977 7978 assert(Op.getValueType() == MVT::i1 && 7979 "Custom lowering only for i1 loads"); 7980 7981 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7982 7983 SDLoc dl(Op); 7984 LoadSDNode *LD = cast<LoadSDNode>(Op); 7985 7986 SDValue Chain = LD->getChain(); 7987 SDValue BasePtr = LD->getBasePtr(); 7988 MachineMemOperand *MMO = LD->getMemOperand(); 7989 7990 SDValue NewLD = 7991 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7992 BasePtr, MVT::i8, MMO); 7993 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7994 7995 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7996 return DAG.getMergeValues(Ops, dl); 7997 } 7998 7999 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 8000 if (Op.getOperand(1).getValueType().isVector()) 8001 return LowerVectorStore(Op, DAG); 8002 8003 assert(Op.getOperand(1).getValueType() == MVT::i1 && 8004 "Custom lowering only for i1 stores"); 8005 8006 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 8007 8008 SDLoc dl(Op); 8009 StoreSDNode *ST = cast<StoreSDNode>(Op); 8010 8011 SDValue Chain = ST->getChain(); 8012 SDValue BasePtr = ST->getBasePtr(); 8013 SDValue Value = ST->getValue(); 8014 MachineMemOperand *MMO = ST->getMemOperand(); 8015 8016 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 8017 Value); 8018 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 8019 } 8020 8021 // FIXME: Remove this once the ANDI glue bug is fixed: 8022 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 8023 assert(Op.getValueType() == MVT::i1 && 8024 "Custom lowering only for i1 results"); 8025 8026 SDLoc DL(Op); 8027 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 8028 } 8029 8030 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 8031 SelectionDAG &DAG) const { 8032 8033 // Implements a vector truncate that fits in a vector register as a shuffle. 8034 // We want to legalize vector truncates down to where the source fits in 8035 // a vector register (and target is therefore smaller than vector register 8036 // size). At that point legalization will try to custom lower the sub-legal 8037 // result and get here - where we can contain the truncate as a single target 8038 // operation. 8039 8040 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 8041 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 8042 // 8043 // We will implement it for big-endian ordering as this (where x denotes 8044 // undefined): 8045 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8046 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8047 // 8048 // The same operation in little-endian ordering will be: 8049 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8050 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8051 8052 assert(Op.getValueType().isVector() && "Vector type expected."); 8053 8054 SDLoc DL(Op); 8055 SDValue N1 = Op.getOperand(0); 8056 unsigned SrcSize = N1.getValueType().getSizeInBits(); 8057 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 8058 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8059 8060 EVT TrgVT = Op.getValueType(); 8061 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8062 EVT EltVT = TrgVT.getVectorElementType(); 8063 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8064 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8065 8066 // First list the elements we want to keep. 8067 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8068 SmallVector<int, 16> ShuffV; 8069 if (Subtarget.isLittleEndian()) 8070 for (unsigned i = 0; i < TrgNumElts; ++i) 8071 ShuffV.push_back(i * SizeMult); 8072 else 8073 for (unsigned i = 1; i <= TrgNumElts; ++i) 8074 ShuffV.push_back(i * SizeMult - 1); 8075 8076 // Populate the remaining elements with undefs. 8077 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8078 // ShuffV.push_back(i + WideNumElts); 8079 ShuffV.push_back(WideNumElts + 1); 8080 8081 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 8082 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 8083 } 8084 8085 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8086 /// possible. 8087 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8088 // Not FP? Not a fsel. 8089 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8090 !Op.getOperand(2).getValueType().isFloatingPoint()) 8091 return Op; 8092 8093 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8094 8095 EVT ResVT = Op.getValueType(); 8096 EVT CmpVT = Op.getOperand(0).getValueType(); 8097 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8098 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8099 SDLoc dl(Op); 8100 SDNodeFlags Flags = Op.getNode()->getFlags(); 8101 8102 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8103 // presence of infinities. 8104 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8105 switch (CC) { 8106 default: 8107 break; 8108 case ISD::SETOGT: 8109 case ISD::SETGT: 8110 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8111 case ISD::SETOLT: 8112 case ISD::SETLT: 8113 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8114 } 8115 } 8116 8117 // We might be able to do better than this under some circumstances, but in 8118 // general, fsel-based lowering of select is a finite-math-only optimization. 8119 // For more information, see section F.3 of the 2.06 ISA specification. 8120 // With ISA 3.0 8121 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8122 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8123 return Op; 8124 8125 // If the RHS of the comparison is a 0.0, we don't need to do the 8126 // subtraction at all. 8127 SDValue Sel1; 8128 if (isFloatingPointZero(RHS)) 8129 switch (CC) { 8130 default: break; // SETUO etc aren't handled by fsel. 8131 case ISD::SETNE: 8132 std::swap(TV, FV); 8133 LLVM_FALLTHROUGH; 8134 case ISD::SETEQ: 8135 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8136 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8137 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8138 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8139 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8140 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8141 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8142 case ISD::SETULT: 8143 case ISD::SETLT: 8144 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8145 LLVM_FALLTHROUGH; 8146 case ISD::SETOGE: 8147 case ISD::SETGE: 8148 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8149 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8150 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8151 case ISD::SETUGT: 8152 case ISD::SETGT: 8153 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8154 LLVM_FALLTHROUGH; 8155 case ISD::SETOLE: 8156 case ISD::SETLE: 8157 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8158 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8159 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8160 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8161 } 8162 8163 SDValue Cmp; 8164 switch (CC) { 8165 default: break; // SETUO etc aren't handled by fsel. 8166 case ISD::SETNE: 8167 std::swap(TV, FV); 8168 LLVM_FALLTHROUGH; 8169 case ISD::SETEQ: 8170 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8171 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8172 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8173 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8174 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8175 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8176 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8177 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8178 case ISD::SETULT: 8179 case ISD::SETLT: 8180 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8181 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8182 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8183 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8184 case ISD::SETOGE: 8185 case ISD::SETGE: 8186 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8187 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8188 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8189 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8190 case ISD::SETUGT: 8191 case ISD::SETGT: 8192 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8193 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8194 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8195 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8196 case ISD::SETOLE: 8197 case ISD::SETLE: 8198 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8199 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8200 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8201 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8202 } 8203 return Op; 8204 } 8205 8206 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8207 SelectionDAG &DAG, 8208 const SDLoc &dl) const { 8209 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8210 SDValue Src = Op.getOperand(0); 8211 if (Src.getValueType() == MVT::f32) 8212 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8213 8214 SDValue Tmp; 8215 switch (Op.getSimpleValueType().SimpleTy) { 8216 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8217 case MVT::i32: 8218 Tmp = DAG.getNode( 8219 Op.getOpcode() == ISD::FP_TO_SINT 8220 ? PPCISD::FCTIWZ 8221 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8222 dl, MVT::f64, Src); 8223 break; 8224 case MVT::i64: 8225 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8226 "i64 FP_TO_UINT is supported only with FPCVT"); 8227 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8228 PPCISD::FCTIDUZ, 8229 dl, MVT::f64, Src); 8230 break; 8231 } 8232 8233 // Convert the FP value to an int value through memory. 8234 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8235 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8236 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8237 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8238 MachinePointerInfo MPI = 8239 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8240 8241 // Emit a store to the stack slot. 8242 SDValue Chain; 8243 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8244 if (i32Stack) { 8245 MachineFunction &MF = DAG.getMachineFunction(); 8246 Alignment = Align(4); 8247 MachineMemOperand *MMO = 8248 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8249 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8250 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8251 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8252 } else 8253 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8254 8255 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8256 // add in a bias on big endian. 8257 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8258 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8259 DAG.getConstant(4, dl, FIPtr.getValueType())); 8260 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8261 } 8262 8263 RLI.Chain = Chain; 8264 RLI.Ptr = FIPtr; 8265 RLI.MPI = MPI; 8266 RLI.Alignment = Alignment; 8267 } 8268 8269 /// Custom lowers floating point to integer conversions to use 8270 /// the direct move instructions available in ISA 2.07 to avoid the 8271 /// need for load/store combinations. 8272 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8273 SelectionDAG &DAG, 8274 const SDLoc &dl) const { 8275 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8276 SDValue Src = Op.getOperand(0); 8277 8278 if (Src.getValueType() == MVT::f32) 8279 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8280 8281 SDValue Tmp; 8282 switch (Op.getSimpleValueType().SimpleTy) { 8283 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8284 case MVT::i32: 8285 Tmp = DAG.getNode( 8286 Op.getOpcode() == ISD::FP_TO_SINT 8287 ? PPCISD::FCTIWZ 8288 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8289 dl, MVT::f64, Src); 8290 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8291 break; 8292 case MVT::i64: 8293 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8294 "i64 FP_TO_UINT is supported only with FPCVT"); 8295 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8296 PPCISD::FCTIDUZ, 8297 dl, MVT::f64, Src); 8298 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8299 break; 8300 } 8301 return Tmp; 8302 } 8303 8304 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8305 const SDLoc &dl) const { 8306 8307 // FP to INT conversions are legal for f128. 8308 if (Op->getOperand(0).getValueType() == MVT::f128) 8309 return Op; 8310 8311 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8312 // PPC (the libcall is not available). 8313 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8314 if (Op.getValueType() == MVT::i32) { 8315 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8316 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8317 MVT::f64, Op.getOperand(0), 8318 DAG.getIntPtrConstant(0, dl)); 8319 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8320 MVT::f64, Op.getOperand(0), 8321 DAG.getIntPtrConstant(1, dl)); 8322 8323 // Add the two halves of the long double in round-to-zero mode. 8324 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8325 8326 // Now use a smaller FP_TO_SINT. 8327 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8328 } 8329 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8330 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8331 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8332 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8333 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8334 // FIXME: generated code sucks. 8335 // TODO: Are there fast-math-flags to propagate to this FSUB? 8336 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8337 Op.getOperand(0), Tmp); 8338 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8339 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8340 DAG.getConstant(0x80000000, dl, MVT::i32)); 8341 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8342 Op.getOperand(0)); 8343 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8344 ISD::SETGE); 8345 } 8346 } 8347 8348 return SDValue(); 8349 } 8350 8351 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8352 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8353 8354 ReuseLoadInfo RLI; 8355 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8356 8357 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8358 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8359 } 8360 8361 // We're trying to insert a regular store, S, and then a load, L. If the 8362 // incoming value, O, is a load, we might just be able to have our load use the 8363 // address used by O. However, we don't know if anything else will store to 8364 // that address before we can load from it. To prevent this situation, we need 8365 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8366 // the same chain operand as O, we create a token factor from the chain results 8367 // of O and L, and we replace all uses of O's chain result with that token 8368 // factor (see spliceIntoChain below for this last part). 8369 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8370 ReuseLoadInfo &RLI, 8371 SelectionDAG &DAG, 8372 ISD::LoadExtType ET) const { 8373 SDLoc dl(Op); 8374 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8375 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8376 if (ET == ISD::NON_EXTLOAD && 8377 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8378 isOperationLegalOrCustom(Op.getOpcode(), 8379 Op.getOperand(0).getValueType())) { 8380 8381 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8382 return true; 8383 } 8384 8385 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8386 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8387 LD->isNonTemporal()) 8388 return false; 8389 if (LD->getMemoryVT() != MemVT) 8390 return false; 8391 8392 RLI.Ptr = LD->getBasePtr(); 8393 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8394 assert(LD->getAddressingMode() == ISD::PRE_INC && 8395 "Non-pre-inc AM on PPC?"); 8396 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8397 LD->getOffset()); 8398 } 8399 8400 RLI.Chain = LD->getChain(); 8401 RLI.MPI = LD->getPointerInfo(); 8402 RLI.IsDereferenceable = LD->isDereferenceable(); 8403 RLI.IsInvariant = LD->isInvariant(); 8404 RLI.Alignment = LD->getAlign(); 8405 RLI.AAInfo = LD->getAAInfo(); 8406 RLI.Ranges = LD->getRanges(); 8407 8408 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8409 return true; 8410 } 8411 8412 // Given the head of the old chain, ResChain, insert a token factor containing 8413 // it and NewResChain, and make users of ResChain now be users of that token 8414 // factor. 8415 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8416 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8417 SDValue NewResChain, 8418 SelectionDAG &DAG) const { 8419 if (!ResChain) 8420 return; 8421 8422 SDLoc dl(NewResChain); 8423 8424 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8425 NewResChain, DAG.getUNDEF(MVT::Other)); 8426 assert(TF.getNode() != NewResChain.getNode() && 8427 "A new TF really is required here"); 8428 8429 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8430 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8431 } 8432 8433 /// Analyze profitability of direct move 8434 /// prefer float load to int load plus direct move 8435 /// when there is no integer use of int load 8436 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8437 SDNode *Origin = Op.getOperand(0).getNode(); 8438 if (Origin->getOpcode() != ISD::LOAD) 8439 return true; 8440 8441 // If there is no LXSIBZX/LXSIHZX, like Power8, 8442 // prefer direct move if the memory size is 1 or 2 bytes. 8443 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8444 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8445 return true; 8446 8447 for (SDNode::use_iterator UI = Origin->use_begin(), 8448 UE = Origin->use_end(); 8449 UI != UE; ++UI) { 8450 8451 // Only look at the users of the loaded value. 8452 if (UI.getUse().get().getResNo() != 0) 8453 continue; 8454 8455 if (UI->getOpcode() != ISD::SINT_TO_FP && 8456 UI->getOpcode() != ISD::UINT_TO_FP) 8457 return true; 8458 } 8459 8460 return false; 8461 } 8462 8463 /// Custom lowers integer to floating point conversions to use 8464 /// the direct move instructions available in ISA 2.07 to avoid the 8465 /// need for load/store combinations. 8466 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8467 SelectionDAG &DAG, 8468 const SDLoc &dl) const { 8469 assert((Op.getValueType() == MVT::f32 || 8470 Op.getValueType() == MVT::f64) && 8471 "Invalid floating point type as target of conversion"); 8472 assert(Subtarget.hasFPCVT() && 8473 "Int to FP conversions with direct moves require FPCVT"); 8474 SDValue FP; 8475 SDValue Src = Op.getOperand(0); 8476 bool SinglePrec = Op.getValueType() == MVT::f32; 8477 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8478 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8479 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8480 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8481 8482 if (WordInt) { 8483 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8484 dl, MVT::f64, Src); 8485 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8486 } 8487 else { 8488 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8489 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8490 } 8491 8492 return FP; 8493 } 8494 8495 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8496 8497 EVT VecVT = Vec.getValueType(); 8498 assert(VecVT.isVector() && "Expected a vector type."); 8499 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8500 8501 EVT EltVT = VecVT.getVectorElementType(); 8502 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8503 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8504 8505 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8506 SmallVector<SDValue, 16> Ops(NumConcat); 8507 Ops[0] = Vec; 8508 SDValue UndefVec = DAG.getUNDEF(VecVT); 8509 for (unsigned i = 1; i < NumConcat; ++i) 8510 Ops[i] = UndefVec; 8511 8512 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8513 } 8514 8515 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8516 const SDLoc &dl) const { 8517 8518 unsigned Opc = Op.getOpcode(); 8519 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8520 "Unexpected conversion type"); 8521 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8522 "Supports conversions to v2f64/v4f32 only."); 8523 8524 bool SignedConv = Opc == ISD::SINT_TO_FP; 8525 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8526 8527 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8528 EVT WideVT = Wide.getValueType(); 8529 unsigned WideNumElts = WideVT.getVectorNumElements(); 8530 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8531 8532 SmallVector<int, 16> ShuffV; 8533 for (unsigned i = 0; i < WideNumElts; ++i) 8534 ShuffV.push_back(i + WideNumElts); 8535 8536 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8537 int SaveElts = FourEltRes ? 4 : 2; 8538 if (Subtarget.isLittleEndian()) 8539 for (int i = 0; i < SaveElts; i++) 8540 ShuffV[i * Stride] = i; 8541 else 8542 for (int i = 1; i <= SaveElts; i++) 8543 ShuffV[i * Stride - 1] = i - 1; 8544 8545 SDValue ShuffleSrc2 = 8546 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8547 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8548 8549 SDValue Extend; 8550 if (SignedConv) { 8551 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8552 EVT ExtVT = Op.getOperand(0).getValueType(); 8553 if (Subtarget.hasP9Altivec()) 8554 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8555 IntermediateVT.getVectorNumElements()); 8556 8557 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8558 DAG.getValueType(ExtVT)); 8559 } else 8560 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8561 8562 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8563 } 8564 8565 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8566 SelectionDAG &DAG) const { 8567 SDLoc dl(Op); 8568 8569 EVT InVT = Op.getOperand(0).getValueType(); 8570 EVT OutVT = Op.getValueType(); 8571 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8572 isOperationCustom(Op.getOpcode(), InVT)) 8573 return LowerINT_TO_FPVector(Op, DAG, dl); 8574 8575 // Conversions to f128 are legal. 8576 if (Op.getValueType() == MVT::f128) 8577 return Op; 8578 8579 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8580 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8581 return SDValue(); 8582 8583 SDValue Value = Op.getOperand(0); 8584 // The values are now known to be -1 (false) or 1 (true). To convert this 8585 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8586 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8587 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8588 8589 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8590 8591 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8592 8593 if (Op.getValueType() != MVT::v4f64) 8594 Value = DAG.getNode(ISD::FP_ROUND, dl, 8595 Op.getValueType(), Value, 8596 DAG.getIntPtrConstant(1, dl)); 8597 return Value; 8598 } 8599 8600 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8601 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8602 return SDValue(); 8603 8604 if (Op.getOperand(0).getValueType() == MVT::i1) 8605 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8606 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8607 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8608 8609 // If we have direct moves, we can do all the conversion, skip the store/load 8610 // however, without FPCVT we can't do most conversions. 8611 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8612 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8613 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8614 8615 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8616 "UINT_TO_FP is supported only with FPCVT"); 8617 8618 // If we have FCFIDS, then use it when converting to single-precision. 8619 // Otherwise, convert to double-precision and then round. 8620 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8621 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8622 : PPCISD::FCFIDS) 8623 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8624 : PPCISD::FCFID); 8625 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8626 ? MVT::f32 8627 : MVT::f64; 8628 8629 if (Op.getOperand(0).getValueType() == MVT::i64) { 8630 SDValue SINT = Op.getOperand(0); 8631 // When converting to single-precision, we actually need to convert 8632 // to double-precision first and then round to single-precision. 8633 // To avoid double-rounding effects during that operation, we have 8634 // to prepare the input operand. Bits that might be truncated when 8635 // converting to double-precision are replaced by a bit that won't 8636 // be lost at this stage, but is below the single-precision rounding 8637 // position. 8638 // 8639 // However, if -enable-unsafe-fp-math is in effect, accept double 8640 // rounding to avoid the extra overhead. 8641 if (Op.getValueType() == MVT::f32 && 8642 !Subtarget.hasFPCVT() && 8643 !DAG.getTarget().Options.UnsafeFPMath) { 8644 8645 // Twiddle input to make sure the low 11 bits are zero. (If this 8646 // is the case, we are guaranteed the value will fit into the 53 bit 8647 // mantissa of an IEEE double-precision value without rounding.) 8648 // If any of those low 11 bits were not zero originally, make sure 8649 // bit 12 (value 2048) is set instead, so that the final rounding 8650 // to single-precision gets the correct result. 8651 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8652 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8653 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8654 Round, DAG.getConstant(2047, dl, MVT::i64)); 8655 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8656 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8657 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8658 8659 // However, we cannot use that value unconditionally: if the magnitude 8660 // of the input value is small, the bit-twiddling we did above might 8661 // end up visibly changing the output. Fortunately, in that case, we 8662 // don't need to twiddle bits since the original input will convert 8663 // exactly to double-precision floating-point already. Therefore, 8664 // construct a conditional to use the original value if the top 11 8665 // bits are all sign-bit copies, and use the rounded value computed 8666 // above otherwise. 8667 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8668 SINT, DAG.getConstant(53, dl, MVT::i32)); 8669 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8670 Cond, DAG.getConstant(1, dl, MVT::i64)); 8671 Cond = DAG.getSetCC( 8672 dl, 8673 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8674 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8675 8676 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8677 } 8678 8679 ReuseLoadInfo RLI; 8680 SDValue Bits; 8681 8682 MachineFunction &MF = DAG.getMachineFunction(); 8683 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8684 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8685 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8686 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8687 } else if (Subtarget.hasLFIWAX() && 8688 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8689 MachineMemOperand *MMO = 8690 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8691 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8692 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8693 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8694 DAG.getVTList(MVT::f64, MVT::Other), 8695 Ops, MVT::i32, MMO); 8696 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8697 } else if (Subtarget.hasFPCVT() && 8698 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8699 MachineMemOperand *MMO = 8700 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8701 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8702 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8703 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8704 DAG.getVTList(MVT::f64, MVT::Other), 8705 Ops, MVT::i32, MMO); 8706 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8707 } else if (((Subtarget.hasLFIWAX() && 8708 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8709 (Subtarget.hasFPCVT() && 8710 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8711 SINT.getOperand(0).getValueType() == MVT::i32) { 8712 MachineFrameInfo &MFI = MF.getFrameInfo(); 8713 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8714 8715 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8716 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8717 8718 SDValue Store = 8719 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8720 MachinePointerInfo::getFixedStack( 8721 DAG.getMachineFunction(), FrameIdx)); 8722 8723 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8724 "Expected an i32 store"); 8725 8726 RLI.Ptr = FIdx; 8727 RLI.Chain = Store; 8728 RLI.MPI = 8729 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8730 RLI.Alignment = Align(4); 8731 8732 MachineMemOperand *MMO = 8733 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8734 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8735 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8736 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8737 PPCISD::LFIWZX : PPCISD::LFIWAX, 8738 dl, DAG.getVTList(MVT::f64, MVT::Other), 8739 Ops, MVT::i32, MMO); 8740 } else 8741 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8742 8743 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8744 8745 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8746 FP = DAG.getNode(ISD::FP_ROUND, dl, 8747 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8748 return FP; 8749 } 8750 8751 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8752 "Unhandled INT_TO_FP type in custom expander!"); 8753 // Since we only generate this in 64-bit mode, we can take advantage of 8754 // 64-bit registers. In particular, sign extend the input value into the 8755 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8756 // then lfd it and fcfid it. 8757 MachineFunction &MF = DAG.getMachineFunction(); 8758 MachineFrameInfo &MFI = MF.getFrameInfo(); 8759 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8760 8761 SDValue Ld; 8762 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8763 ReuseLoadInfo RLI; 8764 bool ReusingLoad; 8765 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8766 DAG))) { 8767 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8768 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8769 8770 SDValue Store = 8771 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8772 MachinePointerInfo::getFixedStack( 8773 DAG.getMachineFunction(), FrameIdx)); 8774 8775 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8776 "Expected an i32 store"); 8777 8778 RLI.Ptr = FIdx; 8779 RLI.Chain = Store; 8780 RLI.MPI = 8781 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8782 RLI.Alignment = Align(4); 8783 } 8784 8785 MachineMemOperand *MMO = 8786 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8787 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8788 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8789 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8790 PPCISD::LFIWZX : PPCISD::LFIWAX, 8791 dl, DAG.getVTList(MVT::f64, MVT::Other), 8792 Ops, MVT::i32, MMO); 8793 if (ReusingLoad) 8794 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8795 } else { 8796 assert(Subtarget.isPPC64() && 8797 "i32->FP without LFIWAX supported only on PPC64"); 8798 8799 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8800 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8801 8802 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8803 Op.getOperand(0)); 8804 8805 // STD the extended value into the stack slot. 8806 SDValue Store = DAG.getStore( 8807 DAG.getEntryNode(), dl, Ext64, FIdx, 8808 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8809 8810 // Load the value as a double. 8811 Ld = DAG.getLoad( 8812 MVT::f64, dl, Store, FIdx, 8813 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8814 } 8815 8816 // FCFID it and return it. 8817 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8818 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8819 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8820 DAG.getIntPtrConstant(0, dl)); 8821 return FP; 8822 } 8823 8824 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8825 SelectionDAG &DAG) const { 8826 SDLoc dl(Op); 8827 /* 8828 The rounding mode is in bits 30:31 of FPSR, and has the following 8829 settings: 8830 00 Round to nearest 8831 01 Round to 0 8832 10 Round to +inf 8833 11 Round to -inf 8834 8835 FLT_ROUNDS, on the other hand, expects the following: 8836 -1 Undefined 8837 0 Round to 0 8838 1 Round to nearest 8839 2 Round to +inf 8840 3 Round to -inf 8841 8842 To perform the conversion, we do: 8843 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8844 */ 8845 8846 MachineFunction &MF = DAG.getMachineFunction(); 8847 EVT VT = Op.getValueType(); 8848 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8849 8850 // Save FP Control Word to register 8851 SDValue Chain = Op.getOperand(0); 8852 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8853 Chain = MFFS.getValue(1); 8854 8855 // Save FP register to stack slot 8856 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8857 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8858 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8859 8860 // Load FP Control Word from low 32 bits of stack slot. 8861 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8862 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8863 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8864 Chain = CWD.getValue(1); 8865 8866 // Transform as necessary 8867 SDValue CWD1 = 8868 DAG.getNode(ISD::AND, dl, MVT::i32, 8869 CWD, DAG.getConstant(3, dl, MVT::i32)); 8870 SDValue CWD2 = 8871 DAG.getNode(ISD::SRL, dl, MVT::i32, 8872 DAG.getNode(ISD::AND, dl, MVT::i32, 8873 DAG.getNode(ISD::XOR, dl, MVT::i32, 8874 CWD, DAG.getConstant(3, dl, MVT::i32)), 8875 DAG.getConstant(3, dl, MVT::i32)), 8876 DAG.getConstant(1, dl, MVT::i32)); 8877 8878 SDValue RetVal = 8879 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8880 8881 RetVal = 8882 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8883 dl, VT, RetVal); 8884 8885 return DAG.getMergeValues({RetVal, Chain}, dl); 8886 } 8887 8888 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8889 EVT VT = Op.getValueType(); 8890 unsigned BitWidth = VT.getSizeInBits(); 8891 SDLoc dl(Op); 8892 assert(Op.getNumOperands() == 3 && 8893 VT == Op.getOperand(1).getValueType() && 8894 "Unexpected SHL!"); 8895 8896 // Expand into a bunch of logical ops. Note that these ops 8897 // depend on the PPC behavior for oversized shift amounts. 8898 SDValue Lo = Op.getOperand(0); 8899 SDValue Hi = Op.getOperand(1); 8900 SDValue Amt = Op.getOperand(2); 8901 EVT AmtVT = Amt.getValueType(); 8902 8903 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8904 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8905 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8906 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8907 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8908 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8909 DAG.getConstant(-BitWidth, dl, AmtVT)); 8910 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8911 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8912 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8913 SDValue OutOps[] = { OutLo, OutHi }; 8914 return DAG.getMergeValues(OutOps, dl); 8915 } 8916 8917 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8918 EVT VT = Op.getValueType(); 8919 SDLoc dl(Op); 8920 unsigned BitWidth = VT.getSizeInBits(); 8921 assert(Op.getNumOperands() == 3 && 8922 VT == Op.getOperand(1).getValueType() && 8923 "Unexpected SRL!"); 8924 8925 // Expand into a bunch of logical ops. Note that these ops 8926 // depend on the PPC behavior for oversized shift amounts. 8927 SDValue Lo = Op.getOperand(0); 8928 SDValue Hi = Op.getOperand(1); 8929 SDValue Amt = Op.getOperand(2); 8930 EVT AmtVT = Amt.getValueType(); 8931 8932 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8933 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8934 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8935 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8936 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8937 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8938 DAG.getConstant(-BitWidth, dl, AmtVT)); 8939 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8940 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8941 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8942 SDValue OutOps[] = { OutLo, OutHi }; 8943 return DAG.getMergeValues(OutOps, dl); 8944 } 8945 8946 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8947 SDLoc dl(Op); 8948 EVT VT = Op.getValueType(); 8949 unsigned BitWidth = VT.getSizeInBits(); 8950 assert(Op.getNumOperands() == 3 && 8951 VT == Op.getOperand(1).getValueType() && 8952 "Unexpected SRA!"); 8953 8954 // Expand into a bunch of logical ops, followed by a select_cc. 8955 SDValue Lo = Op.getOperand(0); 8956 SDValue Hi = Op.getOperand(1); 8957 SDValue Amt = Op.getOperand(2); 8958 EVT AmtVT = Amt.getValueType(); 8959 8960 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8961 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8962 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8963 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8964 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8965 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8966 DAG.getConstant(-BitWidth, dl, AmtVT)); 8967 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8968 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8969 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8970 Tmp4, Tmp6, ISD::SETLE); 8971 SDValue OutOps[] = { OutLo, OutHi }; 8972 return DAG.getMergeValues(OutOps, dl); 8973 } 8974 8975 //===----------------------------------------------------------------------===// 8976 // Vector related lowering. 8977 // 8978 8979 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8980 /// element size of SplatSize. Cast the result to VT. 8981 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8982 SelectionDAG &DAG, const SDLoc &dl) { 8983 static const MVT VTys[] = { // canonical VT to use for each size. 8984 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8985 }; 8986 8987 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8988 8989 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8990 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 8991 SplatSize = 1; 8992 Val = 0xFF; 8993 } 8994 8995 EVT CanonicalVT = VTys[SplatSize-1]; 8996 8997 // Build a canonical splat for this value. 8998 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8999 } 9000 9001 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9002 /// specified intrinsic ID. 9003 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9004 const SDLoc &dl, EVT DestVT = MVT::Other) { 9005 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9006 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9007 DAG.getConstant(IID, dl, MVT::i32), Op); 9008 } 9009 9010 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9011 /// specified intrinsic ID. 9012 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9013 SelectionDAG &DAG, const SDLoc &dl, 9014 EVT DestVT = MVT::Other) { 9015 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9016 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9017 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9018 } 9019 9020 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9021 /// specified intrinsic ID. 9022 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9023 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9024 EVT DestVT = MVT::Other) { 9025 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9026 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9027 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9028 } 9029 9030 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9031 /// amount. The result has the specified value type. 9032 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9033 SelectionDAG &DAG, const SDLoc &dl) { 9034 // Force LHS/RHS to be the right type. 9035 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9036 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9037 9038 int Ops[16]; 9039 for (unsigned i = 0; i != 16; ++i) 9040 Ops[i] = i + Amt; 9041 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9042 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9043 } 9044 9045 /// Do we have an efficient pattern in a .td file for this node? 9046 /// 9047 /// \param V - pointer to the BuildVectorSDNode being matched 9048 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9049 /// 9050 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9051 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9052 /// the opposite is true (expansion is beneficial) are: 9053 /// - The node builds a vector out of integers that are not 32 or 64-bits 9054 /// - The node builds a vector out of constants 9055 /// - The node is a "load-and-splat" 9056 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9057 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9058 bool HasDirectMove, 9059 bool HasP8Vector) { 9060 EVT VecVT = V->getValueType(0); 9061 bool RightType = VecVT == MVT::v2f64 || 9062 (HasP8Vector && VecVT == MVT::v4f32) || 9063 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9064 if (!RightType) 9065 return false; 9066 9067 bool IsSplat = true; 9068 bool IsLoad = false; 9069 SDValue Op0 = V->getOperand(0); 9070 9071 // This function is called in a block that confirms the node is not a constant 9072 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9073 // different constants. 9074 if (V->isConstant()) 9075 return false; 9076 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9077 if (V->getOperand(i).isUndef()) 9078 return false; 9079 // We want to expand nodes that represent load-and-splat even if the 9080 // loaded value is a floating point truncation or conversion to int. 9081 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9082 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9083 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9084 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9085 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9086 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9087 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9088 IsLoad = true; 9089 // If the operands are different or the input is not a load and has more 9090 // uses than just this BV node, then it isn't a splat. 9091 if (V->getOperand(i) != Op0 || 9092 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9093 IsSplat = false; 9094 } 9095 return !