1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/APSInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/MachineValueType.h" 51 #include "llvm/CodeGen/RuntimeLibcalls.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetLowering.h" 56 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/ValueTypes.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSectionXCOFF.h" 79 #include "llvm/MC/MCSymbolXCOFF.h" 80 #include "llvm/Support/AtomicOrdering.h" 81 #include "llvm/Support/BranchProbability.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/CodeGen.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/KnownBits.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <optional> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 105 #define DEBUG_TYPE "ppc-lowering" 106 107 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 108 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 111 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 112 113 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 114 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 115 116 static cl::opt<bool> DisableSCO("disable-ppc-sco", 117 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 118 119 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 120 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 121 122 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 123 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 124 125 static cl::opt<bool> 126 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 127 cl::desc("disable vector permute decomposition"), 128 cl::init(true), cl::Hidden); 129 130 cl::opt<bool> DisableAutoPairedVecSt( 131 "disable-auto-paired-vec-st", 132 cl::desc("disable automatically generated 32byte paired vector stores"), 133 cl::init(true), cl::Hidden); 134 135 STATISTIC(NumTailCalls, "Number of tail calls"); 136 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 137 STATISTIC(ShufflesHandledWithVPERM, 138 "Number of shuffles lowered to a VPERM or XXPERM"); 139 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 140 141 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 142 143 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 144 145 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 146 147 // FIXME: Remove this once the bug has been fixed! 148 extern cl::opt<bool> ANDIGlueBug; 149 150 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 151 const PPCSubtarget &STI) 152 : TargetLowering(TM), Subtarget(STI) { 153 // Initialize map that relates the PPC addressing modes to the computed flags 154 // of a load/store instruction. The map is used to determine the optimal 155 // addressing mode when selecting load and stores. 156 initializeAddrModeMap(); 157 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 158 // arguments are at least 4/8 bytes aligned. 159 bool isPPC64 = Subtarget.isPPC64(); 160 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 161 162 // Set up the register classes. 163 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 164 if (!useSoftFloat()) { 165 if (hasSPE()) { 166 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 167 // EFPU2 APU only supports f32 168 if (!Subtarget.hasEFPU2()) 169 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 170 } else { 171 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 172 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 173 } 174 } 175 176 // Match BITREVERSE to customized fast code sequence in the td file. 177 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 178 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 179 180 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 181 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 182 183 // Custom lower inline assembly to check for special registers. 184 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 185 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 186 187 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 188 for (MVT VT : MVT::integer_valuetypes()) { 189 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 190 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 191 } 192 193 if (Subtarget.isISA3_0()) { 194 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 195 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 196 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 197 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 198 } else { 199 // No extending loads from f16 or HW conversions back and forth. 200 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 201 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 202 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 203 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 204 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 205 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 206 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 207 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 208 } 209 210 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 211 212 // PowerPC has pre-inc load and store's. 213 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 214 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 215 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 216 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 217 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 218 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 221 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 222 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 223 if (!Subtarget.hasSPE()) { 224 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 225 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 226 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 227 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 228 } 229 230 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 231 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 232 for (MVT VT : ScalarIntVTs) { 233 setOperationAction(ISD::ADDC, VT, Legal); 234 setOperationAction(ISD::ADDE, VT, Legal); 235 setOperationAction(ISD::SUBC, VT, Legal); 236 setOperationAction(ISD::SUBE, VT, Legal); 237 } 238 239 if (Subtarget.useCRBits()) { 240 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 241 242 if (isPPC64 || Subtarget.hasFPCVT()) { 243 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 244 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 247 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 251 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 254 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 257 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 258 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 259 isPPC64 ? MVT::i64 : MVT::i32); 260 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 261 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 262 isPPC64 ? MVT::i64 : MVT::i32); 263 264 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 265 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 266 isPPC64 ? MVT::i64 : MVT::i32); 267 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 268 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 269 isPPC64 ? MVT::i64 : MVT::i32); 270 } else { 271 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 272 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 273 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 275 } 276 277 // PowerPC does not support direct load/store of condition registers. 278 setOperationAction(ISD::LOAD, MVT::i1, Custom); 279 setOperationAction(ISD::STORE, MVT::i1, Custom); 280 281 // FIXME: Remove this once the ANDI glue bug is fixed: 282 if (ANDIGlueBug) 283 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 284 285 for (MVT VT : MVT::integer_valuetypes()) { 286 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 287 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 288 setTruncStoreAction(VT, MVT::i1, Expand); 289 } 290 291 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 292 } 293 294 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 295 // PPC (the libcall is not available). 296 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 297 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 298 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 299 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 300 301 // We do not currently implement these libm ops for PowerPC. 302 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 303 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 304 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 305 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 306 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 307 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 308 309 // PowerPC has no SREM/UREM instructions unless we are on P9 310 // On P9 we may use a hardware instruction to compute the remainder. 311 // When the result of both the remainder and the division is required it is 312 // more efficient to compute the remainder from the result of the division 313 // rather than use the remainder instruction. The instructions are legalized 314 // directly because the DivRemPairsPass performs the transformation at the IR 315 // level. 316 if (Subtarget.isISA3_0()) { 317 setOperationAction(ISD::SREM, MVT::i32, Legal); 318 setOperationAction(ISD::UREM, MVT::i32, Legal); 319 setOperationAction(ISD::SREM, MVT::i64, Legal); 320 setOperationAction(ISD::UREM, MVT::i64, Legal); 321 } else { 322 setOperationAction(ISD::SREM, MVT::i32, Expand); 323 setOperationAction(ISD::UREM, MVT::i32, Expand); 324 setOperationAction(ISD::SREM, MVT::i64, Expand); 325 setOperationAction(ISD::UREM, MVT::i64, Expand); 326 } 327 328 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 329 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 330 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 331 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 332 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 333 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 334 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 335 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 336 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 337 338 // Handle constrained floating-point operations of scalar. 339 // TODO: Handle SPE specific operation. 340 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 343 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 344 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 345 346 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 347 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 348 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 349 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 350 351 if (!Subtarget.hasSPE()) { 352 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 353 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 354 } 355 356 if (Subtarget.hasVSX()) { 357 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 358 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 359 } 360 361 if (Subtarget.hasFSQRT()) { 362 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 364 } 365 366 if (Subtarget.hasFPRND()) { 367 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 368 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 369 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 370 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 371 372 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 373 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 374 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 375 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 376 } 377 378 // We don't support sin/cos/sqrt/fmod/pow 379 setOperationAction(ISD::FSIN , MVT::f64, Expand); 380 setOperationAction(ISD::FCOS , MVT::f64, Expand); 381 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 382 setOperationAction(ISD::FREM , MVT::f64, Expand); 383 setOperationAction(ISD::FPOW , MVT::f64, Expand); 384 setOperationAction(ISD::FSIN , MVT::f32, Expand); 385 setOperationAction(ISD::FCOS , MVT::f32, Expand); 386 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 387 setOperationAction(ISD::FREM , MVT::f32, Expand); 388 setOperationAction(ISD::FPOW , MVT::f32, Expand); 389 390 // MASS transformation for LLVM intrinsics with replicating fast-math flag 391 // to be consistent to PPCGenScalarMASSEntries pass 392 if (TM.getOptLevel() == CodeGenOpt::Aggressive) { 393 setOperationAction(ISD::FSIN , MVT::f64, Custom); 394 setOperationAction(ISD::FCOS , MVT::f64, Custom); 395 setOperationAction(ISD::FPOW , MVT::f64, Custom); 396 setOperationAction(ISD::FLOG, MVT::f64, Custom); 397 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 398 setOperationAction(ISD::FEXP, MVT::f64, Custom); 399 setOperationAction(ISD::FSIN , MVT::f32, Custom); 400 setOperationAction(ISD::FCOS , MVT::f32, Custom); 401 setOperationAction(ISD::FPOW , MVT::f32, Custom); 402 setOperationAction(ISD::FLOG, MVT::f32, Custom); 403 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 404 setOperationAction(ISD::FEXP, MVT::f32, Custom); 405 } 406 407 if (Subtarget.hasSPE()) { 408 setOperationAction(ISD::FMA , MVT::f64, Expand); 409 setOperationAction(ISD::FMA , MVT::f32, Expand); 410 } else { 411 setOperationAction(ISD::FMA , MVT::f64, Legal); 412 setOperationAction(ISD::FMA , MVT::f32, Legal); 413 } 414 415 if (Subtarget.hasSPE()) 416 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 417 418 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 419 420 // If we're enabling GP optimizations, use hardware square root 421 if (!Subtarget.hasFSQRT() && 422 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 423 Subtarget.hasFRE())) 424 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 425 426 if (!Subtarget.hasFSQRT() && 427 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 428 Subtarget.hasFRES())) 429 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 430 431 if (Subtarget.hasFCPSGN()) { 432 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 433 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 434 } else { 435 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 436 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 437 } 438 439 if (Subtarget.hasFPRND()) { 440 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 441 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 442 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 443 setOperationAction(ISD::FROUND, MVT::f64, Legal); 444 445 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 446 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 447 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 448 setOperationAction(ISD::FROUND, MVT::f32, Legal); 449 } 450 451 // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP 452 // instruction xxbrd to speed up scalar BSWAP64. 453 if (Subtarget.isISA3_1()) { 454 setOperationAction(ISD::BSWAP, MVT::i32, Legal); 455 setOperationAction(ISD::BSWAP, MVT::i64, Legal); 456 } else { 457 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 458 setOperationAction( 459 ISD::BSWAP, MVT::i64, 460 (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand); 461 } 462 463 // CTPOP or CTTZ were introduced in P8/P9 respectively 464 if (Subtarget.isISA3_0()) { 465 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 466 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 467 } else { 468 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 469 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 470 } 471 472 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 473 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 474 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 475 } else { 476 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 477 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 478 } 479 480 // PowerPC does not have ROTR 481 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 482 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 483 484 if (!Subtarget.useCRBits()) { 485 // PowerPC does not have Select 486 setOperationAction(ISD::SELECT, MVT::i32, Expand); 487 setOperationAction(ISD::SELECT, MVT::i64, Expand); 488 setOperationAction(ISD::SELECT, MVT::f32, Expand); 489 setOperationAction(ISD::SELECT, MVT::f64, Expand); 490 } 491 492 // PowerPC wants to turn select_cc of FP into fsel when possible. 493 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 494 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 495 496 // PowerPC wants to optimize integer setcc a bit 497 if (!Subtarget.useCRBits()) 498 setOperationAction(ISD::SETCC, MVT::i32, Custom); 499 500 if (Subtarget.hasFPU()) { 501 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 502 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 503 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 504 505 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 506 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 507 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 508 } 509 510 // PowerPC does not have BRCOND which requires SetCC 511 if (!Subtarget.useCRBits()) 512 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 513 514 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 515 516 if (Subtarget.hasSPE()) { 517 // SPE has built-in conversions 518 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 519 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 520 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 521 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 522 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 523 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 524 525 // SPE supports signaling compare of f32/f64. 526 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 527 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 528 } else { 529 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 530 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 531 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 532 533 // PowerPC does not have [U|S]INT_TO_FP 534 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 535 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 536 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 537 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 538 } 539 540 if (Subtarget.hasDirectMove() && isPPC64) { 541 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 542 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 543 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 544 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 545 if (TM.Options.UnsafeFPMath) { 546 setOperationAction(ISD::LRINT, MVT::f64, Legal); 547 setOperationAction(ISD::LRINT, MVT::f32, Legal); 548 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 549 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 550 setOperationAction(ISD::LROUND, MVT::f64, Legal); 551 setOperationAction(ISD::LROUND, MVT::f32, Legal); 552 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 553 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 554 } 555 } else { 556 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 557 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 558 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 559 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 560 } 561 562 // We cannot sextinreg(i1). Expand to shifts. 563 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 564 565 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 566 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 567 // support continuation, user-level threading, and etc.. As a result, no 568 // other SjLj exception interfaces are implemented and please don't build 569 // your own exception handling based on them. 570 // LLVM/Clang supports zero-cost DWARF exception handling. 571 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 572 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 573 574 // We want to legalize GlobalAddress and ConstantPool nodes into the 575 // appropriate instructions to materialize the address. 576 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 577 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 578 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 579 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 580 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 581 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 582 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 583 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 584 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 585 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 586 587 // TRAP is legal. 588 setOperationAction(ISD::TRAP, MVT::Other, Legal); 589 590 // TRAMPOLINE is custom lowered. 591 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 592 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 593 594 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 595 setOperationAction(ISD::VASTART , MVT::Other, Custom); 596 597 if (Subtarget.is64BitELFABI()) { 598 // VAARG always uses double-word chunks, so promote anything smaller. 599 setOperationAction(ISD::VAARG, MVT::i1, Promote); 600 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 601 setOperationAction(ISD::VAARG, MVT::i8, Promote); 602 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 603 setOperationAction(ISD::VAARG, MVT::i16, Promote); 604 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 605 setOperationAction(ISD::VAARG, MVT::i32, Promote); 606 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 607 setOperationAction(ISD::VAARG, MVT::Other, Expand); 608 } else if (Subtarget.is32BitELFABI()) { 609 // VAARG is custom lowered with the 32-bit SVR4 ABI. 610 setOperationAction(ISD::VAARG, MVT::Other, Custom); 611 setOperationAction(ISD::VAARG, MVT::i64, Custom); 612 } else 613 setOperationAction(ISD::VAARG, MVT::Other, Expand); 614 615 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 616 if (Subtarget.is32BitELFABI()) 617 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 618 else 619 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 620 621 // Use the default implementation. 622 setOperationAction(ISD::VAEND , MVT::Other, Expand); 623 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 624 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 625 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 626 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 627 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 628 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 629 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 630 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 631 632 // We want to custom lower some of our intrinsics. 633 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 634 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 635 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 636 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 637 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); 638 639 // To handle counter-based loop conditions. 640 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 641 642 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 643 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 644 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 645 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 646 647 // Comparisons that require checking two conditions. 648 if (Subtarget.hasSPE()) { 649 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 650 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 651 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 652 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 653 } 654 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 655 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 656 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 657 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 658 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 659 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 660 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 661 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 662 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 663 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 664 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 665 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 666 667 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 668 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 669 670 if (Subtarget.has64BitSupport()) { 671 // They also have instructions for converting between i64 and fp. 672 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 673 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 674 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 675 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 676 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 677 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 678 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 679 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 680 // This is just the low 32 bits of a (signed) fp->i64 conversion. 681 // We cannot do this with Promote because i64 is not a legal type. 682 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 683 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 684 685 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 686 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 687 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 688 } 689 } else { 690 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 691 if (Subtarget.hasSPE()) { 692 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 693 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 694 } else { 695 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 696 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 697 } 698 } 699 700 // With the instructions enabled under FPCVT, we can do everything. 701 if (Subtarget.hasFPCVT()) { 702 if (Subtarget.has64BitSupport()) { 703 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 704 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 705 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 706 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 707 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 708 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 709 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 710 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 711 } 712 713 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 714 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 715 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 716 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 717 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 718 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 719 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 720 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 721 } 722 723 if (Subtarget.use64BitRegs()) { 724 // 64-bit PowerPC implementations can support i64 types directly 725 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 726 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 727 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 728 // 64-bit PowerPC wants to expand i128 shifts itself. 729 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 730 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 731 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 732 } else { 733 // 32-bit PowerPC wants to expand i64 shifts itself. 734 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 735 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 736 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 737 } 738 739 // PowerPC has better expansions for funnel shifts than the generic 740 // TargetLowering::expandFunnelShift. 741 if (Subtarget.has64BitSupport()) { 742 setOperationAction(ISD::FSHL, MVT::i64, Custom); 743 setOperationAction(ISD::FSHR, MVT::i64, Custom); 744 } 745 setOperationAction(ISD::FSHL, MVT::i32, Custom); 746 setOperationAction(ISD::FSHR, MVT::i32, Custom); 747 748 if (Subtarget.hasVSX()) { 749 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 750 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 751 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 752 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 753 } 754 755 if (Subtarget.hasAltivec()) { 756 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 757 setOperationAction(ISD::SADDSAT, VT, Legal); 758 setOperationAction(ISD::SSUBSAT, VT, Legal); 759 setOperationAction(ISD::UADDSAT, VT, Legal); 760 setOperationAction(ISD::USUBSAT, VT, Legal); 761 } 762 // First set operation action for all vector types to expand. Then we 763 // will selectively turn on ones that can be effectively codegen'd. 764 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 765 // add/sub are legal for all supported vector VT's. 766 setOperationAction(ISD::ADD, VT, Legal); 767 setOperationAction(ISD::SUB, VT, Legal); 768 769 // For v2i64, these are only valid with P8Vector. This is corrected after 770 // the loop. 771 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 772 setOperationAction(ISD::SMAX, VT, Legal); 773 setOperationAction(ISD::SMIN, VT, Legal); 774 setOperationAction(ISD::UMAX, VT, Legal); 775 setOperationAction(ISD::UMIN, VT, Legal); 776 } 777 else { 778 setOperationAction(ISD::SMAX, VT, Expand); 779 setOperationAction(ISD::SMIN, VT, Expand); 780 setOperationAction(ISD::UMAX, VT, Expand); 781 setOperationAction(ISD::UMIN, VT, Expand); 782 } 783 784 if (Subtarget.hasVSX()) { 785 setOperationAction(ISD::FMAXNUM, VT, Legal); 786 setOperationAction(ISD::FMINNUM, VT, Legal); 787 } 788 789 // Vector instructions introduced in P8 790 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 791 setOperationAction(ISD::CTPOP, VT, Legal); 792 setOperationAction(ISD::CTLZ, VT, Legal); 793 } 794 else { 795 setOperationAction(ISD::CTPOP, VT, Expand); 796 setOperationAction(ISD::CTLZ, VT, Expand); 797 } 798 799 // Vector instructions introduced in P9 800 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 801 setOperationAction(ISD::CTTZ, VT, Legal); 802 else 803 setOperationAction(ISD::CTTZ, VT, Expand); 804 805 // We promote all shuffles to v16i8. 806 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 807 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 808 809 // We promote all non-typed operations to v4i32. 810 setOperationAction(ISD::AND , VT, Promote); 811 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 812 setOperationAction(ISD::OR , VT, Promote); 813 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 814 setOperationAction(ISD::XOR , VT, Promote); 815 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 816 setOperationAction(ISD::LOAD , VT, Promote); 817 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 818 setOperationAction(ISD::SELECT, VT, Promote); 819 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 820 setOperationAction(ISD::VSELECT, VT, Legal); 821 setOperationAction(ISD::SELECT_CC, VT, Promote); 822 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 823 setOperationAction(ISD::STORE, VT, Promote); 824 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 825 826 // No other operations are legal. 827 setOperationAction(ISD::MUL , VT, Expand); 828 setOperationAction(ISD::SDIV, VT, Expand); 829 setOperationAction(ISD::SREM, VT, Expand); 830 setOperationAction(ISD::UDIV, VT, Expand); 831 setOperationAction(ISD::UREM, VT, Expand); 832 setOperationAction(ISD::FDIV, VT, Expand); 833 setOperationAction(ISD::FREM, VT, Expand); 834 setOperationAction(ISD::FNEG, VT, Expand); 835 setOperationAction(ISD::FSQRT, VT, Expand); 836 setOperationAction(ISD::FLOG, VT, Expand); 837 setOperationAction(ISD::FLOG10, VT, Expand); 838 setOperationAction(ISD::FLOG2, VT, Expand); 839 setOperationAction(ISD::FEXP, VT, Expand); 840 setOperationAction(ISD::FEXP2, VT, Expand); 841 setOperationAction(ISD::FSIN, VT, Expand); 842 setOperationAction(ISD::FCOS, VT, Expand); 843 setOperationAction(ISD::FABS, VT, Expand); 844 setOperationAction(ISD::FFLOOR, VT, Expand); 845 setOperationAction(ISD::FCEIL, VT, Expand); 846 setOperationAction(ISD::FTRUNC, VT, Expand); 847 setOperationAction(ISD::FRINT, VT, Expand); 848 setOperationAction(ISD::FLDEXP, VT, Expand); 849 setOperationAction(ISD::FNEARBYINT, VT, Expand); 850 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 851 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 852 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 853 setOperationAction(ISD::MULHU, VT, Expand); 854 setOperationAction(ISD::MULHS, VT, Expand); 855 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 856 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 857 setOperationAction(ISD::UDIVREM, VT, Expand); 858 setOperationAction(ISD::SDIVREM, VT, Expand); 859 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 860 setOperationAction(ISD::FPOW, VT, Expand); 861 setOperationAction(ISD::BSWAP, VT, Expand); 862 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 863 setOperationAction(ISD::ROTL, VT, Expand); 864 setOperationAction(ISD::ROTR, VT, Expand); 865 866 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 867 setTruncStoreAction(VT, InnerVT, Expand); 868 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 869 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 870 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 871 } 872 } 873 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 874 if (!Subtarget.hasP8Vector()) { 875 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 876 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 877 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 878 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 879 } 880 881 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 882 // with merges, splats, etc. 883 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 884 885 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 886 // are cheap, so handle them before they get expanded to scalar. 887 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 888 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 889 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 890 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 891 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 892 893 setOperationAction(ISD::AND , MVT::v4i32, Legal); 894 setOperationAction(ISD::OR , MVT::v4i32, Legal); 895 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 896 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 897 setOperationAction(ISD::SELECT, MVT::v4i32, 898 Subtarget.useCRBits() ? Legal : Expand); 899 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 900 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 901 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 902 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 903 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 904 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 905 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 906 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 907 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 908 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 909 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 910 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 911 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 912 913 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 914 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 915 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 916 if (Subtarget.hasAltivec()) 917 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 918 setOperationAction(ISD::ROTL, VT, Legal); 919 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 920 if (Subtarget.hasP8Altivec()) 921 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 922 923 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 924 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 925 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 926 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 927 928 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 929 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 930 931 if (Subtarget.hasVSX()) { 932 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 933 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 934 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 935 } 936 937 if (Subtarget.hasP8Altivec()) 938 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 939 else 940 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 941 942 if (Subtarget.isISA3_1()) { 943 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 944 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 945 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 946 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 947 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 948 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 949 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 950 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 951 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 952 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 953 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 954 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 955 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 956 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 957 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 958 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 959 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 960 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 961 } 962 963 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 964 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 965 966 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 967 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 968 969 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 970 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 971 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 972 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 973 974 // Altivec does not contain unordered floating-point compare instructions 975 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 976 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 977 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 978 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 979 980 if (Subtarget.hasVSX()) { 981 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 982 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 983 if (Subtarget.hasP8Vector()) { 984 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 985 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 986 } 987 if (Subtarget.hasDirectMove() && isPPC64) { 988 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 989 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 990 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 991 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 992 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 993 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 994 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 995 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 996 } 997 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 998 999 // The nearbyint variants are not allowed to raise the inexact exception 1000 // so we can only code-gen them with unsafe math. 1001 if (TM.Options.UnsafeFPMath) { 1002 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 1003 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 1004 } 1005 1006 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 1007 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 1008 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1009 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1010 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1011 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1012 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1013 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1014 1015 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1016 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1017 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1018 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1019 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1020 1021 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1022 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1023 1024 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1025 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1026 1027 // Share the Altivec comparison restrictions. 1028 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1029 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1030 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1031 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1032 1033 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1034 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1035 1036 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 1037 1038 if (Subtarget.hasP8Vector()) 1039 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1040 1041 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1042 1043 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1044 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1045 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1046 1047 if (Subtarget.hasP8Altivec()) { 1048 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1049 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1050 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1051 1052 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1053 // SRL, but not for SRA because of the instructions available: 1054 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1055 // doing 1056 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1057 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1058 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1059 1060 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1061 } 1062 else { 1063 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1064 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1065 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1066 1067 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1068 1069 // VSX v2i64 only supports non-arithmetic operations. 1070 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1071 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1072 } 1073 1074 if (Subtarget.isISA3_1()) 1075 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1076 else 1077 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1078 1079 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1080 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1081 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1082 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1083 1084 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 1085 1086 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1087 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1088 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1089 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1090 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1091 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1092 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1093 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1094 1095 // Custom handling for partial vectors of integers converted to 1096 // floating point. We already have optimal handling for v2i32 through 1097 // the DAG combine, so those aren't necessary. 1098 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1099 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1100 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1101 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1102 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1103 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1104 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1105 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1106 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1107 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1108 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1109 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1110 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1111 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1112 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1113 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1114 1115 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1116 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1117 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1118 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1119 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1120 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1121 1122 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1123 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1124 1125 // Handle constrained floating-point operations of vector. 1126 // The predictor is `hasVSX` because altivec instruction has 1127 // no exception but VSX vector instruction has. 1128 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1129 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1130 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1131 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1132 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1133 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1134 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1135 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1136 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1137 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1138 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1139 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1140 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1141 1142 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1143 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1144 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1145 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1146 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1147 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1148 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1149 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1150 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1151 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1152 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1153 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1154 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1155 1156 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1157 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1158 1159 for (MVT FPT : MVT::fp_valuetypes()) 1160 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1161 1162 // Expand the SELECT to SELECT_CC 1163 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1164 1165 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1166 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1167 1168 // No implementation for these ops for PowerPC. 1169 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1170 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1171 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1172 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1173 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1174 setOperationAction(ISD::FREM, MVT::f128, Expand); 1175 } 1176 1177 if (Subtarget.hasP8Altivec()) { 1178 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1179 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1180 } 1181 1182 if (Subtarget.hasP9Vector()) { 1183 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1184 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1185 1186 // Test data class instructions store results in CR bits. 1187 if (Subtarget.useCRBits()) { 1188 setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom); 1189 setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom); 1190 setOperationAction(ISD::IS_FPCLASS, MVT::f128, Custom); 1191 } 1192 1193 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1194 // SRL, but not for SRA because of the instructions available: 1195 // VS{RL} and VS{RL}O. 1196 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1197 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1198 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1199 1200 setOperationAction(ISD::FADD, MVT::f128, Legal); 1201 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1202 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1203 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1204 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1205 1206 setOperationAction(ISD::FMA, MVT::f128, Legal); 1207 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1208 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1209 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1210 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1211 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1212 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1213 1214 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1215 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1216 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1217 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1218 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1219 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1220 1221 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1222 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1223 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1224 1225 // Handle constrained floating-point operations of fp128 1226 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1227 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1228 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1229 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1230 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1231 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1232 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1233 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1234 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1235 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1236 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1237 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1238 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1239 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1240 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1241 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1242 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1243 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1244 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1245 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1246 } else if (Subtarget.hasVSX()) { 1247 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1248 setOperationAction(ISD::STORE, MVT::f128, Promote); 1249 1250 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1251 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1252 1253 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1254 // fp_to_uint and int_to_fp. 1255 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1256 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1257 1258 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1259 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1260 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1261 setOperationAction(ISD::FABS, MVT::f128, Expand); 1262 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1263 setOperationAction(ISD::FMA, MVT::f128, Expand); 1264 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1265 1266 // Expand the fp_extend if the target type is fp128. 1267 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1268 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1269 1270 // Expand the fp_round if the source type is fp128. 1271 for (MVT VT : {MVT::f32, MVT::f64}) { 1272 setOperationAction(ISD::FP_ROUND, VT, Custom); 1273 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1274 } 1275 1276 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1277 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1278 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1279 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1280 1281 // Lower following f128 select_cc pattern: 1282 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1283 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1284 1285 // We need to handle f128 SELECT_CC with integer result type. 1286 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1287 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1288 } 1289 1290 if (Subtarget.hasP9Altivec()) { 1291 if (Subtarget.isISA3_1()) { 1292 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1293 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1294 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1295 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1296 } else { 1297 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1298 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1299 } 1300 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1301 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1302 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1303 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1304 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1305 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1306 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1307 1308 setOperationAction(ISD::ABDU, MVT::v16i8, Legal); 1309 setOperationAction(ISD::ABDU, MVT::v8i16, Legal); 1310 setOperationAction(ISD::ABDU, MVT::v4i32, Legal); 1311 setOperationAction(ISD::ABDS, MVT::v4i32, Legal); 1312 } 1313 1314 if (Subtarget.hasP10Vector()) { 1315 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1316 } 1317 } 1318 1319 if (Subtarget.pairedVectorMemops()) { 1320 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1321 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1322 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1323 } 1324 if (Subtarget.hasMMA()) { 1325 if (Subtarget.isISAFuture()) 1326 addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass); 1327 else 1328 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1329 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1330 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1331 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1332 } 1333 1334 if (Subtarget.has64BitSupport()) 1335 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1336 1337 if (Subtarget.isISA3_1()) 1338 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1339 1340 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1341 1342 if (!isPPC64) { 1343 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1344 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1345 } 1346 1347 if (shouldInlineQuadwordAtomics()) { 1348 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1349 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1350 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1351 } 1352 1353 setBooleanContents(ZeroOrOneBooleanContent); 1354 1355 if (Subtarget.hasAltivec()) { 1356 // Altivec instructions set fields to all zeros or all ones. 1357 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1358 } 1359 1360 setLibcallName(RTLIB::MULO_I128, nullptr); 1361 if (!isPPC64) { 1362 // These libcalls are not available in 32-bit. 1363 setLibcallName(RTLIB::SHL_I128, nullptr); 1364 setLibcallName(RTLIB::SRL_I128, nullptr); 1365 setLibcallName(RTLIB::SRA_I128, nullptr); 1366 setLibcallName(RTLIB::MUL_I128, nullptr); 1367 setLibcallName(RTLIB::MULO_I64, nullptr); 1368 } 1369 1370 if (shouldInlineQuadwordAtomics()) 1371 setMaxAtomicSizeInBitsSupported(128); 1372 else if (isPPC64) 1373 setMaxAtomicSizeInBitsSupported(64); 1374 else 1375 setMaxAtomicSizeInBitsSupported(32); 1376 1377 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1378 1379 // We have target-specific dag combine patterns for the following nodes: 1380 setTargetDAGCombine({ISD::AND, ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, 1381 ISD::MUL, ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); 1382 if (Subtarget.hasFPCVT()) 1383 setTargetDAGCombine(ISD::UINT_TO_FP); 1384 setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); 1385 if (Subtarget.useCRBits()) 1386 setTargetDAGCombine(ISD::BRCOND); 1387 setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, 1388 ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); 1389 1390 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); 1391 1392 setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); 1393 1394 if (Subtarget.useCRBits()) { 1395 setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); 1396 } 1397 1398 setLibcallName(RTLIB::LOG_F128, "logf128"); 1399 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1400 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1401 setLibcallName(RTLIB::EXP_F128, "expf128"); 1402 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1403 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1404 setLibcallName(RTLIB::COS_F128, "cosf128"); 1405 setLibcallName(RTLIB::SINCOS_F128, "sincosf128"); 1406 setLibcallName(RTLIB::POW_F128, "powf128"); 1407 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1408 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1409 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1410 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1411 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1412 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1413 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1414 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1415 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1416 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1417 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1418 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1419 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1420 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1421 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1422 1423 if (Subtarget.isAIXABI()) { 1424 setLibcallName(RTLIB::MEMCPY, isPPC64 ? "___memmove64" : "___memmove"); 1425 setLibcallName(RTLIB::MEMMOVE, isPPC64 ? "___memmove64" : "___memmove"); 1426 setLibcallName(RTLIB::MEMSET, isPPC64 ? "___memset64" : "___memset"); 1427 setLibcallName(RTLIB::BZERO, isPPC64 ? "___bzero64" : "___bzero"); 1428 } 1429 1430 // With 32 condition bits, we don't need to sink (and duplicate) compares 1431 // aggressively in CodeGenPrep. 1432 if (Subtarget.useCRBits()) { 1433 setHasMultipleConditionRegisters(); 1434 setJumpIsExpensive(); 1435 } 1436 1437 setMinFunctionAlignment(Align(4)); 1438 1439 switch (Subtarget.getCPUDirective()) { 1440 default: break; 1441 case PPC::DIR_970: 1442 case PPC::DIR_A2: 1443 case PPC::DIR_E500: 1444 case PPC::DIR_E500mc: 1445 case PPC::DIR_E5500: 1446 case PPC::DIR_PWR4: 1447 case PPC::DIR_PWR5: 1448 case PPC::DIR_PWR5X: 1449 case PPC::DIR_PWR6: 1450 case PPC::DIR_PWR6X: 1451 case PPC::DIR_PWR7: 1452 case PPC::DIR_PWR8: 1453 case PPC::DIR_PWR9: 1454 case PPC::DIR_PWR10: 1455 case PPC::DIR_PWR_FUTURE: 1456 setPrefLoopAlignment(Align(16)); 1457 setPrefFunctionAlignment(Align(16)); 1458 break; 1459 } 1460 1461 if (Subtarget.enableMachineScheduler()) 1462 setSchedulingPreference(Sched::Source); 1463 else 1464 setSchedulingPreference(Sched::Hybrid); 1465 1466 computeRegisterProperties(STI.getRegisterInfo()); 1467 1468 // The Freescale cores do better with aggressive inlining of memcpy and 1469 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1470 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1471 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1472 MaxStoresPerMemset = 32; 1473 MaxStoresPerMemsetOptSize = 16; 1474 MaxStoresPerMemcpy = 32; 1475 MaxStoresPerMemcpyOptSize = 8; 1476 MaxStoresPerMemmove = 32; 1477 MaxStoresPerMemmoveOptSize = 8; 1478 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1479 // The A2 also benefits from (very) aggressive inlining of memcpy and 1480 // friends. The overhead of a the function call, even when warm, can be 1481 // over one hundred cycles. 1482 MaxStoresPerMemset = 128; 1483 MaxStoresPerMemcpy = 128; 1484 MaxStoresPerMemmove = 128; 1485 MaxLoadsPerMemcmp = 128; 1486 } else { 1487 MaxLoadsPerMemcmp = 8; 1488 MaxLoadsPerMemcmpOptSize = 4; 1489 } 1490 1491 IsStrictFPEnabled = true; 1492 1493 // Let the subtarget (CPU) decide if a predictable select is more expensive 1494 // than the corresponding branch. This information is used in CGP to decide 1495 // when to convert selects into branches. 1496 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1497 } 1498 1499 // *********************************** NOTE ************************************ 1500 // For selecting load and store instructions, the addressing modes are defined 1501 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1502 // patterns to match the load the store instructions. 1503 // 1504 // The TD definitions for the addressing modes correspond to their respective 1505 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1506 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1507 // address mode flags of a particular node. Afterwards, the computed address 1508 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1509 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1510 // accordingly, based on the preferred addressing mode. 1511 // 1512 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1513 // MemOpFlags contains all the possible flags that can be used to compute the 1514 // optimal addressing mode for load and store instructions. 1515 // AddrMode contains all the possible load and store addressing modes available 1516 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1517 // 1518 // When adding new load and store instructions, it is possible that new address 1519 // flags may need to be added into MemOpFlags, and a new addressing mode will 1520 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1521 // of the minimal and main distinguishing address flags for the new load/store 1522 // instructions) will need to be added into initializeAddrModeMap() below. 1523 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1524 // need to be updated to account for selecting the optimal addressing mode. 1525 // ***************************************************************************** 1526 /// Initialize the map that relates the different addressing modes of the load 1527 /// and store instructions to a set of flags. This ensures the load/store 1528 /// instruction is correctly matched during instruction selection. 1529 void PPCTargetLowering::initializeAddrModeMap() { 1530 AddrModesMap[PPC::AM_DForm] = { 1531 // LWZ, STW 1532 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1533 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1534 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1535 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1536 // LBZ, LHZ, STB, STH 1537 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1538 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1539 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1540 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1541 // LHA 1542 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1543 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1544 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1545 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1546 // LFS, LFD, STFS, STFD 1547 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1548 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1549 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1550 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1551 }; 1552 AddrModesMap[PPC::AM_DSForm] = { 1553 // LWA 1554 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1555 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1556 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1557 // LD, STD 1558 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1559 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1560 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1561 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1562 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1563 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1564 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1565 }; 1566 AddrModesMap[PPC::AM_DQForm] = { 1567 // LXV, STXV 1568 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1569 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1570 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1571 }; 1572 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1573 PPC::MOF_SubtargetP10}; 1574 // TODO: Add mapping for quadword load/store. 1575 } 1576 1577 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1578 /// the desired ByVal argument alignment. 1579 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1580 if (MaxAlign == MaxMaxAlign) 1581 return; 1582 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1583 if (MaxMaxAlign >= 32 && 1584 VTy->getPrimitiveSizeInBits().getFixedValue() >= 256) 1585 MaxAlign = Align(32); 1586 else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 && 1587 MaxAlign < 16) 1588 MaxAlign = Align(16); 1589 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1590 Align EltAlign; 1591 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1592 if (EltAlign > MaxAlign) 1593 MaxAlign = EltAlign; 1594 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1595 for (auto *EltTy : STy->elements()) { 1596 Align EltAlign; 1597 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1598 if (EltAlign > MaxAlign) 1599 MaxAlign = EltAlign; 1600 if (MaxAlign == MaxMaxAlign) 1601 break; 1602 } 1603 } 1604 } 1605 1606 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1607 /// function arguments in the caller parameter area. 1608 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1609 const DataLayout &DL) const { 1610 // 16byte and wider vectors are passed on 16byte boundary. 1611 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1612 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1613 if (Subtarget.hasAltivec()) 1614 getMaxByValAlign(Ty, Alignment, Align(16)); 1615 return Alignment.value(); 1616 } 1617 1618 bool PPCTargetLowering::useSoftFloat() const { 1619 return Subtarget.useSoftFloat(); 1620 } 1621 1622 bool PPCTargetLowering::hasSPE() const { 1623 return Subtarget.hasSPE(); 1624 } 1625 1626 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1627 return VT.isScalarInteger(); 1628 } 1629 1630 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1631 switch ((PPCISD::NodeType)Opcode) { 1632 case PPCISD::FIRST_NUMBER: break; 1633 case PPCISD::FSEL: return "PPCISD::FSEL"; 1634 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1635 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1636 case PPCISD::FCFID: return "PPCISD::FCFID"; 1637 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1638 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1639 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1640 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1641 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1642 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1643 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1644 case PPCISD::FRE: return "PPCISD::FRE"; 1645 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1646 case PPCISD::FTSQRT: 1647 return "PPCISD::FTSQRT"; 1648 case PPCISD::FSQRT: 1649 return "PPCISD::FSQRT"; 1650 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1651 case PPCISD::VPERM: return "PPCISD::VPERM"; 1652 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1653 case PPCISD::XXSPLTI_SP_TO_DP: 1654 return "PPCISD::XXSPLTI_SP_TO_DP"; 1655 case PPCISD::XXSPLTI32DX: 1656 return "PPCISD::XXSPLTI32DX"; 1657 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1658 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1659 case PPCISD::XXPERM: 1660 return "PPCISD::XXPERM"; 1661 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1662 case PPCISD::CMPB: return "PPCISD::CMPB"; 1663 case PPCISD::Hi: return "PPCISD::Hi"; 1664 case PPCISD::Lo: return "PPCISD::Lo"; 1665 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1666 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1667 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1668 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1669 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1670 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1671 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1672 case PPCISD::SRL: return "PPCISD::SRL"; 1673 case PPCISD::SRA: return "PPCISD::SRA"; 1674 case PPCISD::SHL: return "PPCISD::SHL"; 1675 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1676 case PPCISD::CALL: return "PPCISD::CALL"; 1677 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1678 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1679 case PPCISD::CALL_RM: 1680 return "PPCISD::CALL_RM"; 1681 case PPCISD::CALL_NOP_RM: 1682 return "PPCISD::CALL_NOP_RM"; 1683 case PPCISD::CALL_NOTOC_RM: 1684 return "PPCISD::CALL_NOTOC_RM"; 1685 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1686 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1687 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1688 case PPCISD::BCTRL_RM: 1689 return "PPCISD::BCTRL_RM"; 1690 case PPCISD::BCTRL_LOAD_TOC_RM: 1691 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1692 case PPCISD::RET_GLUE: return "PPCISD::RET_GLUE"; 1693 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1694 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1695 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1696 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1697 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1698 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1699 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1700 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1701 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1702 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1703 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1704 case PPCISD::ANDI_rec_1_EQ_BIT: 1705 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1706 case PPCISD::ANDI_rec_1_GT_BIT: 1707 return "PPCISD::ANDI_rec_1_GT_BIT"; 1708 case PPCISD::VCMP: return "PPCISD::VCMP"; 1709 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1710 case PPCISD::LBRX: return "PPCISD::LBRX"; 1711 case PPCISD::STBRX: return "PPCISD::STBRX"; 1712 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1713 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1714 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1715 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1716 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1717 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1718 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1719 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1720 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1721 case PPCISD::ST_VSR_SCAL_INT: 1722 return "PPCISD::ST_VSR_SCAL_INT"; 1723 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1724 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1725 case PPCISD::BDZ: return "PPCISD::BDZ"; 1726 case PPCISD::MFFS: return "PPCISD::MFFS"; 1727 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1728 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1729 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1730 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1731 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1732 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1733 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1734 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1735 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1736 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1737 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1738 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1739 case PPCISD::GET_TPOINTER: return "PPCISD::GET_TPOINTER"; 1740 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1741 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1742 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1743 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1744 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1745 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1746 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1747 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1748 case PPCISD::PADDI_DTPREL: 1749 return "PPCISD::PADDI_DTPREL"; 1750 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1751 case PPCISD::SC: return "PPCISD::SC"; 1752 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1753 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1754 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1755 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1756 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1757 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1758 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1759 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1760 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1761 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1762 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1763 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1764 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1765 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1766 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1767 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1768 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1769 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1770 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1771 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1772 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1773 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1774 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1775 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1776 case PPCISD::STRICT_FADDRTZ: 1777 return "PPCISD::STRICT_FADDRTZ"; 1778 case PPCISD::STRICT_FCTIDZ: 1779 return "PPCISD::STRICT_FCTIDZ"; 1780 case PPCISD::STRICT_FCTIWZ: 1781 return "PPCISD::STRICT_FCTIWZ"; 1782 case PPCISD::STRICT_FCTIDUZ: 1783 return "PPCISD::STRICT_FCTIDUZ"; 1784 case PPCISD::STRICT_FCTIWUZ: 1785 return "PPCISD::STRICT_FCTIWUZ"; 1786 case PPCISD::STRICT_FCFID: 1787 return "PPCISD::STRICT_FCFID"; 1788 case PPCISD::STRICT_FCFIDU: 1789 return "PPCISD::STRICT_FCFIDU"; 1790 case PPCISD::STRICT_FCFIDS: 1791 return "PPCISD::STRICT_FCFIDS"; 1792 case PPCISD::STRICT_FCFIDUS: 1793 return "PPCISD::STRICT_FCFIDUS"; 1794 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1795 case PPCISD::STORE_COND: 1796 return "PPCISD::STORE_COND"; 1797 } 1798 return nullptr; 1799 } 1800 1801 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1802 EVT VT) const { 1803 if (!VT.isVector()) 1804 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1805 1806 return VT.changeVectorElementTypeToInteger(); 1807 } 1808 1809 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1810 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1811 return true; 1812 } 1813 1814 //===----------------------------------------------------------------------===// 1815 // Node matching predicates, for use by the tblgen matching code. 1816 //===----------------------------------------------------------------------===// 1817 1818 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1819 static bool isFloatingPointZero(SDValue Op) { 1820 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1821 return CFP->getValueAPF().isZero(); 1822 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1823 // Maybe this has already been legalized into the constant pool? 1824 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1825 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1826 return CFP->getValueAPF().isZero(); 1827 } 1828 return false; 1829 } 1830 1831 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1832 /// true if Op is undef or if it matches the specified value. 1833 static bool isConstantOrUndef(int Op, int Val) { 1834 return Op < 0 || Op == Val; 1835 } 1836 1837 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1838 /// VPKUHUM instruction. 1839 /// The ShuffleKind distinguishes between big-endian operations with 1840 /// two different inputs (0), either-endian operations with two identical 1841 /// inputs (1), and little-endian operations with two different inputs (2). 1842 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1843 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1844 SelectionDAG &DAG) { 1845 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1846 if (ShuffleKind == 0) { 1847 if (IsLE) 1848 return false; 1849 for (unsigned i = 0; i != 16; ++i) 1850 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1851 return false; 1852 } else if (ShuffleKind == 2) { 1853 if (!IsLE) 1854 return false; 1855 for (unsigned i = 0; i != 16; ++i) 1856 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1857 return false; 1858 } else if (ShuffleKind == 1) { 1859 unsigned j = IsLE ? 0 : 1; 1860 for (unsigned i = 0; i != 8; ++i) 1861 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1862 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1863 return false; 1864 } 1865 return true; 1866 } 1867 1868 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1869 /// VPKUWUM instruction. 1870 /// The ShuffleKind distinguishes between big-endian operations with 1871 /// two different inputs (0), either-endian operations with two identical 1872 /// inputs (1), and little-endian operations with two different inputs (2). 1873 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1874 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1875 SelectionDAG &DAG) { 1876 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1877 if (ShuffleKind == 0) { 1878 if (IsLE) 1879 return false; 1880 for (unsigned i = 0; i != 16; i += 2) 1881 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1882 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1883 return false; 1884 } else if (ShuffleKind == 2) { 1885 if (!IsLE) 1886 return false; 1887 for (unsigned i = 0; i != 16; i += 2) 1888 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1889 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1890 return false; 1891 } else if (ShuffleKind == 1) { 1892 unsigned j = IsLE ? 0 : 2; 1893 for (unsigned i = 0; i != 8; i += 2) 1894 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1895 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1896 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1897 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1898 return false; 1899 } 1900 return true; 1901 } 1902 1903 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1904 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1905 /// current subtarget. 1906 /// 1907 /// The ShuffleKind distinguishes between big-endian operations with 1908 /// two different inputs (0), either-endian operations with two identical 1909 /// inputs (1), and little-endian operations with two different inputs (2). 1910 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1911 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1912 SelectionDAG &DAG) { 1913 const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); 1914 if (!Subtarget.hasP8Vector()) 1915 return false; 1916 1917 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1918 if (ShuffleKind == 0) { 1919 if (IsLE) 1920 return false; 1921 for (unsigned i = 0; i != 16; i += 4) 1922 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1923 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1924 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1925 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1926 return false; 1927 } else if (ShuffleKind == 2) { 1928 if (!IsLE) 1929 return false; 1930 for (unsigned i = 0; i != 16; i += 4) 1931 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1932 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1933 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1934 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1935 return false; 1936 } else if (ShuffleKind == 1) { 1937 unsigned j = IsLE ? 0 : 4; 1938 for (unsigned i = 0; i != 8; i += 4) 1939 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1940 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1941 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1942 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1943 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1944 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1945 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1946 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1947 return false; 1948 } 1949 return true; 1950 } 1951 1952 /// isVMerge - Common function, used to match vmrg* shuffles. 1953 /// 1954 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1955 unsigned LHSStart, unsigned RHSStart) { 1956 if (N->getValueType(0) != MVT::v16i8) 1957 return false; 1958 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1959 "Unsupported merge size!"); 1960 1961 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1962 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1963 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1964 LHSStart+j+i*UnitSize) || 1965 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1966 RHSStart+j+i*UnitSize)) 1967 return false; 1968 } 1969 return true; 1970 } 1971 1972 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1973 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1974 /// The ShuffleKind distinguishes between big-endian merges with two 1975 /// different inputs (0), either-endian merges with two identical inputs (1), 1976 /// and little-endian merges with two different inputs (2). For the latter, 1977 /// the input operands are swapped (see PPCInstrAltivec.td). 1978 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1979 unsigned ShuffleKind, SelectionDAG &DAG) { 1980 if (DAG.getDataLayout().isLittleEndian()) { 1981 if (ShuffleKind == 1) // unary 1982 return isVMerge(N, UnitSize, 0, 0); 1983 else if (ShuffleKind == 2) // swapped 1984 return isVMerge(N, UnitSize, 0, 16); 1985 else 1986 return false; 1987 } else { 1988 if (ShuffleKind == 1) // unary 1989 return isVMerge(N, UnitSize, 8, 8); 1990 else if (ShuffleKind == 0) // normal 1991 return isVMerge(N, UnitSize, 8, 24); 1992 else 1993 return false; 1994 } 1995 } 1996 1997 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1998 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1999 /// The ShuffleKind distinguishes between big-endian merges with two 2000 /// different inputs (0), either-endian merges with two identical inputs (1), 2001 /// and little-endian merges with two different inputs (2). For the latter, 2002 /// the input operands are swapped (see PPCInstrAltivec.td). 2003 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 2004 unsigned ShuffleKind, SelectionDAG &DAG) { 2005 if (DAG.getDataLayout().isLittleEndian()) { 2006 if (ShuffleKind == 1) // unary 2007 return isVMerge(N, UnitSize, 8, 8); 2008 else if (ShuffleKind == 2) // swapped 2009 return isVMerge(N, UnitSize, 8, 24); 2010 else 2011 return false; 2012 } else { 2013 if (ShuffleKind == 1) // unary 2014 return isVMerge(N, UnitSize, 0, 0); 2015 else if (ShuffleKind == 0) // normal 2016 return isVMerge(N, UnitSize, 0, 16); 2017 else 2018 return false; 2019 } 2020 } 2021 2022 /** 2023 * Common function used to match vmrgew and vmrgow shuffles 2024 * 2025 * The indexOffset determines whether to look for even or odd words in 2026 * the shuffle mask. This is based on the of the endianness of the target 2027 * machine. 2028 * - Little Endian: 2029 * - Use offset of 0 to check for odd elements 2030 * - Use offset of 4 to check for even elements 2031 * - Big Endian: 2032 * - Use offset of 0 to check for even elements 2033 * - Use offset of 4 to check for odd elements 2034 * A detailed description of the vector element ordering for little endian and 2035 * big endian can be found at 2036 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2037 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2038 * compiler differences mean to you 2039 * 2040 * The mask to the shuffle vector instruction specifies the indices of the 2041 * elements from the two input vectors to place in the result. The elements are 2042 * numbered in array-access order, starting with the first vector. These vectors 2043 * are always of type v16i8, thus each vector will contain 16 elements of size 2044 * 8. More info on the shuffle vector can be found in the 2045 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2046 * Language Reference. 2047 * 2048 * The RHSStartValue indicates whether the same input vectors are used (unary) 2049 * or two different input vectors are used, based on the following: 2050 * - If the instruction uses the same vector for both inputs, the range of the 2051 * indices will be 0 to 15. In this case, the RHSStart value passed should 2052 * be 0. 2053 * - If the instruction has two different vectors then the range of the 2054 * indices will be 0 to 31. In this case, the RHSStart value passed should 2055 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2056 * to 31 specify elements in the second vector). 