(IsSplat && IsLoad); 9096 } 9097 9098 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9099 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9100 9101 SDLoc dl(Op); 9102 SDValue Op0 = Op->getOperand(0); 9103 9104 if ((Op.getValueType() != MVT::f128) || 9105 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9106 (Op0.getOperand(0).getValueType() != MVT::i64) || 9107 (Op0.getOperand(1).getValueType() != MVT::i64)) 9108 return SDValue(); 9109 9110 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9111 Op0.getOperand(1)); 9112 } 9113 9114 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9115 const SDValue *InputLoad = &Op; 9116 if (InputLoad->getOpcode() == ISD::BITCAST) 9117 InputLoad = &InputLoad->getOperand(0); 9118 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9119 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9120 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9121 InputLoad = &InputLoad->getOperand(0); 9122 } 9123 if (InputLoad->getOpcode() != ISD::LOAD) 9124 return nullptr; 9125 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9126 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9127 } 9128 9129 // Convert the argument APFloat to a single precision APFloat if there is no 9130 // loss in information during the conversion to single precision APFloat and the 9131 // resulting number is not a denormal number. Return true if successful. 9132 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9133 APFloat APFloatToConvert = ArgAPFloat; 9134 bool LosesInfo = true; 9135 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9136 &LosesInfo); 9137 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9138 if (Success) 9139 ArgAPFloat = APFloatToConvert; 9140 return Success; 9141 } 9142 9143 // Bitcast the argument APInt to a double and convert it to a single precision 9144 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9145 // argument if there is no loss in information during the conversion from 9146 // double to single precision APFloat and the resulting number is not a denormal 9147 // number. Return true if successful. 9148 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9149 double DpValue = ArgAPInt.bitsToDouble(); 9150 APFloat APFloatDp(DpValue); 9151 bool Success = convertToNonDenormSingle(APFloatDp); 9152 if (Success) 9153 ArgAPInt = APFloatDp.bitcastToAPInt(); 9154 return Success; 9155 } 9156 9157 // If this is a case we can't handle, return null and let the default 9158 // expansion code take care of it. If we CAN select this case, and if it 9159 // selects to a single instruction, return Op. Otherwise, if we can codegen 9160 // this case more efficiently than a constant pool load, lower it to the 9161 // sequence of ops that should be used. 9162 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9163 SelectionDAG &DAG) const { 9164 SDLoc dl(Op); 9165 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9166 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9167 9168 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 9169 // We first build an i32 vector, load it into a QPX register, 9170 // then convert it to a floating-point vector and compare it 9171 // to a zero vector to get the boolean result. 9172 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9173 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 9174 MachinePointerInfo PtrInfo = 9175 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9176 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9177 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9178 9179 assert(BVN->getNumOperands() == 4 && 9180 "BUILD_VECTOR for v4i1 does not have 4 operands"); 9181 9182 bool IsConst = true; 9183 for (unsigned i = 0; i < 4; ++i) { 9184 if (BVN->getOperand(i).isUndef()) continue; 9185 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 9186 IsConst = false; 9187 break; 9188 } 9189 } 9190 9191 if (IsConst) { 9192 Constant *One = 9193 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 9194 Constant *NegOne = 9195 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 9196 9197 Constant *CV[4]; 9198 for (unsigned i = 0; i < 4; ++i) { 9199 if (BVN->getOperand(i).isUndef()) 9200 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 9201 else if (isNullConstant(BVN->getOperand(i))) 9202 CV[i] = NegOne; 9203 else 9204 CV[i] = One; 9205 } 9206 9207 Constant *CP = ConstantVector::get(CV); 9208 SDValue CPIdx = 9209 DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16)); 9210 9211 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 9212 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 9213 return DAG.getMemIntrinsicNode( 9214 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 9215 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 9216 } 9217 9218 SmallVector<SDValue, 4> Stores; 9219 for (unsigned i = 0; i < 4; ++i) { 9220 if (BVN->getOperand(i).isUndef()) continue; 9221 9222 unsigned Offset = 4*i; 9223 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9224 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9225 9226 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 9227 if (StoreSize > 4) { 9228 Stores.push_back( 9229 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9230 PtrInfo.getWithOffset(Offset), MVT::i32)); 9231 } else { 9232 SDValue StoreValue = BVN->getOperand(i); 9233 if (StoreSize < 4) 9234 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9235 9236 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9237 PtrInfo.getWithOffset(Offset))); 9238 } 9239 } 9240 9241 SDValue StoreChain; 9242 if (!Stores.empty()) 9243 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9244 else 9245 StoreChain = DAG.getEntryNode(); 9246 9247 // Now load from v4i32 into the QPX register; this will extend it to 9248 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9249 // is typed as v4f64 because the QPX register integer states are not 9250 // explicitly represented. 9251 9252 SDValue Ops[] = {StoreChain, 9253 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9254 FIdx}; 9255 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9256 9257 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9258 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9259 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9260 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9261 LoadedVect); 9262 9263 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9264 9265 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9266 } 9267 9268 // All other QPX vectors are handled by generic code. 9269 if (Subtarget.hasQPX()) 9270 return SDValue(); 9271 9272 // Check if this is a splat of a constant value. 9273 APInt APSplatBits, APSplatUndef; 9274 unsigned SplatBitSize; 9275 bool HasAnyUndefs; 9276 bool BVNIsConstantSplat = 9277 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9278 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9279 9280 // If it is a splat of a double, check if we can shrink it to a 32 bit 9281 // non-denormal float which when converted back to double gives us the same 9282 // double. This is to exploit the XXSPLTIDP instruction. 9283 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9284 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9285 convertToNonDenormSingle(APSplatBits)) { 9286 SDValue SplatNode = DAG.getNode( 9287 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9288 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9289 return DAG.getBitcast(Op.getValueType(), SplatNode); 9290 } 9291 9292 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9293 9294 bool IsPermutedLoad = false; 9295 const SDValue *InputLoad = 9296 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9297 // Handle load-and-splat patterns as we have instructions that will do this 9298 // in one go. 9299 if (InputLoad && DAG.isSplatValue(Op, true)) { 9300 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9301 9302 // We have handling for 4 and 8 byte elements. 9303 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9304 9305 // Checking for a single use of this load, we have to check for vector 9306 // width (128 bits) / ElementSize uses (since each operand of the 9307 // BUILD_VECTOR is a separate use of the value. 9308 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9309 ((Subtarget.hasVSX() && ElementSize == 64) || 9310 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9311 SDValue Ops[] = { 9312 LD->getChain(), // Chain 9313 LD->getBasePtr(), // Ptr 9314 DAG.getValueType(Op.getValueType()) // VT 9315 }; 9316 return 9317 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9318 DAG.getVTList(Op.getValueType(), MVT::Other), 9319 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9320 } 9321 } 9322 9323 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9324 // lowered to VSX instructions under certain conditions. 9325 // Without VSX, there is no pattern more efficient than expanding the node. 9326 if (Subtarget.hasVSX() && 9327 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9328 Subtarget.hasP8Vector())) 9329 return Op; 9330 return SDValue(); 9331 } 9332 9333 uint64_t SplatBits = APSplatBits.getZExtValue(); 9334 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9335 unsigned SplatSize = SplatBitSize / 8; 9336 9337 // First, handle single instruction cases. 9338 9339 // All zeros? 9340 if (SplatBits == 0) { 9341 // Canonicalize all zero vectors to be v4i32. 9342 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9343 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9344 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9345 } 9346 return Op; 9347 } 9348 9349 // We have XXSPLTIW for constant splats four bytes wide. 9350 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9351 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9352 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9353 // turned into a 4-byte splat of 0xABABABAB. 9354 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9355 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 9356 Op.getValueType(), DAG, dl); 9357 9358 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9359 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9360 dl); 9361 9362 // We have XXSPLTIB for constant splats one byte wide. 9363 if (Subtarget.hasP9Vector() && SplatSize == 1) 9364 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9365 dl); 9366 9367 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9368 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9369 (32-SplatBitSize)); 9370 if (SextVal >= -16 && SextVal <= 15) 9371 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9372 dl); 9373 9374 // Two instruction sequences. 9375 9376 // If this value is in the range [-32,30] and is even, use: 9377 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9378 // If this value is in the range [17,31] and is odd, use: 9379 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9380 // If this value is in the range [-31,-17] and is odd, use: 9381 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9382 // Note the last two are three-instruction sequences. 9383 if (SextVal >= -32 && SextVal <= 31) { 9384 // To avoid having these optimizations undone by constant folding, 9385 // we convert to a pseudo that will be expanded later into one of 9386 // the above forms. 9387 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9388 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9389 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9390 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9391 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9392 if (VT == Op.getValueType()) 9393 return RetVal; 9394 else 9395 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9396 } 9397 9398 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9399 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9400 // for fneg/fabs. 9401 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9402 // Make -1 and vspltisw -1: 9403 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9404 9405 // Make the VSLW intrinsic, computing 0x8000_0000. 9406 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9407 OnesV, DAG, dl); 9408 9409 // xor by OnesV to invert it. 9410 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9411 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9412 } 9413 9414 // Check to see if this is a wide variety of vsplti*, binop self cases. 9415 static const signed char SplatCsts[] = { 9416 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9417 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9418 }; 9419 9420 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9421 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9422 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9423 int i = SplatCsts[idx]; 9424 9425 // Figure out what shift amount will be used by altivec if shifted by i in 9426 // this splat size. 9427 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9428 9429 // vsplti + shl self. 9430 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9431 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9432 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9433 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9434 Intrinsic::ppc_altivec_vslw 9435 }; 9436 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9437 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9438 } 9439 9440 // vsplti + srl self. 9441 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9442 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9443 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9444 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9445 Intrinsic::ppc_altivec_vsrw 9446 }; 9447 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9448 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9449 } 9450 9451 // vsplti + sra self. 9452 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9453 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9454 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9455 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9456 Intrinsic::ppc_altivec_vsraw 9457 }; 9458 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9459 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9460 } 9461 9462 // vsplti + rol self. 9463 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9464 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9465 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9466 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9467 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9468 Intrinsic::ppc_altivec_vrlw 9469 }; 9470 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9471 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9472 } 9473 9474 // t = vsplti c, result = vsldoi t, t, 1 9475 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9476 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9477 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9478 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9479 } 9480 // t = vsplti c, result = vsldoi t, t, 2 9481 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9482 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9483 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9484 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9485 } 9486 // t = vsplti c, result = vsldoi t, t, 3 9487 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9488 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9489 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9490 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9491 } 9492 } 9493 9494 return SDValue(); 9495 } 9496 9497 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9498 /// the specified operations to build the shuffle. 9499 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9500 SDValue RHS, SelectionDAG &DAG, 9501 const SDLoc &dl) { 9502 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9503 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9504 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9505 9506 enum { 9507 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9508 OP_VMRGHW, 9509 OP_VMRGLW, 9510 OP_VSPLTISW0, 9511 OP_VSPLTISW1, 9512 OP_VSPLTISW2, 9513 OP_VSPLTISW3, 9514 OP_VSLDOI4, 9515 OP_VSLDOI8, 9516 OP_VSLDOI12 9517 }; 9518 9519 if (OpNum == OP_COPY) { 9520 if (LHSID == (1*9+2)*9+3) return LHS; 9521 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9522 return RHS; 9523 } 9524 9525 SDValue OpLHS, OpRHS; 9526 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9527 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9528 9529 int ShufIdxs[16]; 9530 switch (OpNum) { 9531 default: llvm_unreachable("Unknown i32 permute!"); 9532 case OP_VMRGHW: 9533 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9534 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9535 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9536 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9537 break; 9538 case OP_VMRGLW: 9539 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9540 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9541 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9542 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9543 break; 9544 case OP_VSPLTISW0: 9545 for (unsigned i = 0; i != 16; ++i) 9546 ShufIdxs[i] = (i&3)+0; 9547 break; 9548 case OP_VSPLTISW1: 9549 for (unsigned i = 0; i != 16; ++i) 9550 ShufIdxs[i] = (i&3)+4; 9551 break; 9552 case OP_VSPLTISW2: 9553 for (unsigned i = 0; i != 16; ++i) 9554 ShufIdxs[i] = (i&3)+8; 9555 break; 9556 case OP_VSPLTISW3: 9557 for (unsigned i = 0; i != 16; ++i) 9558 ShufIdxs[i] = (i&3)+12; 9559 break; 9560 case OP_VSLDOI4: 9561 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9562 case OP_VSLDOI8: 9563 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9564 case OP_VSLDOI12: 9565 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9566 } 9567 EVT VT = OpLHS.getValueType(); 9568 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9569 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9570 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9571 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9572 } 9573 9574 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9575 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9576 /// SDValue. 9577 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9578 SelectionDAG &DAG) const { 9579 const unsigned BytesInVector = 16; 9580 bool IsLE = Subtarget.isLittleEndian(); 9581 SDLoc dl(N); 9582 SDValue V1 = N->getOperand(0); 9583 SDValue V2 = N->getOperand(1); 9584 unsigned ShiftElts = 0, InsertAtByte = 0; 9585 bool Swap = false; 9586 9587 // Shifts required to get the byte we want at element 7. 9588 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9589 0, 15, 14, 13, 12, 11, 10, 9}; 9590 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9591 1, 2, 3, 4, 5, 6, 7, 8}; 9592 9593 ArrayRef<int> Mask = N->getMask(); 9594 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9595 9596 // For each mask element, find out if we're just inserting something 9597 // from V2 into V1 or vice versa. 9598 // Possible permutations inserting an element from V2 into V1: 9599 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9600 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9601 // ... 9602 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9603 // Inserting from V1 into V2 will be similar, except mask range will be 9604 // [16,31]. 9605 9606 bool FoundCandidate = false; 9607 // If both vector operands for the shuffle are the same vector, the mask 9608 // will contain only elements from the first one and the second one will be 9609 // undef. 9610 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9611 // Go through the mask of half-words to find an element that's being moved 9612 // from one vector to the other. 9613 for (unsigned i = 0; i < BytesInVector; ++i) { 9614 unsigned CurrentElement = Mask[i]; 9615 // If 2nd operand is undefined, we should only look for element 7 in the 9616 // Mask. 9617 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9618 continue; 9619 9620 bool OtherElementsInOrder = true; 9621 // Examine the other elements in the Mask to see if they're in original 9622 // order. 9623 for (unsigned j = 0; j < BytesInVector; ++j) { 9624 if (j == i) 9625 continue; 9626 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9627 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9628 // in which we always assume we're always picking from the 1st operand. 9629 int MaskOffset = 9630 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9631 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9632 OtherElementsInOrder = false; 9633 break; 9634 } 9635 } 9636 // If other elements are in original order, we record the number of shifts 9637 // we need to get the element we want into element 7. Also record which byte 9638 // in the vector we should insert into. 9639 if (OtherElementsInOrder) { 9640 // If 2nd operand is undefined, we assume no shifts and no swapping. 9641 if (V2.isUndef()) { 9642 ShiftElts = 0; 9643 Swap = false; 9644 } else { 9645 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9646 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9647 : BigEndianShifts[CurrentElement & 0xF]; 9648 Swap = CurrentElement < BytesInVector; 9649 } 9650 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9651 FoundCandidate = true; 9652 break; 9653 } 9654 } 9655 9656 if (!FoundCandidate) 9657 return SDValue(); 9658 9659 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9660 // optionally with VECSHL if shift is required. 9661 if (Swap) 9662 std::swap(V1, V2); 9663 if (V2.isUndef()) 9664 V2 = V1; 9665 if (ShiftElts) { 9666 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9667 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9668 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9669 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9670 } 9671 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9672 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9673 } 9674 9675 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9676 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9677 /// SDValue. 9678 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9679 SelectionDAG &DAG) const { 9680 const unsigned NumHalfWords = 8; 9681 const unsigned BytesInVector = NumHalfWords * 2; 9682 // Check that the shuffle is on half-words. 9683 if (!isNByteElemShuffleMask(N, 2, 1)) 9684 return SDValue(); 9685 9686 bool IsLE = Subtarget.isLittleEndian(); 9687 SDLoc dl(N); 9688 SDValue V1 = N->getOperand(0); 9689 SDValue V2 = N->getOperand(1); 9690 unsigned ShiftElts = 0, InsertAtByte = 0; 9691 bool Swap = false; 9692 9693 // Shifts required to get the half-word we want at element 3. 9694 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9695 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9696 9697 uint32_t Mask = 0; 9698 uint32_t OriginalOrderLow = 0x1234567; 9699 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9700 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9701 // 32-bit space, only need 4-bit nibbles per element. 9702 for (unsigned i = 0; i < NumHalfWords; ++i) { 9703 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9704 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9705 } 9706 9707 // For each mask element, find out if we're just inserting something 9708 // from V2 into V1 or vice versa. Possible permutations inserting an element 9709 // from V2 into V1: 9710 // X, 1, 2, 3, 4, 5, 6, 7 9711 // 0, X, 2, 3, 4, 5, 6, 7 9712 // 0, 1, X, 3, 4, 5, 6, 7 9713 // 0, 1, 2, X, 4, 5, 6, 7 9714 // 0, 1, 2, 3, X, 5, 6, 7 9715 // 0, 1, 2, 3, 4, X, 6, 7 9716 // 0, 1, 2, 3, 4, 5, X, 7 9717 // 0, 1, 2, 3, 4, 5, 6, X 9718 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9719 9720 bool FoundCandidate = false; 9721 // Go through the mask of half-words to find an element that's being moved 9722 // from one vector to the other. 9723 for (unsigned i = 0; i < NumHalfWords; ++i) { 9724 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9725 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9726 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9727 uint32_t TargetOrder = 0x0; 9728 9729 // If both vector operands for the shuffle are the same vector, the mask 9730 // will contain only elements from the first one and the second one will be 9731 // undef. 9732 if (V2.isUndef()) { 9733 ShiftElts = 0; 9734 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9735 TargetOrder = OriginalOrderLow; 9736 Swap = false; 9737 // Skip if not the correct element or mask of other elements don't equal 9738 // to our expected order. 9739 if (MaskOneElt == VINSERTHSrcElem && 9740 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9741 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9742 FoundCandidate = true; 9743 break; 9744 } 9745 } else { // If both operands are defined. 9746 // Target order is [8,15] if the current mask is between [0,7]. 9747 TargetOrder = 9748 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9749 // Skip if mask of other elements don't equal our expected order. 9750 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9751 // We only need the last 3 bits for the number of shifts. 9752 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9753 : BigEndianShifts[MaskOneElt & 0x7]; 9754 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9755 Swap = MaskOneElt < NumHalfWords; 9756 FoundCandidate = true; 9757 break; 9758 } 9759 } 9760 } 9761 9762 if (!FoundCandidate) 9763 return SDValue(); 9764 9765 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9766 // optionally with VECSHL if shift is required. 9767 if (Swap) 9768 std::swap(V1, V2); 9769 if (V2.isUndef()) 9770 V2 = V1; 9771 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9772 if (ShiftElts) { 9773 // Double ShiftElts because we're left shifting on v16i8 type. 9774 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9775 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9776 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9777 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9778 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9779 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9780 } 9781 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9782 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9783 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9784 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9785 } 9786 9787 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9788 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9789 /// return the default SDValue. 9790 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9791 SelectionDAG &DAG) const { 9792 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9793 // to v16i8. Peek through the bitcasts to get the actual operands. 9794 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9795 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9796 9797 auto ShuffleMask = SVN->getMask(); 9798 SDValue VecShuffle(SVN, 0); 9799 SDLoc DL(SVN); 9800 9801 // Check that we have a four byte shuffle. 9802 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9803 return SDValue(); 9804 9805 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9806 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9807 std::swap(LHS, RHS); 9808 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9809 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9810 } 9811 9812 // Ensure that the RHS is a vector of constants. 9813 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9814 if (!BVN) 9815 return SDValue(); 9816 9817 // Check if RHS is a splat of 4-bytes (or smaller). 9818 APInt APSplatValue, APSplatUndef; 9819 unsigned SplatBitSize; 9820 bool HasAnyUndefs; 9821 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9822 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9823 SplatBitSize > 32) 9824 return SDValue(); 9825 9826 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9827 // The instruction splats a constant C into two words of the source vector 9828 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9829 // Thus we check that the shuffle mask is the equivalent of 9830 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9831 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9832 // within each word are consecutive, so we only need to check the first byte. 9833 SDValue Index; 9834 bool IsLE = Subtarget.isLittleEndian(); 9835 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9836 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9837 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9838 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9839 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9840 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9841 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9842 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9843 else 9844 return SDValue(); 9845 9846 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9847 // for XXSPLTI32DX. 9848 unsigned SplatVal = APSplatValue.getZExtValue(); 9849 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9850 SplatVal |= (SplatVal << SplatBitSize); 9851 9852 SDValue SplatNode = DAG.getNode( 9853 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9854 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9855 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9856 } 9857 9858 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9859 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9860 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9861 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9862 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9863 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9864 assert(Op.getValueType() == MVT::v1i128 && 9865 "Only set v1i128 as custom, other type shouldn't reach here!"); 9866 SDLoc dl(Op); 9867 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9868 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9869 unsigned SHLAmt = N1.getConstantOperandVal(0); 9870 if (SHLAmt % 8 == 0) { 9871 SmallVector<int, 16> Mask(16, 0); 9872 std::iota(Mask.begin(), Mask.end(), 0); 9873 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9874 if (SDValue Shuffle = 9875 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9876 DAG.getUNDEF(MVT::v16i8), Mask)) 9877 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9878 } 9879 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9880 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9881 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9882 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9883 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9884 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9885 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9886 } 9887 9888 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9889 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9890 /// return the code it can be lowered into. Worst case, it can always be 9891 /// lowered into a vperm. 9892 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9893 SelectionDAG &DAG) const { 9894 SDLoc dl(Op); 9895 SDValue V1 = Op.getOperand(0); 9896 SDValue V2 = Op.getOperand(1); 9897 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9898 9899 // Any nodes that were combined in the target-independent combiner prior 9900 // to vector legalization will not be sent to the target combine. Try to 9901 // combine it here. 9902 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9903 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9904 return NewShuffle; 9905 Op = NewShuffle; 9906 SVOp = cast<ShuffleVectorSDNode>(Op); 9907 V1 = Op.getOperand(0); 9908 V2 = Op.getOperand(1); 9909 } 9910 EVT VT = Op.getValueType(); 9911 bool isLittleEndian = Subtarget.isLittleEndian(); 9912 9913 unsigned ShiftElts, InsertAtByte; 9914 bool Swap = false; 9915 9916 // If this is a load-and-splat, we can do that with a single instruction 9917 // in some cases. However if the load has multiple uses, we don't want to 9918 // combine it because that will just produce multiple loads. 9919 bool IsPermutedLoad = false; 9920 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9921 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9922 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9923 InputLoad->hasOneUse()) { 9924 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9925 int SplatIdx = 9926 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9927 9928 // The splat index for permuted loads will be in the left half of the vector 9929 // which is strictly wider than the loaded value by 8 bytes. So we need to 9930 // adjust the splat index to point to the correct address in memory. 9931 if (IsPermutedLoad) { 9932 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9933 SplatIdx += IsFourByte ? 2 : 1; 9934 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9935 "Splat of a value outside of the loaded memory"); 9936 } 9937 9938 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9939 // For 4-byte load-and-splat, we need Power9. 9940 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9941 uint64_t Offset = 0; 9942 if (IsFourByte) 9943 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9944 else 9945 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9946 9947 SDValue BasePtr = LD->getBasePtr(); 9948 if (Offset != 0) 9949 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9950 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9951 SDValue Ops[] = { 9952 LD->getChain(), // Chain 9953 BasePtr, // BasePtr 9954 DAG.getValueType(Op.getValueType()) // VT 9955 }; 9956 SDVTList VTL = 9957 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9958 SDValue LdSplt = 9959 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9960 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9961 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9962 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9963 return LdSplt; 9964 } 9965 } 9966 if (Subtarget.hasP9Vector() && 9967 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9968 isLittleEndian)) { 9969 if (Swap) 9970 std::swap(V1, V2); 9971 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9972 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9973 if (ShiftElts) { 9974 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9975 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9976 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9977 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9978 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9979 } 9980 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9981 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9982 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9983 } 9984 9985 if (Subtarget.hasPrefixInstrs()) { 9986 SDValue SplatInsertNode; 9987 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9988 return SplatInsertNode; 9989 } 9990 9991 if (Subtarget.hasP9Altivec()) { 9992 SDValue NewISDNode; 9993 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9994 return NewISDNode; 9995 9996 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9997 return NewISDNode; 9998 } 9999 10000 if (Subtarget.hasVSX() && 10001 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10002 if (Swap) 10003 std::swap(V1, V2); 10004 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10005 SDValue Conv2 = 10006 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 10007 10008 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 10009 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10010 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 10011 } 10012 10013 if (Subtarget.hasVSX() && 10014 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10015 if (Swap) 10016 std::swap(V1, V2); 10017 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10018 SDValue Conv2 = 10019 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10020 10021 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10022 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10023 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10024 } 10025 10026 if (Subtarget.hasP9Vector()) { 10027 if (PPC::isXXBRHShuffleMask(SVOp)) { 10028 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10029 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10030 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10031 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10032 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10033 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10034 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10035 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10036 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10037 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10038 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10039 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10040 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10041 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10042 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10043 } 10044 } 10045 10046 if (Subtarget.hasVSX()) { 10047 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10048 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10049 10050 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10051 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10052 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10053 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10054 } 10055 10056 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10057 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10058 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10059 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10060 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10061 } 10062 } 10063 10064 if (Subtarget.hasQPX()) { 10065 if (VT.getVectorNumElements() != 4) 10066 return SDValue(); 10067 10068 if (V2.isUndef()) V2 = V1; 10069 10070 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 10071 if (AlignIdx != -1) { 10072 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 10073 DAG.getConstant(AlignIdx, dl, MVT::i32)); 10074 } else if (SVOp->isSplat()) { 10075 int SplatIdx = SVOp->getSplatIndex(); 10076 if (SplatIdx >= 4) { 10077 std::swap(V1, V2); 10078 SplatIdx -= 4; 10079 } 10080 10081 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 10082 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10083 } 10084 10085 // Lower this into a qvgpci/qvfperm pair. 10086 10087 // Compute the qvgpci literal 10088 unsigned idx = 0; 10089 for (unsigned i = 0; i < 4; ++i) { 10090 int m = SVOp->getMaskElt(i); 10091 unsigned mm = m >= 0 ? (unsigned) m : i; 10092 idx |= mm << (3-i)*3; 10093 } 10094 10095 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 10096 DAG.getConstant(idx, dl, MVT::i32)); 10097 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 10098 } 10099 10100 // Cases that are handled by instructions that take permute immediates 10101 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10102 // selected by the instruction selector. 10103 if (V2.isUndef()) { 10104 if (PPC::isSplatShuffleMask(SVOp, 1) || 10105 PPC::isSplatShuffleMask(SVOp, 2) || 10106 PPC::isSplatShuffleMask(SVOp, 4) || 10107 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10108 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10109 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10110 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10111 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10112 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10113 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10114 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10115 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10116 (Subtarget.hasP8Altivec() && ( 10117 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10118 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10119 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10120 return Op; 10121 } 10122 } 10123 10124 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10125 // and produce a fixed permutation. If any of these match, do not lower to 10126 // VPERM. 10127 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10128 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10129 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10130 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10131 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10132 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10133 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10134 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10135 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10136 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10137 (Subtarget.hasP8Altivec() && ( 10138 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10139 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10140 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10141 return Op; 10142 10143 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10144 // perfect shuffle table to emit an optimal matching sequence. 10145 ArrayRef<int> PermMask = SVOp->getMask(); 10146 10147 unsigned PFIndexes[4]; 10148 bool isFourElementShuffle = true; 10149 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10150 unsigned EltNo = 8; // Start out undef. 10151 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10152 if (PermMask[i*4+j] < 0) 10153 continue; // Undef, ignore it. 10154 10155 unsigned ByteSource = PermMask[i*4+j]; 10156 if ((ByteSource & 3) != j) { 10157 isFourElementShuffle = false; 10158 break; 10159 } 10160 10161 if (EltNo == 8) { 10162 EltNo = ByteSource/4; 10163 } else if (EltNo != ByteSource/4) { 10164 isFourElementShuffle = false; 10165 break; 10166 } 10167 } 10168 PFIndexes[i] = EltNo; 10169 } 10170 10171 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10172 // perfect shuffle vector to determine if it is cost effective to do this as 10173 // discrete instructions, or whether we should use a vperm. 10174 // For now, we skip this for little endian until such time as we have a 10175 // little-endian perfect shuffle table. 10176 if (isFourElementShuffle && !isLittleEndian) { 10177 // Compute the index in the perfect shuffle table. 10178 unsigned PFTableIndex = 10179 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10180 10181 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10182 unsigned Cost = (PFEntry >> 30); 10183 10184 // Determining when to avoid vperm is tricky. Many things affect the cost 10185 // of vperm, particularly how many times the perm mask needs to be computed. 10186 // For example, if the perm mask can be hoisted out of a loop or is already 10187 // used (perhaps because there are multiple permutes with the same shuffle 10188 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10189 // the loop requires an extra register. 10190 // 10191 // As a compromise, we only emit discrete instructions if the shuffle can be 10192 // generated in 3 or fewer operations. When we have loop information 10193 // available, if this block is within a loop, we should avoid using vperm 10194 // for 3-operation perms and use a constant pool load instead. 10195 if (Cost < 3) 10196 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10197 } 10198 10199 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10200 // vector that will get spilled to the constant pool. 10201 if (V2.isUndef()) V2 = V1; 10202 10203 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10204 // that it is in input element units, not in bytes. Convert now. 10205 10206 // For little endian, the order of the input vectors is reversed, and 10207 // the permutation mask is complemented with respect to 31. This is 10208 // necessary to produce proper semantics with the big-endian-biased vperm 10209 // instruction. 10210 EVT EltVT = V1.getValueType().getVectorElementType(); 10211 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10212 10213 SmallVector<SDValue, 16> ResultMask; 10214 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10215 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10216 10217 for (unsigned j = 0; j != BytesPerElement; ++j) 10218 if (isLittleEndian) 10219 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10220 dl, MVT::i32)); 10221 else 10222 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10223 MVT::i32)); 10224 } 10225 10226 ShufflesHandledWithVPERM++; 10227 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10228 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10229 LLVM_DEBUG(SVOp->dump()); 10230 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10231 LLVM_DEBUG(VPermMask.dump()); 10232 10233 if (isLittleEndian) 10234 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10235 V2, V1, VPermMask); 10236 else 10237 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10238 V1, V2, VPermMask); 10239 } 10240 10241 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10242 /// vector comparison. If it is, return true and fill in Opc/isDot with 10243 /// information about the intrinsic. 10244 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10245 bool &isDot, const PPCSubtarget &Subtarget) { 10246 unsigned IntrinsicID = 10247 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10248 CompareOpc = -1; 10249 isDot = false; 10250 switch (IntrinsicID) { 10251 default: 10252 return false; 10253 // Comparison predicates. 10254 case Intrinsic::ppc_altivec_vcmpbfp_p: 10255 CompareOpc = 966; 10256 isDot = true; 10257 break; 10258 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10259 CompareOpc = 198; 10260 isDot = true; 10261 break; 10262 case Intrinsic::ppc_altivec_vcmpequb_p: 10263 CompareOpc = 6; 10264 isDot = true; 10265 break; 10266 case Intrinsic::ppc_altivec_vcmpequh_p: 10267 CompareOpc = 70; 10268 isDot = true; 10269 break; 10270 case Intrinsic::ppc_altivec_vcmpequw_p: 10271 CompareOpc = 134; 10272 isDot = true; 10273 break; 10274 case Intrinsic::ppc_altivec_vcmpequd_p: 10275 if (Subtarget.hasP8Altivec()) { 10276 CompareOpc = 199; 10277 isDot = true; 10278 } else 10279 return false; 10280 break; 10281 case Intrinsic::ppc_altivec_vcmpneb_p: 10282 case Intrinsic::ppc_altivec_vcmpneh_p: 10283 case Intrinsic::ppc_altivec_vcmpnew_p: 10284 case Intrinsic::ppc_altivec_vcmpnezb_p: 10285 case Intrinsic::ppc_altivec_vcmpnezh_p: 10286 case Intrinsic::ppc_altivec_vcmpnezw_p: 10287 if (Subtarget.hasP9Altivec()) { 10288 switch (IntrinsicID) { 10289 default: 10290 llvm_unreachable("Unknown comparison intrinsic."); 10291 case Intrinsic::ppc_altivec_vcmpneb_p: 10292 CompareOpc = 7; 10293 break; 10294 case Intrinsic::ppc_altivec_vcmpneh_p: 10295 CompareOpc = 71; 10296 break; 10297 case Intrinsic::ppc_altivec_vcmpnew_p: 10298 CompareOpc = 135; 10299 break; 10300 case Intrinsic::ppc_altivec_vcmpnezb_p: 10301 CompareOpc = 263; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpnezh_p: 10304 CompareOpc = 327; 10305 break; 10306 case Intrinsic::ppc_altivec_vcmpnezw_p: 10307 CompareOpc = 391; 10308 break; 10309 } 10310 isDot = true; 10311 } else 10312 return false; 10313 break; 10314 case Intrinsic::ppc_altivec_vcmpgefp_p: 10315 CompareOpc = 454; 10316 isDot = true; 10317 break; 10318 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10319 CompareOpc = 710; 10320 isDot = true; 10321 break; 10322 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10323 CompareOpc = 774; 10324 isDot = true; 10325 break; 10326 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10327 CompareOpc = 838; 10328 isDot = true; 10329 break; 10330 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10331 CompareOpc = 902; 10332 isDot = true; 10333 break; 10334 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10335 if (Subtarget.hasP8Altivec()) { 10336 CompareOpc = 967; 10337 isDot = true; 10338 } else 10339 return false; 10340 break; 10341 case Intrinsic::ppc_altivec_vcmpgtub_p: 10342 CompareOpc = 518; 10343 isDot = true; 10344 break; 10345 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10346 CompareOpc = 582; 10347 isDot = true; 10348 break; 10349 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10350 CompareOpc = 646; 10351 isDot = true; 10352 break; 10353 case Intrinsic::ppc_altivec_vcmpgtud_p: 10354 if (Subtarget.hasP8Altivec()) { 10355 CompareOpc = 711; 10356 isDot = true; 10357 } else 10358 return false; 10359 break; 10360 10361 // VSX predicate comparisons use the same infrastructure 10362 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10363 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10364 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10365 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10366 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10367 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10368 if (Subtarget.hasVSX()) { 10369 switch (IntrinsicID) { 10370 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10371 CompareOpc = 99; 10372 break; 10373 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10374 CompareOpc = 115; 10375 break; 10376 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10377 CompareOpc = 107; 10378 break; 10379 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10380 CompareOpc = 67; 10381 break; 10382 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10383 CompareOpc = 83; 10384 break; 10385 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10386 CompareOpc = 75; 10387 break; 10388 } 10389 isDot = true; 10390 } else 10391 return false; 10392 break; 10393 10394 // Normal Comparisons. 10395 case Intrinsic::ppc_altivec_vcmpbfp: 10396 CompareOpc = 966; 10397 break; 10398 case Intrinsic::ppc_altivec_vcmpeqfp: 10399 CompareOpc = 198; 10400 break; 10401 case Intrinsic::ppc_altivec_vcmpequb: 10402 CompareOpc = 6; 10403 break; 10404 case Intrinsic::ppc_altivec_vcmpequh: 10405 CompareOpc = 70; 10406 break; 10407 case Intrinsic::ppc_altivec_vcmpequw: 10408 CompareOpc = 134; 10409 break; 10410 case Intrinsic::ppc_altivec_vcmpequd: 10411 if (Subtarget.hasP8Altivec()) 10412 CompareOpc = 199; 10413 else 10414 return false; 10415 break; 10416 case Intrinsic::ppc_altivec_vcmpneb: 10417 case Intrinsic::ppc_altivec_vcmpneh: 10418 case Intrinsic::ppc_altivec_vcmpnew: 10419 case Intrinsic::ppc_altivec_vcmpnezb: 10420 case Intrinsic::ppc_altivec_vcmpnezh: 10421 case Intrinsic::ppc_altivec_vcmpnezw: 10422 if (Subtarget.hasP9Altivec()) 10423 switch (IntrinsicID) { 10424 default: 10425 llvm_unreachable("Unknown comparison intrinsic."); 10426 case Intrinsic::ppc_altivec_vcmpneb: 10427 CompareOpc = 7; 10428 break; 10429 case Intrinsic::ppc_altivec_vcmpneh: 10430 CompareOpc = 71; 10431 break; 10432 case Intrinsic::ppc_altivec_vcmpnew: 10433 CompareOpc = 135; 10434 break; 10435 case Intrinsic::ppc_altivec_vcmpnezb: 10436 CompareOpc = 263; 10437 break; 10438 case Intrinsic::ppc_altivec_vcmpnezh: 10439 CompareOpc = 327; 10440 break; 10441 case Intrinsic::ppc_altivec_vcmpnezw: 10442 CompareOpc = 391; 10443 break; 10444 } 10445 else 10446 return false; 10447 break; 10448 case Intrinsic::ppc_altivec_vcmpgefp: 10449 CompareOpc = 454; 10450 break; 10451 case Intrinsic::ppc_altivec_vcmpgtfp: 10452 CompareOpc = 710; 10453 break; 10454 case Intrinsic::ppc_altivec_vcmpgtsb: 10455 CompareOpc = 774; 10456 break; 10457 case Intrinsic::ppc_altivec_vcmpgtsh: 10458 CompareOpc = 838; 10459 break; 10460 case Intrinsic::ppc_altivec_vcmpgtsw: 10461 CompareOpc = 902; 10462 break; 10463 case Intrinsic::ppc_altivec_vcmpgtsd: 10464 if (Subtarget.hasP8Altivec()) 10465 CompareOpc = 967; 10466 else 10467 return false; 10468 break; 10469 case Intrinsic::ppc_altivec_vcmpgtub: 10470 CompareOpc = 518; 10471 break; 10472 case Intrinsic::ppc_altivec_vcmpgtuh: 10473 CompareOpc = 582; 10474 break; 10475 case Intrinsic::ppc_altivec_vcmpgtuw: 10476 CompareOpc = 646; 10477 break; 10478 case Intrinsic::ppc_altivec_vcmpgtud: 10479 if (Subtarget.hasP8Altivec()) 10480 CompareOpc = 711; 10481 else 10482 return false; 10483 break; 10484 } 10485 return true; 10486 } 10487 10488 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10489 /// lower, do it, otherwise return null. 10490 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10491 SelectionDAG &DAG) const { 10492 unsigned IntrinsicID = 10493 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10494 10495 SDLoc dl(Op); 10496 10497 if (IntrinsicID == Intrinsic::thread_pointer) { 10498 // Reads the thread pointer register, used for __builtin_thread_pointer. 10499 if (Subtarget.isPPC64()) 10500 return DAG.getRegister(PPC::X13, MVT::i64); 10501 return DAG.getRegister(PPC::R2, MVT::i32); 10502 } 10503 10504 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10505 // opcode number of the comparison. 10506 int CompareOpc; 10507 bool isDot; 10508 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10509 return SDValue(); // Don't custom lower most intrinsics. 10510 10511 // If this is a non-dot comparison, make the VCMP node and we are done. 10512 if (!isDot) { 10513 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10514 Op.getOperand(1), Op.getOperand(2), 10515 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10516 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10517 } 10518 10519 // Create the PPCISD altivec 'dot' comparison node. 10520 SDValue Ops[] = { 10521 Op.getOperand(2), // LHS 10522 Op.getOperand(3), // RHS 10523 DAG.getConstant(CompareOpc, dl, MVT::i32) 10524 }; 10525 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10526 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10527 10528 // Now that we have the comparison, emit a copy from the CR to a GPR. 10529 // This is flagged to the above dot comparison. 10530 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10531 DAG.getRegister(PPC::CR6, MVT::i32), 10532 CompNode.getValue(1)); 10533 10534 // Unpack the result based on how the target uses it. 10535 unsigned BitNo; // Bit # of CR6. 10536 bool InvertBit; // Invert result? 10537 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10538 default: // Can't happen, don't crash on invalid number though. 10539 case 0: // Return the value of the EQ bit of CR6. 10540 BitNo = 0; InvertBit = false; 10541 break; 10542 case 1: // Return the inverted value of the EQ bit of CR6. 10543 BitNo = 0; InvertBit = true; 10544 break; 10545 case 2: // Return the value of the LT bit of CR6. 10546 BitNo = 2; InvertBit = false; 10547 break; 10548 case 3: // Return the inverted value of the LT bit of CR6. 10549 BitNo = 2; InvertBit = true; 10550 break; 10551 } 10552 10553 // Shift the bit into the low position. 10554 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10555 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10556 // Isolate the bit. 10557 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10558 DAG.getConstant(1, dl, MVT::i32)); 10559 10560 // If we are supposed to, toggle the bit. 10561 if (InvertBit) 10562 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10563 DAG.getConstant(1, dl, MVT::i32)); 10564 return Flags; 10565 } 10566 10567 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10568 SelectionDAG &DAG) const { 10569 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10570 // the beginning of the argument list. 10571 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10572 SDLoc DL(Op); 10573 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10574 case Intrinsic::ppc_cfence: { 10575 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10576 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10577 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10578 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10579 Op.getOperand(ArgStart + 1)), 10580 Op.getOperand(0)), 10581 0); 10582 } 10583 default: 10584 break; 10585 } 10586 return SDValue(); 10587 } 10588 10589 // Lower scalar BSWAP64 to xxbrd. 10590 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10591 SDLoc dl(Op); 10592 // MTVSRDD 10593 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10594 Op.getOperand(0)); 10595 // XXBRD 10596 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10597 // MFVSRD 10598 int VectorIndex = 0; 10599 if (Subtarget.isLittleEndian()) 10600 VectorIndex = 1; 10601 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10602 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10603 return Op; 10604 } 10605 10606 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10607 // compared to a value that is atomically loaded (atomic loads zero-extend). 10608 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10609 SelectionDAG &DAG) const { 10610 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10611 "Expecting an atomic compare-and-swap here."); 10612 SDLoc dl(Op); 10613 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10614 EVT MemVT = AtomicNode->getMemoryVT(); 10615 if (MemVT.getSizeInBits() >= 32) 10616 return Op; 10617 10618 SDValue CmpOp = Op.getOperand(2); 10619 // If this is already correctly zero-extended, leave it alone. 10620 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10621 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10622 return Op; 10623 10624 // Clear the high bits of the compare operand. 10625 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10626 SDValue NewCmpOp = 10627 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10628 DAG.getConstant(MaskVal, dl, MVT::i32)); 10629 10630 // Replace the existing compare operand with the properly zero-extended one. 10631 SmallVector<SDValue, 4> Ops; 10632 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10633 Ops.push_back(AtomicNode->getOperand(i)); 10634 Ops[2] = NewCmpOp; 10635 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10636 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10637 auto NodeTy = 10638 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10639 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10640 } 10641 10642 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10643 SelectionDAG &DAG) const { 10644 SDLoc dl(Op); 10645 // Create a stack slot that is 16-byte aligned. 10646 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10647 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10648 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10649 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10650 10651 // Store the input value into Value#0 of the stack slot. 10652 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10653 MachinePointerInfo()); 10654 // Load it out. 10655 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10656 } 10657 10658 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10659 SelectionDAG &DAG) const { 10660 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10661 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10662 10663 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10664 // We have legal lowering for constant indices but not for variable ones. 10665 if (!C) 10666 return SDValue(); 10667 10668 EVT VT = Op.getValueType(); 10669 SDLoc dl(Op); 10670 SDValue V1 = Op.getOperand(0); 10671 SDValue V2 = Op.getOperand(1); 10672 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10673 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10674 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10675 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10676 unsigned InsertAtElement = C->getZExtValue(); 10677 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10678 if (Subtarget.isLittleEndian()) { 10679 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10680 } 10681 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10682 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10683 } 10684 return Op; 10685 } 10686 10687 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10688 SelectionDAG &DAG) const { 10689 SDLoc dl(Op); 10690 SDNode *N = Op.getNode(); 10691 10692 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10693 "Unknown extract_vector_elt type"); 10694 10695 SDValue Value = N->getOperand(0); 10696 10697 // The first part of this is like the store lowering except that we don't 10698 // need to track the chain. 10699 10700 // The values are now known to be -1 (false) or 1 (true). To convert this 10701 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10702 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10703 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10704 10705 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10706 // understand how to form the extending load. 10707 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10708 10709 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10710 10711 // Now convert to an integer and store. 10712 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10713 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10714 Value); 10715 10716 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10717 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10718 MachinePointerInfo PtrInfo = 10719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10720 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10721 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10722 10723 SDValue StoreChain = DAG.getEntryNode(); 10724 SDValue Ops[] = {StoreChain, 10725 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10726 Value, FIdx}; 10727 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10728 10729 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10730 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10731 10732 // Extract the value requested. 10733 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10734 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10735 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10736 10737 SDValue IntVal = 10738 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10739 10740 if (!Subtarget.useCRBits()) 10741 return IntVal; 10742 10743 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10744 } 10745 10746 /// Lowering for QPX v4i1 loads 10747 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10748 SelectionDAG &DAG) const { 10749 SDLoc dl(Op); 10750 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10751 SDValue LoadChain = LN->getChain(); 10752 SDValue BasePtr = LN->getBasePtr(); 10753 10754 if (Op.getValueType() == MVT::v4f64 || 10755 Op.getValueType() == MVT::v4f32) { 10756 EVT MemVT = LN->getMemoryVT(); 10757 unsigned Alignment = LN->getAlignment(); 10758 10759 // If this load is properly aligned, then it is legal. 10760 if (Alignment >= MemVT.getStoreSize()) 10761 return Op; 10762 10763 EVT ScalarVT = Op.getValueType().getScalarType(), 10764 ScalarMemVT = MemVT.getScalarType(); 10765 unsigned Stride = ScalarMemVT.getStoreSize(); 10766 10767 SDValue Vals[4], LoadChains[4]; 10768 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10769 SDValue Load; 10770 if (ScalarVT != ScalarMemVT) 10771 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10772 BasePtr, 10773 LN->getPointerInfo().getWithOffset(Idx * Stride), 10774 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10775 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10776 else 10777 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10778 LN->getPointerInfo().getWithOffset(Idx * Stride), 10779 MinAlign(Alignment, Idx * Stride), 10780 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10781 10782 if (Idx == 0 && LN->isIndexed()) { 10783 assert(LN->getAddressingMode() == ISD::PRE_INC && 10784 "Unknown addressing mode on vector load"); 10785 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10786 LN->getAddressingMode()); 10787 } 10788 10789 Vals[Idx] = Load; 10790 LoadChains[Idx] = Load.getValue(1); 10791 10792 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10793 DAG.getConstant(Stride, dl, 10794 BasePtr.getValueType())); 10795 } 10796 10797 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10798 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10799 10800 if (LN->isIndexed()) { 10801 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10802 return DAG.getMergeValues(RetOps, dl); 10803 } 10804 10805 SDValue RetOps[] = { Value, TF }; 10806 return DAG.getMergeValues(RetOps, dl); 10807 } 10808 10809 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10810 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10811 10812 // To lower v4i1 from a byte array, we load the byte elements of the 10813 // vector and then reuse the BUILD_VECTOR logic. 10814 10815 SDValue VectElmts[4], VectElmtChains[4]; 10816 for (unsigned i = 0; i < 4; ++i) { 10817 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10818 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10819 10820 VectElmts[i] = DAG.getExtLoad( 10821 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10822 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10823 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10824 VectElmtChains[i] = VectElmts[i].getValue(1); 10825 } 10826 10827 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10828 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10829 10830 SDValue RVals[] = { Value, LoadChain }; 10831 return DAG.getMergeValues(RVals, dl); 10832 } 10833 10834 /// Lowering for QPX v4i1 stores 10835 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10836 SelectionDAG &DAG) const { 10837 SDLoc dl(Op); 10838 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10839 SDValue StoreChain = SN->getChain(); 10840 SDValue BasePtr = SN->getBasePtr(); 10841 SDValue Value = SN->getValue(); 10842 10843 if (Value.getValueType() == MVT::v4f64 || 10844 Value.getValueType() == MVT::v4f32) { 10845 EVT MemVT = SN->getMemoryVT(); 10846 unsigned Alignment = SN->getAlignment(); 10847 10848 // If this store is properly aligned, then it is legal. 10849 if (Alignment >= MemVT.getStoreSize()) 10850 return Op; 10851 10852 EVT ScalarVT = Value.getValueType().getScalarType(), 10853 ScalarMemVT = MemVT.getScalarType(); 10854 unsigned Stride = ScalarMemVT.getStoreSize(); 10855 10856 SDValue Stores[4]; 10857 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10858 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10859 DAG.getVectorIdxConstant(Idx, dl)); 10860 SDValue Store; 10861 if (ScalarVT != ScalarMemVT) 10862 Store = 10863 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10864 SN->getPointerInfo().getWithOffset(Idx * Stride), 10865 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10866 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10867 else 10868 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10869 SN->getPointerInfo().getWithOffset(Idx * Stride), 10870 MinAlign(Alignment, Idx * Stride), 10871 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10872 10873 if (Idx == 0 && SN->isIndexed()) { 10874 assert(SN->getAddressingMode() == ISD::PRE_INC && 10875 "Unknown addressing mode on vector store"); 10876 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10877 SN->getAddressingMode()); 10878 } 10879 10880 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10881 DAG.getConstant(Stride, dl, 10882 BasePtr.getValueType())); 10883 Stores[Idx] = Store; 10884 } 10885 10886 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10887 10888 if (SN->isIndexed()) { 10889 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10890 return DAG.getMergeValues(RetOps, dl); 10891 } 10892 10893 return TF; 10894 } 10895 10896 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10897 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10898 10899 // The values are now known to be -1 (false) or 1 (true). To convert this 10900 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10901 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10902 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10903 10904 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10905 // understand how to form the extending load. 10906 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10907 10908 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10909 10910 // Now convert to an integer and store. 10911 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10912 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10913 Value); 10914 10915 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10916 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10917 MachinePointerInfo PtrInfo = 10918 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10919 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10920 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10921 10922 SDValue Ops[] = {StoreChain, 10923 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10924 Value, FIdx}; 10925 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10926 10927 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10928 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10929 10930 // Move data into the byte array. 10931 SDValue Loads[4], LoadChains[4]; 10932 for (unsigned i = 0; i < 4; ++i) { 10933 unsigned Offset = 4*i; 10934 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10935 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10936 10937 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10938 PtrInfo.getWithOffset(Offset)); 10939 LoadChains[i] = Loads[i].getValue(1); 10940 } 10941 10942 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10943 10944 SDValue Stores[4]; 10945 for (unsigned i = 0; i < 4; ++i) { 10946 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10947 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10948 10949 Stores[i] = DAG.getTruncStore( 10950 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10951 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10952 SN->getAAInfo()); 10953 } 10954 10955 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10956 10957 return StoreChain; 10958 } 10959 10960 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10961 SDLoc dl(Op); 10962 if (Op.getValueType() == MVT::v4i32) { 10963 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10964 10965 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10966 // +16 as shift amt. 10967 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10968 SDValue RHSSwap = // = vrlw RHS, 16 10969 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10970 10971 // Shrinkify inputs to v8i16. 10972 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10973 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10974 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10975 10976 // Low parts multiplied together, generating 32-bit results (we ignore the 10977 // top parts). 10978 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10979 LHS, RHS, DAG, dl, MVT::v4i32); 10980 10981 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10982 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10983 // Shift the high parts up 16 bits. 10984 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10985 Neg16, DAG, dl); 10986 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10987 } else if (Op.getValueType() == MVT::v16i8) { 10988 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10989 bool isLittleEndian = Subtarget.isLittleEndian(); 10990 10991 // Multiply the even 8-bit parts, producing 16-bit sums. 10992 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10993 LHS, RHS, DAG, dl, MVT::v8i16); 10994 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10995 10996 // Multiply the odd 8-bit parts, producing 16-bit sums. 10997 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10998 LHS, RHS, DAG, dl, MVT::v8i16); 10999 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 11000 11001 // Merge the results together. Because vmuleub and vmuloub are 11002 // instructions with a big-endian bias, we must reverse the 11003 // element numbering and reverse the meaning of "odd" and "even" 11004 // when generating little endian code. 11005 int Ops[16]; 11006 for (unsigned i = 0; i != 8; ++i) { 11007 if (isLittleEndian) { 11008 Ops[i*2 ] = 2*i; 11009 Ops[i*2+1] = 2*i+16; 11010 } else { 11011 Ops[i*2 ] = 2*i+1; 11012 Ops[i*2+1] = 2*i+1+16; 11013 } 11014 } 11015 if (isLittleEndian) 11016 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11017 else 11018 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11019 } else { 11020 llvm_unreachable("Unknown mul to lower!"); 11021 } 11022 } 11023 11024 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 11025 11026 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 11027 11028 EVT VT = Op.getValueType(); 11029 assert(VT.isVector() && 11030 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 11031 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 11032 VT == MVT::v16i8) && 11033 "Unexpected vector element type!"); 11034 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 11035 "Current subtarget doesn't support smax v2i64!"); 11036 11037 // For vector abs, it can be lowered to: 11038 // abs x 11039 // ==> 11040 // y = -x 11041 // smax(x, y) 11042 11043 SDLoc dl(Op); 11044 SDValue X = Op.getOperand(0); 11045 SDValue Zero = DAG.getConstant(0, dl, VT); 11046 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 11047 11048 // SMAX patch https://reviews.llvm.org/D47332 11049 // hasn't landed yet, so use intrinsic first here. 11050 // TODO: Should use SMAX directly once SMAX patch landed 11051 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 11052 if (VT == MVT::v2i64) 11053 BifID = Intrinsic::ppc_altivec_vmaxsd; 11054 else if (VT == MVT::v8i16) 11055 BifID = Intrinsic::ppc_altivec_vmaxsh; 11056 else if (VT == MVT::v16i8) 11057 BifID = Intrinsic::ppc_altivec_vmaxsb; 11058 11059 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 11060 } 11061 11062 // Custom lowering for fpext vf32 to v2f64 11063 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11064 11065 assert(Op.getOpcode() == ISD::FP_EXTEND && 11066 "Should only be called for ISD::FP_EXTEND"); 11067 11068 // FIXME: handle extends from half precision float vectors on P9. 11069 // We only want to custom lower an extend from v2f32 to v2f64. 11070 if (Op.getValueType() != MVT::v2f64 || 11071 Op.getOperand(0).getValueType() != MVT::v2f32) 11072 return SDValue(); 11073 11074 SDLoc dl(Op); 11075 SDValue Op0 = Op.getOperand(0); 11076 11077 switch (Op0.getOpcode()) { 11078 default: 11079 return SDValue(); 11080 case ISD::EXTRACT_SUBVECTOR: { 11081 assert(Op0.getNumOperands() == 2 && 11082 isa<ConstantSDNode>(Op0->getOperand(1)) && 11083 "Node should have 2 operands with second one being a constant!"); 11084 11085 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11086 return SDValue(); 11087 11088 // Custom lower is only done for high or low doubleword. 11089 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11090 if (Idx % 2 != 0) 11091 return SDValue(); 11092 11093 // Since input is v4f32, at this point Idx is either 0 or 2. 11094 // Shift to get the doubleword position we want. 11095 int DWord = Idx >> 1; 11096 11097 // High and low word positions are different on little endian. 11098 if (Subtarget.isLittleEndian()) 11099 DWord ^= 0x1; 11100 11101 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11102 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11103 } 11104 case ISD::FADD: 11105 case ISD::FMUL: 11106 case ISD::FSUB: { 11107 SDValue NewLoad[2]; 11108 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11109 // Ensure both input are loads. 11110 SDValue LdOp = Op0.getOperand(i); 11111 if (LdOp.getOpcode() != ISD::LOAD) 11112 return SDValue(); 11113 // Generate new load node. 11114 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11115 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11116 NewLoad[i] = DAG.getMemIntrinsicNode( 11117 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11118 LD->getMemoryVT(), LD->getMemOperand()); 11119 } 11120 SDValue NewOp = 11121 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11122 NewLoad[1], Op0.getNode()->getFlags()); 11123 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11124 DAG.getConstant(0, dl, MVT::i32)); 11125 } 11126 case ISD::LOAD: { 11127 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11128 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11129 SDValue NewLd = DAG.getMemIntrinsicNode( 11130 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11131 LD->getMemoryVT(), LD->getMemOperand()); 11132 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11133 DAG.getConstant(0, dl, MVT::i32)); 11134 } 11135 } 11136 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11137 } 11138 11139 /// LowerOperation - Provide custom lowering hooks for some operations. 11140 /// 11141 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11142 switch (Op.getOpcode()) { 11143 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11144 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11145 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11146 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11147 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11148 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11149 case ISD::SETCC: return LowerSETCC(Op, DAG); 11150 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11151 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11152 11153 // Variable argument lowering. 11154 case ISD::VASTART: return LowerVASTART(Op, DAG); 11155 case ISD::VAARG: return LowerVAARG(Op, DAG); 11156 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11157 11158 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11159 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11160 case ISD::GET_DYNAMIC_AREA_OFFSET: 11161 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11162 11163 // Exception handling lowering. 11164 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11165 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11166 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11167 11168 case ISD::LOAD: return LowerLOAD(Op, DAG); 11169 case ISD::STORE: return LowerSTORE(Op, DAG); 11170 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11171 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11172 case ISD::FP_TO_UINT: 11173 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11174 case ISD::UINT_TO_FP: 11175 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11176 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11177 11178 // Lower 64-bit shifts. 11179 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11180 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11181 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11182 11183 // Vector-related lowering. 11184 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11185 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11186 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11187 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11188 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 11189 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11190 case ISD::MUL: return LowerMUL(Op, DAG); 11191 case ISD::ABS: return LowerABS(Op, DAG); 11192 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11193 case ISD::ROTL: return LowerROTL(Op, DAG); 11194 11195 // For counter-based loop handling. 11196 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11197 11198 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11199 11200 // Frame & Return address. 11201 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11202 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11203 11204 case ISD::INTRINSIC_VOID: 11205 return LowerINTRINSIC_VOID(Op, DAG); 11206 case ISD::BSWAP: 11207 return LowerBSWAP(Op, DAG); 11208 case ISD::ATOMIC_CMP_SWAP: 11209 return LowerATOMIC_CMP_SWAP(Op, DAG); 11210 } 11211 } 11212 11213 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11214 SmallVectorImpl<SDValue>&Results, 11215 SelectionDAG &DAG) const { 11216 SDLoc dl(N); 11217 switch (N->getOpcode()) { 11218 default: 11219 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11220 case ISD::READCYCLECOUNTER: { 11221 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11222 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11223 11224 Results.push_back( 11225 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11226 Results.push_back(RTB.getValue(2)); 11227 break; 11228 } 11229 case ISD::INTRINSIC_W_CHAIN: { 11230 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11231 Intrinsic::loop_decrement) 11232 break; 11233 11234 assert(N->getValueType(0) == MVT::i1 && 11235 "Unexpected result type for CTR decrement intrinsic"); 11236 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11237 N->getValueType(0)); 11238 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11239 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11240 N->getOperand(1)); 11241 11242 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11243 Results.push_back(NewInt.getValue(1)); 11244 break; 11245 } 11246 case ISD::VAARG: { 11247 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11248 return; 11249 11250 EVT VT = N->getValueType(0); 11251 11252 if (VT == MVT::i64) { 11253 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11254 11255 Results.push_back(NewNode); 11256 Results.push_back(NewNode.getValue(1)); 11257 } 11258 return; 11259 } 11260 case ISD::FP_TO_SINT: 11261 case ISD::FP_TO_UINT: 11262 // LowerFP_TO_INT() can only handle f32 and f64. 11263 if (N->getOperand(0).getValueType() == MVT::ppcf128) 11264 return; 11265 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11266 return; 11267 case ISD::TRUNCATE: { 11268 EVT TrgVT = N->getValueType(0); 11269 EVT OpVT = N->getOperand(0).getValueType(); 11270 if (TrgVT.isVector() && 11271 isOperationCustom(N->getOpcode(), TrgVT) && 11272 OpVT.getSizeInBits() <= 128 && 11273 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 11274 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 11275 return; 11276 } 11277 case ISD::BITCAST: 11278 // Don't handle bitcast here. 11279 return; 11280 case ISD::FP_EXTEND: 11281 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11282 if (Lowered) 11283 Results.push_back(Lowered); 11284 return; 11285 } 11286 } 11287 11288 //===----------------------------------------------------------------------===// 11289 // Other Lowering Code 11290 //===----------------------------------------------------------------------===// 11291 11292 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11293 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11294 Function *Func = Intrinsic::getDeclaration(M, Id); 11295 return Builder.CreateCall(Func, {}); 11296 } 11297 11298 // The mappings for emitLeading/TrailingFence is taken from 11299 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11300 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11301 Instruction *Inst, 11302 AtomicOrdering Ord) const { 11303 if (Ord == AtomicOrdering::SequentiallyConsistent) 11304 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11305 if (isReleaseOrStronger(Ord)) 11306 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11307 return nullptr; 11308 } 11309 11310 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11311 Instruction *Inst, 11312 AtomicOrdering Ord) const { 11313 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11314 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11315 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11316 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11317 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11318 return Builder.CreateCall( 11319 Intrinsic::getDeclaration( 11320 Builder.GetInsertBlock()->getParent()->getParent(), 11321 Intrinsic::ppc_cfence, {Inst->getType()}), 11322 {Inst}); 11323 // FIXME: Can use isync for rmw operation. 11324 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11325 } 11326 return nullptr; 11327 } 11328 11329 MachineBasicBlock * 11330 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11331 unsigned AtomicSize, 11332 unsigned BinOpcode, 11333 unsigned CmpOpcode, 11334 unsigned CmpPred) const { 11335 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11336 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11337 11338 auto LoadMnemonic = PPC::LDARX; 11339 auto StoreMnemonic = PPC::STDCX; 11340 switch (AtomicSize) { 11341 default: 11342 llvm_unreachable("Unexpected size of atomic entity"); 11343 case 1: 11344 LoadMnemonic = PPC::LBARX; 11345 StoreMnemonic = PPC::STBCX; 11346 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11347 break; 11348 case 2: 11349 LoadMnemonic = PPC::LHARX; 11350 StoreMnemonic = PPC::STHCX; 11351 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11352 break; 11353 case 4: 11354 LoadMnemonic = PPC::LWARX; 11355 StoreMnemonic = PPC::STWCX; 11356 break; 11357 case 8: 11358 LoadMnemonic = PPC::LDARX; 11359 StoreMnemonic = PPC::STDCX; 11360 break; 11361 } 11362 11363 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11364 MachineFunction *F = BB->getParent(); 11365 MachineFunction::iterator It = ++BB->getIterator(); 11366 11367 Register dest = MI.getOperand(0).getReg(); 11368 Register ptrA = MI.getOperand(1).getReg(); 11369 Register ptrB = MI.getOperand(2).getReg(); 11370 Register incr = MI.getOperand(3).getReg(); 11371 DebugLoc dl = MI.getDebugLoc(); 11372 11373 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11374 MachineBasicBlock *loop2MBB = 11375 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11376 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11377 F->insert(It, loopMBB); 11378 if (CmpOpcode) 11379 F->insert(It, loop2MBB); 11380 F->insert(It, exitMBB); 11381 exitMBB->splice(exitMBB->begin(), BB, 11382 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11383 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11384 11385 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11386 Register TmpReg = (!BinOpcode) ? incr : 11387 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11388 : &PPC::GPRCRegClass); 11389 11390 // thisMBB: 11391 // ... 