2057 * 2058 * \param[in] N The shuffle vector SD Node to analyze 2059 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2060 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2061 * vector to the shuffle_vector instruction 2062 * \return true iff this shuffle vector represents an even or odd word merge 2063 */ 2064 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2065 unsigned RHSStartValue) { 2066 if (N->getValueType(0) != MVT::v16i8) 2067 return false; 2068 2069 for (unsigned i = 0; i < 2; ++i) 2070 for (unsigned j = 0; j < 4; ++j) 2071 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2072 i*RHSStartValue+j+IndexOffset) || 2073 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2074 i*RHSStartValue+j+IndexOffset+8)) 2075 return false; 2076 return true; 2077 } 2078 2079 /** 2080 * Determine if the specified shuffle mask is suitable for the vmrgew or 2081 * vmrgow instructions. 2082 * 2083 * \param[in] N The shuffle vector SD Node to analyze 2084 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2085 * \param[in] ShuffleKind Identify the type of merge: 2086 * - 0 = big-endian merge with two different inputs; 2087 * - 1 = either-endian merge with two identical inputs; 2088 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2089 * little-endian merges). 2090 * \param[in] DAG The current SelectionDAG 2091 * \return true iff this shuffle mask 2092 */ 2093 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2094 unsigned ShuffleKind, SelectionDAG &DAG) { 2095 if (DAG.getDataLayout().isLittleEndian()) { 2096 unsigned indexOffset = CheckEven ? 4 : 0; 2097 if (ShuffleKind == 1) // Unary 2098 return isVMerge(N, indexOffset, 0); 2099 else if (ShuffleKind == 2) // swapped 2100 return isVMerge(N, indexOffset, 16); 2101 else 2102 return false; 2103 } 2104 else { 2105 unsigned indexOffset = CheckEven ? 0 : 4; 2106 if (ShuffleKind == 1) // Unary 2107 return isVMerge(N, indexOffset, 0); 2108 else if (ShuffleKind == 0) // Normal 2109 return isVMerge(N, indexOffset, 16); 2110 else 2111 return false; 2112 } 2113 return false; 2114 } 2115 2116 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2117 /// amount, otherwise return -1. 2118 /// The ShuffleKind distinguishes between big-endian operations with two 2119 /// different inputs (0), either-endian operations with two identical inputs 2120 /// (1), and little-endian operations with two different inputs (2). For the 2121 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2122 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2123 SelectionDAG &DAG) { 2124 if (N->getValueType(0) != MVT::v16i8) 2125 return -1; 2126 2127 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2128 2129 // Find the first non-undef value in the shuffle mask. 2130 unsigned i; 2131 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2132 /*search*/; 2133 2134 if (i == 16) return -1; // all undef. 2135 2136 // Otherwise, check to see if the rest of the elements are consecutively 2137 // numbered from this value. 2138 unsigned ShiftAmt = SVOp->getMaskElt(i); 2139 if (ShiftAmt < i) return -1; 2140 2141 ShiftAmt -= i; 2142 bool isLE = DAG.getDataLayout().isLittleEndian(); 2143 2144 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2145 // Check the rest of the elements to see if they are consecutive. 2146 for (++i; i != 16; ++i) 2147 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2148 return -1; 2149 } else if (ShuffleKind == 1) { 2150 // Check the rest of the elements to see if they are consecutive. 2151 for (++i; i != 16; ++i) 2152 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2153 return -1; 2154 } else 2155 return -1; 2156 2157 if (isLE) 2158 ShiftAmt = 16 - ShiftAmt; 2159 2160 return ShiftAmt; 2161 } 2162 2163 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2164 /// specifies a splat of a single element that is suitable for input to 2165 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2166 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2167 EVT VT = N->getValueType(0); 2168 if (VT == MVT::v2i64 || VT == MVT::v2f64) 2169 return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1); 2170 2171 assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) && 2172 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2173 2174 // The consecutive indices need to specify an element, not part of two 2175 // different elements. So abandon ship early if this isn't the case. 2176 if (N->getMaskElt(0) % EltSize != 0) 2177 return false; 2178 2179 // This is a splat operation if each element of the permute is the same, and 2180 // if the value doesn't reference the second vector. 2181 unsigned ElementBase = N->getMaskElt(0); 2182 2183 // FIXME: Handle UNDEF elements too! 2184 if (ElementBase >= 16) 2185 return false; 2186 2187 // Check that the indices are consecutive, in the case of a multi-byte element 2188 // splatted with a v16i8 mask. 2189 for (unsigned i = 1; i != EltSize; ++i) 2190 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2191 return false; 2192 2193 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2194 if (N->getMaskElt(i) < 0) continue; 2195 for (unsigned j = 0; j != EltSize; ++j) 2196 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2197 return false; 2198 } 2199 return true; 2200 } 2201 2202 /// Check that the mask is shuffling N byte elements. Within each N byte 2203 /// element of the mask, the indices could be either in increasing or 2204 /// decreasing order as long as they are consecutive. 2205 /// \param[in] N the shuffle vector SD Node to analyze 2206 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2207 /// Word/DoubleWord/QuadWord). 2208 /// \param[in] StepLen the delta indices number among the N byte element, if 2209 /// the mask is in increasing/decreasing order then it is 1/-1. 2210 /// \return true iff the mask is shuffling N byte elements. 2211 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2212 int StepLen) { 2213 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2214 "Unexpected element width."); 2215 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2216 2217 unsigned NumOfElem = 16 / Width; 2218 unsigned MaskVal[16]; // Width is never greater than 16 2219 for (unsigned i = 0; i < NumOfElem; ++i) { 2220 MaskVal[0] = N->getMaskElt(i * Width); 2221 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2222 return false; 2223 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2224 return false; 2225 } 2226 2227 for (unsigned int j = 1; j < Width; ++j) { 2228 MaskVal[j] = N->getMaskElt(i * Width + j); 2229 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2230 return false; 2231 } 2232 } 2233 } 2234 2235 return true; 2236 } 2237 2238 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2239 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2240 if (!isNByteElemShuffleMask(N, 4, 1)) 2241 return false; 2242 2243 // Now we look at mask elements 0,4,8,12 2244 unsigned M0 = N->getMaskElt(0) / 4; 2245 unsigned M1 = N->getMaskElt(4) / 4; 2246 unsigned M2 = N->getMaskElt(8) / 4; 2247 unsigned M3 = N->getMaskElt(12) / 4; 2248 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2249 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2250 2251 // Below, let H and L be arbitrary elements of the shuffle mask 2252 // where H is in the range [4,7] and L is in the range [0,3]. 2253 // H, 1, 2, 3 or L, 5, 6, 7 2254 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2255 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2256 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2257 InsertAtByte = IsLE ? 12 : 0; 2258 Swap = M0 < 4; 2259 return true; 2260 } 2261 // 0, H, 2, 3 or 4, L, 6, 7 2262 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2263 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2264 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2265 InsertAtByte = IsLE ? 8 : 4; 2266 Swap = M1 < 4; 2267 return true; 2268 } 2269 // 0, 1, H, 3 or 4, 5, L, 7 2270 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2271 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2272 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2273 InsertAtByte = IsLE ? 4 : 8; 2274 Swap = M2 < 4; 2275 return true; 2276 } 2277 // 0, 1, 2, H or 4, 5, 6, L 2278 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2279 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2280 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2281 InsertAtByte = IsLE ? 0 : 12; 2282 Swap = M3 < 4; 2283 return true; 2284 } 2285 2286 // If both vector operands for the shuffle are the same vector, the mask will 2287 // contain only elements from the first one and the second one will be undef. 2288 if (N->getOperand(1).isUndef()) { 2289 ShiftElts = 0; 2290 Swap = true; 2291 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2292 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2293 InsertAtByte = IsLE ? 12 : 0; 2294 return true; 2295 } 2296 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2297 InsertAtByte = IsLE ? 8 : 4; 2298 return true; 2299 } 2300 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2301 InsertAtByte = IsLE ? 4 : 8; 2302 return true; 2303 } 2304 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2305 InsertAtByte = IsLE ? 0 : 12; 2306 return true; 2307 } 2308 } 2309 2310 return false; 2311 } 2312 2313 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2314 bool &Swap, bool IsLE) { 2315 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2316 // Ensure each byte index of the word is consecutive. 2317 if (!isNByteElemShuffleMask(N, 4, 1)) 2318 return false; 2319 2320 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2321 unsigned M0 = N->getMaskElt(0) / 4; 2322 unsigned M1 = N->getMaskElt(4) / 4; 2323 unsigned M2 = N->getMaskElt(8) / 4; 2324 unsigned M3 = N->getMaskElt(12) / 4; 2325 2326 // If both vector operands for the shuffle are the same vector, the mask will 2327 // contain only elements from the first one and the second one will be undef. 2328 if (N->getOperand(1).isUndef()) { 2329 assert(M0 < 4 && "Indexing into an undef vector?"); 2330 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2331 return false; 2332 2333 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2334 Swap = false; 2335 return true; 2336 } 2337 2338 // Ensure each word index of the ShuffleVector Mask is consecutive. 2339 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2340 return false; 2341 2342 if (IsLE) { 2343 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2344 // Input vectors don't need to be swapped if the leading element 2345 // of the result is one of the 3 left elements of the second vector 2346 // (or if there is no shift to be done at all). 2347 Swap = false; 2348 ShiftElts = (8 - M0) % 8; 2349 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2350 // Input vectors need to be swapped if the leading element 2351 // of the result is one of the 3 left elements of the first vector 2352 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2353 Swap = true; 2354 ShiftElts = (4 - M0) % 4; 2355 } 2356 2357 return true; 2358 } else { // BE 2359 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2360 // Input vectors don't need to be swapped if the leading element 2361 // of the result is one of the 4 elements of the first vector. 2362 Swap = false; 2363 ShiftElts = M0; 2364 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2365 // Input vectors need to be swapped if the leading element 2366 // of the result is one of the 4 elements of the right vector. 2367 Swap = true; 2368 ShiftElts = M0 - 4; 2369 } 2370 2371 return true; 2372 } 2373 } 2374 2375 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2376 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2377 2378 if (!isNByteElemShuffleMask(N, Width, -1)) 2379 return false; 2380 2381 for (int i = 0; i < 16; i += Width) 2382 if (N->getMaskElt(i) != i + Width - 1) 2383 return false; 2384 2385 return true; 2386 } 2387 2388 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2389 return isXXBRShuffleMaskHelper(N, 2); 2390 } 2391 2392 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2393 return isXXBRShuffleMaskHelper(N, 4); 2394 } 2395 2396 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2397 return isXXBRShuffleMaskHelper(N, 8); 2398 } 2399 2400 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2401 return isXXBRShuffleMaskHelper(N, 16); 2402 } 2403 2404 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2405 /// if the inputs to the instruction should be swapped and set \p DM to the 2406 /// value for the immediate. 2407 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2408 /// AND element 0 of the result comes from the first input (LE) or second input 2409 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2410 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2411 /// mask. 2412 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2413 bool &Swap, bool IsLE) { 2414 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2415 2416 // Ensure each byte index of the double word is consecutive. 2417 if (!isNByteElemShuffleMask(N, 8, 1)) 2418 return false; 2419 2420 unsigned M0 = N->getMaskElt(0) / 8; 2421 unsigned M1 = N->getMaskElt(8) / 8; 2422 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2423 2424 // If both vector operands for the shuffle are the same vector, the mask will 2425 // contain only elements from the first one and the second one will be undef. 2426 if (N->getOperand(1).isUndef()) { 2427 if ((M0 | M1) < 2) { 2428 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2429 Swap = false; 2430 return true; 2431 } else 2432 return false; 2433 } 2434 2435 if (IsLE) { 2436 if (M0 > 1 && M1 < 2) { 2437 Swap = false; 2438 } else if (M0 < 2 && M1 > 1) { 2439 M0 = (M0 + 2) % 4; 2440 M1 = (M1 + 2) % 4; 2441 Swap = true; 2442 } else 2443 return false; 2444 2445 // Note: if control flow comes here that means Swap is already set above 2446 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2447 return true; 2448 } else { // BE 2449 if (M0 < 2 && M1 > 1) { 2450 Swap = false; 2451 } else if (M0 > 1 && M1 < 2) { 2452 M0 = (M0 + 2) % 4; 2453 M1 = (M1 + 2) % 4; 2454 Swap = true; 2455 } else 2456 return false; 2457 2458 // Note: if control flow comes here that means Swap is already set above 2459 DM = (M0 << 1) + (M1 & 1); 2460 return true; 2461 } 2462 } 2463 2464 2465 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2466 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2467 /// elements are counted from the left of the vector register). 2468 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2469 SelectionDAG &DAG) { 2470 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2471 assert(isSplatShuffleMask(SVOp, EltSize)); 2472 EVT VT = SVOp->getValueType(0); 2473 2474 if (VT == MVT::v2i64 || VT == MVT::v2f64) 2475 return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0) 2476 : SVOp->getMaskElt(0); 2477 2478 if (DAG.getDataLayout().isLittleEndian()) 2479 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2480 else 2481 return SVOp->getMaskElt(0) / EltSize; 2482 } 2483 2484 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2485 /// by using a vspltis[bhw] instruction of the specified element size, return 2486 /// the constant being splatted. The ByteSize field indicates the number of 2487 /// bytes of each element [124] -> [bhw]. 2488 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2489 SDValue OpVal; 2490 2491 // If ByteSize of the splat is bigger than the element size of the 2492 // build_vector, then we have a case where we are checking for a splat where 2493 // multiple elements of the buildvector are folded together into a single 2494 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2495 unsigned EltSize = 16/N->getNumOperands(); 2496 if (EltSize < ByteSize) { 2497 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2498 SDValue UniquedVals[4]; 2499 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2500 2501 // See if all of the elements in the buildvector agree across. 2502 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2503 if (N->getOperand(i).isUndef()) continue; 2504 // If the element isn't a constant, bail fully out. 2505 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2506 2507 if (!UniquedVals[i&(Multiple-1)].getNode()) 2508 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2509 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2510 return SDValue(); // no match. 2511 } 2512 2513 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2514 // either constant or undef values that are identical for each chunk. See 2515 // if these chunks can form into a larger vspltis*. 2516 2517 // Check to see if all of the leading entries are either 0 or -1. If 2518 // neither, then this won't fit into the immediate field. 2519 bool LeadingZero = true; 2520 bool LeadingOnes = true; 2521 for (unsigned i = 0; i != Multiple-1; ++i) { 2522 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2523 2524 LeadingZero &= isNullConstant(UniquedVals[i]); 2525 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2526 } 2527 // Finally, check the least significant entry. 2528 if (LeadingZero) { 2529 if (!UniquedVals[Multiple-1].getNode()) 2530 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2531 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2532 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2533 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2534 } 2535 if (LeadingOnes) { 2536 if (!UniquedVals[Multiple-1].getNode()) 2537 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2538 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2539 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2540 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2541 } 2542 2543 return SDValue(); 2544 } 2545 2546 // Check to see if this buildvec has a single non-undef value in its elements. 2547 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2548 if (N->getOperand(i).isUndef()) continue; 2549 if (!OpVal.getNode()) 2550 OpVal = N->getOperand(i); 2551 else if (OpVal != N->getOperand(i)) 2552 return SDValue(); 2553 } 2554 2555 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2556 2557 unsigned ValSizeInBytes = EltSize; 2558 uint64_t Value = 0; 2559 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2560 Value = CN->getZExtValue(); 2561 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2562 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2563 Value = llvm::bit_cast<uint32_t>(CN->getValueAPF().convertToFloat()); 2564 } 2565 2566 // If the splat value is larger than the element value, then we can never do 2567 // this splat. The only case that we could fit the replicated bits into our 2568 // immediate field for would be zero, and we prefer to use vxor for it. 2569 if (ValSizeInBytes < ByteSize) return SDValue(); 2570 2571 // If the element value is larger than the splat value, check if it consists 2572 // of a repeated bit pattern of size ByteSize. 2573 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2574 return SDValue(); 2575 2576 // Properly sign extend the value. 2577 int MaskVal = SignExtend32(Value, ByteSize * 8); 2578 2579 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2580 if (MaskVal == 0) return SDValue(); 2581 2582 // Finally, if this value fits in a 5 bit sext field, return it 2583 if (SignExtend32<5>(MaskVal) == MaskVal) 2584 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2585 return SDValue(); 2586 } 2587 2588 //===----------------------------------------------------------------------===// 2589 // Addressing Mode Selection 2590 //===----------------------------------------------------------------------===// 2591 2592 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2593 /// or 64-bit immediate, and if the value can be accurately represented as a 2594 /// sign extension from a 16-bit value. If so, this returns true and the 2595 /// immediate. 2596 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2597 if (!isa<ConstantSDNode>(N)) 2598 return false; 2599 2600 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2601 if (N->getValueType(0) == MVT::i32) 2602 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2603 else 2604 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2605 } 2606 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2607 return isIntS16Immediate(Op.getNode(), Imm); 2608 } 2609 2610 /// Used when computing address flags for selecting loads and stores. 2611 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2612 /// An OR of two provably disjoint values is equivalent to an ADD. 2613 /// Most PPC load/store instructions compute the effective address as a sum, 2614 /// so doing this conversion is useful. 2615 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2616 if (N.getOpcode() != ISD::OR) 2617 return false; 2618 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2619 if (!LHSKnown.Zero.getBoolValue()) 2620 return false; 2621 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2622 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2623 } 2624 2625 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2626 /// be represented as an indexed [r+r] operation. 2627 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2628 SDValue &Index, 2629 SelectionDAG &DAG) const { 2630 for (SDNode *U : N->uses()) { 2631 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2632 if (Memop->getMemoryVT() == MVT::f64) { 2633 Base = N.getOperand(0); 2634 Index = N.getOperand(1); 2635 return true; 2636 } 2637 } 2638 } 2639 return false; 2640 } 2641 2642 /// isIntS34Immediate - This method tests if value of node given can be 2643 /// accurately represented as a sign extension from a 34-bit value. If so, 2644 /// this returns true and the immediate. 2645 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2646 if (!isa<ConstantSDNode>(N)) 2647 return false; 2648 2649 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2650 return isInt<34>(Imm); 2651 } 2652 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2653 return isIntS34Immediate(Op.getNode(), Imm); 2654 } 2655 2656 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2657 /// can be represented as an indexed [r+r] operation. Returns false if it 2658 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2659 /// non-zero and N can be represented by a base register plus a signed 16-bit 2660 /// displacement, make a more precise judgement by checking (displacement % \p 2661 /// EncodingAlignment). 2662 bool PPCTargetLowering::SelectAddressRegReg( 2663 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2664 MaybeAlign EncodingAlignment) const { 2665 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2666 // a [pc+imm]. 2667 if (SelectAddressPCRel(N, Base)) 2668 return false; 2669 2670 int16_t Imm = 0; 2671 if (N.getOpcode() == ISD::ADD) { 2672 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2673 // SPE load/store can only handle 8-bit offsets. 2674 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2675 return true; 2676 if (isIntS16Immediate(N.getOperand(1), Imm) && 2677 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2678 return false; // r+i 2679 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2680 return false; // r+i 2681 2682 Base = N.getOperand(0); 2683 Index = N.getOperand(1); 2684 return true; 2685 } else if (N.getOpcode() == ISD::OR) { 2686 if (isIntS16Immediate(N.getOperand(1), Imm) && 2687 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2688 return false; // r+i can fold it if we can. 2689 2690 // If this is an or of disjoint bitfields, we can codegen this as an add 2691 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2692 // disjoint. 2693 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2694 2695 if (LHSKnown.Zero.getBoolValue()) { 2696 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2697 // If all of the bits are known zero on the LHS or RHS, the add won't 2698 // carry. 2699 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2700 Base = N.getOperand(0); 2701 Index = N.getOperand(1); 2702 return true; 2703 } 2704 } 2705 } 2706 2707 return false; 2708 } 2709 2710 // If we happen to be doing an i64 load or store into a stack slot that has 2711 // less than a 4-byte alignment, then the frame-index elimination may need to 2712 // use an indexed load or store instruction (because the offset may not be a 2713 // multiple of 4). The extra register needed to hold the offset comes from the 2714 // register scavenger, and it is possible that the scavenger will need to use 2715 // an emergency spill slot. As a result, we need to make sure that a spill slot 2716 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2717 // stack slot. 2718 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2719 // FIXME: This does not handle the LWA case. 2720 if (VT != MVT::i64) 2721 return; 2722 2723 // NOTE: We'll exclude negative FIs here, which come from argument 2724 // lowering, because there are no known test cases triggering this problem 2725 // using packed structures (or similar). We can remove this exclusion if 2726 // we find such a test case. The reason why this is so test-case driven is 2727 // because this entire 'fixup' is only to prevent crashes (from the 2728 // register scavenger) on not-really-valid inputs. For example, if we have: 2729 // %a = alloca i1 2730 // %b = bitcast i1* %a to i64* 2731 // store i64* a, i64 b 2732 // then the store should really be marked as 'align 1', but is not. If it 2733 // were marked as 'align 1' then the indexed form would have been 2734 // instruction-selected initially, and the problem this 'fixup' is preventing 2735 // won't happen regardless. 2736 if (FrameIdx < 0) 2737 return; 2738 2739 MachineFunction &MF = DAG.getMachineFunction(); 2740 MachineFrameInfo &MFI = MF.getFrameInfo(); 2741 2742 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2743 return; 2744 2745 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2746 FuncInfo->setHasNonRISpills(); 2747 } 2748 2749 /// Returns true if the address N can be represented by a base register plus 2750 /// a signed 16-bit displacement [r+imm], and if it is not better 2751 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2752 /// displacements that are multiples of that value. 2753 bool PPCTargetLowering::SelectAddressRegImm( 2754 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2755 MaybeAlign EncodingAlignment) const { 2756 // FIXME dl should come from parent load or store, not from address 2757 SDLoc dl(N); 2758 2759 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2760 // a [pc+imm]. 2761 if (SelectAddressPCRel(N, Base)) 2762 return false; 2763 2764 // If this can be more profitably realized as r+r, fail. 2765 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2766 return false; 2767 2768 if (N.getOpcode() == ISD::ADD) { 2769 int16_t imm = 0; 2770 if (isIntS16Immediate(N.getOperand(1), imm) && 2771 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2772 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2773 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2774 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2775 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2776 } else { 2777 Base = N.getOperand(0); 2778 } 2779 return true; // [r+i] 2780 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2781 // Match LOAD (ADD (X, Lo(G))). 2782 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2783 && "Cannot handle constant offsets yet!"); 2784 Disp = N.getOperand(1).getOperand(0); // The global address. 2785 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2786 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2787 Disp.getOpcode() == ISD::TargetConstantPool || 2788 Disp.getOpcode() == ISD::TargetJumpTable); 2789 Base = N.getOperand(0); 2790 return true; // [&g+r] 2791 } 2792 } else if (N.getOpcode() == ISD::OR) { 2793 int16_t imm = 0; 2794 if (isIntS16Immediate(N.getOperand(1), imm) && 2795 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2796 // If this is an or of disjoint bitfields, we can codegen this as an add 2797 // (for better address arithmetic) if the LHS and RHS of the OR are 2798 // provably disjoint. 2799 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2800 2801 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2802 // If all of the bits are known zero on the LHS or RHS, the add won't 2803 // carry. 2804 if (FrameIndexSDNode *FI = 2805 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2806 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2807 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2808 } else { 2809 Base = N.getOperand(0); 2810 } 2811 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2812 return true; 2813 } 2814 } 2815 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2816 // Loading from a constant address. 2817 2818 // If this address fits entirely in a 16-bit sext immediate field, codegen 2819 // this as "d, 0" 2820 int16_t Imm; 2821 if (isIntS16Immediate(CN, Imm) && 2822 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2823 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2824 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2825 CN->getValueType(0)); 2826 return true; 2827 } 2828 2829 // Handle 32-bit sext immediates with LIS + addr mode. 2830 if ((CN->getValueType(0) == MVT::i32 || 2831 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2832 (!EncodingAlignment || 2833 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2834 int Addr = (int)CN->getZExtValue(); 2835 2836 // Otherwise, break this down into an LIS + disp. 2837 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2838 2839 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2840 MVT::i32); 2841 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2842 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2843 return true; 2844 } 2845 } 2846 2847 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2848 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2849 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2850 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2851 } else 2852 Base = N; 2853 return true; // [r+0] 2854 } 2855 2856 /// Similar to the 16-bit case but for instructions that take a 34-bit 2857 /// displacement field (prefixed loads/stores). 2858 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2859 SDValue &Base, 2860 SelectionDAG &DAG) const { 2861 // Only on 64-bit targets. 2862 if (N.getValueType() != MVT::i64) 2863 return false; 2864 2865 SDLoc dl(N); 2866 int64_t Imm = 0; 2867 2868 if (N.getOpcode() == ISD::ADD) { 2869 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2870 return false; 2871 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2872 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2873 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2874 else 2875 Base = N.getOperand(0); 2876 return true; 2877 } 2878 2879 if (N.getOpcode() == ISD::OR) { 2880 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2881 return false; 2882 // If this is an or of disjoint bitfields, we can codegen this as an add 2883 // (for better address arithmetic) if the LHS and RHS of the OR are 2884 // provably disjoint. 2885 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2886 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2887 return false; 2888 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2889 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2890 else 2891 Base = N.getOperand(0); 2892 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2893 return true; 2894 } 2895 2896 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2897 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2898 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2899 return true; 2900 } 2901 2902 return false; 2903 } 2904 2905 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2906 /// represented as an indexed [r+r] operation. 2907 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2908 SDValue &Index, 2909 SelectionDAG &DAG) const { 2910 // Check to see if we can easily represent this as an [r+r] address. This 2911 // will fail if it thinks that the address is more profitably represented as 2912 // reg+imm, e.g. where imm = 0. 2913 if (SelectAddressRegReg(N, Base, Index, DAG)) 2914 return true; 2915 2916 // If the address is the result of an add, we will utilize the fact that the 2917 // address calculation includes an implicit add. However, we can reduce 2918 // register pressure if we do not materialize a constant just for use as the 2919 // index register. We only get rid of the add if it is not an add of a 2920 // value and a 16-bit signed constant and both have a single use. 2921 int16_t imm = 0; 2922 if (N.getOpcode() == ISD::ADD && 2923 (!isIntS16Immediate(N.getOperand(1), imm) || 2924 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2925 Base = N.getOperand(0); 2926 Index = N.getOperand(1); 2927 return true; 2928 } 2929 2930 // Otherwise, do it the hard way, using R0 as the base register. 2931 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2932 N.getValueType()); 2933 Index = N; 2934 return true; 2935 } 2936 2937 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2938 Ty *PCRelCand = dyn_cast<Ty>(N); 2939 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2940 } 2941 2942 /// Returns true if this address is a PC Relative address. 2943 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2944 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2945 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2946 // This is a materialize PC Relative node. Always select this as PC Relative. 2947 Base = N; 2948 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2949 return true; 2950 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2951 isValidPCRelNode<GlobalAddressSDNode>(N) || 2952 isValidPCRelNode<JumpTableSDNode>(N) || 2953 isValidPCRelNode<BlockAddressSDNode>(N)) 2954 return true; 2955 return false; 2956 } 2957 2958 /// Returns true if we should use a direct load into vector instruction 2959 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2960 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2961 2962 // If there are any other uses other than scalar to vector, then we should 2963 // keep it as a scalar load -> direct move pattern to prevent multiple 2964 // loads. 2965 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2966 if (!LD) 2967 return false; 2968 2969 EVT MemVT = LD->getMemoryVT(); 2970 if (!MemVT.isSimple()) 2971 return false; 2972 switch(MemVT.getSimpleVT().SimpleTy) { 2973 case MVT::i64: 2974 break; 2975 case MVT::i32: 2976 if (!ST.hasP8Vector()) 2977 return false; 2978 break; 2979 case MVT::i16: 2980 case MVT::i8: 2981 if (!ST.hasP9Vector()) 2982 return false; 2983 break; 2984 default: 2985 return false; 2986 } 2987 2988 SDValue LoadedVal(N, 0); 2989 if (!LoadedVal.hasOneUse()) 2990 return false; 2991 2992 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2993 UI != UE; ++UI) 2994 if (UI.getUse().get().getResNo() == 0 && 2995 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2996 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2997 return false; 2998 2999 return true; 3000 } 3001 3002 /// getPreIndexedAddressParts - returns true by value, base pointer and 3003 /// offset pointer and addressing mode by reference if the node's address 3004 /// can be legally represented as pre-indexed load / store address. 3005 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 3006 SDValue &Offset, 3007 ISD::MemIndexedMode &AM, 3008 SelectionDAG &DAG) const { 3009 if (DisablePPCPreinc) return false; 3010 3011 bool isLoad = true; 3012 SDValue Ptr; 3013 EVT VT; 3014 Align Alignment; 3015 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3016 Ptr = LD->getBasePtr(); 3017 VT = LD->getMemoryVT(); 3018 Alignment = LD->getAlign(); 3019 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 3020 Ptr = ST->getBasePtr(); 3021 VT = ST->getMemoryVT(); 3022 Alignment = ST->getAlign(); 3023 isLoad = false; 3024 } else 3025 return false; 3026 3027 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 3028 // instructions because we can fold these into a more efficient instruction 3029 // instead, (such as LXSD). 3030 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 3031 return false; 3032 } 3033 3034 // PowerPC doesn't have preinc load/store instructions for vectors 3035 if (VT.isVector()) 3036 return false; 3037 3038 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3039 // Common code will reject creating a pre-inc form if the base pointer 3040 // is a frame index, or if N is a store and the base pointer is either 3041 // the same as or a predecessor of the value being stored. Check for 3042 // those situations here, and try with swapped Base/Offset instead. 3043 bool Swap = false; 3044 3045 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3046 Swap = true; 3047 else if (!isLoad) { 3048 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3049 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3050 Swap = true; 3051 } 3052 3053 if (Swap) 3054 std::swap(Base, Offset); 3055 3056 AM = ISD::PRE_INC; 3057 return true; 3058 } 3059 3060 // LDU/STU can only handle immediates that are a multiple of 4. 3061 if (VT != MVT::i64) { 3062 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt)) 3063 return false; 3064 } else { 3065 // LDU/STU need an address with at least 4-byte alignment. 3066 if (Alignment < Align(4)) 3067 return false; 3068 3069 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3070 return false; 3071 } 3072 3073 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3074 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3075 // sext i32 to i64 when addr mode is r+i. 3076 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3077 LD->getExtensionType() == ISD::SEXTLOAD && 3078 isa<ConstantSDNode>(Offset)) 3079 return false; 3080 } 3081 3082 AM = ISD::PRE_INC; 3083 return true; 3084 } 3085 3086 //===----------------------------------------------------------------------===// 3087 // LowerOperation implementation 3088 //===----------------------------------------------------------------------===// 3089 3090 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3091 /// and LoOpFlags to the target MO flags. 3092 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3093 unsigned &HiOpFlags, unsigned &LoOpFlags, 3094 const GlobalValue *GV = nullptr) { 3095 HiOpFlags = PPCII::MO_HA; 3096 LoOpFlags = PPCII::MO_LO; 3097 3098 // Don't use the pic base if not in PIC relocation model. 3099 if (IsPIC) { 3100 HiOpFlags |= PPCII::MO_PIC_FLAG; 3101 LoOpFlags |= PPCII::MO_PIC_FLAG; 3102 } 3103 } 3104 3105 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3106 SelectionDAG &DAG) { 3107 SDLoc DL(HiPart); 3108 EVT PtrVT = HiPart.getValueType(); 3109 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3110 3111 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3112 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3113 3114 // With PIC, the first instruction is actually "GR+hi(&G)". 3115 if (isPIC) 3116 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3117 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3118 3119 // Generate non-pic code that has direct accesses to the constant pool. 3120 // The address of the global is just (hi(&g)+lo(&g)). 3121 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3122 } 3123 3124 static void setUsesTOCBasePtr(MachineFunction &MF) { 3125 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3126 FuncInfo->setUsesTOCBasePtr(); 3127 } 3128 3129 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3130 setUsesTOCBasePtr(DAG.getMachineFunction()); 3131 } 3132 3133 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3134 SDValue GA) const { 3135 const bool Is64Bit = Subtarget.isPPC64(); 3136 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3137 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3138 : Subtarget.isAIXABI() 3139 ? DAG.getRegister(PPC::R2, VT) 3140 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3141 SDValue Ops[] = { GA, Reg }; 3142 return DAG.getMemIntrinsicNode( 3143 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3144 MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt, 3145 MachineMemOperand::MOLoad); 3146 } 3147 3148 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3149 SelectionDAG &DAG) const { 3150 EVT PtrVT = Op.getValueType(); 3151 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3152 const Constant *C = CP->getConstVal(); 3153 3154 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3155 // The actual address of the GlobalValue is stored in the TOC. 3156 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3157 if (Subtarget.isUsingPCRelativeCalls()) { 3158 SDLoc DL(CP); 3159 EVT Ty = getPointerTy(DAG.getDataLayout()); 3160 SDValue ConstPool = DAG.getTargetConstantPool( 3161 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3162 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3163 } 3164 setUsesTOCBasePtr(DAG); 3165 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3166 return getTOCEntry(DAG, SDLoc(CP), GA); 3167 } 3168 3169 unsigned MOHiFlag, MOLoFlag; 3170 bool IsPIC = isPositionIndependent(); 3171 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3172 3173 if (IsPIC && Subtarget.isSVR4ABI()) { 3174 SDValue GA = 3175 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3176 return getTOCEntry(DAG, SDLoc(CP), GA); 3177 } 3178 3179 SDValue CPIHi = 3180 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3181 SDValue CPILo = 3182 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3183 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3184 } 3185 3186 // For 64-bit PowerPC, prefer the more compact relative encodings. 3187 // This trades 32 bits per jump table entry for one or two instructions 3188 // on the jump site. 3189 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3190 if (isJumpTableRelative()) 3191 return MachineJumpTableInfo::EK_LabelDifference32; 3192 3193 return TargetLowering::getJumpTableEncoding(); 3194 } 3195 3196 bool PPCTargetLowering::isJumpTableRelative() const { 3197 if (UseAbsoluteJumpTables) 3198 return false; 3199 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3200 return true; 3201 return TargetLowering::isJumpTableRelative(); 3202 } 3203 3204 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3205 SelectionDAG &DAG) const { 3206 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3207 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3208 3209 switch (getTargetMachine().getCodeModel()) { 3210 case CodeModel::Small: 3211 case CodeModel::Medium: 3212 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3213 default: 3214 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3215 getPointerTy(DAG.getDataLayout())); 3216 } 3217 } 3218 3219 const MCExpr * 3220 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3221 unsigned JTI, 3222 MCContext &Ctx) const { 3223 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3224 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3225 3226 switch (getTargetMachine().getCodeModel()) { 3227 case CodeModel::Small: 3228 case CodeModel::Medium: 3229 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3230 default: 3231 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3232 } 3233 } 3234 3235 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3236 EVT PtrVT = Op.getValueType(); 3237 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3238 3239 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3240 if (Subtarget.isUsingPCRelativeCalls()) { 3241 SDLoc DL(JT); 3242 EVT Ty = getPointerTy(DAG.getDataLayout()); 3243 SDValue GA = 3244 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3245 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3246 return MatAddr; 3247 } 3248 3249 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3250 // The actual address of the GlobalValue is stored in the TOC. 3251 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3252 setUsesTOCBasePtr(DAG); 3253 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3254 return getTOCEntry(DAG, SDLoc(JT), GA); 3255 } 3256 3257 unsigned MOHiFlag, MOLoFlag; 3258 bool IsPIC = isPositionIndependent(); 3259 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3260 3261 if (IsPIC && Subtarget.isSVR4ABI()) { 3262 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3263 PPCII::MO_PIC_FLAG); 3264 return getTOCEntry(DAG, SDLoc(GA), GA); 3265 } 3266 3267 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3268 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3269 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3270 } 3271 3272 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3273 SelectionDAG &DAG) const { 3274 EVT PtrVT = Op.getValueType(); 3275 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3276 const BlockAddress *BA = BASDN->getBlockAddress(); 3277 3278 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3279 if (Subtarget.isUsingPCRelativeCalls()) { 3280 SDLoc DL(BASDN); 3281 EVT Ty = getPointerTy(DAG.getDataLayout()); 3282 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3283 PPCII::MO_PCREL_FLAG); 3284 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3285 return MatAddr; 3286 } 3287 3288 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3289 // The actual BlockAddress is stored in the TOC. 3290 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3291 setUsesTOCBasePtr(DAG); 3292 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3293 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3294 } 3295 3296 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3297 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3298 return getTOCEntry( 3299 DAG, SDLoc(BASDN), 3300 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3301 3302 unsigned MOHiFlag, MOLoFlag; 3303 bool IsPIC = isPositionIndependent(); 3304 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3305 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3306 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3307 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3308 } 3309 3310 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3311 SelectionDAG &DAG) const { 3312 if (Subtarget.isAIXABI()) 3313 return LowerGlobalTLSAddressAIX(Op, DAG); 3314 3315 return LowerGlobalTLSAddressLinux(Op, DAG); 3316 } 3317 3318 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3319 SelectionDAG &DAG) const { 3320 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3321 3322 if (DAG.getTarget().useEmulatedTLS()) 3323 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3324 3325 SDLoc dl(GA); 3326 const GlobalValue *GV = GA->getGlobal(); 3327 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3328 bool Is64Bit = Subtarget.isPPC64(); 3329 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 3330 3331 if (Model == TLSModel::LocalExec) { 3332 SDValue VariableOffsetTGA = 3333 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_FLAG); 3334 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3335 SDValue TLSReg; 3336 if (Is64Bit) 3337 // For local-exec on AIX (64-bit), the sequence that is generated involves 3338 // a load of the variable offset (from the TOC), followed by an add of the 3339 // loaded variable offset to R13 (the thread pointer). 3340 // This code sequence looks like: 3341 // ld reg1,var[TC](2) 3342 // add reg2, reg1, r13 // r13 contains the thread pointer 3343 TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3344 else 3345 // For local-exec on AIX (32-bit), the sequence that is generated involves 3346 // loading the variable offset from the TOC, generating a call to 3347 // .__get_tpointer to get the thread pointer (which will be in R3), and 3348 // adding the two together: 3349 // lwz reg1,var[TC](2) 3350 // bla .__get_tpointer 3351 // add reg2, reg1, r3 3352 TLSReg = DAG.getNode(PPCISD::GET_TPOINTER, dl, PtrVT); 3353 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, VariableOffset); 3354 } 3355 3356 // The Local-Exec and General-Dynamic TLS models are currently the only 3357 // supported access models. If Local-exec is not possible or specified, all 3358 // GlobalTLSAddress nodes are lowered using the general-dynamic model. 3359 // We need to generate two TOC entries, one for the variable offset, one for 3360 // the region handle. The global address for the TOC entry of the region 3361 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3362 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3363 SDValue VariableOffsetTGA = 3364 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3365 SDValue RegionHandleTGA = 3366 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3367 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3368 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3369 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3370 RegionHandle); 3371 } 3372 3373 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3374 SelectionDAG &DAG) const { 3375 // FIXME: TLS addresses currently use medium model code sequences, 3376 // which is the most useful form. Eventually support for small and 3377 // large models could be added if users need it, at the cost of 3378 // additional complexity. 3379 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3380 if (DAG.getTarget().useEmulatedTLS()) 3381 return LowerToTLSEmulatedModel(GA, DAG); 3382 3383 SDLoc dl(GA); 3384 const GlobalValue *GV = GA->getGlobal(); 3385 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3386 bool is64bit = Subtarget.isPPC64(); 3387 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3388 PICLevel::Level picLevel = M->getPICLevel(); 3389 3390 const TargetMachine &TM = getTargetMachine(); 3391 TLSModel::Model Model = TM.getTLSModel(GV); 3392 3393 if (Model == TLSModel::LocalExec) { 3394 if (Subtarget.isUsingPCRelativeCalls()) { 3395 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3396 SDValue TGA = DAG.getTargetGlobalAddress( 3397 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3398 SDValue MatAddr = 3399 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3400 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3401 } 3402 3403 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3404 PPCII::MO_TPREL_HA); 3405 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3406 PPCII::MO_TPREL_LO); 3407 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3408 : DAG.getRegister(PPC::R2, MVT::i32); 3409 3410 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3411 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3412 } 3413 3414 if (Model == TLSModel::InitialExec) { 3415 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3416 SDValue TGA = DAG.getTargetGlobalAddress( 3417 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3418 SDValue TGATLS = DAG.getTargetGlobalAddress( 3419 GV, dl, PtrVT, 0, 3420 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3421 SDValue TPOffset; 3422 if (IsPCRel) { 3423 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3424 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3425 MachinePointerInfo()); 3426 } else { 3427 SDValue GOTPtr; 3428 if (is64bit) { 3429 setUsesTOCBasePtr(DAG); 3430 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3431 GOTPtr = 3432 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3433 } else { 3434 if (!TM.isPositionIndependent()) 3435 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3436 else if (picLevel == PICLevel::SmallPIC) 3437 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3438 else 3439 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3440 } 3441 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3442 } 3443 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3444 } 3445 3446 if (Model == TLSModel::GeneralDynamic) { 3447 if (Subtarget.isUsingPCRelativeCalls()) { 3448 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3449 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3450 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3451 } 3452 3453 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3454 SDValue GOTPtr; 3455 if (is64bit) { 3456 setUsesTOCBasePtr(DAG); 3457 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3458 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3459 GOTReg, TGA); 3460 } else { 3461 if (picLevel == PICLevel::SmallPIC) 3462 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3463 else 3464 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3465 } 3466 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3467 GOTPtr, TGA, TGA); 3468 } 3469 3470 if (Model == TLSModel::LocalDynamic) { 3471 if (Subtarget.isUsingPCRelativeCalls()) { 3472 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3473 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3474 SDValue MatPCRel = 3475 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3476 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3477 } 3478 3479 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3480 SDValue GOTPtr; 3481 if (is64bit) { 3482 setUsesTOCBasePtr(DAG); 3483 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3484 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3485 GOTReg, TGA); 3486 } else { 3487 if (picLevel == PICLevel::SmallPIC) 3488 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3489 else 3490 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3491 } 3492 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3493 PtrVT, GOTPtr, TGA, TGA); 3494 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3495 PtrVT, TLSAddr, TGA); 3496 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3497 } 3498 3499 llvm_unreachable("Unknown TLS model!"); 3500 } 3501 3502 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3503 SelectionDAG &DAG) const { 3504 EVT PtrVT = Op.getValueType(); 3505 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3506 SDLoc DL(GSDN); 3507 const GlobalValue *GV = GSDN->getGlobal(); 3508 3509 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3510 // The actual address of the GlobalValue is stored in the TOC. 3511 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3512 if (Subtarget.isUsingPCRelativeCalls()) { 3513 EVT Ty = getPointerTy(DAG.getDataLayout()); 3514 if (isAccessedAsGotIndirect(Op)) { 3515 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3516 PPCII::MO_PCREL_FLAG | 3517 PPCII::MO_GOT_FLAG); 3518 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3519 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3520 MachinePointerInfo()); 3521 return Load; 3522 } else { 3523 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3524 PPCII::MO_PCREL_FLAG); 3525 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3526 } 3527 } 3528 setUsesTOCBasePtr(DAG); 3529 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3530 return getTOCEntry(DAG, DL, GA); 3531 } 3532 3533 unsigned MOHiFlag, MOLoFlag; 3534 bool IsPIC = isPositionIndependent(); 3535 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3536 3537 if (IsPIC && Subtarget.isSVR4ABI()) { 3538 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3539 GSDN->getOffset(), 3540 PPCII::MO_PIC_FLAG); 3541 return getTOCEntry(DAG, DL, GA); 3542 } 3543 3544 SDValue GAHi = 3545 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3546 SDValue GALo = 3547 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3548 3549 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3550 } 3551 3552 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3553 bool IsStrict = Op->isStrictFPOpcode(); 3554 ISD::CondCode CC = 3555 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3556 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3557 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3558 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3559 EVT LHSVT = LHS.getValueType(); 3560 SDLoc dl(Op); 3561 3562 // Soften the setcc with libcall if it is fp128. 3563 if (LHSVT == MVT::f128) { 3564 assert(!Subtarget.hasP9Vector() && 3565 "SETCC for f128 is already legal under Power9!"); 3566 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3567 Op->getOpcode() == ISD::STRICT_FSETCCS); 3568 if (RHS.getNode()) 3569 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3570 DAG.getCondCode(CC)); 3571 if (IsStrict) 3572 return DAG.getMergeValues({LHS, Chain}, dl); 3573 return LHS; 3574 } 3575 3576 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3577 3578 if (Op.getValueType() == MVT::v2i64) { 3579 // When the operands themselves are v2i64 values, we need to do something 3580 // special because VSX has no underlying comparison operations for these. 3581 if (LHS.getValueType() == MVT::v2i64) { 3582 // Equality can be handled by casting to the legal type for Altivec 3583 // comparisons, everything else needs to be expanded. 3584 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3585 return SDValue(); 3586 SDValue SetCC32 = DAG.getSetCC( 3587 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3588 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3589 int ShuffV[] = {1, 0, 3, 2}; 3590 SDValue Shuff = 3591 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3592 return DAG.getBitcast(MVT::v2i64, 3593 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3594 dl, MVT::v4i32, Shuff, SetCC32)); 3595 } 3596 3597 // We handle most of these in the usual way. 3598 return Op; 3599 } 3600 3601 // If we're comparing for equality to zero, expose the fact that this is 3602 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3603 // fold the new nodes. 3604 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3605 return V; 3606 3607 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3608 // Leave comparisons against 0 and -1 alone for now, since they're usually 3609 // optimized. FIXME: revisit this when we can custom lower all setcc 3610 // optimizations. 3611 if (C->isAllOnes() || C->isZero()) 3612 return SDValue(); 3613 } 3614 3615 // If we have an integer seteq/setne, turn it into a compare against zero 3616 // by xor'ing the rhs with the lhs, which is faster than setting a 3617 // condition register, reading it back out, and masking the correct bit. The 3618 // normal approach here uses sub to do this instead of xor. Using xor exposes 3619 // the result to other bit-twiddling opportunities. 3620 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3621 EVT VT = Op.getValueType(); 3622 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3623 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3624 } 3625 return SDValue(); 3626 } 3627 3628 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3629 SDNode *Node = Op.getNode(); 3630 EVT VT = Node->getValueType(0); 3631 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3632 SDValue InChain = Node->getOperand(0); 3633 SDValue VAListPtr = Node->getOperand(1); 3634 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3635 SDLoc dl(Node); 3636 3637 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3638 3639 // gpr_index 3640 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3641 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3642 InChain = GprIndex.getValue(1); 3643 3644 if (VT == MVT::i64) { 3645 // Check if GprIndex is even 3646 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3647 DAG.getConstant(1, dl, MVT::i32)); 3648 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3649 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3650 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3651 DAG.getConstant(1, dl, MVT::i32)); 3652 // Align GprIndex to be even if it isn't 3653 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3654 GprIndex); 3655 } 3656 3657 // fpr index is 1 byte after gpr 3658 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3659 DAG.getConstant(1, dl, MVT::i32)); 3660 3661 // fpr 3662 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3663 FprPtr, MachinePointerInfo(SV), MVT::i8); 3664 InChain = FprIndex.getValue(1); 3665 3666 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3667 DAG.getConstant(8, dl, MVT::i32)); 3668 3669 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3670 DAG.getConstant(4, dl, MVT::i32)); 3671 3672 // areas 3673 SDValue OverflowArea = 3674 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3675 InChain = OverflowArea.getValue(1); 3676 3677 SDValue RegSaveArea = 3678 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3679 InChain = RegSaveArea.getValue(1); 3680 3681 // select overflow_area if index > 8 3682 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3683 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3684 3685 // adjustment constant gpr_index * 4/8 3686 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3687 VT.isInteger() ? GprIndex : FprIndex, 3688 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3689 MVT::i32)); 3690 3691 // OurReg = RegSaveArea + RegConstant 3692 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3693 RegConstant); 3694 3695 // Floating types are 32 bytes into RegSaveArea 3696 if (VT.isFloatingPoint()) 3697 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3698 DAG.getConstant(32, dl, MVT::i32)); 3699 3700 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3701 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3702 VT.isInteger() ? GprIndex : FprIndex, 3703 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3704 MVT::i32)); 3705 3706 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3707 VT.isInteger() ? VAListPtr : FprPtr, 3708 MachinePointerInfo(SV), MVT::i8); 3709 3710 // determine if we should load from reg_save_area or overflow_area 3711 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3712 3713 // increase overflow_area by 4/8 if gpr/fpr > 8 3714 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3715 DAG.getConstant(VT.isInteger() ? 4 : 8, 3716 dl, MVT::i32)); 3717 3718 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3719 OverflowAreaPlusN); 3720 3721 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3722 MachinePointerInfo(), MVT::i32); 3723 3724 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3725 } 3726 3727 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3728 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3729 3730 // We have to copy the entire va_list struct: 3731 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3732 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3733 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3734 false, true, false, MachinePointerInfo(), 3735 MachinePointerInfo()); 3736 } 3737 3738 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3739 SelectionDAG &DAG) const { 3740 if (Subtarget.isAIXABI()) 3741 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3742 3743 return Op.getOperand(0); 3744 } 3745 3746 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3747 MachineFunction &MF = DAG.getMachineFunction(); 3748 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3749 3750 assert((Op.getOpcode() == ISD::INLINEASM || 3751 Op.getOpcode() == ISD::INLINEASM_BR) && 3752 "Expecting Inline ASM node."); 3753 3754 // If an LR store is already known to be required then there is not point in 3755 // checking this ASM as well. 3756 if (MFI.isLRStoreRequired()) 3757 return Op; 3758 3759 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3760 // type MVT::Glue. We want to ignore this last operand if that is the case. 3761 unsigned NumOps = Op.getNumOperands(); 3762 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3763 --NumOps; 3764 3765 // Check all operands that may contain the LR. 3766 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3767 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3768 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3769 ++i; // Skip the ID value. 3770 3771 switch (InlineAsm::getKind(Flags)) { 3772 default: 3773 llvm_unreachable("Bad flags!"); 3774 case InlineAsm::Kind_RegUse: 3775 case InlineAsm::Kind_Imm: 3776 case InlineAsm::Kind_Mem: 3777 i += NumVals; 3778 break; 3779 case InlineAsm::Kind_Clobber: 3780 case InlineAsm::Kind_RegDef: 3781 case InlineAsm::Kind_RegDefEarlyClobber: { 3782 for (; NumVals; --NumVals, ++i) { 3783 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3784 if (Reg != PPC::LR && Reg != PPC::LR8) 3785 continue; 3786 MFI.setLRStoreRequired(); 3787 return Op; 3788 } 3789 break; 3790 } 3791 } 3792 } 3793 3794 return Op; 3795 } 3796 3797 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3798 SelectionDAG &DAG) const { 3799 if (Subtarget.isAIXABI()) 3800 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3801 3802 SDValue Chain = Op.getOperand(0); 3803 SDValue Trmp = Op.getOperand(1); // trampoline 3804 SDValue FPtr = Op.getOperand(2); // nested function 3805 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3806 SDLoc dl(Op); 3807 3808 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3809 bool isPPC64 = (PtrVT == MVT::i64); 3810 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3811 3812 TargetLowering::ArgListTy Args; 3813 TargetLowering::ArgListEntry Entry; 3814 3815 Entry.Ty = IntPtrTy; 3816 Entry.Node = Trmp; Args.push_back(Entry); 3817 3818 // TrampSize == (isPPC64 ? 48 : 40); 3819 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3820 isPPC64 ? MVT::i64 : MVT::i32); 3821 Args.push_back(Entry); 3822 3823 Entry.Node = FPtr; Args.push_back(Entry); 3824 Entry.Node = Nest; Args.push_back(Entry); 3825 3826 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3827 TargetLowering::CallLoweringInfo CLI(DAG); 3828 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3829 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3830 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3831 3832 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3833 return CallResult.second; 3834 } 3835 3836 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3837 MachineFunction &MF = DAG.getMachineFunction(); 3838 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3839 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3840 3841 SDLoc dl(Op); 3842 3843 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3844 // vastart just stores the address of the VarArgsFrameIndex slot into the 3845 // memory location argument. 3846 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3847 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3848 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3849 MachinePointerInfo(SV)); 3850 } 3851 3852 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3853 // We suppose the given va_list is already allocated. 3854 // 3855 // typedef struct { 3856 // char gpr; /* index into the array of 8 GPRs 3857 // * stored in the register save area 3858 // * gpr=0 corresponds to r3, 3859 // * gpr=1 to r4, etc. 3860 // */ 3861 // char fpr; /* index into the array of 8 FPRs 3862 // * stored in the register save area 3863 // * fpr=0 corresponds to f1, 3864 // * fpr=1 to f2, etc. 3865 // */ 3866 // char *overflow_arg_area; 3867 // /* location on stack that holds 3868 // * the next overflow argument 3869 // */ 3870 // char *reg_save_area; 3871 // /* where r3:r10 and f1:f8 (if saved) 3872 // * are stored 3873 // */ 3874 // } va_list[1]; 3875 3876 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3877 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3878 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3879 PtrVT); 3880 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3881 PtrVT); 3882 3883 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3884 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3885 3886 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3887 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3888 3889 uint64_t FPROffset = 1; 3890 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3891 3892 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3893 3894 // Store first byte : number of int regs 3895 SDValue firstStore = 3896 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3897 MachinePointerInfo(SV), MVT::i8); 3898 uint64_t nextOffset = FPROffset; 3899 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3900 ConstFPROffset); 3901 3902 // Store second byte : number of float regs 3903 SDValue secondStore = 3904 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3905 MachinePointerInfo(SV, nextOffset), MVT::i8); 3906 nextOffset += StackOffset; 3907 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3908 3909 // Store second word : arguments given on stack 3910 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3911 MachinePointerInfo(SV, nextOffset)); 3912 nextOffset += FrameOffset; 3913 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3914 3915 // Store third word : arguments given in registers 3916 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3917 MachinePointerInfo(SV, nextOffset)); 3918 } 3919 3920 /// FPR - The set of FP registers that should be allocated for arguments 3921 /// on Darwin and AIX. 3922 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3923 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3924 PPC::F11, PPC::F12, PPC::F13}; 3925 3926 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3927 /// the stack. 3928 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3929 unsigned PtrByteSize) { 3930 unsigned ArgSize = ArgVT.getStoreSize(); 3931 if (Flags.isByVal()) 3932 ArgSize = Flags.getByValSize(); 3933 3934 // Round up to multiples of the pointer size, except for array members, 3935 // which are always packed. 3936 if (!Flags.isInConsecutiveRegs()) 3937 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3938 3939 return ArgSize; 3940 } 3941 3942 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3943 /// on the stack. 3944 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3945 ISD::ArgFlagsTy Flags, 3946 unsigned PtrByteSize) { 3947 Align Alignment(PtrByteSize); 3948 3949 // Altivec parameters are padded to a 16 byte boundary. 3950 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3951 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3952 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3953 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3954 Alignment = Align(16); 3955 3956 // ByVal parameters are aligned as requested. 3957 if (Flags.isByVal()) { 3958 auto BVAlign = Flags.getNonZeroByValAlign(); 3959 if (BVAlign > PtrByteSize) { 3960 if (BVAlign.value() % PtrByteSize != 0) 3961 llvm_unreachable( 3962 "ByVal alignment is not a multiple of the pointer size"); 3963 3964 Alignment = BVAlign; 3965 } 3966 } 3967 3968 // Array members are always packed to their original alignment. 3969 if (Flags.isInConsecutiveRegs()) { 3970 // If the array member was split into multiple registers, the first 3971 // needs to be aligned to the size of the full type. (Except for 3972 // ppcf128, which is only aligned as its f64 components.) 3973 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3974 Alignment = Align(OrigVT.getStoreSize()); 3975 else 3976 Alignment = Align(ArgVT.getStoreSize()); 3977 } 3978 3979 return Alignment; 3980 } 3981 3982 /// CalculateStackSlotUsed - Return whether this argument will use its 3983 /// stack slot (instead of being passed in registers). ArgOffset, 3984 /// AvailableFPRs, and AvailableVRs must hold the current argument 3985 /// position, and will be updated to account for this argument. 3986 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3987 unsigned PtrByteSize, unsigned LinkageSize, 3988 unsigned ParamAreaSize, unsigned &ArgOffset, 3989 unsigned &AvailableFPRs, 3990 unsigned &AvailableVRs) { 3991 bool UseMemory = false; 3992 3993 // Respect alignment of argument on the stack. 3994 Align Alignment = 3995 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3996 ArgOffset = alignTo(ArgOffset, Alignment); 3997 // If there's no space left in the argument save area, we must 3998 // use memory (this check also catches zero-sized arguments). 3999 if (ArgOffset >= LinkageSize + ParamAreaSize) 4000 UseMemory = true; 4001 4002 // Allocate argument on the stack. 4003 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4004 if (Flags.isInConsecutiveRegsLast()) 4005 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4006 // If we overran the argument save area, we must use memory 4007 // (this check catches arguments passed partially in memory) 4008 if (ArgOffset > LinkageSize + ParamAreaSize) 4009 UseMemory = true; 4010 4011 // However, if the argument is actually passed in an FPR or a VR, 4012 // we don't use memory after all. 4013 if (!Flags.isByVal()) { 4014 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 4015 if (AvailableFPRs > 0) { 4016 --AvailableFPRs; 4017 return false; 4018 } 4019 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 4020 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 4021 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 4022 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 4023 if (AvailableVRs > 0) { 4024 --AvailableVRs; 4025 return false; 4026 } 4027 } 4028 4029 return UseMemory; 4030 } 4031 4032 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 4033 /// ensure minimum alignment required for target. 4034 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 4035 unsigned NumBytes) { 4036 return alignTo(NumBytes, Lowering->getStackAlign()); 4037 } 4038 4039 SDValue PPCTargetLowering::LowerFormalArguments( 4040 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4041 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4042 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4043 if (Subtarget.isAIXABI()) 4044 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 4045 InVals); 4046 if (Subtarget.is64BitELFABI()) 4047 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 4048 InVals); 4049 assert(Subtarget.is32BitELFABI()); 4050 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 4051 InVals); 4052 } 4053 4054 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 4055 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4056 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4057 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4058 4059 // 32-bit SVR4 ABI Stack Frame Layout: 4060 // +-----------------------------------+ 4061 // +--> | Back chain | 4062 // | +-----------------------------------+ 4063 // | | Floating-point register save area | 4064 // | +-----------------------------------+ 4065 // | | General register save area | 4066 // | +-----------------------------------+ 4067 // | | CR save word | 4068 // | +-----------------------------------+ 4069 // | | VRSAVE save word | 4070 // | +-----------------------------------+ 4071 // | | Alignment padding | 4072 // | +-----------------------------------+ 4073 // | | Vector register save area | 4074 // | +-----------------------------------+ 4075 // | | Local variable space | 4076 // | +-----------------------------------+ 4077 // | | Parameter list area | 4078 // | +-----------------------------------+ 4079 // | | LR save word | 4080 // | +-----------------------------------+ 4081 // SP--> +--- | Back chain | 4082 // +-----------------------------------+ 4083 // 4084 // Specifications: 4085 // System V Application Binary Interface PowerPC Processor Supplement 4086 // AltiVec Technology Programming Interface Manual 4087 4088 MachineFunction &MF = DAG.getMachineFunction(); 4089 MachineFrameInfo &MFI = MF.getFrameInfo(); 4090 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4091 4092 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4093 // Potential tail calls could cause overwriting of argument stack slots. 4094 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4095 (CallConv == CallingConv::Fast)); 4096 const Align PtrAlign(4); 4097 4098 // Assign locations to all of the incoming arguments. 4099 SmallVector<CCValAssign, 16> ArgLocs; 4100 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4101 *DAG.getContext()); 4102 4103 // Reserve space for the linkage area on the stack. 4104 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4105 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4106 if (useSoftFloat()) 4107 CCInfo.PreAnalyzeFormalArguments(Ins); 4108 4109 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4110 CCInfo.clearWasPPCF128(); 4111 4112 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4113 CCValAssign &VA = ArgLocs[i]; 4114 4115 // Arguments stored in registers. 4116 if (VA.isRegLoc()) { 4117 const TargetRegisterClass *RC; 4118 EVT ValVT = VA.getValVT(); 4119 4120 switch (ValVT.getSimpleVT().SimpleTy) { 4121 default: 4122 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4123 case MVT::i1: 4124 case MVT::i32: 4125 RC = &PPC::GPRCRegClass; 4126 break; 4127 case MVT::f32: 4128 if (Subtarget.hasP8Vector()) 4129 RC = &PPC::VSSRCRegClass; 4130 else if (Subtarget.hasSPE()) 4131 RC = &PPC::GPRCRegClass; 4132 else 4133 RC = &PPC::F4RCRegClass; 4134 break; 4135 case MVT::f64: 4136 if (Subtarget.hasVSX()) 4137 RC = &PPC::VSFRCRegClass; 4138 else if (Subtarget.hasSPE()) 4139 // SPE passes doubles in GPR pairs. 4140 RC = &PPC::GPRCRegClass; 4141 else 4142 RC = &PPC::F8RCRegClass; 4143 break; 4144 case MVT::v16i8: 4145 case MVT::v8i16: 4146 case MVT::v4i32: 4147 RC = &PPC::VRRCRegClass; 4148 break; 4149 case MVT::v4f32: 4150 RC = &PPC::VRRCRegClass; 4151 break; 4152 case MVT::v2f64: 4153 case MVT::v2i64: 4154 RC = &PPC::VRRCRegClass; 4155 break; 4156 } 4157 4158 SDValue ArgValue; 4159 // Transform the arguments stored in physical registers into 4160 // virtual ones. 4161 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4162 assert(i + 1 < e && "No second half of double precision argument"); 4163 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4164 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4165 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4166 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4167 if (!Subtarget.isLittleEndian()) 4168 std::swap (ArgValueLo, ArgValueHi); 4169 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4170 ArgValueHi); 4171 } else { 4172 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4173 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4174 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4175 if (ValVT == MVT::i1) 4176 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4177 } 4178 4179 InVals.push_back(ArgValue); 4180 } else { 4181 // Argument stored in memory. 4182 assert(VA.isMemLoc()); 4183 4184 // Get the extended size of the argument type in stack 4185 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4186 // Get the actual size of the argument type 4187 unsigned ObjSize = VA.getValVT().getStoreSize(); 4188 unsigned ArgOffset = VA.getLocMemOffset(); 4189 // Stack objects in PPC32 are right justified. 4190 ArgOffset += ArgSize - ObjSize; 4191 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4192 4193 // Create load nodes to retrieve arguments from the stack. 4194 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4195 InVals.push_back( 4196 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4197 } 4198 } 4199 4200 // Assign locations to all of the incoming aggregate by value arguments. 4201 // Aggregates passed by value are stored in the local variable space of the 4202 // caller's stack frame, right above the parameter list area. 4203 SmallVector<CCValAssign, 16> ByValArgLocs; 4204 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4205 ByValArgLocs, *DAG.getContext()); 4206 4207 // Reserve stack space for the allocations in CCInfo. 4208 CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign); 4209 4210 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4211 4212 // Area that is at least reserved in the caller of this function. 4213 unsigned MinReservedArea = CCByValInfo.getStackSize(); 4214 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4215 4216 // Set the size that is at least reserved in caller of this function. Tail 4217 // call optimized function's reserved stack space needs to be aligned so that 4218 // taking the difference between two stack areas will result in an aligned 4219 // stack. 4220 MinReservedArea = 4221 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4222 FuncInfo->setMinReservedArea(MinReservedArea); 4223 4224 SmallVector<SDValue, 8> MemOps; 4225 4226 // If the function takes variable number of arguments, make a frame index for 4227 // the start of the first vararg value... for expansion of llvm.va_start. 4228 if (isVarArg) { 4229 static const MCPhysReg GPArgRegs[] = { 4230 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4231 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4232 }; 4233 const unsigned NumGPArgRegs = std::size(GPArgRegs); 4234 4235 static const MCPhysReg FPArgRegs[] = { 4236 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4237 PPC::F8 4238 }; 4239 unsigned NumFPArgRegs = std::size(FPArgRegs); 4240 4241 if (useSoftFloat() || hasSPE()) 4242 NumFPArgRegs = 0; 4243 4244 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4245 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4246 4247 // Make room for NumGPArgRegs and NumFPArgRegs. 4248 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4249 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4250 4251 FuncInfo->setVarArgsStackOffset(MFI.CreateFixedObject( 4252 PtrVT.getSizeInBits() / 8, CCInfo.getStackSize(), true)); 4253 4254 FuncInfo->setVarArgsFrameIndex( 4255 MFI.CreateStackObject(Depth, Align(8), false)); 4256 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4257 4258 // The fixed integer arguments of a variadic function are stored to the 4259 // VarArgsFrameIndex on the stack so that they may be loaded by 4260 // dereferencing the result of va_next. 4261 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4262 // Get an existing live-in vreg, or add a new one. 4263 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4264 if (!VReg) 4265 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4266 4267 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4268 SDValue Store = 4269 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4270 MemOps.push_back(Store); 4271 // Increment the address by four for the next argument to store 4272 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4273 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4274 } 4275 4276 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4277 // is set. 4278 // The double arguments are stored to the VarArgsFrameIndex 4279 // on the stack. 4280 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4281 // Get an existing live-in vreg, or add a new one. 4282 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4283 if (!VReg) 4284 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4285 4286 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4287 SDValue Store = 4288 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4289 MemOps.push_back(Store); 4290 // Increment the address by eight for the next argument to store 4291 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4292 PtrVT); 4293 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4294 } 4295 } 4296 4297 if (!MemOps.empty()) 4298 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4299 4300 return Chain; 4301 } 4302 4303 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4304 // value to MVT::i64 and then truncate to the correct register size. 4305 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4306 EVT ObjectVT, SelectionDAG &DAG, 4307 SDValue ArgVal, 4308 const SDLoc &dl) const { 4309 if (Flags.isSExt()) 4310 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4311 DAG.getValueType(ObjectVT)); 4312 else if (Flags.isZExt()) 4313 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4314 DAG.getValueType(ObjectVT)); 4315 4316 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4317 } 4318 4319 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4320 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4321 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4322 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4323 // TODO: add description of PPC stack frame format, or at least some docs. 4324 // 4325 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4326 bool isLittleEndian = Subtarget.isLittleEndian(); 4327 MachineFunction &MF = DAG.getMachineFunction(); 4328 MachineFrameInfo &MFI = MF.getFrameInfo(); 4329 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4330 4331 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4332 "fastcc not supported on varargs functions"); 4333 4334 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4335 // Potential tail calls could cause overwriting of argument stack slots. 4336 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4337 (CallConv == CallingConv::Fast)); 4338 unsigned PtrByteSize = 8; 4339 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4340 4341 static const MCPhysReg GPR[] = { 4342 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4343 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4344 }; 4345 static const MCPhysReg VR[] = { 4346 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4347 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4348 }; 4349 4350 const unsigned Num_GPR_Regs = std::size(GPR); 4351 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4352 const unsigned Num_VR_Regs = std::size(VR); 4353 4354 // Do a first pass over the arguments to determine whether the ABI 4355 // guarantees that our caller has allocated the parameter save area 4356 // on its stack frame. In the ELFv1 ABI, this is always the case; 4357 // in the ELFv2 ABI, it is true if this is a vararg function or if 4358 // any parameter is located in a stack slot. 4359 4360 bool HasParameterArea = !isELFv2ABI || isVarArg; 4361 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4362 unsigned NumBytes = LinkageSize; 4363 unsigned AvailableFPRs = Num_FPR_Regs; 4364 unsigned AvailableVRs = Num_VR_Regs; 4365 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4366 if (Ins[i].Flags.isNest()) 4367 continue; 4368 4369 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4370 PtrByteSize, LinkageSize, ParamAreaSize, 4371 NumBytes, AvailableFPRs, AvailableVRs)) 4372 HasParameterArea = true; 4373 } 4374 4375 // Add DAG nodes to load the arguments or copy them out of registers. On 4376 // entry to a function on PPC, the arguments start after the linkage area, 4377 // although the first ones are often in registers. 4378 4379 unsigned ArgOffset = LinkageSize; 4380 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4381 SmallVector<SDValue, 8> MemOps; 4382 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4383 unsigned CurArgIdx = 0; 4384 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4385 SDValue ArgVal; 4386 bool needsLoad = false; 4387 EVT ObjectVT = Ins[ArgNo].VT; 4388 EVT OrigVT = Ins[ArgNo].ArgVT; 4389 unsigned ObjSize = ObjectVT.getStoreSize(); 4390 unsigned ArgSize = ObjSize; 4391 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4392 if (Ins[ArgNo].isOrigArg()) { 4393 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4394 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4395 } 4396 // We re-align the argument offset for each argument, except when using the 4397 // fast calling convention, when we need to make sure we do that only when 4398 // we'll actually use a stack slot. 4399 unsigned CurArgOffset; 4400 Align Alignment; 4401 auto ComputeArgOffset = [&]() { 4402 /* Respect alignment of argument on the stack. */ 4403 Alignment = 4404 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4405 ArgOffset = alignTo(ArgOffset, Alignment); 4406 CurArgOffset = ArgOffset; 4407 }; 4408 4409 if (CallConv != CallingConv::Fast) { 4410 ComputeArgOffset(); 4411 4412 /* Compute GPR index associated with argument offset. */ 4413 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4414 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4415 } 4416 4417 // FIXME the codegen can be much improved in some cases. 4418 // We do not have to keep everything in memory. 4419 if (Flags.isByVal()) { 4420 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4421 4422 if (CallConv == CallingConv::Fast) 4423 ComputeArgOffset(); 4424 4425 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4426 ObjSize = Flags.getByValSize(); 4427 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4428 // Empty aggregate parameters do not take up registers. Examples: 4429 // struct { } a; 4430 // union { } b; 4431 // int c[0]; 4432 // etc. However, we have to provide a place-holder in InVals, so 4433 // pretend we have an 8-byte item at the current address for that 4434 // purpose. 4435 if (!ObjSize) { 4436 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4437 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4438 InVals.push_back(FIN); 4439 continue; 4440 } 4441 4442 // Create a stack object covering all stack doublewords occupied 4443 // by the argument. If the argument is (fully or partially) on 4444 // the stack, or if the argument is fully in registers but the 4445 // caller has allocated the parameter save anyway, we can refer 4446 // directly to the caller's stack frame. Otherwise, create a 4447 // local copy in our own frame. 4448 int FI; 4449 if (HasParameterArea || 4450 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4451 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4452 else 4453 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4454 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4455 4456 // Handle aggregates smaller than 8 bytes. 4457 if (ObjSize < PtrByteSize) { 4458 // The value of the object is its address, which differs from the 4459 // address of the enclosing doubleword on big-endian systems. 4460 SDValue Arg = FIN; 4461 if (!isLittleEndian) { 4462 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4463 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4464 } 4465 InVals.push_back(Arg); 4466 4467 if (GPR_idx != Num_GPR_Regs) { 4468 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4469 FuncInfo->addLiveInAttr(VReg, Flags); 4470 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4471 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4472 SDValue Store = 4473 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4474 MachinePointerInfo(&*FuncArg), ObjType); 4475 MemOps.push_back(Store); 4476 } 4477 // Whether we copied from a register or not, advance the offset 4478 // into the parameter save area by a full doubleword. 4479 ArgOffset += PtrByteSize; 4480 continue; 4481 } 4482 4483 // The value of the object is its address, which is the address of 4484 // its first stack doubleword. 4485 InVals.push_back(FIN); 4486 4487 // Store whatever pieces of the object are in registers to memory. 4488 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4489 if (GPR_idx == Num_GPR_Regs) 4490 break; 4491 4492 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4493 FuncInfo->addLiveInAttr(VReg, Flags); 4494 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4495 SDValue Addr = FIN; 4496 if (j) { 4497 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4498 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4499 } 4500 unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; 4501 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); 4502 SDValue Store = 4503 DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, 4504 MachinePointerInfo(&*FuncArg, j), ObjType); 4505 MemOps.push_back(Store); 4506 ++GPR_idx; 4507 } 4508 ArgOffset += ArgSize; 4509 continue; 4510 } 4511 4512 switch (ObjectVT.getSimpleVT().SimpleTy) { 4513 default: llvm_unreachable("Unhandled argument type!"); 4514 case MVT::i1: 4515 case MVT::i32: 4516 case MVT::i64: 4517 if (Flags.isNest()) { 4518 // The 'nest' parameter, if any, is passed in R11. 4519 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4520 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4521 4522 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4523 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4524 4525 break; 4526 } 4527 4528 // These can be scalar arguments or elements of an integer array type 4529 // passed directly. Clang may use those instead of "byval" aggregate 4530 // types to avoid forcing arguments to memory unnecessarily. 4531 if (GPR_idx != Num_GPR_Regs) { 4532 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4533 FuncInfo->addLiveInAttr(VReg, Flags); 4534 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4535 4536 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4537 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4538 // value to MVT::i64 and then truncate to the correct register size. 4539 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4540 } else { 4541 if (CallConv == CallingConv::Fast) 4542 ComputeArgOffset(); 4543 4544 needsLoad = true; 4545 ArgSize = PtrByteSize; 4546 } 4547 if (CallConv != CallingConv::Fast || needsLoad) 4548 ArgOffset += 8; 4549 break; 4550 4551 case MVT::f32: 4552 case MVT::f64: 4553 // These can be scalar arguments or elements of a float array type 4554 // passed directly. The latter are used to implement ELFv2 homogenous 4555 // float aggregates. 4556 if (FPR_idx != Num_FPR_Regs) { 4557 unsigned VReg; 4558 4559 if (ObjectVT == MVT::f32) 4560 VReg = MF.addLiveIn(FPR[FPR_idx], 4561 Subtarget.hasP8Vector() 4562 ? &PPC::VSSRCRegClass 4563 : &PPC::F4RCRegClass); 4564 else 4565 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4566 ? &PPC::VSFRCRegClass 4567 : &PPC::F8RCRegClass); 4568 4569 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4570 ++FPR_idx; 4571 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4572 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4573 // once we support fp <-> gpr moves. 4574 4575 // This can only ever happen in the presence of f32 array types, 4576 // since otherwise we never run out of FPRs before running out 4577 // of GPRs. 4578 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4579 FuncInfo->addLiveInAttr(VReg, Flags); 4580 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4581 4582 if (ObjectVT == MVT::f32) { 4583 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4584 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4585 DAG.getConstant(32, dl, MVT::i32)); 4586 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4587 } 4588 4589 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4590 } else { 4591 if (CallConv == CallingConv::Fast) 4592 ComputeArgOffset(); 4593 4594 needsLoad = true; 4595 } 4596 4597 // When passing an array of floats, the array occupies consecutive 4598 // space in the argument area; only round up to the next doubleword 4599 // at the end of the array. Otherwise, each float takes 8 bytes. 4600 if (CallConv != CallingConv::Fast || needsLoad) { 4601 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4602 ArgOffset += ArgSize; 4603 if (Flags.isInConsecutiveRegsLast()) 4604 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4605 } 4606 break; 4607 case MVT::v4f32: 4608 case MVT::v4i32: 4609 case MVT::v8i16: 4610 case MVT::v16i8: 4611 case MVT::v2f64: 4612 case MVT::v2i64: 4613 case MVT::v1i128: 4614 case MVT::f128: 4615 // These can be scalar arguments or elements of a vector array type 4616 // passed directly. The latter are used to implement ELFv2 homogenous 4617 // vector aggregates. 4618 if (VR_idx != Num_VR_Regs) { 4619 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4620 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4621 ++VR_idx; 4622 } else { 4623 if (CallConv == CallingConv::Fast) 4624 ComputeArgOffset(); 4625 needsLoad = true; 4626 } 4627 if (CallConv != CallingConv::Fast || needsLoad) 4628 ArgOffset += 16; 4629 break; 4630 } 4631 4632 // We need to load the argument to a virtual register if we determined 4633 // above that we ran out of physical registers of the appropriate type. 4634 if (needsLoad) { 4635 if (ObjSize < ArgSize && !isLittleEndian) 4636 CurArgOffset += ArgSize - ObjSize; 4637 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4638 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4639 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4640 } 4641 4642 InVals.push_back(ArgVal); 4643 } 4644 4645 // Area that is at least reserved in the caller of this function. 4646 unsigned MinReservedArea; 4647 if (HasParameterArea) 4648 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4649 else 4650 MinReservedArea = LinkageSize; 4651 4652 // Set the size that is at least reserved in caller of this function. Tail 4653 // call optimized functions' reserved stack space needs to be aligned so that 4654 // taking the difference between two stack areas will result in an aligned 4655 // stack. 4656 MinReservedArea = 4657 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4658 FuncInfo->setMinReservedArea(MinReservedArea); 4659 4660 // If the function takes variable number of arguments, make a frame index for 4661 // the start of the first vararg value... for expansion of llvm.va_start. 4662 // On ELFv2ABI spec, it writes: 4663 // C programs that are intended to be *portable* across different compilers 4664 // and architectures must use the header file <stdarg.h> to deal with variable 4665 // argument lists. 4666 if (isVarArg && MFI.hasVAStart()) { 4667 int Depth = ArgOffset; 4668 4669 FuncInfo->setVarArgsFrameIndex( 4670 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4671 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4672 4673 // If this function is vararg, store any remaining integer argument regs 4674 // to their spots on the stack so that they may be loaded by dereferencing 4675 // the result of va_next. 4676 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4677 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4678 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4679 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4680 SDValue Store = 4681 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4682 MemOps.push_back(Store); 4683 // Increment the address by four for the next argument to store 4684 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4685 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4686 } 4687 } 4688 4689 if (!MemOps.empty()) 4690 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4691 4692 return Chain; 4693 } 4694 4695 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4696 /// adjusted to accommodate the arguments for the tailcall. 4697 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4698 unsigned ParamSize) { 4699 4700 if (!isTailCall) return 0; 4701 4702 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4703 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4704 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4705 // Remember only if the new adjustment is bigger. 4706 if (SPDiff < FI->getTailCallSPDelta()) 4707 FI->setTailCallSPDelta(SPDiff); 4708 4709 return SPDiff; 4710 } 4711 4712 static bool isFunctionGlobalAddress(const GlobalValue *CalleeGV); 4713 4714 static bool callsShareTOCBase(const Function *Caller, 4715 const GlobalValue *CalleeGV, 4716 const TargetMachine &TM) { 4717 // It does not make sense to call callsShareTOCBase() with a caller that 4718 // is PC Relative since PC Relative callers do not have a TOC. 4719 #ifndef NDEBUG 4720 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4721 assert(!STICaller->isUsingPCRelativeCalls() && 4722 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4723 #endif 4724 4725 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4726 // don't have enough information to determine if the caller and callee share 4727 // the same TOC base, so we have to pessimistically assume they don't for 4728 // correctness. 4729 if (!CalleeGV) 4730 return false; 4731 4732 // If the callee is preemptable, then the static linker will use a plt-stub 4733 // which saves the toc to the stack, and needs a nop after the call 4734 // instruction to convert to a toc-restore. 4735 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), CalleeGV)) 4736 return false; 4737 4738 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4739 // We may need a TOC restore in the situation where the caller requires a 4740 // valid TOC but the callee is PC Relative and does not. 4741 const Function *F = dyn_cast<Function>(CalleeGV); 4742 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(CalleeGV); 4743 4744 // If we have an Alias we can try to get the function from there. 4745 if (Alias) { 4746 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4747 F = dyn_cast<Function>(GlobalObj); 4748 } 4749 4750 // If we still have no valid function pointer we do not have enough 4751 // information to determine if the callee uses PC Relative calls so we must 4752 // assume that it does. 4753 if (!F) 4754 return false; 4755 4756 // If the callee uses PC Relative we cannot guarantee that the callee won't 4757 // clobber the TOC of the caller and so we must assume that the two 4758 // functions do not share a TOC base. 4759 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4760 if (STICallee->isUsingPCRelativeCalls()) 4761 return false; 4762 4763 // If the GV is not a strong definition then we need to assume it can be 4764 // replaced by another function at link time. The function that replaces 4765 // it may not share the same TOC as the caller since the callee may be 4766 // replaced by a PC Relative version of the same function. 4767 if (!CalleeGV->isStrongDefinitionForLinker()) 4768 return false; 4769 4770 // The medium and large code models are expected to provide a sufficiently 4771 // large TOC to provide all data addressing needs of a module with a 4772 // single TOC. 4773 if (CodeModel::Medium == TM.getCodeModel() || 4774 CodeModel::Large == TM.getCodeModel()) 4775 return true; 4776 4777 // Any explicitly-specified sections and section prefixes must also match. 4778 // Also, if we're using -ffunction-sections, then each function is always in 4779 // a different section (the same is true for COMDAT functions). 4780 if (TM.getFunctionSections() || CalleeGV->hasComdat() || 4781 Caller->hasComdat() || CalleeGV->getSection() != Caller->getSection()) 4782 return false; 4783 if (const auto *F = dyn_cast<Function>(CalleeGV)) { 4784 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4785 return false; 4786 } 4787 4788 return true; 4789 } 4790 4791 static bool 4792 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4793 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4794 assert(Subtarget.is64BitELFABI()); 4795 4796 const unsigned PtrByteSize = 8; 4797 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4798 4799 static const MCPhysReg GPR[] = { 4800 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4801 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4802 }; 4803 static const MCPhysReg VR[] = { 4804 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4805 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4806 }; 4807 4808 const unsigned NumGPRs = std::size(GPR); 4809 const unsigned NumFPRs = 13; 4810 const unsigned NumVRs = std::size(VR); 4811 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4812 4813 unsigned NumBytes = LinkageSize; 4814 unsigned AvailableFPRs = NumFPRs; 4815 unsigned AvailableVRs = NumVRs; 4816 4817 for (const ISD::OutputArg& Param : Outs) { 4818 if (Param.Flags.isNest()) continue; 4819 4820 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4821 LinkageSize, ParamAreaSize, NumBytes, 4822 AvailableFPRs, AvailableVRs)) 4823 return true; 4824 } 4825 return false; 4826 } 4827 4828 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4829 if (CB.arg_size() != CallerFn->arg_size()) 4830 return false; 4831 4832 auto CalleeArgIter = CB.arg_begin(); 4833 auto CalleeArgEnd = CB.arg_end(); 4834 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4835 4836 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4837 const Value* CalleeArg = *CalleeArgIter; 4838 const Value* CallerArg = &(*CallerArgIter); 4839 if (CalleeArg == CallerArg) 4840 continue; 4841 4842 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4843 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4844 // } 4845 // 1st argument of callee is undef and has the same type as caller. 4846 if (CalleeArg->getType() == CallerArg->getType() && 4847 isa<UndefValue>(CalleeArg)) 4848 continue; 4849 4850 return false; 4851 } 4852 4853 return true; 4854 } 4855 4856 // Returns true if TCO is possible between the callers and callees 4857 // calling conventions. 4858 static bool 4859 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4860 CallingConv::ID CalleeCC) { 4861 // Tail calls are possible with fastcc and ccc. 4862 auto isTailCallableCC = [] (CallingConv::ID CC){ 4863 return CC == CallingConv::C || CC == CallingConv::Fast; 4864 }; 4865 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4866 return false; 4867 4868 // We can safely tail call both fastcc and ccc callees from a c calling 4869 // convention caller. If the caller is fastcc, we may have less stack space 4870 // than a non-fastcc caller with the same signature so disable tail-calls in 4871 // that case. 4872 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4873 } 4874 4875 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4876 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, 4877 CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, 4878 const SmallVectorImpl<ISD::OutputArg> &Outs, 4879 const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc, 4880 bool isCalleeExternalSymbol) const { 4881 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4882 4883 if (DisableSCO && !TailCallOpt) return false; 4884 4885 // Variadic argument functions are not supported. 4886 if (isVarArg) return false; 4887 4888 // Check that the calling conventions are compatible for tco. 4889 if (!areCallingConvEligibleForTCO_64SVR4(CallerCC, CalleeCC)) 4890 return false; 4891 4892 // Caller contains any byval parameter is not supported. 4893 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4894 return false; 4895 4896 // Callee contains any byval parameter is not supported, too. 4897 // Note: This is a quick work around, because in some cases, e.g. 4898 // caller's stack size > callee's stack size, we are still able to apply 4899 // sibling call optimization. For example, gcc is able to do SCO for caller1 4900 // in the following example, but not for caller2. 4901 // struct test { 4902 // long int a; 4903 // char ary[56]; 4904 // } gTest; 4905 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4906 // b->a = v.a; 4907 // return 0; 4908 // } 4909 // void caller1(struct test a, struct test c, struct test *b) { 4910 // callee(gTest, b); } 4911 // void caller2(struct test *b) { callee(gTest, b); } 4912 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4913 return false; 4914 4915 // If callee and caller use different calling conventions, we cannot pass 4916 // parameters on stack since offsets for the parameter area may be different. 4917 if (CallerCC != CalleeCC && needStackSlotPassParameters(Subtarget, Outs)) 4918 return false; 4919 4920 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4921 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4922 // callee potentially have different TOC bases then we cannot tail call since 4923 // we need to restore the TOC pointer after the call. 4924 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4925 // We cannot guarantee this for indirect calls or calls to external functions. 4926 // When PC-Relative addressing is used, the concept of the TOC is no longer 4927 // applicable so this check is not required. 4928 // Check first for indirect calls. 4929 if (!Subtarget.isUsingPCRelativeCalls() && 4930 !isFunctionGlobalAddress(CalleeGV) && !isCalleeExternalSymbol) 4931 return false; 4932 4933 // Check if we share the TOC base. 4934 if (!Subtarget.isUsingPCRelativeCalls() && 4935 !callsShareTOCBase(CallerFunc, CalleeGV, getTargetMachine())) 4936 return false; 4937 4938 // TCO allows altering callee ABI, so we don't have to check further. 4939 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4940 return true; 4941 4942 if (DisableSCO) return false; 4943 4944 // If callee use the same argument list that caller is using, then we can 4945 // apply SCO on this case. If it is not, then we need to check if callee needs 4946 // stack for passing arguments. 4947 // PC Relative tail calls may not have a CallBase. 4948 // If there is no CallBase we cannot verify if we have the same argument 4949 // list so assume that we don't have the same argument list. 4950 if (CB && !hasSameArgumentList(CallerFunc, *CB) && 4951 needStackSlotPassParameters(Subtarget, Outs)) 4952 return false; 4953 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4954 return false; 4955 4956 return true; 4957 } 4958 4959 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4960 /// for tail call optimization. Targets which want to do tail call 4961 /// optimization should implement this function. 4962 bool PPCTargetLowering::IsEligibleForTailCallOptimization( 4963 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, 4964 CallingConv::ID CallerCC, bool isVarArg, 4965 const SmallVectorImpl<ISD::InputArg> &Ins) const { 4966 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4967 return false; 4968 4969 // Variable argument functions are not supported. 4970 if (isVarArg) 4971 return false; 4972 4973 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4974 // Functions containing by val parameters are not supported. 4975 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4976 return false; 4977 4978 // Non-PIC/GOT tail calls are supported. 4979 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4980 return true; 4981 4982 // At the moment we can only do local tail calls (in same module, hidden 4983 // or protected) if we are generating PIC. 4984 if (CalleeGV) 4985 return CalleeGV->hasHiddenVisibility() || 4986 CalleeGV->hasProtectedVisibility(); 4987 } 4988 4989 return false; 4990 } 4991 4992 /// isCallCompatibleAddress - Return the immediate to use if the specified 4993 /// 32-bit value is representable in the immediate field of a BxA instruction. 4994 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4995 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4996 if (!C) return nullptr; 4997 4998 int Addr = C->getZExtValue(); 4999 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5000 SignExtend32<26>(Addr) != Addr) 5001 return nullptr; // Top 6 bits have to be sext of immediate. 5002 5003 return DAG 5004 .getConstant( 5005 (int)C->getZExtValue() >> 2, SDLoc(Op), 5006 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5007 .getNode(); 5008 } 5009 5010 namespace { 5011 5012 struct TailCallArgumentInfo { 5013 SDValue Arg; 5014 SDValue FrameIdxOp; 5015 int FrameIdx = 0; 5016 5017 TailCallArgumentInfo() = default; 5018 }; 5019 5020 } // end anonymous namespace 5021 5022 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5023 static void StoreTailCallArgumentsToStackSlot( 5024 SelectionDAG &DAG, SDValue Chain, 5025 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5026 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5027 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5028 SDValue Arg = TailCallArgs[i].Arg; 5029 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5030 int FI = TailCallArgs[i].FrameIdx; 5031 // Store relative to framepointer. 5032 MemOpChains.push_back(DAG.getStore( 5033 Chain, dl, Arg, FIN, 5034 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5035 } 5036 } 5037 5038 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5039 /// the appropriate stack slot for the tail call optimized function call. 5040 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5041 SDValue OldRetAddr, SDValue OldFP, 5042 int SPDiff, const SDLoc &dl) { 5043 if (SPDiff) { 5044 // Calculate the new stack slot for the return address. 5045 MachineFunction &MF = DAG.getMachineFunction(); 5046 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5047 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5048 bool isPPC64 = Subtarget.isPPC64(); 5049 int SlotSize = isPPC64 ? 8 : 4; 5050 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5051 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5052 NewRetAddrLoc, true); 5053 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5054 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5055 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5056 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5057 } 5058 return Chain; 5059 } 5060 5061 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5062 /// the position of the argument. 5063 static void 5064 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5065 SDValue Arg, int SPDiff, unsigned ArgOffset, 5066 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5067 int Offset = ArgOffset + SPDiff; 5068 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5069 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5070 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5071 SDValue FIN = DAG.getFrameIndex(FI, VT); 5072 TailCallArgumentInfo Info; 5073 Info.Arg = Arg; 5074 Info.FrameIdxOp = FIN; 5075 Info.FrameIdx = FI; 5076 TailCallArguments.push_back(Info); 5077 } 5078 5079 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5080 /// stack slot. Returns the chain as result and the loaded frame pointers in 5081 /// LROpOut/FPOpout. Used when tail calling. 5082 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5083 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5084 SDValue &FPOpOut, const SDLoc &dl) const { 5085 if (SPDiff) { 5086 // Load the LR and FP stack slot for later adjusting. 5087 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5088 LROpOut = getReturnAddrFrameIndex(DAG); 5089 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5090 Chain = SDValue(LROpOut.getNode(), 1); 5091 } 5092 return Chain; 5093 } 5094 5095 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5096 /// by "Src" to address "Dst" of size "Size". Alignment information is 5097 /// specified by the specific parameter attribute. The copy will be passed as 5098 /// a byval function parameter. 5099 /// Sometimes what we are copying is the end of a larger object, the part that 5100 /// does not fit in registers. 5101 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5102 SDValue Chain, ISD::ArgFlagsTy Flags, 5103 SelectionDAG &DAG, const SDLoc &dl) { 5104 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5105 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5106 Flags.getNonZeroByValAlign(), false, false, false, 5107 MachinePointerInfo(), MachinePointerInfo()); 5108 } 5109 5110 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5111 /// tail calls. 5112 static void LowerMemOpCallTo( 5113 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5114 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5115 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5116 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5117 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5118 if (!isTailCall) { 5119 if (isVector) { 5120 SDValue StackPtr; 5121 if (isPPC64) 5122 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5123 else 5124 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5125 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5126 DAG.getConstant(ArgOffset, dl, PtrVT)); 5127 } 5128 MemOpChains.push_back( 5129 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5130 // Calculate and remember argument location. 5131 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5132 TailCallArguments); 5133 } 5134 5135 static void 5136 PrepareTailCall(SelectionDAG &DAG, SDValue &InGlue, SDValue &Chain, 5137 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5138 SDValue FPOp, 5139 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5140 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5141 // might overwrite each other in case of tail call optimization. 5142 SmallVector<SDValue, 8> MemOpChains2; 5143 // Do not flag preceding copytoreg stuff together with the following stuff. 5144 InGlue = SDValue(); 5145 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5146 MemOpChains2, dl); 5147 if (!MemOpChains2.empty()) 5148 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5149 5150 // Store the return address to the appropriate stack slot. 5151 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5152 5153 // Emit callseq_end just before tailcall node. 5154 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl); 5155 InGlue = Chain.getValue(1); 5156 } 5157 5158 // Is this global address that of a function that can be called by name? (as 5159 // opposed to something that must hold a descriptor for an indirect call). 5160 static bool isFunctionGlobalAddress(const GlobalValue *GV) { 5161 if (GV) { 5162 if (GV->isThreadLocal()) 5163 return false; 5164 5165 return GV->getValueType()->isFunctionTy(); 5166 } 5167 5168 return false; 5169 } 5170 5171 SDValue PPCTargetLowering::LowerCallResult( 5172 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, 5173 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5174 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5175 SmallVector<CCValAssign, 16> RVLocs; 5176 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5177 *DAG.getContext()); 5178 5179 CCRetInfo.AnalyzeCallResult( 5180 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5181 ? RetCC_PPC_Cold 5182 : RetCC_PPC); 5183 5184 // Copy all of the result registers out of their specified physreg. 5185 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5186 CCValAssign &VA = RVLocs[i]; 5187 assert(VA.isRegLoc() && "Can only return in registers!"); 5188 5189 SDValue Val; 5190 5191 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5192 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5193 InGlue); 5194 Chain = Lo.getValue(1); 5195 InGlue = Lo.getValue(2); 5196 VA = RVLocs[++i]; // skip ahead to next loc 5197 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5198 InGlue); 5199 Chain = Hi.getValue(1); 5200 InGlue = Hi.getValue(2); 5201 if (!Subtarget.isLittleEndian()) 5202 std::swap (Lo, Hi); 5203 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5204 } else { 5205 Val = DAG.getCopyFromReg(Chain, dl, 5206 VA.getLocReg(), VA.getLocVT(), InGlue); 5207 Chain = Val.getValue(1); 5208 InGlue = Val.getValue(2); 5209 } 5210 5211 switch (VA.getLocInfo()) { 5212 default: llvm_unreachable("Unknown loc info!"); 5213 case CCValAssign::Full: break; 5214 case CCValAssign::AExt: 5215 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5216 break; 5217 case CCValAssign::ZExt: 5218 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5219 DAG.getValueType(VA.getValVT())); 5220 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5221 break; 5222 case CCValAssign::SExt: 5223 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5224 DAG.getValueType(VA.getValVT())); 5225 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5226 break; 5227 } 5228 5229 InVals.push_back(Val); 5230 } 5231 5232 return Chain; 5233 } 5234 5235 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5236 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5237 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5238 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5239 5240 // PatchPoint calls are not indirect. 5241 if (isPatchPoint) 5242 return false; 5243 5244 if (isFunctionGlobalAddress(GV) || isa<ExternalSymbolSDNode>(Callee)) 5245 return false; 5246 5247 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5248 // becuase the immediate function pointer points to a descriptor instead of 5249 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5250 // pointer immediate points to the global entry point, while the BLA would 5251 // need to jump to the local entry point (see rL211174). 5252 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5253 isBLACompatibleAddress(Callee, DAG)) 5254 return false; 5255 5256 return true; 5257 } 5258 5259 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5260 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5261 return Subtarget.isAIXABI() || 5262 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5263 } 5264 5265 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5266 const Function &Caller, const SDValue &Callee, 5267 const PPCSubtarget &Subtarget, 5268 const TargetMachine &TM, 5269 bool IsStrictFPCall = false) { 5270 if (CFlags.IsTailCall) 5271 return PPCISD::TC_RETURN; 5272 5273 unsigned RetOpc = 0; 5274 // This is a call through a function pointer. 5275 if (CFlags.IsIndirect) { 5276 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5277 // indirect calls. The save of the caller's TOC pointer to the stack will be 5278 // inserted into the DAG as part of call lowering. The restore of the TOC 5279 // pointer is modeled by using a pseudo instruction for the call opcode that 5280 // represents the 2 instruction sequence of an indirect branch and link, 5281 // immediately followed by a load of the TOC pointer from the the stack save 5282 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5283 // as it is not saved or used. 5284 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5285 : PPCISD::BCTRL; 5286 } else if (Subtarget.isUsingPCRelativeCalls()) { 5287 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5288 RetOpc = PPCISD::CALL_NOTOC; 5289 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) { 5290 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5291 // immediately following the call instruction if the caller and callee may 5292 // have different TOC bases. At link time if the linker determines the calls 5293 // may not share a TOC base, the call is redirected to a trampoline inserted 5294 // by the linker. The trampoline will (among other things) save the callers 5295 // TOC pointer at an ABI designated offset in the linkage area and the 5296 // linker will rewrite the nop to be a load of the TOC pointer from the 5297 // linkage area into gpr2. 5298 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5299 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5300 RetOpc = 5301 callsShareTOCBase(&Caller, GV, TM) ? PPCISD::CALL : PPCISD::CALL_NOP; 5302 } else 5303 RetOpc = PPCISD::CALL; 5304 if (IsStrictFPCall) { 5305 switch (RetOpc) { 5306 default: 5307 llvm_unreachable("Unknown call opcode"); 5308 case PPCISD::BCTRL_LOAD_TOC: 5309 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5310 break; 5311 case PPCISD::BCTRL: 5312 RetOpc = PPCISD::BCTRL_RM; 5313 break; 5314 case PPCISD::CALL_NOTOC: 5315 RetOpc = PPCISD::CALL_NOTOC_RM; 5316 break; 5317 case PPCISD::CALL: 5318 RetOpc = PPCISD::CALL_RM; 5319 break; 5320 case PPCISD::CALL_NOP: 5321 RetOpc = PPCISD::CALL_NOP_RM; 5322 break; 5323 } 5324 } 5325 return RetOpc; 5326 } 5327 5328 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5329 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5330 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5331 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5332 return SDValue(Dest, 0); 5333 5334 // Returns true if the callee is local, and false otherwise. 5335 auto isLocalCallee = [&]() { 5336 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5337 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5338 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5339 5340 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5341 !isa_and_nonnull<GlobalIFunc>(GV); 5342 }; 5343 5344 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5345 // a static relocation model causes some versions of GNU LD (2.17.50, at 5346 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5347 // built with secure-PLT. 5348 bool UsePlt = 5349 Subtarget.is32BitELFABI() && !isLocalCallee() && 5350 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5351 5352 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5353 const TargetMachine &TM = Subtarget.getTargetMachine(); 5354 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5355 MCSymbolXCOFF *S = 5356 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5357 5358 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5359 return DAG.getMCSymbol(S, PtrVT); 5360 }; 5361 5362 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5363 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5364 if (isFunctionGlobalAddress(GV)) { 5365 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5366 5367 if (Subtarget.isAIXABI()) { 5368 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5369 return getAIXFuncEntryPointSymbolSDNode(GV); 5370 } 5371 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5372 UsePlt ? PPCII::MO_PLT : 0); 5373 } 5374 5375 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5376 const char *SymName = S->getSymbol(); 5377 if (Subtarget.isAIXABI()) { 5378 // If there exists a user-declared function whose name is the same as the 5379 // ExternalSymbol's, then we pick up the user-declared version. 5380 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5381 if (const Function *F = 5382 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5383 return getAIXFuncEntryPointSymbolSDNode(F); 5384 5385 // On AIX, direct function calls reference the symbol for the function's 5386 // entry point, which is named by prepending a "." before the function's 5387 // C-linkage name. A Qualname is returned here because an external 5388 // function entry point is a csect with XTY_ER property. 5389 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5390 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5391 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5392 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5393 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5394 return Sec->getQualNameSymbol(); 5395 }; 5396 5397 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5398 } 5399 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5400 UsePlt ? PPCII::MO_PLT : 0); 5401 } 5402 5403 // No transformation needed. 5404 assert(Callee.getNode() && "What no callee?"); 5405 return Callee; 5406 } 5407 5408 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5409 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5410 "Expected a CALLSEQ_STARTSDNode."); 5411 5412 // The last operand is the chain, except when the node has glue. If the node 5413 // has glue, then the last operand is the glue, and the chain is the second 5414 // last operand. 5415 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5416 if (LastValue.getValueType() != MVT::Glue) 5417 return LastValue; 5418 5419 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5420 } 5421 5422 // Creates the node that moves a functions address into the count register 5423 // to prepare for an indirect call instruction. 5424 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5425 SDValue &Glue, SDValue &Chain, 5426 const SDLoc &dl) { 5427 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5428 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5429 Chain = DAG.getNode(PPCISD::MTCTR, dl, ArrayRef(ReturnTypes, 2), 5430 ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5431 // The glue is the second value produced. 5432 Glue = Chain.getValue(1); 5433 } 5434 5435 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5436 SDValue &Glue, SDValue &Chain, 5437 SDValue CallSeqStart, 5438 const CallBase *CB, const SDLoc &dl, 5439 bool hasNest, 5440 const PPCSubtarget &Subtarget) { 5441 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5442 // entry point, but to the function descriptor (the function entry point 5443 // address is part of the function descriptor though). 5444 // The function descriptor is a three doubleword structure with the 5445 // following fields: function entry point, TOC base address and 5446 // environment pointer. 5447 // Thus for a call through a function pointer, the following actions need 5448 // to be performed: 5449 // 1. Save the TOC of the caller in the TOC save area of its stack 5450 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5451 // 2. Load the address of the function entry point from the function 5452 // descriptor. 5453 // 3. Load the TOC of the callee from the function descriptor into r2. 5454 // 4. Load the environment pointer from the function descriptor into 5455 // r11. 5456 // 5. Branch to the function entry point address. 5457 // 6. On return of the callee, the TOC of the caller needs to be 5458 // restored (this is done in FinishCall()). 5459 // 5460 // The loads are scheduled at the beginning of the call sequence, and the 5461 // register copies are flagged together to ensure that no other 5462 // operations can be scheduled in between. E.g. without flagging the 5463 // copies together, a TOC access in the caller could be scheduled between 5464 // the assignment of the callee TOC and the branch to the callee, which leads 5465 // to incorrect code. 5466 5467 // Start by loading the function address from the descriptor. 5468 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5469 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5470 ? (MachineMemOperand::MODereferenceable | 5471 MachineMemOperand::MOInvariant) 5472 : MachineMemOperand::MONone; 5473 5474 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5475 5476 // Registers used in building the DAG. 5477 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5478 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5479 5480 // Offsets of descriptor members. 5481 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5482 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5483 5484 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5485 const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 5486 5487 // One load for the functions entry point address. 5488 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5489 Alignment, MMOFlags); 5490 5491 // One for loading the TOC anchor for the module that contains the called 5492 // function. 5493 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5494 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5495 SDValue TOCPtr = 5496 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5497 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5498 5499 // One for loading the environment pointer. 5500 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5501 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5502 SDValue LoadEnvPtr = 5503 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5504 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5505 5506 5507 // Then copy the newly loaded TOC anchor to the TOC pointer. 5508 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5509 Chain = TOCVal.getValue(0); 5510 Glue = TOCVal.getValue(1); 5511 5512 // If the function call has an explicit 'nest' parameter, it takes the 5513 // place of the environment pointer. 5514 assert((!hasNest || !Subtarget.isAIXABI()) && 5515 "Nest parameter is not supported on AIX."); 5516 if (!hasNest) { 5517 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5518 Chain = EnvVal.getValue(0); 5519 Glue = EnvVal.getValue(1); 5520 } 5521 5522 // The rest of the indirect call sequence is the same as the non-descriptor 5523 // DAG. 5524 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5525 } 5526 5527 static void 5528 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5529 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5530 SelectionDAG &DAG, 5531 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5532 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5533 const PPCSubtarget &Subtarget) { 5534 const bool IsPPC64 = Subtarget.isPPC64(); 5535 // MVT for a general purpose register. 5536 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5537 5538 // First operand is always the chain. 5539 Ops.push_back(Chain); 5540 5541 // If it's a direct call pass the callee as the second operand. 5542 if (!CFlags.IsIndirect) 5543 Ops.push_back(Callee); 5544 else { 5545 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5546 5547 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5548 // on the stack (this would have been done in `LowerCall_64SVR4` or 5549 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5550 // represents both the indirect branch and a load that restores the TOC 5551 // pointer from the linkage area. The operand for the TOC restore is an add 5552 // of the TOC save offset to the stack pointer. This must be the second 5553 // operand: after the chain input but before any other variadic arguments. 5554 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5555 // saved or used. 5556 if (isTOCSaveRestoreRequired(Subtarget)) { 5557 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5558 5559 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5560 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5561 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5562 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5563 Ops.push_back(AddTOC); 5564 } 5565 5566 // Add the register used for the environment pointer. 5567 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5568 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5569 RegVT)); 5570 5571 5572 // Add CTR register as callee so a bctr can be emitted later. 5573 if (CFlags.IsTailCall) 5574 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5575 } 5576 5577 // If this is a tail call add stack pointer delta. 5578 if (CFlags.IsTailCall) 5579 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5580 5581 // Add argument registers to the end of the list so that they are known live 5582 // into the call. 5583 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5584 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5585 RegsToPass[i].second.getValueType())); 5586 5587 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5588 // no way to mark dependencies as implicit here. 5589 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5590 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5591 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5592 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5593 5594 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5595 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5596 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5597 5598 // Add a register mask operand representing the call-preserved registers. 5599 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5600 const uint32_t *Mask = 5601 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5602 assert(Mask && "Missing call preserved mask for calling convention"); 5603 Ops.push_back(DAG.getRegisterMask(Mask)); 5604 5605 // If the glue is valid, it is the last operand. 5606 if (Glue.getNode()) 5607 Ops.push_back(Glue); 5608 } 5609 5610 SDValue PPCTargetLowering::FinishCall( 5611 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5612 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5613 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5614 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5615 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5616 5617 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5618 Subtarget.isAIXABI()) 5619 setUsesTOCBasePtr(DAG); 5620 5621 unsigned CallOpc = 5622 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5623 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5624 5625 if (!CFlags.IsIndirect) 5626 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5627 else if (Subtarget.usesFunctionDescriptors()) 5628 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5629 dl, CFlags.HasNest, Subtarget); 5630 else 5631 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5632 5633 // Build the operand list for the call instruction. 5634 SmallVector<SDValue, 8> Ops; 5635 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5636 SPDiff, Subtarget); 5637 5638 // Emit tail call. 5639 if (CFlags.IsTailCall) { 5640 // Indirect tail call when using PC Relative calls do not have the same 5641 // constraints. 5642 assert(((Callee.getOpcode() == ISD::Register && 5643 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5644 Callee.getOpcode() == ISD::TargetExternalSymbol || 5645 Callee.getOpcode() == ISD::TargetGlobalAddress || 5646 isa<ConstantSDNode>(Callee) || 5647 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5648 "Expecting a global address, external symbol, absolute value, " 5649 "register or an indirect tail call when PC Relative calls are " 5650 "used."); 5651 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5652 assert(CallOpc == PPCISD::TC_RETURN && 5653 "Unexpected call opcode for a tail call."); 5654 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5655 SDValue Ret = DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5656 DAG.addNoMergeSiteInfo(Ret.getNode(), CFlags.NoMerge); 5657 return Ret; 5658 } 5659 5660 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5661 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5662 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5663 Glue = Chain.getValue(1); 5664 5665 // When performing tail call optimization the callee pops its arguments off 5666 // the stack. Account for this here so these bytes can be pushed back on in 5667 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5668 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5669 getTargetMachine().Options.GuaranteedTailCallOpt) 5670 ? NumBytes 5671 : 0; 5672 5673 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl); 5674 Glue = Chain.getValue(1); 5675 5676 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5677 DAG, InVals); 5678 } 5679 5680 bool PPCTargetLowering::supportsTailCallFor(const CallBase *CB) const { 5681 CallingConv::ID CalleeCC = CB->getCallingConv(); 5682 const Function *CallerFunc = CB->getCaller(); 5683 CallingConv::ID CallerCC = CallerFunc->getCallingConv(); 5684 const Function *CalleeFunc = CB->getCalledFunction(); 5685 if (!CalleeFunc) 5686 return false; 5687 const GlobalValue *CalleeGV = dyn_cast<GlobalValue>(CalleeFunc); 5688 5689 SmallVector<ISD::OutputArg, 2> Outs; 5690 SmallVector<ISD::InputArg, 2> Ins; 5691 5692 GetReturnInfo(CalleeCC, CalleeFunc->getReturnType(), 5693 CalleeFunc->getAttributes(), Outs, *this, 5694 CalleeFunc->getParent()->getDataLayout()); 5695 5696 return isEligibleForTCO(CalleeGV, CalleeCC, CallerCC, CB, 5697 CalleeFunc->isVarArg(), Outs, Ins, CallerFunc, 5698 false /*isCalleeExternalSymbol*/); 5699 } 5700 5701 bool PPCTargetLowering::isEligibleForTCO( 5702 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, 5703 CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, 5704 const SmallVectorImpl<ISD::OutputArg> &Outs, 5705 const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc, 5706 bool isCalleeExternalSymbol) const { 5707 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5708 return false; 5709 5710 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5711 return IsEligibleForTailCallOptimization_64SVR4( 5712 CalleeGV, CalleeCC, CallerCC, CB, isVarArg, Outs, Ins, CallerFunc, 5713 isCalleeExternalSymbol); 5714 else 5715 return IsEligibleForTailCallOptimization(CalleeGV, CalleeCC, CallerCC, 5716 isVarArg, Ins); 5717 } 5718 5719 SDValue 5720 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5721 SmallVectorImpl<SDValue> &InVals) const { 5722 SelectionDAG &DAG = CLI.DAG; 5723 SDLoc &dl = CLI.DL; 5724 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5725 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5726 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5727 SDValue Chain = CLI.Chain; 5728 SDValue Callee = CLI.Callee; 5729 bool &isTailCall = CLI.IsTailCall; 5730 CallingConv::ID CallConv = CLI.CallConv; 5731 bool isVarArg = CLI.IsVarArg; 5732 bool isPatchPoint = CLI.IsPatchPoint; 5733 const CallBase *CB = CLI.CB; 5734 5735 if (isTailCall) { 5736 MachineFunction &MF = DAG.getMachineFunction(); 5737 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 5738 auto *G = dyn_cast<GlobalAddressSDNode>(Callee); 5739 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5740 bool IsCalleeExternalSymbol = isa<ExternalSymbolSDNode>(Callee); 5741 5742 isTailCall = 5743 isEligibleForTCO(GV, CallConv, CallerCC, CB, isVarArg, Outs, Ins, 5744 &(MF.getFunction()), IsCalleeExternalSymbol); 5745 if (isTailCall) { 5746 ++NumTailCalls; 5747 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5748 ++NumSiblingCalls; 5749 5750 // PC Relative calls no longer guarantee that the callee is a Global 5751 // Address Node. The callee could be an indirect tail call in which 5752 // case the SDValue for the callee could be a load (to load the address 5753 // of a function pointer) or it may be a register copy (to move the 5754 // address of the callee from a function parameter into a virtual 5755 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5756 assert((Subtarget.isUsingPCRelativeCalls() || 5757 isa<GlobalAddressSDNode>(Callee)) && 5758 "Callee should be an llvm::Function object."); 5759 5760 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5761 << "\nTCO callee: "); 5762 LLVM_DEBUG(Callee.dump()); 5763 } 5764 } 5765 5766 if (!isTailCall && CB && CB->isMustTailCall()) 5767 report_fatal_error("failed to perform tail call elimination on a call " 5768 "site marked musttail"); 5769 5770 // When long calls (i.e. indirect calls) are always used, calls are always 5771 // made via function pointer. If we have a function name, first translate it 5772 // into a pointer. 5773 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5774 !isTailCall) 5775 Callee = LowerGlobalAddress(Callee, DAG); 5776 5777 CallFlags CFlags( 5778 CallConv, isTailCall, isVarArg, isPatchPoint, 5779 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5780 // hasNest 5781 Subtarget.is64BitELFABI() && 5782 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5783 CLI.NoMerge); 5784 5785 if (Subtarget.isAIXABI()) 5786 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5787 InVals, CB); 5788 5789 assert(Subtarget.isSVR4ABI()); 5790 if (Subtarget.isPPC64()) 5791 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5792 InVals, CB); 5793 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5794 InVals, CB); 5795 } 5796 5797 SDValue PPCTargetLowering::LowerCall_32SVR4( 5798 SDValue Chain, SDValue Callee, CallFlags CFlags, 5799 const SmallVectorImpl<ISD::OutputArg> &Outs, 5800 const SmallVectorImpl<SDValue> &OutVals, 5801 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5802 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5803 const CallBase *CB) const { 5804 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5805 // of the 32-bit SVR4 ABI stack frame layout. 5806 5807 const CallingConv::ID CallConv = CFlags.CallConv; 5808 const bool IsVarArg = CFlags.IsVarArg; 5809 const bool IsTailCall = CFlags.IsTailCall; 5810 5811 assert((CallConv == CallingConv::C || 5812 CallConv == CallingConv::Cold || 5813 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5814 5815 const Align PtrAlign(4); 5816 5817 MachineFunction &MF = DAG.getMachineFunction(); 5818 5819 // Mark this function as potentially containing a function that contains a 5820 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5821 // and restoring the callers stack pointer in this functions epilog. This is 5822 // done because by tail calling the called function might overwrite the value 5823 // in this function's (MF) stack pointer stack slot 0(SP). 5824 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5825 CallConv == CallingConv::Fast) 5826 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5827 5828 // Count how many bytes are to be pushed on the stack, including the linkage 5829 // area, parameter list area and the part of the local variable space which 5830 // contains copies of aggregates which are passed by value. 5831 5832 // Assign locations to all of the outgoing arguments. 5833 SmallVector<CCValAssign, 16> ArgLocs; 5834 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5835 5836 // Reserve space for the linkage area on the stack. 5837 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5838 PtrAlign); 5839 if (useSoftFloat()) 5840 CCInfo.PreAnalyzeCallOperands(Outs); 5841 5842 if (IsVarArg) { 5843 // Handle fixed and variable vector arguments differently. 5844 // Fixed vector arguments go into registers as long as registers are 5845 // available. Variable vector arguments always go into memory. 5846 unsigned NumArgs = Outs.size(); 5847 5848 for (unsigned i = 0; i != NumArgs; ++i) { 5849 MVT ArgVT = Outs[i].VT; 5850 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5851 bool Result; 5852 5853 if (Outs[i].IsFixed) { 5854 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5855 CCInfo); 5856 } else { 5857 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5858 ArgFlags, CCInfo); 5859 } 5860 5861 if (Result) { 5862 #ifndef NDEBUG 5863 errs() << "Call operand #" << i << " has unhandled type " 5864 << ArgVT << "\n"; 5865 #endif 5866 llvm_unreachable(nullptr); 5867 } 5868 } 5869 } else { 5870 // All arguments are treated the same. 5871 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5872 } 5873 CCInfo.clearWasPPCF128(); 5874 5875 // Assign locations to all of the outgoing aggregate by value arguments. 5876 SmallVector<CCValAssign, 16> ByValArgLocs; 5877 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5878 5879 // Reserve stack space for the allocations in CCInfo. 5880 CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign); 5881 5882 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5883 5884 // Size of the linkage area, parameter list area and the part of the local 5885 // space variable where copies of aggregates which are passed by value are 5886 // stored. 5887 unsigned NumBytes = CCByValInfo.getStackSize(); 5888 5889 // Calculate by how many bytes the stack has to be adjusted in case of tail 5890 // call optimization. 5891 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5892 5893 // Adjust the stack pointer for the new arguments... 5894 // These operations are automatically eliminated by the prolog/epilog pass 5895 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5896 SDValue CallSeqStart = Chain; 5897 5898 // Load the return address and frame pointer so it can be moved somewhere else 5899 // later. 5900 SDValue LROp, FPOp; 5901 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5902 5903 // Set up a copy of the stack pointer for use loading and storing any 5904 // arguments that may not fit in the registers available for argument 5905 // passing. 5906 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5907 5908 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5909 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5910 SmallVector<SDValue, 8> MemOpChains; 5911 5912 bool seenFloatArg = false; 5913 // Walk the register/memloc assignments, inserting copies/loads. 5914 // i - Tracks the index into the list of registers allocated for the call 5915 // RealArgIdx - Tracks the index into the list of actual function arguments 5916 // j - Tracks the index into the list of byval arguments 5917 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5918 i != e; 5919 ++i, ++RealArgIdx) { 5920 CCValAssign &VA = ArgLocs[i]; 5921 SDValue Arg = OutVals[RealArgIdx]; 5922 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5923 5924 if (Flags.isByVal()) { 5925 // Argument is an aggregate which is passed by value, thus we need to 5926 // create a copy of it in the local variable space of the current stack 5927 // frame (which is the stack frame of the caller) and pass the address of 5928 // this copy to the callee. 5929 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5930 CCValAssign &ByValVA = ByValArgLocs[j++]; 5931 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5932 5933 // Memory reserved in the local variable space of the callers stack frame. 5934 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5935 5936 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5937 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5938 StackPtr, PtrOff); 5939 5940 // Create a copy of the argument in the local area of the current 5941 // stack frame. 5942 SDValue MemcpyCall = 5943 CreateCopyOfByValArgument(Arg, PtrOff, 5944 CallSeqStart.getNode()->getOperand(0), 5945 Flags, DAG, dl); 5946 5947 // This must go outside the CALLSEQ_START..END. 5948 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5949 SDLoc(MemcpyCall)); 5950 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5951 NewCallSeqStart.getNode()); 5952 Chain = CallSeqStart = NewCallSeqStart; 5953 5954 // Pass the address of the aggregate copy on the stack either in a 5955 // physical register or in the parameter list area of the current stack 5956 // frame to the callee. 5957 Arg = PtrOff; 5958 } 5959 5960 // When useCRBits() is true, there can be i1 arguments. 5961 // It is because getRegisterType(MVT::i1) => MVT::i1, 5962 // and for other integer types getRegisterType() => MVT::i32. 5963 // Extend i1 and ensure callee will get i32. 5964 if (Arg.getValueType() == MVT::i1) 5965 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5966 dl, MVT::i32, Arg); 5967 5968 if (VA.isRegLoc()) { 5969 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5970 // Put argument in a physical register. 5971 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5972 bool IsLE = Subtarget.isLittleEndian(); 5973 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5974 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5975 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5976 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5977 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5978 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5979 SVal.getValue(0))); 5980 } else 5981 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5982 } else { 5983 // Put argument in the parameter list area of the current stack frame. 5984 assert(VA.isMemLoc()); 5985 unsigned LocMemOffset = VA.getLocMemOffset(); 5986 5987 if (!IsTailCall) { 5988 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5989 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5990 StackPtr, PtrOff); 5991 5992 MemOpChains.push_back( 5993 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5994 } else { 5995 // Calculate and remember argument location. 5996 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5997 TailCallArguments); 5998 } 5999 } 6000 } 6001 6002 if (!MemOpChains.empty()) 6003 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6004 6005 // Build a sequence of copy-to-reg nodes chained together with token chain 6006 // and flag operands which copy the outgoing args into the appropriate regs. 6007 SDValue InGlue; 6008 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6009 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6010 RegsToPass[i].second, InGlue); 6011 InGlue = Chain.getValue(1); 6012 } 6013 6014 // Set CR bit 6 to true if this is a vararg call with floating args passed in 6015 // registers. 6016 if (IsVarArg) { 6017 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 6018 SDValue Ops[] = { Chain, InGlue }; 6019 6020 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl, 6021 VTs, ArrayRef(Ops, InGlue.getNode() ? 2 : 1)); 6022 6023 InGlue = Chain.getValue(1); 6024 } 6025 6026 if (IsTailCall) 6027 PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6028 TailCallArguments); 6029 6030 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, 6031 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6032 } 6033 6034 // Copy an argument into memory, being careful to do this outside the 6035 // call sequence for the call to which the argument belongs. 6036 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 6037 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 6038 SelectionDAG &DAG, const SDLoc &dl) const { 6039 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 6040 CallSeqStart.getNode()->getOperand(0), 6041 Flags, DAG, dl); 6042 // The MEMCPY must go outside the CALLSEQ_START..END. 6043 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6044 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6045 SDLoc(MemcpyCall)); 6046 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6047 NewCallSeqStart.getNode()); 6048 return NewCallSeqStart; 6049 } 6050 6051 SDValue PPCTargetLowering::LowerCall_64SVR4( 6052 SDValue Chain, SDValue Callee, CallFlags CFlags, 6053 const SmallVectorImpl<ISD::OutputArg> &Outs, 6054 const SmallVectorImpl<SDValue> &OutVals, 6055 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6056 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6057 const CallBase *CB) const { 6058 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6059 bool isLittleEndian = Subtarget.isLittleEndian(); 6060 unsigned NumOps = Outs.size(); 6061 bool IsSibCall = false; 6062 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6063 6064 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6065 unsigned PtrByteSize = 8; 6066 6067 MachineFunction &MF = DAG.getMachineFunction(); 6068 6069 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6070 IsSibCall = true; 6071 6072 // Mark this function as potentially containing a function that contains a 6073 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6074 // and restoring the callers stack pointer in this functions epilog. This is 6075 // done because by tail calling the called function might overwrite the value 6076 // in this function's (MF) stack pointer stack slot 0(SP). 6077 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6078 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6079 6080 assert(!(IsFastCall && CFlags.IsVarArg) && 6081 "fastcc not supported on varargs functions"); 6082 6083 // Count how many bytes are to be pushed on the stack, including the linkage 6084 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6085 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6086 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6087 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6088 unsigned NumBytes = LinkageSize; 6089 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6090 6091 static const MCPhysReg GPR[] = { 6092 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6093 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6094 }; 6095 static const MCPhysReg VR[] = { 6096 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6097 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6098 }; 6099 6100 const unsigned NumGPRs = std::size(GPR); 6101 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6102 const unsigned NumVRs = std::size(VR); 6103 6104 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6105 // can be passed to the callee in registers. 6106 // For the fast calling convention, there is another check below. 6107 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6108 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6109 if (!HasParameterArea) { 6110 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6111 unsigned AvailableFPRs = NumFPRs; 6112 unsigned AvailableVRs = NumVRs; 6113 unsigned NumBytesTmp = NumBytes; 6114 for (unsigned i = 0; i != NumOps; ++i) { 6115 if (Outs[i].Flags.isNest()) continue; 6116 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6117 PtrByteSize, LinkageSize, ParamAreaSize, 6118 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6119 HasParameterArea = true; 6120 } 6121 } 6122 6123 // When using the fast calling convention, we don't provide backing for 6124 // arguments that will be in registers. 6125 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6126 6127 // Avoid allocating parameter area for fastcc functions if all the arguments 6128 // can be passed in the registers. 6129 if (IsFastCall) 6130 HasParameterArea = false; 6131 6132 // Add up all the space actually used. 6133 for (unsigned i = 0; i != NumOps; ++i) { 6134 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6135 EVT ArgVT = Outs[i].VT; 6136 EVT OrigVT = Outs[i].ArgVT; 6137 6138 if (Flags.isNest()) 6139 continue; 6140 6141 if (IsFastCall) { 6142 if (Flags.isByVal()) { 6143 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6144 if (NumGPRsUsed > NumGPRs) 6145 HasParameterArea = true; 6146 } else { 6147 switch (ArgVT.getSimpleVT().SimpleTy) { 6148 default: llvm_unreachable("Unexpected ValueType for argument!"); 6149 case MVT::i1: 6150 case MVT::i32: 6151 case MVT::i64: 6152 if (++NumGPRsUsed <= NumGPRs) 6153 continue; 6154 break; 6155 case MVT::v4i32: 6156 case MVT::v8i16: 6157 case MVT::v16i8: 6158 case MVT::v2f64: 6159 case MVT::v2i64: 6160 case MVT::v1i128: 6161 case MVT::f128: 6162 if (++NumVRsUsed <= NumVRs) 6163 continue; 6164 break; 6165 case MVT::v4f32: 6166 if (++NumVRsUsed <= NumVRs) 6167 continue; 6168 break; 6169 case MVT::f32: 6170 case MVT::f64: 6171 if (++NumFPRsUsed <= NumFPRs) 6172 continue; 6173 break; 6174 } 6175 HasParameterArea = true; 6176 } 6177 } 6178 6179 /* Respect alignment of argument on the stack. */ 6180 auto Alignement = 6181 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6182 NumBytes = alignTo(NumBytes, Alignement); 6183 6184 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6185 if (Flags.isInConsecutiveRegsLast()) 6186 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6187 } 6188 6189 unsigned NumBytesActuallyUsed = NumBytes; 6190 6191 // In the old ELFv1 ABI, 6192 // the prolog code of the callee may store up to 8 GPR argument registers to 6193 // the stack, allowing va_start to index over them in memory if its varargs. 6194 // Because we cannot tell if this is needed on the caller side, we have to 6195 // conservatively assume that it is needed. As such, make sure we have at 6196 // least enough stack space for the caller to store the 8 GPRs. 6197 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6198 // really requires memory operands, e.g. a vararg function. 6199 if (HasParameterArea) 6200 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6201 else 6202 NumBytes = LinkageSize; 6203 6204 // Tail call needs the stack to be aligned. 6205 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6206 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6207 6208 int SPDiff = 0; 6209 6210 // Calculate by how many bytes the stack has to be adjusted in case of tail 6211 // call optimization. 6212 if (!IsSibCall) 6213 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6214 6215 // To protect arguments on the stack from being clobbered in a tail call, 6216 // force all the loads to happen before doing any other lowering. 6217 if (CFlags.IsTailCall) 6218 Chain = DAG.getStackArgumentTokenFactor(Chain); 6219 6220 // Adjust the stack pointer for the new arguments... 6221 // These operations are automatically eliminated by the prolog/epilog pass 6222 if (!IsSibCall) 6223 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6224 SDValue CallSeqStart = Chain; 6225 6226 // Load the return address and frame pointer so it can be move somewhere else 6227 // later. 6228 SDValue LROp, FPOp; 6229 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6230 6231 // Set up a copy of the stack pointer for use loading and storing any 6232 // arguments that may not fit in the registers available for argument 6233 // passing. 6234 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6235 6236 // Figure out which arguments are going to go in registers, and which in 6237 // memory. Also, if this is a vararg function, floating point operations 6238 // must be stored to our stack, and loaded into integer regs as well, if 6239 // any integer regs are available for argument passing. 6240 unsigned ArgOffset = LinkageSize; 6241 6242 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6243 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6244 6245 SmallVector<SDValue, 8> MemOpChains; 6246 for (unsigned i = 0; i != NumOps; ++i) { 6247 SDValue Arg = OutVals[i]; 6248 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6249 EVT ArgVT = Outs[i].VT; 6250 EVT OrigVT = Outs[i].ArgVT; 6251 6252 // PtrOff will be used to store the current argument to the stack if a 6253 // register cannot be found for it. 6254 SDValue PtrOff; 6255 6256 // We re-align the argument offset for each argument, except when using the 6257 // fast calling convention, when we need to make sure we do that only when 6258 // we'll actually use a stack slot. 6259 auto ComputePtrOff = [&]() { 6260 /* Respect alignment of argument on the stack. */ 6261 auto Alignment = 6262 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6263 ArgOffset = alignTo(ArgOffset, Alignment); 6264 6265 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6266 6267 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6268 }; 6269 6270 if (!IsFastCall) { 6271 ComputePtrOff(); 6272 6273 /* Compute GPR index associated with argument offset. */ 6274 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6275 GPR_idx = std::min(GPR_idx, NumGPRs); 6276 } 6277 6278 // Promote integers to 64-bit values. 6279 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6280 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6281 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6282 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6283 } 6284 6285 // FIXME memcpy is used way more than necessary. Correctness first. 6286 // Note: "by value" is code for passing a structure by value, not 6287 // basic types. 6288 if (Flags.isByVal()) { 6289 // Note: Size includes alignment padding, so 6290 // struct x { short a; char b; } 6291 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6292 // These are the proper values we need for right-justifying the 6293 // aggregate in a parameter register. 6294 unsigned Size = Flags.getByValSize(); 6295 6296 // An empty aggregate parameter takes up no storage and no 6297 // registers. 6298 if (Size == 0) 6299 continue; 6300 6301 if (IsFastCall) 6302 ComputePtrOff(); 6303 6304 // All aggregates smaller than 8 bytes must be passed right-justified. 6305 if (Size==1 || Size==2 || Size==4) { 6306 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6307 if (GPR_idx != NumGPRs) { 6308 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6309 MachinePointerInfo(), VT); 6310 MemOpChains.push_back(Load.getValue(1)); 6311 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6312 6313 ArgOffset += PtrByteSize; 6314 continue; 6315 } 6316 } 6317 6318 if (GPR_idx == NumGPRs && Size < 8) { 6319 SDValue AddPtr = PtrOff; 6320 if (!isLittleEndian) { 6321 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6322 PtrOff.getValueType()); 6323 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6324 } 6325 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6326 CallSeqStart, 6327 Flags, DAG, dl); 6328 ArgOffset += PtrByteSize; 6329 continue; 6330 } 6331 // Copy the object to parameter save area if it can not be entirely passed 6332 // by registers. 6333 // FIXME: we only need to copy the parts which need to be passed in 6334 // parameter save area. For the parts passed by registers, we don't need 6335 // to copy them to the stack although we need to allocate space for them 6336 // in parameter save area. 6337 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6338 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6339 CallSeqStart, 6340 Flags, DAG, dl); 6341 6342 // When a register is available, pass a small aggregate right-justified. 6343 if (Size < 8 && GPR_idx != NumGPRs) { 6344 // The easiest way to get this right-justified in a register 6345 // is to copy the structure into the rightmost portion of a 6346 // local variable slot, then load the whole slot into the 6347 // register. 6348 // FIXME: The memcpy seems to produce pretty awful code for 6349 // small aggregates, particularly for packed ones. 6350 // FIXME: It would be preferable to use the slot in the 6351 // parameter save area instead of a new local variable. 6352 SDValue AddPtr = PtrOff; 6353 if (!isLittleEndian) { 6354 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6355 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6356 } 6357 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6358 CallSeqStart, 6359 Flags, DAG, dl); 6360 6361 // Load the slot into the register. 6362 SDValue Load = 6363 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6364 MemOpChains.push_back(Load.getValue(1)); 6365 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6366 6367 // Done with this argument. 6368 ArgOffset += PtrByteSize; 6369 continue; 6370 } 6371 6372 // For aggregates larger than PtrByteSize, copy the pieces of the 6373 // object that fit into registers from the parameter save area. 6374 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6375 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6376 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6377 if (GPR_idx != NumGPRs) { 6378 unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8; 6379 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits); 6380 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg, 6381 MachinePointerInfo(), ObjType); 6382 6383 MemOpChains.push_back(Load.getValue(1)); 6384 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6385 ArgOffset += PtrByteSize; 6386 } else { 6387 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6388 break; 6389 } 6390 } 6391 continue; 6392 } 6393 6394 switch (Arg.getSimpleValueType().SimpleTy) { 6395 default: llvm_unreachable("Unexpected ValueType for argument!"); 6396 case MVT::i1: 6397 case MVT::i32: 6398 case MVT::i64: 6399 if (Flags.isNest()) { 6400 // The 'nest' parameter, if any, is passed in R11. 6401 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6402 break; 6403 } 6404 6405 // These can be scalar arguments or elements of an integer array type 6406 // passed directly. Clang may use those instead of "byval" aggregate 6407 // types to avoid forcing arguments to memory unnecessarily. 6408 if (GPR_idx != NumGPRs) { 6409 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6410 } else { 6411 if (IsFastCall) 6412 ComputePtrOff(); 6413 6414 assert(HasParameterArea && 6415 "Parameter area must exist to pass an argument in memory."); 6416 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6417 true, CFlags.IsTailCall, false, MemOpChains, 6418 TailCallArguments, dl); 6419 if (IsFastCall) 6420 ArgOffset += PtrByteSize; 6421 } 6422 if (!IsFastCall) 6423 ArgOffset += PtrByteSize; 6424 break; 6425 case MVT::f32: 6426 case MVT::f64: { 6427 // These can be scalar arguments or elements of a float array type 6428 // passed directly. The latter are used to implement ELFv2 homogenous 6429 // float aggregates. 6430 6431 // Named arguments go into FPRs first, and once they overflow, the 6432 // remaining arguments go into GPRs and then the parameter save area. 6433 // Unnamed arguments for vararg functions always go to GPRs and 6434 // then the parameter save area. For now, put all arguments to vararg 6435 // routines always in both locations (FPR *and* GPR or stack slot). 6436 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6437 bool NeededLoad = false; 6438 6439 // First load the argument into the next available FPR. 6440 if (FPR_idx != NumFPRs) 6441 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6442 6443 // Next, load the argument into GPR or stack slot if needed. 6444 if (!NeedGPROrStack) 6445 ; 6446 else if (GPR_idx != NumGPRs && !IsFastCall) { 6447 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6448 // once we support fp <-> gpr moves. 6449 6450 // In the non-vararg case, this can only ever happen in the 6451 // presence of f32 array types, since otherwise we never run 6452 // out of FPRs before running out of GPRs. 6453 SDValue ArgVal; 6454 6455 // Double values are always passed in a single GPR. 6456 if (Arg.getValueType() != MVT::f32) { 6457 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6458 6459 // Non-array float values are extended and passed in a GPR. 6460 } else if (!Flags.isInConsecutiveRegs()) { 6461 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6462 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6463 6464 // If we have an array of floats, we collect every odd element 6465 // together with its predecessor into one GPR. 6466 } else if (ArgOffset % PtrByteSize != 0) { 6467 SDValue Lo, Hi; 6468 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6469 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6470 if (!isLittleEndian) 6471 std::swap(Lo, Hi); 6472 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6473 6474 // The final element, if even, goes into the first half of a GPR. 6475 } else if (Flags.isInConsecutiveRegsLast()) { 6476 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6477 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6478 if (!isLittleEndian) 6479 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6480 DAG.getConstant(32, dl, MVT::i32)); 6481 6482 // Non-final even elements are skipped; they will be handled 6483 // together the with subsequent argument on the next go-around. 6484 } else 6485 ArgVal = SDValue(); 6486 6487 if (ArgVal.getNode()) 6488 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6489 } else { 6490 if (IsFastCall) 6491 ComputePtrOff(); 6492 6493 // Single-precision floating-point values are mapped to the 6494 // second (rightmost) word of the stack doubleword. 6495 if (Arg.getValueType() == MVT::f32 && 6496 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6497 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6498 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6499 } 6500 6501 assert(HasParameterArea && 6502 "Parameter area must exist to pass an argument in memory."); 6503 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6504 true, CFlags.IsTailCall, false, MemOpChains, 6505 TailCallArguments, dl); 6506 6507 NeededLoad = true; 6508 } 6509 // When passing an array of floats, the array occupies consecutive 6510 // space in the argument area; only round up to the next doubleword 6511 // at the end of the array. Otherwise, each float takes 8 bytes. 6512 if (!IsFastCall || NeededLoad) { 6513 ArgOffset += (Arg.getValueType() == MVT::f32 && 6514 Flags.isInConsecutiveRegs()) ? 4 : 8; 6515 if (Flags.isInConsecutiveRegsLast()) 6516 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6517 } 6518 break; 6519 } 6520 case MVT::v4f32: 6521 case MVT::v4i32: 6522 case MVT::v8i16: 6523 case MVT::v16i8: 6524 case MVT::v2f64: 6525 case MVT::v2i64: 6526 case MVT::v1i128: 6527 case MVT::f128: 6528 // These can be scalar arguments or elements of a vector array type 6529 // passed directly. The latter are used to implement ELFv2 homogenous 6530 // vector aggregates. 6531 6532 // For a varargs call, named arguments go into VRs or on the stack as 6533 // usual; unnamed arguments always go to the stack or the corresponding 6534 // GPRs when within range. For now, we always put the value in both 6535 // locations (or even all three). 6536 if (CFlags.IsVarArg) { 6537 assert(HasParameterArea && 6538 "Parameter area must exist if we have a varargs call."); 6539 // We could elide this store in the case where the object fits 6540 // entirely in R registers. Maybe later. 6541 SDValue Store = 6542 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6543 MemOpChains.push_back(Store); 6544 if (VR_idx != NumVRs) { 6545 SDValue Load = 6546 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6547 MemOpChains.push_back(Load.getValue(1)); 6548 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6549 } 6550 ArgOffset += 16; 6551 for (unsigned i=0; i<16; i+=PtrByteSize) { 6552 if (GPR_idx == NumGPRs) 6553 break; 6554 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6555 DAG.getConstant(i, dl, PtrVT)); 6556 SDValue Load = 6557 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6558 MemOpChains.push_back(Load.getValue(1)); 6559 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6560 } 6561 break; 6562 } 6563 6564 // Non-varargs Altivec params go into VRs or on the stack. 6565 if (VR_idx != NumVRs) { 6566 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6567 } else { 6568 if (IsFastCall) 6569 ComputePtrOff(); 6570 6571 assert(HasParameterArea && 6572 "Parameter area must exist to pass an argument in memory."); 6573 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6574 true, CFlags.IsTailCall, true, MemOpChains, 6575 TailCallArguments, dl); 6576 if (IsFastCall) 6577 ArgOffset += 16; 6578 } 6579 6580 if (!IsFastCall) 6581 ArgOffset += 16; 6582 break; 6583 } 6584 } 6585 6586 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6587 "mismatch in size of parameter area"); 6588 (void)NumBytesActuallyUsed; 6589 6590 if (!MemOpChains.empty()) 6591 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6592 6593 // Check if this is an indirect call (MTCTR/BCTRL). 