11392 // fallthrough --> loopMBB 11393 BB->addSuccessor(loopMBB); 11394 11395 // loopMBB: 11396 // l[wd]arx dest, ptr 11397 // add r0, dest, incr 11398 // st[wd]cx. r0, ptr 11399 // bne- loopMBB 11400 // fallthrough --> exitMBB 11401 11402 // For max/min... 11403 // loopMBB: 11404 // l[wd]arx dest, ptr 11405 // cmpl?[wd] incr, dest 11406 // bgt exitMBB 11407 // loop2MBB: 11408 // st[wd]cx. dest, ptr 11409 // bne- loopMBB 11410 // fallthrough --> exitMBB 11411 11412 BB = loopMBB; 11413 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11414 .addReg(ptrA).addReg(ptrB); 11415 if (BinOpcode) 11416 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11417 if (CmpOpcode) { 11418 // Signed comparisons of byte or halfword values must be sign-extended. 11419 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11420 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11421 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11422 ExtReg).addReg(dest); 11423 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11424 .addReg(incr).addReg(ExtReg); 11425 } else 11426 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11427 .addReg(incr).addReg(dest); 11428 11429 BuildMI(BB, dl, TII->get(PPC::BCC)) 11430 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11431 BB->addSuccessor(loop2MBB); 11432 BB->addSuccessor(exitMBB); 11433 BB = loop2MBB; 11434 } 11435 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11436 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11437 BuildMI(BB, dl, TII->get(PPC::BCC)) 11438 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11439 BB->addSuccessor(loopMBB); 11440 BB->addSuccessor(exitMBB); 11441 11442 // exitMBB: 11443 // ... 11444 BB = exitMBB; 11445 return BB; 11446 } 11447 11448 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11449 MachineInstr &MI, MachineBasicBlock *BB, 11450 bool is8bit, // operation 11451 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11452 // If we support part-word atomic mnemonics, just use them 11453 if (Subtarget.hasPartwordAtomics()) 11454 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11455 CmpPred); 11456 11457 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11458 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11459 // In 64 bit mode we have to use 64 bits for addresses, even though the 11460 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11461 // registers without caring whether they're 32 or 64, but here we're 11462 // doing actual arithmetic on the addresses. 11463 bool is64bit = Subtarget.isPPC64(); 11464 bool isLittleEndian = Subtarget.isLittleEndian(); 11465 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11466 11467 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11468 MachineFunction *F = BB->getParent(); 11469 MachineFunction::iterator It = ++BB->getIterator(); 11470 11471 Register dest = MI.getOperand(0).getReg(); 11472 Register ptrA = MI.getOperand(1).getReg(); 11473 Register ptrB = MI.getOperand(2).getReg(); 11474 Register incr = MI.getOperand(3).getReg(); 11475 DebugLoc dl = MI.getDebugLoc(); 11476 11477 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11478 MachineBasicBlock *loop2MBB = 11479 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11480 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11481 F->insert(It, loopMBB); 11482 if (CmpOpcode) 11483 F->insert(It, loop2MBB); 11484 F->insert(It, exitMBB); 11485 exitMBB->splice(exitMBB->begin(), BB, 11486 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11487 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11488 11489 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11490 const TargetRegisterClass *RC = 11491 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11492 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11493 11494 Register PtrReg = RegInfo.createVirtualRegister(RC); 11495 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11496 Register ShiftReg = 11497 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11498 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11499 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11500 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11501 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11502 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11503 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11504 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11505 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11506 Register Ptr1Reg; 11507 Register TmpReg = 11508 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11509 11510 // thisMBB: 11511 // ... 11512 // fallthrough --> loopMBB 11513 BB->addSuccessor(loopMBB); 11514 11515 // The 4-byte load must be aligned, while a char or short may be 11516 // anywhere in the word. Hence all this nasty bookkeeping code. 11517 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11518 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11519 // xori shift, shift1, 24 [16] 11520 // rlwinm ptr, ptr1, 0, 0, 29 11521 // slw incr2, incr, shift 11522 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11523 // slw mask, mask2, shift 11524 // loopMBB: 11525 // lwarx tmpDest, ptr 11526 // add tmp, tmpDest, incr2 11527 // andc tmp2, tmpDest, mask 11528 // and tmp3, tmp, mask 11529 // or tmp4, tmp3, tmp2 11530 // stwcx. tmp4, ptr 11531 // bne- loopMBB 11532 // fallthrough --> exitMBB 11533 // srw dest, tmpDest, shift 11534 if (ptrA != ZeroReg) { 11535 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11536 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11537 .addReg(ptrA) 11538 .addReg(ptrB); 11539 } else { 11540 Ptr1Reg = ptrB; 11541 } 11542 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11543 // mode. 11544 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11545 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11546 .addImm(3) 11547 .addImm(27) 11548 .addImm(is8bit ? 28 : 27); 11549 if (!isLittleEndian) 11550 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11551 .addReg(Shift1Reg) 11552 .addImm(is8bit ? 24 : 16); 11553 if (is64bit) 11554 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11555 .addReg(Ptr1Reg) 11556 .addImm(0) 11557 .addImm(61); 11558 else 11559 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11560 .addReg(Ptr1Reg) 11561 .addImm(0) 11562 .addImm(0) 11563 .addImm(29); 11564 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11565 if (is8bit) 11566 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11567 else { 11568 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11569 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11570 .addReg(Mask3Reg) 11571 .addImm(65535); 11572 } 11573 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11574 .addReg(Mask2Reg) 11575 .addReg(ShiftReg); 11576 11577 BB = loopMBB; 11578 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11579 .addReg(ZeroReg) 11580 .addReg(PtrReg); 11581 if (BinOpcode) 11582 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11583 .addReg(Incr2Reg) 11584 .addReg(TmpDestReg); 11585 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11586 .addReg(TmpDestReg) 11587 .addReg(MaskReg); 11588 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11589 if (CmpOpcode) { 11590 // For unsigned comparisons, we can directly compare the shifted values. 11591 // For signed comparisons we shift and sign extend. 11592 Register SReg = RegInfo.createVirtualRegister(GPRC); 11593 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11594 .addReg(TmpDestReg) 11595 .addReg(MaskReg); 11596 unsigned ValueReg = SReg; 11597 unsigned CmpReg = Incr2Reg; 11598 if (CmpOpcode == PPC::CMPW) { 11599 ValueReg = RegInfo.createVirtualRegister(GPRC); 11600 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11601 .addReg(SReg) 11602 .addReg(ShiftReg); 11603 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11604 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11605 .addReg(ValueReg); 11606 ValueReg = ValueSReg; 11607 CmpReg = incr; 11608 } 11609 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11610 .addReg(CmpReg) 11611 .addReg(ValueReg); 11612 BuildMI(BB, dl, TII->get(PPC::BCC)) 11613 .addImm(CmpPred) 11614 .addReg(PPC::CR0) 11615 .addMBB(exitMBB); 11616 BB->addSuccessor(loop2MBB); 11617 BB->addSuccessor(exitMBB); 11618 BB = loop2MBB; 11619 } 11620 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11621 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11622 .addReg(Tmp4Reg) 11623 .addReg(ZeroReg) 11624 .addReg(PtrReg); 11625 BuildMI(BB, dl, TII->get(PPC::BCC)) 11626 .addImm(PPC::PRED_NE) 11627 .addReg(PPC::CR0) 11628 .addMBB(loopMBB); 11629 BB->addSuccessor(loopMBB); 11630 BB->addSuccessor(exitMBB); 11631 11632 // exitMBB: 11633 // ... 11634 BB = exitMBB; 11635 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11636 .addReg(TmpDestReg) 11637 .addReg(ShiftReg); 11638 return BB; 11639 } 11640 11641 llvm::MachineBasicBlock * 11642 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11643 MachineBasicBlock *MBB) const { 11644 DebugLoc DL = MI.getDebugLoc(); 11645 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11646 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11647 11648 MachineFunction *MF = MBB->getParent(); 11649 MachineRegisterInfo &MRI = MF->getRegInfo(); 11650 11651 const BasicBlock *BB = MBB->getBasicBlock(); 11652 MachineFunction::iterator I = ++MBB->getIterator(); 11653 11654 Register DstReg = MI.getOperand(0).getReg(); 11655 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11656 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11657 Register mainDstReg = MRI.createVirtualRegister(RC); 11658 Register restoreDstReg = MRI.createVirtualRegister(RC); 11659 11660 MVT PVT = getPointerTy(MF->getDataLayout()); 11661 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11662 "Invalid Pointer Size!"); 11663 // For v = setjmp(buf), we generate 11664 // 11665 // thisMBB: 11666 // SjLjSetup mainMBB 11667 // bl mainMBB 11668 // v_restore = 1 11669 // b sinkMBB 11670 // 11671 // mainMBB: 11672 // buf[LabelOffset] = LR 11673 // v_main = 0 11674 // 11675 // sinkMBB: 11676 // v = phi(main, restore) 11677 // 11678 11679 MachineBasicBlock *thisMBB = MBB; 11680 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11681 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11682 MF->insert(I, mainMBB); 11683 MF->insert(I, sinkMBB); 11684 11685 MachineInstrBuilder MIB; 11686 11687 // Transfer the remainder of BB and its successor edges to sinkMBB. 11688 sinkMBB->splice(sinkMBB->begin(), MBB, 11689 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11690 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11691 11692 // Note that the structure of the jmp_buf used here is not compatible 11693 // with that used by libc, and is not designed to be. Specifically, it 11694 // stores only those 'reserved' registers that LLVM does not otherwise 11695 // understand how to spill. Also, by convention, by the time this 11696 // intrinsic is called, Clang has already stored the frame address in the 11697 // first slot of the buffer and stack address in the third. Following the 11698 // X86 target code, we'll store the jump address in the second slot. We also 11699 // need to save the TOC pointer (R2) to handle jumps between shared 11700 // libraries, and that will be stored in the fourth slot. The thread 11701 // identifier (R13) is not affected. 11702 11703 // thisMBB: 11704 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11705 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11706 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11707 11708 // Prepare IP either in reg. 11709 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11710 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11711 Register BufReg = MI.getOperand(1).getReg(); 11712 11713 if (Subtarget.is64BitELFABI()) { 11714 setUsesTOCBasePtr(*MBB->getParent()); 11715 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11716 .addReg(PPC::X2) 11717 .addImm(TOCOffset) 11718 .addReg(BufReg) 11719 .cloneMemRefs(MI); 11720 } 11721 11722 // Naked functions never have a base pointer, and so we use r1. For all 11723 // other functions, this decision must be delayed until during PEI. 11724 unsigned BaseReg; 11725 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11726 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11727 else 11728 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11729 11730 MIB = BuildMI(*thisMBB, MI, DL, 11731 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11732 .addReg(BaseReg) 11733 .addImm(BPOffset) 11734 .addReg(BufReg) 11735 .cloneMemRefs(MI); 11736 11737 // Setup 11738 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11739 MIB.addRegMask(TRI->getNoPreservedMask()); 11740 11741 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11742 11743 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11744 .addMBB(mainMBB); 11745 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11746 11747 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11748 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11749 11750 // mainMBB: 11751 // mainDstReg = 0 11752 MIB = 11753 BuildMI(mainMBB, DL, 11754 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11755 11756 // Store IP 11757 if (Subtarget.isPPC64()) { 11758 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11759 .addReg(LabelReg) 11760 .addImm(LabelOffset) 11761 .addReg(BufReg); 11762 } else { 11763 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11764 .addReg(LabelReg) 11765 .addImm(LabelOffset) 11766 .addReg(BufReg); 11767 } 11768 MIB.cloneMemRefs(MI); 11769 11770 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11771 mainMBB->addSuccessor(sinkMBB); 11772 11773 // sinkMBB: 11774 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11775 TII->get(PPC::PHI), DstReg) 11776 .addReg(mainDstReg).addMBB(mainMBB) 11777 .addReg(restoreDstReg).addMBB(thisMBB); 11778 11779 MI.eraseFromParent(); 11780 return sinkMBB; 11781 } 11782 11783 MachineBasicBlock * 11784 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11785 MachineBasicBlock *MBB) const { 11786 DebugLoc DL = MI.getDebugLoc(); 11787 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11788 11789 MachineFunction *MF = MBB->getParent(); 11790 MachineRegisterInfo &MRI = MF->getRegInfo(); 11791 11792 MVT PVT = getPointerTy(MF->getDataLayout()); 11793 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11794 "Invalid Pointer Size!"); 11795 11796 const TargetRegisterClass *RC = 11797 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11798 Register Tmp = MRI.createVirtualRegister(RC); 11799 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11800 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11801 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11802 unsigned BP = 11803 (PVT == MVT::i64) 11804 ? PPC::X30 11805 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11806 : PPC::R30); 11807 11808 MachineInstrBuilder MIB; 11809 11810 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11811 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11812 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11813 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11814 11815 Register BufReg = MI.getOperand(0).getReg(); 11816 11817 // Reload FP (the jumped-to function may not have had a 11818 // frame pointer, and if so, then its r31 will be restored 11819 // as necessary). 11820 if (PVT == MVT::i64) { 11821 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11822 .addImm(0) 11823 .addReg(BufReg); 11824 } else { 11825 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11826 .addImm(0) 11827 .addReg(BufReg); 11828 } 11829 MIB.cloneMemRefs(MI); 11830 11831 // Reload IP 11832 if (PVT == MVT::i64) { 11833 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11834 .addImm(LabelOffset) 11835 .addReg(BufReg); 11836 } else { 11837 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11838 .addImm(LabelOffset) 11839 .addReg(BufReg); 11840 } 11841 MIB.cloneMemRefs(MI); 11842 11843 // Reload SP 11844 if (PVT == MVT::i64) { 11845 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11846 .addImm(SPOffset) 11847 .addReg(BufReg); 11848 } else { 11849 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11850 .addImm(SPOffset) 11851 .addReg(BufReg); 11852 } 11853 MIB.cloneMemRefs(MI); 11854 11855 // Reload BP 11856 if (PVT == MVT::i64) { 11857 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11858 .addImm(BPOffset) 11859 .addReg(BufReg); 11860 } else { 11861 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11862 .addImm(BPOffset) 11863 .addReg(BufReg); 11864 } 11865 MIB.cloneMemRefs(MI); 11866 11867 // Reload TOC 11868 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11869 setUsesTOCBasePtr(*MBB->getParent()); 11870 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11871 .addImm(TOCOffset) 11872 .addReg(BufReg) 11873 .cloneMemRefs(MI); 11874 } 11875 11876 // Jump 11877 BuildMI(*MBB, MI, DL, 11878 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11879 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11880 11881 MI.eraseFromParent(); 11882 return MBB; 11883 } 11884 11885 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11886 // If the function specifically requests inline stack probes, emit them. 11887 if (MF.getFunction().hasFnAttribute("probe-stack")) 11888 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11889 "inline-asm"; 11890 return false; 11891 } 11892 11893 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11894 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11895 unsigned StackAlign = TFI->getStackAlignment(); 11896 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11897 "Unexpected stack alignment"); 11898 // The default stack probe size is 4096 if the function has no 11899 // stack-probe-size attribute. 11900 unsigned StackProbeSize = 4096; 11901 const Function &Fn = MF.getFunction(); 11902 if (Fn.hasFnAttribute("stack-probe-size")) 11903 Fn.getFnAttribute("stack-probe-size") 11904 .getValueAsString() 11905 .getAsInteger(0, StackProbeSize); 11906 // Round down to the stack alignment. 11907 StackProbeSize &= ~(StackAlign - 1); 11908 return StackProbeSize ? StackProbeSize : StackAlign; 11909 } 11910 11911 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11912 // into three phases. In the first phase, it uses pseudo instruction 11913 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11914 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11915 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11916 // MaxCallFrameSize so that it can calculate correct data area pointer. 11917 MachineBasicBlock * 11918 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11919 MachineBasicBlock *MBB) const { 11920 const bool isPPC64 = Subtarget.isPPC64(); 11921 MachineFunction *MF = MBB->getParent(); 11922 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11923 DebugLoc DL = MI.getDebugLoc(); 11924 const unsigned ProbeSize = getStackProbeSize(*MF); 11925 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11926 MachineRegisterInfo &MRI = MF->getRegInfo(); 11927 // The CFG of probing stack looks as 11928 // +-----+ 11929 // | MBB | 11930 // +--+--+ 11931 // | 11932 // +----v----+ 11933 // +--->+ TestMBB +---+ 11934 // | +----+----+ | 11935 // | | | 11936 // | +-----v----+ | 11937 // +---+ BlockMBB | | 11938 // +----------+ | 11939 // | 11940 // +---------+ | 11941 // | TailMBB +<--+ 11942 // +---------+ 11943 // In MBB, calculate previous frame pointer and final stack pointer. 11944 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11945 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11946 // TailMBB is spliced via \p MI. 11947 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11948 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11949 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11950 11951 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11952 MF->insert(MBBIter, TestMBB); 11953 MF->insert(MBBIter, BlockMBB); 11954 MF->insert(MBBIter, TailMBB); 11955 11956 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11957 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11958 11959 Register DstReg = MI.getOperand(0).getReg(); 11960 Register NegSizeReg = MI.getOperand(1).getReg(); 11961 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11962 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11963 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11964 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11965 11966 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11967 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11968 // NegSize. 11969 unsigned ProbeOpc; 11970 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11971 ProbeOpc = 11972 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11973 else 11974 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11975 // and NegSizeReg will be allocated in the same phyreg to avoid 11976 // redundant copy when NegSizeReg has only one use which is current MI and 11977 // will be replaced by PREPARE_PROBED_ALLOCA then. 11978 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11979 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11980 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11981 .addDef(ActualNegSizeReg) 11982 .addReg(NegSizeReg) 11983 .add(MI.getOperand(2)) 11984 .add(MI.getOperand(3)); 11985 11986 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11987 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11988 FinalStackPtr) 11989 .addReg(SPReg) 11990 .addReg(ActualNegSizeReg); 11991 11992 // Materialize a scratch register for update. 11993 int64_t NegProbeSize = -(int64_t)ProbeSize; 11994 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11995 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11996 if (!isInt<16>(NegProbeSize)) { 11997 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11998 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11999 .addImm(NegProbeSize >> 16); 12000 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12001 ScratchReg) 12002 .addReg(TempReg) 12003 .addImm(NegProbeSize & 0xFFFF); 12004 } else 12005 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12006 .addImm(NegProbeSize); 12007 12008 { 12009 // Probing leading residual part. 12010 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12011 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12012 .addReg(ActualNegSizeReg) 12013 .addReg(ScratchReg); 12014 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12015 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12016 .addReg(Div) 12017 .addReg(ScratchReg); 12018 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12019 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12020 .addReg(Mul) 12021 .addReg(ActualNegSizeReg); 12022 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12023 .addReg(FramePointer) 12024 .addReg(SPReg) 12025 .addReg(NegMod); 12026 } 12027 12028 { 12029 // Remaining part should be multiple of ProbeSize. 12030 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12031 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12032 .addReg(SPReg) 12033 .addReg(FinalStackPtr); 12034 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12035 .addImm(PPC::PRED_EQ) 12036 .addReg(CmpResult) 12037 .addMBB(TailMBB); 12038 TestMBB->addSuccessor(BlockMBB); 12039 TestMBB->addSuccessor(TailMBB); 12040 } 12041 12042 { 12043 // Touch the block. 12044 // |P...|P...|P... 12045 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12046 .addReg(FramePointer) 12047 .addReg(SPReg) 12048 .addReg(ScratchReg); 12049 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12050 BlockMBB->addSuccessor(TestMBB); 12051 } 12052 12053 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12054 // DYNAREAOFFSET pseudo instruction to get the future result. 12055 Register MaxCallFrameSizeReg = 12056 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12057 BuildMI(TailMBB, DL, 12058 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12059 MaxCallFrameSizeReg) 12060 .add(MI.getOperand(2)) 12061 .add(MI.getOperand(3)); 12062 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12063 .addReg(SPReg) 12064 .addReg(MaxCallFrameSizeReg); 12065 12066 // Splice instructions after MI to TailMBB. 12067 TailMBB->splice(TailMBB->end(), MBB, 12068 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12069 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12070 MBB->addSuccessor(TestMBB); 12071 12072 // Delete the pseudo instruction. 12073 MI.eraseFromParent(); 12074 12075 ++NumDynamicAllocaProbed; 12076 return TailMBB; 12077 } 12078 12079 MachineBasicBlock * 12080 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12081 MachineBasicBlock *BB) const { 12082 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12083 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12084 if (Subtarget.is64BitELFABI() && 12085 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12086 !Subtarget.isUsingPCRelativeCalls()) { 12087 // Call lowering should have added an r2 operand to indicate a dependence 12088 // on the TOC base pointer value. It can't however, because there is no 12089 // way to mark the dependence as implicit there, and so the stackmap code 12090 // will confuse it with a regular operand. Instead, add the dependence 12091 // here. 12092 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12093 } 12094 12095 return emitPatchPoint(MI, BB); 12096 } 12097 12098 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12099 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12100 return emitEHSjLjSetJmp(MI, BB); 12101 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12102 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12103 return emitEHSjLjLongJmp(MI, BB); 12104 } 12105 12106 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12107 12108 // To "insert" these instructions we actually have to insert their 12109 // control-flow patterns. 12110 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12111 MachineFunction::iterator It = ++BB->getIterator(); 12112 12113 MachineFunction *F = BB->getParent(); 12114 12115 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12116 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12117 MI.getOpcode() == PPC::SELECT_I8) { 12118 SmallVector<MachineOperand, 2> Cond; 12119 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12120 MI.getOpcode() == PPC::SELECT_CC_I8) 12121 Cond.push_back(MI.getOperand(4)); 12122 else 12123 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12124 Cond.push_back(MI.getOperand(1)); 12125 12126 DebugLoc dl = MI.getDebugLoc(); 12127 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12128 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12129 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12130 MI.getOpcode() == PPC::SELECT_CC_F8 || 12131 MI.getOpcode() == PPC::SELECT_CC_F16 || 12132 MI.getOpcode() == PPC::SELECT_CC_QFRC || 12133 MI.getOpcode() == PPC::SELECT_CC_QSRC || 12134 MI.getOpcode() == PPC::SELECT_CC_QBRC || 12135 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12136 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12137 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12138 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12139 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12140 MI.getOpcode() == PPC::SELECT_CC_SPE || 12141 MI.getOpcode() == PPC::SELECT_F4 || 12142 MI.getOpcode() == PPC::SELECT_F8 || 12143 MI.getOpcode() == PPC::SELECT_F16 || 12144 MI.getOpcode() == PPC::SELECT_QFRC || 12145 MI.getOpcode() == PPC::SELECT_QSRC || 12146 MI.getOpcode() == PPC::SELECT_QBRC || 12147 MI.getOpcode() == PPC::SELECT_SPE || 12148 MI.getOpcode() == PPC::SELECT_SPE4 || 12149 MI.getOpcode() == PPC::SELECT_VRRC || 12150 MI.getOpcode() == PPC::SELECT_VSFRC || 12151 MI.getOpcode() == PPC::SELECT_VSSRC || 12152 MI.getOpcode() == PPC::SELECT_VSRC) { 12153 // The incoming instruction knows the destination vreg to set, the 12154 // condition code register to branch on, the true/false values to 12155 // select between, and a branch opcode to use. 12156 12157 // thisMBB: 12158 // ... 12159 // TrueVal = ... 12160 // cmpTY ccX, r1, r2 12161 // bCC copy1MBB 12162 // fallthrough --> copy0MBB 12163 MachineBasicBlock *thisMBB = BB; 12164 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12165 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12166 DebugLoc dl = MI.getDebugLoc(); 12167 F->insert(It, copy0MBB); 12168 F->insert(It, sinkMBB); 12169 12170 // Transfer the remainder of BB and its successor edges to sinkMBB. 12171 sinkMBB->splice(sinkMBB->begin(), BB, 12172 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12173 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12174 12175 // Next, add the true and fallthrough blocks as its successors. 12176 BB->addSuccessor(copy0MBB); 12177 BB->addSuccessor(sinkMBB); 12178 12179 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12180 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12181 MI.getOpcode() == PPC::SELECT_F16 || 12182 MI.getOpcode() == PPC::SELECT_SPE4 || 12183 MI.getOpcode() == PPC::SELECT_SPE || 12184 MI.getOpcode() == PPC::SELECT_QFRC || 12185 MI.getOpcode() == PPC::SELECT_QSRC || 12186 MI.getOpcode() == PPC::SELECT_QBRC || 12187 MI.getOpcode() == PPC::SELECT_VRRC || 12188 MI.getOpcode() == PPC::SELECT_VSFRC || 12189 MI.getOpcode() == PPC::SELECT_VSSRC || 12190 MI.getOpcode() == PPC::SELECT_VSRC) { 12191 BuildMI(BB, dl, TII->get(PPC::BC)) 12192 .addReg(MI.getOperand(1).getReg()) 12193 .addMBB(sinkMBB); 12194 } else { 12195 unsigned SelectPred = MI.getOperand(4).getImm(); 12196 BuildMI(BB, dl, TII->get(PPC::BCC)) 12197 .addImm(SelectPred) 12198 .addReg(MI.getOperand(1).getReg()) 12199 .addMBB(sinkMBB); 12200 } 12201 12202 // copy0MBB: 12203 // %FalseValue = ... 12204 // # fallthrough to sinkMBB 12205 BB = copy0MBB; 12206 12207 // Update machine-CFG edges 12208 BB->addSuccessor(sinkMBB); 12209 12210 // sinkMBB: 12211 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12212 // ... 12213 BB = sinkMBB; 12214 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12215 .addReg(MI.getOperand(3).getReg()) 12216 .addMBB(copy0MBB) 12217 .addReg(MI.getOperand(2).getReg()) 12218 .addMBB(thisMBB); 12219 } else if (MI.getOpcode() == PPC::ReadTB) { 12220 // To read the 64-bit time-base register on a 32-bit target, we read the 12221 // two halves. Should the counter have wrapped while it was being read, we 12222 // need to try again. 12223 // ... 12224 // readLoop: 12225 // mfspr Rx,TBU # load from TBU 12226 // mfspr Ry,TB # load from TB 12227 // mfspr Rz,TBU # load from TBU 12228 // cmpw crX,Rx,Rz # check if 'old'='new' 12229 // bne readLoop # branch if they're not equal 12230 // ... 12231 12232 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12233 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12234 DebugLoc dl = MI.getDebugLoc(); 12235 F->insert(It, readMBB); 12236 F->insert(It, sinkMBB); 12237 12238 // Transfer the remainder of BB and its successor edges to sinkMBB. 12239 sinkMBB->splice(sinkMBB->begin(), BB, 12240 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12241 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12242 12243 BB->addSuccessor(readMBB); 12244 BB = readMBB; 12245 12246 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12247 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12248 Register LoReg = MI.getOperand(0).getReg(); 12249 Register HiReg = MI.getOperand(1).getReg(); 12250 12251 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12252 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12253 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12254 12255 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12256 12257 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12258 .addReg(HiReg) 12259 .addReg(ReadAgainReg); 12260 BuildMI(BB, dl, TII->get(PPC::BCC)) 12261 .addImm(PPC::PRED_NE) 12262 .addReg(CmpReg) 12263 .addMBB(readMBB); 12264 12265 BB->addSuccessor(readMBB); 12266 BB->addSuccessor(sinkMBB); 12267 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12268 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12269 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12270 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12271 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12272 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12273 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12274 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12275 12276 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12277 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12278 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12279 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12281 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12282 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12283 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12284 12285 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12286 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12287 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12288 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12290 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12291 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12292 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12293 12294 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12295 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12296 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12297 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12299 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12300 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12301 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12302 12303 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12304 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12305 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12306 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12308 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12309 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12310 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12311 12312 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12313 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12314 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12315 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12317 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12318 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12319 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12320 12321 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12322 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12323 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12324 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12325 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12326 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12327 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12328 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12329 12330 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12331 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12332 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12333 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12334 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12335 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12336 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12337 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12338 12339 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12340 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12341 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12342 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12343 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12344 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12345 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12346 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12347 12348 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12349 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12350 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12351 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12352 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12353 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12354 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12355 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12356 12357 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12358 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12359 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12360 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12361 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12362 BB = EmitAtomicBinary(MI, BB, 4, 0); 12363 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12364 BB = EmitAtomicBinary(MI, BB, 8, 0); 12365 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12366 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12367 (Subtarget.hasPartwordAtomics() && 12368 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12369 (Subtarget.hasPartwordAtomics() && 12370 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12371 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12372 12373 auto LoadMnemonic = PPC::LDARX; 12374 auto StoreMnemonic = PPC::STDCX; 12375 switch (MI.getOpcode()) { 12376 default: 12377 llvm_unreachable("Compare and swap of unknown size"); 12378 case PPC::ATOMIC_CMP_SWAP_I8: 12379 LoadMnemonic = PPC::LBARX; 12380 StoreMnemonic = PPC::STBCX; 12381 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12382 break; 12383 case PPC::ATOMIC_CMP_SWAP_I16: 12384 LoadMnemonic = PPC::LHARX; 12385 StoreMnemonic = PPC::STHCX; 12386 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12387 break; 12388 case PPC::ATOMIC_CMP_SWAP_I32: 12389 LoadMnemonic = PPC::LWARX; 12390 StoreMnemonic = PPC::STWCX; 12391 break; 12392 case PPC::ATOMIC_CMP_SWAP_I64: 12393 LoadMnemonic = PPC::LDARX; 12394 StoreMnemonic = PPC::STDCX; 12395 break; 12396 } 12397 Register dest = MI.getOperand(0).getReg(); 12398 Register ptrA = MI.getOperand(1).getReg(); 12399 Register ptrB = MI.getOperand(2).getReg(); 12400 Register oldval = MI.getOperand(3).getReg(); 12401 Register newval = MI.getOperand(4).getReg(); 12402 DebugLoc dl = MI.getDebugLoc(); 12403 12404 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12405 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12406 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12407 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12408 F->insert(It, loop1MBB); 12409 F->insert(It, loop2MBB); 12410 F->insert(It, midMBB); 12411 F->insert(It, exitMBB); 12412 exitMBB->splice(exitMBB->begin(), BB, 12413 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12414 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12415 12416 // thisMBB: 12417 // ... 12418 // fallthrough --> loopMBB 12419 BB->addSuccessor(loop1MBB); 12420 12421 // loop1MBB: 12422 // l[bhwd]arx dest, ptr 12423 // cmp[wd] dest, oldval 12424 // bne- midMBB 12425 // loop2MBB: 12426 // st[bhwd]cx. newval, ptr 12427 // bne- loopMBB 12428 // b exitBB 12429 // midMBB: 12430 // st[bhwd]cx. dest, ptr 12431 // exitBB: 12432 BB = loop1MBB; 12433 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12434 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12435 .addReg(oldval) 12436 .addReg(dest); 12437 BuildMI(BB, dl, TII->get(PPC::BCC)) 12438 .addImm(PPC::PRED_NE) 12439 .addReg(PPC::CR0) 12440 .addMBB(midMBB); 12441 BB->addSuccessor(loop2MBB); 12442 BB->addSuccessor(midMBB); 12443 12444 BB = loop2MBB; 12445 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12446 .addReg(newval) 12447 .addReg(ptrA) 12448 .addReg(ptrB); 12449 BuildMI(BB, dl, TII->get(PPC::BCC)) 12450 .addImm(PPC::PRED_NE) 12451 .addReg(PPC::CR0) 12452 .addMBB(loop1MBB); 12453 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12454 BB->addSuccessor(loop1MBB); 12455 BB->addSuccessor(exitMBB); 12456 12457 BB = midMBB; 12458 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12459 .addReg(dest) 12460 .addReg(ptrA) 12461 .addReg(ptrB); 12462 BB->addSuccessor(exitMBB); 12463 12464 // exitMBB: 12465 // ... 12466 BB = exitMBB; 12467 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12468 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12469 // We must use 64-bit registers for addresses when targeting 64-bit, 12470 // since we're actually doing arithmetic on them. Other registers 12471 // can be 32-bit. 12472 bool is64bit = Subtarget.isPPC64(); 12473 bool isLittleEndian = Subtarget.isLittleEndian(); 12474 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12475 12476 Register dest = MI.getOperand(0).getReg(); 12477 Register ptrA = MI.getOperand(1).getReg(); 12478 Register ptrB = MI.getOperand(2).getReg(); 12479 Register oldval = MI.getOperand(3).getReg(); 12480 Register newval = MI.getOperand(4).getReg(); 12481 DebugLoc dl = MI.getDebugLoc(); 12482 12483 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12484 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12485 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12486 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12487 F->insert(It, loop1MBB); 12488 F->insert(It, loop2MBB); 12489 F->insert(It, midMBB); 12490 F->insert(It, exitMBB); 12491 exitMBB->splice(exitMBB->begin(), BB, 12492 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12493 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12494 12495 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12496 const TargetRegisterClass *RC = 12497 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12498 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12499 12500 Register PtrReg = RegInfo.createVirtualRegister(RC); 12501 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12502 Register ShiftReg = 12503 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12504 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12505 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12506 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12507 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12508 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12509 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12510 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12511 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12512 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12513 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12514 Register Ptr1Reg; 12515 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12516 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12517 // thisMBB: 12518 // ... 