6594 // See prepareDescriptorIndirectCall and buildCallOperands for more 6595 // information about calls through function pointers in the 64-bit SVR4 ABI. 6596 if (CFlags.IsIndirect) { 6597 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6598 // caller in the TOC save area. 6599 if (isTOCSaveRestoreRequired(Subtarget)) { 6600 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6601 // Load r2 into a virtual register and store it to the TOC save area. 6602 setUsesTOCBasePtr(DAG); 6603 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6604 // TOC save area offset. 6605 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6606 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6607 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6608 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6609 MachinePointerInfo::getStack( 6610 DAG.getMachineFunction(), TOCSaveOffset)); 6611 } 6612 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6613 // This does not mean the MTCTR instruction must use R12; it's easier 6614 // to model this as an extra parameter, so do that. 6615 if (isELFv2ABI && !CFlags.IsPatchPoint) 6616 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6617 } 6618 6619 // Build a sequence of copy-to-reg nodes chained together with token chain 6620 // and flag operands which copy the outgoing args into the appropriate regs. 6621 SDValue InGlue; 6622 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6623 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6624 RegsToPass[i].second, InGlue); 6625 InGlue = Chain.getValue(1); 6626 } 6627 6628 if (CFlags.IsTailCall && !IsSibCall) 6629 PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6630 TailCallArguments); 6631 6632 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, 6633 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6634 } 6635 6636 // Returns true when the shadow of a general purpose argument register 6637 // in the parameter save area is aligned to at least 'RequiredAlign'. 6638 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6639 assert(RequiredAlign.value() <= 16 && 6640 "Required alignment greater than stack alignment."); 6641 switch (Reg) { 6642 default: 6643 report_fatal_error("called on invalid register."); 6644 case PPC::R5: 6645 case PPC::R9: 6646 case PPC::X3: 6647 case PPC::X5: 6648 case PPC::X7: 6649 case PPC::X9: 6650 // These registers are 16 byte aligned which is the most strict aligment 6651 // we can support. 6652 return true; 6653 case PPC::R3: 6654 case PPC::R7: 6655 case PPC::X4: 6656 case PPC::X6: 6657 case PPC::X8: 6658 case PPC::X10: 6659 // The shadow of these registers in the PSA is 8 byte aligned. 6660 return RequiredAlign <= 8; 6661 case PPC::R4: 6662 case PPC::R6: 6663 case PPC::R8: 6664 case PPC::R10: 6665 return RequiredAlign <= 4; 6666 } 6667 } 6668 6669 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6670 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6671 CCState &S) { 6672 AIXCCState &State = static_cast<AIXCCState &>(S); 6673 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6674 State.getMachineFunction().getSubtarget()); 6675 const bool IsPPC64 = Subtarget.isPPC64(); 6676 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6677 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6678 6679 if (ValVT == MVT::f128) 6680 report_fatal_error("f128 is unimplemented on AIX."); 6681 6682 if (ArgFlags.isNest()) 6683 report_fatal_error("Nest arguments are unimplemented."); 6684 6685 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6686 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6687 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6688 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6689 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6690 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6691 6692 static const MCPhysReg VR[] = {// Vector registers. 6693 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6694 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6695 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6696 6697 if (ArgFlags.isByVal()) { 6698 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6699 report_fatal_error("Pass-by-value arguments with alignment greater than " 6700 "register width are not supported."); 6701 6702 const unsigned ByValSize = ArgFlags.getByValSize(); 6703 6704 // An empty aggregate parameter takes up no storage and no registers, 6705 // but needs a MemLoc for a stack slot for the formal arguments side. 6706 if (ByValSize == 0) { 6707 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6708 State.getStackSize(), RegVT, LocInfo)); 6709 return false; 6710 } 6711 6712 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6713 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6714 for (const unsigned E = Offset + StackSize; Offset < E; 6715 Offset += PtrAlign.value()) { 6716 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6717 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6718 else { 6719 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6720 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6721 LocInfo)); 6722 break; 6723 } 6724 } 6725 return false; 6726 } 6727 6728 // Arguments always reserve parameter save area. 6729 switch (ValVT.SimpleTy) { 6730 default: 6731 report_fatal_error("Unhandled value type for argument."); 6732 case MVT::i64: 6733 // i64 arguments should have been split to i32 for PPC32. 6734 assert(IsPPC64 && "PPC32 should have split i64 values."); 6735 [[fallthrough]]; 6736 case MVT::i1: 6737 case MVT::i32: { 6738 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6739 // AIX integer arguments are always passed in register width. 6740 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6741 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6742 : CCValAssign::LocInfo::ZExt; 6743 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6744 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6745 else 6746 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6747 6748 return false; 6749 } 6750 case MVT::f32: 6751 case MVT::f64: { 6752 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6753 const unsigned StoreSize = LocVT.getStoreSize(); 6754 // Floats are always 4-byte aligned in the PSA on AIX. 6755 // This includes f64 in 64-bit mode for ABI compatibility. 6756 const unsigned Offset = 6757 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6758 unsigned FReg = State.AllocateReg(FPR); 6759 if (FReg) 6760 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6761 6762 // Reserve and initialize GPRs or initialize the PSA as required. 6763 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6764 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6765 assert(FReg && "An FPR should be available when a GPR is reserved."); 6766 if (State.isVarArg()) { 6767 // Successfully reserved GPRs are only initialized for vararg calls. 6768 // Custom handling is required for: 6769 // f64 in PPC32 needs to be split into 2 GPRs. 6770 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6771 State.addLoc( 6772 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6773 } 6774 } else { 6775 // If there are insufficient GPRs, the PSA needs to be initialized. 6776 // Initialization occurs even if an FPR was initialized for 6777 // compatibility with the AIX XL compiler. The full memory for the 6778 // argument will be initialized even if a prior word is saved in GPR. 6779 // A custom memLoc is used when the argument also passes in FPR so 6780 // that the callee handling can skip over it easily. 6781 State.addLoc( 6782 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6783 LocInfo) 6784 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6785 break; 6786 } 6787 } 6788 6789 return false; 6790 } 6791 case MVT::v4f32: 6792 case MVT::v4i32: 6793 case MVT::v8i16: 6794 case MVT::v16i8: 6795 case MVT::v2i64: 6796 case MVT::v2f64: 6797 case MVT::v1i128: { 6798 const unsigned VecSize = 16; 6799 const Align VecAlign(VecSize); 6800 6801 if (!State.isVarArg()) { 6802 // If there are vector registers remaining we don't consume any stack 6803 // space. 6804 if (unsigned VReg = State.AllocateReg(VR)) { 6805 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6806 return false; 6807 } 6808 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6809 // might be allocated in the portion of the PSA that is shadowed by the 6810 // GPRs. 6811 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6812 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6813 return false; 6814 } 6815 6816 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6817 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6818 6819 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6820 // Burn any underaligned registers and their shadowed stack space until 6821 // we reach the required alignment. 6822 while (NextRegIndex != GPRs.size() && 6823 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6824 // Shadow allocate register and its stack shadow. 6825 unsigned Reg = State.AllocateReg(GPRs); 6826 State.AllocateStack(PtrSize, PtrAlign); 6827 assert(Reg && "Allocating register unexpectedly failed."); 6828 (void)Reg; 6829 NextRegIndex = State.getFirstUnallocated(GPRs); 6830 } 6831 6832 // Vectors that are passed as fixed arguments are handled differently. 6833 // They are passed in VRs if any are available (unlike arguments passed 6834 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6835 // functions) 6836 if (State.isFixed(ValNo)) { 6837 if (unsigned VReg = State.AllocateReg(VR)) { 6838 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6839 // Shadow allocate GPRs and stack space even though we pass in a VR. 6840 for (unsigned I = 0; I != VecSize; I += PtrSize) 6841 State.AllocateReg(GPRs); 6842 State.AllocateStack(VecSize, VecAlign); 6843 return false; 6844 } 6845 // No vector registers remain so pass on the stack. 6846 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6847 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6848 return false; 6849 } 6850 6851 // If all GPRS are consumed then we pass the argument fully on the stack. 6852 if (NextRegIndex == GPRs.size()) { 6853 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6854 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6855 return false; 6856 } 6857 6858 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6859 // half of the argument, and then need to pass the remaining half on the 6860 // stack. 6861 if (GPRs[NextRegIndex] == PPC::R9) { 6862 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6863 State.addLoc( 6864 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6865 6866 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6867 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6868 assert(FirstReg && SecondReg && 6869 "Allocating R9 or R10 unexpectedly failed."); 6870 State.addLoc( 6871 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6872 State.addLoc( 6873 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6874 return false; 6875 } 6876 6877 // We have enough GPRs to fully pass the vector argument, and we have 6878 // already consumed any underaligned registers. Start with the custom 6879 // MemLoc and then the custom RegLocs. 6880 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6881 State.addLoc( 6882 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6883 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6884 const unsigned Reg = State.AllocateReg(GPRs); 6885 assert(Reg && "Failed to allocated register for vararg vector argument"); 6886 State.addLoc( 6887 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6888 } 6889 return false; 6890 } 6891 } 6892 return true; 6893 } 6894 6895 // So far, this function is only used by LowerFormalArguments_AIX() 6896 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6897 bool IsPPC64, 6898 bool HasP8Vector, 6899 bool HasVSX) { 6900 assert((IsPPC64 || SVT != MVT::i64) && 6901 "i64 should have been split for 32-bit codegen."); 6902 6903 switch (SVT) { 6904 default: 6905 report_fatal_error("Unexpected value type for formal argument"); 6906 case MVT::i1: 6907 case MVT::i32: 6908 case MVT::i64: 6909 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6910 case MVT::f32: 6911 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6912 case MVT::f64: 6913 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6914 case MVT::v4f32: 6915 case MVT::v4i32: 6916 case MVT::v8i16: 6917 case MVT::v16i8: 6918 case MVT::v2i64: 6919 case MVT::v2f64: 6920 case MVT::v1i128: 6921 return &PPC::VRRCRegClass; 6922 } 6923 } 6924 6925 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6926 SelectionDAG &DAG, SDValue ArgValue, 6927 MVT LocVT, const SDLoc &dl) { 6928 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6929 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6930 6931 if (Flags.isSExt()) 6932 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6933 DAG.getValueType(ValVT)); 6934 else if (Flags.isZExt()) 6935 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6936 DAG.getValueType(ValVT)); 6937 6938 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6939 } 6940 6941 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6942 const unsigned LASize = FL->getLinkageSize(); 6943 6944 if (PPC::GPRCRegClass.contains(Reg)) { 6945 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6946 "Reg must be a valid argument register!"); 6947 return LASize + 4 * (Reg - PPC::R3); 6948 } 6949 6950 if (PPC::G8RCRegClass.contains(Reg)) { 6951 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6952 "Reg must be a valid argument register!"); 6953 return LASize + 8 * (Reg - PPC::X3); 6954 } 6955 6956 llvm_unreachable("Only general purpose registers expected."); 6957 } 6958 6959 // AIX ABI Stack Frame Layout: 6960 // 6961 // Low Memory +--------------------------------------------+ 6962 // SP +---> | Back chain | ---+ 6963 // | +--------------------------------------------+ | 6964 // | | Saved Condition Register | | 6965 // | +--------------------------------------------+ | 6966 // | | Saved Linkage Register | | 6967 // | +--------------------------------------------+ | Linkage Area 6968 // | | Reserved for compilers | | 6969 // | +--------------------------------------------+ | 6970 // | | Reserved for binders | | 6971 // | +--------------------------------------------+ | 6972 // | | Saved TOC pointer | ---+ 6973 // | +--------------------------------------------+ 6974 // | | Parameter save area | 6975 // | +--------------------------------------------+ 6976 // | | Alloca space | 6977 // | +--------------------------------------------+ 6978 // | | Local variable space | 6979 // | +--------------------------------------------+ 6980 // | | Float/int conversion temporary | 6981 // | +--------------------------------------------+ 6982 // | | Save area for AltiVec registers | 6983 // | +--------------------------------------------+ 6984 // | | AltiVec alignment padding | 6985 // | +--------------------------------------------+ 6986 // | | Save area for VRSAVE register | 6987 // | +--------------------------------------------+ 6988 // | | Save area for General Purpose registers | 6989 // | +--------------------------------------------+ 6990 // | | Save area for Floating Point registers | 6991 // | +--------------------------------------------+ 6992 // +---- | Back chain | 6993 // High Memory +--------------------------------------------+ 6994 // 6995 // Specifications: 6996 // AIX 7.2 Assembler Language Reference 6997 // Subroutine linkage convention 6998 6999 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7000 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7001 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7002 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7003 7004 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7005 CallConv == CallingConv::Fast) && 7006 "Unexpected calling convention!"); 7007 7008 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7009 report_fatal_error("Tail call support is unimplemented on AIX."); 7010 7011 if (useSoftFloat()) 7012 report_fatal_error("Soft float support is unimplemented on AIX."); 7013 7014 const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); 7015 7016 const bool IsPPC64 = Subtarget.isPPC64(); 7017 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7018 7019 // Assign locations to all of the incoming arguments. 7020 SmallVector<CCValAssign, 16> ArgLocs; 7021 MachineFunction &MF = DAG.getMachineFunction(); 7022 MachineFrameInfo &MFI = MF.getFrameInfo(); 7023 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7024 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7025 7026 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7027 // Reserve space for the linkage area on the stack. 7028 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7029 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7030 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7031 7032 SmallVector<SDValue, 8> MemOps; 7033 7034 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7035 CCValAssign &VA = ArgLocs[I++]; 7036 MVT LocVT = VA.getLocVT(); 7037 MVT ValVT = VA.getValVT(); 7038 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7039 // For compatibility with the AIX XL compiler, the float args in the 7040 // parameter save area are initialized even if the argument is available 7041 // in register. The caller is required to initialize both the register 7042 // and memory, however, the callee can choose to expect it in either. 7043 // The memloc is dismissed here because the argument is retrieved from 7044 // the register. 7045 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 7046 continue; 7047 7048 auto HandleMemLoc = [&]() { 7049 const unsigned LocSize = LocVT.getStoreSize(); 7050 const unsigned ValSize = ValVT.getStoreSize(); 7051 assert((ValSize <= LocSize) && 7052 "Object size is larger than size of MemLoc"); 7053 int CurArgOffset = VA.getLocMemOffset(); 7054 // Objects are right-justified because AIX is big-endian. 7055 if (LocSize > ValSize) 7056 CurArgOffset += LocSize - ValSize; 7057 // Potential tail calls could cause overwriting of argument stack slots. 7058 const bool IsImmutable = 7059 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7060 (CallConv == CallingConv::Fast)); 7061 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7062 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7063 SDValue ArgValue = 7064 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7065 InVals.push_back(ArgValue); 7066 }; 7067 7068 // Vector arguments to VaArg functions are passed both on the stack, and 7069 // in any available GPRs. Load the value from the stack and add the GPRs 7070 // as live ins. 7071 if (VA.isMemLoc() && VA.needsCustom()) { 7072 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 7073 assert(isVarArg && "Only use custom memloc for vararg."); 7074 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 7075 // matching custom RegLocs. 7076 const unsigned OriginalValNo = VA.getValNo(); 7077 (void)OriginalValNo; 7078 7079 auto HandleCustomVecRegLoc = [&]() { 7080 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7081 "Missing custom RegLoc."); 7082 VA = ArgLocs[I++]; 7083 assert(VA.getValVT().isVector() && 7084 "Unexpected Val type for custom RegLoc."); 7085 assert(VA.getValNo() == OriginalValNo && 7086 "ValNo mismatch between custom MemLoc and RegLoc."); 7087 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 7088 MF.addLiveIn(VA.getLocReg(), 7089 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7090 Subtarget.hasVSX())); 7091 }; 7092 7093 HandleMemLoc(); 7094 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7095 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7096 // R10. 7097 HandleCustomVecRegLoc(); 7098 HandleCustomVecRegLoc(); 7099 7100 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7101 // we passed the vector in R5, R6, R7 and R8. 7102 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7103 assert(!IsPPC64 && 7104 "Only 2 custom RegLocs expected for 64-bit codegen."); 7105 HandleCustomVecRegLoc(); 7106 HandleCustomVecRegLoc(); 7107 } 7108 7109 continue; 7110 } 7111 7112 if (VA.isRegLoc()) { 7113 if (VA.getValVT().isScalarInteger()) 7114 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7115 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7116 switch (VA.getValVT().SimpleTy) { 7117 default: 7118 report_fatal_error("Unhandled value type for argument."); 7119 case MVT::f32: 7120 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7121 break; 7122 case MVT::f64: 7123 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7124 break; 7125 } 7126 } else if (VA.getValVT().isVector()) { 7127 switch (VA.getValVT().SimpleTy) { 7128 default: 7129 report_fatal_error("Unhandled value type for argument."); 7130 case MVT::v16i8: 7131 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7132 break; 7133 case MVT::v8i16: 7134 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7135 break; 7136 case MVT::v4i32: 7137 case MVT::v2i64: 7138 case MVT::v1i128: 7139 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7140 break; 7141 case MVT::v4f32: 7142 case MVT::v2f64: 7143 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7144 break; 7145 } 7146 } 7147 } 7148 7149 if (Flags.isByVal() && VA.isMemLoc()) { 7150 const unsigned Size = 7151 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7152 PtrByteSize); 7153 const int FI = MF.getFrameInfo().CreateFixedObject( 7154 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7155 /* IsAliased */ true); 7156 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7157 InVals.push_back(FIN); 7158 7159 continue; 7160 } 7161 7162 if (Flags.isByVal()) { 7163 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7164 7165 const MCPhysReg ArgReg = VA.getLocReg(); 7166 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7167 7168 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7169 report_fatal_error("Over aligned byvals not supported yet."); 7170 7171 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7172 const int FI = MF.getFrameInfo().CreateFixedObject( 7173 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7174 /* IsAliased */ true); 7175 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7176 InVals.push_back(FIN); 7177 7178 // Add live ins for all the RegLocs for the same ByVal. 7179 const TargetRegisterClass *RegClass = 7180 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7181 7182 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7183 unsigned Offset) { 7184 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7185 // Since the callers side has left justified the aggregate in the 7186 // register, we can simply store the entire register into the stack 7187 // slot. 7188 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7189 // The store to the fixedstack object is needed becuase accessing a 7190 // field of the ByVal will use a gep and load. Ideally we will optimize 7191 // to extracting the value from the register directly, and elide the 7192 // stores when the arguments address is not taken, but that will need to 7193 // be future work. 7194 SDValue Store = DAG.getStore( 7195 CopyFrom.getValue(1), dl, CopyFrom, 7196 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7197 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7198 7199 MemOps.push_back(Store); 7200 }; 7201 7202 unsigned Offset = 0; 7203 HandleRegLoc(VA.getLocReg(), Offset); 7204 Offset += PtrByteSize; 7205 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7206 Offset += PtrByteSize) { 7207 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7208 "RegLocs should be for ByVal argument."); 7209 7210 const CCValAssign RL = ArgLocs[I++]; 7211 HandleRegLoc(RL.getLocReg(), Offset); 7212 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7213 } 7214 7215 if (Offset != StackSize) { 7216 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7217 "Expected MemLoc for remaining bytes."); 7218 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7219 // Consume the MemLoc.The InVal has already been emitted, so nothing 7220 // more needs to be done. 7221 ++I; 7222 } 7223 7224 continue; 7225 } 7226 7227 if (VA.isRegLoc() && !VA.needsCustom()) { 7228 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7229 Register VReg = 7230 MF.addLiveIn(VA.getLocReg(), 7231 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7232 Subtarget.hasVSX())); 7233 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7234 if (ValVT.isScalarInteger() && 7235 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7236 ArgValue = 7237 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7238 } 7239 InVals.push_back(ArgValue); 7240 continue; 7241 } 7242 if (VA.isMemLoc()) { 7243 HandleMemLoc(); 7244 continue; 7245 } 7246 } 7247 7248 // On AIX a minimum of 8 words is saved to the parameter save area. 7249 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7250 // Area that is at least reserved in the caller of this function. 7251 unsigned CallerReservedArea = std::max<unsigned>( 7252 CCInfo.getStackSize(), LinkageSize + MinParameterSaveArea); 7253 7254 // Set the size that is at least reserved in caller of this function. Tail 7255 // call optimized function's reserved stack space needs to be aligned so 7256 // that taking the difference between two stack areas will result in an 7257 // aligned stack. 7258 CallerReservedArea = 7259 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7260 FuncInfo->setMinReservedArea(CallerReservedArea); 7261 7262 if (isVarArg) { 7263 FuncInfo->setVarArgsFrameIndex( 7264 MFI.CreateFixedObject(PtrByteSize, CCInfo.getStackSize(), true)); 7265 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7266 7267 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7268 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7269 7270 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7271 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7272 const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32); 7273 7274 // The fixed integer arguments of a variadic function are stored to the 7275 // VarArgsFrameIndex on the stack so that they may be loaded by 7276 // dereferencing the result of va_next. 7277 for (unsigned GPRIndex = 7278 (CCInfo.getStackSize() - LinkageSize) / PtrByteSize; 7279 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7280 7281 const Register VReg = 7282 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7283 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7284 7285 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7286 SDValue Store = 7287 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7288 MemOps.push_back(Store); 7289 // Increment the address for the next argument to store. 7290 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7291 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7292 } 7293 } 7294 7295 if (!MemOps.empty()) 7296 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7297 7298 return Chain; 7299 } 7300 7301 SDValue PPCTargetLowering::LowerCall_AIX( 7302 SDValue Chain, SDValue Callee, CallFlags CFlags, 7303 const SmallVectorImpl<ISD::OutputArg> &Outs, 7304 const SmallVectorImpl<SDValue> &OutVals, 7305 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7306 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7307 const CallBase *CB) const { 7308 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7309 // AIX ABI stack frame layout. 7310 7311 assert((CFlags.CallConv == CallingConv::C || 7312 CFlags.CallConv == CallingConv::Cold || 7313 CFlags.CallConv == CallingConv::Fast) && 7314 "Unexpected calling convention!"); 7315 7316 if (CFlags.IsPatchPoint) 7317 report_fatal_error("This call type is unimplemented on AIX."); 7318 7319 const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); 7320 7321 MachineFunction &MF = DAG.getMachineFunction(); 7322 SmallVector<CCValAssign, 16> ArgLocs; 7323 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7324 *DAG.getContext()); 7325 7326 // Reserve space for the linkage save area (LSA) on the stack. 7327 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7328 // [SP][CR][LR][2 x reserved][TOC]. 7329 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7330 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7331 const bool IsPPC64 = Subtarget.isPPC64(); 7332 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7333 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7334 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7335 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7336 7337 // The prolog code of the callee may store up to 8 GPR argument registers to 7338 // the stack, allowing va_start to index over them in memory if the callee 7339 // is variadic. 7340 // Because we cannot tell if this is needed on the caller side, we have to 7341 // conservatively assume that it is needed. As such, make sure we have at 7342 // least enough stack space for the caller to store the 8 GPRs. 7343 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7344 const unsigned NumBytes = std::max<unsigned>( 7345 LinkageSize + MinParameterSaveAreaSize, CCInfo.getStackSize()); 7346 7347 // Adjust the stack pointer for the new arguments... 7348 // These operations are automatically eliminated by the prolog/epilog pass. 7349 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7350 SDValue CallSeqStart = Chain; 7351 7352 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7353 SmallVector<SDValue, 8> MemOpChains; 7354 7355 // Set up a copy of the stack pointer for loading and storing any 7356 // arguments that may not fit in the registers available for argument 7357 // passing. 7358 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7359 : DAG.getRegister(PPC::R1, MVT::i32); 7360 7361 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7362 const unsigned ValNo = ArgLocs[I].getValNo(); 7363 SDValue Arg = OutVals[ValNo]; 7364 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7365 7366 if (Flags.isByVal()) { 7367 const unsigned ByValSize = Flags.getByValSize(); 7368 7369 // Nothing to do for zero-sized ByVals on the caller side. 7370 if (!ByValSize) { 7371 ++I; 7372 continue; 7373 } 7374 7375 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7376 return DAG.getExtLoad( 7377 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7378 (LoadOffset != 0) 7379 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7380 : Arg, 7381 MachinePointerInfo(), VT); 7382 }; 7383 7384 unsigned LoadOffset = 0; 7385 7386 // Initialize registers, which are fully occupied by the by-val argument. 7387 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7388 SDValue Load = GetLoad(PtrVT, LoadOffset); 7389 MemOpChains.push_back(Load.getValue(1)); 7390 LoadOffset += PtrByteSize; 7391 const CCValAssign &ByValVA = ArgLocs[I++]; 7392 assert(ByValVA.getValNo() == ValNo && 7393 "Unexpected location for pass-by-value argument."); 7394 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7395 } 7396 7397 if (LoadOffset == ByValSize) 7398 continue; 7399 7400 // There must be one more loc to handle the remainder. 7401 assert(ArgLocs[I].getValNo() == ValNo && 7402 "Expected additional location for by-value argument."); 7403 7404 if (ArgLocs[I].isMemLoc()) { 7405 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7406 const CCValAssign &ByValVA = ArgLocs[I++]; 7407 ISD::ArgFlagsTy MemcpyFlags = Flags; 7408 // Only memcpy the bytes that don't pass in register. 7409 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7410 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7411 (LoadOffset != 0) 7412 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7413 : Arg, 7414 DAG.getObjectPtrOffset(dl, StackPtr, 7415 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7416 CallSeqStart, MemcpyFlags, DAG, dl); 7417 continue; 7418 } 7419 7420 // Initialize the final register residue. 7421 // Any residue that occupies the final by-val arg register must be 7422 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7423 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7424 // 2 and 1 byte loads. 7425 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7426 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7427 "Unexpected register residue for by-value argument."); 7428 SDValue ResidueVal; 7429 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7430 const unsigned N = llvm::bit_floor(ResidueBytes - Bytes); 7431 const MVT VT = 7432 N == 1 ? MVT::i8 7433 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7434 SDValue Load = GetLoad(VT, LoadOffset); 7435 MemOpChains.push_back(Load.getValue(1)); 7436 LoadOffset += N; 7437 Bytes += N; 7438 7439 // By-val arguments are passed left-justfied in register. 7440 // Every load here needs to be shifted, otherwise a full register load 7441 // should have been used. 7442 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7443 "Unexpected load emitted during handling of pass-by-value " 7444 "argument."); 7445 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7446 EVT ShiftAmountTy = 7447 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7448 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7449 SDValue ShiftedLoad = 7450 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7451 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7452 ShiftedLoad) 7453 : ShiftedLoad; 7454 } 7455 7456 const CCValAssign &ByValVA = ArgLocs[I++]; 7457 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7458 continue; 7459 } 7460 7461 CCValAssign &VA = ArgLocs[I++]; 7462 const MVT LocVT = VA.getLocVT(); 7463 const MVT ValVT = VA.getValVT(); 7464 7465 switch (VA.getLocInfo()) { 7466 default: 7467 report_fatal_error("Unexpected argument extension type."); 7468 case CCValAssign::Full: 7469 break; 7470 case CCValAssign::ZExt: 7471 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7472 break; 7473 case CCValAssign::SExt: 7474 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7475 break; 7476 } 7477 7478 if (VA.isRegLoc() && !VA.needsCustom()) { 7479 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7480 continue; 7481 } 7482 7483 // Vector arguments passed to VarArg functions need custom handling when 7484 // they are passed (at least partially) in GPRs. 7485 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7486 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7487 // Store value to its stack slot. 7488 SDValue PtrOff = 7489 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7490 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7491 SDValue Store = 7492 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7493 MemOpChains.push_back(Store); 7494 const unsigned OriginalValNo = VA.getValNo(); 7495 // Then load the GPRs from the stack 7496 unsigned LoadOffset = 0; 7497 auto HandleCustomVecRegLoc = [&]() { 7498 assert(I != E && "Unexpected end of CCvalAssigns."); 7499 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7500 "Expected custom RegLoc."); 7501 CCValAssign RegVA = ArgLocs[I++]; 7502 assert(RegVA.getValNo() == OriginalValNo && 7503 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7504 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7505 DAG.getConstant(LoadOffset, dl, PtrVT)); 7506 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7507 MemOpChains.push_back(Load.getValue(1)); 7508 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7509 LoadOffset += PtrByteSize; 7510 }; 7511 7512 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7513 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7514 // R10. 7515 HandleCustomVecRegLoc(); 7516 HandleCustomVecRegLoc(); 7517 7518 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7519 ArgLocs[I].getValNo() == OriginalValNo) { 7520 assert(!IsPPC64 && 7521 "Only 2 custom RegLocs expected for 64-bit codegen."); 7522 HandleCustomVecRegLoc(); 7523 HandleCustomVecRegLoc(); 7524 } 7525 7526 continue; 7527 } 7528 7529 if (VA.isMemLoc()) { 7530 SDValue PtrOff = 7531 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7532 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7533 MemOpChains.push_back( 7534 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7535 7536 continue; 7537 } 7538 7539 if (!ValVT.isFloatingPoint()) 7540 report_fatal_error( 7541 "Unexpected register handling for calling convention."); 7542 7543 // Custom handling is used for GPR initializations for vararg float 7544 // arguments. 7545 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7546 LocVT.isInteger() && 7547 "Custom register handling only expected for VarArg."); 7548 7549 SDValue ArgAsInt = 7550 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7551 7552 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7553 // f32 in 32-bit GPR 7554 // f64 in 64-bit GPR 7555 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7556 else if (Arg.getValueType().getFixedSizeInBits() < 7557 LocVT.getFixedSizeInBits()) 7558 // f32 in 64-bit GPR. 7559 RegsToPass.push_back(std::make_pair( 7560 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7561 else { 7562 // f64 in two 32-bit GPRs 7563 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7564 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7565 "Unexpected custom register for argument!"); 7566 CCValAssign &GPR1 = VA; 7567 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7568 DAG.getConstant(32, dl, MVT::i8)); 7569 RegsToPass.push_back(std::make_pair( 7570 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7571 7572 if (I != E) { 7573 // If only 1 GPR was available, there will only be one custom GPR and 7574 // the argument will also pass in memory. 7575 CCValAssign &PeekArg = ArgLocs[I]; 7576 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7577 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7578 CCValAssign &GPR2 = ArgLocs[I++]; 7579 RegsToPass.push_back(std::make_pair( 7580 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7581 } 7582 } 7583 } 7584 } 7585 7586 if (!MemOpChains.empty()) 7587 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7588 7589 // For indirect calls, we need to save the TOC base to the stack for 7590 // restoration after the call. 7591 if (CFlags.IsIndirect) { 7592 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7593 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7594 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7595 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7596 const unsigned TOCSaveOffset = 7597 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7598 7599 setUsesTOCBasePtr(DAG); 7600 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7601 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7602 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7603 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7604 Chain = DAG.getStore( 7605 Val.getValue(1), dl, Val, AddPtr, 7606 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7607 } 7608 7609 // Build a sequence of copy-to-reg nodes chained together with token chain 7610 // and flag operands which copy the outgoing args into the appropriate regs. 7611 SDValue InGlue; 7612 for (auto Reg : RegsToPass) { 7613 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InGlue); 7614 InGlue = Chain.getValue(1); 7615 } 7616 7617 const int SPDiff = 0; 7618 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, 7619 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7620 } 7621 7622 bool 7623 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7624 MachineFunction &MF, bool isVarArg, 7625 const SmallVectorImpl<ISD::OutputArg> &Outs, 7626 LLVMContext &Context) const { 7627 SmallVector<CCValAssign, 16> RVLocs; 7628 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7629 return CCInfo.CheckReturn( 7630 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7631 ? RetCC_PPC_Cold 7632 : RetCC_PPC); 7633 } 7634 7635 SDValue 7636 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7637 bool isVarArg, 7638 const SmallVectorImpl<ISD::OutputArg> &Outs, 7639 const SmallVectorImpl<SDValue> &OutVals, 7640 const SDLoc &dl, SelectionDAG &DAG) const { 7641 SmallVector<CCValAssign, 16> RVLocs; 7642 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7643 *DAG.getContext()); 7644 CCInfo.AnalyzeReturn(Outs, 7645 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7646 ? RetCC_PPC_Cold 7647 : RetCC_PPC); 7648 7649 SDValue Glue; 7650 SmallVector<SDValue, 4> RetOps(1, Chain); 7651 7652 // Copy the result values into the output registers. 7653 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7654 CCValAssign &VA = RVLocs[i]; 7655 assert(VA.isRegLoc() && "Can only return in registers!"); 7656 7657 SDValue Arg = OutVals[RealResIdx]; 7658 7659 switch (VA.getLocInfo()) { 7660 default: llvm_unreachable("Unknown loc info!"); 7661 case CCValAssign::Full: break; 7662 case CCValAssign::AExt: 7663 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7664 break; 7665 case CCValAssign::ZExt: 7666 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7667 break; 7668 case CCValAssign::SExt: 7669 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7670 break; 7671 } 7672 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7673 bool isLittleEndian = Subtarget.isLittleEndian(); 7674 // Legalize ret f64 -> ret 2 x i32. 7675 SDValue SVal = 7676 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7677 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7678 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); 7679 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7680 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7681 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7682 Glue = Chain.getValue(1); 7683 VA = RVLocs[++i]; // skip ahead to next loc 7684 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); 7685 } else 7686 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue); 7687 Glue = Chain.getValue(1); 7688 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7689 } 7690 7691 RetOps[0] = Chain; // Update chain. 7692 7693 // Add the glue if we have it. 7694 if (Glue.getNode()) 7695 RetOps.push_back(Glue); 7696 7697 return DAG.getNode(PPCISD::RET_GLUE, dl, MVT::Other, RetOps); 7698 } 7699 7700 SDValue 7701 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7702 SelectionDAG &DAG) const { 7703 SDLoc dl(Op); 7704 7705 // Get the correct type for integers. 7706 EVT IntVT = Op.getValueType(); 7707 7708 // Get the inputs. 7709 SDValue Chain = Op.getOperand(0); 7710 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7711 // Build a DYNAREAOFFSET node. 7712 SDValue Ops[2] = {Chain, FPSIdx}; 7713 SDVTList VTs = DAG.getVTList(IntVT); 7714 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7715 } 7716 7717 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7718 SelectionDAG &DAG) const { 7719 // When we pop the dynamic allocation we need to restore the SP link. 7720 SDLoc dl(Op); 7721 7722 // Get the correct type for pointers. 7723 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7724 7725 // Construct the stack pointer operand. 7726 bool isPPC64 = Subtarget.isPPC64(); 7727 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7728 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7729 7730 // Get the operands for the STACKRESTORE. 7731 SDValue Chain = Op.getOperand(0); 7732 SDValue SaveSP = Op.getOperand(1); 7733 7734 // Load the old link SP. 7735 SDValue LoadLinkSP = 7736 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7737 7738 // Restore the stack pointer. 7739 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7740 7741 // Store the old link SP. 7742 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7743 } 7744 7745 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7746 MachineFunction &MF = DAG.getMachineFunction(); 7747 bool isPPC64 = Subtarget.isPPC64(); 7748 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7749 7750 // Get current frame pointer save index. The users of this index will be 7751 // primarily DYNALLOC instructions. 7752 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7753 int RASI = FI->getReturnAddrSaveIndex(); 7754 7755 // If the frame pointer save index hasn't been defined yet. 7756 if (!RASI) { 7757 // Find out what the fix offset of the frame pointer save area. 7758 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7759 // Allocate the frame index for frame pointer save area. 7760 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7761 // Save the result. 7762 FI->setReturnAddrSaveIndex(RASI); 7763 } 7764 return DAG.getFrameIndex(RASI, PtrVT); 7765 } 7766 7767 SDValue 7768 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7769 MachineFunction &MF = DAG.getMachineFunction(); 7770 bool isPPC64 = Subtarget.isPPC64(); 7771 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7772 7773 // Get current frame pointer save index. The users of this index will be 7774 // primarily DYNALLOC instructions. 7775 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7776 int FPSI = FI->getFramePointerSaveIndex(); 7777 7778 // If the frame pointer save index hasn't been defined yet. 7779 if (!FPSI) { 7780 // Find out what the fix offset of the frame pointer save area. 7781 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7782 // Allocate the frame index for frame pointer save area. 7783 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7784 // Save the result. 7785 FI->setFramePointerSaveIndex(FPSI); 7786 } 7787 return DAG.getFrameIndex(FPSI, PtrVT); 7788 } 7789 7790 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7791 SelectionDAG &DAG) const { 7792 MachineFunction &MF = DAG.getMachineFunction(); 7793 // Get the inputs. 7794 SDValue Chain = Op.getOperand(0); 7795 SDValue Size = Op.getOperand(1); 7796 SDLoc dl(Op); 7797 7798 // Get the correct type for pointers. 7799 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7800 // Negate the size. 7801 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7802 DAG.getConstant(0, dl, PtrVT), Size); 7803 // Construct a node for the frame pointer save index. 7804 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7805 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7806 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7807 if (hasInlineStackProbe(MF)) 7808 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7809 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7810 } 7811 7812 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7813 SelectionDAG &DAG) const { 7814 MachineFunction &MF = DAG.getMachineFunction(); 7815 7816 bool isPPC64 = Subtarget.isPPC64(); 7817 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7818 7819 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7820 return DAG.getFrameIndex(FI, PtrVT); 7821 } 7822 7823 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7824 SelectionDAG &DAG) const { 7825 SDLoc DL(Op); 7826 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7827 DAG.getVTList(MVT::i32, MVT::Other), 7828 Op.getOperand(0), Op.getOperand(1)); 7829 } 7830 7831 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7832 SelectionDAG &DAG) const { 7833 SDLoc DL(Op); 7834 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7835 Op.getOperand(0), Op.getOperand(1)); 7836 } 7837 7838 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7839 if (Op.getValueType().isVector()) 7840 return LowerVectorLoad(Op, DAG); 7841 7842 assert(Op.getValueType() == MVT::i1 && 7843 "Custom lowering only for i1 loads"); 7844 7845 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7846 7847 SDLoc dl(Op); 7848 LoadSDNode *LD = cast<LoadSDNode>(Op); 7849 7850 SDValue Chain = LD->getChain(); 7851 SDValue BasePtr = LD->getBasePtr(); 7852 MachineMemOperand *MMO = LD->getMemOperand(); 7853 7854 SDValue NewLD = 7855 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7856 BasePtr, MVT::i8, MMO); 7857 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7858 7859 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7860 return DAG.getMergeValues(Ops, dl); 7861 } 7862 7863 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7864 if (Op.getOperand(1).getValueType().isVector()) 7865 return LowerVectorStore(Op, DAG); 7866 7867 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7868 "Custom lowering only for i1 stores"); 7869 7870 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7871 7872 SDLoc dl(Op); 7873 StoreSDNode *ST = cast<StoreSDNode>(Op); 7874 7875 SDValue Chain = ST->getChain(); 7876 SDValue BasePtr = ST->getBasePtr(); 7877 SDValue Value = ST->getValue(); 7878 MachineMemOperand *MMO = ST->getMemOperand(); 7879 7880 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7881 Value); 7882 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7883 } 7884 7885 // FIXME: Remove this once the ANDI glue bug is fixed: 7886 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7887 assert(Op.getValueType() == MVT::i1 && 7888 "Custom lowering only for i1 results"); 7889 7890 SDLoc DL(Op); 7891 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7892 } 7893 7894 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7895 SelectionDAG &DAG) const { 7896 7897 // Implements a vector truncate that fits in a vector register as a shuffle. 7898 // We want to legalize vector truncates down to where the source fits in 7899 // a vector register (and target is therefore smaller than vector register 7900 // size). At that point legalization will try to custom lower the sub-legal 7901 // result and get here - where we can contain the truncate as a single target 7902 // operation. 7903 7904 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7905 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7906 // 7907 // We will implement it for big-endian ordering as this (where x denotes 7908 // undefined): 7909 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7910 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7911 // 7912 // The same operation in little-endian ordering will be: 7913 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7914 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7915 7916 EVT TrgVT = Op.getValueType(); 7917 assert(TrgVT.isVector() && "Vector type expected."); 7918 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7919 EVT EltVT = TrgVT.getVectorElementType(); 7920 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7921 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7922 !llvm::has_single_bit<uint32_t>(EltVT.getSizeInBits())) 7923 return SDValue(); 7924 7925 SDValue N1 = Op.getOperand(0); 7926 EVT SrcVT = N1.getValueType(); 7927 unsigned SrcSize = SrcVT.getSizeInBits(); 7928 if (SrcSize > 256 || !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7929 !llvm::has_single_bit<uint32_t>( 7930 SrcVT.getVectorElementType().getSizeInBits())) 7931 return SDValue(); 7932 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7933 return SDValue(); 7934 7935 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7936 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7937 7938 SDLoc DL(Op); 7939 SDValue Op1, Op2; 7940 if (SrcSize == 256) { 7941 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7942 EVT SplitVT = 7943 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7944 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7945 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7946 DAG.getConstant(0, DL, VecIdxTy)); 7947 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7948 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7949 } 7950 else { 7951 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7952 Op2 = DAG.getUNDEF(WideVT); 7953 } 7954 7955 // First list the elements we want to keep. 7956 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7957 SmallVector<int, 16> ShuffV; 7958 if (Subtarget.isLittleEndian()) 7959 for (unsigned i = 0; i < TrgNumElts; ++i) 7960 ShuffV.push_back(i * SizeMult); 7961 else 7962 for (unsigned i = 1; i <= TrgNumElts; ++i) 7963 ShuffV.push_back(i * SizeMult - 1); 7964 7965 // Populate the remaining elements with undefs. 7966 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7967 // ShuffV.push_back(i + WideNumElts); 7968 ShuffV.push_back(WideNumElts + 1); 7969 7970 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7971 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7972 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7973 } 7974 7975 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7976 /// possible. 7977 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7978 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7979 EVT ResVT = Op.getValueType(); 7980 EVT CmpVT = Op.getOperand(0).getValueType(); 7981 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7982 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7983 SDLoc dl(Op); 7984 7985 // Without power9-vector, we don't have native instruction for f128 comparison. 7986 // Following transformation to libcall is needed for setcc: 7987 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7988 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7989 SDValue Z = DAG.getSetCC( 7990 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7991 LHS, RHS, CC); 7992 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7993 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7994 } 7995 7996 // Not FP, or using SPE? Not a fsel. 7997 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7998 Subtarget.hasSPE()) 7999 return Op; 8000 8001 SDNodeFlags Flags = Op.getNode()->getFlags(); 8002 8003 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 8004 // presence of infinities. 8005 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8006 switch (CC) { 8007 default: 8008 break; 8009 case ISD::SETOGT: 8010 case ISD::SETGT: 8011 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 8012 case ISD::SETOLT: 8013 case ISD::SETLT: 8014 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 8015 } 8016 } 8017 8018 // We might be able to do better than this under some circumstances, but in 8019 // general, fsel-based lowering of select is a finite-math-only optimization. 8020 // For more information, see section F.3 of the 2.06 ISA specification. 8021 // With ISA 3.0 8022 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8023 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8024 return Op; 8025 8026 // If the RHS of the comparison is a 0.0, we don't need to do the 8027 // subtraction at all. 8028 SDValue Sel1; 8029 if (isFloatingPointZero(RHS)) 8030 switch (CC) { 8031 default: break; // SETUO etc aren't handled by fsel. 8032 case ISD::SETNE: 8033 std::swap(TV, FV); 8034 [[fallthrough]]; 8035 case ISD::SETEQ: 8036 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8037 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8038 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8039 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8040 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8041 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8042 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8043 case ISD::SETULT: 8044 case ISD::SETLT: 8045 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8046 [[fallthrough]]; 8047 case ISD::SETOGE: 8048 case ISD::SETGE: 8049 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8050 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8051 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8052 case ISD::SETUGT: 8053 case ISD::SETGT: 8054 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8055 [[fallthrough]]; 8056 case ISD::SETOLE: 8057 case ISD::SETLE: 8058 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8059 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8060 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8061 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8062 } 8063 8064 SDValue Cmp; 8065 switch (CC) { 8066 default: break; // SETUO etc aren't handled by fsel. 8067 case ISD::SETNE: 8068 std::swap(TV, FV); 8069 [[fallthrough]]; 8070 case ISD::SETEQ: 8071 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8072 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8073 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8074 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8075 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8076 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8077 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8078 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8079 case ISD::SETULT: 8080 case ISD::SETLT: 8081 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8082 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8083 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8084 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8085 case ISD::SETOGE: 8086 case ISD::SETGE: 8087 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8088 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8089 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8090 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8091 case ISD::SETUGT: 8092 case ISD::SETGT: 8093 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8094 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8095 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8096 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8097 case ISD::SETOLE: 8098 case ISD::SETLE: 8099 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8100 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8101 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8102 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8103 } 8104 return Op; 8105 } 8106 8107 static unsigned getPPCStrictOpcode(unsigned Opc) { 8108 switch (Opc) { 8109 default: 8110 llvm_unreachable("No strict version of this opcode!"); 8111 case PPCISD::FCTIDZ: 8112 return PPCISD::STRICT_FCTIDZ; 8113 case PPCISD::FCTIWZ: 8114 return PPCISD::STRICT_FCTIWZ; 8115 case PPCISD::FCTIDUZ: 8116 return PPCISD::STRICT_FCTIDUZ; 8117 case PPCISD::FCTIWUZ: 8118 return PPCISD::STRICT_FCTIWUZ; 8119 case PPCISD::FCFID: 8120 return PPCISD::STRICT_FCFID; 8121 case PPCISD::FCFIDU: 8122 return PPCISD::STRICT_FCFIDU; 8123 case PPCISD::FCFIDS: 8124 return PPCISD::STRICT_FCFIDS; 8125 case PPCISD::FCFIDUS: 8126 return PPCISD::STRICT_FCFIDUS; 8127 } 8128 } 8129 8130 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8131 const PPCSubtarget &Subtarget) { 8132 SDLoc dl(Op); 8133 bool IsStrict = Op->isStrictFPOpcode(); 8134 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8135 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8136 8137 // TODO: Any other flags to propagate? 8138 SDNodeFlags Flags; 8139 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8140 8141 // For strict nodes, source is the second operand. 8142 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8143 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8144 MVT DestTy = Op.getSimpleValueType(); 8145 assert(Src.getValueType().isFloatingPoint() && 8146 (DestTy == MVT::i8 || DestTy == MVT::i16 || DestTy == MVT::i32 || 8147 DestTy == MVT::i64) && 8148 "Invalid FP_TO_INT types"); 8149 if (Src.getValueType() == MVT::f32) { 8150 if (IsStrict) { 8151 Src = 8152 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8153 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8154 Chain = Src.getValue(1); 8155 } else 8156 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8157 } 8158 if ((DestTy == MVT::i8 || DestTy == MVT::i16) && Subtarget.hasP9Vector()) 8159 DestTy = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 8160 unsigned Opc = ISD::DELETED_NODE; 8161 switch (DestTy.SimpleTy) { 8162 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8163 case MVT::i32: 8164 Opc = IsSigned ? PPCISD::FCTIWZ 8165 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8166 break; 8167 case MVT::i64: 8168 assert((IsSigned || Subtarget.hasFPCVT()) && 8169 "i64 FP_TO_UINT is supported only with FPCVT"); 8170 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8171 } 8172 EVT ConvTy = Src.getValueType() == MVT::f128 ? MVT::f128 : MVT::f64; 8173 SDValue Conv; 8174 if (IsStrict) { 8175 Opc = getPPCStrictOpcode(Opc); 8176 Conv = DAG.getNode(Opc, dl, DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, 8177 Flags); 8178 } else { 8179 Conv = DAG.getNode(Opc, dl, ConvTy, Src); 8180 } 8181 return Conv; 8182 } 8183 8184 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8185 SelectionDAG &DAG, 8186 const SDLoc &dl) const { 8187 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8188 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8189 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8190 bool IsStrict = Op->isStrictFPOpcode(); 8191 8192 // Convert the FP value to an int value through memory. 8193 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8194 (IsSigned || Subtarget.hasFPCVT()); 8195 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8196 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8197 MachinePointerInfo MPI = 8198 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8199 8200 // Emit a store to the stack slot. 8201 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8202 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8203 if (i32Stack) { 8204 MachineFunction &MF = DAG.getMachineFunction(); 8205 Alignment = Align(4); 8206 MachineMemOperand *MMO = 8207 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8208 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8209 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8210 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8211 } else 8212 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8213 8214 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8215 // add in a bias on big endian. 8216 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8217 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8218 DAG.getConstant(4, dl, FIPtr.getValueType())); 8219 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8220 } 8221 8222 RLI.Chain = Chain; 8223 RLI.Ptr = FIPtr; 8224 RLI.MPI = MPI; 8225 RLI.Alignment = Alignment; 8226 } 8227 8228 /// Custom lowers floating point to integer conversions to use 8229 /// the direct move instructions available in ISA 2.07 to avoid the 8230 /// need for load/store combinations. 8231 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8232 SelectionDAG &DAG, 8233 const SDLoc &dl) const { 8234 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8235 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8236 if (Op->isStrictFPOpcode()) 8237 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8238 else 8239 return Mov; 8240 } 8241 8242 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8243 const SDLoc &dl) const { 8244 bool IsStrict = Op->isStrictFPOpcode(); 8245 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8246 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8247 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8248 EVT SrcVT = Src.getValueType(); 8249 EVT DstVT = Op.getValueType(); 8250 8251 // FP to INT conversions are legal for f128. 8252 if (SrcVT == MVT::f128) 8253 return Subtarget.hasP9Vector() ? Op : SDValue(); 8254 8255 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8256 // PPC (the libcall is not available). 8257 if (SrcVT == MVT::ppcf128) { 8258 if (DstVT == MVT::i32) { 8259 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8260 // set other fast-math flags to FP operations in both strict and 8261 // non-strict cases. (FP_TO_SINT, FSUB) 8262 SDNodeFlags Flags; 8263 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8264 8265 if (IsSigned) { 8266 SDValue Lo, Hi; 8267 std::tie(Lo, Hi) = DAG.SplitScalar(Src, dl, MVT::f64, MVT::f64); 8268 8269 // Add the two halves of the long double in round-to-zero mode, and use 8270 // a smaller FP_TO_SINT. 8271 if (IsStrict) { 8272 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8273 DAG.getVTList(MVT::f64, MVT::Other), 8274 {Op.getOperand(0), Lo, Hi}, Flags); 8275 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8276 DAG.getVTList(MVT::i32, MVT::Other), 8277 {Res.getValue(1), Res}, Flags); 8278 } else { 8279 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8280 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8281 } 8282 } else { 8283 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8284 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8285 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8286 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8287 if (IsStrict) { 8288 // Sel = Src < 0x80000000 8289 // FltOfs = select Sel, 0.0, 0x80000000 8290 // IntOfs = select Sel, 0, 0x80000000 8291 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8292 SDValue Chain = Op.getOperand(0); 8293 EVT SetCCVT = 8294 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8295 EVT DstSetCCVT = 8296 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8297 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8298 Chain, true); 8299 Chain = Sel.getValue(1); 8300 8301 SDValue FltOfs = DAG.getSelect( 8302 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8303 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8304 8305 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8306 DAG.getVTList(SrcVT, MVT::Other), 8307 {Chain, Src, FltOfs}, Flags); 8308 Chain = Val.getValue(1); 8309 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8310 DAG.getVTList(DstVT, MVT::Other), 8311 {Chain, Val}, Flags); 8312 Chain = SInt.getValue(1); 8313 SDValue IntOfs = DAG.getSelect( 8314 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8315 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8316 return DAG.getMergeValues({Result, Chain}, dl); 8317 } else { 8318 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8319 // FIXME: generated code sucks. 8320 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8321 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8322 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8323 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8324 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8325 } 8326 } 8327 } 8328 8329 return SDValue(); 8330 } 8331 8332 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8333 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8334 8335 ReuseLoadInfo RLI; 8336 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8337 8338 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8339 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8340 } 8341 8342 // We're trying to insert a regular store, S, and then a load, L. If the 8343 // incoming value, O, is a load, we might just be able to have our load use the 8344 // address used by O. However, we don't know if anything else will store to 8345 // that address before we can load from it. To prevent this situation, we need 8346 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8347 // the same chain operand as O, we create a token factor from the chain results 8348 // of O and L, and we replace all uses of O's chain result with that token 8349 // factor (see spliceIntoChain below for this last part). 8350 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8351 ReuseLoadInfo &RLI, 8352 SelectionDAG &DAG, 8353 ISD::LoadExtType ET) const { 8354 // Conservatively skip reusing for constrained FP nodes. 8355 if (Op->isStrictFPOpcode()) 8356 return false; 8357 8358 SDLoc dl(Op); 8359 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8360 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8361 if (ET == ISD::NON_EXTLOAD && 8362 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8363 isOperationLegalOrCustom(Op.getOpcode(), 8364 Op.getOperand(0).getValueType())) { 8365 8366 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8367 return true; 8368 } 8369 8370 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8371 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8372 LD->isNonTemporal()) 8373 return false; 8374 if (LD->getMemoryVT() != MemVT) 8375 return false; 8376 8377 // If the result of the load is an illegal type, then we can't build a 8378 // valid chain for reuse since the legalised loads and token factor node that 8379 // ties the legalised loads together uses a different output chain then the 8380 // illegal load. 8381 if (!isTypeLegal(LD->getValueType(0))) 8382 return false; 8383 8384 RLI.Ptr = LD->getBasePtr(); 8385 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8386 assert(LD->getAddressingMode() == ISD::PRE_INC && 8387 "Non-pre-inc AM on PPC?"); 8388 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8389 LD->getOffset()); 8390 } 8391 8392 RLI.Chain = LD->getChain(); 8393 RLI.MPI = LD->getPointerInfo(); 8394 RLI.IsDereferenceable = LD->isDereferenceable(); 8395 RLI.IsInvariant = LD->isInvariant(); 8396 RLI.Alignment = LD->getAlign(); 8397 RLI.AAInfo = LD->getAAInfo(); 8398 RLI.Ranges = LD->getRanges(); 8399 8400 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8401 return true; 8402 } 8403 8404 // Given the head of the old chain, ResChain, insert a token factor containing 8405 // it and NewResChain, and make users of ResChain now be users of that token 8406 // factor. 8407 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8408 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8409 SDValue NewResChain, 8410 SelectionDAG &DAG) const { 8411 if (!ResChain) 8412 return; 8413 8414 SDLoc dl(NewResChain); 8415 8416 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8417 NewResChain, DAG.getUNDEF(MVT::Other)); 8418 assert(TF.getNode() != NewResChain.getNode() && 8419 "A new TF really is required here"); 8420 8421 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8422 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8423 } 8424 8425 /// Analyze profitability of direct move 8426 /// prefer float load to int load plus direct move 8427 /// when there is no integer use of int load 8428 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8429 SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode(); 8430 if (Origin->getOpcode() != ISD::LOAD) 8431 return true; 8432 8433 // If there is no LXSIBZX/LXSIHZX, like Power8, 8434 // prefer direct move if the memory size is 1 or 2 bytes. 8435 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8436 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8437 return true; 8438 8439 for (SDNode::use_iterator UI = Origin->use_begin(), 8440 UE = Origin->use_end(); 8441 UI != UE; ++UI) { 8442 8443 // Only look at the users of the loaded value. 8444 if (UI.getUse().get().getResNo() != 0) 8445 continue; 8446 8447 if (UI->getOpcode() != ISD::SINT_TO_FP && 8448 UI->getOpcode() != ISD::UINT_TO_FP && 8449 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8450 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8451 return true; 8452 } 8453 8454 return false; 8455 } 8456 8457 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8458 const PPCSubtarget &Subtarget, 8459 SDValue Chain = SDValue()) { 8460 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8461 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8462 SDLoc dl(Op); 8463 8464 // TODO: Any other flags to propagate? 8465 SDNodeFlags Flags; 8466 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8467 8468 // If we have FCFIDS, then use it when converting to single-precision. 8469 // Otherwise, convert to double-precision and then round. 8470 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8471 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8472 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8473 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8474 if (Op->isStrictFPOpcode()) { 8475 if (!Chain) 8476 Chain = Op.getOperand(0); 8477 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8478 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8479 } else 8480 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8481 } 8482 8483 /// Custom lowers integer to floating point conversions to use 8484 /// the direct move instructions available in ISA 2.07 to avoid the 8485 /// need for load/store combinations. 8486 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8487 SelectionDAG &DAG, 8488 const SDLoc &dl) const { 8489 assert((Op.getValueType() == MVT::f32 || 8490 Op.getValueType() == MVT::f64) && 8491 "Invalid floating point type as target of conversion"); 8492 assert(Subtarget.hasFPCVT() && 8493 "Int to FP conversions with direct moves require FPCVT"); 8494 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8495 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8496 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8497 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8498 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8499 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8500 return convertIntToFP(Op, Mov, DAG, Subtarget); 8501 } 8502 8503 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8504 8505 EVT VecVT = Vec.getValueType(); 8506 assert(VecVT.isVector() && "Expected a vector type."); 8507 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8508 8509 EVT EltVT = VecVT.getVectorElementType(); 8510 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8511 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8512 8513 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8514 SmallVector<SDValue, 16> Ops(NumConcat); 8515 Ops[0] = Vec; 8516 SDValue UndefVec = DAG.getUNDEF(VecVT); 8517 for (unsigned i = 1; i < NumConcat; ++i) 8518 Ops[i] = UndefVec; 8519 8520 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8521 } 8522 8523 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8524 const SDLoc &dl) const { 8525 bool IsStrict = Op->isStrictFPOpcode(); 8526 unsigned Opc = Op.getOpcode(); 8527 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8528 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8529 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8530 "Unexpected conversion type"); 8531 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8532 "Supports conversions to v2f64/v4f32 only."); 8533 8534 // TODO: Any other flags to propagate? 8535 SDNodeFlags Flags; 8536 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8537 8538 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8539 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8540 8541 SDValue Wide = widenVec(DAG, Src, dl); 8542 EVT WideVT = Wide.getValueType(); 8543 unsigned WideNumElts = WideVT.getVectorNumElements(); 8544 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8545 8546 SmallVector<int, 16> ShuffV; 8547 for (unsigned i = 0; i < WideNumElts; ++i) 8548 ShuffV.push_back(i + WideNumElts); 8549 8550 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8551 int SaveElts = FourEltRes ? 4 : 2; 8552 if (Subtarget.isLittleEndian()) 8553 for (int i = 0; i < SaveElts; i++) 8554 ShuffV[i * Stride] = i; 8555 else 8556 for (int i = 1; i <= SaveElts; i++) 8557 ShuffV[i * Stride - 1] = i - 1; 8558 8559 SDValue ShuffleSrc2 = 8560 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8561 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8562 8563 SDValue Extend; 8564 if (SignedConv) { 8565 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8566 EVT ExtVT = Src.getValueType(); 8567 if (Subtarget.hasP9Altivec()) 8568 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8569 IntermediateVT.getVectorNumElements()); 8570 8571 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8572 DAG.getValueType(ExtVT)); 8573 } else 8574 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8575 8576 if (IsStrict) 8577 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8578 {Op.getOperand(0), Extend}, Flags); 8579 8580 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8581 } 8582 8583 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8584 SelectionDAG &DAG) const { 8585 SDLoc dl(Op); 8586 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8587 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8588 bool IsStrict = Op->isStrictFPOpcode(); 8589 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8590 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8591 8592 // TODO: Any other flags to propagate? 8593 SDNodeFlags Flags; 8594 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8595 8596 EVT InVT = Src.getValueType(); 8597 EVT OutVT = Op.getValueType(); 8598 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8599 isOperationCustom(Op.getOpcode(), InVT)) 8600 return LowerINT_TO_FPVector(Op, DAG, dl); 8601 8602 // Conversions to f128 are legal. 8603 if (Op.getValueType() == MVT::f128) 8604 return Subtarget.hasP9Vector() ? Op : SDValue(); 8605 8606 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8607 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8608 return SDValue(); 8609 8610 if (Src.getValueType() == MVT::i1) { 8611 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8612 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8613 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8614 if (IsStrict) 8615 return DAG.getMergeValues({Sel, Chain}, dl); 8616 else 8617 return Sel; 8618 } 8619 8620 // If we have direct moves, we can do all the conversion, skip the store/load 8621 // however, without FPCVT we can't do most conversions. 8622 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8623 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8624 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8625 8626 assert((IsSigned || Subtarget.hasFPCVT()) && 8627 "UINT_TO_FP is supported only with FPCVT"); 8628 8629 if (Src.getValueType() == MVT::i64) { 8630 SDValue SINT = Src; 8631 // When converting to single-precision, we actually need to convert 8632 // to double-precision first and then round to single-precision. 8633 // To avoid double-rounding effects during that operation, we have 8634 // to prepare the input operand. Bits that might be truncated when 8635 // converting to double-precision are replaced by a bit that won't 8636 // be lost at this stage, but is below the single-precision rounding 8637 // position. 8638 // 8639 // However, if -enable-unsafe-fp-math is in effect, accept double 8640 // rounding to avoid the extra overhead. 8641 if (Op.getValueType() == MVT::f32 && 8642 !Subtarget.hasFPCVT() && 8643 !DAG.getTarget().Options.UnsafeFPMath) { 8644 8645 // Twiddle input to make sure the low 11 bits are zero. (If this 8646 // is the case, we are guaranteed the value will fit into the 53 bit 8647 // mantissa of an IEEE double-precision value without rounding.) 8648 // If any of those low 11 bits were not zero originally, make sure 8649 // bit 12 (value 2048) is set instead, so that the final rounding 8650 // to single-precision gets the correct result. 8651 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8652 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8653 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8654 Round, DAG.getConstant(2047, dl, MVT::i64)); 8655 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8656 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8657 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8658 8659 // However, we cannot use that value unconditionally: if the magnitude 8660 // of the input value is small, the bit-twiddling we did above might 8661 // end up visibly changing the output. Fortunately, in that case, we 8662 // don't need to twiddle bits since the original input will convert 8663 // exactly to double-precision floating-point already. Therefore, 8664 // construct a conditional to use the original value if the top 11 8665 // bits are all sign-bit copies, and use the rounded value computed 8666 // above otherwise. 8667 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8668 SINT, DAG.getConstant(53, dl, MVT::i32)); 8669 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8670 Cond, DAG.getConstant(1, dl, MVT::i64)); 8671 Cond = DAG.getSetCC( 8672 dl, 8673 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8674 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8675 8676 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8677 } 8678 8679 ReuseLoadInfo RLI; 8680 SDValue Bits; 8681 8682 MachineFunction &MF = DAG.getMachineFunction(); 8683 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8684 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8685 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8686 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8687 } else if (Subtarget.hasLFIWAX() && 8688 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8689 MachineMemOperand *MMO = 8690 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8691 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8692 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8693 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8694 DAG.getVTList(MVT::f64, MVT::Other), 8695 Ops, MVT::i32, MMO); 8696 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8697 } else if (Subtarget.hasFPCVT() && 8698 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8699 MachineMemOperand *MMO = 8700 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8701 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8702 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8703 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8704 DAG.getVTList(MVT::f64, MVT::Other), 8705 Ops, MVT::i32, MMO); 8706 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8707 } else if (((Subtarget.hasLFIWAX() && 8708 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8709 (Subtarget.hasFPCVT() && 8710 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8711 SINT.getOperand(0).getValueType() == MVT::i32) { 8712 MachineFrameInfo &MFI = MF.getFrameInfo(); 8713 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8714 8715 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8716 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8717 8718 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8719 MachinePointerInfo::getFixedStack( 8720 DAG.getMachineFunction(), FrameIdx)); 8721 Chain = Store; 8722 8723 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8724 "Expected an i32 store"); 8725 8726 RLI.Ptr = FIdx; 8727 RLI.Chain = Chain; 8728 RLI.MPI = 8729 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8730 RLI.Alignment = Align(4); 8731 8732 MachineMemOperand *MMO = 8733 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8734 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8735 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8736 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8737 PPCISD::LFIWZX : PPCISD::LFIWAX, 8738 dl, DAG.getVTList(MVT::f64, MVT::Other), 8739 Ops, MVT::i32, MMO); 8740 Chain = Bits.getValue(1); 8741 } else 8742 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8743 8744 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8745 if (IsStrict) 8746 Chain = FP.getValue(1); 8747 8748 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8749 if (IsStrict) 8750 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8751 DAG.getVTList(MVT::f32, MVT::Other), 8752 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8753 else 8754 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8755 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 8756 } 8757 return FP; 8758 } 8759 8760 assert(Src.getValueType() == MVT::i32 && 8761 "Unhandled INT_TO_FP type in custom expander!"); 8762 // Since we only generate this in 64-bit mode, we can take advantage of 8763 // 64-bit registers. In particular, sign extend the input value into the 8764 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8765 // then lfd it and fcfid it. 8766 MachineFunction &MF = DAG.getMachineFunction(); 8767 MachineFrameInfo &MFI = MF.getFrameInfo(); 8768 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8769 8770 SDValue Ld; 8771 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8772 ReuseLoadInfo RLI; 8773 bool ReusingLoad; 8774 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8775 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8776 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8777 8778 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8779 MachinePointerInfo::getFixedStack( 8780 DAG.getMachineFunction(), FrameIdx)); 8781 Chain = Store; 8782 8783 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8784 "Expected an i32 store"); 8785 8786 RLI.Ptr = FIdx; 8787 RLI.Chain = Chain; 8788 RLI.MPI = 8789 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8790 RLI.Alignment = Align(4); 8791 } 8792 8793 MachineMemOperand *MMO = 8794 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8795 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8796 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8797 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8798 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8799 MVT::i32, MMO); 8800 Chain = Ld.getValue(1); 8801 if (ReusingLoad) 8802 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8803 } else { 8804 assert(Subtarget.isPPC64() && 8805 "i32->FP without LFIWAX supported only on PPC64"); 8806 8807 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8808 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8809 8810 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8811 8812 // STD the extended value into the stack slot. 8813 SDValue Store = DAG.getStore( 8814 Chain, dl, Ext64, FIdx, 8815 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8816 Chain = Store; 8817 8818 // Load the value as a double. 8819 Ld = DAG.getLoad( 8820 MVT::f64, dl, Chain, FIdx, 8821 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8822 Chain = Ld.getValue(1); 8823 } 8824 8825 // FCFID it and return it. 8826 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8827 if (IsStrict) 8828 Chain = FP.getValue(1); 8829 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8830 if (IsStrict) 8831 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8832 DAG.getVTList(MVT::f32, MVT::Other), 8833 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8834 else 8835 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8836 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 8837 } 8838 return FP; 8839 } 8840 8841 SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op, 8842 SelectionDAG &DAG) const { 8843 SDLoc dl(Op); 8844 /* 8845 The rounding mode is in bits 30:31 of FPSR, and has the following 8846 settings: 8847 00 Round to nearest 8848 01 Round to 0 8849 10 Round to +inf 8850 11 Round to -inf 8851 8852 GET_ROUNDING, on the other hand, expects the following: 8853 -1 Undefined 8854 0 Round to 0 8855 1 Round to nearest 8856 2 Round to +inf 8857 3 Round to -inf 8858 8859 To perform the conversion, we do: 8860 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8861 */ 8862 8863 MachineFunction &MF = DAG.getMachineFunction(); 8864 EVT VT = Op.getValueType(); 8865 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8866 8867 // Save FP Control Word to register 8868 SDValue Chain = Op.getOperand(0); 8869 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8870 Chain = MFFS.getValue(1); 8871 8872 SDValue CWD; 8873 if (isTypeLegal(MVT::i64)) { 8874 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8875 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8876 } else { 8877 // Save FP register to stack slot 8878 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8879 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8880 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8881 8882 // Load FP Control Word from low 32 bits of stack slot. 8883 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8884 "Stack slot adjustment is valid only on big endian subtargets!"); 8885 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8886 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8887 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8888 Chain = CWD.getValue(1); 8889 } 8890 8891 // Transform as necessary 8892 SDValue CWD1 = 8893 DAG.getNode(ISD::AND, dl, MVT::i32, 8894 CWD, DAG.getConstant(3, dl, MVT::i32)); 8895 SDValue CWD2 = 8896 DAG.getNode(ISD::SRL, dl, MVT::i32, 8897 DAG.getNode(ISD::AND, dl, MVT::i32, 8898 DAG.getNode(ISD::XOR, dl, MVT::i32, 8899 CWD, DAG.getConstant(3, dl, MVT::i32)), 8900 DAG.getConstant(3, dl, MVT::i32)), 8901 DAG.getConstant(1, dl, MVT::i32)); 8902 8903 SDValue RetVal = 8904 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8905 8906 RetVal = 8907 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8908 dl, VT, RetVal); 8909 8910 return DAG.getMergeValues({RetVal, Chain}, dl); 8911 } 8912 8913 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8914 EVT VT = Op.getValueType(); 8915 unsigned BitWidth = VT.getSizeInBits(); 8916 SDLoc dl(Op); 8917 assert(Op.getNumOperands() == 3 && 8918 VT == Op.getOperand(1).getValueType() && 8919 "Unexpected SHL!"); 8920 8921 // Expand into a bunch of logical ops. Note that these ops 8922 // depend on the PPC behavior for oversized shift amounts. 8923 SDValue Lo = Op.getOperand(0); 8924 SDValue Hi = Op.getOperand(1); 8925 SDValue Amt = Op.getOperand(2); 8926 EVT AmtVT = Amt.getValueType(); 8927 8928 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8929 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8930 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8931 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8932 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8933 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8934 DAG.getConstant(-BitWidth, dl, AmtVT)); 8935 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8936 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8937 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8938 SDValue OutOps[] = { OutLo, OutHi }; 8939 return DAG.getMergeValues(OutOps, dl); 8940 } 8941 8942 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8943 EVT VT = Op.getValueType(); 8944 SDLoc dl(Op); 8945 unsigned BitWidth = VT.getSizeInBits(); 8946 assert(Op.getNumOperands() == 3 && 8947 VT == Op.getOperand(1).getValueType() && 8948 "Unexpected SRL!"); 8949 8950 // Expand into a bunch of logical ops. Note that these ops 8951 // depend on the PPC behavior for oversized shift amounts. 8952 SDValue Lo = Op.getOperand(0); 8953 SDValue Hi = Op.getOperand(1); 8954 SDValue Amt = Op.getOperand(2); 8955 EVT AmtVT = Amt.getValueType(); 8956 8957 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8958 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8959 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8960 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8961 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8962 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8963 DAG.getConstant(-BitWidth, dl, AmtVT)); 8964 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8965 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8966 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8967 SDValue OutOps[] = { OutLo, OutHi }; 8968 return DAG.getMergeValues(OutOps, dl); 8969 } 8970 8971 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8972 SDLoc dl(Op); 8973 EVT VT = Op.getValueType(); 8974 unsigned BitWidth = VT.getSizeInBits(); 8975 assert(Op.getNumOperands() == 3 && 8976 VT == Op.getOperand(1).getValueType() && 8977 "Unexpected SRA!"); 8978 8979 // Expand into a bunch of logical ops, followed by a select_cc. 8980 SDValue Lo = Op.getOperand(0); 8981 SDValue Hi = Op.getOperand(1); 8982 SDValue Amt = Op.getOperand(2); 8983 EVT AmtVT = Amt.getValueType(); 8984 8985 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8986 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8987 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8988 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8989 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8990 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8991 DAG.getConstant(-BitWidth, dl, AmtVT)); 8992 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8993 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8994 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8995 Tmp4, Tmp6, ISD::SETLE); 8996 SDValue OutOps[] = { OutLo, OutHi }; 8997 return DAG.getMergeValues(OutOps, dl); 8998 } 8999 9000 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 9001 SelectionDAG &DAG) const { 9002 SDLoc dl(Op); 9003 EVT VT = Op.getValueType(); 9004 unsigned BitWidth = VT.getSizeInBits(); 9005 9006 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 9007 SDValue X = Op.getOperand(0); 9008 SDValue Y = Op.getOperand(1); 9009 SDValue Z = Op.getOperand(2); 9010 EVT AmtVT = Z.getValueType(); 9011 9012 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 9013 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 9014 // This is simpler than TargetLowering::expandFunnelShift because we can rely 9015 // on PowerPC shift by BW being well defined. 9016 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 9017 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 9018 SDValue SubZ = 9019 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 9020 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 9021 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 9022 return DAG.getNode(ISD::OR, dl, VT, X, Y); 9023 } 9024 9025 //===----------------------------------------------------------------------===// 9026 // Vector related lowering. 9027 // 9028 9029 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 9030 /// element size of SplatSize. Cast the result to VT. 9031 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 9032 SelectionDAG &DAG, const SDLoc &dl) { 9033 static const MVT VTys[] = { // canonical VT to use for each size. 9034 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 9035 }; 9036 9037 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 9038 9039 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 9040 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 9041 SplatSize = 1; 9042 Val = 0xFF; 9043 } 9044 9045 EVT CanonicalVT = VTys[SplatSize-1]; 9046 9047 // Build a canonical splat for this value. 9048 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 9049 } 9050 9051 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9052 /// specified intrinsic ID. 9053 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9054 const SDLoc &dl, EVT DestVT = MVT::Other) { 9055 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9056 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9057 DAG.getConstant(IID, dl, MVT::i32), Op); 9058 } 9059 9060 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9061 /// specified intrinsic ID. 9062 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9063 SelectionDAG &DAG, const SDLoc &dl, 9064 EVT DestVT = MVT::Other) { 9065 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9066 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9067 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9068 } 9069 9070 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9071 /// specified intrinsic ID. 9072 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9073 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9074 EVT DestVT = MVT::Other) { 9075 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9076 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9077 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9078 } 9079 9080 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9081 /// amount. The result has the specified value type. 9082 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9083 SelectionDAG &DAG, const SDLoc &dl) { 9084 // Force LHS/RHS to be the right type. 9085 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9086 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9087 9088 int Ops[16]; 9089 for (unsigned i = 0; i != 16; ++i) 9090 Ops[i] = i + Amt; 9091 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9092 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9093 } 9094 9095 /// Do we have an efficient pattern in a .td file for this node? 9096 /// 9097 /// \param V - pointer to the BuildVectorSDNode being matched 9098 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9099 /// 9100 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9101 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9102 /// the opposite is true (expansion is beneficial) are: 9103 /// - The node builds a vector out of integers that are not 32 or 64-bits 9104 /// - The node builds a vector out of constants 9105 /// - The node is a "load-and-splat" 9106 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9107 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9108 bool HasDirectMove, 9109 bool HasP8Vector) { 9110 EVT VecVT = V->getValueType(0); 9111 bool RightType = VecVT == MVT::v2f64 || 9112 (HasP8Vector && VecVT == MVT::v4f32) || 9113 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9114 if (!RightType) 9115 return false; 9116 9117 bool IsSplat = true; 9118 bool IsLoad = false; 9119 SDValue Op0 = V->getOperand(0); 9120 9121 // This function is called in a block that confirms the node is not a constant 9122 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9123 // different constants. 9124 if (V->isConstant()) 9125 return false; 9126 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9127 if (V->getOperand(i).isUndef()) 9128 return false; 9129 // We want to expand nodes that represent load-and-splat even if the 9130 // loaded value is a floating point truncation or conversion to int. 9131 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9132 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9133 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9134 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9135 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9136 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9137 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9138 IsLoad = true; 9139 // If the operands are different or the input is not a load and has more 9140 // uses than just this BV node, then it isn't a splat. 9141 if (V->getOperand(i) != Op0 || 9142 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9143 IsSplat = false; 9144 } 9145 return !(IsSplat && IsLoad); 9146 } 9147 9148 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9149 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9150 9151 SDLoc dl(Op); 9152 SDValue Op0 = Op->getOperand(0); 9153 9154 if ((Op.getValueType() != MVT::f128) || 9155 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9156 (Op0.getOperand(0).getValueType() != MVT::i64) || 9157 (Op0.getOperand(1).getValueType() != MVT::i64)) 9158 return SDValue(); 9159 9160 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9161 Op0.getOperand(1)); 9162 } 9163 9164 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9165 const SDValue *InputLoad = &Op; 9166 while (InputLoad->getOpcode() == ISD::BITCAST) 9167 InputLoad = &InputLoad->getOperand(0); 9168 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9169 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9170 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9171 InputLoad = &InputLoad->getOperand(0); 9172 } 9173 if (InputLoad->getOpcode() != ISD::LOAD) 9174 return nullptr; 9175 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9176 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9177 } 9178 9179 // Convert the argument APFloat to a single precision APFloat if there is no 9180 // loss in information during the conversion to single precision APFloat and the 9181 // resulting number is not a denormal number. Return true if successful. 9182 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9183 APFloat APFloatToConvert = ArgAPFloat; 9184 bool LosesInfo = true; 9185 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9186 &LosesInfo); 9187 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9188 if (Success) 9189 ArgAPFloat = APFloatToConvert; 9190 return Success; 9191 } 9192 9193 // Bitcast the argument APInt to a double and convert it to a single precision 9194 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9195 // argument if there is no loss in information during the conversion from 9196 // double to single precision APFloat and the resulting number is not a denormal 9197 // number. Return true if successful. 9198 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9199 double DpValue = ArgAPInt.bitsToDouble(); 9200 APFloat APFloatDp(DpValue); 9201 bool Success = convertToNonDenormSingle(APFloatDp); 9202 if (Success) 9203 ArgAPInt = APFloatDp.bitcastToAPInt(); 9204 return Success; 9205 } 9206 9207 // Nondestructive check for convertTonNonDenormSingle. 9208 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9209 // Only convert if it loses info, since XXSPLTIDP should 9210 // handle the other case. 9211 APFloat APFloatToConvert = ArgAPFloat; 9212 bool LosesInfo = true; 9213 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9214 &LosesInfo); 9215 9216 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9217 } 9218 9219 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9220 unsigned &Opcode) { 9221 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9222 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9223 return false; 9224 9225 EVT Ty = Op->getValueType(0); 9226 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9227 // as we cannot handle extending loads for these types. 9228 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9229 ISD::isNON_EXTLoad(InputNode)) 9230 return true; 9231 9232 EVT MemVT = InputNode->getMemoryVT(); 9233 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9234 // memory VT is the same vector element VT type. 9235 // The loads feeding into the v8i16 and v16i8 types will be extending because 9236 // scalar i8/i16 are not legal types. 9237 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9238 (MemVT == Ty.getVectorElementType())) 9239 return true; 9240 9241 if (Ty == MVT::v2i64) { 9242 // Check the extend type, when the input type is i32, and the output vector 9243 // type is v2i64. 9244 if (MemVT == MVT::i32) { 9245 if (ISD::isZEXTLoad(InputNode)) 9246 Opcode = PPCISD::ZEXT_LD_SPLAT; 9247 if (ISD::isSEXTLoad(InputNode)) 9248 Opcode = PPCISD::SEXT_LD_SPLAT; 9249 } 9250 return true; 9251 } 9252 return false; 9253 } 9254 9255 // If this is a case we can't handle, return null and let the default 9256 // expansion code take care of it. If we CAN select this case, and if it 9257 // selects to a single instruction, return Op. Otherwise, if we can codegen 9258 // this case more efficiently than a constant pool load, lower it to the 9259 // sequence of ops that should be used. 9260 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9261 SelectionDAG &DAG) const { 9262 SDLoc dl(Op); 9263 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9264 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9265 9266 // Check if this is a splat of a constant value. 9267 APInt APSplatBits, APSplatUndef; 9268 unsigned SplatBitSize; 9269 bool HasAnyUndefs; 9270 bool BVNIsConstantSplat = 9271 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9272 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9273 9274 // If it is a splat of a double, check if we can shrink it to a 32 bit 9275 // non-denormal float which when converted back to double gives us the same 9276 // double. This is to exploit the XXSPLTIDP instruction. 9277 // If we lose precision, we use XXSPLTI32DX. 9278 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9279 Subtarget.hasPrefixInstrs()) { 9280 // Check the type first to short-circuit so we don't modify APSplatBits if 9281 // this block isn't executed. 9282 if ((Op->getValueType(0) == MVT::v2f64) && 9283 convertToNonDenormSingle(APSplatBits)) { 9284 SDValue SplatNode = DAG.getNode( 9285 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9286 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9287 return DAG.getBitcast(Op.getValueType(), SplatNode); 9288 } else { 9289 // We may lose precision, so we have to use XXSPLTI32DX. 9290 9291 uint32_t Hi = 9292 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9293 uint32_t Lo = 9294 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9295 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9296 9297 if (!Hi || !Lo) 9298 // If either load is 0, then we should generate XXLXOR to set to 0. 9299 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9300 9301 if (Hi) 9302 SplatNode = DAG.getNode( 9303 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9304 DAG.getTargetConstant(0, dl, MVT::i32), 9305 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9306 9307 if (Lo) 9308 SplatNode = 9309 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9310 DAG.getTargetConstant(1, dl, MVT::i32), 9311 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9312 9313 return DAG.getBitcast(Op.getValueType(), SplatNode); 9314 } 9315 } 9316 9317 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9318 unsigned NewOpcode = PPCISD::LD_SPLAT; 9319 9320 // Handle load-and-splat patterns as we have instructions that will do this 9321 // in one go. 9322 if (DAG.isSplatValue(Op, true) && 9323 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9324 const SDValue *InputLoad = &Op.getOperand(0); 9325 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9326 9327 // If the input load is an extending load, it will be an i32 -> i64 9328 // extending load and isValidSplatLoad() will update NewOpcode. 9329 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9330 unsigned ElementSize = 9331 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9332 9333 assert(((ElementSize == 2 * MemorySize) 9334 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9335 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9336 : (NewOpcode == PPCISD::LD_SPLAT)) && 9337 "Unmatched element size and opcode!\n"); 9338 9339 // Checking for a single use of this load, we have to check for vector 9340 // width (128 bits) / ElementSize uses (since each operand of the 9341 // BUILD_VECTOR is a separate use of the value. 9342 unsigned NumUsesOfInputLD = 128 / ElementSize; 9343 for (SDValue BVInOp : Op->ops()) 9344 if (BVInOp.isUndef()) 9345 NumUsesOfInputLD--; 9346 9347 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9348 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9349 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9350 // 15", but function IsValidSplatLoad() now will only return true when 9351 // the data at index 0 is not nullptr. So we will not get into trouble for 9352 // these cases. 9353 // 9354 // case 1 - lfiwzx/lfiwax 9355 // 1.1: load result is i32 and is sign/zero extend to i64; 9356 // 1.2: build a v2i64 vector type with above loaded value; 9357 // 1.3: the vector has only one value at index 0, others are all undef; 9358 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9359 if (NumUsesOfInputLD == 1 && 9360 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9361 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9362 Subtarget.hasLFIWAX())) 9363 return SDValue(); 9364 9365 // case 2 - lxvr[hb]x 9366 // 2.1: load result is at most i16; 9367 // 2.2: build a vector with above loaded value; 9368 // 2.3: the vector has only one value at index 0, others are all undef; 9369 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9370 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9371 Subtarget.isISA3_1() && ElementSize <= 16) 9372 return SDValue(); 9373 9374 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9375 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9376 Subtarget.hasVSX()) { 9377 SDValue Ops[] = { 9378 LD->getChain(), // Chain 9379 LD->getBasePtr(), // Ptr 9380 DAG.getValueType(Op.getValueType()) // VT 9381 }; 9382 SDValue LdSplt = DAG.getMemIntrinsicNode( 9383 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9384 LD->getMemoryVT(), LD->getMemOperand()); 9385 // Replace all uses of the output chain of the original load with the 9386 // output chain of the new load. 9387 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9388 LdSplt.getValue(1)); 9389 return LdSplt; 9390 } 9391 } 9392 9393 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9394 // 32-bits can be lowered to VSX instructions under certain conditions. 9395 // Without VSX, there is no pattern more efficient than expanding the node. 9396 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9397 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9398 Subtarget.hasP8Vector())) 9399 return Op; 9400 return SDValue(); 9401 } 9402 9403 uint64_t SplatBits = APSplatBits.getZExtValue(); 9404 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9405 unsigned SplatSize = SplatBitSize / 8; 9406 9407 // First, handle single instruction cases. 9408 9409 // All zeros? 9410 if (SplatBits == 0) { 9411 // Canonicalize all zero vectors to be v4i32. 9412 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9413 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9414 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9415 } 9416 return Op; 9417 } 9418 9419 // We have XXSPLTIW for constant splats four bytes wide. 9420 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9421 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9422 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9423 // turned into a 4-byte splat of 0xABABABAB. 9424 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9425 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9426 Op.getValueType(), DAG, dl); 9427 9428 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9429 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9430 dl); 9431 9432 // We have XXSPLTIB for constant splats one byte wide. 9433 if (Subtarget.hasP9Vector() && SplatSize == 1) 9434 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9435 dl); 9436 9437 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9438 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9439 (32-SplatBitSize)); 9440 if (SextVal >= -16 && SextVal <= 15) 9441 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9442 dl); 9443 9444 // Two instruction sequences. 9445 9446 // If this value is in the range [-32,30] and is even, use: 9447 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9448 // If this value is in the range [17,31] and is odd, use: 9449 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9450 // If this value is in the range [-31,-17] and is odd, use: 9451 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9452 // Note the last two are three-instruction sequences. 9453 if (SextVal >= -32 && SextVal <= 31) { 9454 // To avoid having these optimizations undone by constant folding, 9455 // we convert to a pseudo that will be expanded later into one of 9456 // the above forms. 9457 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9458 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9459 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9460 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9461 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9462 if (VT == Op.getValueType()) 9463 return RetVal; 9464 else 9465 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9466 } 9467 9468 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9469 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9470 // for fneg/fabs. 9471 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9472 // Make -1 and vspltisw -1: 9473 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9474 9475 // Make the VSLW intrinsic, computing 0x8000_0000. 9476 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9477 OnesV, DAG, dl); 9478 9479 // xor by OnesV to invert it. 9480 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9481 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9482 } 9483 9484 // Check to see if this is a wide variety of vsplti*, binop self cases. 9485 static const signed char SplatCsts[] = { 9486 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9487 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9488 }; 9489 9490 for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) { 9491 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9492 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9493 int i = SplatCsts[idx]; 9494 9495 // Figure out what shift amount will be used by altivec if shifted by i in 9496 // this splat size. 9497 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9498 9499 // vsplti + shl self. 9500 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9501 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9502 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9503 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9504 Intrinsic::ppc_altivec_vslw 9505 }; 9506 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9507 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9508 } 9509 9510 // vsplti + srl self. 9511 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9512 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9513 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9514 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9515 Intrinsic::ppc_altivec_vsrw 9516 }; 9517 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9518 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9519 } 9520 9521 // vsplti + rol self. 9522 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9523 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9524 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9525 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9526 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9527 Intrinsic::ppc_altivec_vrlw 9528 }; 9529 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9530 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9531 } 9532 9533 // t = vsplti c, result = vsldoi t, t, 1 9534 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9535 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9536 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9537 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9538 } 9539 // t = vsplti c, result = vsldoi t, t, 2 9540 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9541 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9542 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9543 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9544 } 9545 // t = vsplti c, result = vsldoi t, t, 3 9546 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9547 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9548 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9549 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9550 } 9551 } 9552 9553 return SDValue(); 9554 } 9555 9556 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9557 /// the specified operations to build the shuffle. 9558 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9559 SDValue RHS, SelectionDAG &DAG, 9560 const SDLoc &dl) { 9561 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9562 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9563 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9564 9565 enum { 9566 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9567 OP_VMRGHW, 9568 OP_VMRGLW, 9569 OP_VSPLTISW0, 9570 OP_VSPLTISW1, 9571 OP_VSPLTISW2, 9572 OP_VSPLTISW3, 9573 OP_VSLDOI4, 9574 OP_VSLDOI8, 9575 OP_VSLDOI12 9576 }; 9577 9578 if (OpNum == OP_COPY) { 9579 if (LHSID == (1*9+2)*9+3) return LHS; 9580 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9581 return RHS; 9582 } 9583 9584 SDValue OpLHS, OpRHS; 9585 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9586 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9587 9588 int ShufIdxs[16]; 9589 switch (OpNum) { 9590 default: llvm_unreachable("Unknown i32 permute!"); 9591 case OP_VMRGHW: 9592 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9593 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9594 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9595 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9596 break; 9597 case OP_VMRGLW: 9598 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9599 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9600 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9601 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9602 break; 9603 case OP_VSPLTISW0: 9604 for (unsigned i = 0; i != 16; ++i) 9605 ShufIdxs[i] = (i&3)+0; 9606 break; 9607 case OP_VSPLTISW1: 9608 for (unsigned i = 0; i != 16; ++i) 9609 ShufIdxs[i] = (i&3)+4; 9610 break; 9611 case OP_VSPLTISW2: 9612 for (unsigned i = 0; i != 16; ++i) 9613 ShufIdxs[i] = (i&3)+8; 9614 break; 9615 case OP_VSPLTISW3: 9616 for (unsigned i = 0; i != 16; ++i) 9617 ShufIdxs[i] = (i&3)+12; 9618 break; 9619 case OP_VSLDOI4: 9620 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9621 case OP_VSLDOI8: 9622 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9623 case OP_VSLDOI12: 9624 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9625 } 9626 EVT VT = OpLHS.getValueType(); 9627 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9628 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9629 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9630 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9631 } 9632 9633 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9634 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9635 /// SDValue. 9636 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9637 SelectionDAG &DAG) const { 9638 const unsigned BytesInVector = 16; 9639 bool IsLE = Subtarget.isLittleEndian(); 9640 SDLoc dl(N); 9641 SDValue V1 = N->getOperand(0); 9642 SDValue V2 = N->getOperand(1); 9643 unsigned ShiftElts = 0, InsertAtByte = 0; 9644 bool Swap = false; 9645 9646 // Shifts required to get the byte we want at element 7. 9647 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9648 0, 15, 14, 13, 12, 11, 10, 9}; 9649 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9650 1, 2, 3, 4, 5, 6, 7, 8}; 9651 9652 ArrayRef<int> Mask = N->getMask(); 9653 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9654 9655 // For each mask element, find out if we're just inserting something 9656 // from V2 into V1 or vice versa. 9657 // Possible permutations inserting an element from V2 into V1: 9658 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9659 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9660 // ... 9661 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9662 // Inserting from V1 into V2 will be similar, except mask range will be 9663 // [16,31]. 9664 9665 bool FoundCandidate = false; 9666 // If both vector operands for the shuffle are the same vector, the mask 9667 // will contain only elements from the first one and the second one will be 9668 // undef. 9669 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9670 // Go through the mask of half-words to find an element that's being moved 9671 // from one vector to the other. 9672 for (unsigned i = 0; i < BytesInVector; ++i) { 9673 unsigned CurrentElement = Mask[i]; 9674 // If 2nd operand is undefined, we should only look for element 7 in the 9675 // Mask. 9676 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9677 continue; 9678 9679 bool OtherElementsInOrder = true; 9680 // Examine the other elements in the Mask to see if they're in original 9681 // order. 9682 for (unsigned j = 0; j < BytesInVector; ++j) { 9683 if (j == i) 9684 continue; 9685 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9686 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9687 // in which we always assume we're always picking from the 1st operand. 9688 int MaskOffset = 9689 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9690 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9691 OtherElementsInOrder = false; 9692 break; 9693 } 9694 } 9695 // If other elements are in original order, we record the number of shifts 9696 // we need to get the element we want into element 7. Also record which byte 9697 // in the vector we should insert into. 9698 if (OtherElementsInOrder) { 9699 // If 2nd operand is undefined, we assume no shifts and no swapping. 9700 if (V2.isUndef()) { 9701 ShiftElts = 0; 9702 Swap = false; 9703 } else { 9704 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9705 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9706 : BigEndianShifts[CurrentElement & 0xF]; 9707 Swap = CurrentElement < BytesInVector; 9708 } 9709 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9710 FoundCandidate = true; 9711 break; 9712 } 9713 } 9714 9715 if (!FoundCandidate) 9716 return SDValue(); 9717 9718 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9719 // optionally with VECSHL if shift is required. 9720 if (Swap) 9721 std::swap(V1, V2); 9722 if (V2.isUndef()) 9723 V2 = V1; 9724 if (ShiftElts) { 9725 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9726 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9727 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9728 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9729 } 9730 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9731 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9732 } 9733 9734 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9735 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9736 /// SDValue. 9737 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9738 SelectionDAG &DAG) const { 9739 const unsigned NumHalfWords = 8; 9740 const unsigned BytesInVector = NumHalfWords * 2; 9741 // Check that the shuffle is on half-words. 9742 if (!isNByteElemShuffleMask(N, 2, 1)) 9743 return SDValue(); 9744 9745 bool IsLE = Subtarget.isLittleEndian(); 9746 SDLoc dl(N); 9747 SDValue V1 = N->getOperand(0); 9748 SDValue V2 = N->getOperand(1); 9749 unsigned ShiftElts = 0, InsertAtByte = 0; 9750 bool Swap = false; 9751 9752 // Shifts required to get the half-word we want at element 3. 9753 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9754 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9755 9756 uint32_t Mask = 0; 9757 uint32_t OriginalOrderLow = 0x1234567; 9758 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9759 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9760 // 32-bit space, only need 4-bit nibbles per element. 9761 for (unsigned i = 0; i < NumHalfWords; ++i) { 9762 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9763 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9764 } 9765 9766 // For each mask element, find out if we're just inserting something 9767 // from V2 into V1 or vice versa. Possible permutations inserting an element 9768 // from V2 into V1: 9769 // X, 1, 2, 3, 4, 5, 6, 7 9770 // 0, X, 2, 3, 4, 5, 6, 7 9771 // 0, 1, X, 3, 4, 5, 6, 7 9772 // 0, 1, 2, X, 4, 5, 6, 7 9773 // 0, 1, 2, 3, X, 5, 6, 7 9774 // 0, 1, 2, 3, 4, X, 6, 7 9775 // 0, 1, 2, 3, 4, 5, X, 7 9776 // 0, 1, 2, 3, 4, 5, 6, X 9777 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9778 9779 bool FoundCandidate = false; 9780 // Go through the mask of half-words to find an element that's being moved 9781 // from one vector to the other. 9782 for (unsigned i = 0; i < NumHalfWords; ++i) { 9783 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9784 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9785 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9786 uint32_t TargetOrder = 0x0; 9787 9788 // If both vector operands for the shuffle are the same vector, the mask 9789 // will contain only elements from the first one and the second one will be 9790 // undef. 9791 if (V2.isUndef()) { 9792 ShiftElts = 0; 9793 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9794 TargetOrder = OriginalOrderLow; 9795 Swap = false; 9796 // Skip if not the correct element or mask of other elements don't equal 9797 // to our expected order. 9798 if (MaskOneElt == VINSERTHSrcElem && 9799 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9800 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9801 FoundCandidate = true; 9802 break; 9803 } 9804 } else { // If both operands are defined. 9805 // Target order is [8,15] if the current mask is between [0,7]. 9806 TargetOrder = 9807 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9808 // Skip if mask of other elements don't equal our expected order. 9809 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9810 // We only need the last 3 bits for the number of shifts. 9811 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9812 : BigEndianShifts[MaskOneElt & 0x7]; 9813 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9814 Swap = MaskOneElt < NumHalfWords; 9815 FoundCandidate = true; 9816 break; 9817 } 9818 } 9819 } 9820 9821 if (!FoundCandidate) 9822 return SDValue(); 9823 9824 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9825 // optionally with VECSHL if shift is required. 9826 if (Swap) 9827 std::swap(V1, V2); 9828 if (V2.isUndef()) 9829 V2 = V1; 9830 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9831 if (ShiftElts) { 9832 // Double ShiftElts because we're left shifting on v16i8 type. 9833 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9834 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9835 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9836 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9837 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9838 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9839 } 9840 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9841 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9842 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9843 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9844 } 9845 9846 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9847 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9848 /// return the default SDValue. 9849 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9850 SelectionDAG &DAG) const { 9851 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9852 // to v16i8. Peek through the bitcasts to get the actual operands. 9853 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9854 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9855 9856 auto ShuffleMask = SVN->getMask(); 9857 SDValue VecShuffle(SVN, 0); 9858 SDLoc DL(SVN); 9859 9860 // Check that we have a four byte shuffle. 9861 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9862 return SDValue(); 9863 9864 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9865 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9866 std::swap(LHS, RHS); 9867 VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN)); 9868 ShuffleVectorSDNode *CommutedSV = dyn_cast<ShuffleVectorSDNode>(VecShuffle); 9869 if (!CommutedSV) 9870 return SDValue(); 9871 ShuffleMask = CommutedSV->getMask(); 9872 } 9873 9874 // Ensure that the RHS is a vector of constants. 9875 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9876 if (!BVN) 9877 return SDValue(); 9878 9879 // Check if RHS is a splat of 4-bytes (or smaller). 9880 APInt APSplatValue, APSplatUndef; 9881 unsigned SplatBitSize; 9882 bool HasAnyUndefs; 9883 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9884 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9885 SplatBitSize > 32) 9886 return SDValue(); 9887 9888 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9889 // The instruction splats a constant C into two words of the source vector 9890 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9891 // Thus we check that the shuffle mask is the equivalent of 9892 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9893 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9894 // within each word are consecutive, so we only need to check the first byte. 9895 SDValue Index; 9896 bool IsLE = Subtarget.isLittleEndian(); 9897 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9898 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9899 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9900 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9901 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9902 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9903 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9904 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9905 else 9906 return SDValue(); 9907 9908 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9909 // for XXSPLTI32DX. 9910 unsigned SplatVal = APSplatValue.getZExtValue(); 9911 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9912 SplatVal |= (SplatVal << SplatBitSize); 9913 9914 SDValue SplatNode = DAG.getNode( 9915 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9916 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9917 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9918 } 9919 9920 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9921 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9922 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9923 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9924 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9925 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9926 assert(Op.getValueType() == MVT::v1i128 && 9927 "Only set v1i128 as custom, other type shouldn't reach here!"); 9928 SDLoc dl(Op); 9929 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9930 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9931 unsigned SHLAmt = N1.getConstantOperandVal(0); 9932 if (SHLAmt % 8 == 0) { 9933 std::array<int, 16> Mask; 9934 std::iota(Mask.begin(), Mask.end(), 0); 9935 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9936 if (SDValue Shuffle = 9937 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9938 DAG.getUNDEF(MVT::v16i8), Mask)) 9939 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9940 } 9941 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9942 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9943 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9944 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9945 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9946 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9947 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9948 } 9949 9950 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9951 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9952 /// return the code it can be lowered into. Worst case, it can always be 9953 /// lowered into a vperm. 9954 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9955 SelectionDAG &DAG) const { 9956 SDLoc dl(Op); 9957 SDValue V1 = Op.getOperand(0); 9958 SDValue V2 = Op.getOperand(1); 9959 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9960 9961 // Any nodes that were combined in the target-independent combiner prior 9962 // to vector legalization will not be sent to the target combine. Try to 9963 // combine it here. 9964 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9965 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9966 return NewShuffle; 9967 Op = NewShuffle; 9968 SVOp = cast<ShuffleVectorSDNode>(Op); 9969 V1 = Op.getOperand(0); 9970 V2 = Op.getOperand(1); 9971 } 9972 EVT VT = Op.getValueType(); 9973 bool isLittleEndian = Subtarget.isLittleEndian(); 9974 9975 unsigned ShiftElts, InsertAtByte; 9976 bool Swap = false; 9977 9978 // If this is a load-and-splat, we can do that with a single instruction 9979 // in some cases. However if the load has multiple uses, we don't want to 9980 // combine it because that will just produce multiple loads. 9981 bool IsPermutedLoad = false; 9982 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9983 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9984 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9985 InputLoad->hasOneUse()) { 9986 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9987 int SplatIdx = 9988 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9989 9990 // The splat index for permuted loads will be in the left half of the vector 9991 // which is strictly wider than the loaded value by 8 bytes. So we need to 9992 // adjust the splat index to point to the correct address in memory. 9993 if (IsPermutedLoad) { 9994 assert((isLittleEndian || IsFourByte) && 9995 "Unexpected size for permuted load on big endian target"); 9996 SplatIdx += IsFourByte ? 2 : 1; 9997 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9998 "Splat of a value outside of the loaded memory"); 9999 } 10000 10001 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 10002 // For 4-byte load-and-splat, we need Power9. 10003 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 10004 uint64_t Offset = 0; 10005 if (IsFourByte) 10006 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 10007 else 10008 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 10009 10010 // If the width of the load is the same as the width of the splat, 10011 // loading with an offset would load the wrong memory. 10012 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 10013 Offset = 0; 10014 10015 SDValue BasePtr = LD->getBasePtr(); 10016 if (Offset != 0) 10017 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 10018 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 10019 SDValue Ops[] = { 10020 LD->getChain(), // Chain 10021 BasePtr, // BasePtr 10022 DAG.getValueType(Op.getValueType()) // VT 10023 }; 10024 SDVTList VTL = 10025 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 10026 SDValue LdSplt = 10027 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 10028 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10029 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 10030 if (LdSplt.getValueType() != SVOp->getValueType(0)) 10031 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 10032 return LdSplt; 10033 } 10034 } 10035 10036 // All v2i64 and v2f64 shuffles are legal 10037 if (VT == MVT::v2i64 || VT == MVT::v2f64) 10038 return Op; 10039 10040 if (Subtarget.hasP9Vector() && 10041 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 10042 isLittleEndian)) { 10043 if (Swap) 10044 std::swap(V1, V2); 10045 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10046 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 10047 if (ShiftElts) { 10048 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 10049 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10050 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 10051 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10052 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10053 } 10054 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 10055 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10056 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10057 } 10058 10059 if (Subtarget.hasPrefixInstrs()) { 10060 SDValue SplatInsertNode; 10061 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 10062 return SplatInsertNode; 10063 } 10064 10065 if (Subtarget.hasP9Altivec()) { 10066 SDValue NewISDNode; 10067 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 10068 return NewISDNode; 10069 10070 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 10071 return NewISDNode; 10072 } 10073 10074 if (Subtarget.hasVSX() && 10075 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10076 if (Swap) 10077 std::swap(V1, V2); 10078 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10079 SDValue Conv2 = 10080 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 10081 10082 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 10083 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10084 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 10085 } 10086 10087 if (Subtarget.hasVSX() && 10088 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10089 if (Swap) 10090 std::swap(V1, V2); 10091 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10092 SDValue Conv2 = 10093 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10094 10095 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10096 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10097 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10098 } 10099 10100 if (Subtarget.hasP9Vector()) { 10101 if (PPC::isXXBRHShuffleMask(SVOp)) { 10102 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10103 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10104 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10105 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10106 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10107 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10108 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10109 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10110 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10111 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10112 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10113 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10114 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10115 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10116 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10117 } 10118 } 10119 10120 if (Subtarget.hasVSX()) { 10121 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10122 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10123 10124 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10125 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10126 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10127 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10128 } 10129 10130 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10131 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10132 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10133 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10134 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10135 } 10136 } 10137 10138 // Cases that are handled by instructions that take permute immediates 10139 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10140 // selected by the instruction selector. 10141 if (V2.isUndef()) { 10142 if (PPC::isSplatShuffleMask(SVOp, 1) || 10143 PPC::isSplatShuffleMask(SVOp, 2) || 10144 PPC::isSplatShuffleMask(SVOp, 4) || 10145 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10146 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10147 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10148 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10149 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10150 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10151 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10152 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10153 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10154 (Subtarget.hasP8Altivec() && ( 10155 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10156 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10157 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10158 return Op; 10159 } 10160 } 10161 10162 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10163 // and produce a fixed permutation. If any of these match, do not lower to 10164 // VPERM. 10165 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10166 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10167 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10168 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10169 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10170 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10171 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10172 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10173 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10174 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10175 (Subtarget.hasP8Altivec() && ( 10176 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10177 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10178 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10179 return Op; 10180 10181 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10182 // perfect shuffle table to emit an optimal matching sequence. 10183 ArrayRef<int> PermMask = SVOp->getMask(); 10184 10185 if (!DisablePerfectShuffle && !isLittleEndian) { 10186 unsigned PFIndexes[4]; 10187 bool isFourElementShuffle = true; 10188 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10189 ++i) { // Element number 10190 unsigned EltNo = 8; // Start out undef. 10191 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10192 if (PermMask[i * 4 + j] < 0) 10193 continue; // Undef, ignore it. 10194 10195 unsigned ByteSource = PermMask[i * 4 + j]; 10196 if ((ByteSource & 3) != j) { 10197 isFourElementShuffle = false; 10198 break; 10199 } 10200 10201 if (EltNo == 8) { 10202 EltNo = ByteSource / 4; 10203 } else if (EltNo != ByteSource / 4) { 10204 isFourElementShuffle = false; 10205 break; 10206 } 10207 } 10208 PFIndexes[i] = EltNo; 10209 } 10210 10211 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10212 // perfect shuffle vector to determine if it is cost effective to do this as 10213 // discrete instructions, or whether we should use a vperm. 10214 // For now, we skip this for little endian until such time as we have a 10215 // little-endian perfect shuffle table. 10216 if (isFourElementShuffle) { 10217 // Compute the index in the perfect shuffle table. 10218 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10219 PFIndexes[2] * 9 + PFIndexes[3]; 10220 10221 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10222 unsigned Cost = (PFEntry >> 30); 10223 10224 // Determining when to avoid vperm is tricky. Many things affect the cost 10225 // of vperm, particularly how many times the perm mask needs to be 10226 // computed. For example, if the perm mask can be hoisted out of a loop or 10227 // is already used (perhaps because there are multiple permutes with the 10228 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10229 // permute mask out of the loop requires an extra register. 10230 // 10231 // As a compromise, we only emit discrete instructions if the shuffle can 10232 // be generated in 3 or fewer operations. When we have loop information 10233 // available, if this block is within a loop, we should avoid using vperm 10234 // for 3-operation perms and use a constant pool load instead. 10235 if (Cost < 3) 10236 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10237 } 10238 } 10239 10240 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10241 // vector that will get spilled to the constant pool. 10242 if (V2.isUndef()) V2 = V1; 10243 10244 return LowerVPERM(Op, DAG, PermMask, VT, V1, V2); 10245 } 10246 10247 SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG, 10248 ArrayRef<int> PermMask, EVT VT, 10249 SDValue V1, SDValue V2) const { 10250 unsigned Opcode = PPCISD::VPERM; 10251 EVT ValType = V1.getValueType(); 10252 SDLoc dl(Op); 10253 bool NeedSwap = false; 10254 bool isLittleEndian = Subtarget.isLittleEndian(); 10255 bool isPPC64 = Subtarget.isPPC64(); 10256 10257 // Only need to place items backwards in LE, 10258 // the mask will be properly calculated. 10259 if (isLittleEndian) 10260 std::swap(V1, V2); 10261 10262 if (Subtarget.hasVSX() && Subtarget.hasP9Vector() && 10263 (V1->hasOneUse() || V2->hasOneUse())) { 10264 LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using " 10265 "XXPERM instead\n"); 10266 Opcode = PPCISD::XXPERM; 10267 10268 // The second input to XXPERM is also an output so if the second input has 10269 // multiple uses then copying is necessary, as a result we want the 10270 // single-use operand to be used as the second input to prevent copying. 10271 if (!V2->hasOneUse() && V1->hasOneUse()) { 10272 std::swap(V1, V2); 10273 NeedSwap = !NeedSwap; 10274 } 10275 } 10276 10277 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10278 // that it is in input element units, not in bytes. Convert now. 10279 10280 // For little endian, the order of the input vectors is reversed, and 10281 // the permutation mask is complemented with respect to 31. This is 10282 // necessary to produce proper semantics with the big-endian-based vperm 10283 // instruction. 10284 EVT EltVT = V1.getValueType().getVectorElementType(); 10285 unsigned BytesPerElement = EltVT.getSizeInBits() / 8; 10286 10287 bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; 10288 bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; 10289 10290 /* 10291 Vectors will be appended like so: [ V1 | v2 ] 10292 XXSWAPD on V1: 10293 [ A | B | C | D ] -> [ C | D | A | B ] 10294 0-3 4-7 8-11 12-15 0-3 4-7 8-11 12-15 10295 i.e. index of A, B += 8, and index of C, D -= 8. 10296 XXSWAPD on V2: 10297 [ E | F | G | H ] -> [ G | H | E | F ] 10298 16-19 20-23 24-27 28-31 16-19 20-23 24-27 28-31 10299 i.e. index of E, F += 8, index of G, H -= 8 10300 Swap V1 and V2: 10301 [ V1 | V2 ] -> [ V2 | V1 ] 10302 0-15 16-31 0-15 16-31 10303 i.e. index of V1 += 16, index of V2 -= 16 10304 */ 10305 10306 SmallVector<SDValue, 16> ResultMask; 10307 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10308 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10309 10310 if (Opcode == PPCISD::XXPERM) { 10311 if (V1HasXXSWAPD) { 10312 if (SrcElt < 8) 10313 SrcElt += 8; 10314 else if (SrcElt < 16) 10315 SrcElt -= 8; 10316 } 10317 if (V2HasXXSWAPD) { 10318 if (SrcElt > 23) 10319 SrcElt -= 8; 10320 else if (SrcElt > 15) 10321 SrcElt += 8; 10322 } 10323 if (NeedSwap) { 10324 if (SrcElt < 16) 10325 SrcElt += 16; 10326 else 10327 SrcElt -= 16; 10328 } 10329 } 10330 10331 for (unsigned j = 0; j != BytesPerElement; ++j) 10332 if (isLittleEndian) 10333 ResultMask.push_back( 10334 DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32)); 10335 else 10336 ResultMask.push_back( 10337 DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32)); 10338 } 10339 10340 if (Opcode == PPCISD::XXPERM && (V1HasXXSWAPD || V2HasXXSWAPD)) { 10341 if (V1HasXXSWAPD) { 10342 dl = SDLoc(V1->getOperand(0)); 10343 V1 = V1->getOperand(0)->getOperand(1); 10344 } 10345 if (V2HasXXSWAPD) { 10346 dl = SDLoc(V2->getOperand(0)); 10347 V2 = V2->getOperand(0)->getOperand(1); 10348 } 10349 if (isPPC64 && ValType != MVT::v2f64) 10350 V1 = DAG.getBitcast(MVT::v2f64, V1); 10351 if (isPPC64 && V2.getValueType() != MVT::v2f64) 10352 V2 = DAG.getBitcast(MVT::v2f64, V2); 10353 } 10354 10355 ShufflesHandledWithVPERM++; 10356 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10357 LLVM_DEBUG({ 10358 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 10359 if (Opcode == PPCISD::XXPERM) { 10360 dbgs() << "Emitting a XXPERM for the following shuffle:\n"; 10361 } else { 10362 dbgs() << "Emitting a VPERM for the following shuffle:\n"; 10363 } 10364 SVOp->dump(); 10365 dbgs() << "With the following permute control vector:\n"; 10366 VPermMask.dump(); 10367 }); 10368 10369 if (Opcode == PPCISD::XXPERM) 10370 VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask); 10371 10372 SDValue VPERMNode = 10373 DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask); 10374 10375 VPERMNode = DAG.getBitcast(ValType, VPERMNode); 10376 return VPERMNode; 10377 } 10378 10379 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10380 /// vector comparison. If it is, return true and fill in Opc/isDot with 10381 /// information about the intrinsic. 10382 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10383 bool &isDot, const PPCSubtarget &Subtarget) { 10384 unsigned IntrinsicID = 10385 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10386 CompareOpc = -1; 10387 isDot = false; 10388 switch (IntrinsicID) { 10389 default: 10390 return false; 10391 // Comparison predicates. 10392 case Intrinsic::ppc_altivec_vcmpbfp_p: 10393 CompareOpc = 966; 10394 isDot = true; 10395 break; 10396 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10397 CompareOpc = 198; 10398 isDot = true; 10399 break; 10400 case Intrinsic::ppc_altivec_vcmpequb_p: 10401 CompareOpc = 6; 10402 isDot = true; 10403 break; 10404 case Intrinsic::ppc_altivec_vcmpequh_p: 10405 CompareOpc = 70; 10406 isDot = true; 10407 break; 10408 case Intrinsic::ppc_altivec_vcmpequw_p: 10409 CompareOpc = 134; 10410 isDot = true; 10411 break; 10412 case Intrinsic::ppc_altivec_vcmpequd_p: 10413 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10414 CompareOpc = 199; 10415 isDot = true; 10416 } else 10417 return false; 10418 break; 10419 case Intrinsic::ppc_altivec_vcmpneb_p: 10420 case Intrinsic::ppc_altivec_vcmpneh_p: 10421 case Intrinsic::ppc_altivec_vcmpnew_p: 10422 case Intrinsic::ppc_altivec_vcmpnezb_p: 10423 case Intrinsic::ppc_altivec_vcmpnezh_p: 10424 case Intrinsic::ppc_altivec_vcmpnezw_p: 10425 if (Subtarget.hasP9Altivec()) { 10426 switch (IntrinsicID) { 10427 default: 10428 llvm_unreachable("Unknown comparison intrinsic."); 10429 case Intrinsic::ppc_altivec_vcmpneb_p: 10430 CompareOpc = 7; 10431 break; 10432 case Intrinsic::ppc_altivec_vcmpneh_p: 10433 CompareOpc = 71; 10434 break; 10435 case Intrinsic::ppc_altivec_vcmpnew_p: 10436 CompareOpc = 135; 10437 break; 10438 case Intrinsic::ppc_altivec_vcmpnezb_p: 10439 CompareOpc = 263; 10440 break; 10441 case Intrinsic::ppc_altivec_vcmpnezh_p: 10442 CompareOpc = 327; 10443 break; 10444 case Intrinsic::ppc_altivec_vcmpnezw_p: 10445 CompareOpc = 391; 10446 break; 10447 } 10448 isDot = true; 10449 } else 10450 return false; 10451 break; 10452 case Intrinsic::ppc_altivec_vcmpgefp_p: 10453 CompareOpc = 454; 10454 isDot = true; 10455 break; 10456 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10457 CompareOpc = 710; 10458 isDot = true; 10459 break; 10460 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10461 CompareOpc = 774; 10462 isDot = true; 10463 break; 10464 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10465 CompareOpc = 838; 10466 isDot = true; 10467 break; 10468 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10469 CompareOpc = 902; 10470 isDot = true; 10471 break; 10472 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10473 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10474 CompareOpc = 967; 10475 isDot = true; 10476 } else 10477 return false; 10478 break; 10479 case Intrinsic::ppc_altivec_vcmpgtub_p: 10480 CompareOpc = 518; 10481 isDot = true; 10482 break; 10483 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10484 CompareOpc = 582; 10485 isDot = true; 10486 break; 10487 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10488 CompareOpc = 646; 10489 isDot = true; 10490 break; 10491 case Intrinsic::ppc_altivec_vcmpgtud_p: 10492 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10493 CompareOpc = 711; 10494 isDot = true; 10495 } else 10496 return false; 10497 break; 10498 10499 case Intrinsic::ppc_altivec_vcmpequq: 10500 case Intrinsic::ppc_altivec_vcmpgtsq: 10501 case Intrinsic::ppc_altivec_vcmpgtuq: 10502 if (!Subtarget.isISA3_1()) 10503 return false; 10504 switch (IntrinsicID) { 10505 default: 10506 llvm_unreachable("Unknown comparison intrinsic."); 10507 case Intrinsic::ppc_altivec_vcmpequq: 10508 CompareOpc = 455; 10509 break; 10510 case Intrinsic::ppc_altivec_vcmpgtsq: 10511 CompareOpc = 903; 10512 break; 10513 case Intrinsic::ppc_altivec_vcmpgtuq: 10514 CompareOpc = 647; 10515 break; 10516 } 10517 break; 10518 10519 // VSX predicate comparisons use the same infrastructure 10520 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10521 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10522 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10523 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10524 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10525 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10526 if (Subtarget.hasVSX()) { 10527 switch (IntrinsicID) { 10528 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10529 CompareOpc = 99; 10530 break; 10531 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10532 CompareOpc = 115; 10533 break; 10534 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10535 CompareOpc = 107; 10536 break; 10537 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10538 CompareOpc = 67; 10539 break; 10540 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10541 CompareOpc = 83; 10542 break; 10543 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10544 CompareOpc = 75; 10545 break; 10546 } 10547 isDot = true; 10548 } else 10549 return false; 10550 break; 10551 10552 // Normal Comparisons. 10553 case Intrinsic::ppc_altivec_vcmpbfp: 10554 CompareOpc = 966; 10555 break; 10556 case Intrinsic::ppc_altivec_vcmpeqfp: 10557 CompareOpc = 198; 10558 break; 10559 case Intrinsic::ppc_altivec_vcmpequb: 10560 CompareOpc = 6; 10561 break; 10562 case Intrinsic::ppc_altivec_vcmpequh: 10563 CompareOpc = 70; 10564 break; 10565 case Intrinsic::ppc_altivec_vcmpequw: 10566 CompareOpc = 134; 10567 break; 10568 case Intrinsic::ppc_altivec_vcmpequd: 10569 if (Subtarget.hasP8Altivec()) 10570 CompareOpc = 199; 10571 else 10572 return false; 10573 break; 10574 case Intrinsic::ppc_altivec_vcmpneb: 10575 case Intrinsic::ppc_altivec_vcmpneh: 10576 case Intrinsic::ppc_altivec_vcmpnew: 10577 case Intrinsic::ppc_altivec_vcmpnezb: 10578 case Intrinsic::ppc_altivec_vcmpnezh: 10579 case Intrinsic::ppc_altivec_vcmpnezw: 10580 if (Subtarget.hasP9Altivec()) 10581 switch (IntrinsicID) { 10582 default: 10583 llvm_unreachable("Unknown comparison intrinsic."); 10584 case Intrinsic::ppc_altivec_vcmpneb: 10585 CompareOpc = 7; 10586 break; 10587 case Intrinsic::ppc_altivec_vcmpneh: 10588 CompareOpc = 71; 10589 break; 10590 case Intrinsic::ppc_altivec_vcmpnew: 10591 CompareOpc = 135; 10592 break; 10593 case Intrinsic::ppc_altivec_vcmpnezb: 10594 CompareOpc = 263; 10595 break; 10596 case Intrinsic::ppc_altivec_vcmpnezh: 10597 CompareOpc = 327; 10598 break; 10599 case Intrinsic::ppc_altivec_vcmpnezw: 10600 CompareOpc = 391; 10601 break; 10602 } 10603 else 10604 return false; 10605 break; 10606 case Intrinsic::ppc_altivec_vcmpgefp: 10607 CompareOpc = 454; 10608 break; 10609 case Intrinsic::ppc_altivec_vcmpgtfp: 10610 CompareOpc = 710; 10611 break; 10612 case Intrinsic::ppc_altivec_vcmpgtsb: 10613 CompareOpc = 774; 10614 break; 10615 case Intrinsic::ppc_altivec_vcmpgtsh: 10616 CompareOpc = 838; 10617 break; 10618 case Intrinsic::ppc_altivec_vcmpgtsw: 10619 CompareOpc = 902; 10620 break; 10621 case Intrinsic::ppc_altivec_vcmpgtsd: 10622 if (Subtarget.hasP8Altivec()) 10623 CompareOpc = 967; 10624 else 10625 return false; 10626 break; 10627 case Intrinsic::ppc_altivec_vcmpgtub: 10628 CompareOpc = 518; 10629 break; 10630 case Intrinsic::ppc_altivec_vcmpgtuh: 10631 CompareOpc = 582; 10632 break; 10633 case Intrinsic::ppc_altivec_vcmpgtuw: 10634 CompareOpc = 646; 10635 break; 10636 case Intrinsic::ppc_altivec_vcmpgtud: 10637 if (Subtarget.hasP8Altivec()) 10638 CompareOpc = 711; 10639 else 10640 return false; 10641 break; 10642 case Intrinsic::ppc_altivec_vcmpequq_p: 10643 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10644 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10645 if (!Subtarget.isISA3_1()) 10646 return false; 10647 switch (IntrinsicID) { 10648 default: 10649 llvm_unreachable("Unknown comparison intrinsic."); 10650 case Intrinsic::ppc_altivec_vcmpequq_p: 10651 CompareOpc = 455; 10652 break; 10653 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10654 CompareOpc = 903; 10655 break; 10656 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10657 CompareOpc = 647; 10658 break; 10659 } 10660 isDot = true; 10661 break; 10662 } 10663 return true; 10664 } 10665 10666 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10667 /// lower, do it, otherwise return null. 10668 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10669 SelectionDAG &DAG) const { 10670 unsigned IntrinsicID = 10671 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10672 10673 SDLoc dl(Op); 10674 10675 switch (IntrinsicID) { 10676 case Intrinsic::thread_pointer: 10677 // Reads the thread pointer register, used for __builtin_thread_pointer. 10678 if (Subtarget.isPPC64()) 10679 return DAG.getRegister(PPC::X13, MVT::i64); 10680 return DAG.getRegister(PPC::R2, MVT::i32); 10681 10682 case Intrinsic::ppc_mma_disassemble_acc: { 10683 if (Subtarget.isISAFuture()) { 10684 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; 10685 SDValue WideVec = SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl, 10686 ArrayRef(ReturnTypes, 2), 10687 Op.getOperand(1)), 10688 0); 10689 SmallVector<SDValue, 4> RetOps; 10690 SDValue Value = SDValue(WideVec.getNode(), 0); 10691 SDValue Value2 = SDValue(WideVec.getNode(), 1); 10692 10693 SDValue Extract; 10694 Extract = DAG.getNode( 10695 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10696 Subtarget.isLittleEndian() ? Value2 : Value, 10697 DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, 10698 dl, getPointerTy(DAG.getDataLayout()))); 10699 RetOps.push_back(Extract); 10700 Extract = DAG.getNode( 10701 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10702 Subtarget.isLittleEndian() ? Value2 : Value, 10703 DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, 10704 dl, getPointerTy(DAG.getDataLayout()))); 10705 RetOps.push_back(Extract); 10706 Extract = DAG.getNode( 10707 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10708 Subtarget.isLittleEndian() ? Value : Value2, 10709 DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, 10710 dl, getPointerTy(DAG.getDataLayout()))); 10711 RetOps.push_back(Extract); 10712 Extract = DAG.getNode( 10713 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 10714 Subtarget.isLittleEndian() ? Value : Value2, 10715 DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, 10716 dl, getPointerTy(DAG.getDataLayout()))); 10717 RetOps.push_back(Extract); 10718 return DAG.getMergeValues(RetOps, dl); 10719 } 10720 [[fallthrough]]; 10721 } 10722 case Intrinsic::ppc_vsx_disassemble_pair: { 10723 int NumVecs = 2; 10724 SDValue WideVec = Op.getOperand(1); 10725 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10726 NumVecs = 4; 10727 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10728 } 10729 SmallVector<SDValue, 4> RetOps; 10730 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10731 SDValue Extract = DAG.getNode( 10732 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10733 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10734 : VecNo, 10735 dl, getPointerTy(DAG.getDataLayout()))); 10736 RetOps.push_back(Extract); 10737 } 10738 return DAG.getMergeValues(RetOps, dl); 10739 } 10740 10741 case Intrinsic::ppc_mma_xxmfacc: 10742 case Intrinsic::ppc_mma_xxmtacc: { 10743 // Allow pre-isa-future subtargets to lower as normal. 10744 if (!Subtarget.isISAFuture()) 10745 return SDValue(); 10746 // The intrinsics for xxmtacc and xxmfacc take one argument of 10747 // type v512i1, for future cpu the corresponding wacc instruction 10748 // dmxx[inst|extf]dmr512 is always generated for type v512i1, negating 10749 // the need to produce the xxm[t|f]acc. 10750 SDValue WideVec = Op.getOperand(1); 10751 DAG.ReplaceAllUsesWith(Op, WideVec); 10752 return SDValue(); 10753 } 10754 10755 case Intrinsic::ppc_unpack_longdouble: { 10756 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10757 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10758 "Argument of long double unpack must be 0 or 1!"); 10759 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10760 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10761 Idx->getValueType(0))); 10762 } 10763 10764 case Intrinsic::ppc_compare_exp_lt: 10765 case Intrinsic::ppc_compare_exp_gt: 10766 case Intrinsic::ppc_compare_exp_eq: 10767 case Intrinsic::ppc_compare_exp_uo: { 10768 unsigned Pred; 10769 switch (IntrinsicID) { 10770 case Intrinsic::ppc_compare_exp_lt: 10771 Pred = PPC::PRED_LT; 10772 break; 10773 case Intrinsic::ppc_compare_exp_gt: 10774 Pred = PPC::PRED_GT; 10775 break; 10776 case Intrinsic::ppc_compare_exp_eq: 10777 Pred = PPC::PRED_EQ; 10778 break; 10779 case Intrinsic::ppc_compare_exp_uo: 10780 Pred = PPC::PRED_UN; 10781 break; 10782 } 10783 return SDValue( 10784 DAG.getMachineNode( 10785 PPC::SELECT_CC_I4, dl, MVT::i32, 10786 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10787 Op.getOperand(1), Op.getOperand(2)), 10788 0), 10789 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10790 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10791 0); 10792 } 10793 case Intrinsic::ppc_test_data_class: { 10794 EVT OpVT = Op.getOperand(1).getValueType(); 10795 unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP 10796 : (OpVT == MVT::f64 ? PPC::XSTSTDCDP 10797 : PPC::XSTSTDCSP); 10798 return SDValue( 10799 DAG.getMachineNode( 10800 PPC::SELECT_CC_I4, dl, MVT::i32, 10801 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10802 Op.getOperand(1)), 10803 0), 10804 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10805 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10806 0); 10807 } 10808 case Intrinsic::ppc_fnmsub: { 10809 EVT VT = Op.getOperand(1).getValueType(); 10810 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) 10811 return DAG.getNode( 10812 ISD::FNEG, dl, VT, 10813 DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), 10814 DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); 10815 return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), 10816 Op.getOperand(2), Op.getOperand(3)); 10817 } 10818 case Intrinsic::ppc_convert_f128_to_ppcf128: 10819 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10820 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10821 ? RTLIB::CONVERT_PPCF128_F128 10822 : RTLIB::CONVERT_F128_PPCF128; 10823 MakeLibCallOptions CallOptions; 10824 std::pair<SDValue, SDValue> Result = 10825 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10826 dl, SDValue()); 10827 return Result.first; 10828 } 10829 case Intrinsic::ppc_maxfe: 10830 case Intrinsic::ppc_maxfl: 10831 case Intrinsic::ppc_maxfs: 10832 case Intrinsic::ppc_minfe: 10833 case Intrinsic::ppc_minfl: 10834 case Intrinsic::ppc_minfs: { 10835 EVT VT = Op.getValueType(); 10836 assert( 10837 all_of(Op->ops().drop_front(4), 10838 [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && 10839 "ppc_[max|min]f[e|l|s] must have uniform type arguments"); 10840 (void)VT; 10841 ISD::CondCode CC = ISD::SETGT; 10842 if (IntrinsicID == Intrinsic::ppc_minfe || 10843 IntrinsicID == Intrinsic::ppc_minfl || 10844 IntrinsicID == Intrinsic::ppc_minfs) 10845 CC = ISD::SETLT; 10846 unsigned I = Op.getNumOperands() - 2, Cnt = I; 10847 SDValue Res = Op.getOperand(I); 10848 for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { 10849 Res = 10850 DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); 10851 } 10852 return Res; 10853 } 10854 } 10855 10856 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10857 // opcode number of the comparison. 10858 int CompareOpc; 10859 bool isDot; 10860 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10861 return SDValue(); // Don't custom lower most intrinsics. 10862 10863 // If this is a non-dot comparison, make the VCMP node and we are done. 10864 if (!isDot) { 10865 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10866 Op.getOperand(1), Op.getOperand(2), 10867 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10868 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10869 } 10870 10871 // Create the PPCISD altivec 'dot' comparison node. 10872 SDValue Ops[] = { 10873 Op.getOperand(2), // LHS 10874 Op.getOperand(3), // RHS 10875 DAG.getConstant(CompareOpc, dl, MVT::i32) 10876 }; 10877 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10878 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10879 10880 // Now that we have the comparison, emit a copy from the CR to a GPR. 10881 // This is flagged to the above dot comparison. 10882 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10883 DAG.getRegister(PPC::CR6, MVT::i32), 10884 CompNode.getValue(1)); 10885 10886 // Unpack the result based on how the target uses it. 10887 unsigned BitNo; // Bit # of CR6. 10888 bool InvertBit; // Invert result? 10889 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10890 default: // Can't happen, don't crash on invalid number though. 10891 case 0: // Return the value of the EQ bit of CR6. 10892 BitNo = 0; InvertBit = false; 10893 break; 10894 case 1: // Return the inverted value of the EQ bit of CR6. 10895 BitNo = 0; InvertBit = true; 10896 break; 10897 case 2: // Return the value of the LT bit of CR6. 10898 BitNo = 2; InvertBit = false; 10899 break; 10900 case 3: // Return the inverted value of the LT bit of CR6. 10901 BitNo = 2; InvertBit = true; 10902 break; 10903 } 10904 10905 // Shift the bit into the low position. 10906 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10907 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10908 // Isolate the bit. 10909 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10910 DAG.getConstant(1, dl, MVT::i32)); 10911 10912 // If we are supposed to, toggle the bit. 10913 if (InvertBit) 10914 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10915 DAG.getConstant(1, dl, MVT::i32)); 10916 return Flags; 10917 } 10918 10919 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10920 SelectionDAG &DAG) const { 10921 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10922 // the beginning of the argument list. 10923 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10924 SDLoc DL(Op); 10925 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10926 case Intrinsic::ppc_cfence: { 10927 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10928 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10929 SDValue Val = Op.getOperand(ArgStart + 1); 10930 EVT Ty = Val.getValueType(); 10931 if (Ty == MVT::i128) { 10932 // FIXME: Testing one of two paired registers is sufficient to guarantee 10933 // ordering? 10934 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10935 } 10936 return SDValue( 10937 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10938 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10939 Op.getOperand(0)), 10940 0); 10941 } 10942 default: 10943 break; 10944 } 10945 return SDValue(); 10946 } 10947 10948 // Lower scalar BSWAP64 to xxbrd. 10949 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10950 SDLoc dl(Op); 10951 if (!Subtarget.isPPC64()) 10952 return Op; 10953 // MTVSRDD 10954 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10955 Op.getOperand(0)); 10956 // XXBRD 10957 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10958 // MFVSRD 10959 int VectorIndex = 0; 10960 if (Subtarget.isLittleEndian()) 10961 VectorIndex = 1; 10962 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10963 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10964 return Op; 10965 } 10966 10967 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10968 // compared to a value that is atomically loaded (atomic loads zero-extend). 10969 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10970 SelectionDAG &DAG) const { 10971 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10972 "Expecting an atomic compare-and-swap here."); 10973 SDLoc dl(Op); 10974 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10975 EVT MemVT = AtomicNode->getMemoryVT(); 10976 if (MemVT.getSizeInBits() >= 32) 10977 return Op; 10978 10979 SDValue CmpOp = Op.getOperand(2); 10980 // If this is already correctly zero-extended, leave it alone. 10981 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10982 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10983 return Op; 10984 10985 // Clear the high bits of the compare operand. 10986 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10987 SDValue NewCmpOp = 10988 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10989 DAG.getConstant(MaskVal, dl, MVT::i32)); 10990 10991 // Replace the existing compare operand with the properly zero-extended one. 10992 SmallVector<SDValue, 4> Ops; 10993 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10994 Ops.push_back(AtomicNode->getOperand(i)); 10995 Ops[2] = NewCmpOp; 10996 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10997 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10998 auto NodeTy = 10999 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 11000 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 11001 } 11002 11003 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 11004 SelectionDAG &DAG) const { 11005 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 11006 EVT MemVT = N->getMemoryVT(); 11007 assert(MemVT.getSimpleVT() == MVT::i128 && 11008 "Expect quadword atomic operations"); 11009 SDLoc dl(N); 11010 unsigned Opc = N->getOpcode(); 11011 switch (Opc) { 11012 case ISD::ATOMIC_LOAD: { 11013 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 11014 // lowered to ppc instructions by pattern matching instruction selector. 11015 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 11016 SmallVector<SDValue, 4> Ops{ 11017 N->getOperand(0), 11018 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 11019 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 11020 Ops.push_back(N->getOperand(I)); 11021 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 11022 Ops, MemVT, N->getMemOperand()); 11023 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 11024 SDValue ValHi = 11025 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 11026 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 11027 DAG.getConstant(64, dl, MVT::i32)); 11028 SDValue Val = 11029 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 11030 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 11031 {Val, LoadedVal.getValue(2)}); 11032 } 11033 case ISD::ATOMIC_STORE: { 11034 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 11035 // lowered to ppc instructions by pattern matching instruction selector. 11036 SDVTList Tys = DAG.getVTList(MVT::Other); 11037 SmallVector<SDValue, 4> Ops{ 11038 N->getOperand(0), 11039 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 11040 SDValue Val = N->getOperand(2); 11041 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 11042 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 11043 DAG.getConstant(64, dl, MVT::i32)); 11044 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 11045 Ops.push_back(ValLo); 11046 Ops.push_back(ValHi); 11047 Ops.push_back(N->getOperand(1)); 11048 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 11049 N->getMemOperand()); 11050 } 11051 default: 11052 llvm_unreachable("Unexpected atomic opcode"); 11053 } 11054 } 11055 11056 static SDValue getDataClassTest(SDValue Op, FPClassTest Mask, const SDLoc &Dl, 11057 SelectionDAG &DAG, 11058 const PPCSubtarget &Subtarget) { 11059 assert(Mask <= fcAllFlags && "Invalid fp_class flags!"); 11060 11061 enum DataClassMask { 11062 DC_NAN = 1 << 6, 11063 DC_NEG_INF = 1 << 4, 11064 DC_POS_INF = 1 << 5, 11065 DC_NEG_ZERO = 1 << 2, 11066 DC_POS_ZERO = 1 << 3, 11067 DC_NEG_SUBNORM = 1, 11068 DC_POS_SUBNORM = 1 << 1, 11069 }; 11070 11071 EVT VT = Op.getValueType(); 11072 11073 unsigned TestOp = VT == MVT::f128 ? PPC::XSTSTDCQP 11074 : VT == MVT::f64 ? PPC::XSTSTDCDP 11075 : PPC::XSTSTDCSP; 11076 11077 if (Mask == fcAllFlags) 11078 return DAG.getBoolConstant(true, Dl, MVT::i1, VT); 11079 if (Mask == 0) 11080 return DAG.getBoolConstant(false, Dl, MVT::i1, VT); 11081 11082 // When it's cheaper or necessary to test reverse flags. 11083 if ((Mask & fcNormal) == fcNormal || Mask == ~fcQNan || Mask == ~fcSNan) { 11084 SDValue Rev = getDataClassTest(Op, ~Mask, Dl, DAG, Subtarget); 11085 return DAG.getNOT(Dl, Rev, MVT::i1); 11086 } 11087 11088 // Power doesn't support testing whether a value is 'normal'. Test the rest 11089 // first, and test if it's 'not not-normal' with expected sign. 11090 if (Mask & fcNormal) { 11091 SDValue Rev(DAG.getMachineNode( 11092 TestOp, Dl, MVT::i32, 11093 DAG.getTargetConstant(DC_NAN | DC_NEG_INF | DC_POS_INF | 11094 DC_NEG_ZERO | DC_POS_ZERO | 11095 DC_NEG_SUBNORM | DC_POS_SUBNORM, 11096 Dl, MVT::i32), 11097 Op), 11098 0); 11099 // Sign are stored in CR bit 0, result are in CR bit 2. 11100 SDValue Sign( 11101 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, 11102 DAG.getTargetConstant(PPC::sub_lt, Dl, MVT::i32)), 11103 0); 11104 SDValue Normal(DAG.getNOT( 11105 Dl, 11106 SDValue(DAG.getMachineNode( 11107 TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, 11108 DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), 11109 0), 11110 MVT::i1)); 11111 if (Mask & fcPosNormal) 11112 Sign = DAG.getNOT(Dl, Sign, MVT::i1); 11113 SDValue Result = DAG.getNode(ISD::AND, Dl, MVT::i1, Sign, Normal); 11114 if (Mask == fcPosNormal || Mask == fcNegNormal) 11115 return Result; 11116 11117 return DAG.getNode( 11118 ISD::OR, Dl, MVT::i1, 11119 getDataClassTest(Op, Mask & ~fcNormal, Dl, DAG, Subtarget), Result); 11120 } 11121 11122 // The instruction doesn't differentiate between signaling or quiet NaN. Test 11123 // the rest first, and test if it 'is NaN and is signaling/quiet'. 11124 if ((Mask & fcNan) == fcQNan || (Mask & fcNan) == fcSNan) { 11125 bool IsQuiet = Mask & fcQNan; 11126 SDValue NanCheck = getDataClassTest(Op, fcNan, Dl, DAG, Subtarget); 11127 11128 // Quietness is determined by the first bit in fraction field. 