12519 // fallthrough --> loopMBB 12520 BB->addSuccessor(loop1MBB); 12521 12522 // The 4-byte load must be aligned, while a char or short may be 12523 // anywhere in the word. Hence all this nasty bookkeeping code. 12524 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12525 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12526 // xori shift, shift1, 24 [16] 12527 // rlwinm ptr, ptr1, 0, 0, 29 12528 // slw newval2, newval, shift 12529 // slw oldval2, oldval,shift 12530 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12531 // slw mask, mask2, shift 12532 // and newval3, newval2, mask 12533 // and oldval3, oldval2, mask 12534 // loop1MBB: 12535 // lwarx tmpDest, ptr 12536 // and tmp, tmpDest, mask 12537 // cmpw tmp, oldval3 12538 // bne- midMBB 12539 // loop2MBB: 12540 // andc tmp2, tmpDest, mask 12541 // or tmp4, tmp2, newval3 12542 // stwcx. tmp4, ptr 12543 // bne- loop1MBB 12544 // b exitBB 12545 // midMBB: 12546 // stwcx. tmpDest, ptr 12547 // exitBB: 12548 // srw dest, tmpDest, shift 12549 if (ptrA != ZeroReg) { 12550 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12551 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12552 .addReg(ptrA) 12553 .addReg(ptrB); 12554 } else { 12555 Ptr1Reg = ptrB; 12556 } 12557 12558 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12559 // mode. 12560 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12561 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12562 .addImm(3) 12563 .addImm(27) 12564 .addImm(is8bit ? 28 : 27); 12565 if (!isLittleEndian) 12566 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12567 .addReg(Shift1Reg) 12568 .addImm(is8bit ? 24 : 16); 12569 if (is64bit) 12570 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12571 .addReg(Ptr1Reg) 12572 .addImm(0) 12573 .addImm(61); 12574 else 12575 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12576 .addReg(Ptr1Reg) 12577 .addImm(0) 12578 .addImm(0) 12579 .addImm(29); 12580 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12581 .addReg(newval) 12582 .addReg(ShiftReg); 12583 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12584 .addReg(oldval) 12585 .addReg(ShiftReg); 12586 if (is8bit) 12587 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12588 else { 12589 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12590 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12591 .addReg(Mask3Reg) 12592 .addImm(65535); 12593 } 12594 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12595 .addReg(Mask2Reg) 12596 .addReg(ShiftReg); 12597 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12598 .addReg(NewVal2Reg) 12599 .addReg(MaskReg); 12600 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12601 .addReg(OldVal2Reg) 12602 .addReg(MaskReg); 12603 12604 BB = loop1MBB; 12605 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12606 .addReg(ZeroReg) 12607 .addReg(PtrReg); 12608 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12609 .addReg(TmpDestReg) 12610 .addReg(MaskReg); 12611 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12612 .addReg(TmpReg) 12613 .addReg(OldVal3Reg); 12614 BuildMI(BB, dl, TII->get(PPC::BCC)) 12615 .addImm(PPC::PRED_NE) 12616 .addReg(PPC::CR0) 12617 .addMBB(midMBB); 12618 BB->addSuccessor(loop2MBB); 12619 BB->addSuccessor(midMBB); 12620 12621 BB = loop2MBB; 12622 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12623 .addReg(TmpDestReg) 12624 .addReg(MaskReg); 12625 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12626 .addReg(Tmp2Reg) 12627 .addReg(NewVal3Reg); 12628 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12629 .addReg(Tmp4Reg) 12630 .addReg(ZeroReg) 12631 .addReg(PtrReg); 12632 BuildMI(BB, dl, TII->get(PPC::BCC)) 12633 .addImm(PPC::PRED_NE) 12634 .addReg(PPC::CR0) 12635 .addMBB(loop1MBB); 12636 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12637 BB->addSuccessor(loop1MBB); 12638 BB->addSuccessor(exitMBB); 12639 12640 BB = midMBB; 12641 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12642 .addReg(TmpDestReg) 12643 .addReg(ZeroReg) 12644 .addReg(PtrReg); 12645 BB->addSuccessor(exitMBB); 12646 12647 // exitMBB: 12648 // ... 12649 BB = exitMBB; 12650 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12651 .addReg(TmpReg) 12652 .addReg(ShiftReg); 12653 } else if (MI.getOpcode() == PPC::FADDrtz) { 12654 // This pseudo performs an FADD with rounding mode temporarily forced 12655 // to round-to-zero. We emit this via custom inserter since the FPSCR 12656 // is not modeled at the SelectionDAG level. 12657 Register Dest = MI.getOperand(0).getReg(); 12658 Register Src1 = MI.getOperand(1).getReg(); 12659 Register Src2 = MI.getOperand(2).getReg(); 12660 DebugLoc dl = MI.getDebugLoc(); 12661 12662 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12663 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12664 12665 // Save FPSCR value. 12666 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12667 12668 // Set rounding mode to round-to-zero. 12669 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12670 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12671 12672 // Perform addition. 12673 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12674 12675 // Restore FPSCR value. 12676 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12677 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12678 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12679 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12680 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12681 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12682 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12683 ? PPC::ANDI8_rec 12684 : PPC::ANDI_rec; 12685 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12686 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12687 12688 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12689 Register Dest = RegInfo.createVirtualRegister( 12690 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12691 12692 DebugLoc Dl = MI.getDebugLoc(); 12693 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12694 .addReg(MI.getOperand(1).getReg()) 12695 .addImm(1); 12696 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12697 MI.getOperand(0).getReg()) 12698 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12699 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12700 DebugLoc Dl = MI.getDebugLoc(); 12701 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12702 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12703 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12704 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12705 MI.getOperand(0).getReg()) 12706 .addReg(CRReg); 12707 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12708 DebugLoc Dl = MI.getDebugLoc(); 12709 unsigned Imm = MI.getOperand(1).getImm(); 12710 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12711 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12712 MI.getOperand(0).getReg()) 12713 .addReg(PPC::CR0EQ); 12714 } else if (MI.getOpcode() == PPC::SETRNDi) { 12715 DebugLoc dl = MI.getDebugLoc(); 12716 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12717 12718 // Save FPSCR value. 12719 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12720 12721 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12722 // the following settings: 12723 // 00 Round to nearest 12724 // 01 Round to 0 12725 // 10 Round to +inf 12726 // 11 Round to -inf 12727 12728 // When the operand is immediate, using the two least significant bits of 12729 // the immediate to set the bits 62:63 of FPSCR. 12730 unsigned Mode = MI.getOperand(1).getImm(); 12731 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12732 .addImm(31); 12733 12734 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12735 .addImm(30); 12736 } else if (MI.getOpcode() == PPC::SETRND) { 12737 DebugLoc dl = MI.getDebugLoc(); 12738 12739 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12740 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12741 // If the target doesn't have DirectMove, we should use stack to do the 12742 // conversion, because the target doesn't have the instructions like mtvsrd 12743 // or mfvsrd to do this conversion directly. 12744 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12745 if (Subtarget.hasDirectMove()) { 12746 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12747 .addReg(SrcReg); 12748 } else { 12749 // Use stack to do the register copy. 12750 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12751 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12752 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12753 if (RC == &PPC::F8RCRegClass) { 12754 // Copy register from F8RCRegClass to G8RCRegclass. 12755 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12756 "Unsupported RegClass."); 12757 12758 StoreOp = PPC::STFD; 12759 LoadOp = PPC::LD; 12760 } else { 12761 // Copy register from G8RCRegClass to F8RCRegclass. 12762 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12763 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12764 "Unsupported RegClass."); 12765 } 12766 12767 MachineFrameInfo &MFI = F->getFrameInfo(); 12768 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12769 12770 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12771 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12772 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12773 MFI.getObjectAlign(FrameIdx)); 12774 12775 // Store the SrcReg into the stack. 12776 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12777 .addReg(SrcReg) 12778 .addImm(0) 12779 .addFrameIndex(FrameIdx) 12780 .addMemOperand(MMOStore); 12781 12782 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12783 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12784 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12785 MFI.getObjectAlign(FrameIdx)); 12786 12787 // Load from the stack where SrcReg is stored, and save to DestReg, 12788 // so we have done the RegClass conversion from RegClass::SrcReg to 12789 // RegClass::DestReg. 12790 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12791 .addImm(0) 12792 .addFrameIndex(FrameIdx) 12793 .addMemOperand(MMOLoad); 12794 } 12795 }; 12796 12797 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12798 12799 // Save FPSCR value. 12800 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12801 12802 // When the operand is gprc register, use two least significant bits of the 12803 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12804 // 12805 // copy OldFPSCRTmpReg, OldFPSCRReg 12806 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12807 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12808 // copy NewFPSCRReg, NewFPSCRTmpReg 12809 // mtfsf 255, NewFPSCRReg 12810 MachineOperand SrcOp = MI.getOperand(1); 12811 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12812 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12813 12814 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12815 12816 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12817 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12818 12819 // The first operand of INSERT_SUBREG should be a register which has 12820 // subregisters, we only care about its RegClass, so we should use an 12821 // IMPLICIT_DEF register. 12822 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12823 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12824 .addReg(ImDefReg) 12825 .add(SrcOp) 12826 .addImm(1); 12827 12828 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12829 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12830 .addReg(OldFPSCRTmpReg) 12831 .addReg(ExtSrcReg) 12832 .addImm(0) 12833 .addImm(62); 12834 12835 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12836 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12837 12838 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12839 // bits of FPSCR. 12840 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12841 .addImm(255) 12842 .addReg(NewFPSCRReg) 12843 .addImm(0) 12844 .addImm(0); 12845 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12846 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12847 return emitProbedAlloca(MI, BB); 12848 } else { 12849 llvm_unreachable("Unexpected instr type to insert"); 12850 } 12851 12852 MI.eraseFromParent(); // The pseudo instruction is gone now. 12853 return BB; 12854 } 12855 12856 //===----------------------------------------------------------------------===// 12857 // Target Optimization Hooks 12858 //===----------------------------------------------------------------------===// 12859 12860 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12861 // For the estimates, convergence is quadratic, so we essentially double the 12862 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12863 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12864 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12865 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12866 if (VT.getScalarType() == MVT::f64) 12867 RefinementSteps++; 12868 return RefinementSteps; 12869 } 12870 12871 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12872 int Enabled, int &RefinementSteps, 12873 bool &UseOneConstNR, 12874 bool Reciprocal) const { 12875 EVT VT = Operand.getValueType(); 12876 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12877 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12878 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12879 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12880 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12881 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12882 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12883 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12884 12885 // The Newton-Raphson computation with a single constant does not provide 12886 // enough accuracy on some CPUs. 12887 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12888 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12889 } 12890 return SDValue(); 12891 } 12892 12893 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12894 int Enabled, 12895 int &RefinementSteps) const { 12896 EVT VT = Operand.getValueType(); 12897 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12898 (VT == MVT::f64 && Subtarget.hasFRE()) || 12899 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12900 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12901 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12902 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12903 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12904 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12905 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12906 } 12907 return SDValue(); 12908 } 12909 12910 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12911 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12912 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12913 // enabled for division), this functionality is redundant with the default 12914 // combiner logic (once the division -> reciprocal/multiply transformation 12915 // has taken place). As a result, this matters more for older cores than for 12916 // newer ones. 12917 12918 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12919 // reciprocal if there are two or more FDIVs (for embedded cores with only 12920 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12921 switch (Subtarget.getCPUDirective()) { 12922 default: 12923 return 3; 12924 case PPC::DIR_440: 12925 case PPC::DIR_A2: 12926 case PPC::DIR_E500: 12927 case PPC::DIR_E500mc: 12928 case PPC::DIR_E5500: 12929 return 2; 12930 } 12931 } 12932 12933 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12934 // collapsed, and so we need to look through chains of them. 12935 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12936 int64_t& Offset, SelectionDAG &DAG) { 12937 if (DAG.isBaseWithConstantOffset(Loc)) { 12938 Base = Loc.getOperand(0); 12939 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12940 12941 // The base might itself be a base plus an offset, and if so, accumulate 12942 // that as well. 12943 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12944 } 12945 } 12946 12947 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12948 unsigned Bytes, int Dist, 12949 SelectionDAG &DAG) { 12950 if (VT.getSizeInBits() / 8 != Bytes) 12951 return false; 12952 12953 SDValue BaseLoc = Base->getBasePtr(); 12954 if (Loc.getOpcode() == ISD::FrameIndex) { 12955 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12956 return false; 12957 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12958 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12959 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12960 int FS = MFI.getObjectSize(FI); 12961 int BFS = MFI.getObjectSize(BFI); 12962 if (FS != BFS || FS != (int)Bytes) return false; 12963 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12964 } 12965 12966 SDValue Base1 = Loc, Base2 = BaseLoc; 12967 int64_t Offset1 = 0, Offset2 = 0; 12968 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12969 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12970 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12971 return true; 12972 12973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12974 const GlobalValue *GV1 = nullptr; 12975 const GlobalValue *GV2 = nullptr; 12976 Offset1 = 0; 12977 Offset2 = 0; 12978 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12979 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12980 if (isGA1 && isGA2 && GV1 == GV2) 12981 return Offset1 == (Offset2 + Dist*Bytes); 12982 return false; 12983 } 12984 12985 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12986 // not enforce equality of the chain operands. 12987 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12988 unsigned Bytes, int Dist, 12989 SelectionDAG &DAG) { 12990 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12991 EVT VT = LS->getMemoryVT(); 12992 SDValue Loc = LS->getBasePtr(); 12993 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12994 } 12995 12996 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12997 EVT VT; 12998 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12999 default: return false; 13000 case Intrinsic::ppc_qpx_qvlfd: 13001 case Intrinsic::ppc_qpx_qvlfda: 13002 VT = MVT::v4f64; 13003 break; 13004 case Intrinsic::ppc_qpx_qvlfs: 13005 case Intrinsic::ppc_qpx_qvlfsa: 13006 VT = MVT::v4f32; 13007 break; 13008 case Intrinsic::ppc_qpx_qvlfcd: 13009 case Intrinsic::ppc_qpx_qvlfcda: 13010 VT = MVT::v2f64; 13011 break; 13012 case Intrinsic::ppc_qpx_qvlfcs: 13013 case Intrinsic::ppc_qpx_qvlfcsa: 13014 VT = MVT::v2f32; 13015 break; 13016 case Intrinsic::ppc_qpx_qvlfiwa: 13017 case Intrinsic::ppc_qpx_qvlfiwz: 13018 case Intrinsic::ppc_altivec_lvx: 13019 case Intrinsic::ppc_altivec_lvxl: 13020 case Intrinsic::ppc_vsx_lxvw4x: 13021 case Intrinsic::ppc_vsx_lxvw4x_be: 13022 VT = MVT::v4i32; 13023 break; 13024 case Intrinsic::ppc_vsx_lxvd2x: 13025 case Intrinsic::ppc_vsx_lxvd2x_be: 13026 VT = MVT::v2f64; 13027 break; 13028 case Intrinsic::ppc_altivec_lvebx: 13029 VT = MVT::i8; 13030 break; 13031 case Intrinsic::ppc_altivec_lvehx: 13032 VT = MVT::i16; 13033 break; 13034 case Intrinsic::ppc_altivec_lvewx: 13035 VT = MVT::i32; 13036 break; 13037 } 13038 13039 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13040 } 13041 13042 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13043 EVT VT; 13044 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13045 default: return false; 13046 case Intrinsic::ppc_qpx_qvstfd: 13047 case Intrinsic::ppc_qpx_qvstfda: 13048 VT = MVT::v4f64; 13049 break; 13050 case Intrinsic::ppc_qpx_qvstfs: 13051 case Intrinsic::ppc_qpx_qvstfsa: 13052 VT = MVT::v4f32; 13053 break; 13054 case Intrinsic::ppc_qpx_qvstfcd: 13055 case Intrinsic::ppc_qpx_qvstfcda: 13056 VT = MVT::v2f64; 13057 break; 13058 case Intrinsic::ppc_qpx_qvstfcs: 13059 case Intrinsic::ppc_qpx_qvstfcsa: 13060 VT = MVT::v2f32; 13061 break; 13062 case Intrinsic::ppc_qpx_qvstfiw: 13063 case Intrinsic::ppc_qpx_qvstfiwa: 13064 case Intrinsic::ppc_altivec_stvx: 13065 case Intrinsic::ppc_altivec_stvxl: 13066 case Intrinsic::ppc_vsx_stxvw4x: 13067 VT = MVT::v4i32; 13068 break; 13069 case Intrinsic::ppc_vsx_stxvd2x: 13070 VT = MVT::v2f64; 13071 break; 13072 case Intrinsic::ppc_vsx_stxvw4x_be: 13073 VT = MVT::v4i32; 13074 break; 13075 case Intrinsic::ppc_vsx_stxvd2x_be: 13076 VT = MVT::v2f64; 13077 break; 13078 case Intrinsic::ppc_altivec_stvebx: 13079 VT = MVT::i8; 13080 break; 13081 case Intrinsic::ppc_altivec_stvehx: 13082 VT = MVT::i16; 13083 break; 13084 case Intrinsic::ppc_altivec_stvewx: 13085 VT = MVT::i32; 13086 break; 13087 } 13088 13089 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13090 } 13091 13092 return false; 13093 } 13094 13095 // Return true is there is a nearyby consecutive load to the one provided 13096 // (regardless of alignment). We search up and down the chain, looking though 13097 // token factors and other loads (but nothing else). As a result, a true result 13098 // indicates that it is safe to create a new consecutive load adjacent to the 13099 // load provided. 13100 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13101 SDValue Chain = LD->getChain(); 13102 EVT VT = LD->getMemoryVT(); 13103 13104 SmallSet<SDNode *, 16> LoadRoots; 13105 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13106 SmallSet<SDNode *, 16> Visited; 13107 13108 // First, search up the chain, branching to follow all token-factor operands. 13109 // If we find a consecutive load, then we're done, otherwise, record all 13110 // nodes just above the top-level loads and token factors. 13111 while (!Queue.empty()) { 13112 SDNode *ChainNext = Queue.pop_back_val(); 13113 if (!Visited.insert(ChainNext).second) 13114 continue; 13115 13116 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13117 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13118 return true; 13119 13120 if (!Visited.count(ChainLD->getChain().getNode())) 13121 Queue.push_back(ChainLD->getChain().getNode()); 13122 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13123 for (const SDUse &O : ChainNext->ops()) 13124 if (!Visited.count(O.getNode())) 13125 Queue.push_back(O.getNode()); 13126 } else 13127 LoadRoots.insert(ChainNext); 13128 } 13129 13130 // Second, search down the chain, starting from the top-level nodes recorded 13131 // in the first phase. These top-level nodes are the nodes just above all 13132 // loads and token factors. Starting with their uses, recursively look though 13133 // all loads (just the chain uses) and token factors to find a consecutive 13134 // load. 13135 Visited.clear(); 13136 Queue.clear(); 13137 13138 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13139 IE = LoadRoots.end(); I != IE; ++I) { 13140 Queue.push_back(*I); 13141 13142 while (!Queue.empty()) { 13143 SDNode *LoadRoot = Queue.pop_back_val(); 13144 if (!Visited.insert(LoadRoot).second) 13145 continue; 13146 13147 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13148 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13149 return true; 13150 13151 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13152 UE = LoadRoot->use_end(); UI != UE; ++UI) 13153 if (((isa<MemSDNode>(*UI) && 13154 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13155 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13156 Queue.push_back(*UI); 13157 } 13158 } 13159 13160 return false; 13161 } 13162 13163 /// This function is called when we have proved that a SETCC node can be replaced 13164 /// by subtraction (and other supporting instructions) so that the result of 13165 /// comparison is kept in a GPR instead of CR. This function is purely for 13166 /// codegen purposes and has some flags to guide the codegen process. 13167 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13168 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13169 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13170 13171 // Zero extend the operands to the largest legal integer. Originally, they 13172 // must be of a strictly smaller size. 13173 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13174 DAG.getConstant(Size, DL, MVT::i32)); 13175 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13176 DAG.getConstant(Size, DL, MVT::i32)); 13177 13178 // Swap if needed. Depends on the condition code. 13179 if (Swap) 13180 std::swap(Op0, Op1); 13181 13182 // Subtract extended integers. 13183 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13184 13185 // Move the sign bit to the least significant position and zero out the rest. 13186 // Now the least significant bit carries the result of original comparison. 13187 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13188 DAG.getConstant(Size - 1, DL, MVT::i32)); 13189 auto Final = Shifted; 13190 13191 // Complement the result if needed. Based on the condition code. 13192 if (Complement) 13193 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13194 DAG.getConstant(1, DL, MVT::i64)); 13195 13196 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13197 } 13198 13199 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13200 DAGCombinerInfo &DCI) const { 13201 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13202 13203 SelectionDAG &DAG = DCI.DAG; 13204 SDLoc DL(N); 13205 13206 // Size of integers being compared has a critical role in the following 13207 // analysis, so we prefer to do this when all types are legal. 13208 if (!DCI.isAfterLegalizeDAG()) 13209 return SDValue(); 13210 13211 // If all users of SETCC extend its value to a legal integer type 13212 // then we replace SETCC with a subtraction 13213 for (SDNode::use_iterator UI = N->use_begin(), 13214 UE = N->use_end(); UI != UE; ++UI) { 13215 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13216 return SDValue(); 13217 } 13218 13219 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13220 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13221 13222 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13223 13224 if (OpSize < Size) { 13225 switch (CC) { 13226 default: break; 13227 case ISD::SETULT: 13228 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13229 case ISD::SETULE: 13230 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13231 case ISD::SETUGT: 13232 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13233 case ISD::SETUGE: 13234 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13235 } 13236 } 13237 13238 return SDValue(); 13239 } 13240 13241 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13242 DAGCombinerInfo &DCI) const { 13243 SelectionDAG &DAG = DCI.DAG; 13244 SDLoc dl(N); 13245 13246 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13247 // If we're tracking CR bits, we need to be careful that we don't have: 13248 // trunc(binary-ops(zext(x), zext(y))) 13249 // or 13250 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13251 // such that we're unnecessarily moving things into GPRs when it would be 13252 // better to keep them in CR bits. 13253 13254 // Note that trunc here can be an actual i1 trunc, or can be the effective 13255 // truncation that comes from a setcc or select_cc. 13256 if (N->getOpcode() == ISD::TRUNCATE && 13257 N->getValueType(0) != MVT::i1) 13258 return SDValue(); 13259 13260 if (N->getOperand(0).getValueType() != MVT::i32 && 13261 N->getOperand(0).getValueType() != MVT::i64) 13262 return SDValue(); 13263 13264 if (N->getOpcode() == ISD::SETCC || 13265 N->getOpcode() == ISD::SELECT_CC) { 13266 // If we're looking at a comparison, then we need to make sure that the 13267 // high bits (all except for the first) don't matter the result. 13268 ISD::CondCode CC = 13269 cast<CondCodeSDNode>(N->getOperand( 13270 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13271 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13272 13273 if (ISD::isSignedIntSetCC(CC)) { 13274 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13275 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13276 return SDValue(); 13277 } else if (ISD::isUnsignedIntSetCC(CC)) { 13278 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13279 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13280 !DAG.MaskedValueIsZero(N->getOperand(1), 13281 APInt::getHighBitsSet(OpBits, OpBits-1))) 13282 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13283 : SDValue()); 13284 } else { 13285 // This is neither a signed nor an unsigned comparison, just make sure 13286 // that the high bits are equal. 13287 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13288 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13289 13290 // We don't really care about what is known about the first bit (if 13291 // anything), so clear it in all masks prior to comparing them. 13292 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13293 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13294 13295 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13296 return SDValue(); 13297 } 13298 } 13299 13300 // We now know that the higher-order bits are irrelevant, we just need to 13301 // make sure that all of the intermediate operations are bit operations, and 13302 // all inputs are extensions. 13303 if (N->getOperand(0).getOpcode() != ISD::AND && 13304 N->getOperand(0).getOpcode() != ISD::OR && 13305 N->getOperand(0).getOpcode() != ISD::XOR && 13306 N->getOperand(0).getOpcode() != ISD::SELECT && 13307 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13308 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13309 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13310 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13311 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13312 return SDValue(); 13313 13314 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13315 N->getOperand(1).getOpcode() != ISD::AND && 13316 N->getOperand(1).getOpcode() != ISD::OR && 13317 N->getOperand(1).getOpcode() != ISD::XOR && 13318 N->getOperand(1).getOpcode() != ISD::SELECT && 13319 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13320 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13321 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13322 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13323 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13324 return SDValue(); 13325 13326 SmallVector<SDValue, 4> Inputs; 13327 SmallVector<SDValue, 8> BinOps, PromOps; 13328 SmallPtrSet<SDNode *, 16> Visited; 13329 13330 for (unsigned i = 0; i < 2; ++i) { 13331 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13332 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13333 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13334 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13335 isa<ConstantSDNode>(N->getOperand(i))) 13336 Inputs.push_back(N->getOperand(i)); 13337 else 13338 BinOps.push_back(N->getOperand(i)); 13339 13340 if (N->getOpcode() == ISD::TRUNCATE) 13341 break; 13342 } 13343 13344 // Visit all inputs, collect all binary operations (and, or, xor and 13345 // select) that are all fed by extensions. 13346 while (!BinOps.empty()) { 13347 SDValue BinOp = BinOps.back(); 13348 BinOps.pop_back(); 13349 13350 if (!Visited.insert(BinOp.getNode()).second) 13351 continue; 13352 13353 PromOps.push_back(BinOp); 13354 13355 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13356 // The condition of the select is not promoted. 13357 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13358 continue; 13359 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13360 continue; 13361 13362 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13363 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13364 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13365 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13366 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13367 Inputs.push_back(BinOp.getOperand(i)); 13368 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13369 BinOp.getOperand(i).getOpcode() == ISD::OR || 13370 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13371 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13372 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13373 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13374 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13375 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13376 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13377 BinOps.push_back(BinOp.getOperand(i)); 13378 } else { 13379 // We have an input that is not an extension or another binary 13380 // operation; we'll abort this transformation. 13381 return SDValue(); 13382 } 13383 } 13384 } 13385 13386 // Make sure that this is a self-contained cluster of operations (which 13387 // is not quite the same thing as saying that everything has only one 13388 // use). 13389 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13390 if (isa<ConstantSDNode>(Inputs[i])) 13391 continue; 13392 13393 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13394 UE = Inputs[i].getNode()->use_end(); 13395 UI != UE; ++UI) { 13396 SDNode *User = *UI; 13397 if (User != N && !Visited.count(User)) 13398 return SDValue(); 13399 13400 // Make sure that we're not going to promote the non-output-value 13401 // operand(s) or SELECT or SELECT_CC. 13402 // FIXME: Although we could sometimes handle this, and it does occur in 13403 // practice that one of the condition inputs to the select is also one of 13404 // the outputs, we currently can't deal with this. 13405 if (User->getOpcode() == ISD::SELECT) { 13406 if (User->getOperand(0) == Inputs[i]) 13407 return SDValue(); 13408 } else if (User->getOpcode() == ISD::SELECT_CC) { 13409 if (User->getOperand(0) == Inputs[i] || 13410 User->getOperand(1) == Inputs[i]) 13411 return SDValue(); 13412 } 13413 } 13414 } 13415 13416 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13417 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13418 UE = PromOps[i].getNode()->use_end(); 13419 UI != UE; ++UI) { 13420 SDNode *User = *UI; 13421 if (User != N && !Visited.count(User)) 13422 return SDValue(); 13423 13424 // Make sure that we're not going to promote the non-output-value 13425 // operand(s) or SELECT or SELECT_CC. 13426 // FIXME: Although we could sometimes handle this, and it does occur in 13427 // practice that one of the condition inputs to the select is also one of 13428 // the outputs, we currently can't deal with this. 13429 if (User->getOpcode() == ISD::SELECT) { 13430 if (User->getOperand(0) == PromOps[i]) 13431 return SDValue(); 13432 } else if (User->getOpcode() == ISD::SELECT_CC) { 13433 if (User->getOperand(0) == PromOps[i] || 13434 User->getOperand(1) == PromOps[i]) 13435 return SDValue(); 13436 } 13437 } 13438 } 13439 13440 // Replace all inputs with the extension operand. 13441 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13442 // Constants may have users outside the cluster of to-be-promoted nodes, 13443 // and so we need to replace those as we do the promotions. 13444 if (isa<ConstantSDNode>(Inputs[i])) 13445 continue; 13446 else 13447 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13448 } 13449 13450 std::list<HandleSDNode> PromOpHandles; 13451 for (auto &PromOp : PromOps) 13452 PromOpHandles.emplace_back(PromOp); 13453 13454 // Replace all operations (these are all the same, but have a different 13455 // (i1) return type). DAG.getNode will validate that the types of 13456 // a binary operator match, so go through the list in reverse so that 13457 // we've likely promoted both operands first. Any intermediate truncations or 13458 // extensions disappear. 13459 while (!PromOpHandles.empty()) { 13460 SDValue PromOp = PromOpHandles.back().getValue(); 13461 PromOpHandles.pop_back(); 13462 13463 if (PromOp.getOpcode() == ISD::TRUNCATE || 13464 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13465 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13466 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13467 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13468 PromOp.getOperand(0).getValueType() != MVT::i1) { 13469 // The operand is not yet ready (see comment below). 13470 PromOpHandles.emplace_front(PromOp); 13471 continue; 13472 } 13473 13474 SDValue RepValue = PromOp.getOperand(0); 13475 if (isa<ConstantSDNode>(RepValue)) 13476 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13477 13478 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13479 continue; 13480 } 13481 13482 unsigned C; 13483 switch (PromOp.getOpcode()) { 13484 default: C = 0; break; 13485 case ISD::SELECT: C = 1; break; 13486 case ISD::SELECT_CC: C = 2; break; 13487 } 13488 13489 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13490 PromOp.getOperand(C).getValueType() != MVT::i1) || 13491 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13492 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13493 // The to-be-promoted operands of this node have not yet been 13494 // promoted (this should be rare because we're going through the 13495 // list backward, but if one of the operands has several users in 13496 // this cluster of to-be-promoted nodes, it is possible). 13497 PromOpHandles.emplace_front(PromOp); 13498 continue; 13499 } 13500 13501 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13502 PromOp.getNode()->op_end()); 13503 13504 // If there are any constant inputs, make sure they're replaced now. 13505 for (unsigned i = 0; i < 2; ++i) 13506 if (isa<ConstantSDNode>(Ops[C+i])) 13507 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13508 13509 DAG.ReplaceAllUsesOfValueWith(PromOp, 13510 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13511 } 13512 13513 // Now we're left with the initial truncation itself. 13514 if (N->getOpcode() == ISD::TRUNCATE) 13515 return N->getOperand(0); 13516 13517 // Otherwise, this is a comparison. The operands to be compared have just 13518 // changed type (to i1), but everything else is the same. 13519 return SDValue(N, 0); 13520 } 13521 13522 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13523 DAGCombinerInfo &DCI) const { 13524 SelectionDAG &DAG = DCI.DAG; 13525 SDLoc dl(N); 13526 13527 // If we're tracking CR bits, we need to be careful that we don't have: 13528 // zext(binary-ops(trunc(x), trunc(y))) 13529 // or 13530 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13531 // such that we're unnecessarily moving things into CR bits that can more 13532 // efficiently stay in GPRs. Note that if we're not certain that the high 13533 // bits are set as required by the final extension, we still may need to do 13534 // some masking to get the proper behavior. 13535 13536 // This same functionality is important on PPC64 when dealing with 13537 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13538 // the return values of functions. Because it is so similar, it is handled 13539 // here as well. 13540 13541 if (N->getValueType(0) != MVT::i32 && 13542 N->getValueType(0) != MVT::i64) 13543 return SDValue(); 13544 13545 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13546 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13547 return SDValue(); 13548 13549 if (N->getOperand(0).getOpcode() != ISD::AND && 13550 N->getOperand(0).getOpcode() != ISD::OR && 13551 N->getOperand(0).getOpcode() != ISD::XOR && 13552 N->getOperand(0).getOpcode() != ISD::SELECT && 13553 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13554 return SDValue(); 13555 13556 SmallVector<SDValue, 4> Inputs; 13557 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13558 SmallPtrSet<SDNode *, 16> Visited; 13559 13560 // Visit all inputs, collect all binary operations (and, or, xor and 13561 // select) that are all fed by truncations. 13562 while (!BinOps.empty()) { 13563 SDValue BinOp = BinOps.back(); 13564 BinOps.pop_back(); 13565 13566 if (!Visited.insert(BinOp.getNode()).second) 13567 continue; 13568 13569 PromOps.push_back(BinOp); 13570 13571 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13572 // The condition of the select is not promoted. 13573 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13574 continue; 13575 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13576 continue; 13577 13578 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13579 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13580 Inputs.push_back(BinOp.getOperand(i)); 13581 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13582 BinOp.getOperand(i).getOpcode() == ISD::OR || 13583 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13584 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13585 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13586 BinOps.push_back(BinOp.getOperand(i)); 13587 } else { 13588 // We have an input that is not a truncation or another binary 13589 // operation; we'll abort this transformation. 13590 return SDValue(); 13591 } 13592 } 13593 } 13594 13595 // The operands of a select that must be truncated when the select is 13596 // promoted because the operand is actually part of the to-be-promoted set. 13597 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13598 13599 // Make sure that this is a self-contained cluster of operations (which 13600 // is not quite the same thing as saying that everything has only one 13601 // use). 13602 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13603 if (isa<ConstantSDNode>(Inputs[i])) 13604 continue; 13605 13606 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13607 UE = Inputs[i].getNode()->use_end(); 13608 UI != UE; ++UI) { 13609 SDNode *User = *UI; 13610 if (User != N && !Visited.count(User)) 13611 return SDValue(); 13612 13613 // If we're going to promote the non-output-value operand(s) or SELECT or 13614 // SELECT_CC, record them for truncation. 13615 if (User->getOpcode() == ISD::SELECT) { 13616 if (User->getOperand(0) == Inputs[i]) 13617 SelectTruncOp[0].insert(std::make_pair(User, 13618 User->getOperand(0).getValueType())); 13619 } else if (User->getOpcode() == ISD::SELECT_CC) { 13620 if (User->getOperand(0) == Inputs[i]) 13621 SelectTruncOp[0].insert(std::make_pair(User, 13622 User->getOperand(0).getValueType())); 13623 if (User->getOperand(1) == Inputs[i]) 13624 SelectTruncOp[1].insert(std::make_pair(User, 13625 User->getOperand(1).getValueType())); 13626 } 13627 } 13628 } 13629 13630 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13631 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13632 UE = PromOps[i].getNode()->use_end(); 13633 UI != UE; ++UI) { 13634 SDNode *User = *UI; 13635 if (User != N && !Visited.count(User)) 13636 return SDValue(); 13637 13638 // If we're going to promote the non-output-value operand(s) or SELECT or 13639 // SELECT_CC, record them for truncation. 13640 if (User->getOpcode() == ISD::SELECT) { 13641 if (User->getOperand(0) == PromOps[i]) 13642 SelectTruncOp[0].insert(std::make_pair(User, 13643 User->getOperand(0).getValueType())); 13644 } else if (User->getOpcode() == ISD::SELECT_CC) { 13645 if (User->getOperand(0) == PromOps[i]) 13646 SelectTruncOp[0].insert(std::make_pair(User, 13647 User->getOperand(0).getValueType())); 13648 if (User->getOperand(1) == PromOps[i]) 13649 SelectTruncOp[1].insert(std::make_pair(User, 13650 User->getOperand(1).getValueType())); 13651 } 13652 } 13653 } 13654 13655 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13656 bool ReallyNeedsExt = false; 13657 if (N->getOpcode() != ISD::ANY_EXTEND) { 13658 // If all of the inputs are not already sign/zero extended, then 13659 // we'll still need to do that at the end. 13660 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13661 if (isa<ConstantSDNode>(Inputs[i])) 13662 continue; 13663 13664 unsigned OpBits = 13665 Inputs[i].getOperand(0).getValueSizeInBits(); 13666 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13667 13668 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13669 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13670 APInt::getHighBitsSet(OpBits, 13671 OpBits-PromBits))) || 13672 (N->getOpcode() == ISD::SIGN_EXTEND && 13673 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13674 (OpBits-(PromBits-1)))) { 13675 ReallyNeedsExt = true; 13676 break; 13677 } 13678 } 13679 } 13680 13681 // Replace all inputs, either with the truncation operand, or a 13682 // truncation or extension to the final output type. 13683 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13684 // Constant inputs need to be replaced with the to-be-promoted nodes that 13685 // use them because they might have users outside of the cluster of 13686 // promoted nodes. 13687 if (isa<ConstantSDNode>(Inputs[i])) 13688 continue; 13689 13690 SDValue InSrc = Inputs[i].getOperand(0); 13691 if (Inputs[i].getValueType() == N->getValueType(0)) 13692 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13693 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13694 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13695 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13696 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13697 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13698 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13699 else 13700 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13701 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13702 } 13703 13704 std::list<HandleSDNode> PromOpHandles; 13705 for (auto &PromOp : PromOps) 13706 PromOpHandles.emplace_back(PromOp); 13707 13708 // Replace all operations (these are all the same, but have a different 13709 // (promoted) return type). DAG.getNode will validate that the types of 13710 // a binary operator match, so go through the list in reverse so that 13711 // we've likely promoted both operands first. 13712 while (!PromOpHandles.empty()) { 13713 SDValue PromOp = PromOpHandles.back().getValue(); 13714 PromOpHandles.pop_back(); 13715 13716 unsigned C; 13717 switch (PromOp.getOpcode()) { 13718 default: C = 0; break; 13719 case ISD::SELECT: C = 1; break; 13720 case ISD::SELECT_CC: C = 2; break; 13721 } 13722 13723 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13724 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13725 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13726 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13727 // The to-be-promoted operands of this node have not yet been 13728 // promoted (this should be rare because we're going through the 13729 // list backward, but if one of the operands has several users in 13730 // this cluster of to-be-promoted nodes, it is possible). 13731 PromOpHandles.emplace_front(PromOp); 13732 continue; 13733 } 13734 13735 // For SELECT and SELECT_CC nodes, we do a similar check for any 13736 // to-be-promoted comparison inputs. 13737 if (PromOp.getOpcode() == ISD::SELECT || 13738 PromOp.getOpcode() == ISD::SELECT_CC) { 13739 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13740 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13741 (SelectTruncOp[1].count(PromOp.getNode()) && 13742 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13743 PromOpHandles.emplace_front(PromOp); 13744 continue; 13745 } 13746 } 13747 13748 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13749 PromOp.getNode()->op_end()); 13750 13751 // If this node has constant inputs, then they'll need to be promoted here. 13752 for (unsigned i = 0; i < 2; ++i) { 13753 if (!isa<ConstantSDNode>(Ops[C+i])) 13754 continue; 13755 if (Ops[C+i].getValueType() == N->getValueType(0)) 13756 continue; 13757 13758 if (N->getOpcode() == ISD::SIGN_EXTEND) 13759 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13760 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13761 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13762 else 13763 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13764 } 13765 13766 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13767 // truncate them again to the original value type. 13768 if (PromOp.getOpcode() == ISD::SELECT || 13769 PromOp.getOpcode() == ISD::SELECT_CC) { 13770 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13771 if (SI0 != SelectTruncOp[0].end()) 13772 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13773 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13774 if (SI1 != SelectTruncOp[1].end()) 13775 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13776 } 13777 13778 DAG.ReplaceAllUsesOfValueWith(PromOp, 13779 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13780 } 13781 13782 // Now we're left with the initial extension itself. 13783 if (!ReallyNeedsExt) 13784 return N->getOperand(0); 13785 13786 // To zero extend, just mask off everything except for the first bit (in the 13787 // i1 case). 13788 if (N->getOpcode() == ISD::ZERO_EXTEND) 13789 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13790 DAG.getConstant(APInt::getLowBitsSet( 13791 N->getValueSizeInBits(0), PromBits), 13792 dl, N->getValueType(0))); 13793 13794 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13795 "Invalid extension type"); 13796 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13797 SDValue ShiftCst = 13798 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13799 return DAG.getNode( 13800 ISD::SRA, dl, N->getValueType(0), 13801 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13802 ShiftCst); 13803 } 13804 13805 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13806 DAGCombinerInfo &DCI) const { 13807 assert(N->getOpcode() == ISD::SETCC && 13808 "Should be called with a SETCC node"); 13809 13810 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13811 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13812 SDValue LHS = N->getOperand(0); 13813 SDValue RHS = N->getOperand(1); 13814 13815 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13816 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13817 LHS.hasOneUse()) 13818 std::swap(LHS, RHS); 13819 13820 // x == 0-y --> x+y == 0 13821 // x != 0-y --> x+y != 0 13822 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13823 RHS.hasOneUse()) { 13824 SDLoc DL(N); 13825 SelectionDAG &DAG = DCI.DAG; 13826 EVT VT = N->getValueType(0); 13827 EVT OpVT = LHS.getValueType(); 13828 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13829 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13830 } 13831 } 13832 13833 return DAGCombineTruncBoolExt(N, DCI); 13834 } 13835 13836 // Is this an extending load from an f32 to an f64? 13837 static bool isFPExtLoad(SDValue Op) { 13838 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13839 return LD->getExtensionType() == ISD::EXTLOAD && 13840 Op.getValueType() == MVT::f64; 13841 return false; 13842 } 13843 13844 /// Reduces the number of fp-to-int conversion when building a vector. 13845 /// 13846 /// If this vector is built out of floating to integer conversions, 13847 /// transform it to a vector built out of floating point values followed by a 13848 /// single floating to integer conversion of the vector. 13849 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13850 /// becomes (fptosi (build_vector ($A, $B, ...))) 13851 SDValue PPCTargetLowering:: 13852 combineElementTruncationToVectorTruncation(SDNode *N, 13853 DAGCombinerInfo &DCI) const { 13854 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13855 "Should be called with a BUILD_VECTOR node"); 13856 13857 SelectionDAG &DAG = DCI.DAG; 13858 SDLoc dl(N); 13859 13860 SDValue FirstInput = N->getOperand(0); 13861 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13862 "The input operand must be an fp-to-int conversion."); 13863 13864 // This combine happens after legalization so the fp_to_[su]i nodes are 13865 // already converted to PPCSISD nodes. 13866 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13867 if (FirstConversion == PPCISD::FCTIDZ || 13868 FirstConversion == PPCISD::FCTIDUZ || 13869 FirstConversion == PPCISD::FCTIWZ || 13870 FirstConversion == PPCISD::FCTIWUZ) { 13871 bool IsSplat = true; 13872 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13873 FirstConversion == PPCISD::FCTIWUZ; 13874 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13875 SmallVector<SDValue, 4> Ops; 13876 EVT TargetVT = N->getValueType(0); 13877 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13878 SDValue NextOp = N->getOperand(i); 13879 if (NextOp.getOpcode() != PPCISD::MFVSR) 13880 return SDValue(); 13881 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13882 if (NextConversion != FirstConversion) 13883 return SDValue(); 13884 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13885 // This is not valid if the input was originally double precision. It is 13886 // also not profitable to do unless this is an extending load in which 13887 // case doing this combine will allow us to combine consecutive loads. 13888 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13889 return SDValue(); 13890 if (N->getOperand(i) != FirstInput) 13891 IsSplat = false; 13892 } 13893 13894 // If this is a splat, we leave it as-is since there will be only a single 13895 // fp-to-int conversion followed by a splat of the integer. This is better 13896 // for 32-bit and smaller ints and neutral for 64-bit ints. 13897 if (IsSplat) 13898 return SDValue(); 13899 13900 // Now that we know we have the right type of node, get its operands 13901 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13902 SDValue In = N->getOperand(i).getOperand(0); 13903 if (Is32Bit) { 13904 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13905 // here, we know that all inputs are extending loads so this is safe). 13906 if (In.isUndef()) 13907 Ops.push_back(DAG.getUNDEF(SrcVT)); 13908 else { 13909 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13910 MVT::f32, In.getOperand(0), 13911 DAG.getIntPtrConstant(1, dl)); 13912 Ops.push_back(Trunc); 13913 } 13914 } else 13915 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13916 } 13917 13918 unsigned Opcode; 13919 if (FirstConversion == PPCISD::FCTIDZ || 13920 FirstConversion == PPCISD::FCTIWZ) 13921 Opcode = ISD::FP_TO_SINT; 13922 else 13923 Opcode = ISD::FP_TO_UINT; 13924 13925 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13926 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13927 return DAG.getNode(Opcode, dl, TargetVT, BV); 13928 } 13929 return SDValue(); 13930 } 13931 13932 /// Reduce the number of loads when building a vector. 13933 /// 13934 /// Building a vector out of multiple loads can be converted to a load 13935 /// of the vector type if the loads are consecutive. If the loads are 13936 /// consecutive but in descending order, a shuffle is added at the end 13937 /// to reorder the vector. 13938 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13939 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13940 "Should be called with a BUILD_VECTOR node"); 13941 13942 SDLoc dl(N); 13943 13944 // Return early for non byte-sized type, as they can't be consecutive. 13945 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13946 return SDValue(); 13947 13948 bool InputsAreConsecutiveLoads = true; 13949 bool InputsAreReverseConsecutive = true; 13950 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13951 SDValue FirstInput = N->getOperand(0); 13952 bool IsRoundOfExtLoad = false; 13953 13954 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13955 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13956 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13957 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13958 } 13959 // Not a build vector of (possibly fp_rounded) loads. 13960 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13961 N->getNumOperands() == 1) 13962 return SDValue(); 13963 13964 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13965 // If any inputs are fp_round(extload), they all must be. 13966 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13967 return SDValue(); 13968 13969 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13970 N->getOperand(i); 13971 if (NextInput.getOpcode() != ISD::LOAD) 13972 return SDValue(); 13973 13974 SDValue PreviousInput = 13975 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13976 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13977 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13978 13979 // If any inputs are fp_round(extload), they all must be. 13980 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13981 return SDValue(); 13982 13983 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13984 InputsAreConsecutiveLoads = false; 13985 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13986 InputsAreReverseConsecutive = false; 13987 13988 // Exit early if the loads are neither consecutive nor reverse consecutive. 13989 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13990 return SDValue(); 13991 } 13992 13993 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13994 "The loads cannot be both consecutive and reverse consecutive."); 13995 13996 SDValue FirstLoadOp = 13997 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13998 SDValue LastLoadOp = 13999 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14000 N->getOperand(N->getNumOperands()-1); 14001 14002 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14003 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14004 if (InputsAreConsecutiveLoads) { 14005 assert(LD1 && "Input needs to be a LoadSDNode."); 14006 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14007 LD1->getBasePtr(), LD1->getPointerInfo(), 14008 LD1->getAlignment()); 14009 } 14010 if (InputsAreReverseConsecutive) { 14011 assert(LDL && "Input needs to be a LoadSDNode."); 14012 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14013 LDL->getBasePtr(), LDL->getPointerInfo(), 14014 LDL->getAlignment()); 14015 SmallVector<int, 16> Ops; 14016 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14017 Ops.push_back(i); 14018 14019 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14020 DAG.getUNDEF(N->getValueType(0)), Ops); 14021 } 14022 return SDValue(); 14023 } 14024 14025 // This function adds the required vector_shuffle needed to get 14026 // the elements of the vector extract in the correct position 14027 // as specified by the CorrectElems encoding. 14028 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14029 SDValue Input, uint64_t Elems, 14030 uint64_t CorrectElems) { 14031 SDLoc dl(N); 14032 14033 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14034 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14035 14036 // Knowing the element indices being extracted from the original 14037 // vector and the order in which they're being inserted, just put 14038 // them at element indices required for the instruction. 14039 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14040 if (DAG.getDataLayout().isLittleEndian()) 14041 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14042 else 14043 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14044 CorrectElems = CorrectElems >> 8; 14045 Elems = Elems >> 8; 14046 } 14047 14048 SDValue Shuffle = 14049 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14050 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14051 14052 EVT VT = N->getValueType(0); 14053 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14054 14055 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14056 Input.getValueType().getVectorElementType(), 14057 VT.getVectorNumElements()); 14058 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14059 DAG.getValueType(ExtVT)); 14060 } 14061 14062 // Look for build vector patterns where input operands come from sign 14063 // extended vector_extract elements of specific indices. If the correct indices 14064 // aren't used, add a vector shuffle to fix up the indices and create 14065 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14066 // during instruction selection. 14067 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14068 // This array encodes the indices that the vector sign extend instructions 14069 // extract from when extending from one type to another for both BE and LE. 14070 // The right nibble of each byte corresponds to the LE incides. 14071 // and the left nibble of each byte corresponds to the BE incides. 14072 // For example: 0x3074B8FC byte->word 14073 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14074 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14075 // For example: 0x000070F8 byte->double word 14076 // For LE: the allowed indices are: 0x0,0x8 14077 // For BE: the allowed indices are: 0x7,0xF 14078 uint64_t TargetElems[] = { 14079 0x3074B8FC, // b->w 14080 0x000070F8, // b->d 14081 0x10325476, // h->w 14082 0x00003074, // h->d 14083 0x00001032, // w->d 14084 }; 14085 14086 uint64_t Elems = 0; 14087 int Index; 14088 SDValue Input; 14089 14090 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14091 if (!Op) 14092 return false; 14093 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14094 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14095 return false; 14096 14097 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14098 // of the right width. 14099 SDValue Extract = Op.getOperand(0); 14100 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14101 Extract = Extract.getOperand(0); 14102 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14103 return false; 14104 14105 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14106 if (!ExtOp) 14107 return false; 14108 14109 Index = ExtOp->getZExtValue(); 14110 if (Input && Input != Extract.getOperand(0)) 14111 return false; 14112 14113 if (!Input) 14114 Input = Extract.getOperand(0); 14115 14116 Elems = Elems << 8; 14117 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14118 Elems |= Index; 14119 14120 return true; 14121 }; 14122 14123 // If the build vector operands aren't sign extended vector extracts, 14124 // of the same input vector, then return. 14125 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14126 if (!isSExtOfVecExtract(N->getOperand(i))) { 14127 return SDValue(); 14128 } 14129 } 14130 14131 // If the vector extract indicies are not correct, add the appropriate 14132 // vector_shuffle. 14133 int TgtElemArrayIdx; 14134 int InputSize = Input.getValueType().getScalarSizeInBits(); 14135 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14136 if (InputSize + OutputSize == 40) 14137 TgtElemArrayIdx = 0; 14138 else if (InputSize + OutputSize == 72) 14139 TgtElemArrayIdx = 1; 14140 else if (InputSize + OutputSize == 48) 14141 TgtElemArrayIdx = 2; 14142 else if (InputSize + OutputSize == 80) 14143 TgtElemArrayIdx = 3; 14144 else if (InputSize + OutputSize == 96) 14145 TgtElemArrayIdx = 4; 14146 else 14147 return SDValue(); 14148 14149 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14150 CorrectElems = DAG.getDataLayout().isLittleEndian() 14151 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14152 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14153 if (Elems != CorrectElems) { 14154 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14155 } 14156 14157 // Regular lowering will catch cases where a shuffle is not needed. 14158 return SDValue(); 14159 } 14160 14161 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14162 DAGCombinerInfo &DCI) const { 14163 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14164 "Should be called with a BUILD_VECTOR node"); 14165 14166 SelectionDAG &DAG = DCI.DAG; 14167 SDLoc dl(N); 14168 14169 if (!Subtarget.hasVSX()) 14170 return SDValue(); 14171 14172 // The target independent DAG combiner will leave a build_vector of 14173 // float-to-int conversions intact. We can generate MUCH better code for 14174 // a float-to-int conversion of a vector of floats. 14175 SDValue FirstInput = N->getOperand(0); 14176 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14177 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14178 if (Reduced) 14179 return Reduced; 14180 } 14181 14182 // If we're building a vector out of consecutive loads, just load that 14183 // vector type. 14184 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14185 if (Reduced) 14186 return Reduced; 14187 14188 // If we're building a vector out of extended elements from another vector 14189 // we have P9 vector integer extend instructions. The code assumes legal 14190 // input types (i.e. it can't handle things like v4i16) so do not run before 14191 // legalization. 14192 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14193 Reduced = combineBVOfVecSExt(N, DAG); 14194 if (Reduced) 14195 return Reduced; 14196 } 14197 14198 14199 if (N->getValueType(0) != MVT::v2f64) 14200 return SDValue(); 14201 14202 // Looking for: 14203 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14204 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14205 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14206 return SDValue(); 14207 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14208 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14209 return SDValue(); 14210 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14211 return SDValue(); 14212 14213 SDValue Ext1 = FirstInput.getOperand(0); 14214 SDValue Ext2 = N->getOperand(1).getOperand(0); 14215 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14216 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14217 return SDValue(); 14218 14219 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14220 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14221 if (!Ext1Op || !Ext2Op) 14222 return SDValue(); 14223 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14224 Ext1.getOperand(0) != Ext2.getOperand(0)) 14225 return SDValue(); 14226 14227 int FirstElem = Ext1Op->getZExtValue(); 14228 int SecondElem = Ext2Op->getZExtValue(); 14229 int SubvecIdx; 14230 if (FirstElem == 0 && SecondElem == 1) 14231 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14232 else if (FirstElem == 2 && SecondElem == 3) 14233 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14234 else 14235 return SDValue(); 14236 14237 SDValue SrcVec = Ext1.getOperand(0); 14238 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14239 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14240 return DAG.getNode(NodeType, dl, MVT::v2f64, 14241 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14242 } 14243 14244 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14245 DAGCombinerInfo &DCI) const { 14246 assert((N->getOpcode() == ISD::SINT_TO_FP || 14247 N->getOpcode() == ISD::UINT_TO_FP) && 14248 "Need an int -> FP conversion node here"); 14249 14250 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14251 return SDValue(); 14252 14253 SelectionDAG &DAG = DCI.DAG; 14254 SDLoc dl(N); 14255 SDValue Op(N, 0); 14256 14257 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14258 // from the hardware. 14259 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14260 return SDValue(); 14261 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14262 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14263 return SDValue(); 14264 14265 SDValue FirstOperand(Op.getOperand(0)); 14266 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14267 (FirstOperand.getValueType() == MVT::i8 || 14268 FirstOperand.getValueType() == MVT::i16); 14269 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14270 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14271 bool DstDouble = Op.getValueType() == MVT::f64; 14272 unsigned ConvOp = Signed ? 14273 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14274 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14275 SDValue WidthConst = 14276 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14277 dl, false); 14278 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14279 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14280 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14281 DAG.getVTList(MVT::f64, MVT::Other), 14282 Ops, MVT::i8, LDN->getMemOperand()); 14283 14284 // For signed conversion, we need to sign-extend the value in the VSR 14285 if (Signed) { 14286 SDValue ExtOps[] = { Ld, WidthConst }; 14287 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14288 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14289 } else 14290 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14291 } 14292 14293 14294 // For i32 intermediate values, unfortunately, the conversion functions 14295 // leave the upper 32 bits of the value are undefined. Within the set of 14296 // scalar instructions, we have no method for zero- or sign-extending the 14297 // value. Thus, we cannot handle i32 intermediate values here. 14298 if (Op.getOperand(0).getValueType() == MVT::i32) 14299 return SDValue(); 14300 14301 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14302 "UINT_TO_FP is supported only with FPCVT"); 14303 14304 // If we have FCFIDS, then use it when converting to single-precision. 14305 // Otherwise, convert to double-precision and then round. 14306 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14307 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14308 : PPCISD::FCFIDS) 14309 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14310 : PPCISD::FCFID); 14311 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14312 ? MVT::f32 14313 : MVT::f64; 14314 14315 // If we're converting from a float, to an int, and back to a float again, 14316 // then we don't need the store/load pair at all. 14317 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14318 Subtarget.hasFPCVT()) || 14319 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14320 SDValue Src = Op.getOperand(0).getOperand(0); 14321 if (Src.getValueType() == MVT::f32) { 14322 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14323 DCI.AddToWorklist(Src.getNode()); 14324 } else if (Src.getValueType() != MVT::f64) { 14325 // Make sure that we don't pick up a ppc_fp128 source value. 14326 return SDValue(); 14327 } 14328 14329 unsigned FCTOp = 14330 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14331 PPCISD::FCTIDUZ; 14332 14333 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14334 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14335 14336 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14337 FP = DAG.getNode(ISD::FP_ROUND, dl, 14338 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14339 DCI.AddToWorklist(FP.getNode()); 14340 } 14341 14342 return FP; 14343 } 14344 14345 return SDValue(); 14346 } 14347 14348 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14349 // builtins) into loads with swaps. 14350 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14351 DAGCombinerInfo &DCI) const { 14352 SelectionDAG &DAG = DCI.DAG; 14353 SDLoc dl(N); 14354 SDValue Chain; 14355 SDValue Base; 14356 MachineMemOperand *MMO; 14357 14358 switch (N->getOpcode()) { 14359 default: 14360 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14361 case ISD::LOAD: { 14362 LoadSDNode *LD = cast<LoadSDNode>(N); 14363 Chain = LD->getChain(); 14364 Base = LD->getBasePtr(); 14365 MMO = LD->getMemOperand(); 14366 // If the MMO suggests this isn't a load of a full vector, leave 14367 // things alone. For a built-in, we have to make the change for 14368 // correctness, so if there is a size problem that will be a bug. 14369 if (MMO->getSize() < 16) 14370 return SDValue(); 14371 break; 14372 } 14373 case ISD::INTRINSIC_W_CHAIN: { 14374 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14375 Chain = Intrin->getChain(); 14376 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14377 // us what we want. Get operand 2 instead. 14378 Base = Intrin->getOperand(2); 14379 MMO = Intrin->getMemOperand(); 14380 break; 14381 } 14382 } 14383 14384 MVT VecTy = N->getValueType(0).getSimpleVT(); 14385 14386 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14387 // aligned and the type is a vector with elements up to 4 bytes 14388 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14389 VecTy.getScalarSizeInBits() <= 32) { 14390 return SDValue(); 14391 } 14392 14393 SDValue LoadOps[] = { Chain, Base }; 14394 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14395 DAG.getVTList(MVT::v2f64, MVT::Other), 14396 LoadOps, MVT::v2f64, MMO); 14397 14398 DCI.AddToWorklist(Load.getNode()); 14399 Chain = Load.getValue(1); 14400 SDValue Swap = DAG.getNode( 14401 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14402 DCI.AddToWorklist(Swap.getNode()); 14403 14404 // Add a bitcast if the resulting load type doesn't match v2f64. 14405 if (VecTy != MVT::v2f64) { 14406 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14407 DCI.AddToWorklist(N.getNode()); 14408 // Package {bitcast value, swap's chain} to match Load's shape. 14409 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14410 N, Swap.getValue(1)); 14411 } 14412 14413 return Swap; 14414 } 14415 14416 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14417 // builtins) into stores with swaps. 14418 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14419 DAGCombinerInfo &DCI) const { 14420 SelectionDAG &DAG = DCI.DAG; 14421 SDLoc dl(N); 14422 SDValue Chain; 14423 SDValue Base; 14424 unsigned SrcOpnd; 14425 MachineMemOperand *MMO; 14426 14427 switch (N->getOpcode()) { 14428 default: 14429 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14430 case ISD::STORE: { 14431 StoreSDNode *ST = cast<StoreSDNode>(N); 14432 Chain = ST->getChain(); 14433 Base = ST->getBasePtr(); 14434 MMO = ST->getMemOperand(); 14435 SrcOpnd = 1; 14436 // If the MMO suggests this isn't a store of a full vector, leave 14437 // things alone. For a built-in, we have to make the change for 14438 // correctness, so if there is a size problem that will be a bug. 14439 if (MMO->getSize() < 16) 14440 return SDValue(); 14441 break; 14442 } 14443 case ISD::INTRINSIC_VOID: { 14444 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14445 Chain = Intrin->getChain(); 14446 // Intrin->getBasePtr() oddly does not get what we want. 14447 Base = Intrin->getOperand(3); 14448 MMO = Intrin->getMemOperand(); 14449 SrcOpnd = 2; 14450 break; 14451 } 14452 } 14453 14454 SDValue Src = N->getOperand(SrcOpnd); 14455 MVT VecTy = Src.getValueType().getSimpleVT(); 14456 14457 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14458 // aligned and the type is a vector with elements up to 4 bytes 14459 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14460 VecTy.getScalarSizeInBits() <= 32) { 14461 return SDValue(); 14462 } 14463 14464 // All stores are done as v2f64 and possible bit cast. 14465 if (VecTy != MVT::v2f64) { 14466 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14467 DCI.AddToWorklist(Src.getNode()); 14468 } 14469 14470 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14471 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14472 DCI.AddToWorklist(Swap.getNode()); 14473 Chain = Swap.getValue(1); 14474 SDValue StoreOps[] = { Chain, Swap, Base }; 14475 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14476 DAG.getVTList(MVT::Other), 14477 StoreOps, VecTy, MMO); 14478 DCI.AddToWorklist(Store.getNode()); 14479 return Store; 14480 } 14481 14482 // Handle DAG combine for STORE (FP_TO_INT F). 14483 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14484 DAGCombinerInfo &DCI) const { 14485 14486 SelectionDAG &DAG = DCI.DAG; 14487 SDLoc dl(N); 14488 unsigned Opcode = N->getOperand(1).getOpcode(); 14489 14490 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14491 && "Not a FP_TO_INT Instruction!"); 14492 14493 SDValue Val = N->getOperand(1).getOperand(0); 14494 EVT Op1VT = N->getOperand(1).getValueType(); 14495 EVT ResVT = Val.getValueType(); 14496 14497 // Floating point types smaller than 32 bits are not legal on Power. 14498 if (ResVT.getScalarSizeInBits() < 32) 14499 return SDValue(); 14500 14501 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14502 bool ValidTypeForStoreFltAsInt = 14503 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14504 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14505 14506 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14507 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14508 return SDValue(); 14509 14510 // Extend f32 values to f64 14511 if (ResVT.getScalarSizeInBits() == 32) { 14512 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14513 DCI.AddToWorklist(Val.getNode()); 14514 } 14515 14516 // Set signed or unsigned conversion opcode. 14517 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14518 PPCISD::FP_TO_SINT_IN_VSR : 14519 PPCISD::FP_TO_UINT_IN_VSR; 14520 14521 Val = DAG.getNode(ConvOpcode, 14522 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14523 DCI.AddToWorklist(Val.getNode()); 14524 14525 // Set number of bytes being converted. 14526 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14527 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14528 DAG.getIntPtrConstant(ByteSize, dl, false), 14529 DAG.getValueType(Op1VT) }; 14530 14531 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14532 DAG.getVTList(MVT::Other), Ops, 14533 cast<StoreSDNode>(N)->getMemoryVT(), 14534 cast<StoreSDNode>(N)->getMemOperand()); 14535 14536 DCI.AddToWorklist(Val.getNode()); 14537 return Val; 14538 } 14539 14540 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14541 // Check that the source of the element keeps flipping 14542 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14543 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14544 for (int i = 1, e = Mask.size(); i < e; i++) { 14545 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14546 return false; 14547 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14548 return false; 14549 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14550 } 14551 return true; 14552 } 14553 14554 static bool isSplatBV(SDValue Op) { 14555 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14556 return false; 14557 SDValue FirstOp; 14558 14559 // Find first non-undef input. 14560 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14561 FirstOp = Op.getOperand(i); 14562 if (!FirstOp.isUndef()) 14563 break; 14564 } 14565 14566 // All inputs are undef or the same as the first non-undef input. 14567 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14568 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14569 return false; 14570 return true; 14571 } 14572 14573 static SDValue isScalarToVec(SDValue Op) { 14574 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14575 return Op; 14576 if (Op.getOpcode() != ISD::BITCAST) 14577 return SDValue(); 14578 Op = Op.getOperand(0); 14579 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14580 return Op; 14581 return SDValue(); 14582 } 14583 14584 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14585 int LHSMaxIdx, int RHSMinIdx, 14586 int RHSMaxIdx, int HalfVec) { 14587 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14588 int Idx = ShuffV[i]; 14589 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14590 ShuffV[i] += HalfVec; 14591 } 14592 return; 14593 } 14594 14595 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14596 // the original is: 14597 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14598 // In such a case, just change the shuffle mask to extract the element 14599 // from the permuted index. 14600 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14601 SDLoc dl(OrigSToV); 14602 EVT VT = OrigSToV.getValueType(); 14603 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14604 "Expecting a SCALAR_TO_VECTOR here"); 14605 SDValue Input = OrigSToV.getOperand(0); 14606 14607 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14608 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14609 SDValue OrigVector = Input.getOperand(0); 14610 14611 // Can't handle non-const element indices or different vector types 14612 // for the input to the extract and the output of the scalar_to_vector. 14613 if (Idx && VT == OrigVector.getValueType()) { 14614 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14615 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14616 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14617 } 14618 } 14619 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14620 OrigSToV.getOperand(0)); 14621 } 14622 14623 // On little endian subtargets, combine shuffles such as: 14624 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14625 // into: 14626 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14627 // because the latter can be matched to a single instruction merge. 14628 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14629 // to put the value into element zero. Adjust the shuffle mask so that the 14630 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14631 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14632 SelectionDAG &DAG) const { 14633 SDValue LHS = SVN->getOperand(0); 14634 SDValue RHS = SVN->getOperand(1); 14635 auto Mask = SVN->getMask(); 14636 int NumElts = LHS.getValueType().getVectorNumElements(); 14637 SDValue Res(SVN, 0); 14638 SDLoc dl(SVN); 14639 14640 // None of these combines are useful on big endian systems since the ISA 14641 // already has a big endian bias. 14642 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14643 return Res; 14644 14645 // If this is not a shuffle of a shuffle and the first element comes from 14646 // the second vector, canonicalize to the commuted form. This will make it 14647 // more likely to match one of the single instruction patterns. 14648 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14649 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14650 std::swap(LHS, RHS); 14651 Res = DAG.getCommutedVectorShuffle(*SVN); 14652 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14653 } 14654 14655 // Adjust the shuffle mask if either input vector comes from a 14656 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14657 // form (to prevent the need for a swap). 14658 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14659 SDValue SToVLHS = isScalarToVec(LHS); 14660 SDValue SToVRHS = isScalarToVec(RHS); 14661 if (SToVLHS || SToVRHS) { 14662 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14663 : SToVRHS.getValueType().getVectorNumElements(); 14664 int NumEltsOut = ShuffV.size(); 14665 14666 // Initially assume that neither input is permuted. These will be adjusted 14667 // accordingly if either input is. 14668 int LHSMaxIdx = -1; 14669 int RHSMinIdx = -1; 14670 int RHSMaxIdx = -1; 14671 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14672 14673 // Get the permuted scalar to vector nodes for the source(s) that come from 14674 // ISD::SCALAR_TO_VECTOR. 14675 if (SToVLHS) { 14676 // Set up the values for the shuffle vector fixup. 14677 LHSMaxIdx = NumEltsOut / NumEltsIn; 14678 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14679 if (SToVLHS.getValueType() != LHS.getValueType()) 14680 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14681 LHS = SToVLHS; 14682 } 14683 if (SToVRHS) { 14684 RHSMinIdx = NumEltsOut; 14685 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14686 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14687 if (SToVRHS.getValueType() != RHS.getValueType()) 14688 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14689 RHS = SToVRHS; 14690 } 14691 14692 // Fix up the shuffle mask to reflect where the desired element actually is. 14693 // The minimum and maximum indices that correspond to element zero for both 14694 // the LHS and RHS are computed and will control which shuffle mask entries 14695 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14696 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14697 // HalfVec to refer to the corresponding element in the permuted vector. 14698 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14699 HalfVec); 14700 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14701 14702 // We may have simplified away the shuffle. We won't be able to do anything 14703 // further with it here. 14704 if (!isa<ShuffleVectorSDNode>(Res)) 14705 return Res; 14706 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14707 } 14708 14709 // The common case after we commuted the shuffle is that the RHS is a splat 14710 // and we have elements coming in from the splat at indices that are not 14711 // conducive to using a merge. 14712 // Example: 14713 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14714 if (!isSplatBV(RHS)) 14715 return Res; 14716 14717 // We are looking for a mask such that all even elements are from 14718 // one vector and all odd elements from the other. 14719 if (!isAlternatingShuffMask(Mask, NumElts)) 14720 return Res; 14721 14722 // Adjust the mask so we are pulling in the same index from the splat 14723 // as the index from the interesting vector in consecutive elements. 14724 // Example (even elements from first vector): 14725 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14726 if (Mask[0] < NumElts) 14727 for (int i = 1, e = Mask.size(); i < e; i += 2) 14728 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14729 // Example (odd elements from first vector): 14730 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14731 else 14732 for (int i = 0, e = Mask.size(); i < e; i += 2) 14733 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14734 14735 // If the RHS has undefs, we need to remove them since we may have created 14736 // a shuffle that adds those instead of the splat value. 