11129 uint64_t QuietMask = 0; 11130 SDValue HighWord; 11131 if (VT == MVT::f128) { 11132 HighWord = DAG.getNode( 11133 ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Op), 11134 DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 3 : 0, Dl)); 11135 QuietMask = 0x8000; 11136 } else if (VT == MVT::f64) { 11137 if (Subtarget.isPPC64()) { 11138 HighWord = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, 11139 DAG.getBitcast(MVT::i64, Op), 11140 DAG.getConstant(1, Dl, MVT::i32)); 11141 } else { 11142 SDValue Vec = DAG.getBitcast( 11143 MVT::v4i32, DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v2f64, Op)); 11144 HighWord = DAG.getNode( 11145 ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, Vec, 11146 DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 1 : 0, Dl)); 11147 } 11148 QuietMask = 0x80000; 11149 } else if (VT == MVT::f32) { 11150 HighWord = DAG.getBitcast(MVT::i32, Op); 11151 QuietMask = 0x400000; 11152 } 11153 SDValue NanRes = DAG.getSetCC( 11154 Dl, MVT::i1, 11155 DAG.getNode(ISD::AND, Dl, MVT::i32, HighWord, 11156 DAG.getConstant(QuietMask, Dl, MVT::i32)), 11157 DAG.getConstant(0, Dl, MVT::i32), IsQuiet ? ISD::SETNE : ISD::SETEQ); 11158 NanRes = DAG.getNode(ISD::AND, Dl, MVT::i1, NanCheck, NanRes); 11159 if (Mask == fcQNan || Mask == fcSNan) 11160 return NanRes; 11161 11162 return DAG.getNode(ISD::OR, Dl, MVT::i1, 11163 getDataClassTest(Op, Mask & ~fcNan, Dl, DAG, Subtarget), 11164 NanRes); 11165 } 11166 11167 unsigned NativeMask = 0; 11168 if ((Mask & fcNan) == fcNan) 11169 NativeMask |= DC_NAN; 11170 if (Mask & fcNegInf) 11171 NativeMask |= DC_NEG_INF; 11172 if (Mask & fcPosInf) 11173 NativeMask |= DC_POS_INF; 11174 if (Mask & fcNegZero) 11175 NativeMask |= DC_NEG_ZERO; 11176 if (Mask & fcPosZero) 11177 NativeMask |= DC_POS_ZERO; 11178 if (Mask & fcNegSubnormal) 11179 NativeMask |= DC_NEG_SUBNORM; 11180 if (Mask & fcPosSubnormal) 11181 NativeMask |= DC_POS_SUBNORM; 11182 return SDValue( 11183 DAG.getMachineNode( 11184 TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, 11185 SDValue(DAG.getMachineNode( 11186 TestOp, Dl, MVT::i32, 11187 DAG.getTargetConstant(NativeMask, Dl, MVT::i32), Op), 11188 0), 11189 DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), 11190 0); 11191 } 11192 11193 SDValue PPCTargetLowering::LowerIS_FPCLASS(SDValue Op, 11194 SelectionDAG &DAG) const { 11195 assert(Subtarget.hasP9Vector() && "Test data class requires Power9"); 11196 SDValue LHS = Op.getOperand(0); 11197 const auto *RHS = cast<ConstantSDNode>(Op.getOperand(1)); 11198 SDLoc Dl(Op); 11199 FPClassTest Category = static_cast<FPClassTest>(RHS->getZExtValue()); 11200 return getDataClassTest(LHS, Category, Dl, DAG, Subtarget); 11201 } 11202 11203 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 11204 SelectionDAG &DAG) const { 11205 SDLoc dl(Op); 11206 // Create a stack slot that is 16-byte aligned. 11207 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11208 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 11209 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 11210 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 11211 11212 // Store the input value into Value#0 of the stack slot. 11213 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 11214 MachinePointerInfo()); 11215 // Load it out. 11216 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 11217 } 11218 11219 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 11220 SelectionDAG &DAG) const { 11221 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 11222 "Should only be called for ISD::INSERT_VECTOR_ELT"); 11223 11224 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 11225 11226 EVT VT = Op.getValueType(); 11227 SDLoc dl(Op); 11228 SDValue V1 = Op.getOperand(0); 11229 SDValue V2 = Op.getOperand(1); 11230 11231 if (VT == MVT::v2f64 && C) 11232 return Op; 11233 11234 if (Subtarget.hasP9Vector()) { 11235 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 11236 // because on P10, it allows this specific insert_vector_elt load pattern to 11237 // utilize the refactored load and store infrastructure in order to exploit 11238 // prefixed loads. 11239 // On targets with inexpensive direct moves (Power9 and up), a 11240 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 11241 // load since a single precision load will involve conversion to double 11242 // precision on the load followed by another conversion to single precision. 11243 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 11244 (isa<LoadSDNode>(V2))) { 11245 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 11246 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 11247 SDValue InsVecElt = 11248 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 11249 BitcastLoad, Op.getOperand(2)); 11250 return DAG.getBitcast(MVT::v4f32, InsVecElt); 11251 } 11252 } 11253 11254 if (Subtarget.isISA3_1()) { 11255 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 11256 return SDValue(); 11257 // On P10, we have legal lowering for constant and variable indices for 11258 // all vectors. 11259 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 11260 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 11261 return Op; 11262 } 11263 11264 // Before P10, we have legal lowering for constant indices but not for 11265 // variable ones. 11266 if (!C) 11267 return SDValue(); 11268 11269 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 11270 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 11271 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 11272 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 11273 unsigned InsertAtElement = C->getZExtValue(); 11274 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 11275 if (Subtarget.isLittleEndian()) { 11276 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 11277 } 11278 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 11279 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 11280 } 11281 return Op; 11282 } 11283 11284 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 11285 SelectionDAG &DAG) const { 11286 SDLoc dl(Op); 11287 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 11288 SDValue LoadChain = LN->getChain(); 11289 SDValue BasePtr = LN->getBasePtr(); 11290 EVT VT = Op.getValueType(); 11291 11292 if (VT != MVT::v256i1 && VT != MVT::v512i1) 11293 return Op; 11294 11295 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 11296 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 11297 // 2 or 4 vsx registers. 11298 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 11299 "Type unsupported without MMA"); 11300 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 11301 "Type unsupported without paired vector support"); 11302 Align Alignment = LN->getAlign(); 11303 SmallVector<SDValue, 4> Loads; 11304 SmallVector<SDValue, 4> LoadChains; 11305 unsigned NumVecs = VT.getSizeInBits() / 128; 11306 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 11307 SDValue Load = 11308 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 11309 LN->getPointerInfo().getWithOffset(Idx * 16), 11310 commonAlignment(Alignment, Idx * 16), 11311 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 11312 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 11313 DAG.getConstant(16, dl, BasePtr.getValueType())); 11314 Loads.push_back(Load); 11315 LoadChains.push_back(Load.getValue(1)); 11316 } 11317 if (Subtarget.isLittleEndian()) { 11318 std::reverse(Loads.begin(), Loads.end()); 11319 std::reverse(LoadChains.begin(), LoadChains.end()); 11320 } 11321 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 11322 SDValue Value = 11323 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 11324 dl, VT, Loads); 11325 SDValue RetOps[] = {Value, TF}; 11326 return DAG.getMergeValues(RetOps, dl); 11327 } 11328 11329 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 11330 SelectionDAG &DAG) const { 11331 SDLoc dl(Op); 11332 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 11333 SDValue StoreChain = SN->getChain(); 11334 SDValue BasePtr = SN->getBasePtr(); 11335 SDValue Value = SN->getValue(); 11336 SDValue Value2 = SN->getValue(); 11337 EVT StoreVT = Value.getValueType(); 11338 11339 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 11340 return Op; 11341 11342 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 11343 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 11344 // underlying registers individually. 11345 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 11346 "Type unsupported without MMA"); 11347 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 11348 "Type unsupported without paired vector support"); 11349 Align Alignment = SN->getAlign(); 11350 SmallVector<SDValue, 4> Stores; 11351 unsigned NumVecs = 2; 11352 if (StoreVT == MVT::v512i1) { 11353 if (Subtarget.isISAFuture()) { 11354 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; 11355 MachineSDNode *ExtNode = DAG.getMachineNode( 11356 PPC::DMXXEXTFDMR512, dl, ArrayRef(ReturnTypes, 2), Op.getOperand(1)); 11357 11358 Value = SDValue(ExtNode, 0); 11359 Value2 = SDValue(ExtNode, 1); 11360 } else 11361 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 11362 NumVecs = 4; 11363 } 11364 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 11365 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 11366 SDValue Elt; 11367 if (Subtarget.isISAFuture()) { 11368 VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2); 11369 Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, 11370 Idx > 1 ? Value2 : Value, 11371 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 11372 } else 11373 Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 11374 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 11375 11376 SDValue Store = 11377 DAG.getStore(StoreChain, dl, Elt, BasePtr, 11378 SN->getPointerInfo().getWithOffset(Idx * 16), 11379 commonAlignment(Alignment, Idx * 16), 11380 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 11381 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 11382 DAG.getConstant(16, dl, BasePtr.getValueType())); 11383 Stores.push_back(Store); 11384 } 11385 SDValue TF = DAG.getTokenFactor(dl, Stores); 11386 return TF; 11387 } 11388 11389 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 11390 SDLoc dl(Op); 11391 if (Op.getValueType() == MVT::v4i32) { 11392 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 11393 11394 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 11395 // +16 as shift amt. 11396 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 11397 SDValue RHSSwap = // = vrlw RHS, 16 11398 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 11399 11400 // Shrinkify inputs to v8i16. 11401 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 11402 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 11403 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 11404 11405 // Low parts multiplied together, generating 32-bit results (we ignore the 11406 // top parts). 11407 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 11408 LHS, RHS, DAG, dl, MVT::v4i32); 11409 11410 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 11411 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 11412 // Shift the high parts up 16 bits. 11413 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 11414 Neg16, DAG, dl); 11415 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 11416 } else if (Op.getValueType() == MVT::v16i8) { 11417 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 11418 bool isLittleEndian = Subtarget.isLittleEndian(); 11419 11420 // Multiply the even 8-bit parts, producing 16-bit sums. 11421 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 11422 LHS, RHS, DAG, dl, MVT::v8i16); 11423 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 11424 11425 // Multiply the odd 8-bit parts, producing 16-bit sums. 11426 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 11427 LHS, RHS, DAG, dl, MVT::v8i16); 11428 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 11429 11430 // Merge the results together. Because vmuleub and vmuloub are 11431 // instructions with a big-endian bias, we must reverse the 11432 // element numbering and reverse the meaning of "odd" and "even" 11433 // when generating little endian code. 11434 int Ops[16]; 11435 for (unsigned i = 0; i != 8; ++i) { 11436 if (isLittleEndian) { 11437 Ops[i*2 ] = 2*i; 11438 Ops[i*2+1] = 2*i+16; 11439 } else { 11440 Ops[i*2 ] = 2*i+1; 11441 Ops[i*2+1] = 2*i+1+16; 11442 } 11443 } 11444 if (isLittleEndian) 11445 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11446 else 11447 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11448 } else { 11449 llvm_unreachable("Unknown mul to lower!"); 11450 } 11451 } 11452 11453 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11454 bool IsStrict = Op->isStrictFPOpcode(); 11455 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11456 !Subtarget.hasP9Vector()) 11457 return SDValue(); 11458 11459 return Op; 11460 } 11461 11462 // Custom lowering for fpext vf32 to v2f64 11463 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11464 11465 assert(Op.getOpcode() == ISD::FP_EXTEND && 11466 "Should only be called for ISD::FP_EXTEND"); 11467 11468 // FIXME: handle extends from half precision float vectors on P9. 11469 // We only want to custom lower an extend from v2f32 to v2f64. 11470 if (Op.getValueType() != MVT::v2f64 || 11471 Op.getOperand(0).getValueType() != MVT::v2f32) 11472 return SDValue(); 11473 11474 SDLoc dl(Op); 11475 SDValue Op0 = Op.getOperand(0); 11476 11477 switch (Op0.getOpcode()) { 11478 default: 11479 return SDValue(); 11480 case ISD::EXTRACT_SUBVECTOR: { 11481 assert(Op0.getNumOperands() == 2 && 11482 isa<ConstantSDNode>(Op0->getOperand(1)) && 11483 "Node should have 2 operands with second one being a constant!"); 11484 11485 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11486 return SDValue(); 11487 11488 // Custom lower is only done for high or low doubleword. 11489 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11490 if (Idx % 2 != 0) 11491 return SDValue(); 11492 11493 // Since input is v4f32, at this point Idx is either 0 or 2. 11494 // Shift to get the doubleword position we want. 11495 int DWord = Idx >> 1; 11496 11497 // High and low word positions are different on little endian. 11498 if (Subtarget.isLittleEndian()) 11499 DWord ^= 0x1; 11500 11501 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11502 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11503 } 11504 case ISD::FADD: 11505 case ISD::FMUL: 11506 case ISD::FSUB: { 11507 SDValue NewLoad[2]; 11508 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11509 // Ensure both input are loads. 11510 SDValue LdOp = Op0.getOperand(i); 11511 if (LdOp.getOpcode() != ISD::LOAD) 11512 return SDValue(); 11513 // Generate new load node. 11514 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11515 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11516 NewLoad[i] = DAG.getMemIntrinsicNode( 11517 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11518 LD->getMemoryVT(), LD->getMemOperand()); 11519 } 11520 SDValue NewOp = 11521 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11522 NewLoad[1], Op0.getNode()->getFlags()); 11523 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11524 DAG.getConstant(0, dl, MVT::i32)); 11525 } 11526 case ISD::LOAD: { 11527 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11528 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11529 SDValue NewLd = DAG.getMemIntrinsicNode( 11530 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11531 LD->getMemoryVT(), LD->getMemOperand()); 11532 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11533 DAG.getConstant(0, dl, MVT::i32)); 11534 } 11535 } 11536 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11537 } 11538 11539 /// LowerOperation - Provide custom lowering hooks for some operations. 11540 /// 11541 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11542 switch (Op.getOpcode()) { 11543 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11544 case ISD::FPOW: return lowerPow(Op, DAG); 11545 case ISD::FSIN: return lowerSin(Op, DAG); 11546 case ISD::FCOS: return lowerCos(Op, DAG); 11547 case ISD::FLOG: return lowerLog(Op, DAG); 11548 case ISD::FLOG10: return lowerLog10(Op, DAG); 11549 case ISD::FEXP: return lowerExp(Op, DAG); 11550 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11551 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11552 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11553 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11554 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11555 case ISD::STRICT_FSETCC: 11556 case ISD::STRICT_FSETCCS: 11557 case ISD::SETCC: return LowerSETCC(Op, DAG); 11558 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11559 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11560 11561 case ISD::INLINEASM: 11562 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11563 // Variable argument lowering. 11564 case ISD::VASTART: return LowerVASTART(Op, DAG); 11565 case ISD::VAARG: return LowerVAARG(Op, DAG); 11566 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11567 11568 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11569 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11570 case ISD::GET_DYNAMIC_AREA_OFFSET: 11571 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11572 11573 // Exception handling lowering. 11574 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11575 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11576 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11577 11578 case ISD::LOAD: return LowerLOAD(Op, DAG); 11579 case ISD::STORE: return LowerSTORE(Op, DAG); 11580 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11581 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11582 case ISD::STRICT_FP_TO_UINT: 11583 case ISD::STRICT_FP_TO_SINT: 11584 case ISD::FP_TO_UINT: 11585 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11586 case ISD::STRICT_UINT_TO_FP: 11587 case ISD::STRICT_SINT_TO_FP: 11588 case ISD::UINT_TO_FP: 11589 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11590 case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG); 11591 11592 // Lower 64-bit shifts. 11593 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11594 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11595 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11596 11597 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11598 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11599 11600 // Vector-related lowering. 11601 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11602 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11603 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11604 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11605 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11606 case ISD::MUL: return LowerMUL(Op, DAG); 11607 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11608 case ISD::STRICT_FP_ROUND: 11609 case ISD::FP_ROUND: 11610 return LowerFP_ROUND(Op, DAG); 11611 case ISD::ROTL: return LowerROTL(Op, DAG); 11612 11613 // For counter-based loop handling. 11614 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11615 11616 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11617 11618 // Frame & Return address. 11619 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11620 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11621 11622 case ISD::INTRINSIC_VOID: 11623 return LowerINTRINSIC_VOID(Op, DAG); 11624 case ISD::BSWAP: 11625 return LowerBSWAP(Op, DAG); 11626 case ISD::ATOMIC_CMP_SWAP: 11627 return LowerATOMIC_CMP_SWAP(Op, DAG); 11628 case ISD::ATOMIC_STORE: 11629 return LowerATOMIC_LOAD_STORE(Op, DAG); 11630 case ISD::IS_FPCLASS: 11631 return LowerIS_FPCLASS(Op, DAG); 11632 } 11633 } 11634 11635 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11636 SmallVectorImpl<SDValue>&Results, 11637 SelectionDAG &DAG) const { 11638 SDLoc dl(N); 11639 switch (N->getOpcode()) { 11640 default: 11641 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11642 case ISD::ATOMIC_LOAD: { 11643 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11644 Results.push_back(Res); 11645 Results.push_back(Res.getValue(1)); 11646 break; 11647 } 11648 case ISD::READCYCLECOUNTER: { 11649 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11650 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11651 11652 Results.push_back( 11653 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11654 Results.push_back(RTB.getValue(2)); 11655 break; 11656 } 11657 case ISD::INTRINSIC_W_CHAIN: { 11658 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11659 Intrinsic::loop_decrement) 11660 break; 11661 11662 assert(N->getValueType(0) == MVT::i1 && 11663 "Unexpected result type for CTR decrement intrinsic"); 11664 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11665 N->getValueType(0)); 11666 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11667 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11668 N->getOperand(1)); 11669 11670 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11671 Results.push_back(NewInt.getValue(1)); 11672 break; 11673 } 11674 case ISD::INTRINSIC_WO_CHAIN: { 11675 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11676 case Intrinsic::ppc_pack_longdouble: 11677 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11678 N->getOperand(2), N->getOperand(1))); 11679 break; 11680 case Intrinsic::ppc_maxfe: 11681 case Intrinsic::ppc_minfe: 11682 case Intrinsic::ppc_fnmsub: 11683 case Intrinsic::ppc_convert_f128_to_ppcf128: 11684 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11685 break; 11686 } 11687 break; 11688 } 11689 case ISD::VAARG: { 11690 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11691 return; 11692 11693 EVT VT = N->getValueType(0); 11694 11695 if (VT == MVT::i64) { 11696 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11697 11698 Results.push_back(NewNode); 11699 Results.push_back(NewNode.getValue(1)); 11700 } 11701 return; 11702 } 11703 case ISD::STRICT_FP_TO_SINT: 11704 case ISD::STRICT_FP_TO_UINT: 11705 case ISD::FP_TO_SINT: 11706 case ISD::FP_TO_UINT: { 11707 // LowerFP_TO_INT() can only handle f32 and f64. 11708 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11709 MVT::ppcf128) 11710 return; 11711 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11712 Results.push_back(LoweredValue); 11713 if (N->isStrictFPOpcode()) 11714 Results.push_back(LoweredValue.getValue(1)); 11715 return; 11716 } 11717 case ISD::TRUNCATE: { 11718 if (!N->getValueType(0).isVector()) 11719 return; 11720 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11721 if (Lowered) 11722 Results.push_back(Lowered); 11723 return; 11724 } 11725 case ISD::FSHL: 11726 case ISD::FSHR: 11727 // Don't handle funnel shifts here. 11728 return; 11729 case ISD::BITCAST: 11730 // Don't handle bitcast here. 11731 return; 11732 case ISD::FP_EXTEND: 11733 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11734 if (Lowered) 11735 Results.push_back(Lowered); 11736 return; 11737 } 11738 } 11739 11740 //===----------------------------------------------------------------------===// 11741 // Other Lowering Code 11742 //===----------------------------------------------------------------------===// 11743 11744 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11745 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11746 Function *Func = Intrinsic::getDeclaration(M, Id); 11747 return Builder.CreateCall(Func, {}); 11748 } 11749 11750 // The mappings for emitLeading/TrailingFence is taken from 11751 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11752 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11753 Instruction *Inst, 11754 AtomicOrdering Ord) const { 11755 if (Ord == AtomicOrdering::SequentiallyConsistent) 11756 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11757 if (isReleaseOrStronger(Ord)) 11758 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11759 return nullptr; 11760 } 11761 11762 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11763 Instruction *Inst, 11764 AtomicOrdering Ord) const { 11765 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11766 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11767 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11768 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11769 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11770 return Builder.CreateCall( 11771 Intrinsic::getDeclaration( 11772 Builder.GetInsertBlock()->getParent()->getParent(), 11773 Intrinsic::ppc_cfence, {Inst->getType()}), 11774 {Inst}); 11775 // FIXME: Can use isync for rmw operation. 11776 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11777 } 11778 return nullptr; 11779 } 11780 11781 MachineBasicBlock * 11782 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11783 unsigned AtomicSize, 11784 unsigned BinOpcode, 11785 unsigned CmpOpcode, 11786 unsigned CmpPred) const { 11787 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11788 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11789 11790 auto LoadMnemonic = PPC::LDARX; 11791 auto StoreMnemonic = PPC::STDCX; 11792 switch (AtomicSize) { 11793 default: 11794 llvm_unreachable("Unexpected size of atomic entity"); 11795 case 1: 11796 LoadMnemonic = PPC::LBARX; 11797 StoreMnemonic = PPC::STBCX; 11798 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11799 break; 11800 case 2: 11801 LoadMnemonic = PPC::LHARX; 11802 StoreMnemonic = PPC::STHCX; 11803 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11804 break; 11805 case 4: 11806 LoadMnemonic = PPC::LWARX; 11807 StoreMnemonic = PPC::STWCX; 11808 break; 11809 case 8: 11810 LoadMnemonic = PPC::LDARX; 11811 StoreMnemonic = PPC::STDCX; 11812 break; 11813 } 11814 11815 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11816 MachineFunction *F = BB->getParent(); 11817 MachineFunction::iterator It = ++BB->getIterator(); 11818 11819 Register dest = MI.getOperand(0).getReg(); 11820 Register ptrA = MI.getOperand(1).getReg(); 11821 Register ptrB = MI.getOperand(2).getReg(); 11822 Register incr = MI.getOperand(3).getReg(); 11823 DebugLoc dl = MI.getDebugLoc(); 11824 11825 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11826 MachineBasicBlock *loop2MBB = 11827 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11828 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11829 F->insert(It, loopMBB); 11830 if (CmpOpcode) 11831 F->insert(It, loop2MBB); 11832 F->insert(It, exitMBB); 11833 exitMBB->splice(exitMBB->begin(), BB, 11834 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11835 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11836 11837 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11838 Register TmpReg = (!BinOpcode) ? incr : 11839 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11840 : &PPC::GPRCRegClass); 11841 11842 // thisMBB: 11843 // ... 11844 // fallthrough --> loopMBB 11845 BB->addSuccessor(loopMBB); 11846 11847 // loopMBB: 11848 // l[wd]arx dest, ptr 11849 // add r0, dest, incr 11850 // st[wd]cx. r0, ptr 11851 // bne- loopMBB 11852 // fallthrough --> exitMBB 11853 11854 // For max/min... 11855 // loopMBB: 11856 // l[wd]arx dest, ptr 11857 // cmpl?[wd] dest, incr 11858 // bgt exitMBB 11859 // loop2MBB: 11860 // st[wd]cx. dest, ptr 11861 // bne- loopMBB 11862 // fallthrough --> exitMBB 11863 11864 BB = loopMBB; 11865 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11866 .addReg(ptrA).addReg(ptrB); 11867 if (BinOpcode) 11868 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11869 if (CmpOpcode) { 11870 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11871 // Signed comparisons of byte or halfword values must be sign-extended. 11872 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11873 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11874 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11875 ExtReg).addReg(dest); 11876 BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr); 11877 } else 11878 BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr); 11879 11880 BuildMI(BB, dl, TII->get(PPC::BCC)) 11881 .addImm(CmpPred) 11882 .addReg(CrReg) 11883 .addMBB(exitMBB); 11884 BB->addSuccessor(loop2MBB); 11885 BB->addSuccessor(exitMBB); 11886 BB = loop2MBB; 11887 } 11888 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11889 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11890 BuildMI(BB, dl, TII->get(PPC::BCC)) 11891 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11892 BB->addSuccessor(loopMBB); 11893 BB->addSuccessor(exitMBB); 11894 11895 // exitMBB: 11896 // ... 11897 BB = exitMBB; 11898 return BB; 11899 } 11900 11901 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11902 switch(MI.getOpcode()) { 11903 default: 11904 return false; 11905 case PPC::COPY: 11906 return TII->isSignExtended(MI.getOperand(1).getReg(), 11907 &MI.getMF()->getRegInfo()); 11908 case PPC::LHA: 11909 case PPC::LHA8: 11910 case PPC::LHAU: 11911 case PPC::LHAU8: 11912 case PPC::LHAUX: 11913 case PPC::LHAUX8: 11914 case PPC::LHAX: 11915 case PPC::LHAX8: 11916 case PPC::LWA: 11917 case PPC::LWAUX: 11918 case PPC::LWAX: 11919 case PPC::LWAX_32: 11920 case PPC::LWA_32: 11921 case PPC::PLHA: 11922 case PPC::PLHA8: 11923 case PPC::PLHA8pc: 11924 case PPC::PLHApc: 11925 case PPC::PLWA: 11926 case PPC::PLWA8: 11927 case PPC::PLWA8pc: 11928 case PPC::PLWApc: 11929 case PPC::EXTSB: 11930 case PPC::EXTSB8: 11931 case PPC::EXTSB8_32_64: 11932 case PPC::EXTSB8_rec: 11933 case PPC::EXTSB_rec: 11934 case PPC::EXTSH: 11935 case PPC::EXTSH8: 11936 case PPC::EXTSH8_32_64: 11937 case PPC::EXTSH8_rec: 11938 case PPC::EXTSH_rec: 11939 case PPC::EXTSW: 11940 case PPC::EXTSWSLI: 11941 case PPC::EXTSWSLI_32_64: 11942 case PPC::EXTSWSLI_32_64_rec: 11943 case PPC::EXTSWSLI_rec: 11944 case PPC::EXTSW_32: 11945 case PPC::EXTSW_32_64: 11946 case PPC::EXTSW_32_64_rec: 11947 case PPC::EXTSW_rec: 11948 case PPC::SRAW: 11949 case PPC::SRAWI: 11950 case PPC::SRAWI_rec: 11951 case PPC::SRAW_rec: 11952 return true; 11953 } 11954 return false; 11955 } 11956 11957 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11958 MachineInstr &MI, MachineBasicBlock *BB, 11959 bool is8bit, // operation 11960 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11961 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11962 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11963 11964 // If this is a signed comparison and the value being compared is not known 11965 // to be sign extended, sign extend it here. 11966 DebugLoc dl = MI.getDebugLoc(); 11967 MachineFunction *F = BB->getParent(); 11968 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11969 Register incr = MI.getOperand(3).getReg(); 11970 bool IsSignExtended = 11971 incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII); 11972 11973 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11974 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11975 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11976 .addReg(MI.getOperand(3).getReg()); 11977 MI.getOperand(3).setReg(ValueReg); 11978 incr = ValueReg; 11979 } 11980 // If we support part-word atomic mnemonics, just use them 11981 if (Subtarget.hasPartwordAtomics()) 11982 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11983 CmpPred); 11984 11985 // In 64 bit mode we have to use 64 bits for addresses, even though the 11986 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11987 // registers without caring whether they're 32 or 64, but here we're 11988 // doing actual arithmetic on the addresses. 11989 bool is64bit = Subtarget.isPPC64(); 11990 bool isLittleEndian = Subtarget.isLittleEndian(); 11991 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11992 11993 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11994 MachineFunction::iterator It = ++BB->getIterator(); 11995 11996 Register dest = MI.getOperand(0).getReg(); 11997 Register ptrA = MI.getOperand(1).getReg(); 11998 Register ptrB = MI.getOperand(2).getReg(); 11999 12000 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 12001 MachineBasicBlock *loop2MBB = 12002 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 12003 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12004 F->insert(It, loopMBB); 12005 if (CmpOpcode) 12006 F->insert(It, loop2MBB); 12007 F->insert(It, exitMBB); 12008 exitMBB->splice(exitMBB->begin(), BB, 12009 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12010 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12011 12012 const TargetRegisterClass *RC = 12013 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12014 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12015 12016 Register PtrReg = RegInfo.createVirtualRegister(RC); 12017 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12018 Register ShiftReg = 12019 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12020 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 12021 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12022 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12023 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12024 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12025 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 12026 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12027 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12028 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 12029 Register Ptr1Reg; 12030 Register TmpReg = 12031 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 12032 12033 // thisMBB: 12034 // ... 12035 // fallthrough --> loopMBB 12036 BB->addSuccessor(loopMBB); 12037 12038 // The 4-byte load must be aligned, while a char or short may be 12039 // anywhere in the word. Hence all this nasty bookkeeping code. 12040 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12041 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12042 // xori shift, shift1, 24 [16] 12043 // rlwinm ptr, ptr1, 0, 0, 29 12044 // slw incr2, incr, shift 12045 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12046 // slw mask, mask2, shift 12047 // loopMBB: 12048 // lwarx tmpDest, ptr 12049 // add tmp, tmpDest, incr2 12050 // andc tmp2, tmpDest, mask 12051 // and tmp3, tmp, mask 12052 // or tmp4, tmp3, tmp2 12053 // stwcx. tmp4, ptr 12054 // bne- loopMBB 12055 // fallthrough --> exitMBB 12056 // srw SrwDest, tmpDest, shift 12057 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 12058 if (ptrA != ZeroReg) { 12059 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12060 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12061 .addReg(ptrA) 12062 .addReg(ptrB); 12063 } else { 12064 Ptr1Reg = ptrB; 12065 } 12066 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12067 // mode. 12068 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12069 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12070 .addImm(3) 12071 .addImm(27) 12072 .addImm(is8bit ? 28 : 27); 12073 if (!isLittleEndian) 12074 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12075 .addReg(Shift1Reg) 12076 .addImm(is8bit ? 24 : 16); 12077 if (is64bit) 12078 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12079 .addReg(Ptr1Reg) 12080 .addImm(0) 12081 .addImm(61); 12082 else 12083 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12084 .addReg(Ptr1Reg) 12085 .addImm(0) 12086 .addImm(0) 12087 .addImm(29); 12088 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 12089 if (is8bit) 12090 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12091 else { 12092 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12093 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12094 .addReg(Mask3Reg) 12095 .addImm(65535); 12096 } 12097 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12098 .addReg(Mask2Reg) 12099 .addReg(ShiftReg); 12100 12101 BB = loopMBB; 12102 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12103 .addReg(ZeroReg) 12104 .addReg(PtrReg); 12105 if (BinOpcode) 12106 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 12107 .addReg(Incr2Reg) 12108 .addReg(TmpDestReg); 12109 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12110 .addReg(TmpDestReg) 12111 .addReg(MaskReg); 12112 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 12113 if (CmpOpcode) { 12114 // For unsigned comparisons, we can directly compare the shifted values. 12115 // For signed comparisons we shift and sign extend. 12116 Register SReg = RegInfo.createVirtualRegister(GPRC); 12117 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12118 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 12119 .addReg(TmpDestReg) 12120 .addReg(MaskReg); 12121 unsigned ValueReg = SReg; 12122 unsigned CmpReg = Incr2Reg; 12123 if (CmpOpcode == PPC::CMPW) { 12124 ValueReg = RegInfo.createVirtualRegister(GPRC); 12125 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 12126 .addReg(SReg) 12127 .addReg(ShiftReg); 12128 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 12129 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 12130 .addReg(ValueReg); 12131 ValueReg = ValueSReg; 12132 CmpReg = incr; 12133 } 12134 BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg); 12135 BuildMI(BB, dl, TII->get(PPC::BCC)) 12136 .addImm(CmpPred) 12137 .addReg(CrReg) 12138 .addMBB(exitMBB); 12139 BB->addSuccessor(loop2MBB); 12140 BB->addSuccessor(exitMBB); 12141 BB = loop2MBB; 12142 } 12143 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 12144 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12145 .addReg(Tmp4Reg) 12146 .addReg(ZeroReg) 12147 .addReg(PtrReg); 12148 BuildMI(BB, dl, TII->get(PPC::BCC)) 12149 .addImm(PPC::PRED_NE) 12150 .addReg(PPC::CR0) 12151 .addMBB(loopMBB); 12152 BB->addSuccessor(loopMBB); 12153 BB->addSuccessor(exitMBB); 12154 12155 // exitMBB: 12156 // ... 12157 BB = exitMBB; 12158 // Since the shift amount is not a constant, we need to clear 12159 // the upper bits with a separate RLWINM. 12160 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 12161 .addReg(SrwDestReg) 12162 .addImm(0) 12163 .addImm(is8bit ? 24 : 16) 12164 .addImm(31); 12165 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 12166 .addReg(TmpDestReg) 12167 .addReg(ShiftReg); 12168 return BB; 12169 } 12170 12171 llvm::MachineBasicBlock * 12172 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 12173 MachineBasicBlock *MBB) const { 12174 DebugLoc DL = MI.getDebugLoc(); 12175 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12176 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12177 12178 MachineFunction *MF = MBB->getParent(); 12179 MachineRegisterInfo &MRI = MF->getRegInfo(); 12180 12181 const BasicBlock *BB = MBB->getBasicBlock(); 12182 MachineFunction::iterator I = ++MBB->getIterator(); 12183 12184 Register DstReg = MI.getOperand(0).getReg(); 12185 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 12186 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 12187 Register mainDstReg = MRI.createVirtualRegister(RC); 12188 Register restoreDstReg = MRI.createVirtualRegister(RC); 12189 12190 MVT PVT = getPointerTy(MF->getDataLayout()); 12191 assert((PVT == MVT::i64 || PVT == MVT::i32) && 12192 "Invalid Pointer Size!"); 12193 // For v = setjmp(buf), we generate 12194 // 12195 // thisMBB: 12196 // SjLjSetup mainMBB 12197 // bl mainMBB 12198 // v_restore = 1 12199 // b sinkMBB 12200 // 12201 // mainMBB: 12202 // buf[LabelOffset] = LR 12203 // v_main = 0 12204 // 12205 // sinkMBB: 12206 // v = phi(main, restore) 12207 // 12208 12209 MachineBasicBlock *thisMBB = MBB; 12210 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 12211 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 12212 MF->insert(I, mainMBB); 12213 MF->insert(I, sinkMBB); 12214 12215 MachineInstrBuilder MIB; 12216 12217 // Transfer the remainder of BB and its successor edges to sinkMBB. 12218 sinkMBB->splice(sinkMBB->begin(), MBB, 12219 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12220 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 12221 12222 // Note that the structure of the jmp_buf used here is not compatible 12223 // with that used by libc, and is not designed to be. Specifically, it 12224 // stores only those 'reserved' registers that LLVM does not otherwise 12225 // understand how to spill. Also, by convention, by the time this 12226 // intrinsic is called, Clang has already stored the frame address in the 12227 // first slot of the buffer and stack address in the third. Following the 12228 // X86 target code, we'll store the jump address in the second slot. We also 12229 // need to save the TOC pointer (R2) to handle jumps between shared 12230 // libraries, and that will be stored in the fourth slot. The thread 12231 // identifier (R13) is not affected. 12232 12233 // thisMBB: 12234 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 12235 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 12236 const int64_t BPOffset = 4 * PVT.getStoreSize(); 12237 12238 // Prepare IP either in reg. 12239 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 12240 Register LabelReg = MRI.createVirtualRegister(PtrRC); 12241 Register BufReg = MI.getOperand(1).getReg(); 12242 12243 if (Subtarget.is64BitELFABI()) { 12244 setUsesTOCBasePtr(*MBB->getParent()); 12245 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 12246 .addReg(PPC::X2) 12247 .addImm(TOCOffset) 12248 .addReg(BufReg) 12249 .cloneMemRefs(MI); 12250 } 12251 12252 // Naked functions never have a base pointer, and so we use r1. For all 12253 // other functions, this decision must be delayed until during PEI. 12254 unsigned BaseReg; 12255 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 12256 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 12257 else 12258 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 12259 12260 MIB = BuildMI(*thisMBB, MI, DL, 12261 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 12262 .addReg(BaseReg) 12263 .addImm(BPOffset) 12264 .addReg(BufReg) 12265 .cloneMemRefs(MI); 12266 12267 // Setup 12268 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 12269 MIB.addRegMask(TRI->getNoPreservedMask()); 12270 12271 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 12272 12273 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 12274 .addMBB(mainMBB); 12275 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 12276 12277 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 12278 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 12279 12280 // mainMBB: 12281 // mainDstReg = 0 12282 MIB = 12283 BuildMI(mainMBB, DL, 12284 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 12285 12286 // Store IP 12287 if (Subtarget.isPPC64()) { 12288 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 12289 .addReg(LabelReg) 12290 .addImm(LabelOffset) 12291 .addReg(BufReg); 12292 } else { 12293 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 12294 .addReg(LabelReg) 12295 .addImm(LabelOffset) 12296 .addReg(BufReg); 12297 } 12298 MIB.cloneMemRefs(MI); 12299 12300 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 12301 mainMBB->addSuccessor(sinkMBB); 12302 12303 // sinkMBB: 12304 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 12305 TII->get(PPC::PHI), DstReg) 12306 .addReg(mainDstReg).addMBB(mainMBB) 12307 .addReg(restoreDstReg).addMBB(thisMBB); 12308 12309 MI.eraseFromParent(); 12310 return sinkMBB; 12311 } 12312 12313 MachineBasicBlock * 12314 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 12315 MachineBasicBlock *MBB) const { 12316 DebugLoc DL = MI.getDebugLoc(); 12317 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12318 12319 MachineFunction *MF = MBB->getParent(); 12320 MachineRegisterInfo &MRI = MF->getRegInfo(); 12321 12322 MVT PVT = getPointerTy(MF->getDataLayout()); 12323 assert((PVT == MVT::i64 || PVT == MVT::i32) && 12324 "Invalid Pointer Size!"); 12325 12326 const TargetRegisterClass *RC = 12327 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12328 Register Tmp = MRI.createVirtualRegister(RC); 12329 // Since FP is only updated here but NOT referenced, it's treated as GPR. 12330 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 12331 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 12332 unsigned BP = 12333 (PVT == MVT::i64) 12334 ? PPC::X30 12335 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 12336 : PPC::R30); 12337 12338 MachineInstrBuilder MIB; 12339 12340 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 12341 const int64_t SPOffset = 2 * PVT.getStoreSize(); 12342 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 12343 const int64_t BPOffset = 4 * PVT.getStoreSize(); 12344 12345 Register BufReg = MI.getOperand(0).getReg(); 12346 12347 // Reload FP (the jumped-to function may not have had a 12348 // frame pointer, and if so, then its r31 will be restored 12349 // as necessary). 12350 if (PVT == MVT::i64) { 12351 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 12352 .addImm(0) 12353 .addReg(BufReg); 12354 } else { 12355 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 12356 .addImm(0) 12357 .addReg(BufReg); 12358 } 12359 MIB.cloneMemRefs(MI); 12360 12361 // Reload IP 12362 if (PVT == MVT::i64) { 12363 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 12364 .addImm(LabelOffset) 12365 .addReg(BufReg); 12366 } else { 12367 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 12368 .addImm(LabelOffset) 12369 .addReg(BufReg); 12370 } 12371 MIB.cloneMemRefs(MI); 12372 12373 // Reload SP 12374 if (PVT == MVT::i64) { 12375 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 12376 .addImm(SPOffset) 12377 .addReg(BufReg); 12378 } else { 12379 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 12380 .addImm(SPOffset) 12381 .addReg(BufReg); 12382 } 12383 MIB.cloneMemRefs(MI); 12384 12385 // Reload BP 12386 if (PVT == MVT::i64) { 12387 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 12388 .addImm(BPOffset) 12389 .addReg(BufReg); 12390 } else { 12391 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 12392 .addImm(BPOffset) 12393 .addReg(BufReg); 12394 } 12395 MIB.cloneMemRefs(MI); 12396 12397 // Reload TOC 12398 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 12399 setUsesTOCBasePtr(*MBB->getParent()); 12400 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 12401 .addImm(TOCOffset) 12402 .addReg(BufReg) 12403 .cloneMemRefs(MI); 12404 } 12405 12406 // Jump 12407 BuildMI(*MBB, MI, DL, 12408 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 12409 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 12410 12411 MI.eraseFromParent(); 12412 return MBB; 12413 } 12414 12415 bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { 12416 // If the function specifically requests inline stack probes, emit them. 12417 if (MF.getFunction().hasFnAttribute("probe-stack")) 12418 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 12419 "inline-asm"; 12420 return false; 12421 } 12422 12423 unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const { 12424 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 12425 unsigned StackAlign = TFI->getStackAlignment(); 12426 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 12427 "Unexpected stack alignment"); 12428 // The default stack probe size is 4096 if the function has no 12429 // stack-probe-size attribute. 12430 const Function &Fn = MF.getFunction(); 12431 unsigned StackProbeSize = 12432 Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096); 12433 // Round down to the stack alignment. 12434 StackProbeSize &= ~(StackAlign - 1); 12435 return StackProbeSize ? StackProbeSize : StackAlign; 12436 } 12437 12438 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 12439 // into three phases. In the first phase, it uses pseudo instruction 12440 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 12441 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 12442 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 12443 // MaxCallFrameSize so that it can calculate correct data area pointer. 12444 MachineBasicBlock * 12445 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 12446 MachineBasicBlock *MBB) const { 12447 const bool isPPC64 = Subtarget.isPPC64(); 12448 MachineFunction *MF = MBB->getParent(); 12449 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12450 DebugLoc DL = MI.getDebugLoc(); 12451 const unsigned ProbeSize = getStackProbeSize(*MF); 12452 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 12453 MachineRegisterInfo &MRI = MF->getRegInfo(); 12454 // The CFG of probing stack looks as 12455 // +-----+ 12456 // | MBB | 12457 // +--+--+ 12458 // | 12459 // +----v----+ 12460 // +--->+ TestMBB +---+ 12461 // | +----+----+ | 12462 // | | | 12463 // | +-----v----+ | 12464 // +---+ BlockMBB | | 12465 // +----------+ | 12466 // | 12467 // +---------+ | 12468 // | TailMBB +<--+ 12469 // +---------+ 12470 // In MBB, calculate previous frame pointer and final stack pointer. 12471 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12472 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12473 // TailMBB is spliced via \p MI. 12474 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12475 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12476 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12477 12478 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12479 MF->insert(MBBIter, TestMBB); 12480 MF->insert(MBBIter, BlockMBB); 12481 MF->insert(MBBIter, TailMBB); 12482 12483 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12484 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12485 12486 Register DstReg = MI.getOperand(0).getReg(); 12487 Register NegSizeReg = MI.getOperand(1).getReg(); 12488 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12489 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12490 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12491 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12492 12493 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12494 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12495 // NegSize. 12496 unsigned ProbeOpc; 12497 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12498 ProbeOpc = 12499 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12500 else 12501 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12502 // and NegSizeReg will be allocated in the same phyreg to avoid 12503 // redundant copy when NegSizeReg has only one use which is current MI and 12504 // will be replaced by PREPARE_PROBED_ALLOCA then. 12505 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12506 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12507 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12508 .addDef(ActualNegSizeReg) 12509 .addReg(NegSizeReg) 12510 .add(MI.getOperand(2)) 12511 .add(MI.getOperand(3)); 12512 12513 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12514 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12515 FinalStackPtr) 12516 .addReg(SPReg) 12517 .addReg(ActualNegSizeReg); 12518 12519 // Materialize a scratch register for update. 12520 int64_t NegProbeSize = -(int64_t)ProbeSize; 12521 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12522 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12523 if (!isInt<16>(NegProbeSize)) { 12524 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12525 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12526 .addImm(NegProbeSize >> 16); 12527 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12528 ScratchReg) 12529 .addReg(TempReg) 12530 .addImm(NegProbeSize & 0xFFFF); 12531 } else 12532 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12533 .addImm(NegProbeSize); 12534 12535 { 12536 // Probing leading residual part. 12537 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12538 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12539 .addReg(ActualNegSizeReg) 12540 .addReg(ScratchReg); 12541 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12542 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12543 .addReg(Div) 12544 .addReg(ScratchReg); 12545 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12546 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12547 .addReg(Mul) 12548 .addReg(ActualNegSizeReg); 12549 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12550 .addReg(FramePointer) 12551 .addReg(SPReg) 12552 .addReg(NegMod); 12553 } 12554 12555 { 12556 // Remaining part should be multiple of ProbeSize. 12557 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12558 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12559 .addReg(SPReg) 12560 .addReg(FinalStackPtr); 12561 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12562 .addImm(PPC::PRED_EQ) 12563 .addReg(CmpResult) 12564 .addMBB(TailMBB); 12565 TestMBB->addSuccessor(BlockMBB); 12566 TestMBB->addSuccessor(TailMBB); 12567 } 12568 12569 { 12570 // Touch the block. 12571 // |P...|P...|P... 12572 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12573 .addReg(FramePointer) 12574 .addReg(SPReg) 12575 .addReg(ScratchReg); 12576 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12577 BlockMBB->addSuccessor(TestMBB); 12578 } 12579 12580 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12581 // DYNAREAOFFSET pseudo instruction to get the future result. 12582 Register MaxCallFrameSizeReg = 12583 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12584 BuildMI(TailMBB, DL, 12585 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12586 MaxCallFrameSizeReg) 12587 .add(MI.getOperand(2)) 12588 .add(MI.getOperand(3)); 12589 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12590 .addReg(SPReg) 12591 .addReg(MaxCallFrameSizeReg); 12592 12593 // Splice instructions after MI to TailMBB. 12594 TailMBB->splice(TailMBB->end(), MBB, 12595 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12596 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12597 MBB->addSuccessor(TestMBB); 12598 12599 // Delete the pseudo instruction. 12600 MI.eraseFromParent(); 12601 12602 ++NumDynamicAllocaProbed; 12603 return TailMBB; 12604 } 12605 12606 MachineBasicBlock * 12607 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12608 MachineBasicBlock *BB) const { 12609 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12610 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12611 if (Subtarget.is64BitELFABI() && 12612 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12613 !Subtarget.isUsingPCRelativeCalls()) { 12614 // Call lowering should have added an r2 operand to indicate a dependence 12615 // on the TOC base pointer value. It can't however, because there is no 12616 // way to mark the dependence as implicit there, and so the stackmap code 12617 // will confuse it with a regular operand. Instead, add the dependence 12618 // here. 12619 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12620 } 12621 12622 return emitPatchPoint(MI, BB); 12623 } 12624 12625 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12626 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12627 return emitEHSjLjSetJmp(MI, BB); 12628 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12629 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12630 return emitEHSjLjLongJmp(MI, BB); 12631 } 12632 12633 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12634 12635 // To "insert" these instructions we actually have to insert their 12636 // control-flow patterns. 12637 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12638 MachineFunction::iterator It = ++BB->getIterator(); 12639 12640 MachineFunction *F = BB->getParent(); 12641 MachineRegisterInfo &MRI = F->getRegInfo(); 12642 12643 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12644 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12645 MI.getOpcode() == PPC::SELECT_I8) { 12646 SmallVector<MachineOperand, 2> Cond; 12647 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12648 MI.getOpcode() == PPC::SELECT_CC_I8) 12649 Cond.push_back(MI.getOperand(4)); 12650 else 12651 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12652 Cond.push_back(MI.getOperand(1)); 12653 12654 DebugLoc dl = MI.getDebugLoc(); 12655 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12656 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12657 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12658 MI.getOpcode() == PPC::SELECT_CC_F8 || 12659 MI.getOpcode() == PPC::SELECT_CC_F16 || 12660 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12661 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12662 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12663 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12664 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12665 MI.getOpcode() == PPC::SELECT_CC_SPE || 12666 MI.getOpcode() == PPC::SELECT_F4 || 12667 MI.getOpcode() == PPC::SELECT_F8 || 12668 MI.getOpcode() == PPC::SELECT_F16 || 12669 MI.getOpcode() == PPC::SELECT_SPE || 12670 MI.getOpcode() == PPC::SELECT_SPE4 || 12671 MI.getOpcode() == PPC::SELECT_VRRC || 12672 MI.getOpcode() == PPC::SELECT_VSFRC || 12673 MI.getOpcode() == PPC::SELECT_VSSRC || 12674 MI.getOpcode() == PPC::SELECT_VSRC) { 12675 // The incoming instruction knows the destination vreg to set, the 12676 // condition code register to branch on, the true/false values to 12677 // select between, and a branch opcode to use. 12678 12679 // thisMBB: 12680 // ... 12681 // TrueVal = ... 12682 // cmpTY ccX, r1, r2 12683 // bCC copy1MBB 12684 // fallthrough --> copy0MBB 12685 MachineBasicBlock *thisMBB = BB; 12686 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12687 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12688 DebugLoc dl = MI.getDebugLoc(); 12689 F->insert(It, copy0MBB); 12690 F->insert(It, sinkMBB); 12691 12692 // Transfer the remainder of BB and its successor edges to sinkMBB. 12693 sinkMBB->splice(sinkMBB->begin(), BB, 12694 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12695 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12696 12697 // Next, add the true and fallthrough blocks as its successors. 12698 BB->addSuccessor(copy0MBB); 12699 BB->addSuccessor(sinkMBB); 12700 12701 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12702 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12703 MI.getOpcode() == PPC::SELECT_F16 || 12704 MI.getOpcode() == PPC::SELECT_SPE4 || 12705 MI.getOpcode() == PPC::SELECT_SPE || 12706 MI.getOpcode() == PPC::SELECT_VRRC || 12707 MI.getOpcode() == PPC::SELECT_VSFRC || 12708 MI.getOpcode() == PPC::SELECT_VSSRC || 12709 MI.getOpcode() == PPC::SELECT_VSRC) { 12710 BuildMI(BB, dl, TII->get(PPC::BC)) 12711 .addReg(MI.getOperand(1).getReg()) 12712 .addMBB(sinkMBB); 12713 } else { 12714 unsigned SelectPred = MI.getOperand(4).getImm(); 12715 BuildMI(BB, dl, TII->get(PPC::BCC)) 12716 .addImm(SelectPred) 12717 .addReg(MI.getOperand(1).getReg()) 12718 .addMBB(sinkMBB); 12719 } 12720 12721 // copy0MBB: 12722 // %FalseValue = ... 12723 // # fallthrough to sinkMBB 12724 BB = copy0MBB; 12725 12726 // Update machine-CFG edges 12727 BB->addSuccessor(sinkMBB); 12728 12729 // sinkMBB: 12730 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12731 // ... 12732 BB = sinkMBB; 12733 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12734 .addReg(MI.getOperand(3).getReg()) 12735 .addMBB(copy0MBB) 12736 .addReg(MI.getOperand(2).getReg()) 12737 .addMBB(thisMBB); 12738 } else if (MI.getOpcode() == PPC::ReadTB) { 12739 // To read the 64-bit time-base register on a 32-bit target, we read the 12740 // two halves. Should the counter have wrapped while it was being read, we 12741 // need to try again. 12742 // ... 12743 // readLoop: 12744 // mfspr Rx,TBU # load from TBU 12745 // mfspr Ry,TB # load from TB 12746 // mfspr Rz,TBU # load from TBU 12747 // cmpw crX,Rx,Rz # check if 'old'='new' 12748 // bne readLoop # branch if they're not equal 12749 // ... 12750 12751 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12752 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12753 DebugLoc dl = MI.getDebugLoc(); 12754 F->insert(It, readMBB); 12755 F->insert(It, sinkMBB); 12756 12757 // Transfer the remainder of BB and its successor edges to sinkMBB. 12758 sinkMBB->splice(sinkMBB->begin(), BB, 12759 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12760 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12761 12762 BB->addSuccessor(readMBB); 12763 BB = readMBB; 12764 12765 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12766 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12767 Register LoReg = MI.getOperand(0).getReg(); 12768 Register HiReg = MI.getOperand(1).getReg(); 12769 12770 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12771 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12772 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12773 12774 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12775 12776 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12777 .addReg(HiReg) 12778 .addReg(ReadAgainReg); 12779 BuildMI(BB, dl, TII->get(PPC::BCC)) 12780 .addImm(PPC::PRED_NE) 12781 .addReg(CmpReg) 12782 .addMBB(readMBB); 12783 12784 BB->addSuccessor(readMBB); 12785 BB->addSuccessor(sinkMBB); 12786 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12787 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12788 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12789 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12790 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12791 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12792 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12793 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12794 12795 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12796 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12797 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12798 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12799 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12800 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12801 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12802 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12803 12804 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12805 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12806 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12807 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12808 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12809 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12810 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12811 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12812 12813 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12814 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12815 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12816 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12817 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12818 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12819 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12820 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12821 12822 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12823 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12824 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12825 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12826 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12827 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12828 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12829 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12830 12831 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12832 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12833 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12834 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12835 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12836 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12837 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12838 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12839 12840 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12841 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT); 12842 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12843 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT); 12844 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12845 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT); 12846 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12847 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT); 12848 12849 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12850 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT); 12851 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12852 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT); 12853 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12854 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT); 12855 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12856 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT); 12857 12858 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12859 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT); 12860 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12861 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT); 12862 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12863 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT); 12864 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12865 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT); 12866 12867 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12868 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT); 12869 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12870 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT); 12871 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12872 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT); 12873 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12874 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT); 12875 12876 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12877 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12878 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12879 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12880 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12881 BB = EmitAtomicBinary(MI, BB, 4, 0); 12882 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12883 BB = EmitAtomicBinary(MI, BB, 8, 0); 12884 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12885 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12886 (Subtarget.hasPartwordAtomics() && 12887 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12888 (Subtarget.hasPartwordAtomics() && 12889 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12890 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12891 12892 auto LoadMnemonic = PPC::LDARX; 12893 auto StoreMnemonic = PPC::STDCX; 12894 switch (MI.getOpcode()) { 12895 default: 12896 llvm_unreachable("Compare and swap of unknown size"); 12897 case PPC::ATOMIC_CMP_SWAP_I8: 12898 LoadMnemonic = PPC::LBARX; 12899 StoreMnemonic = PPC::STBCX; 12900 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12901 break; 12902 case PPC::ATOMIC_CMP_SWAP_I16: 12903 LoadMnemonic = PPC::LHARX; 12904 StoreMnemonic = PPC::STHCX; 12905 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12906 break; 12907 case PPC::ATOMIC_CMP_SWAP_I32: 12908 LoadMnemonic = PPC::LWARX; 12909 StoreMnemonic = PPC::STWCX; 12910 break; 12911 case PPC::ATOMIC_CMP_SWAP_I64: 12912 LoadMnemonic = PPC::LDARX; 12913 StoreMnemonic = PPC::STDCX; 12914 break; 12915 } 12916 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12917 Register dest = MI.getOperand(0).getReg(); 12918 Register ptrA = MI.getOperand(1).getReg(); 12919 Register ptrB = MI.getOperand(2).getReg(); 12920 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12921 Register oldval = MI.getOperand(3).getReg(); 12922 Register newval = MI.getOperand(4).getReg(); 12923 DebugLoc dl = MI.getDebugLoc(); 12924 12925 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12926 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12927 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12928 F->insert(It, loop1MBB); 12929 F->insert(It, loop2MBB); 12930 F->insert(It, exitMBB); 12931 exitMBB->splice(exitMBB->begin(), BB, 12932 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12933 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12934 12935 // thisMBB: 12936 // ... 12937 // fallthrough --> loopMBB 12938 BB->addSuccessor(loop1MBB); 12939 12940 // loop1MBB: 12941 // l[bhwd]arx dest, ptr 12942 // cmp[wd] dest, oldval 12943 // bne- exitBB 12944 // loop2MBB: 12945 // st[bhwd]cx. newval, ptr 12946 // bne- loopMBB 12947 // b exitBB 12948 // exitBB: 12949 BB = loop1MBB; 12950 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12951 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg) 12952 .addReg(dest) 12953 .addReg(oldval); 12954 BuildMI(BB, dl, TII->get(PPC::BCC)) 12955 .addImm(PPC::PRED_NE) 12956 .addReg(CrReg) 12957 .addMBB(exitMBB); 12958 BB->addSuccessor(loop2MBB); 12959 BB->addSuccessor(exitMBB); 12960 12961 BB = loop2MBB; 12962 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12963 .addReg(newval) 12964 .addReg(ptrA) 12965 .addReg(ptrB); 12966 BuildMI(BB, dl, TII->get(PPC::BCC)) 12967 .addImm(PPC::PRED_NE) 12968 .addReg(PPC::CR0) 12969 .addMBB(loop1MBB); 12970 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12971 BB->addSuccessor(loop1MBB); 12972 BB->addSuccessor(exitMBB); 12973 12974 // exitMBB: 12975 // ... 12976 BB = exitMBB; 12977 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12978 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12979 // We must use 64-bit registers for addresses when targeting 64-bit, 12980 // since we're actually doing arithmetic on them. Other registers 12981 // can be 32-bit. 12982 bool is64bit = Subtarget.isPPC64(); 12983 bool isLittleEndian = Subtarget.isLittleEndian(); 12984 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12985 12986 Register dest = MI.getOperand(0).getReg(); 12987 Register ptrA = MI.getOperand(1).getReg(); 12988 Register ptrB = MI.getOperand(2).getReg(); 12989 Register oldval = MI.getOperand(3).getReg(); 12990 Register newval = MI.getOperand(4).getReg(); 12991 DebugLoc dl = MI.getDebugLoc(); 12992 12993 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12994 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12995 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12996 F->insert(It, loop1MBB); 12997 F->insert(It, loop2MBB); 12998 F->insert(It, exitMBB); 12999 exitMBB->splice(exitMBB->begin(), BB, 13000 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 13001 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 13002 13003 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13004 const TargetRegisterClass *RC = 13005 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 13006 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 13007 13008 Register PtrReg = RegInfo.createVirtualRegister(RC); 13009 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 13010 Register ShiftReg = 13011 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 13012 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 13013 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 13014 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 13015 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 13016 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 13017 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 13018 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 13019 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 13020 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 13021 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 13022 Register Ptr1Reg; 13023 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 13024 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 13025 Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 13026 // thisMBB: 13027 // ... 13028 // fallthrough --> loopMBB 13029 BB->addSuccessor(loop1MBB); 13030 13031 // The 4-byte load must be aligned, while a char or short may be 13032 // anywhere in the word. Hence all this nasty bookkeeping code. 13033 // add ptr1, ptrA, ptrB [copy if ptrA==0] 13034 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 13035 // xori shift, shift1, 24 [16] 13036 // rlwinm ptr, ptr1, 0, 0, 29 13037 // slw newval2, newval, shift 13038 // slw oldval2, oldval,shift 13039 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 13040 // slw mask, mask2, shift 13041 // and newval3, newval2, mask 13042 // and oldval3, oldval2, mask 13043 // loop1MBB: 13044 // lwarx tmpDest, ptr 13045 // and tmp, tmpDest, mask 13046 // cmpw tmp, oldval3 13047 // bne- exitBB 13048 // loop2MBB: 13049 // andc tmp2, tmpDest, mask 13050 // or tmp4, tmp2, newval3 13051 // stwcx. tmp4, ptr 13052 // bne- loop1MBB 13053 // b exitBB 13054 // exitBB: 13055 // srw dest, tmpDest, shift 13056 if (ptrA != ZeroReg) { 13057 Ptr1Reg = RegInfo.createVirtualRegister(RC); 13058 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 13059 .addReg(ptrA) 13060 .addReg(ptrB); 13061 } else { 13062 Ptr1Reg = ptrB; 13063 } 13064 13065 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 13066 // mode. 13067 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 13068 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 13069 .addImm(3) 13070 .addImm(27) 13071 .addImm(is8bit ? 28 : 27); 13072 if (!isLittleEndian) 13073 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 13074 .addReg(Shift1Reg) 13075 .addImm(is8bit ? 24 : 16); 13076 if (is64bit) 13077 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 13078 .addReg(Ptr1Reg) 13079 .addImm(0) 13080 .addImm(61); 13081 else 13082 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 13083 .addReg(Ptr1Reg) 13084 .addImm(0) 13085 .addImm(0) 13086 .addImm(29); 13087 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 13088 .addReg(newval) 13089 .addReg(ShiftReg); 13090 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 13091 .addReg(oldval) 13092 .addReg(ShiftReg); 13093 if (is8bit) 13094 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 13095 else { 13096 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 13097 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 13098 .addReg(Mask3Reg) 13099 .addImm(65535); 13100 } 13101 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 13102 .addReg(Mask2Reg) 13103 .addReg(ShiftReg); 13104 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 13105 .addReg(NewVal2Reg) 13106 .addReg(MaskReg); 13107 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 13108 .addReg(OldVal2Reg) 13109 .addReg(MaskReg); 13110 13111 BB = loop1MBB; 13112 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 13113 .addReg(ZeroReg) 13114 .addReg(PtrReg); 13115 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 13116 .addReg(TmpDestReg) 13117 .addReg(MaskReg); 13118 BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg) 13119 .addReg(TmpReg) 13120 .addReg(OldVal3Reg); 13121 BuildMI(BB, dl, TII->get(PPC::BCC)) 13122 .addImm(PPC::PRED_NE) 13123 .addReg(CrReg) 13124 .addMBB(exitMBB); 13125 BB->addSuccessor(loop2MBB); 13126 BB->addSuccessor(exitMBB); 13127 13128 BB = loop2MBB; 13129 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 13130 .addReg(TmpDestReg) 13131 .addReg(MaskReg); 13132 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 13133 .addReg(Tmp2Reg) 13134 .addReg(NewVal3Reg); 13135 BuildMI(BB, dl, TII->get(PPC::STWCX)) 13136 .addReg(Tmp4Reg) 13137 .addReg(ZeroReg) 13138 .addReg(PtrReg); 13139 BuildMI(BB, dl, TII->get(PPC::BCC)) 13140 .addImm(PPC::PRED_NE) 13141 .addReg(PPC::CR0) 13142 .addMBB(loop1MBB); 13143 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 13144 BB->addSuccessor(loop1MBB); 13145 BB->addSuccessor(exitMBB); 13146 13147 // exitMBB: 13148 // ... 13149 BB = exitMBB; 13150 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 13151 .addReg(TmpReg) 13152 .addReg(ShiftReg); 13153 } else if (MI.getOpcode() == PPC::FADDrtz) { 13154 // This pseudo performs an FADD with rounding mode temporarily forced 13155 // to round-to-zero. We emit this via custom inserter since the FPSCR 13156 // is not modeled at the SelectionDAG level. 13157 Register Dest = MI.getOperand(0).getReg(); 13158 Register Src1 = MI.getOperand(1).getReg(); 13159 Register Src2 = MI.getOperand(2).getReg(); 13160 DebugLoc dl = MI.getDebugLoc(); 13161 13162 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13163 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 13164 13165 // Save FPSCR value. 13166 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 13167 13168 // Set rounding mode to round-to-zero. 13169 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 13170 .addImm(31) 13171 .addReg(PPC::RM, RegState::ImplicitDefine); 13172 13173 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 13174 .addImm(30) 13175 .addReg(PPC::RM, RegState::ImplicitDefine); 13176 13177 // Perform addition. 13178 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 13179 .addReg(Src1) 13180 .addReg(Src2); 13181 if (MI.getFlag(MachineInstr::NoFPExcept)) 13182 MIB.setMIFlag(MachineInstr::NoFPExcept); 13183 13184 // Restore FPSCR value. 13185 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 13186 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 13187 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 13188 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 13189 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 13190 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 13191 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 13192 ? PPC::ANDI8_rec 13193 : PPC::ANDI_rec; 13194 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 13195 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 13196 13197 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13198 Register Dest = RegInfo.createVirtualRegister( 13199 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 13200 13201 DebugLoc Dl = MI.getDebugLoc(); 13202 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 13203 .addReg(MI.getOperand(1).getReg()) 13204 .addImm(1); 13205 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 13206 MI.getOperand(0).getReg()) 13207 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 13208 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 13209 DebugLoc Dl = MI.getDebugLoc(); 13210 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13211 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 13212 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 13213 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 13214 MI.getOperand(0).getReg()) 13215 .addReg(CRReg); 13216 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 13217 DebugLoc Dl = MI.getDebugLoc(); 13218 unsigned Imm = MI.getOperand(1).getImm(); 13219 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 13220 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 13221 MI.getOperand(0).getReg()) 13222 .addReg(PPC::CR0EQ); 13223 } else if (MI.getOpcode() == PPC::SETRNDi) { 13224 DebugLoc dl = MI.getDebugLoc(); 13225 Register OldFPSCRReg = MI.getOperand(0).getReg(); 13226 13227 // Save FPSCR value. 13228 if (MRI.use_empty(OldFPSCRReg)) 13229 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 13230 else 13231 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 13232 13233 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 13234 // the following settings: 13235 // 00 Round to nearest 13236 // 01 Round to 0 13237 // 10 Round to +inf 13238 // 11 Round to -inf 13239 13240 // When the operand is immediate, using the two least significant bits of 13241 // the immediate to set the bits 62:63 of FPSCR. 13242 unsigned Mode = MI.getOperand(1).getImm(); 13243 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 13244 .addImm(31) 13245 .addReg(PPC::RM, RegState::ImplicitDefine); 13246 13247 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 13248 .addImm(30) 13249 .addReg(PPC::RM, RegState::ImplicitDefine); 13250 } else if (MI.getOpcode() == PPC::SETRND) { 13251 DebugLoc dl = MI.getDebugLoc(); 13252 13253 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 13254 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 13255 // If the target doesn't have DirectMove, we should use stack to do the 13256 // conversion, because the target doesn't have the instructions like mtvsrd 13257 // or mfvsrd to do this conversion directly. 13258 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 13259 if (Subtarget.hasDirectMove()) { 13260 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 13261 .addReg(SrcReg); 13262 } else { 13263 // Use stack to do the register copy. 13264 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 13265 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13266 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 13267 if (RC == &PPC::F8RCRegClass) { 13268 // Copy register from F8RCRegClass to G8RCRegclass. 13269 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 13270 "Unsupported RegClass."); 13271 13272 StoreOp = PPC::STFD; 13273 LoadOp = PPC::LD; 13274 } else { 13275 // Copy register from G8RCRegClass to F8RCRegclass. 13276 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 13277 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 13278 "Unsupported RegClass."); 13279 } 13280 13281 MachineFrameInfo &MFI = F->getFrameInfo(); 13282 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 13283 13284 MachineMemOperand *MMOStore = F->getMachineMemOperand( 13285 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 13286 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 13287 MFI.getObjectAlign(FrameIdx)); 13288 13289 // Store the SrcReg into the stack. 13290 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 13291 .addReg(SrcReg) 13292 .addImm(0) 13293 .addFrameIndex(FrameIdx) 13294 .addMemOperand(MMOStore); 13295 13296 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 13297 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 13298 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 13299 MFI.getObjectAlign(FrameIdx)); 13300 13301 // Load from the stack where SrcReg is stored, and save to DestReg, 13302 // so we have done the RegClass conversion from RegClass::SrcReg to 13303 // RegClass::DestReg. 13304 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 13305 .addImm(0) 13306 .addFrameIndex(FrameIdx) 13307 .addMemOperand(MMOLoad); 13308 } 13309 }; 13310 13311 Register OldFPSCRReg = MI.getOperand(0).getReg(); 13312 13313 // Save FPSCR value. 13314 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 13315 13316 // When the operand is gprc register, use two least significant bits of the 13317 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 13318 // 13319 // copy OldFPSCRTmpReg, OldFPSCRReg 13320 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 13321 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 13322 // copy NewFPSCRReg, NewFPSCRTmpReg 13323 // mtfsf 255, NewFPSCRReg 13324 MachineOperand SrcOp = MI.getOperand(1); 13325 MachineRegisterInfo &RegInfo = F->getRegInfo(); 13326 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13327 13328 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 13329 13330 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13331 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13332 13333 // The first operand of INSERT_SUBREG should be a register which has 13334 // subregisters, we only care about its RegClass, so we should use an 13335 // IMPLICIT_DEF register. 13336 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 13337 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 13338 .addReg(ImDefReg) 13339 .add(SrcOp) 13340 .addImm(1); 13341 13342 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 13343 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 13344 .addReg(OldFPSCRTmpReg) 13345 .addReg(ExtSrcReg) 13346 .addImm(0) 13347 .addImm(62); 13348 13349 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 13350 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 13351 13352 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 13353 // bits of FPSCR. 13354 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 13355 .addImm(255) 13356 .addReg(NewFPSCRReg) 13357 .addImm(0) 13358 .addImm(0); 13359 } else if (MI.getOpcode() == PPC::SETFLM) { 13360 DebugLoc Dl = MI.getDebugLoc(); 13361 13362 // Result of setflm is previous FPSCR content, so we need to save it first. 13363 Register OldFPSCRReg = MI.getOperand(0).getReg(); 13364 if (MRI.use_empty(OldFPSCRReg)) 13365 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 13366 else 13367 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 13368 13369 // Put bits in 32:63 to FPSCR. 13370 Register NewFPSCRReg = MI.getOperand(1).getReg(); 13371 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 13372 .addImm(255) 13373 .addReg(NewFPSCRReg) 13374 .addImm(0) 13375 .addImm(0); 13376 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 13377 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 13378 return emitProbedAlloca(MI, BB); 13379 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 13380 DebugLoc DL = MI.getDebugLoc(); 13381 Register Src = MI.getOperand(2).getReg(); 13382 Register Lo = MI.getOperand(0).getReg(); 13383 Register Hi = MI.getOperand(1).getReg(); 13384 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 13385 .addDef(Lo) 13386 .addUse(Src, 0, PPC::sub_gp8_x1); 13387 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 13388 .addDef(Hi) 13389 .addUse(Src, 0, PPC::sub_gp8_x0); 13390 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 13391 MI.getOpcode() == PPC::STQX_PSEUDO) { 13392 DebugLoc DL = MI.getDebugLoc(); 13393 // Ptr is used as the ptr_rc_no_r0 part 13394 // of LQ/STQ's memory operand and adding result of RA and RB, 13395 // so it has to be g8rc_and_g8rc_nox0. 