14737 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14738 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14739 14740 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14741 return Res; 14742 } 14743 14744 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14745 LSBaseSDNode *LSBase, 14746 DAGCombinerInfo &DCI) const { 14747 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14748 "Not a reverse memop pattern!"); 14749 14750 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14751 auto Mask = SVN->getMask(); 14752 int i = 0; 14753 auto I = Mask.rbegin(); 14754 auto E = Mask.rend(); 14755 14756 for (; I != E; ++I) { 14757 if (*I != i) 14758 return false; 14759 i++; 14760 } 14761 return true; 14762 }; 14763 14764 SelectionDAG &DAG = DCI.DAG; 14765 EVT VT = SVN->getValueType(0); 14766 14767 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14768 return SDValue(); 14769 14770 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14771 // See comment in PPCVSXSwapRemoval.cpp. 14772 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14773 if (!Subtarget.hasP9Vector()) 14774 return SDValue(); 14775 14776 if(!IsElementReverse(SVN)) 14777 return SDValue(); 14778 14779 if (LSBase->getOpcode() == ISD::LOAD) { 14780 SDLoc dl(SVN); 14781 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14782 return DAG.getMemIntrinsicNode( 14783 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14784 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14785 } 14786 14787 if (LSBase->getOpcode() == ISD::STORE) { 14788 SDLoc dl(LSBase); 14789 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14790 LSBase->getBasePtr()}; 14791 return DAG.getMemIntrinsicNode( 14792 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14793 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14794 } 14795 14796 llvm_unreachable("Expected a load or store node here"); 14797 } 14798 14799 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14800 DAGCombinerInfo &DCI) const { 14801 SelectionDAG &DAG = DCI.DAG; 14802 SDLoc dl(N); 14803 switch (N->getOpcode()) { 14804 default: break; 14805 case ISD::ADD: 14806 return combineADD(N, DCI); 14807 case ISD::SHL: 14808 return combineSHL(N, DCI); 14809 case ISD::SRA: 14810 return combineSRA(N, DCI); 14811 case ISD::SRL: 14812 return combineSRL(N, DCI); 14813 case ISD::MUL: 14814 return combineMUL(N, DCI); 14815 case ISD::FMA: 14816 case PPCISD::FNMSUB: 14817 return combineFMALike(N, DCI); 14818 case PPCISD::SHL: 14819 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14820 return N->getOperand(0); 14821 break; 14822 case PPCISD::SRL: 14823 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14824 return N->getOperand(0); 14825 break; 14826 case PPCISD::SRA: 14827 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14828 if (C->isNullValue() || // 0 >>s V -> 0. 14829 C->isAllOnesValue()) // -1 >>s V -> -1. 14830 return N->getOperand(0); 14831 } 14832 break; 14833 case ISD::SIGN_EXTEND: 14834 case ISD::ZERO_EXTEND: 14835 case ISD::ANY_EXTEND: 14836 return DAGCombineExtBoolTrunc(N, DCI); 14837 case ISD::TRUNCATE: 14838 return combineTRUNCATE(N, DCI); 14839 case ISD::SETCC: 14840 if (SDValue CSCC = combineSetCC(N, DCI)) 14841 return CSCC; 14842 LLVM_FALLTHROUGH; 14843 case ISD::SELECT_CC: 14844 return DAGCombineTruncBoolExt(N, DCI); 14845 case ISD::SINT_TO_FP: 14846 case ISD::UINT_TO_FP: 14847 return combineFPToIntToFP(N, DCI); 14848 case ISD::VECTOR_SHUFFLE: 14849 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14850 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14851 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14852 } 14853 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14854 case ISD::STORE: { 14855 14856 EVT Op1VT = N->getOperand(1).getValueType(); 14857 unsigned Opcode = N->getOperand(1).getOpcode(); 14858 14859 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14860 SDValue Val= combineStoreFPToInt(N, DCI); 14861 if (Val) 14862 return Val; 14863 } 14864 14865 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14866 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14867 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14868 if (Val) 14869 return Val; 14870 } 14871 14872 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14873 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14874 N->getOperand(1).getNode()->hasOneUse() && 14875 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14876 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14877 14878 // STBRX can only handle simple types and it makes no sense to store less 14879 // two bytes in byte-reversed order. 14880 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14881 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14882 break; 14883 14884 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14885 // Do an any-extend to 32-bits if this is a half-word input. 14886 if (BSwapOp.getValueType() == MVT::i16) 14887 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14888 14889 // If the type of BSWAP operand is wider than stored memory width 14890 // it need to be shifted to the right side before STBRX. 14891 if (Op1VT.bitsGT(mVT)) { 14892 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14893 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14894 DAG.getConstant(Shift, dl, MVT::i32)); 14895 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14896 if (Op1VT == MVT::i64) 14897 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14898 } 14899 14900 SDValue Ops[] = { 14901 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14902 }; 14903 return 14904 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14905 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14906 cast<StoreSDNode>(N)->getMemOperand()); 14907 } 14908 14909 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14910 // So it can increase the chance of CSE constant construction. 14911 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14912 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14913 // Need to sign-extended to 64-bits to handle negative values. 14914 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14915 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14916 MemVT.getSizeInBits()); 14917 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14918 14919 // DAG.getTruncStore() can't be used here because it doesn't accept 14920 // the general (base + offset) addressing mode. 14921 // So we use UpdateNodeOperands and setTruncatingStore instead. 14922 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14923 N->getOperand(3)); 14924 cast<StoreSDNode>(N)->setTruncatingStore(true); 14925 return SDValue(N, 0); 14926 } 14927 14928 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14929 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14930 if (Op1VT.isSimple()) { 14931 MVT StoreVT = Op1VT.getSimpleVT(); 14932 if (Subtarget.needsSwapsForVSXMemOps() && 14933 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14934 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14935 return expandVSXStoreForLE(N, DCI); 14936 } 14937 break; 14938 } 14939 case ISD::LOAD: { 14940 LoadSDNode *LD = cast<LoadSDNode>(N); 14941 EVT VT = LD->getValueType(0); 14942 14943 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14944 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14945 if (VT.isSimple()) { 14946 MVT LoadVT = VT.getSimpleVT(); 14947 if (Subtarget.needsSwapsForVSXMemOps() && 14948 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14949 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14950 return expandVSXLoadForLE(N, DCI); 14951 } 14952 14953 // We sometimes end up with a 64-bit integer load, from which we extract 14954 // two single-precision floating-point numbers. This happens with 14955 // std::complex<float>, and other similar structures, because of the way we 14956 // canonicalize structure copies. However, if we lack direct moves, 14957 // then the final bitcasts from the extracted integer values to the 14958 // floating-point numbers turn into store/load pairs. Even with direct moves, 14959 // just loading the two floating-point numbers is likely better. 14960 auto ReplaceTwoFloatLoad = [&]() { 14961 if (VT != MVT::i64) 14962 return false; 14963 14964 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14965 LD->isVolatile()) 14966 return false; 14967 14968 // We're looking for a sequence like this: 14969 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14970 // t16: i64 = srl t13, Constant:i32<32> 14971 // t17: i32 = truncate t16 14972 // t18: f32 = bitcast t17 14973 // t19: i32 = truncate t13 14974 // t20: f32 = bitcast t19 14975 14976 if (!LD->hasNUsesOfValue(2, 0)) 14977 return false; 14978 14979 auto UI = LD->use_begin(); 14980 while (UI.getUse().getResNo() != 0) ++UI; 14981 SDNode *Trunc = *UI++; 14982 while (UI.getUse().getResNo() != 0) ++UI; 14983 SDNode *RightShift = *UI; 14984 if (Trunc->getOpcode() != ISD::TRUNCATE) 14985 std::swap(Trunc, RightShift); 14986 14987 if (Trunc->getOpcode() != ISD::TRUNCATE || 14988 Trunc->getValueType(0) != MVT::i32 || 14989 !Trunc->hasOneUse()) 14990 return false; 14991 if (RightShift->getOpcode() != ISD::SRL || 14992 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14993 RightShift->getConstantOperandVal(1) != 32 || 14994 !RightShift->hasOneUse()) 14995 return false; 14996 14997 SDNode *Trunc2 = *RightShift->use_begin(); 14998 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14999 Trunc2->getValueType(0) != MVT::i32 || 15000 !Trunc2->hasOneUse()) 15001 return false; 15002 15003 SDNode *Bitcast = *Trunc->use_begin(); 15004 SDNode *Bitcast2 = *Trunc2->use_begin(); 15005 15006 if (Bitcast->getOpcode() != ISD::BITCAST || 15007 Bitcast->getValueType(0) != MVT::f32) 15008 return false; 15009 if (Bitcast2->getOpcode() != ISD::BITCAST || 15010 Bitcast2->getValueType(0) != MVT::f32) 15011 return false; 15012 15013 if (Subtarget.isLittleEndian()) 15014 std::swap(Bitcast, Bitcast2); 15015 15016 // Bitcast has the second float (in memory-layout order) and Bitcast2 15017 // has the first one. 15018 15019 SDValue BasePtr = LD->getBasePtr(); 15020 if (LD->isIndexed()) { 15021 assert(LD->getAddressingMode() == ISD::PRE_INC && 15022 "Non-pre-inc AM on PPC?"); 15023 BasePtr = 15024 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15025 LD->getOffset()); 15026 } 15027 15028 auto MMOFlags = 15029 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15030 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15031 LD->getPointerInfo(), LD->getAlignment(), 15032 MMOFlags, LD->getAAInfo()); 15033 SDValue AddPtr = 15034 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15035 BasePtr, DAG.getIntPtrConstant(4, dl)); 15036 SDValue FloatLoad2 = DAG.getLoad( 15037 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15038 LD->getPointerInfo().getWithOffset(4), 15039 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15040 15041 if (LD->isIndexed()) { 15042 // Note that DAGCombine should re-form any pre-increment load(s) from 15043 // what is produced here if that makes sense. 15044 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15045 } 15046 15047 DCI.CombineTo(Bitcast2, FloatLoad); 15048 DCI.CombineTo(Bitcast, FloatLoad2); 15049 15050 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15051 SDValue(FloatLoad2.getNode(), 1)); 15052 return true; 15053 }; 15054 15055 if (ReplaceTwoFloatLoad()) 15056 return SDValue(N, 0); 15057 15058 EVT MemVT = LD->getMemoryVT(); 15059 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15060 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15061 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 15062 Align ScalarABIAlignment = DAG.getDataLayout().getABITypeAlign(STy); 15063 if (LD->isUnindexed() && VT.isVector() && 15064 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15065 // P8 and later hardware should just use LOAD. 15066 !Subtarget.hasP8Vector() && 15067 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15068 VT == MVT::v4f32)) || 15069 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 15070 LD->getAlign() >= ScalarABIAlignment)) && 15071 LD->getAlign() < ABIAlignment) { 15072 // This is a type-legal unaligned Altivec or QPX load. 15073 SDValue Chain = LD->getChain(); 15074 SDValue Ptr = LD->getBasePtr(); 15075 bool isLittleEndian = Subtarget.isLittleEndian(); 15076 15077 // This implements the loading of unaligned vectors as described in 15078 // the venerable Apple Velocity Engine overview. Specifically: 15079 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15080 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15081 // 15082 // The general idea is to expand a sequence of one or more unaligned 15083 // loads into an alignment-based permutation-control instruction (lvsl 15084 // or lvsr), a series of regular vector loads (which always truncate 15085 // their input address to an aligned address), and a series of 15086 // permutations. The results of these permutations are the requested 15087 // loaded values. The trick is that the last "extra" load is not taken 15088 // from the address you might suspect (sizeof(vector) bytes after the 15089 // last requested load), but rather sizeof(vector) - 1 bytes after the 15090 // last requested vector. The point of this is to avoid a page fault if 15091 // the base address happened to be aligned. This works because if the 15092 // base address is aligned, then adding less than a full vector length 15093 // will cause the last vector in the sequence to be (re)loaded. 15094 // Otherwise, the next vector will be fetched as you might suspect was 15095 // necessary. 15096 15097 // We might be able to reuse the permutation generation from 15098 // a different base address offset from this one by an aligned amount. 15099 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15100 // optimization later. 15101 Intrinsic::ID Intr, IntrLD, IntrPerm; 15102 MVT PermCntlTy, PermTy, LDTy; 15103 if (Subtarget.hasAltivec()) { 15104 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 15105 Intrinsic::ppc_altivec_lvsl; 15106 IntrLD = Intrinsic::ppc_altivec_lvx; 15107 IntrPerm = Intrinsic::ppc_altivec_vperm; 15108 PermCntlTy = MVT::v16i8; 15109 PermTy = MVT::v4i32; 15110 LDTy = MVT::v4i32; 15111 } else { 15112 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 15113 Intrinsic::ppc_qpx_qvlpcls; 15114 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 15115 Intrinsic::ppc_qpx_qvlfs; 15116 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 15117 PermCntlTy = MVT::v4f64; 15118 PermTy = MVT::v4f64; 15119 LDTy = MemVT.getSimpleVT(); 15120 } 15121 15122 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15123 15124 // Create the new MMO for the new base load. It is like the original MMO, 15125 // but represents an area in memory almost twice the vector size centered 15126 // on the original address. If the address is unaligned, we might start 15127 // reading up to (sizeof(vector)-1) bytes below the address of the 15128 // original unaligned load. 15129 MachineFunction &MF = DAG.getMachineFunction(); 15130 MachineMemOperand *BaseMMO = 15131 MF.getMachineMemOperand(LD->getMemOperand(), 15132 -(long)MemVT.getStoreSize()+1, 15133 2*MemVT.getStoreSize()-1); 15134 15135 // Create the new base load. 15136 SDValue LDXIntID = 15137 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15138 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15139 SDValue BaseLoad = 15140 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15141 DAG.getVTList(PermTy, MVT::Other), 15142 BaseLoadOps, LDTy, BaseMMO); 15143 15144 // Note that the value of IncOffset (which is provided to the next 15145 // load's pointer info offset value, and thus used to calculate the 15146 // alignment), and the value of IncValue (which is actually used to 15147 // increment the pointer value) are different! This is because we 15148 // require the next load to appear to be aligned, even though it 15149 // is actually offset from the base pointer by a lesser amount. 15150 int IncOffset = VT.getSizeInBits() / 8; 15151 int IncValue = IncOffset; 15152 15153 // Walk (both up and down) the chain looking for another load at the real 15154 // (aligned) offset (the alignment of the other load does not matter in 15155 // this case). If found, then do not use the offset reduction trick, as 15156 // that will prevent the loads from being later combined (as they would 15157 // otherwise be duplicates). 15158 if (!findConsecutiveLoad(LD, DAG)) 15159 --IncValue; 15160 15161 SDValue Increment = 15162 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15163 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15164 15165 MachineMemOperand *ExtraMMO = 15166 MF.getMachineMemOperand(LD->getMemOperand(), 15167 1, 2*MemVT.getStoreSize()-1); 15168 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15169 SDValue ExtraLoad = 15170 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15171 DAG.getVTList(PermTy, MVT::Other), 15172 ExtraLoadOps, LDTy, ExtraMMO); 15173 15174 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15175 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15176 15177 // Because vperm has a big-endian bias, we must reverse the order 15178 // of the input vectors and complement the permute control vector 15179 // when generating little endian code. We have already handled the 15180 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15181 // and ExtraLoad here. 15182 SDValue Perm; 15183 if (isLittleEndian) 15184 Perm = BuildIntrinsicOp(IntrPerm, 15185 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15186 else 15187 Perm = BuildIntrinsicOp(IntrPerm, 15188 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15189 15190 if (VT != PermTy) 15191 Perm = Subtarget.hasAltivec() ? 15192 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 15193 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 15194 DAG.getTargetConstant(1, dl, MVT::i64)); 15195 // second argument is 1 because this rounding 15196 // is always exact. 15197 15198 // The output of the permutation is our loaded result, the TokenFactor is 15199 // our new chain. 15200 DCI.CombineTo(N, Perm, TF); 15201 return SDValue(N, 0); 15202 } 15203 } 15204 break; 15205 case ISD::INTRINSIC_WO_CHAIN: { 15206 bool isLittleEndian = Subtarget.isLittleEndian(); 15207 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15208 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15209 : Intrinsic::ppc_altivec_lvsl); 15210 if ((IID == Intr || 15211 IID == Intrinsic::ppc_qpx_qvlpcld || 15212 IID == Intrinsic::ppc_qpx_qvlpcls) && 15213 N->getOperand(1)->getOpcode() == ISD::ADD) { 15214 SDValue Add = N->getOperand(1); 15215 15216 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 15217 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 15218 15219 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15220 APInt::getAllOnesValue(Bits /* alignment */) 15221 .zext(Add.getScalarValueSizeInBits()))) { 15222 SDNode *BasePtr = Add->getOperand(0).getNode(); 15223 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15224 UE = BasePtr->use_end(); 15225 UI != UE; ++UI) { 15226 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15227 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 15228 // We've found another LVSL/LVSR, and this address is an aligned 15229 // multiple of that one. The results will be the same, so use the 15230 // one we've just found instead. 15231 15232 return SDValue(*UI, 0); 15233 } 15234 } 15235 } 15236 15237 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15238 SDNode *BasePtr = Add->getOperand(0).getNode(); 15239 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15240 UE = BasePtr->use_end(); UI != UE; ++UI) { 15241 if (UI->getOpcode() == ISD::ADD && 15242 isa<ConstantSDNode>(UI->getOperand(1)) && 15243 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15244 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15245 (1ULL << Bits) == 0) { 15246 SDNode *OtherAdd = *UI; 15247 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15248 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15249 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15250 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15251 return SDValue(*VI, 0); 15252 } 15253 } 15254 } 15255 } 15256 } 15257 } 15258 15259 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15260 // Expose the vabsduw/h/b opportunity for down stream 15261 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15262 (IID == Intrinsic::ppc_altivec_vmaxsw || 15263 IID == Intrinsic::ppc_altivec_vmaxsh || 15264 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15265 SDValue V1 = N->getOperand(1); 15266 SDValue V2 = N->getOperand(2); 15267 if ((V1.getSimpleValueType() == MVT::v4i32 || 15268 V1.getSimpleValueType() == MVT::v8i16 || 15269 V1.getSimpleValueType() == MVT::v16i8) && 15270 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15271 // (0-a, a) 15272 if (V1.getOpcode() == ISD::SUB && 15273 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15274 V1.getOperand(1) == V2) { 15275 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15276 } 15277 // (a, 0-a) 15278 if (V2.getOpcode() == ISD::SUB && 15279 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15280 V2.getOperand(1) == V1) { 15281 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15282 } 15283 // (x-y, y-x) 15284 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15285 V1.getOperand(0) == V2.getOperand(1) && 15286 V1.getOperand(1) == V2.getOperand(0)) { 15287 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15288 } 15289 } 15290 } 15291 } 15292 15293 break; 15294 case ISD::INTRINSIC_W_CHAIN: 15295 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15296 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15297 if (Subtarget.needsSwapsForVSXMemOps()) { 15298 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15299 default: 15300 break; 15301 case Intrinsic::ppc_vsx_lxvw4x: 15302 case Intrinsic::ppc_vsx_lxvd2x: 15303 return expandVSXLoadForLE(N, DCI); 15304 } 15305 } 15306 break; 15307 case ISD::INTRINSIC_VOID: 15308 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15309 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15310 if (Subtarget.needsSwapsForVSXMemOps()) { 15311 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15312 default: 15313 break; 15314 case Intrinsic::ppc_vsx_stxvw4x: 15315 case Intrinsic::ppc_vsx_stxvd2x: 15316 return expandVSXStoreForLE(N, DCI); 15317 } 15318 } 15319 break; 15320 case ISD::BSWAP: 15321 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15322 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15323 N->getOperand(0).hasOneUse() && 15324 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15325 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15326 N->getValueType(0) == MVT::i64))) { 15327 SDValue Load = N->getOperand(0); 15328 LoadSDNode *LD = cast<LoadSDNode>(Load); 15329 // Create the byte-swapping load. 15330 SDValue Ops[] = { 15331 LD->getChain(), // Chain 15332 LD->getBasePtr(), // Ptr 15333 DAG.getValueType(N->getValueType(0)) // VT 15334 }; 15335 SDValue BSLoad = 15336 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15337 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15338 MVT::i64 : MVT::i32, MVT::Other), 15339 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15340 15341 // If this is an i16 load, insert the truncate. 15342 SDValue ResVal = BSLoad; 15343 if (N->getValueType(0) == MVT::i16) 15344 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15345 15346 // First, combine the bswap away. This makes the value produced by the 15347 // load dead. 15348 DCI.CombineTo(N, ResVal); 15349 15350 // Next, combine the load away, we give it a bogus result value but a real 15351 // chain result. The result value is dead because the bswap is dead. 15352 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15353 15354 // Return N so it doesn't get rechecked! 15355 return SDValue(N, 0); 15356 } 15357 break; 15358 case PPCISD::VCMP: 15359 // If a VCMPo node already exists with exactly the same operands as this 15360 // node, use its result instead of this node (VCMPo computes both a CR6 and 15361 // a normal output). 15362 // 15363 if (!N->getOperand(0).hasOneUse() && 15364 !N->getOperand(1).hasOneUse() && 15365 !N->getOperand(2).hasOneUse()) { 15366 15367 // Scan all of the users of the LHS, looking for VCMPo's that match. 15368 SDNode *VCMPoNode = nullptr; 15369 15370 SDNode *LHSN = N->getOperand(0).getNode(); 15371 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15372 UI != E; ++UI) 15373 if (UI->getOpcode() == PPCISD::VCMPo && 15374 UI->getOperand(1) == N->getOperand(1) && 15375 UI->getOperand(2) == N->getOperand(2) && 15376 UI->getOperand(0) == N->getOperand(0)) { 15377 VCMPoNode = *UI; 15378 break; 15379 } 15380 15381 // If there is no VCMPo node, or if the flag value has a single use, don't 15382 // transform this. 15383 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 15384 break; 15385 15386 // Look at the (necessarily single) use of the flag value. If it has a 15387 // chain, this transformation is more complex. Note that multiple things 15388 // could use the value result, which we should ignore. 15389 SDNode *FlagUser = nullptr; 15390 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 15391 FlagUser == nullptr; ++UI) { 15392 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 15393 SDNode *User = *UI; 15394 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15395 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 15396 FlagUser = User; 15397 break; 15398 } 15399 } 15400 } 15401 15402 // If the user is a MFOCRF instruction, we know this is safe. 15403 // Otherwise we give up for right now. 15404 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15405 return SDValue(VCMPoNode, 0); 15406 } 15407 break; 15408 case ISD::BRCOND: { 15409 SDValue Cond = N->getOperand(1); 15410 SDValue Target = N->getOperand(2); 15411 15412 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15413 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15414 Intrinsic::loop_decrement) { 15415 15416 // We now need to make the intrinsic dead (it cannot be instruction 15417 // selected). 15418 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15419 assert(Cond.getNode()->hasOneUse() && 15420 "Counter decrement has more than one use"); 15421 15422 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15423 N->getOperand(0), Target); 15424 } 15425 } 15426 break; 15427 case ISD::BR_CC: { 15428 // If this is a branch on an altivec predicate comparison, lower this so 15429 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15430 // lowering is done pre-legalize, because the legalizer lowers the predicate 15431 // compare down to code that is difficult to reassemble. 15432 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15433 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15434 15435 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15436 // value. If so, pass-through the AND to get to the intrinsic. 15437 if (LHS.getOpcode() == ISD::AND && 15438 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15439 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15440 Intrinsic::loop_decrement && 15441 isa<ConstantSDNode>(LHS.getOperand(1)) && 15442 !isNullConstant(LHS.getOperand(1))) 15443 LHS = LHS.getOperand(0); 15444 15445 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15446 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15447 Intrinsic::loop_decrement && 15448 isa<ConstantSDNode>(RHS)) { 15449 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15450 "Counter decrement comparison is not EQ or NE"); 15451 15452 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15453 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15454 (CC == ISD::SETNE && !Val); 15455 15456 // We now need to make the intrinsic dead (it cannot be instruction 15457 // selected). 15458 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15459 assert(LHS.getNode()->hasOneUse() && 15460 "Counter decrement has more than one use"); 15461 15462 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15463 N->getOperand(0), N->getOperand(4)); 15464 } 15465 15466 int CompareOpc; 15467 bool isDot; 15468 15469 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15470 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15471 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15472 assert(isDot && "Can't compare against a vector result!"); 15473 15474 // If this is a comparison against something other than 0/1, then we know 15475 // that the condition is never/always true. 15476 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15477 if (Val != 0 && Val != 1) { 15478 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15479 return N->getOperand(0); 15480 // Always !=, turn it into an unconditional branch. 15481 return DAG.getNode(ISD::BR, dl, MVT::Other, 15482 N->getOperand(0), N->getOperand(4)); 15483 } 15484 15485 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15486 15487 // Create the PPCISD altivec 'dot' comparison node. 15488 SDValue Ops[] = { 15489 LHS.getOperand(2), // LHS of compare 15490 LHS.getOperand(3), // RHS of compare 15491 DAG.getConstant(CompareOpc, dl, MVT::i32) 15492 }; 15493 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15494 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 15495 15496 // Unpack the result based on how the target uses it. 15497 PPC::Predicate CompOpc; 15498 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15499 default: // Can't happen, don't crash on invalid number though. 15500 case 0: // Branch on the value of the EQ bit of CR6. 15501 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15502 break; 15503 case 1: // Branch on the inverted value of the EQ bit of CR6. 15504 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15505 break; 15506 case 2: // Branch on the value of the LT bit of CR6. 15507 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15508 break; 15509 case 3: // Branch on the inverted value of the LT bit of CR6. 15510 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15511 break; 15512 } 15513 15514 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15515 DAG.getConstant(CompOpc, dl, MVT::i32), 15516 DAG.getRegister(PPC::CR6, MVT::i32), 15517 N->getOperand(4), CompNode.getValue(1)); 15518 } 15519 break; 15520 } 15521 case ISD::BUILD_VECTOR: 15522 return DAGCombineBuildVector(N, DCI); 15523 case ISD::ABS: 15524 return combineABS(N, DCI); 15525 case ISD::VSELECT: 15526 return combineVSelect(N, DCI); 15527 } 15528 15529 return SDValue(); 15530 } 15531 15532 SDValue 15533 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15534 SelectionDAG &DAG, 15535 SmallVectorImpl<SDNode *> &Created) const { 15536 // fold (sdiv X, pow2) 15537 EVT VT = N->getValueType(0); 15538 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15539 return SDValue(); 15540 if ((VT != MVT::i32 && VT != MVT::i64) || 15541 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15542 return SDValue(); 15543 15544 SDLoc DL(N); 15545 SDValue N0 = N->getOperand(0); 15546 15547 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15548 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15549 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15550 15551 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15552 Created.push_back(Op.getNode()); 15553 15554 if (IsNegPow2) { 15555 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15556 Created.push_back(Op.getNode()); 15557 } 15558 15559 return Op; 15560 } 15561 15562 //===----------------------------------------------------------------------===// 15563 // Inline Assembly Support 15564 //===----------------------------------------------------------------------===// 15565 15566 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15567 KnownBits &Known, 15568 const APInt &DemandedElts, 15569 const SelectionDAG &DAG, 15570 unsigned Depth) const { 15571 Known.resetAll(); 15572 switch (Op.getOpcode()) { 15573 default: break; 15574 case PPCISD::LBRX: { 15575 // lhbrx is known to have the top bits cleared out. 15576 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15577 Known.Zero = 0xFFFF0000; 15578 break; 15579 } 15580 case ISD::INTRINSIC_WO_CHAIN: { 15581 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15582 default: break; 15583 case Intrinsic::ppc_altivec_vcmpbfp_p: 15584 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15585 case Intrinsic::ppc_altivec_vcmpequb_p: 15586 case Intrinsic::ppc_altivec_vcmpequh_p: 15587 case Intrinsic::ppc_altivec_vcmpequw_p: 15588 case Intrinsic::ppc_altivec_vcmpequd_p: 15589 case Intrinsic::ppc_altivec_vcmpgefp_p: 15590 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15591 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15592 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15593 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15594 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15595 case Intrinsic::ppc_altivec_vcmpgtub_p: 15596 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15597 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15598 case Intrinsic::ppc_altivec_vcmpgtud_p: 15599 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15600 break; 15601 } 15602 } 15603 } 15604 } 15605 15606 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15607 switch (Subtarget.getCPUDirective()) { 15608 default: break; 15609 case PPC::DIR_970: 15610 case PPC::DIR_PWR4: 15611 case PPC::DIR_PWR5: 15612 case PPC::DIR_PWR5X: 15613 case PPC::DIR_PWR6: 15614 case PPC::DIR_PWR6X: 15615 case PPC::DIR_PWR7: 15616 case PPC::DIR_PWR8: 15617 case PPC::DIR_PWR9: 15618 case PPC::DIR_PWR10: 15619 case PPC::DIR_PWR_FUTURE: { 15620 if (!ML) 15621 break; 15622 15623 if (!DisableInnermostLoopAlign32) { 15624 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15625 // so that we can decrease cache misses and branch-prediction misses. 15626 // Actual alignment of the loop will depend on the hotness check and other 15627 // logic in alignBlocks. 15628 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15629 return Align(32); 15630 } 15631 15632 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15633 15634 // For small loops (between 5 and 8 instructions), align to a 32-byte 15635 // boundary so that the entire loop fits in one instruction-cache line. 15636 uint64_t LoopSize = 0; 15637 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15638 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15639 LoopSize += TII->getInstSizeInBytes(*J); 15640 if (LoopSize > 32) 15641 break; 15642 } 15643 15644 if (LoopSize > 16 && LoopSize <= 32) 15645 return Align(32); 15646 15647 break; 15648 } 15649 } 15650 15651 return TargetLowering::getPrefLoopAlignment(ML); 15652 } 15653 15654 /// getConstraintType - Given a constraint, return the type of 15655 /// constraint it is for this target. 15656 PPCTargetLowering::ConstraintType 15657 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15658 if (Constraint.size() == 1) { 15659 switch (Constraint[0]) { 15660 default: break; 15661 case 'b': 15662 case 'r': 15663 case 'f': 15664 case 'd': 15665 case 'v': 15666 case 'y': 15667 return C_RegisterClass; 15668 case 'Z': 15669 // FIXME: While Z does indicate a memory constraint, it specifically 15670 // indicates an r+r address (used in conjunction with the 'y' modifier 15671 // in the replacement string). Currently, we're forcing the base 15672 // register to be r0 in the asm printer (which is interpreted as zero) 15673 // and forming the complete address in the second register. This is 15674 // suboptimal. 15675 return C_Memory; 15676 } 15677 } else if (Constraint == "wc") { // individual CR bits. 15678 return C_RegisterClass; 15679 } else if (Constraint == "wa" || Constraint == "wd" || 15680 Constraint == "wf" || Constraint == "ws" || 15681 Constraint == "wi" || Constraint == "ww") { 15682 return C_RegisterClass; // VSX registers. 15683 } 15684 return TargetLowering::getConstraintType(Constraint); 15685 } 15686 15687 /// Examine constraint type and operand type and determine a weight value. 15688 /// This object must already have been set up with the operand type 15689 /// and the current alternative constraint selected. 15690 TargetLowering::ConstraintWeight 15691 PPCTargetLowering::getSingleConstraintMatchWeight( 15692 AsmOperandInfo &info, const char *constraint) const { 15693 ConstraintWeight weight = CW_Invalid; 15694 Value *CallOperandVal = info.CallOperandVal; 15695 // If we don't have a value, we can't do a match, 15696 // but allow it at the lowest weight. 15697 if (!CallOperandVal) 15698 return CW_Default; 15699 Type *type = CallOperandVal->getType(); 15700 15701 // Look at the constraint type. 15702 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15703 return CW_Register; // an individual CR bit. 15704 else if ((StringRef(constraint) == "wa" || 15705 StringRef(constraint) == "wd" || 15706 StringRef(constraint) == "wf") && 15707 type->isVectorTy()) 15708 return CW_Register; 15709 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15710 return CW_Register; // just hold 64-bit integers data. 15711 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15712 return CW_Register; 15713 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15714 return CW_Register; 15715 15716 switch (*constraint) { 15717 default: 15718 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15719 break; 15720 case 'b': 15721 if (type->isIntegerTy()) 15722 weight = CW_Register; 15723 break; 15724 case 'f': 15725 if (type->isFloatTy()) 15726 weight = CW_Register; 15727 break; 15728 case 'd': 15729 if (type->isDoubleTy()) 15730 weight = CW_Register; 15731 break; 15732 case 'v': 15733 if (type->isVectorTy()) 15734 weight = CW_Register; 15735 break; 15736 case 'y': 15737 weight = CW_Register; 15738 break; 15739 case 'Z': 15740 weight = CW_Memory; 15741 break; 15742 } 15743 return weight; 15744 } 15745 15746 std::pair<unsigned, const TargetRegisterClass *> 15747 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15748 StringRef Constraint, 15749 MVT VT) const { 15750 if (Constraint.size() == 1) { 15751 // GCC RS6000 Constraint Letters 15752 switch (Constraint[0]) { 15753 case 'b': // R1-R31 15754 if (VT == MVT::i64 && Subtarget.isPPC64()) 15755 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15756 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15757 case 'r': // R0-R31 15758 if (VT == MVT::i64 && Subtarget.isPPC64()) 15759 return std::make_pair(0U, &PPC::G8RCRegClass); 15760 return std::make_pair(0U, &PPC::GPRCRegClass); 15761 // 'd' and 'f' constraints are both defined to be "the floating point 15762 // registers", where one is for 32-bit and the other for 64-bit. We don't 15763 // really care overly much here so just give them all the same reg classes. 15764 case 'd': 15765 case 'f': 15766 if (Subtarget.hasSPE()) { 15767 if (VT == MVT::f32 || VT == MVT::i32) 15768 return std::make_pair(0U, &PPC::GPRCRegClass); 15769 if (VT == MVT::f64 || VT == MVT::i64) 15770 return std::make_pair(0U, &PPC::SPERCRegClass); 15771 } else { 15772 if (VT == MVT::f32 || VT == MVT::i32) 15773 return std::make_pair(0U, &PPC::F4RCRegClass); 15774 if (VT == MVT::f64 || VT == MVT::i64) 15775 return std::make_pair(0U, &PPC::F8RCRegClass); 15776 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15777 return std::make_pair(0U, &PPC::QFRCRegClass); 15778 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15779 return std::make_pair(0U, &PPC::QSRCRegClass); 15780 } 15781 break; 15782 case 'v': 15783 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15784 return std::make_pair(0U, &PPC::QFRCRegClass); 15785 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15786 return std::make_pair(0U, &PPC::QSRCRegClass); 15787 if (Subtarget.hasAltivec()) 15788 return std::make_pair(0U, &PPC::VRRCRegClass); 15789 break; 15790 case 'y': // crrc 15791 return std::make_pair(0U, &PPC::CRRCRegClass); 15792 } 15793 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15794 // An individual CR bit. 15795 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15796 } else if ((Constraint == "wa" || Constraint == "wd" || 15797 Constraint == "wf" || Constraint == "wi") && 15798 Subtarget.hasVSX()) { 15799 return std::make_pair(0U, &PPC::VSRCRegClass); 15800 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15801 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15802 return std::make_pair(0U, &PPC::VSSRCRegClass); 15803 else 15804 return std::make_pair(0U, &PPC::VSFRCRegClass); 15805 } 15806 15807 // If we name a VSX register, we can't defer to the base class because it 15808 // will not recognize the correct register (their names will be VSL{0-31} 15809 // and V{0-31} so they won't match). So we match them here. 15810 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15811 int VSNum = atoi(Constraint.data() + 3); 15812 assert(VSNum >= 0 && VSNum <= 63 && 15813 "Attempted to access a vsr out of range"); 15814 if (VSNum < 32) 15815 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15816 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15817 } 15818 std::pair<unsigned, const TargetRegisterClass *> R = 15819 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15820 15821 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15822 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15823 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15824 // register. 15825 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15826 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15827 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15828 PPC::GPRCRegClass.contains(R.first)) 15829 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15830 PPC::sub_32, &PPC::G8RCRegClass), 15831 &PPC::G8RCRegClass); 15832 15833 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15834 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15835 R.first = PPC::CR0; 15836 R.second = &PPC::CRRCRegClass; 15837 } 15838 15839 return R; 15840 } 15841 15842 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15843 /// vector. If it is invalid, don't add anything to Ops. 15844 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15845 std::string &Constraint, 15846 std::vector<SDValue>&Ops, 15847 SelectionDAG &DAG) const { 15848 SDValue Result; 15849 15850 // Only support length 1 constraints. 15851 if (Constraint.length() > 1) return; 15852 15853 char Letter = Constraint[0]; 15854 switch (Letter) { 15855 default: break; 15856 case 'I': 15857 case 'J': 15858 case 'K': 15859 case 'L': 15860 case 'M': 15861 case 'N': 15862 case 'O': 15863 case 'P': { 15864 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15865 if (!CST) return; // Must be an immediate to match. 15866 SDLoc dl(Op); 15867 int64_t Value = CST->getSExtValue(); 15868 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15869 // numbers are printed as such. 15870 switch (Letter) { 15871 default: llvm_unreachable("Unknown constraint letter!"); 15872 case 'I': // "I" is a signed 16-bit constant. 15873 if (isInt<16>(Value)) 15874 Result = DAG.getTargetConstant(Value, dl, TCVT); 15875 break; 15876 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15877 if (isShiftedUInt<16, 16>(Value)) 15878 Result = DAG.getTargetConstant(Value, dl, TCVT); 15879 break; 15880 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15881 if (isShiftedInt<16, 16>(Value)) 15882 Result = DAG.getTargetConstant(Value, dl, TCVT); 15883 break; 15884 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15885 if (isUInt<16>(Value)) 15886 Result = DAG.getTargetConstant(Value, dl, TCVT); 15887 break; 15888 case 'M': // "M" is a constant that is greater than 31. 15889 if (Value > 31) 15890 Result = DAG.getTargetConstant(Value, dl, TCVT); 15891 break; 15892 case 'N': // "N" is a positive constant that is an exact power of two. 15893 if (Value > 0 && isPowerOf2_64(Value)) 15894 Result = DAG.getTargetConstant(Value, dl, TCVT); 15895 break; 15896 case 'O': // "O" is the constant zero. 15897 if (Value == 0) 15898 Result = DAG.getTargetConstant(Value, dl, TCVT); 15899 break; 15900 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15901 if (isInt<16>(-Value)) 15902 Result = DAG.getTargetConstant(Value, dl, TCVT); 15903 break; 15904 } 15905 break; 15906 } 15907 } 15908 15909 if (Result.getNode()) { 15910 Ops.push_back(Result); 15911 return; 15912 } 15913 15914 // Handle standard constraint letters. 