13396 Register Ptr = 13397 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 13398 Register Val = MI.getOperand(0).getReg(); 13399 Register RA = MI.getOperand(1).getReg(); 13400 Register RB = MI.getOperand(2).getReg(); 13401 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 13402 BuildMI(*BB, MI, DL, 13403 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 13404 : TII->get(PPC::STQ)) 13405 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 13406 .addImm(0) 13407 .addReg(Ptr); 13408 } else { 13409 llvm_unreachable("Unexpected instr type to insert"); 13410 } 13411 13412 MI.eraseFromParent(); // The pseudo instruction is gone now. 13413 return BB; 13414 } 13415 13416 //===----------------------------------------------------------------------===// 13417 // Target Optimization Hooks 13418 //===----------------------------------------------------------------------===// 13419 13420 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 13421 // For the estimates, convergence is quadratic, so we essentially double the 13422 // number of digits correct after every iteration. For both FRE and FRSQRTE, 13423 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 13424 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 13425 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 13426 if (VT.getScalarType() == MVT::f64) 13427 RefinementSteps++; 13428 return RefinementSteps; 13429 } 13430 13431 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 13432 const DenormalMode &Mode) const { 13433 // We only have VSX Vector Test for software Square Root. 13434 EVT VT = Op.getValueType(); 13435 if (!isTypeLegal(MVT::i1) || 13436 (VT != MVT::f64 && 13437 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 13438 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 13439 13440 SDLoc DL(Op); 13441 // The output register of FTSQRT is CR field. 13442 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13443 // ftsqrt BF,FRB 13444 // Let e_b be the unbiased exponent of the double-precision 13445 // floating-point operand in register FRB. 13446 // fe_flag is set to 1 if either of the following conditions occurs. 13447 // - The double-precision floating-point operand in register FRB is a zero, 13448 // a NaN, or an infinity, or a negative value. 13449 // - e_b is less than or equal to -970. 13450 // Otherwise fe_flag is set to 0. 13451 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13452 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13453 // exponent is less than -970) 13454 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13455 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13456 FTSQRT, SRIdxVal), 13457 0); 13458 } 13459 13460 SDValue 13461 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13462 SelectionDAG &DAG) const { 13463 // We only have VSX Vector Square Root. 13464 EVT VT = Op.getValueType(); 13465 if (VT != MVT::f64 && 13466 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13467 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13468 13469 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13470 } 13471 13472 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13473 int Enabled, int &RefinementSteps, 13474 bool &UseOneConstNR, 13475 bool Reciprocal) const { 13476 EVT VT = Operand.getValueType(); 13477 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13478 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13479 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13480 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13481 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13482 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13483 13484 // The Newton-Raphson computation with a single constant does not provide 13485 // enough accuracy on some CPUs. 13486 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13487 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13488 } 13489 return SDValue(); 13490 } 13491 13492 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13493 int Enabled, 13494 int &RefinementSteps) const { 13495 EVT VT = Operand.getValueType(); 13496 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13497 (VT == MVT::f64 && Subtarget.hasFRE()) || 13498 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13499 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13500 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13501 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13502 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13503 } 13504 return SDValue(); 13505 } 13506 13507 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13508 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13509 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13510 // enabled for division), this functionality is redundant with the default 13511 // combiner logic (once the division -> reciprocal/multiply transformation 13512 // has taken place). As a result, this matters more for older cores than for 13513 // newer ones. 13514 13515 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13516 // reciprocal if there are two or more FDIVs (for embedded cores with only 13517 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13518 switch (Subtarget.getCPUDirective()) { 13519 default: 13520 return 3; 13521 case PPC::DIR_440: 13522 case PPC::DIR_A2: 13523 case PPC::DIR_E500: 13524 case PPC::DIR_E500mc: 13525 case PPC::DIR_E5500: 13526 return 2; 13527 } 13528 } 13529 13530 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13531 // collapsed, and so we need to look through chains of them. 13532 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13533 int64_t& Offset, SelectionDAG &DAG) { 13534 if (DAG.isBaseWithConstantOffset(Loc)) { 13535 Base = Loc.getOperand(0); 13536 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13537 13538 // The base might itself be a base plus an offset, and if so, accumulate 13539 // that as well. 13540 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13541 } 13542 } 13543 13544 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13545 unsigned Bytes, int Dist, 13546 SelectionDAG &DAG) { 13547 if (VT.getSizeInBits() / 8 != Bytes) 13548 return false; 13549 13550 SDValue BaseLoc = Base->getBasePtr(); 13551 if (Loc.getOpcode() == ISD::FrameIndex) { 13552 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13553 return false; 13554 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13555 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13556 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13557 int FS = MFI.getObjectSize(FI); 13558 int BFS = MFI.getObjectSize(BFI); 13559 if (FS != BFS || FS != (int)Bytes) return false; 13560 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13561 } 13562 13563 SDValue Base1 = Loc, Base2 = BaseLoc; 13564 int64_t Offset1 = 0, Offset2 = 0; 13565 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13566 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13567 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13568 return true; 13569 13570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13571 const GlobalValue *GV1 = nullptr; 13572 const GlobalValue *GV2 = nullptr; 13573 Offset1 = 0; 13574 Offset2 = 0; 13575 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13576 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13577 if (isGA1 && isGA2 && GV1 == GV2) 13578 return Offset1 == (Offset2 + Dist*Bytes); 13579 return false; 13580 } 13581 13582 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13583 // not enforce equality of the chain operands. 13584 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13585 unsigned Bytes, int Dist, 13586 SelectionDAG &DAG) { 13587 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13588 EVT VT = LS->getMemoryVT(); 13589 SDValue Loc = LS->getBasePtr(); 13590 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13591 } 13592 13593 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13594 EVT VT; 13595 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13596 default: return false; 13597 case Intrinsic::ppc_altivec_lvx: 13598 case Intrinsic::ppc_altivec_lvxl: 13599 case Intrinsic::ppc_vsx_lxvw4x: 13600 case Intrinsic::ppc_vsx_lxvw4x_be: 13601 VT = MVT::v4i32; 13602 break; 13603 case Intrinsic::ppc_vsx_lxvd2x: 13604 case Intrinsic::ppc_vsx_lxvd2x_be: 13605 VT = MVT::v2f64; 13606 break; 13607 case Intrinsic::ppc_altivec_lvebx: 13608 VT = MVT::i8; 13609 break; 13610 case Intrinsic::ppc_altivec_lvehx: 13611 VT = MVT::i16; 13612 break; 13613 case Intrinsic::ppc_altivec_lvewx: 13614 VT = MVT::i32; 13615 break; 13616 } 13617 13618 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13619 } 13620 13621 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13622 EVT VT; 13623 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13624 default: return false; 13625 case Intrinsic::ppc_altivec_stvx: 13626 case Intrinsic::ppc_altivec_stvxl: 13627 case Intrinsic::ppc_vsx_stxvw4x: 13628 VT = MVT::v4i32; 13629 break; 13630 case Intrinsic::ppc_vsx_stxvd2x: 13631 VT = MVT::v2f64; 13632 break; 13633 case Intrinsic::ppc_vsx_stxvw4x_be: 13634 VT = MVT::v4i32; 13635 break; 13636 case Intrinsic::ppc_vsx_stxvd2x_be: 13637 VT = MVT::v2f64; 13638 break; 13639 case Intrinsic::ppc_altivec_stvebx: 13640 VT = MVT::i8; 13641 break; 13642 case Intrinsic::ppc_altivec_stvehx: 13643 VT = MVT::i16; 13644 break; 13645 case Intrinsic::ppc_altivec_stvewx: 13646 VT = MVT::i32; 13647 break; 13648 } 13649 13650 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13651 } 13652 13653 return false; 13654 } 13655 13656 // Return true is there is a nearyby consecutive load to the one provided 13657 // (regardless of alignment). We search up and down the chain, looking though 13658 // token factors and other loads (but nothing else). As a result, a true result 13659 // indicates that it is safe to create a new consecutive load adjacent to the 13660 // load provided. 13661 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13662 SDValue Chain = LD->getChain(); 13663 EVT VT = LD->getMemoryVT(); 13664 13665 SmallSet<SDNode *, 16> LoadRoots; 13666 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13667 SmallSet<SDNode *, 16> Visited; 13668 13669 // First, search up the chain, branching to follow all token-factor operands. 13670 // If we find a consecutive load, then we're done, otherwise, record all 13671 // nodes just above the top-level loads and token factors. 13672 while (!Queue.empty()) { 13673 SDNode *ChainNext = Queue.pop_back_val(); 13674 if (!Visited.insert(ChainNext).second) 13675 continue; 13676 13677 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13678 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13679 return true; 13680 13681 if (!Visited.count(ChainLD->getChain().getNode())) 13682 Queue.push_back(ChainLD->getChain().getNode()); 13683 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13684 for (const SDUse &O : ChainNext->ops()) 13685 if (!Visited.count(O.getNode())) 13686 Queue.push_back(O.getNode()); 13687 } else 13688 LoadRoots.insert(ChainNext); 13689 } 13690 13691 // Second, search down the chain, starting from the top-level nodes recorded 13692 // in the first phase. These top-level nodes are the nodes just above all 13693 // loads and token factors. Starting with their uses, recursively look though 13694 // all loads (just the chain uses) and token factors to find a consecutive 13695 // load. 13696 Visited.clear(); 13697 Queue.clear(); 13698 13699 for (SDNode *I : LoadRoots) { 13700 Queue.push_back(I); 13701 13702 while (!Queue.empty()) { 13703 SDNode *LoadRoot = Queue.pop_back_val(); 13704 if (!Visited.insert(LoadRoot).second) 13705 continue; 13706 13707 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13708 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13709 return true; 13710 13711 for (SDNode *U : LoadRoot->uses()) 13712 if (((isa<MemSDNode>(U) && 13713 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13714 U->getOpcode() == ISD::TokenFactor) && 13715 !Visited.count(U)) 13716 Queue.push_back(U); 13717 } 13718 } 13719 13720 return false; 13721 } 13722 13723 /// This function is called when we have proved that a SETCC node can be replaced 13724 /// by subtraction (and other supporting instructions) so that the result of 13725 /// comparison is kept in a GPR instead of CR. This function is purely for 13726 /// codegen purposes and has some flags to guide the codegen process. 13727 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13728 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13729 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13730 13731 // Zero extend the operands to the largest legal integer. Originally, they 13732 // must be of a strictly smaller size. 13733 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13734 DAG.getConstant(Size, DL, MVT::i32)); 13735 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13736 DAG.getConstant(Size, DL, MVT::i32)); 13737 13738 // Swap if needed. Depends on the condition code. 13739 if (Swap) 13740 std::swap(Op0, Op1); 13741 13742 // Subtract extended integers. 13743 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13744 13745 // Move the sign bit to the least significant position and zero out the rest. 13746 // Now the least significant bit carries the result of original comparison. 13747 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13748 DAG.getConstant(Size - 1, DL, MVT::i32)); 13749 auto Final = Shifted; 13750 13751 // Complement the result if needed. Based on the condition code. 13752 if (Complement) 13753 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13754 DAG.getConstant(1, DL, MVT::i64)); 13755 13756 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13757 } 13758 13759 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13760 DAGCombinerInfo &DCI) const { 13761 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13762 13763 SelectionDAG &DAG = DCI.DAG; 13764 SDLoc DL(N); 13765 13766 // Size of integers being compared has a critical role in the following 13767 // analysis, so we prefer to do this when all types are legal. 13768 if (!DCI.isAfterLegalizeDAG()) 13769 return SDValue(); 13770 13771 // If all users of SETCC extend its value to a legal integer type 13772 // then we replace SETCC with a subtraction 13773 for (const SDNode *U : N->uses()) 13774 if (U->getOpcode() != ISD::ZERO_EXTEND) 13775 return SDValue(); 13776 13777 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13778 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13779 13780 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13781 13782 if (OpSize < Size) { 13783 switch (CC) { 13784 default: break; 13785 case ISD::SETULT: 13786 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13787 case ISD::SETULE: 13788 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13789 case ISD::SETUGT: 13790 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13791 case ISD::SETUGE: 13792 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13793 } 13794 } 13795 13796 return SDValue(); 13797 } 13798 13799 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13800 DAGCombinerInfo &DCI) const { 13801 SelectionDAG &DAG = DCI.DAG; 13802 SDLoc dl(N); 13803 13804 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13805 // If we're tracking CR bits, we need to be careful that we don't have: 13806 // trunc(binary-ops(zext(x), zext(y))) 13807 // or 13808 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13809 // such that we're unnecessarily moving things into GPRs when it would be 13810 // better to keep them in CR bits. 13811 13812 // Note that trunc here can be an actual i1 trunc, or can be the effective 13813 // truncation that comes from a setcc or select_cc. 13814 if (N->getOpcode() == ISD::TRUNCATE && 13815 N->getValueType(0) != MVT::i1) 13816 return SDValue(); 13817 13818 if (N->getOperand(0).getValueType() != MVT::i32 && 13819 N->getOperand(0).getValueType() != MVT::i64) 13820 return SDValue(); 13821 13822 if (N->getOpcode() == ISD::SETCC || 13823 N->getOpcode() == ISD::SELECT_CC) { 13824 // If we're looking at a comparison, then we need to make sure that the 13825 // high bits (all except for the first) don't matter the result. 13826 ISD::CondCode CC = 13827 cast<CondCodeSDNode>(N->getOperand( 13828 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13829 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13830 13831 if (ISD::isSignedIntSetCC(CC)) { 13832 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13833 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13834 return SDValue(); 13835 } else if (ISD::isUnsignedIntSetCC(CC)) { 13836 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13837 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13838 !DAG.MaskedValueIsZero(N->getOperand(1), 13839 APInt::getHighBitsSet(OpBits, OpBits-1))) 13840 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13841 : SDValue()); 13842 } else { 13843 // This is neither a signed nor an unsigned comparison, just make sure 13844 // that the high bits are equal. 13845 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13846 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13847 13848 // We don't really care about what is known about the first bit (if 13849 // anything), so pretend that it is known zero for both to ensure they can 13850 // be compared as constants. 13851 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13852 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13853 13854 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13855 Op1Known.getConstant() != Op2Known.getConstant()) 13856 return SDValue(); 13857 } 13858 } 13859 13860 // We now know that the higher-order bits are irrelevant, we just need to 13861 // make sure that all of the intermediate operations are bit operations, and 13862 // all inputs are extensions. 13863 if (N->getOperand(0).getOpcode() != ISD::AND && 13864 N->getOperand(0).getOpcode() != ISD::OR && 13865 N->getOperand(0).getOpcode() != ISD::XOR && 13866 N->getOperand(0).getOpcode() != ISD::SELECT && 13867 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13868 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13869 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13870 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13871 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13872 return SDValue(); 13873 13874 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13875 N->getOperand(1).getOpcode() != ISD::AND && 13876 N->getOperand(1).getOpcode() != ISD::OR && 13877 N->getOperand(1).getOpcode() != ISD::XOR && 13878 N->getOperand(1).getOpcode() != ISD::SELECT && 13879 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13880 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13881 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13882 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13883 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13884 return SDValue(); 13885 13886 SmallVector<SDValue, 4> Inputs; 13887 SmallVector<SDValue, 8> BinOps, PromOps; 13888 SmallPtrSet<SDNode *, 16> Visited; 13889 13890 for (unsigned i = 0; i < 2; ++i) { 13891 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13892 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13893 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13894 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13895 isa<ConstantSDNode>(N->getOperand(i))) 13896 Inputs.push_back(N->getOperand(i)); 13897 else 13898 BinOps.push_back(N->getOperand(i)); 13899 13900 if (N->getOpcode() == ISD::TRUNCATE) 13901 break; 13902 } 13903 13904 // Visit all inputs, collect all binary operations (and, or, xor and 13905 // select) that are all fed by extensions. 13906 while (!BinOps.empty()) { 13907 SDValue BinOp = BinOps.pop_back_val(); 13908 13909 if (!Visited.insert(BinOp.getNode()).second) 13910 continue; 13911 13912 PromOps.push_back(BinOp); 13913 13914 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13915 // The condition of the select is not promoted. 13916 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13917 continue; 13918 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13919 continue; 13920 13921 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13922 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13923 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13924 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13925 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13926 Inputs.push_back(BinOp.getOperand(i)); 13927 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13928 BinOp.getOperand(i).getOpcode() == ISD::OR || 13929 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13930 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13931 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13932 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13933 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13934 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13935 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13936 BinOps.push_back(BinOp.getOperand(i)); 13937 } else { 13938 // We have an input that is not an extension or another binary 13939 // operation; we'll abort this transformation. 13940 return SDValue(); 13941 } 13942 } 13943 } 13944 13945 // Make sure that this is a self-contained cluster of operations (which 13946 // is not quite the same thing as saying that everything has only one 13947 // use). 13948 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13949 if (isa<ConstantSDNode>(Inputs[i])) 13950 continue; 13951 13952 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13953 if (User != N && !Visited.count(User)) 13954 return SDValue(); 13955 13956 // Make sure that we're not going to promote the non-output-value 13957 // operand(s) or SELECT or SELECT_CC. 13958 // FIXME: Although we could sometimes handle this, and it does occur in 13959 // practice that one of the condition inputs to the select is also one of 13960 // the outputs, we currently can't deal with this. 13961 if (User->getOpcode() == ISD::SELECT) { 13962 if (User->getOperand(0) == Inputs[i]) 13963 return SDValue(); 13964 } else if (User->getOpcode() == ISD::SELECT_CC) { 13965 if (User->getOperand(0) == Inputs[i] || 13966 User->getOperand(1) == Inputs[i]) 13967 return SDValue(); 13968 } 13969 } 13970 } 13971 13972 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13973 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13974 if (User != N && !Visited.count(User)) 13975 return SDValue(); 13976 13977 // Make sure that we're not going to promote the non-output-value 13978 // operand(s) or SELECT or SELECT_CC. 13979 // FIXME: Although we could sometimes handle this, and it does occur in 13980 // practice that one of the condition inputs to the select is also one of 13981 // the outputs, we currently can't deal with this. 13982 if (User->getOpcode() == ISD::SELECT) { 13983 if (User->getOperand(0) == PromOps[i]) 13984 return SDValue(); 13985 } else if (User->getOpcode() == ISD::SELECT_CC) { 13986 if (User->getOperand(0) == PromOps[i] || 13987 User->getOperand(1) == PromOps[i]) 13988 return SDValue(); 13989 } 13990 } 13991 } 13992 13993 // Replace all inputs with the extension operand. 13994 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13995 // Constants may have users outside the cluster of to-be-promoted nodes, 13996 // and so we need to replace those as we do the promotions. 13997 if (isa<ConstantSDNode>(Inputs[i])) 13998 continue; 13999 else 14000 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 14001 } 14002 14003 std::list<HandleSDNode> PromOpHandles; 14004 for (auto &PromOp : PromOps) 14005 PromOpHandles.emplace_back(PromOp); 14006 14007 // Replace all operations (these are all the same, but have a different 14008 // (i1) return type). DAG.getNode will validate that the types of 14009 // a binary operator match, so go through the list in reverse so that 14010 // we've likely promoted both operands first. Any intermediate truncations or 14011 // extensions disappear. 14012 while (!PromOpHandles.empty()) { 14013 SDValue PromOp = PromOpHandles.back().getValue(); 14014 PromOpHandles.pop_back(); 14015 14016 if (PromOp.getOpcode() == ISD::TRUNCATE || 14017 PromOp.getOpcode() == ISD::SIGN_EXTEND || 14018 PromOp.getOpcode() == ISD::ZERO_EXTEND || 14019 PromOp.getOpcode() == ISD::ANY_EXTEND) { 14020 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 14021 PromOp.getOperand(0).getValueType() != MVT::i1) { 14022 // The operand is not yet ready (see comment below). 14023 PromOpHandles.emplace_front(PromOp); 14024 continue; 14025 } 14026 14027 SDValue RepValue = PromOp.getOperand(0); 14028 if (isa<ConstantSDNode>(RepValue)) 14029 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 14030 14031 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 14032 continue; 14033 } 14034 14035 unsigned C; 14036 switch (PromOp.getOpcode()) { 14037 default: C = 0; break; 14038 case ISD::SELECT: C = 1; break; 14039 case ISD::SELECT_CC: C = 2; break; 14040 } 14041 14042 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 14043 PromOp.getOperand(C).getValueType() != MVT::i1) || 14044 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 14045 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 14046 // The to-be-promoted operands of this node have not yet been 14047 // promoted (this should be rare because we're going through the 14048 // list backward, but if one of the operands has several users in 14049 // this cluster of to-be-promoted nodes, it is possible). 14050 PromOpHandles.emplace_front(PromOp); 14051 continue; 14052 } 14053 14054 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 14055 PromOp.getNode()->op_end()); 14056 14057 // If there are any constant inputs, make sure they're replaced now. 14058 for (unsigned i = 0; i < 2; ++i) 14059 if (isa<ConstantSDNode>(Ops[C+i])) 14060 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 14061 14062 DAG.ReplaceAllUsesOfValueWith(PromOp, 14063 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 14064 } 14065 14066 // Now we're left with the initial truncation itself. 14067 if (N->getOpcode() == ISD::TRUNCATE) 14068 return N->getOperand(0); 14069 14070 // Otherwise, this is a comparison. The operands to be compared have just 14071 // changed type (to i1), but everything else is the same. 14072 return SDValue(N, 0); 14073 } 14074 14075 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 14076 DAGCombinerInfo &DCI) const { 14077 SelectionDAG &DAG = DCI.DAG; 14078 SDLoc dl(N); 14079 14080 // If we're tracking CR bits, we need to be careful that we don't have: 14081 // zext(binary-ops(trunc(x), trunc(y))) 14082 // or 14083 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 14084 // such that we're unnecessarily moving things into CR bits that can more 14085 // efficiently stay in GPRs. Note that if we're not certain that the high 14086 // bits are set as required by the final extension, we still may need to do 14087 // some masking to get the proper behavior. 14088 14089 // This same functionality is important on PPC64 when dealing with 14090 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 14091 // the return values of functions. Because it is so similar, it is handled 14092 // here as well. 14093 14094 if (N->getValueType(0) != MVT::i32 && 14095 N->getValueType(0) != MVT::i64) 14096 return SDValue(); 14097 14098 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 14099 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 14100 return SDValue(); 14101 14102 if (N->getOperand(0).getOpcode() != ISD::AND && 14103 N->getOperand(0).getOpcode() != ISD::OR && 14104 N->getOperand(0).getOpcode() != ISD::XOR && 14105 N->getOperand(0).getOpcode() != ISD::SELECT && 14106 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 14107 return SDValue(); 14108 14109 SmallVector<SDValue, 4> Inputs; 14110 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 14111 SmallPtrSet<SDNode *, 16> Visited; 14112 14113 // Visit all inputs, collect all binary operations (and, or, xor and 14114 // select) that are all fed by truncations. 14115 while (!BinOps.empty()) { 14116 SDValue BinOp = BinOps.pop_back_val(); 14117 14118 if (!Visited.insert(BinOp.getNode()).second) 14119 continue; 14120 14121 PromOps.push_back(BinOp); 14122 14123 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 14124 // The condition of the select is not promoted. 14125 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 14126 continue; 14127 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 14128 continue; 14129 14130 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 14131 isa<ConstantSDNode>(BinOp.getOperand(i))) { 14132 Inputs.push_back(BinOp.getOperand(i)); 14133 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 14134 BinOp.getOperand(i).getOpcode() == ISD::OR || 14135 BinOp.getOperand(i).getOpcode() == ISD::XOR || 14136 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 14137 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 14138 BinOps.push_back(BinOp.getOperand(i)); 14139 } else { 14140 // We have an input that is not a truncation or another binary 14141 // operation; we'll abort this transformation. 14142 return SDValue(); 14143 } 14144 } 14145 } 14146 14147 // The operands of a select that must be truncated when the select is 14148 // promoted because the operand is actually part of the to-be-promoted set. 14149 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 14150 14151 // Make sure that this is a self-contained cluster of operations (which 14152 // is not quite the same thing as saying that everything has only one 14153 // use). 14154 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14155 if (isa<ConstantSDNode>(Inputs[i])) 14156 continue; 14157 14158 for (SDNode *User : Inputs[i].getNode()->uses()) { 14159 if (User != N && !Visited.count(User)) 14160 return SDValue(); 14161 14162 // If we're going to promote the non-output-value operand(s) or SELECT or 14163 // SELECT_CC, record them for truncation. 14164 if (User->getOpcode() == ISD::SELECT) { 14165 if (User->getOperand(0) == Inputs[i]) 14166 SelectTruncOp[0].insert(std::make_pair(User, 14167 User->getOperand(0).getValueType())); 14168 } else if (User->getOpcode() == ISD::SELECT_CC) { 14169 if (User->getOperand(0) == Inputs[i]) 14170 SelectTruncOp[0].insert(std::make_pair(User, 14171 User->getOperand(0).getValueType())); 14172 if (User->getOperand(1) == Inputs[i]) 14173 SelectTruncOp[1].insert(std::make_pair(User, 14174 User->getOperand(1).getValueType())); 14175 } 14176 } 14177 } 14178 14179 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 14180 for (SDNode *User : PromOps[i].getNode()->uses()) { 14181 if (User != N && !Visited.count(User)) 14182 return SDValue(); 14183 14184 // If we're going to promote the non-output-value operand(s) or SELECT or 14185 // SELECT_CC, record them for truncation. 14186 if (User->getOpcode() == ISD::SELECT) { 14187 if (User->getOperand(0) == PromOps[i]) 14188 SelectTruncOp[0].insert(std::make_pair(User, 14189 User->getOperand(0).getValueType())); 14190 } else if (User->getOpcode() == ISD::SELECT_CC) { 14191 if (User->getOperand(0) == PromOps[i]) 14192 SelectTruncOp[0].insert(std::make_pair(User, 14193 User->getOperand(0).getValueType())); 14194 if (User->getOperand(1) == PromOps[i]) 14195 SelectTruncOp[1].insert(std::make_pair(User, 14196 User->getOperand(1).getValueType())); 14197 } 14198 } 14199 } 14200 14201 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 14202 bool ReallyNeedsExt = false; 14203 if (N->getOpcode() != ISD::ANY_EXTEND) { 14204 // If all of the inputs are not already sign/zero extended, then 14205 // we'll still need to do that at the end. 14206 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14207 if (isa<ConstantSDNode>(Inputs[i])) 14208 continue; 14209 14210 unsigned OpBits = 14211 Inputs[i].getOperand(0).getValueSizeInBits(); 14212 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 14213 14214 if ((N->getOpcode() == ISD::ZERO_EXTEND && 14215 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 14216 APInt::getHighBitsSet(OpBits, 14217 OpBits-PromBits))) || 14218 (N->getOpcode() == ISD::SIGN_EXTEND && 14219 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 14220 (OpBits-(PromBits-1)))) { 14221 ReallyNeedsExt = true; 14222 break; 14223 } 14224 } 14225 } 14226 14227 // Replace all inputs, either with the truncation operand, or a 14228 // truncation or extension to the final output type. 14229 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 14230 // Constant inputs need to be replaced with the to-be-promoted nodes that 14231 // use them because they might have users outside of the cluster of 14232 // promoted nodes. 14233 if (isa<ConstantSDNode>(Inputs[i])) 14234 continue; 14235 14236 SDValue InSrc = Inputs[i].getOperand(0); 14237 if (Inputs[i].getValueType() == N->getValueType(0)) 14238 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 14239 else if (N->getOpcode() == ISD::SIGN_EXTEND) 14240 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 14241 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 14242 else if (N->getOpcode() == ISD::ZERO_EXTEND) 14243 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 14244 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 14245 else 14246 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 14247 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 14248 } 14249 14250 std::list<HandleSDNode> PromOpHandles; 14251 for (auto &PromOp : PromOps) 14252 PromOpHandles.emplace_back(PromOp); 14253 14254 // Replace all operations (these are all the same, but have a different 14255 // (promoted) return type). DAG.getNode will validate that the types of 14256 // a binary operator match, so go through the list in reverse so that 14257 // we've likely promoted both operands first. 14258 while (!PromOpHandles.empty()) { 14259 SDValue PromOp = PromOpHandles.back().getValue(); 14260 PromOpHandles.pop_back(); 14261 14262 unsigned C; 14263 switch (PromOp.getOpcode()) { 14264 default: C = 0; break; 14265 case ISD::SELECT: C = 1; break; 14266 case ISD::SELECT_CC: C = 2; break; 14267 } 14268 14269 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 14270 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 14271 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 14272 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 14273 // The to-be-promoted operands of this node have not yet been 14274 // promoted (this should be rare because we're going through the 14275 // list backward, but if one of the operands has several users in 14276 // this cluster of to-be-promoted nodes, it is possible). 14277 PromOpHandles.emplace_front(PromOp); 14278 continue; 14279 } 14280 14281 // For SELECT and SELECT_CC nodes, we do a similar check for any 14282 // to-be-promoted comparison inputs. 14283 if (PromOp.getOpcode() == ISD::SELECT || 14284 PromOp.getOpcode() == ISD::SELECT_CC) { 14285 if ((SelectTruncOp[0].count(PromOp.getNode()) && 14286 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 14287 (SelectTruncOp[1].count(PromOp.getNode()) && 14288 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 14289 PromOpHandles.emplace_front(PromOp); 14290 continue; 14291 } 14292 } 14293 14294 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 14295 PromOp.getNode()->op_end()); 14296 14297 // If this node has constant inputs, then they'll need to be promoted here. 14298 for (unsigned i = 0; i < 2; ++i) { 14299 if (!isa<ConstantSDNode>(Ops[C+i])) 14300 continue; 14301 if (Ops[C+i].getValueType() == N->getValueType(0)) 14302 continue; 14303 14304 if (N->getOpcode() == ISD::SIGN_EXTEND) 14305 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 14306 else if (N->getOpcode() == ISD::ZERO_EXTEND) 14307 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 14308 else 14309 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 14310 } 14311 14312 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 14313 // truncate them again to the original value type. 14314 if (PromOp.getOpcode() == ISD::SELECT || 14315 PromOp.getOpcode() == ISD::SELECT_CC) { 14316 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 14317 if (SI0 != SelectTruncOp[0].end()) 14318 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 14319 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 14320 if (SI1 != SelectTruncOp[1].end()) 14321 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 14322 } 14323 14324 DAG.ReplaceAllUsesOfValueWith(PromOp, 14325 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 14326 } 14327 14328 // Now we're left with the initial extension itself. 14329 if (!ReallyNeedsExt) 14330 return N->getOperand(0); 14331 14332 // To zero extend, just mask off everything except for the first bit (in the 14333 // i1 case). 14334 if (N->getOpcode() == ISD::ZERO_EXTEND) 14335 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 14336 DAG.getConstant(APInt::getLowBitsSet( 14337 N->getValueSizeInBits(0), PromBits), 14338 dl, N->getValueType(0))); 14339 14340 assert(N->getOpcode() == ISD::SIGN_EXTEND && 14341 "Invalid extension type"); 14342 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 14343 SDValue ShiftCst = 14344 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 14345 return DAG.getNode( 14346 ISD::SRA, dl, N->getValueType(0), 14347 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 14348 ShiftCst); 14349 } 14350 14351 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 14352 DAGCombinerInfo &DCI) const { 14353 assert(N->getOpcode() == ISD::SETCC && 14354 "Should be called with a SETCC node"); 14355 14356 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 14357 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 14358 SDValue LHS = N->getOperand(0); 14359 SDValue RHS = N->getOperand(1); 14360 14361 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 14362 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 14363 LHS.hasOneUse()) 14364 std::swap(LHS, RHS); 14365 14366 // x == 0-y --> x+y == 0 14367 // x != 0-y --> x+y != 0 14368 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 14369 RHS.hasOneUse()) { 14370 SDLoc DL(N); 14371 SelectionDAG &DAG = DCI.DAG; 14372 EVT VT = N->getValueType(0); 14373 EVT OpVT = LHS.getValueType(); 14374 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 14375 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 14376 } 14377 } 14378 14379 return DAGCombineTruncBoolExt(N, DCI); 14380 } 14381 14382 // Is this an extending load from an f32 to an f64? 14383 static bool isFPExtLoad(SDValue Op) { 14384 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 14385 return LD->getExtensionType() == ISD::EXTLOAD && 14386 Op.getValueType() == MVT::f64; 14387 return false; 14388 } 14389 14390 /// Reduces the number of fp-to-int conversion when building a vector. 14391 /// 14392 /// If this vector is built out of floating to integer conversions, 14393 /// transform it to a vector built out of floating point values followed by a 14394 /// single floating to integer conversion of the vector. 14395 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 14396 /// becomes (fptosi (build_vector ($A, $B, ...))) 14397 SDValue PPCTargetLowering:: 14398 combineElementTruncationToVectorTruncation(SDNode *N, 14399 DAGCombinerInfo &DCI) const { 14400 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14401 "Should be called with a BUILD_VECTOR node"); 14402 14403 SelectionDAG &DAG = DCI.DAG; 14404 SDLoc dl(N); 14405 14406 SDValue FirstInput = N->getOperand(0); 14407 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 14408 "The input operand must be an fp-to-int conversion."); 14409 14410 // This combine happens after legalization so the fp_to_[su]i nodes are 14411 // already converted to PPCSISD nodes. 14412 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 14413 if (FirstConversion == PPCISD::FCTIDZ || 14414 FirstConversion == PPCISD::FCTIDUZ || 14415 FirstConversion == PPCISD::FCTIWZ || 14416 FirstConversion == PPCISD::FCTIWUZ) { 14417 bool IsSplat = true; 14418 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 14419 FirstConversion == PPCISD::FCTIWUZ; 14420 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 14421 SmallVector<SDValue, 4> Ops; 14422 EVT TargetVT = N->getValueType(0); 14423 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14424 SDValue NextOp = N->getOperand(i); 14425 if (NextOp.getOpcode() != PPCISD::MFVSR) 14426 return SDValue(); 14427 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 14428 if (NextConversion != FirstConversion) 14429 return SDValue(); 14430 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 14431 // This is not valid if the input was originally double precision. It is 14432 // also not profitable to do unless this is an extending load in which 14433 // case doing this combine will allow us to combine consecutive loads. 14434 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 14435 return SDValue(); 14436 if (N->getOperand(i) != FirstInput) 14437 IsSplat = false; 14438 } 14439 14440 // If this is a splat, we leave it as-is since there will be only a single 14441 // fp-to-int conversion followed by a splat of the integer. This is better 14442 // for 32-bit and smaller ints and neutral for 64-bit ints. 14443 if (IsSplat) 14444 return SDValue(); 14445 14446 // Now that we know we have the right type of node, get its operands 14447 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14448 SDValue In = N->getOperand(i).getOperand(0); 14449 if (Is32Bit) { 14450 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14451 // here, we know that all inputs are extending loads so this is safe). 14452 if (In.isUndef()) 14453 Ops.push_back(DAG.getUNDEF(SrcVT)); 14454 else { 14455 SDValue Trunc = 14456 DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0), 14457 DAG.getIntPtrConstant(1, dl, /*isTarget=*/true)); 14458 Ops.push_back(Trunc); 14459 } 14460 } else 14461 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14462 } 14463 14464 unsigned Opcode; 14465 if (FirstConversion == PPCISD::FCTIDZ || 14466 FirstConversion == PPCISD::FCTIWZ) 14467 Opcode = ISD::FP_TO_SINT; 14468 else 14469 Opcode = ISD::FP_TO_UINT; 14470 14471 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14472 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14473 return DAG.getNode(Opcode, dl, TargetVT, BV); 14474 } 14475 return SDValue(); 14476 } 14477 14478 /// Reduce the number of loads when building a vector. 14479 /// 14480 /// Building a vector out of multiple loads can be converted to a load 14481 /// of the vector type if the loads are consecutive. If the loads are 14482 /// consecutive but in descending order, a shuffle is added at the end 14483 /// to reorder the vector. 14484 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14485 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14486 "Should be called with a BUILD_VECTOR node"); 14487 14488 SDLoc dl(N); 14489 14490 // Return early for non byte-sized type, as they can't be consecutive. 14491 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14492 return SDValue(); 14493 14494 bool InputsAreConsecutiveLoads = true; 14495 bool InputsAreReverseConsecutive = true; 14496 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14497 SDValue FirstInput = N->getOperand(0); 14498 bool IsRoundOfExtLoad = false; 14499 LoadSDNode *FirstLoad = nullptr; 14500 14501 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14502 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14503 FirstLoad = cast<LoadSDNode>(FirstInput.getOperand(0)); 14504 IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD; 14505 } 14506 // Not a build vector of (possibly fp_rounded) loads. 14507 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14508 N->getNumOperands() == 1) 14509 return SDValue(); 14510 14511 if (!IsRoundOfExtLoad) 14512 FirstLoad = cast<LoadSDNode>(FirstInput); 14513 14514 SmallVector<LoadSDNode *, 4> InputLoads; 14515 InputLoads.push_back(FirstLoad); 14516 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14517 // If any inputs are fp_round(extload), they all must be. 14518 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14519 return SDValue(); 14520 14521 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14522 N->getOperand(i); 14523 if (NextInput.getOpcode() != ISD::LOAD) 14524 return SDValue(); 14525 14526 SDValue PreviousInput = 14527 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14528 LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput); 14529 LoadSDNode *LD2 = cast<LoadSDNode>(NextInput); 14530 14531 // If any inputs are fp_round(extload), they all must be. 14532 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14533 return SDValue(); 14534 14535 // We only care about regular loads. The PPC-specific load intrinsics 14536 // will not lead to a merge opportunity. 14537 if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1)) 14538 InputsAreConsecutiveLoads = false; 14539 if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1)) 14540 InputsAreReverseConsecutive = false; 14541 14542 // Exit early if the loads are neither consecutive nor reverse consecutive. 14543 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14544 return SDValue(); 14545 InputLoads.push_back(LD2); 14546 } 14547 14548 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14549 "The loads cannot be both consecutive and reverse consecutive."); 14550 14551 SDValue WideLoad; 14552 SDValue ReturnSDVal; 14553 if (InputsAreConsecutiveLoads) { 14554 assert(FirstLoad && "Input needs to be a LoadSDNode."); 14555 WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(), 14556 FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), 14557 FirstLoad->getAlign()); 14558 ReturnSDVal = WideLoad; 14559 } else if (InputsAreReverseConsecutive) { 14560 LoadSDNode *LastLoad = InputLoads.back(); 14561 assert(LastLoad && "Input needs to be a LoadSDNode."); 14562 WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(), 14563 LastLoad->getBasePtr(), LastLoad->getPointerInfo(), 14564 LastLoad->getAlign()); 14565 SmallVector<int, 16> Ops; 14566 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14567 Ops.push_back(i); 14568 14569 ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad, 14570 DAG.getUNDEF(N->getValueType(0)), Ops); 14571 } else 14572 return SDValue(); 14573 14574 for (auto *LD : InputLoads) 14575 DAG.makeEquivalentMemoryOrdering(LD, WideLoad); 14576 return ReturnSDVal; 14577 } 14578 14579 // This function adds the required vector_shuffle needed to get 14580 // the elements of the vector extract in the correct position 14581 // as specified by the CorrectElems encoding. 14582 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14583 SDValue Input, uint64_t Elems, 14584 uint64_t CorrectElems) { 14585 SDLoc dl(N); 14586 14587 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14588 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14589 14590 // Knowing the element indices being extracted from the original 14591 // vector and the order in which they're being inserted, just put 14592 // them at element indices required for the instruction. 14593 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14594 if (DAG.getDataLayout().isLittleEndian()) 14595 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14596 else 14597 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14598 CorrectElems = CorrectElems >> 8; 14599 Elems = Elems >> 8; 14600 } 14601 14602 SDValue Shuffle = 14603 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14604 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14605 14606 EVT VT = N->getValueType(0); 14607 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14608 14609 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14610 Input.getValueType().getVectorElementType(), 14611 VT.getVectorNumElements()); 14612 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14613 DAG.getValueType(ExtVT)); 14614 } 14615 14616 // Look for build vector patterns where input operands come from sign 14617 // extended vector_extract elements of specific indices. If the correct indices 14618 // aren't used, add a vector shuffle to fix up the indices and create 14619 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14620 // during instruction selection. 14621 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14622 // This array encodes the indices that the vector sign extend instructions 14623 // extract from when extending from one type to another for both BE and LE. 14624 // The right nibble of each byte corresponds to the LE incides. 14625 // and the left nibble of each byte corresponds to the BE incides. 14626 // For example: 0x3074B8FC byte->word 14627 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14628 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14629 // For example: 0x000070F8 byte->double word 14630 // For LE: the allowed indices are: 0x0,0x8 14631 // For BE: the allowed indices are: 0x7,0xF 14632 uint64_t TargetElems[] = { 14633 0x3074B8FC, // b->w 14634 0x000070F8, // b->d 14635 0x10325476, // h->w 14636 0x00003074, // h->d 14637 0x00001032, // w->d 14638 }; 14639 14640 uint64_t Elems = 0; 14641 int Index; 14642 SDValue Input; 14643 14644 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14645 if (!Op) 14646 return false; 14647 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14648 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14649 return false; 14650 14651 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14652 // of the right width. 14653 SDValue Extract = Op.getOperand(0); 14654 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14655 Extract = Extract.getOperand(0); 14656 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14657 return false; 14658 14659 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14660 if (!ExtOp) 14661 return false; 14662 14663 Index = ExtOp->getZExtValue(); 14664 if (Input && Input != Extract.getOperand(0)) 14665 return false; 14666 14667 if (!Input) 14668 Input = Extract.getOperand(0); 14669 14670 Elems = Elems << 8; 14671 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14672 Elems |= Index; 14673 14674 return true; 14675 }; 14676 14677 // If the build vector operands aren't sign extended vector extracts, 14678 // of the same input vector, then return. 14679 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14680 if (!isSExtOfVecExtract(N->getOperand(i))) { 14681 return SDValue(); 14682 } 14683 } 14684 14685 // If the vector extract indicies are not correct, add the appropriate 14686 // vector_shuffle. 14687 int TgtElemArrayIdx; 14688 int InputSize = Input.getValueType().getScalarSizeInBits(); 14689 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14690 if (InputSize + OutputSize == 40) 14691 TgtElemArrayIdx = 0; 14692 else if (InputSize + OutputSize == 72) 14693 TgtElemArrayIdx = 1; 14694 else if (InputSize + OutputSize == 48) 14695 TgtElemArrayIdx = 2; 14696 else if (InputSize + OutputSize == 80) 14697 TgtElemArrayIdx = 3; 14698 else if (InputSize + OutputSize == 96) 14699 TgtElemArrayIdx = 4; 14700 else 14701 return SDValue(); 14702 14703 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14704 CorrectElems = DAG.getDataLayout().isLittleEndian() 14705 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14706 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14707 if (Elems != CorrectElems) { 14708 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14709 } 14710 14711 // Regular lowering will catch cases where a shuffle is not needed. 14712 return SDValue(); 14713 } 14714 14715 // Look for the pattern of a load from a narrow width to i128, feeding 14716 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14717 // (LXVRZX). This node represents a zero extending load that will be matched 14718 // to the Load VSX Vector Rightmost instructions. 14719 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14720 SDLoc DL(N); 14721 14722 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14723 if (N->getValueType(0) != MVT::v1i128) 14724 return SDValue(); 14725 14726 SDValue Operand = N->getOperand(0); 14727 // Proceed with the transformation if the operand to the BUILD_VECTOR 14728 // is a load instruction. 14729 if (Operand.getOpcode() != ISD::LOAD) 14730 return SDValue(); 14731 14732 auto *LD = cast<LoadSDNode>(Operand); 14733 EVT MemoryType = LD->getMemoryVT(); 14734 14735 // This transformation is only valid if the we are loading either a byte, 14736 // halfword, word, or doubleword. 14737 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14738 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14739 14740 // Ensure that the load from the narrow width is being zero extended to i128. 14741 if (!ValidLDType || 14742 (LD->getExtensionType() != ISD::ZEXTLOAD && 14743 LD->getExtensionType() != ISD::EXTLOAD)) 14744 return SDValue(); 14745 14746 SDValue LoadOps[] = { 14747 LD->getChain(), LD->getBasePtr(), 14748 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14749 14750 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14751 DAG.getVTList(MVT::v1i128, MVT::Other), 14752 LoadOps, MemoryType, LD->getMemOperand()); 14753 } 14754 14755 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14756 DAGCombinerInfo &DCI) const { 14757 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14758 "Should be called with a BUILD_VECTOR node"); 14759 14760 SelectionDAG &DAG = DCI.DAG; 14761 SDLoc dl(N); 14762 14763 if (!Subtarget.hasVSX()) 14764 return SDValue(); 14765 14766 // The target independent DAG combiner will leave a build_vector of 14767 // float-to-int conversions intact. We can generate MUCH better code for 14768 // a float-to-int conversion of a vector of floats. 14769 SDValue FirstInput = N->getOperand(0); 14770 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14771 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14772 if (Reduced) 14773 return Reduced; 14774 } 14775 14776 // If we're building a vector out of consecutive loads, just load that 14777 // vector type. 14778 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14779 if (Reduced) 14780 return Reduced; 14781 14782 // If we're building a vector out of extended elements from another vector 14783 // we have P9 vector integer extend instructions. The code assumes legal 14784 // input types (i.e. it can't handle things like v4i16) so do not run before 14785 // legalization. 14786 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14787 Reduced = combineBVOfVecSExt(N, DAG); 14788 if (Reduced) 14789 return Reduced; 14790 } 14791 14792 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14793 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14794 // is a load from <valid narrow width> to i128. 14795 if (Subtarget.isISA3_1()) { 14796 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14797 if (BVOfZLoad) 14798 return BVOfZLoad; 14799 } 14800 14801 if (N->getValueType(0) != MVT::v2f64) 14802 return SDValue(); 14803 14804 // Looking for: 14805 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14806 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14807 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14808 return SDValue(); 14809 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14810 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14811 return SDValue(); 14812 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14813 return SDValue(); 14814 14815 SDValue Ext1 = FirstInput.getOperand(0); 14816 SDValue Ext2 = N->getOperand(1).getOperand(0); 14817 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14818 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14819 return SDValue(); 14820 14821 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14822 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14823 if (!Ext1Op || !Ext2Op) 14824 return SDValue(); 14825 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14826 Ext1.getOperand(0) != Ext2.getOperand(0)) 14827 return SDValue(); 14828 14829 int FirstElem = Ext1Op->getZExtValue(); 14830 int SecondElem = Ext2Op->getZExtValue(); 14831 int SubvecIdx; 14832 if (FirstElem == 0 && SecondElem == 1) 14833 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14834 else if (FirstElem == 2 && SecondElem == 3) 14835 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14836 else 14837 return SDValue(); 14838 14839 SDValue SrcVec = Ext1.getOperand(0); 14840 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14841 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14842 return DAG.getNode(NodeType, dl, MVT::v2f64, 14843 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14844 } 14845 14846 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14847 DAGCombinerInfo &DCI) const { 14848 assert((N->getOpcode() == ISD::SINT_TO_FP || 14849 N->getOpcode() == ISD::UINT_TO_FP) && 14850 "Need an int -> FP conversion node here"); 14851 14852 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14853 return SDValue(); 14854 14855 SelectionDAG &DAG = DCI.DAG; 14856 SDLoc dl(N); 14857 SDValue Op(N, 0); 14858 14859 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14860 // from the hardware. 14861 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14862 return SDValue(); 14863 if (!Op.getOperand(0).getValueType().isSimple()) 14864 return SDValue(); 14865 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14866 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14867 return SDValue(); 14868 14869 SDValue FirstOperand(Op.getOperand(0)); 14870 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14871 (FirstOperand.getValueType() == MVT::i8 || 14872 FirstOperand.getValueType() == MVT::i16); 14873 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14874 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14875 bool DstDouble = Op.getValueType() == MVT::f64; 14876 unsigned ConvOp = Signed ? 14877 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14878 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14879 SDValue WidthConst = 14880 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14881 dl, false); 14882 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14883 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14884 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14885 DAG.getVTList(MVT::f64, MVT::Other), 14886 Ops, MVT::i8, LDN->getMemOperand()); 14887 14888 // For signed conversion, we need to sign-extend the value in the VSR 14889 if (Signed) { 14890 SDValue ExtOps[] = { Ld, WidthConst }; 14891 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14892 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14893 } else 14894 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14895 } 14896 14897 14898 // For i32 intermediate values, unfortunately, the conversion functions 14899 // leave the upper 32 bits of the value are undefined. Within the set of 14900 // scalar instructions, we have no method for zero- or sign-extending the 14901 // value. Thus, we cannot handle i32 intermediate values here. 14902 if (Op.getOperand(0).getValueType() == MVT::i32) 14903 return SDValue(); 14904 14905 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14906 "UINT_TO_FP is supported only with FPCVT"); 14907 14908 // If we have FCFIDS, then use it when converting to single-precision. 14909 // Otherwise, convert to double-precision and then round. 14910 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14911 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14912 : PPCISD::FCFIDS) 14913 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14914 : PPCISD::FCFID); 14915 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14916 ? MVT::f32 14917 : MVT::f64; 14918 14919 // If we're converting from a float, to an int, and back to a float again, 14920 // then we don't need the store/load pair at all. 14921 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14922 Subtarget.hasFPCVT()) || 14923 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14924 SDValue Src = Op.getOperand(0).getOperand(0); 14925 if (Src.getValueType() == MVT::f32) { 14926 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14927 DCI.AddToWorklist(Src.getNode()); 14928 } else if (Src.getValueType() != MVT::f64) { 14929 // Make sure that we don't pick up a ppc_fp128 source value. 14930 return SDValue(); 14931 } 14932 14933 unsigned FCTOp = 14934 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14935 PPCISD::FCTIDUZ; 14936 14937 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14938 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14939 14940 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14941 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 14942 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 14943 DCI.AddToWorklist(FP.getNode()); 14944 } 14945 14946 return FP; 14947 } 14948 14949 return SDValue(); 14950 } 14951 14952 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14953 // builtins) into loads with swaps. 14954 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14955 DAGCombinerInfo &DCI) const { 14956 // Delay VSX load for LE combine until after LegalizeOps to prioritize other 14957 // load combines. 14958 if (DCI.isBeforeLegalizeOps()) 14959 return SDValue(); 14960 14961 SelectionDAG &DAG = DCI.DAG; 14962 SDLoc dl(N); 14963 SDValue Chain; 14964 SDValue Base; 14965 MachineMemOperand *MMO; 14966 14967 switch (N->getOpcode()) { 14968 default: 14969 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14970 case ISD::LOAD: { 14971 LoadSDNode *LD = cast<LoadSDNode>(N); 14972 Chain = LD->getChain(); 14973 Base = LD->getBasePtr(); 14974 MMO = LD->getMemOperand(); 14975 // If the MMO suggests this isn't a load of a full vector, leave 14976 // things alone. For a built-in, we have to make the change for 14977 // correctness, so if there is a size problem that will be a bug. 14978 if (MMO->getSize() < 16) 14979 return SDValue(); 14980 break; 14981 } 14982 case ISD::INTRINSIC_W_CHAIN: { 14983 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14984 Chain = Intrin->getChain(); 14985 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14986 // us what we want. Get operand 2 instead. 14987 Base = Intrin->getOperand(2); 14988 MMO = Intrin->getMemOperand(); 14989 break; 14990 } 14991 } 14992 14993 MVT VecTy = N->getValueType(0).getSimpleVT(); 14994 14995 SDValue LoadOps[] = { Chain, Base }; 14996 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14997 DAG.getVTList(MVT::v2f64, MVT::Other), 14998 LoadOps, MVT::v2f64, MMO); 14999 15000 DCI.AddToWorklist(Load.getNode()); 15001 Chain = Load.getValue(1); 15002 SDValue Swap = DAG.getNode( 15003 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 15004 DCI.AddToWorklist(Swap.getNode()); 15005 15006 // Add a bitcast if the resulting load type doesn't match v2f64. 15007 if (VecTy != MVT::v2f64) { 15008 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 15009 DCI.AddToWorklist(N.getNode()); 15010 // Package {bitcast value, swap's chain} to match Load's shape. 15011 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 15012 N, Swap.getValue(1)); 15013 } 15014 15015 return Swap; 15016 } 15017 15018 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 15019 // builtins) into stores with swaps. 15020 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 15021 DAGCombinerInfo &DCI) const { 15022 // Delay VSX store for LE combine until after LegalizeOps to prioritize other 15023 // store combines. 15024 if (DCI.isBeforeLegalizeOps()) 15025 return SDValue(); 15026 15027 SelectionDAG &DAG = DCI.DAG; 15028 SDLoc dl(N); 15029 SDValue Chain; 15030 SDValue Base; 15031 unsigned SrcOpnd; 15032 MachineMemOperand *MMO; 15033 15034 switch (N->getOpcode()) { 15035 default: 15036 llvm_unreachable("Unexpected opcode for little endian VSX store"); 15037 case ISD::STORE: { 15038 StoreSDNode *ST = cast<StoreSDNode>(N); 15039 Chain = ST->getChain(); 15040 Base = ST->getBasePtr(); 15041 MMO = ST->getMemOperand(); 15042 SrcOpnd = 1; 15043 // If the MMO suggests this isn't a store of a full vector, leave 15044 // things alone. For a built-in, we have to make the change for 15045 // correctness, so if there is a size problem that will be a bug. 15046 if (MMO->getSize() < 16) 15047 return SDValue(); 15048 break; 15049 } 15050 case ISD::INTRINSIC_VOID: { 15051 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 15052 Chain = Intrin->getChain(); 15053 // Intrin->getBasePtr() oddly does not get what we want. 15054 Base = Intrin->getOperand(3); 15055 MMO = Intrin->getMemOperand(); 15056 SrcOpnd = 2; 15057 break; 15058 } 15059 } 15060 15061 SDValue Src = N->getOperand(SrcOpnd); 15062 MVT VecTy = Src.getValueType().getSimpleVT(); 15063 15064 // All stores are done as v2f64 and possible bit cast. 15065 if (VecTy != MVT::v2f64) { 15066 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 15067 DCI.AddToWorklist(Src.getNode()); 15068 } 15069 15070 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 15071 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 15072 DCI.AddToWorklist(Swap.getNode()); 15073 Chain = Swap.getValue(1); 15074 SDValue StoreOps[] = { Chain, Swap, Base }; 15075 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 15076 DAG.getVTList(MVT::Other), 15077 StoreOps, VecTy, MMO); 15078 DCI.AddToWorklist(Store.getNode()); 15079 return Store; 15080 } 15081 15082 // Handle DAG combine for STORE (FP_TO_INT F). 15083 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 15084 DAGCombinerInfo &DCI) const { 15085 SelectionDAG &DAG = DCI.DAG; 15086 SDLoc dl(N); 15087 unsigned Opcode = N->getOperand(1).getOpcode(); 15088 (void)Opcode; 15089 bool Strict = N->getOperand(1)->isStrictFPOpcode(); 15090 15091 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT || 15092 Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT) 15093 && "Not a FP_TO_INT Instruction!"); 15094 15095 SDValue Val = N->getOperand(1).getOperand(Strict ? 1 : 0); 15096 EVT Op1VT = N->getOperand(1).getValueType(); 15097 EVT ResVT = Val.getValueType(); 15098 15099 if (!Subtarget.hasVSX() || !Subtarget.hasFPCVT() || !isTypeLegal(ResVT)) 15100 return SDValue(); 15101 15102 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 15103 bool ValidTypeForStoreFltAsInt = 15104 (Op1VT == MVT::i32 || (Op1VT == MVT::i64 && Subtarget.isPPC64()) || 15105 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 15106 15107 // TODO: Lower conversion from f128 on all VSX targets 15108 if (ResVT == MVT::ppcf128 || (ResVT == MVT::f128 && !Subtarget.hasP9Vector())) 15109 return SDValue(); 15110 15111 if ((Op1VT != MVT::i64 && !Subtarget.hasP8Vector()) || 15112 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 15113 return SDValue(); 15114 15115 Val = convertFPToInt(N->getOperand(1), DAG, Subtarget); 15116 15117 // Set number of bytes being converted. 15118 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 15119 SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2), 15120 DAG.getIntPtrConstant(ByteSize, dl, false), 15121 DAG.getValueType(Op1VT)}; 15122 15123 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 15124 DAG.getVTList(MVT::Other), Ops, 15125 cast<StoreSDNode>(N)->getMemoryVT(), 15126 cast<StoreSDNode>(N)->getMemOperand()); 15127 15128 return Val; 15129 } 15130 15131 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 15132 // Check that the source of the element keeps flipping 15133 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 15134 bool PrevElemFromFirstVec = Mask[0] < NumElts; 15135 for (int i = 1, e = Mask.size(); i < e; i++) { 15136 if (PrevElemFromFirstVec && Mask[i] < NumElts) 15137 return false; 15138 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 15139 return false; 15140 PrevElemFromFirstVec = !PrevElemFromFirstVec; 15141 } 15142 return true; 15143 } 15144 15145 static bool isSplatBV(SDValue Op) { 15146 if (Op.getOpcode() != ISD::BUILD_VECTOR) 15147 return false; 15148 SDValue FirstOp; 15149 15150 // Find first non-undef input. 15151 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 15152 FirstOp = Op.getOperand(i); 15153 if (!FirstOp.isUndef()) 15154 break; 15155 } 15156 15157 // All inputs are undef or the same as the first non-undef input. 15158 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 15159 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 15160 return false; 15161 return true; 15162 } 15163 15164 static SDValue isScalarToVec(SDValue Op) { 15165 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 15166 return Op; 15167 if (Op.getOpcode() != ISD::BITCAST) 15168 return SDValue(); 15169 Op = Op.getOperand(0); 15170 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 15171 return Op; 15172 return SDValue(); 15173 } 15174 15175 // Fix up the shuffle mask to account for the fact that the result of 15176 // scalar_to_vector is not in lane zero. This just takes all values in 15177 // the ranges specified by the min/max indices and adds the number of 15178 // elements required to ensure each element comes from the respective 15179 // position in the valid lane. 15180 // On little endian, that's just the corresponding element in the other 15181 // half of the vector. On big endian, it is in the same half but right 15182 // justified rather than left justified in that half. 15183 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 15184 int LHSMaxIdx, int RHSMinIdx, 15185 int RHSMaxIdx, int HalfVec, 15186 unsigned ValidLaneWidth, 15187 const PPCSubtarget &Subtarget) { 15188 for (int i = 0, e = ShuffV.size(); i < e; i++) { 15189 int Idx = ShuffV[i]; 15190 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 15191 ShuffV[i] += 15192 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 15193 } 15194 } 15195 15196 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 15197 // the original is: 15198 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 15199 // In such a case, just change the shuffle mask to extract the element 15200 // from the permuted index. 15201 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 15202 const PPCSubtarget &Subtarget) { 15203 SDLoc dl(OrigSToV); 15204 EVT VT = OrigSToV.getValueType(); 15205 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 15206 "Expecting a SCALAR_TO_VECTOR here"); 15207 SDValue Input = OrigSToV.getOperand(0); 15208 15209 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 15210 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 15211 SDValue OrigVector = Input.getOperand(0); 15212 15213 // Can't handle non-const element indices or different vector types 15214 // for the input to the extract and the output of the scalar_to_vector. 15215 if (Idx && VT == OrigVector.getValueType()) { 15216 unsigned NumElts = VT.getVectorNumElements(); 15217 assert( 15218 NumElts > 1 && 15219 "Cannot produce a permuted scalar_to_vector for one element vector"); 15220 SmallVector<int, 16> NewMask(NumElts, -1); 15221 unsigned ResultInElt = NumElts / 2; 15222 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 15223 NewMask[ResultInElt] = Idx->getZExtValue(); 15224 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 15225 } 15226 } 15227 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 15228 OrigSToV.getOperand(0)); 15229 } 15230 15231 // On little endian subtargets, combine shuffles such as: 15232 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 15233 // into: 15234 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 15235 // because the latter can be matched to a single instruction merge. 15236 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 15237 // to put the value into element zero. Adjust the shuffle mask so that the 15238 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 15239 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 15240 // nodes with elements smaller than doubleword because all the ways 15241 // of getting scalar data into a vector register put the value in the 15242 // rightmost element of the left half of the vector. 15243 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 15244 SelectionDAG &DAG) const { 15245 SDValue LHS = SVN->getOperand(0); 15246 SDValue RHS = SVN->getOperand(1); 15247 auto Mask = SVN->getMask(); 15248 int NumElts = LHS.getValueType().getVectorNumElements(); 15249 SDValue Res(SVN, 0); 15250 SDLoc dl(SVN); 15251 bool IsLittleEndian = Subtarget.isLittleEndian(); 15252 15253 // On big endian targets this is only useful for subtargets with direct moves. 15254 // On little endian targets it would be useful for all subtargets with VSX. 15255 // However adding special handling for LE subtargets without direct moves 15256 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 15257 // which includes direct moves. 15258 if (!Subtarget.hasDirectMove()) 15259 return Res; 15260 15261 // If this is not a shuffle of a shuffle and the first element comes from 15262 // the second vector, canonicalize to the commuted form. This will make it 15263 // more likely to match one of the single instruction patterns. 15264 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 15265 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 15266 std::swap(LHS, RHS); 15267 Res = DAG.getCommutedVectorShuffle(*SVN); 15268 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 15269 } 15270 15271 // Adjust the shuffle mask if either input vector comes from a 15272 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 15273 // form (to prevent the need for a swap). 15274 SmallVector<int, 16> ShuffV(Mask); 15275 SDValue SToVLHS = isScalarToVec(LHS); 15276 SDValue SToVRHS = isScalarToVec(RHS); 15277 if (SToVLHS || SToVRHS) { 15278 // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the 15279 // same type and have differing element sizes, then do not perform 15280 // the following transformation. The current transformation for 15281 // SCALAR_TO_VECTOR assumes that both input vectors have the same 15282 // element size. This will be updated in the future to account for 15283 // differing sizes of the LHS and RHS. 15284 if (SToVLHS && SToVRHS && 15285 (SToVLHS.getValueType().getScalarSizeInBits() != 15286 SToVRHS.getValueType().getScalarSizeInBits())) 15287 return Res; 15288 15289 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 15290 : SToVRHS.getValueType().getVectorNumElements(); 15291 int NumEltsOut = ShuffV.size(); 15292 // The width of the "valid lane" (i.e. the lane that contains the value that 15293 // is vectorized) needs to be expressed in terms of the number of elements 15294 // of the shuffle. It is thereby the ratio of the values before and after 15295 // any bitcast. 15296 unsigned ValidLaneWidth = 15297 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 15298 LHS.getValueType().getScalarSizeInBits() 15299 : SToVRHS.getValueType().getScalarSizeInBits() / 15300 RHS.getValueType().getScalarSizeInBits(); 15301 15302 // Initially assume that neither input is permuted. These will be adjusted 15303 // accordingly if either input is. 15304 int LHSMaxIdx = -1; 15305 int RHSMinIdx = -1; 15306 int RHSMaxIdx = -1; 15307 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 15308 15309 // Get the permuted scalar to vector nodes for the source(s) that come from 15310 // ISD::SCALAR_TO_VECTOR. 15311 // On big endian systems, this only makes sense for element sizes smaller 15312 // than 64 bits since for 64-bit elements, all instructions already put 15313 // the value into element zero. Since scalar size of LHS and RHS may differ 15314 // after isScalarToVec, this should be checked using their own sizes. 15315 if (SToVLHS) { 15316 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 15317 return Res; 15318 // Set up the values for the shuffle vector fixup. 15319 LHSMaxIdx = NumEltsOut / NumEltsIn; 15320 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 15321 if (SToVLHS.getValueType() != LHS.getValueType()) 15322 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 15323 LHS = SToVLHS; 15324 } 15325 if (SToVRHS) { 15326 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 15327 return Res; 15328 RHSMinIdx = NumEltsOut; 15329 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 15330 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 15331 if (SToVRHS.getValueType() != RHS.getValueType()) 15332 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 15333 RHS = SToVRHS; 15334 } 15335 15336 // Fix up the shuffle mask to reflect where the desired element actually is. 15337 // The minimum and maximum indices that correspond to element zero for both 15338 // the LHS and RHS are computed and will control which shuffle mask entries 15339 // are to be changed. For example, if the RHS is permuted, any shuffle mask 15340 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 15341 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 15342 HalfVec, ValidLaneWidth, Subtarget); 15343 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 15344 15345 // We may have simplified away the shuffle. We won't be able to do anything 15346 // further with it here. 15347 if (!isa<ShuffleVectorSDNode>(Res)) 15348 return Res; 15349 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 15350 } 15351 15352 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 15353 // The common case after we commuted the shuffle is that the RHS is a splat 15354 // and we have elements coming in from the splat at indices that are not 15355 // conducive to using a merge. 15356 // Example: 15357 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 15358 if (!isSplatBV(TheSplat)) 15359 return Res; 15360 15361 // We are looking for a mask such that all even elements are from 15362 // one vector and all odd elements from the other. 15363 if (!isAlternatingShuffMask(Mask, NumElts)) 15364 return Res; 15365 15366 // Adjust the mask so we are pulling in the same index from the splat 15367 // as the index from the interesting vector in consecutive elements. 15368 if (IsLittleEndian) { 15369 // Example (even elements from first vector): 15370 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 15371 if (Mask[0] < NumElts) 15372 for (int i = 1, e = Mask.size(); i < e; i += 2) { 15373 if (ShuffV[i] < 0) 15374 continue; 15375 ShuffV[i] = (ShuffV[i - 1] + NumElts); 15376 } 15377 // Example (odd elements from first vector): 15378 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 15379 else 15380 for (int i = 0, e = Mask.size(); i < e; i += 2) { 15381 if (ShuffV[i] < 0) 15382 continue; 15383 ShuffV[i] = (ShuffV[i + 1] + NumElts); 15384 } 15385 } else { 15386 // Example (even elements from first vector): 15387 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 15388 if (Mask[0] < NumElts) 15389 for (int i = 0, e = Mask.size(); i < e; i += 2) { 15390 if (ShuffV[i] < 0) 15391 continue; 15392 ShuffV[i] = ShuffV[i + 1] - NumElts; 15393 } 15394 // Example (odd elements from first vector): 15395 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 15396 else 15397 for (int i = 1, e = Mask.size(); i < e; i += 2) { 15398 if (ShuffV[i] < 0) 15399 continue; 15400 ShuffV[i] = ShuffV[i - 1] - NumElts; 15401 } 15402 } 15403 15404 // If the RHS has undefs, we need to remove them since we may have created 15405 // a shuffle that adds those instead of the splat value. 15406 SDValue SplatVal = 15407 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 15408 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 15409 15410 if (IsLittleEndian) 15411 RHS = TheSplat; 15412 else 15413 LHS = TheSplat; 15414 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 15415 } 15416 15417 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 15418 LSBaseSDNode *LSBase, 15419 DAGCombinerInfo &DCI) const { 15420 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 15421 "Not a reverse memop pattern!"); 15422 15423 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 15424 auto Mask = SVN->getMask(); 15425 int i = 0; 15426 auto I = Mask.rbegin(); 15427 auto E = Mask.rend(); 15428 15429 for (; I != E; ++I) { 15430 if (*I != i) 15431 return false; 15432 i++; 15433 } 15434 return true; 15435 }; 15436 15437 SelectionDAG &DAG = DCI.DAG; 15438 EVT VT = SVN->getValueType(0); 15439 15440 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 15441 return SDValue(); 15442 15443 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 15444 // See comment in PPCVSXSwapRemoval.cpp. 15445 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 15446 if (!Subtarget.hasP9Vector()) 15447 return SDValue(); 15448 15449 if(!IsElementReverse(SVN)) 15450 return SDValue(); 15451 15452 if (LSBase->getOpcode() == ISD::LOAD) { 15453 // If the load return value 0 has more than one user except the 15454 // shufflevector instruction, it is not profitable to replace the 15455 // shufflevector with a reverse load. 15456 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15457 UI != UE; ++UI) 15458 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15459 return SDValue(); 15460 15461 SDLoc dl(LSBase); 15462 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15463 return DAG.getMemIntrinsicNode( 15464 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15465 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15466 } 15467 15468 if (LSBase->getOpcode() == ISD::STORE) { 15469 // If there are other uses of the shuffle, the swap cannot be avoided. 15470 // Forcing the use of an X-Form (since swapped stores only have 15471 // X-Forms) without removing the swap is unprofitable. 15472 if (!SVN->hasOneUse()) 15473 return SDValue(); 15474 15475 SDLoc dl(LSBase); 15476 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15477 LSBase->getBasePtr()}; 15478 return DAG.getMemIntrinsicNode( 15479 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15480 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15481 } 15482 15483 llvm_unreachable("Expected a load or store node here"); 15484 } 15485 15486 static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) { 15487 unsigned IntrinsicID = 15488 cast<ConstantSDNode>(Intrin.getOperand(1))->getZExtValue(); 15489 if (IntrinsicID == Intrinsic::ppc_stdcx) 15490 StoreWidth = 8; 15491 else if (IntrinsicID == Intrinsic::ppc_stwcx) 15492 StoreWidth = 4; 15493 else if (IntrinsicID == Intrinsic::ppc_sthcx) 15494 StoreWidth = 2; 15495 else if (IntrinsicID == Intrinsic::ppc_stbcx) 15496 StoreWidth = 1; 15497 else 15498 return false; 15499 return true; 15500 } 15501 15502 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15503 DAGCombinerInfo &DCI) const { 15504 SelectionDAG &DAG = DCI.DAG; 15505 SDLoc dl(N); 15506 switch (N->getOpcode()) { 15507 default: break; 15508 case ISD::ADD: 15509 return combineADD(N, DCI); 15510 case ISD::AND: { 15511 // We don't want (and (zext (shift...)), C) if C fits in the width of the 15512 // original input as that will prevent us from selecting optimal rotates. 15513 // This only matters if the input to the extend is i32 widened to i64. 15514 SDValue Op1 = N->getOperand(0); 15515 SDValue Op2 = N->getOperand(1); 15516 if ((Op1.getOpcode() != ISD::ZERO_EXTEND && 15517 Op1.getOpcode() != ISD::ANY_EXTEND) || 15518 !isa<ConstantSDNode>(Op2) || N->getValueType(0) != MVT::i64 || 15519 Op1.getOperand(0).getValueType() != MVT::i32) 15520 break; 15521 SDValue NarrowOp = Op1.getOperand(0); 15522 if (NarrowOp.getOpcode() != ISD::SHL && NarrowOp.getOpcode() != ISD::SRL && 15523 NarrowOp.getOpcode() != ISD::ROTL && NarrowOp.getOpcode() != ISD::ROTR) 15524 break; 15525 15526 uint64_t Imm = cast<ConstantSDNode>(Op2)->getZExtValue(); 15527 // Make sure that the constant is narrow enough to fit in the narrow type. 15528 if (!isUInt<32>(Imm)) 15529 break; 15530 SDValue ConstOp = DAG.getConstant(Imm, dl, MVT::i32); 15531 SDValue NarrowAnd = DAG.getNode(ISD::AND, dl, MVT::i32, NarrowOp, ConstOp); 15532 return DAG.getZExtOrTrunc(NarrowAnd, dl, N->getValueType(0)); 15533 } 15534 case ISD::SHL: 15535 return combineSHL(N, DCI); 15536 case ISD::SRA: 15537 return combineSRA(N, DCI); 15538 case ISD::SRL: 15539 return combineSRL(N, DCI); 15540 case ISD::MUL: 15541 return combineMUL(N, DCI); 15542 case ISD::FMA: 15543 case PPCISD::FNMSUB: 15544 return combineFMALike(N, DCI); 15545 case PPCISD::SHL: 15546 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15547 return N->getOperand(0); 15548 break; 15549 case PPCISD::SRL: 15550 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15551 return N->getOperand(0); 15552 break; 15553 case PPCISD::SRA: 15554 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15555 if (C->isZero() || // 0 >>s V -> 0. 15556 C->isAllOnes()) // -1 >>s V -> -1. 15557 return N->getOperand(0); 15558 } 15559 break; 15560 case ISD::SIGN_EXTEND: 15561 case ISD::ZERO_EXTEND: 15562 case ISD::ANY_EXTEND: 15563 return DAGCombineExtBoolTrunc(N, DCI); 15564 case ISD::TRUNCATE: 15565 return combineTRUNCATE(N, DCI); 15566 case ISD::SETCC: 15567 if (SDValue CSCC = combineSetCC(N, DCI)) 15568 return CSCC; 15569 [[fallthrough]]; 15570 case ISD::SELECT_CC: 15571 return DAGCombineTruncBoolExt(N, DCI); 15572 case ISD::SINT_TO_FP: 15573 case ISD::UINT_TO_FP: 15574 return combineFPToIntToFP(N, DCI); 15575 case ISD::VECTOR_SHUFFLE: 15576 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15577 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15578 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15579 } 15580 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15581 case ISD::STORE: { 15582 15583 EVT Op1VT = N->getOperand(1).getValueType(); 15584 unsigned Opcode = N->getOperand(1).getOpcode(); 15585 15586 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT || 15587 Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT) { 15588 SDValue Val = combineStoreFPToInt(N, DCI); 15589 if (Val) 15590 return Val; 15591 } 15592 15593 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15594 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15595 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15596 if (Val) 15597 return Val; 15598 } 15599 15600 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15601 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15602 N->getOperand(1).getNode()->hasOneUse() && 15603 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15604 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15605 15606 // STBRX can only handle simple types and it makes no sense to store less 15607 // two bytes in byte-reversed order. 15608 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15609 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15610 break; 15611 15612 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15613 // Do an any-extend to 32-bits if this is a half-word input. 15614 if (BSwapOp.getValueType() == MVT::i16) 15615 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15616 15617 // If the type of BSWAP operand is wider than stored memory width 15618 // it need to be shifted to the right side before STBRX. 