15915 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15916 } 15917 15918 // isLegalAddressingMode - Return true if the addressing mode represented 15919 // by AM is legal for this target, for a load/store of the specified type. 15920 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15921 const AddrMode &AM, Type *Ty, 15922 unsigned AS, Instruction *I) const { 15923 // PPC does not allow r+i addressing modes for vectors! 15924 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15925 return false; 15926 15927 // PPC allows a sign-extended 16-bit immediate field. 15928 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15929 return false; 15930 15931 // No global is ever allowed as a base. 15932 if (AM.BaseGV) 15933 return false; 15934 15935 // PPC only support r+r, 15936 switch (AM.Scale) { 15937 case 0: // "r+i" or just "i", depending on HasBaseReg. 15938 break; 15939 case 1: 15940 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15941 return false; 15942 // Otherwise we have r+r or r+i. 15943 break; 15944 case 2: 15945 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15946 return false; 15947 // Allow 2*r as r+r. 15948 break; 15949 default: 15950 // No other scales are supported. 15951 return false; 15952 } 15953 15954 return true; 15955 } 15956 15957 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15958 SelectionDAG &DAG) const { 15959 MachineFunction &MF = DAG.getMachineFunction(); 15960 MachineFrameInfo &MFI = MF.getFrameInfo(); 15961 MFI.setReturnAddressIsTaken(true); 15962 15963 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15964 return SDValue(); 15965 15966 SDLoc dl(Op); 15967 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15968 15969 // Make sure the function does not optimize away the store of the RA to 15970 // the stack. 15971 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15972 FuncInfo->setLRStoreRequired(); 15973 bool isPPC64 = Subtarget.isPPC64(); 15974 auto PtrVT = getPointerTy(MF.getDataLayout()); 15975 15976 if (Depth > 0) { 15977 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15978 SDValue Offset = 15979 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15980 isPPC64 ? MVT::i64 : MVT::i32); 15981 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15982 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15983 MachinePointerInfo()); 15984 } 15985 15986 // Just load the return address off the stack. 15987 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15988 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15989 MachinePointerInfo()); 15990 } 15991 15992 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15993 SelectionDAG &DAG) const { 15994 SDLoc dl(Op); 15995 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15996 15997 MachineFunction &MF = DAG.getMachineFunction(); 15998 MachineFrameInfo &MFI = MF.getFrameInfo(); 15999 MFI.setFrameAddressIsTaken(true); 16000 16001 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16002 bool isPPC64 = PtrVT == MVT::i64; 16003 16004 // Naked functions never have a frame pointer, and so we use r1. For all 16005 // other functions, this decision must be delayed until during PEI. 16006 unsigned FrameReg; 16007 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16008 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16009 else 16010 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16011 16012 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16013 PtrVT); 16014 while (Depth--) 16015 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16016 FrameAddr, MachinePointerInfo()); 16017 return FrameAddr; 16018 } 16019 16020 // FIXME? Maybe this could be a TableGen attribute on some registers and 16021 // this table could be generated automatically from RegInfo. 16022 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16023 const MachineFunction &MF) const { 16024 bool isPPC64 = Subtarget.isPPC64(); 16025 16026 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16027 if (!is64Bit && VT != LLT::scalar(32)) 16028 report_fatal_error("Invalid register global variable type"); 16029 16030 Register Reg = StringSwitch<Register>(RegName) 16031 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16032 .Case("r2", isPPC64 ? Register() : PPC::R2) 16033 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16034 .Default(Register()); 16035 16036 if (Reg) 16037 return Reg; 16038 report_fatal_error("Invalid register name global variable"); 16039 } 16040 16041 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16042 // 32-bit SVR4 ABI access everything as got-indirect. 16043 if (Subtarget.is32BitELFABI()) 16044 return true; 16045 16046 // AIX accesses everything indirectly through the TOC, which is similar to 16047 // the GOT. 16048 if (Subtarget.isAIXABI()) 16049 return true; 16050 16051 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16052 // If it is small or large code model, module locals are accessed 16053 // indirectly by loading their address from .toc/.got. 16054 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16055 return true; 16056 16057 // JumpTable and BlockAddress are accessed as got-indirect. 16058 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16059 return true; 16060 16061 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16062 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16063 16064 return false; 16065 } 16066 16067 bool 16068 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16069 // The PowerPC target isn't yet aware of offsets. 16070 return false; 16071 } 16072 16073 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16074 const CallInst &I, 16075 MachineFunction &MF, 16076 unsigned Intrinsic) const { 16077 switch (Intrinsic) { 16078 case Intrinsic::ppc_qpx_qvlfd: 16079 case Intrinsic::ppc_qpx_qvlfs: 16080 case Intrinsic::ppc_qpx_qvlfcd: 16081 case Intrinsic::ppc_qpx_qvlfcs: 16082 case Intrinsic::ppc_qpx_qvlfiwa: 16083 case Intrinsic::ppc_qpx_qvlfiwz: 16084 case Intrinsic::ppc_altivec_lvx: 16085 case Intrinsic::ppc_altivec_lvxl: 16086 case Intrinsic::ppc_altivec_lvebx: 16087 case Intrinsic::ppc_altivec_lvehx: 16088 case Intrinsic::ppc_altivec_lvewx: 16089 case Intrinsic::ppc_vsx_lxvd2x: 16090 case Intrinsic::ppc_vsx_lxvw4x: { 16091 EVT VT; 16092 switch (Intrinsic) { 16093 case Intrinsic::ppc_altivec_lvebx: 16094 VT = MVT::i8; 16095 break; 16096 case Intrinsic::ppc_altivec_lvehx: 16097 VT = MVT::i16; 16098 break; 16099 case Intrinsic::ppc_altivec_lvewx: 16100 VT = MVT::i32; 16101 break; 16102 case Intrinsic::ppc_vsx_lxvd2x: 16103 VT = MVT::v2f64; 16104 break; 16105 case Intrinsic::ppc_qpx_qvlfd: 16106 VT = MVT::v4f64; 16107 break; 16108 case Intrinsic::ppc_qpx_qvlfs: 16109 VT = MVT::v4f32; 16110 break; 16111 case Intrinsic::ppc_qpx_qvlfcd: 16112 VT = MVT::v2f64; 16113 break; 16114 case Intrinsic::ppc_qpx_qvlfcs: 16115 VT = MVT::v2f32; 16116 break; 16117 default: 16118 VT = MVT::v4i32; 16119 break; 16120 } 16121 16122 Info.opc = ISD::INTRINSIC_W_CHAIN; 16123 Info.memVT = VT; 16124 Info.ptrVal = I.getArgOperand(0); 16125 Info.offset = -VT.getStoreSize()+1; 16126 Info.size = 2*VT.getStoreSize()-1; 16127 Info.align = Align(1); 16128 Info.flags = MachineMemOperand::MOLoad; 16129 return true; 16130 } 16131 case Intrinsic::ppc_qpx_qvlfda: 16132 case Intrinsic::ppc_qpx_qvlfsa: 16133 case Intrinsic::ppc_qpx_qvlfcda: 16134 case Intrinsic::ppc_qpx_qvlfcsa: 16135 case Intrinsic::ppc_qpx_qvlfiwaa: 16136 case Intrinsic::ppc_qpx_qvlfiwza: { 16137 EVT VT; 16138 switch (Intrinsic) { 16139 case Intrinsic::ppc_qpx_qvlfda: 16140 VT = MVT::v4f64; 16141 break; 16142 case Intrinsic::ppc_qpx_qvlfsa: 16143 VT = MVT::v4f32; 16144 break; 16145 case Intrinsic::ppc_qpx_qvlfcda: 16146 VT = MVT::v2f64; 16147 break; 16148 case Intrinsic::ppc_qpx_qvlfcsa: 16149 VT = MVT::v2f32; 16150 break; 16151 default: 16152 VT = MVT::v4i32; 16153 break; 16154 } 16155 16156 Info.opc = ISD::INTRINSIC_W_CHAIN; 16157 Info.memVT = VT; 16158 Info.ptrVal = I.getArgOperand(0); 16159 Info.offset = 0; 16160 Info.size = VT.getStoreSize(); 16161 Info.align = Align(1); 16162 Info.flags = MachineMemOperand::MOLoad; 16163 return true; 16164 } 16165 case Intrinsic::ppc_qpx_qvstfd: 16166 case Intrinsic::ppc_qpx_qvstfs: 16167 case Intrinsic::ppc_qpx_qvstfcd: 16168 case Intrinsic::ppc_qpx_qvstfcs: 16169 case Intrinsic::ppc_qpx_qvstfiw: 16170 case Intrinsic::ppc_altivec_stvx: 16171 case Intrinsic::ppc_altivec_stvxl: 16172 case Intrinsic::ppc_altivec_stvebx: 16173 case Intrinsic::ppc_altivec_stvehx: 16174 case Intrinsic::ppc_altivec_stvewx: 16175 case Intrinsic::ppc_vsx_stxvd2x: 16176 case Intrinsic::ppc_vsx_stxvw4x: { 16177 EVT VT; 16178 switch (Intrinsic) { 16179 case Intrinsic::ppc_altivec_stvebx: 16180 VT = MVT::i8; 16181 break; 16182 case Intrinsic::ppc_altivec_stvehx: 16183 VT = MVT::i16; 16184 break; 16185 case Intrinsic::ppc_altivec_stvewx: 16186 VT = MVT::i32; 16187 break; 16188 case Intrinsic::ppc_vsx_stxvd2x: 16189 VT = MVT::v2f64; 16190 break; 16191 case Intrinsic::ppc_qpx_qvstfd: 16192 VT = MVT::v4f64; 16193 break; 16194 case Intrinsic::ppc_qpx_qvstfs: 16195 VT = MVT::v4f32; 16196 break; 16197 case Intrinsic::ppc_qpx_qvstfcd: 16198 VT = MVT::v2f64; 16199 break; 16200 case Intrinsic::ppc_qpx_qvstfcs: 16201 VT = MVT::v2f32; 16202 break; 16203 default: 16204 VT = MVT::v4i32; 16205 break; 16206 } 16207 16208 Info.opc = ISD::INTRINSIC_VOID; 16209 Info.memVT = VT; 16210 Info.ptrVal = I.getArgOperand(1); 16211 Info.offset = -VT.getStoreSize()+1; 16212 Info.size = 2*VT.getStoreSize()-1; 16213 Info.align = Align(1); 16214 Info.flags = MachineMemOperand::MOStore; 16215 return true; 16216 } 16217 case Intrinsic::ppc_qpx_qvstfda: 16218 case Intrinsic::ppc_qpx_qvstfsa: 16219 case Intrinsic::ppc_qpx_qvstfcda: 16220 case Intrinsic::ppc_qpx_qvstfcsa: 16221 case Intrinsic::ppc_qpx_qvstfiwa: { 16222 EVT VT; 16223 switch (Intrinsic) { 16224 case Intrinsic::ppc_qpx_qvstfda: 16225 VT = MVT::v4f64; 16226 break; 16227 case Intrinsic::ppc_qpx_qvstfsa: 16228 VT = MVT::v4f32; 16229 break; 16230 case Intrinsic::ppc_qpx_qvstfcda: 16231 VT = MVT::v2f64; 16232 break; 16233 case Intrinsic::ppc_qpx_qvstfcsa: 16234 VT = MVT::v2f32; 16235 break; 16236 default: 16237 VT = MVT::v4i32; 16238 break; 16239 } 16240 16241 Info.opc = ISD::INTRINSIC_VOID; 16242 Info.memVT = VT; 16243 Info.ptrVal = I.getArgOperand(1); 16244 Info.offset = 0; 16245 Info.size = VT.getStoreSize(); 16246 Info.align = Align(1); 16247 Info.flags = MachineMemOperand::MOStore; 16248 return true; 16249 } 16250 default: 16251 break; 16252 } 16253 16254 return false; 16255 } 16256 16257 /// It returns EVT::Other if the type should be determined using generic 16258 /// target-independent logic. 16259 EVT PPCTargetLowering::getOptimalMemOpType( 16260 const MemOp &Op, const AttributeList &FuncAttributes) const { 16261 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16262 // When expanding a memset, require at least two QPX instructions to cover 16263 // the cost of loading the value to be stored from the constant pool. 16264 if (Subtarget.hasQPX() && Op.size() >= 32 && 16265 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 16266 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 16267 return MVT::v4f64; 16268 } 16269 16270 // We should use Altivec/VSX loads and stores when available. For unaligned 16271 // addresses, unaligned VSX loads are only fast starting with the P8. 16272 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16273 (Op.isAligned(Align(16)) || 16274 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16275 return MVT::v4i32; 16276 } 16277 16278 if (Subtarget.isPPC64()) { 16279 return MVT::i64; 16280 } 16281 16282 return MVT::i32; 16283 } 16284 16285 /// Returns true if it is beneficial to convert a load of a constant 16286 /// to just the constant itself. 16287 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16288 Type *Ty) const { 16289 assert(Ty->isIntegerTy()); 16290 16291 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16292 return !(BitSize == 0 || BitSize > 64); 16293 } 16294 16295 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16296 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16297 return false; 16298 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16299 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16300 return NumBits1 == 64 && NumBits2 == 32; 16301 } 16302 16303 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16304 if (!VT1.isInteger() || !VT2.isInteger()) 16305 return false; 16306 unsigned NumBits1 = VT1.getSizeInBits(); 16307 unsigned NumBits2 = VT2.getSizeInBits(); 16308 return NumBits1 == 64 && NumBits2 == 32; 16309 } 16310 16311 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16312 // Generally speaking, zexts are not free, but they are free when they can be 16313 // folded with other operations. 16314 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16315 EVT MemVT = LD->getMemoryVT(); 16316 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16317 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16318 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16319 LD->getExtensionType() == ISD::ZEXTLOAD)) 16320 return true; 16321 } 16322 16323 // FIXME: Add other cases... 16324 // - 32-bit shifts with a zext to i64 16325 // - zext after ctlz, bswap, etc. 16326 // - zext after and by a constant mask 16327 16328 return TargetLowering::isZExtFree(Val, VT2); 16329 } 16330 16331 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16332 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16333 "invalid fpext types"); 16334 // Extending to float128 is not free. 16335 if (DestVT == MVT::f128) 16336 return false; 16337 return true; 16338 } 16339 16340 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16341 return isInt<16>(Imm) || isUInt<16>(Imm); 16342 } 16343 16344 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16345 return isInt<16>(Imm) || isUInt<16>(Imm); 16346 } 16347 16348 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16349 unsigned, 16350 unsigned, 16351 MachineMemOperand::Flags, 16352 bool *Fast) const { 16353 if (DisablePPCUnaligned) 16354 return false; 16355 16356 // PowerPC supports unaligned memory access for simple non-vector types. 16357 // Although accessing unaligned addresses is not as efficient as accessing 16358 // aligned addresses, it is generally more efficient than manual expansion, 16359 // and generally only traps for software emulation when crossing page 16360 // boundaries. 16361 16362 if (!VT.isSimple()) 16363 return false; 16364 16365 if (VT.isFloatingPoint() && !VT.isVector() && 16366 !Subtarget.allowsUnalignedFPAccess()) 16367 return false; 16368 16369 if (VT.getSimpleVT().isVector()) { 16370 if (Subtarget.hasVSX()) { 16371 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16372 VT != MVT::v4f32 && VT != MVT::v4i32) 16373 return false; 16374 } else { 16375 return false; 16376 } 16377 } 16378 16379 if (VT == MVT::ppcf128) 16380 return false; 16381 16382 if (Fast) 16383 *Fast = true; 16384 16385 return true; 16386 } 16387 16388 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16389 EVT VT) const { 16390 return isFMAFasterThanFMulAndFAdd( 16391 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16392 } 16393 16394 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16395 Type *Ty) const { 16396 switch (Ty->getScalarType()->getTypeID()) { 16397 case Type::FloatTyID: 16398 case Type::DoubleTyID: 16399 return true; 16400 case Type::FP128TyID: 16401 return Subtarget.hasP9Vector(); 16402 default: 16403 return false; 16404 } 16405 } 16406 16407 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 16408 // FIXME: add more patterns which are profitable to hoist. 16409 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16410 if (I->getOpcode() != Instruction::FMul) 16411 return true; 16412 16413 if (!I->hasOneUse()) 16414 return true; 16415 16416 Instruction *User = I->user_back(); 16417 assert(User && "A single use instruction with no uses."); 16418 16419 if (User->getOpcode() != Instruction::FSub && 16420 User->getOpcode() != Instruction::FAdd) 16421 return true; 16422 16423 const TargetOptions &Options = getTargetMachine().Options; 16424 const Function *F = I->getFunction(); 16425 const DataLayout &DL = F->getParent()->getDataLayout(); 16426 Type *Ty = User->getOperand(0)->getType(); 16427 16428 return !( 16429 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16430 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16431 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16432 } 16433 16434 const MCPhysReg * 16435 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16436 // LR is a callee-save register, but we must treat it as clobbered by any call 16437 // site. Hence we include LR in the scratch registers, which are in turn added 16438 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16439 // to CTR, which is used by any indirect call. 16440 static const MCPhysReg ScratchRegs[] = { 16441 PPC::X12, PPC::LR8, PPC::CTR8, 0 16442 }; 16443 16444 return ScratchRegs; 16445 } 16446 16447 Register PPCTargetLowering::getExceptionPointerRegister( 16448 const Constant *PersonalityFn) const { 16449 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16450 } 16451 16452 Register PPCTargetLowering::getExceptionSelectorRegister( 16453 const Constant *PersonalityFn) const { 16454 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16455 } 16456 16457 bool 16458 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16459 EVT VT , unsigned DefinedValues) const { 16460 if (VT == MVT::v2i64) 16461 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16462 16463 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 16464 return true; 16465 16466 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16467 } 16468 16469 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16470 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16471 return TargetLowering::getSchedulingPreference(N); 16472 16473 return Sched::ILP; 16474 } 16475 16476 // Create a fast isel object. 16477 FastISel * 16478 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16479 const TargetLibraryInfo *LibInfo) const { 16480 return PPC::createFastISel(FuncInfo, LibInfo); 16481 } 16482 16483 // 'Inverted' means the FMA opcode after negating one multiplicand. 16484 // For example, (fma -a b c) = (fnmsub a b c) 16485 static unsigned invertFMAOpcode(unsigned Opc) { 16486 switch (Opc) { 16487 default: 16488 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16489 case ISD::FMA: 16490 return PPCISD::FNMSUB; 16491 case PPCISD::FNMSUB: 16492 return ISD::FMA; 16493 } 16494 } 16495 16496 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16497 bool LegalOps, bool OptForSize, 16498 NegatibleCost &Cost, 16499 unsigned Depth) const { 16500 if (Depth > SelectionDAG::MaxRecursionDepth) 16501 return SDValue(); 16502 16503 unsigned Opc = Op.getOpcode(); 16504 EVT VT = Op.getValueType(); 16505 SDNodeFlags Flags = Op.getNode()->getFlags(); 16506 16507 switch (Opc) { 16508 case PPCISD::FNMSUB: 16509 // TODO: QPX subtarget is deprecated. No transformation here. 16510 if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX()) 16511 break; 16512 16513 const TargetOptions &Options = getTargetMachine().Options; 16514 SDValue N0 = Op.getOperand(0); 16515 SDValue N1 = Op.getOperand(1); 16516 SDValue N2 = Op.getOperand(2); 16517 SDLoc Loc(Op); 16518 16519 NegatibleCost N2Cost = NegatibleCost::Expensive; 16520 SDValue NegN2 = 16521 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16522 16523 if (!NegN2) 16524 return SDValue(); 16525 16526 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16527 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16528 // These transformations may change sign of zeroes. For example, 16529 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16530 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16531 // Try and choose the cheaper one to negate. 16532 NegatibleCost N0Cost = NegatibleCost::Expensive; 16533 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16534 N0Cost, Depth + 1); 16535 16536 NegatibleCost N1Cost = NegatibleCost::Expensive; 16537 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16538 N1Cost, Depth + 1); 16539 16540 if (NegN0 && N0Cost <= N1Cost) { 16541 Cost = std::min(N0Cost, N2Cost); 16542 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16543 } else if (NegN1) { 16544 Cost = std::min(N1Cost, N2Cost); 16545 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16546 } 16547 } 16548 16549 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16550 if (isOperationLegal(ISD::FMA, VT)) { 16551 Cost = N2Cost; 16552 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16553 } 16554 16555 break; 16556 } 16557 16558 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16559 Cost, Depth); 16560 } 16561 16562 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16563 bool PPCTargetLowering::useLoadStackGuardNode() const { 16564 if (!Subtarget.isTargetLinux()) 16565 return TargetLowering::useLoadStackGuardNode(); 16566 return true; 16567 } 16568 16569 // Override to disable global variable loading on Linux. 16570 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16571 if (!Subtarget.isTargetLinux()) 16572 return TargetLowering::insertSSPDeclarations(M); 16573 } 16574 16575 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16576 bool ForCodeSize) const { 16577 if (!VT.isSimple() || !Subtarget.hasVSX()) 16578 return false; 16579 16580 switch(VT.getSimpleVT().SimpleTy) { 16581 default: 16582 // For FP types that are currently not supported by PPC backend, return 16583 // false. Examples: f16, f80. 16584 return false; 16585 case MVT::f32: 16586 case MVT::f64: 16587 if (Subtarget.hasPrefixInstrs()) { 16588 // With prefixed instructions, we can materialize anything that can be 16589 // represented with a 32-bit immediate, not just positive zero. 16590 APFloat APFloatOfImm = Imm; 16591 return convertToNonDenormSingle(APFloatOfImm); 16592 } 16593 LLVM_FALLTHROUGH; 16594 case MVT::ppcf128: 16595 return Imm.isPosZero(); 16596 } 16597 } 16598 16599 // For vector shift operation op, fold 16600 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16601 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16602 SelectionDAG &DAG) { 16603 SDValue N0 = N->getOperand(0); 16604 SDValue N1 = N->getOperand(1); 16605 EVT VT = N0.getValueType(); 16606 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16607 unsigned Opcode = N->getOpcode(); 16608 unsigned TargetOpcode; 16609 16610 switch (Opcode) { 16611 default: 16612 llvm_unreachable("Unexpected shift operation"); 16613 case ISD::SHL: 16614 TargetOpcode = PPCISD::SHL; 16615 break; 16616 case ISD::SRL: 16617 TargetOpcode = PPCISD::SRL; 16618 break; 16619 case ISD::SRA: 16620 TargetOpcode = PPCISD::SRA; 16621 break; 16622 } 16623 16624 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16625 N1->getOpcode() == ISD::AND) 16626 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16627 if (Mask->getZExtValue() == OpSizeInBits - 1) 16628 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16629 16630 return SDValue(); 16631 } 16632 16633 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16634 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16635 return Value; 16636 16637 SDValue N0 = N->getOperand(0); 16638 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16639 if (!Subtarget.isISA3_0() || 16640 N0.getOpcode() != ISD::SIGN_EXTEND || 16641 N0.getOperand(0).getValueType() != MVT::i32 || 16642 CN1 == nullptr || N->getValueType(0) != MVT::i64) 16643 return SDValue(); 16644 16645 // We can't save an operation here if the value is already extended, and 16646 // the existing shift is easier to combine. 16647 SDValue ExtsSrc = N0.getOperand(0); 16648 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16649 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16650 return SDValue(); 16651 16652 SDLoc DL(N0); 16653 SDValue ShiftBy = SDValue(CN1, 0); 16654 // We want the shift amount to be i32 on the extswli, but the shift could 16655 // have an i64. 16656 if (ShiftBy.getValueType() == MVT::i64) 16657 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16658 16659 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16660 ShiftBy); 16661 } 16662 16663 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16664 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16665 return Value; 16666 16667 return SDValue(); 16668 } 16669 16670 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16671 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16672 return Value; 16673 16674 return SDValue(); 16675 } 16676 16677 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16678 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16679 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16680 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16681 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16682 const PPCSubtarget &Subtarget) { 16683 if (!Subtarget.isPPC64()) 16684 return SDValue(); 16685 16686 SDValue LHS = N->getOperand(0); 16687 SDValue RHS = N->getOperand(1); 16688 16689 auto isZextOfCompareWithConstant = [](SDValue Op) { 16690 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16691 Op.getValueType() != MVT::i64) 16692 return false; 16693 16694 SDValue Cmp = Op.getOperand(0); 16695 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16696 Cmp.getOperand(0).getValueType() != MVT::i64) 16697 return false; 16698 16699 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16700 int64_t NegConstant = 0 - Constant->getSExtValue(); 16701 // Due to the limitations of the addi instruction, 16702 // -C is required to be [-32768, 32767]. 16703 return isInt<16>(NegConstant); 16704 } 16705 16706 return false; 16707 }; 16708 16709 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16710 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16711 16712 // If there is a pattern, canonicalize a zext operand to the RHS. 16713 if (LHSHasPattern && !RHSHasPattern) 16714 std::swap(LHS, RHS); 16715 else if (!LHSHasPattern && !RHSHasPattern) 16716 return SDValue(); 16717 16718 SDLoc DL(N); 16719 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16720 SDValue Cmp = RHS.getOperand(0); 16721 SDValue Z = Cmp.getOperand(0); 16722 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16723 16724 assert(Constant && "Constant Should not be a null pointer."); 16725 int64_t NegConstant = 0 - Constant->getSExtValue(); 16726 16727 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16728 default: break; 16729 case ISD::SETNE: { 16730 // when C == 0 16731 // --> addze X, (addic Z, -1).carry 16732 // / 16733 // add X, (zext(setne Z, C))-- 16734 // \ when -32768 <= -C <= 32767 && C != 0 16735 // --> addze X, (addic (addi Z, -C), -1).carry 16736 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16737 DAG.getConstant(NegConstant, DL, MVT::i64)); 16738 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16739 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16740 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16741 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16742 SDValue(Addc.getNode(), 1)); 16743 } 16744 case ISD::SETEQ: { 16745 // when C == 0 16746 // --> addze X, (subfic Z, 0).carry 16747 // / 16748 // add X, (zext(sete Z, C))-- 16749 // \ when -32768 <= -C <= 32767 && C != 0 16750 // --> addze X, (subfic (addi Z, -C), 0).carry 16751 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16752 DAG.getConstant(NegConstant, DL, MVT::i64)); 16753 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16754 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16755 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16756 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16757 SDValue(Subc.getNode(), 1)); 16758 } 16759 } 16760 16761 return SDValue(); 16762 } 16763 16764 // Transform 16765 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16766 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16767 // In this case both C1 and C2 must be known constants. 16768 // C1+C2 must fit into a 34 bit signed integer. 16769 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16770 const PPCSubtarget &Subtarget) { 16771 if (!Subtarget.isUsingPCRelativeCalls()) 16772 return SDValue(); 16773 16774 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16775 // If we find that node try to cast the Global Address and the Constant. 16776 SDValue LHS = N->getOperand(0); 16777 SDValue RHS = N->getOperand(1); 16778 16779 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16780 std::swap(LHS, RHS); 16781 16782 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16783 return SDValue(); 16784 16785 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16786 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16787 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16788 16789 // Check that both casts succeeded. 16790 if (!GSDN || !ConstNode) 16791 return SDValue(); 16792 16793 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16794 SDLoc DL(GSDN); 16795 16796 // The signed int offset needs to fit in 34 bits. 16797 if (!isInt<34>(NewOffset)) 16798 return SDValue(); 16799 16800 // The new global address is a copy of the old global address except 16801 // that it has the updated Offset. 16802 SDValue GA = 16803 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16804 NewOffset, GSDN->getTargetFlags()); 16805 SDValue MatPCRel = 16806 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16807 return MatPCRel; 16808 } 16809 16810 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16811 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16812 return Value; 16813 16814 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16815 return Value; 16816 16817 return SDValue(); 16818 } 16819 16820 // Detect TRUNCATE operations on bitcasts of float128 values. 16821 // What we are looking for here is the situtation where we extract a subset 16822 // of bits from a 128 bit float. 16823 // This can be of two forms: 16824 // 1) BITCAST of f128 feeding TRUNCATE 16825 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16826 // The reason this is required is because we do not have a legal i128 type 16827 // and so we want to prevent having to store the f128 and then reload part 16828 // of it. 16829 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16830 DAGCombinerInfo &DCI) const { 16831 // If we are using CRBits then try that first. 16832 if (Subtarget.useCRBits()) { 16833 // Check if CRBits did anything and return that if it did. 16834 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16835 return CRTruncValue; 16836 } 16837 16838 SDLoc dl(N); 16839 SDValue Op0 = N->getOperand(0); 16840 16841 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16842 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16843 EVT VT = N->getValueType(0); 16844 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16845 return SDValue(); 16846 SDValue Sub = Op0.getOperand(0); 16847 if (Sub.getOpcode() == ISD::SUB) { 16848 SDValue SubOp0 = Sub.getOperand(0); 16849 SDValue SubOp1 = Sub.getOperand(1); 16850 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16851 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16852 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16853 SubOp1.getOperand(0), 16854 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16855 } 16856 } 16857 } 16858 16859 // Looking for a truncate of i128 to i64. 16860 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16861 return SDValue(); 16862 16863 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16864 16865 // SRL feeding TRUNCATE. 16866 if (Op0.getOpcode() == ISD::SRL) { 16867 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16868 // The right shift has to be by 64 bits. 16869 if (!ConstNode || ConstNode->getZExtValue() != 64) 16870 return SDValue(); 16871 16872 // Switch the element number to extract. 16873 EltToExtract = EltToExtract ? 0 : 1; 16874 // Update Op0 past the SRL. 16875 Op0 = Op0.getOperand(0); 16876 } 16877 16878 // BITCAST feeding a TRUNCATE possibly via SRL. 16879 if (Op0.getOpcode() == ISD::BITCAST && 16880 Op0.getValueType() == MVT::i128 && 16881 Op0.getOperand(0).getValueType() == MVT::f128) { 16882 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16883 return DCI.DAG.getNode( 16884 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16885 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16886 } 16887 return SDValue(); 16888 } 16889 16890 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16891 SelectionDAG &DAG = DCI.DAG; 16892 16893 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16894 if (!ConstOpOrElement) 16895 return SDValue(); 16896 16897 // An imul is usually smaller than the alternative sequence for legal type. 16898 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16899 isOperationLegal(ISD::MUL, N->getValueType(0))) 16900 return SDValue(); 16901 16902 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16903 switch (this->Subtarget.getCPUDirective()) { 16904 default: 16905 // TODO: enhance the condition for subtarget before pwr8 16906 return false; 16907 case PPC::DIR_PWR8: 16908 // type mul add shl 16909 // scalar 4 1 1 16910 // vector 7 2 2 16911 return true; 16912 case PPC::DIR_PWR9: 16913 case PPC::DIR_PWR10: 16914 case PPC::DIR_PWR_FUTURE: 16915 // type mul add shl 16916 // scalar 5 2 2 16917 // vector 7 2 2 16918 16919 // The cycle RATIO of related operations are showed as a table above. 16920 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16921 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16922 // are 4, it is always profitable; but for 3 instrs patterns 16923 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16924 // So we should only do it for vector type. 16925 return IsAddOne && IsNeg ? VT.isVector() : true; 16926 } 16927 }; 16928 16929 EVT VT = N->getValueType(0); 16930 SDLoc DL(N); 16931 16932 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16933 bool IsNeg = MulAmt.isNegative(); 16934 APInt MulAmtAbs = MulAmt.abs(); 16935 16936 if ((MulAmtAbs - 1).isPowerOf2()) { 16937 // (mul x, 2^N + 1) => (add (shl x, N), x) 16938 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16939 16940 if (!IsProfitable(IsNeg, true, VT)) 16941 return SDValue(); 16942 16943 SDValue Op0 = N->getOperand(0); 16944 SDValue Op1 = 16945 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16946 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16947 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16948 16949 if (!IsNeg) 16950 return Res; 16951 16952 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16953 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16954 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16955 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16956 16957 if (!IsProfitable(IsNeg, false, VT)) 16958 return SDValue(); 16959 16960 SDValue Op0 = N->getOperand(0); 16961 SDValue Op1 = 16962 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16963 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16964 16965 if (!IsNeg) 16966 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16967 else 16968 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16969 16970 } else { 16971 return SDValue(); 16972 } 16973 } 16974 16975 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16976 // in combiner since we need to check SD flags and other subtarget features. 16977 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16978 DAGCombinerInfo &DCI) const { 16979 SDValue N0 = N->getOperand(0); 16980 SDValue N1 = N->getOperand(1); 16981 SDValue N2 = N->getOperand(2); 16982 SDNodeFlags Flags = N->getFlags(); 16983 EVT VT = N->getValueType(0); 16984 SelectionDAG &DAG = DCI.DAG; 16985 const TargetOptions &Options = getTargetMachine().Options; 16986 unsigned Opc = N->getOpcode(); 16987 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16988 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16989 SDLoc Loc(N); 16990 16991 // TODO: QPX subtarget is deprecated. No transformation here. 16992 if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT)) 16993 return SDValue(); 16994 16995 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16996 // since (fnmsub a b c)=-0 while c-ab=+0. 16997 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16998 return SDValue(); 16999 17000 // (fma (fneg a) b c) => (fnmsub a b c) 17001 // (fnmsub (fneg a) b c) => (fma a b c) 17002 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17003 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17004 17005 // (fma a (fneg b) c) => (fnmsub a b c) 17006 // (fnmsub a (fneg b) c) => (fma a b c) 17007 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17008 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17009 17010 return SDValue(); 17011 } 17012 17013 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17014 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17015 if (!Subtarget.is64BitELFABI()) 17016 return false; 17017 17018 // If not a tail call then no need to proceed. 17019 if (!CI->isTailCall()) 17020 return false; 17021 17022 // If sibling calls have been disabled and tail-calls aren't guaranteed 17023 // there is no reason to duplicate. 17024 auto &TM = getTargetMachine(); 17025 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17026 return false; 17027 17028 // Can't tail call a function called indirectly, or if it has variadic args. 17029 const Function *Callee = CI->getCalledFunction(); 17030 if (!Callee || Callee->isVarArg()) 17031 return false; 17032 17033 // Make sure the callee and caller calling conventions are eligible for tco. 17034 const Function *Caller = CI->getParent()->getParent(); 17035 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17036 CI->getCallingConv())) 17037 return false; 17038 17039 // If the function is local then we have a good chance at tail-calling it 17040 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17041 } 17042 17043 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17044 if (!Subtarget.hasVSX()) 17045 return false; 17046 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17047 return true; 17048 return VT == MVT::f32 || VT == MVT::f64 || 17049 VT == MVT::v4f32 || VT == MVT::v2f64; 17050 } 17051 17052 bool PPCTargetLowering:: 17053 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17054 const Value *Mask = AndI.getOperand(1); 17055 // If the mask is suitable for andi. or andis. we should sink the and. 17056 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17057 // Can't handle constants wider than 64-bits. 17058 if (CI->getBitWidth() > 64) 17059 return false; 17060 int64_t ConstVal = CI->getZExtValue(); 17061 return isUInt<16>(ConstVal) || 17062 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17063 } 17064 17065 // For non-constant masks, we can always use the record-form and. 17066 return true; 17067 } 17068 17069 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17070 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17071 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17072 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17073 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17074 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17075 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17076 assert(Subtarget.hasP9Altivec() && 17077 "Only combine this when P9 altivec supported!"); 17078 EVT VT = N->getValueType(0); 17079 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17080 return SDValue(); 17081 17082 SelectionDAG &DAG = DCI.DAG; 17083 SDLoc dl(N); 17084 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17085 // Even for signed integers, if it's known to be positive (as signed 17086 // integer) due to zero-extended inputs. 17087 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17088 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17089 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17090 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17091 (SubOpcd1 == ISD::ZERO_EXTEND || 17092 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17093 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17094 N->getOperand(0)->getOperand(0), 17095 N->getOperand(0)->getOperand(1), 17096 DAG.getTargetConstant(0, dl, MVT::i32)); 17097 } 17098 17099 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17100 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17101 N->getOperand(0).hasOneUse()) { 17102 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17103 N->getOperand(0)->getOperand(0), 17104 N->getOperand(0)->getOperand(1), 17105 DAG.getTargetConstant(1, dl, MVT::i32)); 17106 } 17107 } 17108 17109 return SDValue(); 17110 } 17111 17112 // For type v4i32/v8ii16/v16i8, transform 17113 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17114 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17115 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17116 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17117 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17118 DAGCombinerInfo &DCI) const { 17119 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17120 assert(Subtarget.hasP9Altivec() && 17121 "Only combine this when P9 altivec supported!"); 17122 17123 SelectionDAG &DAG = DCI.DAG; 17124 SDLoc dl(N); 17125 SDValue Cond = N->getOperand(0); 17126 SDValue TrueOpnd = N->getOperand(1); 17127 SDValue FalseOpnd = N->getOperand(2); 17128 EVT VT = N->getOperand(1).getValueType(); 17129 17130 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17131 FalseOpnd.getOpcode() != ISD::SUB) 17132 return SDValue(); 17133 17134 // ABSD only available for type v4i32/v8i16/v16i8 17135 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17136 return SDValue(); 17137 17138 // At least to save one more dependent computation 17139 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17140 return SDValue(); 17141 17142 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17143 17144 // Can only handle unsigned comparison here 17145 switch (CC) { 17146 default: 17147 return SDValue(); 17148 case ISD::SETUGT: 17149 case ISD::SETUGE: 17150 break; 17151 case ISD::SETULT: 17152 case ISD::SETULE: 17153 std::swap(TrueOpnd, FalseOpnd); 17154 break; 17155 } 17156 17157 SDValue CmpOpnd1 = Cond.getOperand(0); 17158 SDValue CmpOpnd2 = Cond.getOperand(1); 17159 17160 // SETCC CmpOpnd1 CmpOpnd2 cond 17161 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17162 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17163 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17164 TrueOpnd.getOperand(1) == CmpOpnd2 && 17165 FalseOpnd.getOperand(0) == CmpOpnd2 && 17166 FalseOpnd.getOperand(1) == CmpOpnd1) { 17167 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17168 CmpOpnd1, CmpOpnd2, 17169 DAG.getTargetConstant(0, dl, MVT::i32)); 17170 } 17171 17172 return SDValue(); 17173 } 17174