15619 if (Op1VT.bitsGT(mVT)) { 15620 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15621 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15622 DAG.getConstant(Shift, dl, MVT::i32)); 15623 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15624 if (Op1VT == MVT::i64) 15625 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15626 } 15627 15628 SDValue Ops[] = { 15629 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15630 }; 15631 return 15632 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15633 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15634 cast<StoreSDNode>(N)->getMemOperand()); 15635 } 15636 15637 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15638 // So it can increase the chance of CSE constant construction. 15639 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15640 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15641 // Need to sign-extended to 64-bits to handle negative values. 15642 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15643 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15644 MemVT.getSizeInBits()); 15645 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15646 15647 // DAG.getTruncStore() can't be used here because it doesn't accept 15648 // the general (base + offset) addressing mode. 15649 // So we use UpdateNodeOperands and setTruncatingStore instead. 15650 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15651 N->getOperand(3)); 15652 cast<StoreSDNode>(N)->setTruncatingStore(true); 15653 return SDValue(N, 0); 15654 } 15655 15656 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15657 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15658 if (Op1VT.isSimple()) { 15659 MVT StoreVT = Op1VT.getSimpleVT(); 15660 if (Subtarget.needsSwapsForVSXMemOps() && 15661 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15662 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15663 return expandVSXStoreForLE(N, DCI); 15664 } 15665 break; 15666 } 15667 case ISD::LOAD: { 15668 LoadSDNode *LD = cast<LoadSDNode>(N); 15669 EVT VT = LD->getValueType(0); 15670 15671 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15672 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15673 if (VT.isSimple()) { 15674 MVT LoadVT = VT.getSimpleVT(); 15675 if (Subtarget.needsSwapsForVSXMemOps() && 15676 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15677 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15678 return expandVSXLoadForLE(N, DCI); 15679 } 15680 15681 // We sometimes end up with a 64-bit integer load, from which we extract 15682 // two single-precision floating-point numbers. This happens with 15683 // std::complex<float>, and other similar structures, because of the way we 15684 // canonicalize structure copies. However, if we lack direct moves, 15685 // then the final bitcasts from the extracted integer values to the 15686 // floating-point numbers turn into store/load pairs. Even with direct moves, 15687 // just loading the two floating-point numbers is likely better. 15688 auto ReplaceTwoFloatLoad = [&]() { 15689 if (VT != MVT::i64) 15690 return false; 15691 15692 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15693 LD->isVolatile()) 15694 return false; 15695 15696 // We're looking for a sequence like this: 15697 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15698 // t16: i64 = srl t13, Constant:i32<32> 15699 // t17: i32 = truncate t16 15700 // t18: f32 = bitcast t17 15701 // t19: i32 = truncate t13 15702 // t20: f32 = bitcast t19 15703 15704 if (!LD->hasNUsesOfValue(2, 0)) 15705 return false; 15706 15707 auto UI = LD->use_begin(); 15708 while (UI.getUse().getResNo() != 0) ++UI; 15709 SDNode *Trunc = *UI++; 15710 while (UI.getUse().getResNo() != 0) ++UI; 15711 SDNode *RightShift = *UI; 15712 if (Trunc->getOpcode() != ISD::TRUNCATE) 15713 std::swap(Trunc, RightShift); 15714 15715 if (Trunc->getOpcode() != ISD::TRUNCATE || 15716 Trunc->getValueType(0) != MVT::i32 || 15717 !Trunc->hasOneUse()) 15718 return false; 15719 if (RightShift->getOpcode() != ISD::SRL || 15720 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15721 RightShift->getConstantOperandVal(1) != 32 || 15722 !RightShift->hasOneUse()) 15723 return false; 15724 15725 SDNode *Trunc2 = *RightShift->use_begin(); 15726 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15727 Trunc2->getValueType(0) != MVT::i32 || 15728 !Trunc2->hasOneUse()) 15729 return false; 15730 15731 SDNode *Bitcast = *Trunc->use_begin(); 15732 SDNode *Bitcast2 = *Trunc2->use_begin(); 15733 15734 if (Bitcast->getOpcode() != ISD::BITCAST || 15735 Bitcast->getValueType(0) != MVT::f32) 15736 return false; 15737 if (Bitcast2->getOpcode() != ISD::BITCAST || 15738 Bitcast2->getValueType(0) != MVT::f32) 15739 return false; 15740 15741 if (Subtarget.isLittleEndian()) 15742 std::swap(Bitcast, Bitcast2); 15743 15744 // Bitcast has the second float (in memory-layout order) and Bitcast2 15745 // has the first one. 15746 15747 SDValue BasePtr = LD->getBasePtr(); 15748 if (LD->isIndexed()) { 15749 assert(LD->getAddressingMode() == ISD::PRE_INC && 15750 "Non-pre-inc AM on PPC?"); 15751 BasePtr = 15752 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15753 LD->getOffset()); 15754 } 15755 15756 auto MMOFlags = 15757 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15758 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15759 LD->getPointerInfo(), LD->getAlign(), 15760 MMOFlags, LD->getAAInfo()); 15761 SDValue AddPtr = 15762 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15763 BasePtr, DAG.getIntPtrConstant(4, dl)); 15764 SDValue FloatLoad2 = DAG.getLoad( 15765 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15766 LD->getPointerInfo().getWithOffset(4), 15767 commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo()); 15768 15769 if (LD->isIndexed()) { 15770 // Note that DAGCombine should re-form any pre-increment load(s) from 15771 // what is produced here if that makes sense. 15772 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15773 } 15774 15775 DCI.CombineTo(Bitcast2, FloatLoad); 15776 DCI.CombineTo(Bitcast, FloatLoad2); 15777 15778 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15779 SDValue(FloatLoad2.getNode(), 1)); 15780 return true; 15781 }; 15782 15783 if (ReplaceTwoFloatLoad()) 15784 return SDValue(N, 0); 15785 15786 EVT MemVT = LD->getMemoryVT(); 15787 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15788 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15789 if (LD->isUnindexed() && VT.isVector() && 15790 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15791 // P8 and later hardware should just use LOAD. 15792 !Subtarget.hasP8Vector() && 15793 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15794 VT == MVT::v4f32))) && 15795 LD->getAlign() < ABIAlignment) { 15796 // This is a type-legal unaligned Altivec load. 15797 SDValue Chain = LD->getChain(); 15798 SDValue Ptr = LD->getBasePtr(); 15799 bool isLittleEndian = Subtarget.isLittleEndian(); 15800 15801 // This implements the loading of unaligned vectors as described in 15802 // the venerable Apple Velocity Engine overview. Specifically: 15803 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15804 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15805 // 15806 // The general idea is to expand a sequence of one or more unaligned 15807 // loads into an alignment-based permutation-control instruction (lvsl 15808 // or lvsr), a series of regular vector loads (which always truncate 15809 // their input address to an aligned address), and a series of 15810 // permutations. The results of these permutations are the requested 15811 // loaded values. The trick is that the last "extra" load is not taken 15812 // from the address you might suspect (sizeof(vector) bytes after the 15813 // last requested load), but rather sizeof(vector) - 1 bytes after the 15814 // last requested vector. The point of this is to avoid a page fault if 15815 // the base address happened to be aligned. This works because if the 15816 // base address is aligned, then adding less than a full vector length 15817 // will cause the last vector in the sequence to be (re)loaded. 15818 // Otherwise, the next vector will be fetched as you might suspect was 15819 // necessary. 15820 15821 // We might be able to reuse the permutation generation from 15822 // a different base address offset from this one by an aligned amount. 15823 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15824 // optimization later. 15825 Intrinsic::ID Intr, IntrLD, IntrPerm; 15826 MVT PermCntlTy, PermTy, LDTy; 15827 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15828 : Intrinsic::ppc_altivec_lvsl; 15829 IntrLD = Intrinsic::ppc_altivec_lvx; 15830 IntrPerm = Intrinsic::ppc_altivec_vperm; 15831 PermCntlTy = MVT::v16i8; 15832 PermTy = MVT::v4i32; 15833 LDTy = MVT::v4i32; 15834 15835 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15836 15837 // Create the new MMO for the new base load. It is like the original MMO, 15838 // but represents an area in memory almost twice the vector size centered 15839 // on the original address. If the address is unaligned, we might start 15840 // reading up to (sizeof(vector)-1) bytes below the address of the 15841 // original unaligned load. 15842 MachineFunction &MF = DAG.getMachineFunction(); 15843 MachineMemOperand *BaseMMO = 15844 MF.getMachineMemOperand(LD->getMemOperand(), 15845 -(int64_t)MemVT.getStoreSize()+1, 15846 2*MemVT.getStoreSize()-1); 15847 15848 // Create the new base load. 15849 SDValue LDXIntID = 15850 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15851 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15852 SDValue BaseLoad = 15853 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15854 DAG.getVTList(PermTy, MVT::Other), 15855 BaseLoadOps, LDTy, BaseMMO); 15856 15857 // Note that the value of IncOffset (which is provided to the next 15858 // load's pointer info offset value, and thus used to calculate the 15859 // alignment), and the value of IncValue (which is actually used to 15860 // increment the pointer value) are different! This is because we 15861 // require the next load to appear to be aligned, even though it 15862 // is actually offset from the base pointer by a lesser amount. 15863 int IncOffset = VT.getSizeInBits() / 8; 15864 int IncValue = IncOffset; 15865 15866 // Walk (both up and down) the chain looking for another load at the real 15867 // (aligned) offset (the alignment of the other load does not matter in 15868 // this case). If found, then do not use the offset reduction trick, as 15869 // that will prevent the loads from being later combined (as they would 15870 // otherwise be duplicates). 15871 if (!findConsecutiveLoad(LD, DAG)) 15872 --IncValue; 15873 15874 SDValue Increment = 15875 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15876 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15877 15878 MachineMemOperand *ExtraMMO = 15879 MF.getMachineMemOperand(LD->getMemOperand(), 15880 1, 2*MemVT.getStoreSize()-1); 15881 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15882 SDValue ExtraLoad = 15883 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15884 DAG.getVTList(PermTy, MVT::Other), 15885 ExtraLoadOps, LDTy, ExtraMMO); 15886 15887 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15888 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15889 15890 // Because vperm has a big-endian bias, we must reverse the order 15891 // of the input vectors and complement the permute control vector 15892 // when generating little endian code. We have already handled the 15893 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15894 // and ExtraLoad here. 15895 SDValue Perm; 15896 if (isLittleEndian) 15897 Perm = BuildIntrinsicOp(IntrPerm, 15898 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15899 else 15900 Perm = BuildIntrinsicOp(IntrPerm, 15901 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15902 15903 if (VT != PermTy) 15904 Perm = Subtarget.hasAltivec() 15905 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15906 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15907 DAG.getTargetConstant(1, dl, MVT::i64)); 15908 // second argument is 1 because this rounding 15909 // is always exact. 15910 15911 // The output of the permutation is our loaded result, the TokenFactor is 15912 // our new chain. 15913 DCI.CombineTo(N, Perm, TF); 15914 return SDValue(N, 0); 15915 } 15916 } 15917 break; 15918 case ISD::INTRINSIC_WO_CHAIN: { 15919 bool isLittleEndian = Subtarget.isLittleEndian(); 15920 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15921 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15922 : Intrinsic::ppc_altivec_lvsl); 15923 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15924 SDValue Add = N->getOperand(1); 15925 15926 int Bits = 4 /* 16 byte alignment */; 15927 15928 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15929 APInt::getAllOnes(Bits /* alignment */) 15930 .zext(Add.getScalarValueSizeInBits()))) { 15931 SDNode *BasePtr = Add->getOperand(0).getNode(); 15932 for (SDNode *U : BasePtr->uses()) { 15933 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15934 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15935 // We've found another LVSL/LVSR, and this address is an aligned 15936 // multiple of that one. The results will be the same, so use the 15937 // one we've just found instead. 15938 15939 return SDValue(U, 0); 15940 } 15941 } 15942 } 15943 15944 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15945 SDNode *BasePtr = Add->getOperand(0).getNode(); 15946 for (SDNode *U : BasePtr->uses()) { 15947 if (U->getOpcode() == ISD::ADD && 15948 isa<ConstantSDNode>(U->getOperand(1)) && 15949 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15950 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15951 (1ULL << Bits) == 15952 0) { 15953 SDNode *OtherAdd = U; 15954 for (SDNode *V : OtherAdd->uses()) { 15955 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15956 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15957 IID) { 15958 return SDValue(V, 0); 15959 } 15960 } 15961 } 15962 } 15963 } 15964 } 15965 15966 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15967 // Expose the vabsduw/h/b opportunity for down stream 15968 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15969 (IID == Intrinsic::ppc_altivec_vmaxsw || 15970 IID == Intrinsic::ppc_altivec_vmaxsh || 15971 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15972 SDValue V1 = N->getOperand(1); 15973 SDValue V2 = N->getOperand(2); 15974 if ((V1.getSimpleValueType() == MVT::v4i32 || 15975 V1.getSimpleValueType() == MVT::v8i16 || 15976 V1.getSimpleValueType() == MVT::v16i8) && 15977 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15978 // (0-a, a) 15979 if (V1.getOpcode() == ISD::SUB && 15980 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15981 V1.getOperand(1) == V2) { 15982 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15983 } 15984 // (a, 0-a) 15985 if (V2.getOpcode() == ISD::SUB && 15986 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15987 V2.getOperand(1) == V1) { 15988 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15989 } 15990 // (x-y, y-x) 15991 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15992 V1.getOperand(0) == V2.getOperand(1) && 15993 V1.getOperand(1) == V2.getOperand(0)) { 15994 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15995 } 15996 } 15997 } 15998 } 15999 16000 break; 16001 case ISD::INTRINSIC_W_CHAIN: 16002 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 16003 default: 16004 break; 16005 case Intrinsic::ppc_altivec_vsum4sbs: 16006 case Intrinsic::ppc_altivec_vsum4shs: 16007 case Intrinsic::ppc_altivec_vsum4ubs: { 16008 // These sum-across intrinsics only have a chain due to the side effect 16009 // that they may set the SAT bit. If we know the SAT bit will not be set 16010 // for some inputs, we can replace any uses of their chain with the input 16011 // chain. 16012 if (BuildVectorSDNode *BVN = 16013 dyn_cast<BuildVectorSDNode>(N->getOperand(3))) { 16014 APInt APSplatBits, APSplatUndef; 16015 unsigned SplatBitSize; 16016 bool HasAnyUndefs; 16017 bool BVNIsConstantSplat = BVN->isConstantSplat( 16018 APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, 16019 !Subtarget.isLittleEndian()); 16020 // If the constant splat vector is 0, the SAT bit will not be set. 16021 if (BVNIsConstantSplat && APSplatBits == 0) 16022 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), N->getOperand(0)); 16023 } 16024 return SDValue(); 16025 } 16026 case Intrinsic::ppc_vsx_lxvw4x: 16027 case Intrinsic::ppc_vsx_lxvd2x: 16028 // For little endian, VSX loads require generating lxvd2x/xxswapd. 16029 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 16030 if (Subtarget.needsSwapsForVSXMemOps()) 16031 return expandVSXLoadForLE(N, DCI); 16032 break; 16033 } 16034 break; 16035 case ISD::INTRINSIC_VOID: 16036 // For little endian, VSX stores require generating xxswapd/stxvd2x. 16037 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 16038 if (Subtarget.needsSwapsForVSXMemOps()) { 16039 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 16040 default: 16041 break; 16042 case Intrinsic::ppc_vsx_stxvw4x: 16043 case Intrinsic::ppc_vsx_stxvd2x: 16044 return expandVSXStoreForLE(N, DCI); 16045 } 16046 } 16047 break; 16048 case ISD::BSWAP: { 16049 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 16050 // For subtargets without LDBRX, we can still do better than the default 16051 // expansion even for 64-bit BSWAP (LOAD). 16052 bool Is64BitBswapOn64BitTgt = 16053 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 16054 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 16055 N->getOperand(0).hasOneUse(); 16056 if (IsSingleUseNormalLd && 16057 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 16058 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 16059 SDValue Load = N->getOperand(0); 16060 LoadSDNode *LD = cast<LoadSDNode>(Load); 16061 // Create the byte-swapping load. 16062 SDValue Ops[] = { 16063 LD->getChain(), // Chain 16064 LD->getBasePtr(), // Ptr 16065 DAG.getValueType(N->getValueType(0)) // VT 16066 }; 16067 SDValue BSLoad = 16068 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 16069 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 16070 MVT::i64 : MVT::i32, MVT::Other), 16071 Ops, LD->getMemoryVT(), LD->getMemOperand()); 16072 16073 // If this is an i16 load, insert the truncate. 16074 SDValue ResVal = BSLoad; 16075 if (N->getValueType(0) == MVT::i16) 16076 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 16077 16078 // First, combine the bswap away. This makes the value produced by the 16079 // load dead. 16080 DCI.CombineTo(N, ResVal); 16081 16082 // Next, combine the load away, we give it a bogus result value but a real 16083 // chain result. The result value is dead because the bswap is dead. 16084 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 16085 16086 // Return N so it doesn't get rechecked! 16087 return SDValue(N, 0); 16088 } 16089 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 16090 // before legalization so that the BUILD_PAIR is handled correctly. 16091 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 16092 !IsSingleUseNormalLd) 16093 return SDValue(); 16094 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 16095 16096 // Can't split volatile or atomic loads. 16097 if (!LD->isSimple()) 16098 return SDValue(); 16099 SDValue BasePtr = LD->getBasePtr(); 16100 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 16101 LD->getPointerInfo(), LD->getAlign()); 16102 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 16103 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 16104 DAG.getIntPtrConstant(4, dl)); 16105 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 16106 LD->getMemOperand(), 4, 4); 16107 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 16108 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 16109 SDValue Res; 16110 if (Subtarget.isLittleEndian()) 16111 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 16112 else 16113 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 16114 SDValue TF = 16115 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 16116 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 16117 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 16118 return Res; 16119 } 16120 case PPCISD::VCMP: 16121 // If a VCMP_rec node already exists with exactly the same operands as this 16122 // node, use its result instead of this node (VCMP_rec computes both a CR6 16123 // and a normal output). 16124 // 16125 if (!N->getOperand(0).hasOneUse() && 16126 !N->getOperand(1).hasOneUse() && 16127 !N->getOperand(2).hasOneUse()) { 16128 16129 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 16130 SDNode *VCMPrecNode = nullptr; 16131 16132 SDNode *LHSN = N->getOperand(0).getNode(); 16133 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 16134 UI != E; ++UI) 16135 if (UI->getOpcode() == PPCISD::VCMP_rec && 16136 UI->getOperand(1) == N->getOperand(1) && 16137 UI->getOperand(2) == N->getOperand(2) && 16138 UI->getOperand(0) == N->getOperand(0)) { 16139 VCMPrecNode = *UI; 16140 break; 16141 } 16142 16143 // If there is no VCMP_rec node, or if the flag value has a single use, 16144 // don't transform this. 16145 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 16146 break; 16147 16148 // Look at the (necessarily single) use of the flag value. If it has a 16149 // chain, this transformation is more complex. Note that multiple things 16150 // could use the value result, which we should ignore. 16151 SDNode *FlagUser = nullptr; 16152 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 16153 FlagUser == nullptr; ++UI) { 16154 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 16155 SDNode *User = *UI; 16156 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 16157 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 16158 FlagUser = User; 16159 break; 16160 } 16161 } 16162 } 16163 16164 // If the user is a MFOCRF instruction, we know this is safe. 16165 // Otherwise we give up for right now. 16166 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 16167 return SDValue(VCMPrecNode, 0); 16168 } 16169 break; 16170 case ISD::BR_CC: { 16171 // If this is a branch on an altivec predicate comparison, lower this so 16172 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 16173 // lowering is done pre-legalize, because the legalizer lowers the predicate 16174 // compare down to code that is difficult to reassemble. 16175 // This code also handles branches that depend on the result of a store 16176 // conditional. 16177 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 16178 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 16179 16180 int CompareOpc; 16181 bool isDot; 16182 16183 if (!isa<ConstantSDNode>(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE)) 16184 break; 16185 16186 // Since we are doing this pre-legalize, the RHS can be a constant of 16187 // arbitrary bitwidth which may cause issues when trying to get the value 16188 // from the underlying APInt. 16189 auto RHSAPInt = cast<ConstantSDNode>(RHS)->getAPIntValue(); 16190 if (!RHSAPInt.isIntN(64)) 16191 break; 16192 16193 unsigned Val = RHSAPInt.getZExtValue(); 16194 auto isImpossibleCompare = [&]() { 16195 // If this is a comparison against something other than 0/1, then we know 16196 // that the condition is never/always true. 16197 if (Val != 0 && Val != 1) { 16198 if (CC == ISD::SETEQ) // Cond never true, remove branch. 16199 return N->getOperand(0); 16200 // Always !=, turn it into an unconditional branch. 16201 return DAG.getNode(ISD::BR, dl, MVT::Other, 16202 N->getOperand(0), N->getOperand(4)); 16203 } 16204 return SDValue(); 16205 }; 16206 // Combine branches fed by store conditional instructions (st[bhwd]cx). 16207 unsigned StoreWidth = 0; 16208 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 16209 isStoreConditional(LHS, StoreWidth)) { 16210 if (SDValue Impossible = isImpossibleCompare()) 16211 return Impossible; 16212 PPC::Predicate CompOpc; 16213 // eq 0 => ne 16214 // ne 0 => eq 16215 // eq 1 => eq 16216 // ne 1 => ne 16217 if (Val == 0) 16218 CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ; 16219 else 16220 CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE; 16221 16222 SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3), 16223 DAG.getConstant(StoreWidth, dl, MVT::i32)}; 16224 auto *MemNode = cast<MemSDNode>(LHS); 16225 SDValue ConstSt = DAG.getMemIntrinsicNode( 16226 PPCISD::STORE_COND, dl, 16227 DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops, 16228 MemNode->getMemoryVT(), MemNode->getMemOperand()); 16229 16230 SDValue InChain; 16231 // Unchain the branch from the original store conditional. 16232 if (N->getOperand(0) == LHS.getValue(1)) 16233 InChain = LHS.getOperand(0); 16234 else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) { 16235 SmallVector<SDValue, 4> InChains; 16236 SDValue InTF = N->getOperand(0); 16237 for (int i = 0, e = InTF.getNumOperands(); i < e; i++) 16238 if (InTF.getOperand(i) != LHS.getValue(1)) 16239 InChains.push_back(InTF.getOperand(i)); 16240 InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains); 16241 } 16242 16243 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain, 16244 DAG.getConstant(CompOpc, dl, MVT::i32), 16245 DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4), 16246 ConstSt.getValue(2)); 16247 } 16248 16249 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 16250 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 16251 assert(isDot && "Can't compare against a vector result!"); 16252 16253 if (SDValue Impossible = isImpossibleCompare()) 16254 return Impossible; 16255 16256 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 16257 // Create the PPCISD altivec 'dot' comparison node. 16258 SDValue Ops[] = { 16259 LHS.getOperand(2), // LHS of compare 16260 LHS.getOperand(3), // RHS of compare 16261 DAG.getConstant(CompareOpc, dl, MVT::i32) 16262 }; 16263 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 16264 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 16265 16266 // Unpack the result based on how the target uses it. 16267 PPC::Predicate CompOpc; 16268 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 16269 default: // Can't happen, don't crash on invalid number though. 16270 case 0: // Branch on the value of the EQ bit of CR6. 16271 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 16272 break; 16273 case 1: // Branch on the inverted value of the EQ bit of CR6. 16274 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 16275 break; 16276 case 2: // Branch on the value of the LT bit of CR6. 16277 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 16278 break; 16279 case 3: // Branch on the inverted value of the LT bit of CR6. 16280 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 16281 break; 16282 } 16283 16284 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 16285 DAG.getConstant(CompOpc, dl, MVT::i32), 16286 DAG.getRegister(PPC::CR6, MVT::i32), 16287 N->getOperand(4), CompNode.getValue(1)); 16288 } 16289 break; 16290 } 16291 case ISD::BUILD_VECTOR: 16292 return DAGCombineBuildVector(N, DCI); 16293 } 16294 16295 return SDValue(); 16296 } 16297 16298 SDValue 16299 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 16300 SelectionDAG &DAG, 16301 SmallVectorImpl<SDNode *> &Created) const { 16302 // fold (sdiv X, pow2) 16303 EVT VT = N->getValueType(0); 16304 if (VT == MVT::i64 && !Subtarget.isPPC64()) 16305 return SDValue(); 16306 if ((VT != MVT::i32 && VT != MVT::i64) || 16307 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 16308 return SDValue(); 16309 16310 SDLoc DL(N); 16311 SDValue N0 = N->getOperand(0); 16312 16313 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 16314 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countr_zero(); 16315 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 16316 16317 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 16318 Created.push_back(Op.getNode()); 16319 16320 if (IsNegPow2) { 16321 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 16322 Created.push_back(Op.getNode()); 16323 } 16324 16325 return Op; 16326 } 16327 16328 //===----------------------------------------------------------------------===// 16329 // Inline Assembly Support 16330 //===----------------------------------------------------------------------===// 16331 16332 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 16333 KnownBits &Known, 16334 const APInt &DemandedElts, 16335 const SelectionDAG &DAG, 16336 unsigned Depth) const { 16337 Known.resetAll(); 16338 switch (Op.getOpcode()) { 16339 default: break; 16340 case PPCISD::LBRX: { 16341 // lhbrx is known to have the top bits cleared out. 16342 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 16343 Known.Zero = 0xFFFF0000; 16344 break; 16345 } 16346 case ISD::INTRINSIC_WO_CHAIN: { 16347 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 16348 default: break; 16349 case Intrinsic::ppc_altivec_vcmpbfp_p: 16350 case Intrinsic::ppc_altivec_vcmpeqfp_p: 16351 case Intrinsic::ppc_altivec_vcmpequb_p: 16352 case Intrinsic::ppc_altivec_vcmpequh_p: 16353 case Intrinsic::ppc_altivec_vcmpequw_p: 16354 case Intrinsic::ppc_altivec_vcmpequd_p: 16355 case Intrinsic::ppc_altivec_vcmpequq_p: 16356 case Intrinsic::ppc_altivec_vcmpgefp_p: 16357 case Intrinsic::ppc_altivec_vcmpgtfp_p: 16358 case Intrinsic::ppc_altivec_vcmpgtsb_p: 16359 case Intrinsic::ppc_altivec_vcmpgtsh_p: 16360 case Intrinsic::ppc_altivec_vcmpgtsw_p: 16361 case Intrinsic::ppc_altivec_vcmpgtsd_p: 16362 case Intrinsic::ppc_altivec_vcmpgtsq_p: 16363 case Intrinsic::ppc_altivec_vcmpgtub_p: 16364 case Intrinsic::ppc_altivec_vcmpgtuh_p: 16365 case Intrinsic::ppc_altivec_vcmpgtuw_p: 16366 case Intrinsic::ppc_altivec_vcmpgtud_p: 16367 case Intrinsic::ppc_altivec_vcmpgtuq_p: 16368 Known.Zero = ~1U; // All bits but the low one are known to be zero. 16369 break; 16370 } 16371 break; 16372 } 16373 case ISD::INTRINSIC_W_CHAIN: { 16374 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 16375 default: 16376 break; 16377 case Intrinsic::ppc_load2r: 16378 // Top bits are cleared for load2r (which is the same as lhbrx). 16379 Known.Zero = 0xFFFF0000; 16380 break; 16381 } 16382 break; 16383 } 16384 } 16385 } 16386 16387 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 16388 switch (Subtarget.getCPUDirective()) { 16389 default: break; 16390 case PPC::DIR_970: 16391 case PPC::DIR_PWR4: 16392 case PPC::DIR_PWR5: 16393 case PPC::DIR_PWR5X: 16394 case PPC::DIR_PWR6: 16395 case PPC::DIR_PWR6X: 16396 case PPC::DIR_PWR7: 16397 case PPC::DIR_PWR8: 16398 case PPC::DIR_PWR9: 16399 case PPC::DIR_PWR10: 16400 case PPC::DIR_PWR_FUTURE: { 16401 if (!ML) 16402 break; 16403 16404 if (!DisableInnermostLoopAlign32) { 16405 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 16406 // so that we can decrease cache misses and branch-prediction misses. 16407 // Actual alignment of the loop will depend on the hotness check and other 16408 // logic in alignBlocks. 16409 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 16410 return Align(32); 16411 } 16412 16413 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 16414 16415 // For small loops (between 5 and 8 instructions), align to a 32-byte 16416 // boundary so that the entire loop fits in one instruction-cache line. 16417 uint64_t LoopSize = 0; 16418 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 16419 for (const MachineInstr &J : **I) { 16420 LoopSize += TII->getInstSizeInBytes(J); 16421 if (LoopSize > 32) 16422 break; 16423 } 16424 16425 if (LoopSize > 16 && LoopSize <= 32) 16426 return Align(32); 16427 16428 break; 16429 } 16430 } 16431 16432 return TargetLowering::getPrefLoopAlignment(ML); 16433 } 16434 16435 /// getConstraintType - Given a constraint, return the type of 16436 /// constraint it is for this target. 16437 PPCTargetLowering::ConstraintType 16438 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 16439 if (Constraint.size() == 1) { 16440 switch (Constraint[0]) { 16441 default: break; 16442 case 'b': 16443 case 'r': 16444 case 'f': 16445 case 'd': 16446 case 'v': 16447 case 'y': 16448 return C_RegisterClass; 16449 case 'Z': 16450 // FIXME: While Z does indicate a memory constraint, it specifically 16451 // indicates an r+r address (used in conjunction with the 'y' modifier 16452 // in the replacement string). Currently, we're forcing the base 16453 // register to be r0 in the asm printer (which is interpreted as zero) 16454 // and forming the complete address in the second register. This is 16455 // suboptimal. 16456 return C_Memory; 16457 } 16458 } else if (Constraint == "wc") { // individual CR bits. 16459 return C_RegisterClass; 16460 } else if (Constraint == "wa" || Constraint == "wd" || 16461 Constraint == "wf" || Constraint == "ws" || 16462 Constraint == "wi" || Constraint == "ww") { 16463 return C_RegisterClass; // VSX registers. 16464 } 16465 return TargetLowering::getConstraintType(Constraint); 16466 } 16467 16468 /// Examine constraint type and operand type and determine a weight value. 16469 /// This object must already have been set up with the operand type 16470 /// and the current alternative constraint selected. 16471 TargetLowering::ConstraintWeight 16472 PPCTargetLowering::getSingleConstraintMatchWeight( 16473 AsmOperandInfo &info, const char *constraint) const { 16474 ConstraintWeight weight = CW_Invalid; 16475 Value *CallOperandVal = info.CallOperandVal; 16476 // If we don't have a value, we can't do a match, 16477 // but allow it at the lowest weight. 16478 if (!CallOperandVal) 16479 return CW_Default; 16480 Type *type = CallOperandVal->getType(); 16481 16482 // Look at the constraint type. 16483 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 16484 return CW_Register; // an individual CR bit. 16485 else if ((StringRef(constraint) == "wa" || 16486 StringRef(constraint) == "wd" || 16487 StringRef(constraint) == "wf") && 16488 type->isVectorTy()) 16489 return CW_Register; 16490 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 16491 return CW_Register; // just hold 64-bit integers data. 16492 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 16493 return CW_Register; 16494 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 16495 return CW_Register; 16496 16497 switch (*constraint) { 16498 default: 16499 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 16500 break; 16501 case 'b': 16502 if (type->isIntegerTy()) 16503 weight = CW_Register; 16504 break; 16505 case 'f': 16506 if (type->isFloatTy()) 16507 weight = CW_Register; 16508 break; 16509 case 'd': 16510 if (type->isDoubleTy()) 16511 weight = CW_Register; 16512 break; 16513 case 'v': 16514 if (type->isVectorTy()) 16515 weight = CW_Register; 16516 break; 16517 case 'y': 16518 weight = CW_Register; 16519 break; 16520 case 'Z': 16521 weight = CW_Memory; 16522 break; 16523 } 16524 return weight; 16525 } 16526 16527 std::pair<unsigned, const TargetRegisterClass *> 16528 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16529 StringRef Constraint, 16530 MVT VT) const { 16531 if (Constraint.size() == 1) { 16532 // GCC RS6000 Constraint Letters 16533 switch (Constraint[0]) { 16534 case 'b': // R1-R31 16535 if (VT == MVT::i64 && Subtarget.isPPC64()) 16536 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16537 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16538 case 'r': // R0-R31 16539 if (VT == MVT::i64 && Subtarget.isPPC64()) 16540 return std::make_pair(0U, &PPC::G8RCRegClass); 16541 return std::make_pair(0U, &PPC::GPRCRegClass); 16542 // 'd' and 'f' constraints are both defined to be "the floating point 16543 // registers", where one is for 32-bit and the other for 64-bit. We don't 16544 // really care overly much here so just give them all the same reg classes. 16545 case 'd': 16546 case 'f': 16547 if (Subtarget.hasSPE()) { 16548 if (VT == MVT::f32 || VT == MVT::i32) 16549 return std::make_pair(0U, &PPC::GPRCRegClass); 16550 if (VT == MVT::f64 || VT == MVT::i64) 16551 return std::make_pair(0U, &PPC::SPERCRegClass); 16552 } else { 16553 if (VT == MVT::f32 || VT == MVT::i32) 16554 return std::make_pair(0U, &PPC::F4RCRegClass); 16555 if (VT == MVT::f64 || VT == MVT::i64) 16556 return std::make_pair(0U, &PPC::F8RCRegClass); 16557 } 16558 break; 16559 case 'v': 16560 if (Subtarget.hasAltivec() && VT.isVector()) 16561 return std::make_pair(0U, &PPC::VRRCRegClass); 16562 else if (Subtarget.hasVSX()) 16563 // Scalars in Altivec registers only make sense with VSX. 16564 return std::make_pair(0U, &PPC::VFRCRegClass); 16565 break; 16566 case 'y': // crrc 16567 return std::make_pair(0U, &PPC::CRRCRegClass); 16568 } 16569 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16570 // An individual CR bit. 16571 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16572 } else if ((Constraint == "wa" || Constraint == "wd" || 16573 Constraint == "wf" || Constraint == "wi") && 16574 Subtarget.hasVSX()) { 16575 // A VSX register for either a scalar (FP) or vector. There is no 16576 // support for single precision scalars on subtargets prior to Power8. 16577 if (VT.isVector()) 16578 return std::make_pair(0U, &PPC::VSRCRegClass); 16579 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16580 return std::make_pair(0U, &PPC::VSSRCRegClass); 16581 return std::make_pair(0U, &PPC::VSFRCRegClass); 16582 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16583 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16584 return std::make_pair(0U, &PPC::VSSRCRegClass); 16585 else 16586 return std::make_pair(0U, &PPC::VSFRCRegClass); 16587 } else if (Constraint == "lr") { 16588 if (VT == MVT::i64) 16589 return std::make_pair(0U, &PPC::LR8RCRegClass); 16590 else 16591 return std::make_pair(0U, &PPC::LRRCRegClass); 16592 } 16593 16594 // Handle special cases of physical registers that are not properly handled 16595 // by the base class. 16596 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16597 // If we name a VSX register, we can't defer to the base class because it 16598 // will not recognize the correct register (their names will be VSL{0-31} 16599 // and V{0-31} so they won't match). So we match them here. 16600 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16601 int VSNum = atoi(Constraint.data() + 3); 16602 assert(VSNum >= 0 && VSNum <= 63 && 16603 "Attempted to access a vsr out of range"); 16604 if (VSNum < 32) 16605 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16606 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16607 } 16608 16609 // For float registers, we can't defer to the base class as it will match 16610 // the SPILLTOVSRRC class. 16611 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16612 int RegNum = atoi(Constraint.data() + 2); 16613 if (RegNum > 31 || RegNum < 0) 16614 report_fatal_error("Invalid floating point register number"); 16615 if (VT == MVT::f32 || VT == MVT::i32) 16616 return Subtarget.hasSPE() 16617 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16618 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16619 if (VT == MVT::f64 || VT == MVT::i64) 16620 return Subtarget.hasSPE() 16621 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16622 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16623 } 16624 } 16625 16626 std::pair<unsigned, const TargetRegisterClass *> R = 16627 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16628 16629 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16630 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16631 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16632 // register. 16633 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16634 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16635 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16636 PPC::GPRCRegClass.contains(R.first)) 16637 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16638 PPC::sub_32, &PPC::G8RCRegClass), 16639 &PPC::G8RCRegClass); 16640 16641 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16642 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16643 R.first = PPC::CR0; 16644 R.second = &PPC::CRRCRegClass; 16645 } 16646 // FIXME: This warning should ideally be emitted in the front end. 16647 const auto &TM = getTargetMachine(); 16648 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16649 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16650 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16651 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16652 errs() << "warning: vector registers 20 to 32 are reserved in the " 16653 "default AIX AltiVec ABI and cannot be used\n"; 16654 } 16655 16656 return R; 16657 } 16658 16659 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16660 /// vector. If it is invalid, don't add anything to Ops. 16661 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16662 std::string &Constraint, 16663 std::vector<SDValue>&Ops, 16664 SelectionDAG &DAG) const { 16665 SDValue Result; 16666 16667 // Only support length 1 constraints. 16668 if (Constraint.length() > 1) return; 16669 16670 char Letter = Constraint[0]; 16671 switch (Letter) { 16672 default: break; 16673 case 'I': 16674 case 'J': 16675 case 'K': 16676 case 'L': 16677 case 'M': 16678 case 'N': 16679 case 'O': 16680 case 'P': { 16681 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16682 if (!CST) return; // Must be an immediate to match. 16683 SDLoc dl(Op); 16684 int64_t Value = CST->getSExtValue(); 16685 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16686 // numbers are printed as such. 16687 switch (Letter) { 16688 default: llvm_unreachable("Unknown constraint letter!"); 16689 case 'I': // "I" is a signed 16-bit constant. 16690 if (isInt<16>(Value)) 16691 Result = DAG.getTargetConstant(Value, dl, TCVT); 16692 break; 16693 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16694 if (isShiftedUInt<16, 16>(Value)) 16695 Result = DAG.getTargetConstant(Value, dl, TCVT); 16696 break; 16697 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16698 if (isShiftedInt<16, 16>(Value)) 16699 Result = DAG.getTargetConstant(Value, dl, TCVT); 16700 break; 16701 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16702 if (isUInt<16>(Value)) 16703 Result = DAG.getTargetConstant(Value, dl, TCVT); 16704 break; 16705 case 'M': // "M" is a constant that is greater than 31. 16706 if (Value > 31) 16707 Result = DAG.getTargetConstant(Value, dl, TCVT); 16708 break; 16709 case 'N': // "N" is a positive constant that is an exact power of two. 16710 if (Value > 0 && isPowerOf2_64(Value)) 16711 Result = DAG.getTargetConstant(Value, dl, TCVT); 16712 break; 16713 case 'O': // "O" is the constant zero. 16714 if (Value == 0) 16715 Result = DAG.getTargetConstant(Value, dl, TCVT); 16716 break; 16717 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16718 if (isInt<16>(-Value)) 16719 Result = DAG.getTargetConstant(Value, dl, TCVT); 16720 break; 16721 } 16722 break; 16723 } 16724 } 16725 16726 if (Result.getNode()) { 16727 Ops.push_back(Result); 16728 return; 16729 } 16730 16731 // Handle standard constraint letters. 16732 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16733 } 16734 16735 void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I, 16736 SmallVectorImpl<SDValue> &Ops, 16737 SelectionDAG &DAG) const { 16738 if (I.getNumOperands() <= 1) 16739 return; 16740 if (!isa<ConstantSDNode>(Ops[1].getNode())) 16741 return; 16742 auto IntrinsicID = cast<ConstantSDNode>(Ops[1].getNode())->getZExtValue(); 16743 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && 16744 IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap) 16745 return; 16746 16747 if (I.hasMetadata("annotation")) { 16748 MDNode *MDN = I.getMetadata("annotation"); 16749 Ops.push_back(DAG.getMDNode(MDN)); 16750 } 16751 } 16752 16753 // isLegalAddressingMode - Return true if the addressing mode represented 16754 // by AM is legal for this target, for a load/store of the specified type. 16755 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16756 const AddrMode &AM, Type *Ty, 16757 unsigned AS, 16758 Instruction *I) const { 16759 // Vector type r+i form is supported since power9 as DQ form. We don't check 16760 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16761 // imm form is preferred and the offset can be adjusted to use imm form later 16762 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16763 // max offset to check legal addressing mode, we should be a little aggressive 16764 // to contain other offsets for that LSRUse. 16765 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16766 return false; 16767 16768 // PPC allows a sign-extended 16-bit immediate field. 16769 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16770 return false; 16771 16772 // No global is ever allowed as a base. 16773 if (AM.BaseGV) 16774 return false; 16775 16776 // PPC only support r+r, 16777 switch (AM.Scale) { 16778 case 0: // "r+i" or just "i", depending on HasBaseReg. 16779 break; 16780 case 1: 16781 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16782 return false; 16783 // Otherwise we have r+r or r+i. 16784 break; 16785 case 2: 16786 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16787 return false; 16788 // Allow 2*r as r+r. 16789 break; 16790 default: 16791 // No other scales are supported. 16792 return false; 16793 } 16794 16795 return true; 16796 } 16797 16798 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16799 SelectionDAG &DAG) const { 16800 MachineFunction &MF = DAG.getMachineFunction(); 16801 MachineFrameInfo &MFI = MF.getFrameInfo(); 16802 MFI.setReturnAddressIsTaken(true); 16803 16804 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16805 return SDValue(); 16806 16807 SDLoc dl(Op); 16808 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16809 16810 // Make sure the function does not optimize away the store of the RA to 16811 // the stack. 16812 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16813 FuncInfo->setLRStoreRequired(); 16814 bool isPPC64 = Subtarget.isPPC64(); 16815 auto PtrVT = getPointerTy(MF.getDataLayout()); 16816 16817 if (Depth > 0) { 16818 // The link register (return address) is saved in the caller's frame 16819 // not the callee's stack frame. So we must get the caller's frame 16820 // address and load the return address at the LR offset from there. 16821 SDValue FrameAddr = 16822 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16823 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16824 SDValue Offset = 16825 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16826 isPPC64 ? MVT::i64 : MVT::i32); 16827 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16828 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16829 MachinePointerInfo()); 16830 } 16831 16832 // Just load the return address off the stack. 16833 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16834 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16835 MachinePointerInfo()); 16836 } 16837 16838 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16839 SelectionDAG &DAG) const { 16840 SDLoc dl(Op); 16841 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16842 16843 MachineFunction &MF = DAG.getMachineFunction(); 16844 MachineFrameInfo &MFI = MF.getFrameInfo(); 16845 MFI.setFrameAddressIsTaken(true); 16846 16847 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16848 bool isPPC64 = PtrVT == MVT::i64; 16849 16850 // Naked functions never have a frame pointer, and so we use r1. For all 16851 // other functions, this decision must be delayed until during PEI. 16852 unsigned FrameReg; 16853 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16854 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16855 else 16856 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16857 16858 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16859 PtrVT); 16860 while (Depth--) 16861 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16862 FrameAddr, MachinePointerInfo()); 16863 return FrameAddr; 16864 } 16865 16866 // FIXME? Maybe this could be a TableGen attribute on some registers and 16867 // this table could be generated automatically from RegInfo. 16868 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16869 const MachineFunction &MF) const { 16870 bool isPPC64 = Subtarget.isPPC64(); 16871 16872 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16873 if (!is64Bit && VT != LLT::scalar(32)) 16874 report_fatal_error("Invalid register global variable type"); 16875 16876 Register Reg = StringSwitch<Register>(RegName) 16877 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16878 .Case("r2", isPPC64 ? Register() : PPC::R2) 16879 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16880 .Default(Register()); 16881 16882 if (Reg) 16883 return Reg; 16884 report_fatal_error("Invalid register name global variable"); 16885 } 16886 16887 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16888 // 32-bit SVR4 ABI access everything as got-indirect. 16889 if (Subtarget.is32BitELFABI()) 16890 return true; 16891 16892 // AIX accesses everything indirectly through the TOC, which is similar to 16893 // the GOT. 16894 if (Subtarget.isAIXABI()) 16895 return true; 16896 16897 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16898 // If it is small or large code model, module locals are accessed 16899 // indirectly by loading their address from .toc/.got. 16900 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16901 return true; 16902 16903 // JumpTable and BlockAddress are accessed as got-indirect. 16904 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16905 return true; 16906 16907 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16908 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16909 16910 return false; 16911 } 16912 16913 bool 16914 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16915 // The PowerPC target isn't yet aware of offsets. 16916 return false; 16917 } 16918 16919 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16920 const CallInst &I, 16921 MachineFunction &MF, 16922 unsigned Intrinsic) const { 16923 switch (Intrinsic) { 16924 case Intrinsic::ppc_atomicrmw_xchg_i128: 16925 case Intrinsic::ppc_atomicrmw_add_i128: 16926 case Intrinsic::ppc_atomicrmw_sub_i128: 16927 case Intrinsic::ppc_atomicrmw_nand_i128: 16928 case Intrinsic::ppc_atomicrmw_and_i128: 16929 case Intrinsic::ppc_atomicrmw_or_i128: 16930 case Intrinsic::ppc_atomicrmw_xor_i128: 16931 case Intrinsic::ppc_cmpxchg_i128: 16932 Info.opc = ISD::INTRINSIC_W_CHAIN; 16933 Info.memVT = MVT::i128; 16934 Info.ptrVal = I.getArgOperand(0); 16935 Info.offset = 0; 16936 Info.align = Align(16); 16937 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16938 MachineMemOperand::MOVolatile; 16939 return true; 16940 case Intrinsic::ppc_atomic_load_i128: 16941 Info.opc = ISD::INTRINSIC_W_CHAIN; 16942 Info.memVT = MVT::i128; 16943 Info.ptrVal = I.getArgOperand(0); 16944 Info.offset = 0; 16945 Info.align = Align(16); 16946 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16947 return true; 16948 case Intrinsic::ppc_atomic_store_i128: 16949 Info.opc = ISD::INTRINSIC_VOID; 16950 Info.memVT = MVT::i128; 16951 Info.ptrVal = I.getArgOperand(2); 16952 Info.offset = 0; 16953 Info.align = Align(16); 16954 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16955 return true; 16956 case Intrinsic::ppc_altivec_lvx: 16957 case Intrinsic::ppc_altivec_lvxl: 16958 case Intrinsic::ppc_altivec_lvebx: 16959 case Intrinsic::ppc_altivec_lvehx: 16960 case Intrinsic::ppc_altivec_lvewx: 16961 case Intrinsic::ppc_vsx_lxvd2x: 16962 case Intrinsic::ppc_vsx_lxvw4x: 16963 case Intrinsic::ppc_vsx_lxvd2x_be: 16964 case Intrinsic::ppc_vsx_lxvw4x_be: 16965 case Intrinsic::ppc_vsx_lxvl: 16966 case Intrinsic::ppc_vsx_lxvll: { 16967 EVT VT; 16968 switch (Intrinsic) { 16969 case Intrinsic::ppc_altivec_lvebx: 16970 VT = MVT::i8; 16971 break; 16972 case Intrinsic::ppc_altivec_lvehx: 16973 VT = MVT::i16; 16974 break; 16975 case Intrinsic::ppc_altivec_lvewx: 16976 VT = MVT::i32; 16977 break; 16978 case Intrinsic::ppc_vsx_lxvd2x: 16979 case Intrinsic::ppc_vsx_lxvd2x_be: 16980 VT = MVT::v2f64; 16981 break; 16982 default: 16983 VT = MVT::v4i32; 16984 break; 16985 } 16986 16987 Info.opc = ISD::INTRINSIC_W_CHAIN; 16988 Info.memVT = VT; 16989 Info.ptrVal = I.getArgOperand(0); 16990 Info.offset = -VT.getStoreSize()+1; 16991 Info.size = 2*VT.getStoreSize()-1; 16992 Info.align = Align(1); 16993 Info.flags = MachineMemOperand::MOLoad; 16994 return true; 16995 } 16996 case Intrinsic::ppc_altivec_stvx: 16997 case Intrinsic::ppc_altivec_stvxl: 16998 case Intrinsic::ppc_altivec_stvebx: 16999 case Intrinsic::ppc_altivec_stvehx: 17000 case Intrinsic::ppc_altivec_stvewx: 17001 case Intrinsic::ppc_vsx_stxvd2x: 17002 case Intrinsic::ppc_vsx_stxvw4x: 17003 case Intrinsic::ppc_vsx_stxvd2x_be: 17004 case Intrinsic::ppc_vsx_stxvw4x_be: 17005 case Intrinsic::ppc_vsx_stxvl: 17006 case Intrinsic::ppc_vsx_stxvll: { 17007 EVT VT; 17008 switch (Intrinsic) { 17009 case Intrinsic::ppc_altivec_stvebx: 17010 VT = MVT::i8; 17011 break; 17012 case Intrinsic::ppc_altivec_stvehx: 17013 VT = MVT::i16; 17014 break; 17015 case Intrinsic::ppc_altivec_stvewx: 17016 VT = MVT::i32; 17017 break; 17018 case Intrinsic::ppc_vsx_stxvd2x: 17019 case Intrinsic::ppc_vsx_stxvd2x_be: 17020 VT = MVT::v2f64; 17021 break; 17022 default: 17023 VT = MVT::v4i32; 17024 break; 17025 } 17026 17027 Info.opc = ISD::INTRINSIC_VOID; 17028 Info.memVT = VT; 17029 Info.ptrVal = I.getArgOperand(1); 17030 Info.offset = -VT.getStoreSize()+1; 17031 Info.size = 2*VT.getStoreSize()-1; 17032 Info.align = Align(1); 17033 Info.flags = MachineMemOperand::MOStore; 17034 return true; 17035 } 17036 case Intrinsic::ppc_stdcx: 17037 case Intrinsic::ppc_stwcx: 17038 case Intrinsic::ppc_sthcx: 17039 case Intrinsic::ppc_stbcx: { 17040 EVT VT; 17041 auto Alignment = Align(8); 17042 switch (Intrinsic) { 17043 case Intrinsic::ppc_stdcx: 17044 VT = MVT::i64; 17045 break; 17046 case Intrinsic::ppc_stwcx: 17047 VT = MVT::i32; 17048 Alignment = Align(4); 17049 break; 17050 case Intrinsic::ppc_sthcx: 17051 VT = MVT::i16; 17052 Alignment = Align(2); 17053 break; 17054 case Intrinsic::ppc_stbcx: 17055 VT = MVT::i8; 17056 Alignment = Align(1); 17057 break; 17058 } 17059 Info.opc = ISD::INTRINSIC_W_CHAIN; 17060 Info.memVT = VT; 17061 Info.ptrVal = I.getArgOperand(0); 17062 Info.offset = 0; 17063 Info.align = Alignment; 17064 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 17065 return true; 17066 } 17067 default: 17068 break; 17069 } 17070 17071 return false; 17072 } 17073 17074 /// It returns EVT::Other if the type should be determined using generic 17075 /// target-independent logic. 17076 EVT PPCTargetLowering::getOptimalMemOpType( 17077 const MemOp &Op, const AttributeList &FuncAttributes) const { 17078 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 17079 // We should use Altivec/VSX loads and stores when available. For unaligned 17080 // addresses, unaligned VSX loads are only fast starting with the P8. 17081 if (Subtarget.hasAltivec() && Op.size() >= 16 && 17082 (Op.isAligned(Align(16)) || 17083 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 17084 return MVT::v4i32; 17085 } 17086 17087 if (Subtarget.isPPC64()) { 17088 return MVT::i64; 17089 } 17090 17091 return MVT::i32; 17092 } 17093 17094 /// Returns true if it is beneficial to convert a load of a constant 17095 /// to just the constant itself. 17096 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 17097 Type *Ty) const { 17098 assert(Ty->isIntegerTy()); 17099 17100 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 17101 return !(BitSize == 0 || BitSize > 64); 17102 } 17103 17104 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 17105 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 17106 return false; 17107 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 17108 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 17109 return NumBits1 == 64 && NumBits2 == 32; 17110 } 17111 17112 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 17113 if (!VT1.isInteger() || !VT2.isInteger()) 17114 return false; 17115 unsigned NumBits1 = VT1.getSizeInBits(); 17116 unsigned NumBits2 = VT2.getSizeInBits(); 17117 return NumBits1 == 64 && NumBits2 == 32; 17118 } 17119 17120 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 17121 // Generally speaking, zexts are not free, but they are free when they can be 17122 // folded with other operations. 17123 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 17124 EVT MemVT = LD->getMemoryVT(); 17125 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 17126 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 17127 (LD->getExtensionType() == ISD::NON_EXTLOAD || 17128 LD->getExtensionType() == ISD::ZEXTLOAD)) 17129 return true; 17130 } 17131 17132 // FIXME: Add other cases... 17133 // - 32-bit shifts with a zext to i64 17134 // - zext after ctlz, bswap, etc. 17135 // - zext after and by a constant mask 17136 17137 return TargetLowering::isZExtFree(Val, VT2); 17138 } 17139 17140 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 17141 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 17142 "invalid fpext types"); 17143 // Extending to float128 is not free. 17144 if (DestVT == MVT::f128) 17145 return false; 17146 return true; 17147 } 17148 17149 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 17150 return isInt<16>(Imm) || isUInt<16>(Imm); 17151 } 17152 17153 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 17154 return isInt<16>(Imm) || isUInt<16>(Imm); 17155 } 17156 17157 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 17158 MachineMemOperand::Flags, 17159 unsigned *Fast) const { 17160 if (DisablePPCUnaligned) 17161 return false; 17162 17163 // PowerPC supports unaligned memory access for simple non-vector types. 17164 // Although accessing unaligned addresses is not as efficient as accessing 17165 // aligned addresses, it is generally more efficient than manual expansion, 17166 // and generally only traps for software emulation when crossing page 17167 // boundaries. 17168 17169 if (!VT.isSimple()) 17170 return false; 17171 17172 if (VT.isFloatingPoint() && !VT.isVector() && 17173 !Subtarget.allowsUnalignedFPAccess()) 17174 return false; 17175 17176 if (VT.getSimpleVT().isVector()) { 17177 if (Subtarget.hasVSX()) { 17178 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 17179 VT != MVT::v4f32 && VT != MVT::v4i32) 17180 return false; 17181 } else { 17182 return false; 17183 } 17184 } 17185 17186 if (VT == MVT::ppcf128) 17187 return false; 17188 17189 if (Fast) 17190 *Fast = 1; 17191 17192 return true; 17193 } 17194 17195 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 17196 SDValue C) const { 17197 // Check integral scalar types. 17198 if (!VT.isScalarInteger()) 17199 return false; 17200 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 17201 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 17202 return false; 17203 // This transformation will generate >= 2 operations. But the following 17204 // cases will generate <= 2 instructions during ISEL. So exclude them. 17205 // 1. If the constant multiplier fits 16 bits, it can be handled by one 17206 // HW instruction, ie. MULLI 17207 // 2. If the multiplier after shifted fits 16 bits, an extra shift 17208 // instruction is needed than case 1, ie. MULLI and RLDICR 17209 int64_t Imm = ConstNode->getSExtValue(); 17210 unsigned Shift = llvm::countr_zero<uint64_t>(Imm); 17211 Imm >>= Shift; 17212 if (isInt<16>(Imm)) 17213 return false; 17214 uint64_t UImm = static_cast<uint64_t>(Imm); 17215 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 17216 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 17217 return true; 17218 } 17219 return false; 17220 } 17221 17222 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 17223 EVT VT) const { 17224 return isFMAFasterThanFMulAndFAdd( 17225 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 17226 } 17227 17228 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 17229 Type *Ty) const { 17230 if (Subtarget.hasSPE()) 17231 return false; 17232 switch (Ty->getScalarType()->getTypeID()) { 17233 case Type::FloatTyID: 17234 case Type::DoubleTyID: 17235 return true; 17236 case Type::FP128TyID: 17237 return Subtarget.hasP9Vector(); 17238 default: 17239 return false; 17240 } 17241 } 17242 17243 // FIXME: add more patterns which are not profitable to hoist. 17244 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 17245 if (!I->hasOneUse()) 17246 return true; 17247 17248 Instruction *User = I->user_back(); 17249 assert(User && "A single use instruction with no uses."); 17250 17251 switch (I->getOpcode()) { 17252 case Instruction::FMul: { 17253 // Don't break FMA, PowerPC prefers FMA. 17254 if (User->getOpcode() != Instruction::FSub && 17255 User->getOpcode() != Instruction::FAdd) 17256 return true; 17257 17258 const TargetOptions &Options = getTargetMachine().Options; 17259 const Function *F = I->getFunction(); 17260 const DataLayout &DL = F->getParent()->getDataLayout(); 17261 Type *Ty = User->getOperand(0)->getType(); 17262 17263 return !( 17264 isFMAFasterThanFMulAndFAdd(*F, Ty) && 17265 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 17266 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 17267 } 17268 case Instruction::Load: { 17269 // Don't break "store (load float*)" pattern, this pattern will be combined 17270 // to "store (load int32)" in later InstCombine pass. See function 17271 // combineLoadToOperationType. On PowerPC, loading a float point takes more 17272 // cycles than loading a 32 bit integer. 17273 LoadInst *LI = cast<LoadInst>(I); 17274 // For the loads that combineLoadToOperationType does nothing, like 17275 // ordered load, it should be profitable to hoist them. 17276 // For swifterror load, it can only be used for pointer to pointer type, so 17277 // later type check should get rid of this case. 17278 if (!LI->isUnordered()) 17279 return true; 17280 17281 if (User->getOpcode() != Instruction::Store) 17282 return true; 17283 17284 if (I->getType()->getTypeID() != Type::FloatTyID) 17285 return true; 17286 17287 return false; 17288 } 17289 default: 17290 return true; 17291 } 17292 return true; 17293 } 17294 17295 const MCPhysReg * 17296 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 17297 // LR is a callee-save register, but we must treat it as clobbered by any call 17298 // site. Hence we include LR in the scratch registers, which are in turn added 17299 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 17300 // to CTR, which is used by any indirect call. 17301 static const MCPhysReg ScratchRegs[] = { 17302 PPC::X12, PPC::LR8, PPC::CTR8, 0 17303 }; 17304 17305 return ScratchRegs; 17306 } 17307 17308 Register PPCTargetLowering::getExceptionPointerRegister( 17309 const Constant *PersonalityFn) const { 17310 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 17311 } 17312 17313 Register PPCTargetLowering::getExceptionSelectorRegister( 17314 const Constant *PersonalityFn) const { 17315 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 17316 } 17317 17318 bool 17319 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 17320 EVT VT , unsigned DefinedValues) const { 17321 if (VT == MVT::v2i64) 17322 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 17323 17324 if (Subtarget.hasVSX()) 17325 return true; 17326 17327 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 17328 } 17329 17330 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 17331 if (DisableILPPref || Subtarget.enableMachineScheduler()) 17332 return TargetLowering::getSchedulingPreference(N); 17333 17334 return Sched::ILP; 17335 } 17336 17337 // Create a fast isel object. 17338 FastISel * 17339 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 17340 const TargetLibraryInfo *LibInfo) const { 17341 return PPC::createFastISel(FuncInfo, LibInfo); 17342 } 17343 17344 // 'Inverted' means the FMA opcode after negating one multiplicand. 17345 // For example, (fma -a b c) = (fnmsub a b c) 17346 static unsigned invertFMAOpcode(unsigned Opc) { 17347 switch (Opc) { 17348 default: 17349 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 17350 case ISD::FMA: 17351 return PPCISD::FNMSUB; 17352 case PPCISD::FNMSUB: 17353 return ISD::FMA; 17354 } 17355 } 17356 17357 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 17358 bool LegalOps, bool OptForSize, 17359 NegatibleCost &Cost, 17360 unsigned Depth) const { 17361 if (Depth > SelectionDAG::MaxRecursionDepth) 17362 return SDValue(); 17363 17364 unsigned Opc = Op.getOpcode(); 17365 EVT VT = Op.getValueType(); 17366 SDNodeFlags Flags = Op.getNode()->getFlags(); 17367 17368 switch (Opc) { 17369 case PPCISD::FNMSUB: 17370 if (!Op.hasOneUse() || !isTypeLegal(VT)) 17371 break; 17372 17373 const TargetOptions &Options = getTargetMachine().Options; 17374 SDValue N0 = Op.getOperand(0); 17375 SDValue N1 = Op.getOperand(1); 17376 SDValue N2 = Op.getOperand(2); 17377 SDLoc Loc(Op); 17378 17379 NegatibleCost N2Cost = NegatibleCost::Expensive; 17380 SDValue NegN2 = 17381 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 17382 17383 if (!NegN2) 17384 return SDValue(); 17385 17386 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 17387 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 17388 // These transformations may change sign of zeroes. For example, 17389 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 17390 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 17391 // Try and choose the cheaper one to negate. 17392 NegatibleCost N0Cost = NegatibleCost::Expensive; 17393 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 17394 N0Cost, Depth + 1); 17395 17396 NegatibleCost N1Cost = NegatibleCost::Expensive; 17397 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 17398 N1Cost, Depth + 1); 17399 17400 if (NegN0 && N0Cost <= N1Cost) { 17401 Cost = std::min(N0Cost, N2Cost); 17402 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 17403 } else if (NegN1) { 17404 Cost = std::min(N1Cost, N2Cost); 17405 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 17406 } 17407 } 17408 17409 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 17410 if (isOperationLegal(ISD::FMA, VT)) { 17411 Cost = N2Cost; 17412 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 17413 } 17414 17415 break; 17416 } 17417 17418 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 17419 Cost, Depth); 17420 } 17421 17422 // Override to enable LOAD_STACK_GUARD lowering on Linux. 17423 bool PPCTargetLowering::useLoadStackGuardNode() const { 17424 if (!Subtarget.isTargetLinux()) 17425 return TargetLowering::useLoadStackGuardNode(); 17426 return true; 17427 } 17428 17429 // Override to disable global variable loading on Linux and insert AIX canary 17430 // word declaration. 17431 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 17432 if (Subtarget.isAIXABI()) { 17433 M.getOrInsertGlobal(AIXSSPCanaryWordName, 17434 Type::getInt8PtrTy(M.getContext())); 17435 return; 17436 } 17437 if (!Subtarget.isTargetLinux()) 17438 return TargetLowering::insertSSPDeclarations(M); 17439 } 17440 17441 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 17442 if (Subtarget.isAIXABI()) 17443 return M.getGlobalVariable(AIXSSPCanaryWordName); 17444 return TargetLowering::getSDagStackGuard(M); 17445 } 17446 17447 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 17448 bool ForCodeSize) const { 17449 if (!VT.isSimple() || !Subtarget.hasVSX()) 17450 return false; 17451 17452 switch(VT.getSimpleVT().SimpleTy) { 17453 default: 17454 // For FP types that are currently not supported by PPC backend, return 17455 // false. Examples: f16, f80. 17456 return false; 17457 case MVT::f32: 17458 case MVT::f64: { 17459 if (Subtarget.hasPrefixInstrs()) { 17460 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 17461 return true; 17462 } 17463 bool IsExact; 17464 APSInt IntResult(16, false); 17465 // The rounding mode doesn't really matter because we only care about floats 17466 // that can be converted to integers exactly. 17467 Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact); 17468 // For exact values in the range [-16, 15] we can materialize the float. 17469 if (IsExact && IntResult <= 15 && IntResult >= -16) 17470 return true; 17471 return Imm.isZero(); 17472 } 17473 case MVT::ppcf128: 17474 return Imm.isPosZero(); 17475 } 17476 } 17477 17478 // For vector shift operation op, fold 17479 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 17480 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 17481 SelectionDAG &DAG) { 17482 SDValue N0 = N->getOperand(0); 17483 SDValue N1 = N->getOperand(1); 17484 EVT VT = N0.getValueType(); 17485 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 17486 unsigned Opcode = N->getOpcode(); 17487 unsigned TargetOpcode; 17488 17489 switch (Opcode) { 17490 default: 17491 llvm_unreachable("Unexpected shift operation"); 17492 case ISD::SHL: 17493 TargetOpcode = PPCISD::SHL; 17494 break; 17495 case ISD::SRL: 17496 TargetOpcode = PPCISD::SRL; 17497 break; 17498 case ISD::SRA: 17499 TargetOpcode = PPCISD::SRA; 17500 break; 17501 } 17502 17503 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 17504 N1->getOpcode() == ISD::AND) 17505 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 17506 if (Mask->getZExtValue() == OpSizeInBits - 1) 17507 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 17508 17509 return SDValue(); 17510 } 17511 17512 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 17513 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17514 return Value; 17515 17516 SDValue N0 = N->getOperand(0); 17517 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 17518 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 17519 N0.getOpcode() != ISD::SIGN_EXTEND || 17520 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 17521 N->getValueType(0) != MVT::i64) 17522 return SDValue(); 17523 17524 // We can't save an operation here if the value is already extended, and 17525 // the existing shift is easier to combine. 17526 SDValue ExtsSrc = N0.getOperand(0); 17527 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 17528 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 17529 return SDValue(); 17530 17531 SDLoc DL(N0); 17532 SDValue ShiftBy = SDValue(CN1, 0); 17533 // We want the shift amount to be i32 on the extswli, but the shift could 17534 // have an i64. 17535 if (ShiftBy.getValueType() == MVT::i64) 17536 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 17537 17538 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 17539 ShiftBy); 17540 } 17541 17542 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 17543 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17544 return Value; 17545 17546 return SDValue(); 17547 } 17548 17549 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 17550 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17551 return Value; 17552 17553 return SDValue(); 17554 } 17555 17556 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 17557 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 17558 // When C is zero, the equation (addi Z, -C) can be simplified to Z 17559 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 17560 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 17561 const PPCSubtarget &Subtarget) { 17562 if (!Subtarget.isPPC64()) 17563 return SDValue(); 17564 17565 SDValue LHS = N->getOperand(0); 17566 SDValue RHS = N->getOperand(1); 17567 17568 auto isZextOfCompareWithConstant = [](SDValue Op) { 17569 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 17570 Op.getValueType() != MVT::i64) 17571 return false; 17572 17573 SDValue Cmp = Op.getOperand(0); 17574 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 17575 Cmp.getOperand(0).getValueType() != MVT::i64) 17576 return false; 17577 17578 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 17579 int64_t NegConstant = 0 - Constant->getSExtValue(); 17580 // Due to the limitations of the addi instruction, 17581 // -C is required to be [-32768, 32767]. 17582 return isInt<16>(NegConstant); 17583 } 17584 17585 return false; 17586 }; 17587 17588 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17589 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17590 17591 // If there is a pattern, canonicalize a zext operand to the RHS. 17592 if (LHSHasPattern && !RHSHasPattern) 17593 std::swap(LHS, RHS); 17594 else if (!LHSHasPattern && !RHSHasPattern) 17595 return SDValue(); 17596 17597 SDLoc DL(N); 17598 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17599 SDValue Cmp = RHS.getOperand(0); 17600 SDValue Z = Cmp.getOperand(0); 17601 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17602 int64_t NegConstant = 0 - Constant->getSExtValue(); 17603 17604 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17605 default: break; 17606 case ISD::SETNE: { 17607 // when C == 0 17608 // --> addze X, (addic Z, -1).carry 17609 // / 17610 // add X, (zext(setne Z, C))-- 17611 // \ when -32768 <= -C <= 32767 && C != 0 17612 // --> addze X, (addic (addi Z, -C), -1).carry 17613 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17614 DAG.getConstant(NegConstant, DL, MVT::i64)); 17615 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17616 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17617 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17618 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17619 SDValue(Addc.getNode(), 1)); 17620 } 17621 case ISD::SETEQ: { 17622 // when C == 0 17623 // --> addze X, (subfic Z, 0).carry 17624 // / 17625 // add X, (zext(sete Z, C))-- 17626 // \ when -32768 <= -C <= 32767 && C != 0 17627 // --> addze X, (subfic (addi Z, -C), 0).carry 17628 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17629 DAG.getConstant(NegConstant, DL, MVT::i64)); 17630 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17631 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17632 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17633 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17634 SDValue(Subc.getNode(), 1)); 17635 } 17636 } 17637 17638 return SDValue(); 17639 } 17640 17641 // Transform 17642 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17643 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17644 // In this case both C1 and C2 must be known constants. 17645 // C1+C2 must fit into a 34 bit signed integer. 17646 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17647 const PPCSubtarget &Subtarget) { 17648 if (!Subtarget.isUsingPCRelativeCalls()) 17649 return SDValue(); 17650 17651 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17652 // If we find that node try to cast the Global Address and the Constant. 17653 SDValue LHS = N->getOperand(0); 17654 SDValue RHS = N->getOperand(1); 17655 17656 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17657 std::swap(LHS, RHS); 17658 17659 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17660 return SDValue(); 17661 17662 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17663 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17664 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17665 17666 // Check that both casts succeeded. 17667 if (!GSDN || !ConstNode) 17668 return SDValue(); 17669 17670 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17671 SDLoc DL(GSDN); 17672 17673 // The signed int offset needs to fit in 34 bits. 17674 if (!isInt<34>(NewOffset)) 17675 return SDValue(); 17676 17677 // The new global address is a copy of the old global address except 17678 // that it has the updated Offset. 17679 SDValue GA = 17680 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17681 NewOffset, GSDN->getTargetFlags()); 17682 SDValue MatPCRel = 17683 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17684 return MatPCRel; 17685 } 17686 17687 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17688 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17689 return Value; 17690 17691 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17692 return Value; 17693 17694 return SDValue(); 17695 } 17696 17697 // Detect TRUNCATE operations on bitcasts of float128 values. 17698 // What we are looking for here is the situtation where we extract a subset 17699 // of bits from a 128 bit float. 17700 // This can be of two forms: 17701 // 1) BITCAST of f128 feeding TRUNCATE 17702 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17703 // The reason this is required is because we do not have a legal i128 type 17704 // and so we want to prevent having to store the f128 and then reload part 17705 // of it. 17706 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17707 DAGCombinerInfo &DCI) const { 17708 // If we are using CRBits then try that first. 17709 if (Subtarget.useCRBits()) { 17710 // Check if CRBits did anything and return that if it did. 17711 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17712 return CRTruncValue; 17713 } 17714 17715 SDLoc dl(N); 17716 SDValue Op0 = N->getOperand(0); 17717 17718 // Looking for a truncate of i128 to i64. 17719 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17720 return SDValue(); 17721 17722 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17723 17724 // SRL feeding TRUNCATE. 17725 if (Op0.getOpcode() == ISD::SRL) { 17726 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17727 // The right shift has to be by 64 bits. 17728 if (!ConstNode || ConstNode->getZExtValue() != 64) 17729 return SDValue(); 17730 17731 // Switch the element number to extract. 17732 EltToExtract = EltToExtract ? 0 : 1; 17733 // Update Op0 past the SRL. 17734 Op0 = Op0.getOperand(0); 17735 } 17736 17737 // BITCAST feeding a TRUNCATE possibly via SRL. 17738 if (Op0.getOpcode() == ISD::BITCAST && 17739 Op0.getValueType() == MVT::i128 && 17740 Op0.getOperand(0).getValueType() == MVT::f128) { 17741 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17742 return DCI.DAG.getNode( 17743 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17744 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17745 } 17746 return SDValue(); 17747 } 17748 17749 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17750 SelectionDAG &DAG = DCI.DAG; 17751 17752 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17753 if (!ConstOpOrElement) 17754 return SDValue(); 17755 17756 // An imul is usually smaller than the alternative sequence for legal type. 17757 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17758 isOperationLegal(ISD::MUL, N->getValueType(0))) 17759 return SDValue(); 17760 17761 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17762 switch (this->Subtarget.getCPUDirective()) { 17763 default: 17764 // TODO: enhance the condition for subtarget before pwr8 17765 return false; 17766 case PPC::DIR_PWR8: 17767 // type mul add shl 17768 // scalar 4 1 1 17769 // vector 7 2 2 17770 return true; 17771 case PPC::DIR_PWR9: 17772 case PPC::DIR_PWR10: 17773 case PPC::DIR_PWR_FUTURE: 17774 // type mul add shl 17775 // scalar 5 2 2 17776 // vector 7 2 2 17777 17778 // The cycle RATIO of related operations are showed as a table above. 17779 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17780 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17781 // are 4, it is always profitable; but for 3 instrs patterns 17782 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17783 // So we should only do it for vector type. 17784 return IsAddOne && IsNeg ? VT.isVector() : true; 17785 } 17786 }; 17787 17788 EVT VT = N->getValueType(0); 17789 SDLoc DL(N); 17790 17791 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17792 bool IsNeg = MulAmt.isNegative(); 17793 APInt MulAmtAbs = MulAmt.abs(); 17794 17795 if ((MulAmtAbs - 1).isPowerOf2()) { 17796 // (mul x, 2^N + 1) => (add (shl x, N), x) 17797 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17798 17799 if (!IsProfitable(IsNeg, true, VT)) 17800 return SDValue(); 17801 17802 SDValue Op0 = N->getOperand(0); 17803 SDValue Op1 = 17804 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17805 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17806 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17807 17808 if (!IsNeg) 17809 return Res; 17810 17811 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17812 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17813 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17814 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17815 17816 if (!IsProfitable(IsNeg, false, VT)) 17817 return SDValue(); 17818 17819 SDValue Op0 = N->getOperand(0); 17820 SDValue Op1 = 17821 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17822 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17823 17824 if (!IsNeg) 17825 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17826 else 17827 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17828 17829 } else { 17830 return SDValue(); 17831 } 17832 } 17833 17834 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17835 // in combiner since we need to check SD flags and other subtarget features. 17836 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17837 DAGCombinerInfo &DCI) const { 17838 SDValue N0 = N->getOperand(0); 17839 SDValue N1 = N->getOperand(1); 17840 SDValue N2 = N->getOperand(2); 17841 SDNodeFlags Flags = N->getFlags(); 17842 EVT VT = N->getValueType(0); 17843 SelectionDAG &DAG = DCI.DAG; 17844 const TargetOptions &Options = getTargetMachine().Options; 17845 unsigned Opc = N->getOpcode(); 17846 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17847 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17848 SDLoc Loc(N); 17849 17850 if (!isOperationLegal(ISD::FMA, VT)) 17851 return SDValue(); 17852 17853 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17854 // since (fnmsub a b c)=-0 while c-ab=+0. 17855 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17856 return SDValue(); 17857 17858 // (fma (fneg a) b c) => (fnmsub a b c) 17859 // (fnmsub (fneg a) b c) => (fma a b c) 17860 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17861 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17862 17863 // (fma a (fneg b) c) => (fnmsub a b c) 17864 // (fnmsub a (fneg b) c) => (fma a b c) 17865 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17866 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17867 17868 return SDValue(); 17869 } 17870 17871 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17872 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17873 if (!Subtarget.is64BitELFABI()) 17874 return false; 17875 17876 // If not a tail call then no need to proceed. 17877 if (!CI->isTailCall()) 17878 return false; 17879 17880 // If sibling calls have been disabled and tail-calls aren't guaranteed 17881 // there is no reason to duplicate. 17882 auto &TM = getTargetMachine(); 17883 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17884 return false; 17885 17886 // Can't tail call a function called indirectly, or if it has variadic args. 17887 const Function *Callee = CI->getCalledFunction(); 17888 if (!Callee || Callee->isVarArg()) 17889 return false; 17890 17891 // Make sure the callee and caller calling conventions are eligible for tco. 17892 const Function *Caller = CI->getParent()->getParent(); 17893 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17894 CI->getCallingConv())) 17895 return false; 17896 17897 // If the function is local then we have a good chance at tail-calling it 17898 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17899 } 17900 17901 bool PPCTargetLowering:: 17902 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17903 const Value *Mask = AndI.getOperand(1); 17904 // If the mask is suitable for andi. or andis. we should sink the and. 17905 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17906 // Can't handle constants wider than 64-bits. 17907 if (CI->getBitWidth() > 64) 17908 return false; 17909 int64_t ConstVal = CI->getZExtValue(); 17910 return isUInt<16>(ConstVal) || 17911 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17912 } 17913 17914 // For non-constant masks, we can always use the record-form and. 17915 return true; 17916 } 17917 17918 /// getAddrModeForFlags - Based on the set of address flags, select the most 17919 /// optimal instruction format to match by. 17920 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17921 // This is not a node we should be handling here. 17922 if (Flags == PPC::MOF_None) 17923 return PPC::AM_None; 17924 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17925 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17926 if ((Flags & FlagSet) == FlagSet) 17927 return PPC::AM_DForm; 17928 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17929 if ((Flags & FlagSet) == FlagSet) 17930 return PPC::AM_DSForm; 17931 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17932 if ((Flags & FlagSet) == FlagSet) 17933 return PPC::AM_DQForm; 17934 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17935 if ((Flags & FlagSet) == FlagSet) 17936 return PPC::AM_PrefixDForm; 17937 // If no other forms are selected, return an X-Form as it is the most 17938 // general addressing mode. 17939 return PPC::AM_XForm; 17940 } 17941 17942 /// Set alignment flags based on whether or not the Frame Index is aligned. 17943 /// Utilized when computing flags for address computation when selecting 17944 /// load and store instructions. 17945 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17946 SelectionDAG &DAG) { 17947 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17948 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17949 if (!FI) 17950 return; 17951 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17952 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17953 // If this is (add $FI, $S16Imm), the alignment flags are already set 17954 // based on the immediate. We just need to clear the alignment flags 17955 // if the FI alignment is weaker. 17956 if ((FrameIndexAlign % 4) != 0) 17957 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17958 if ((FrameIndexAlign % 16) != 0) 17959 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17960 // If the address is a plain FrameIndex, set alignment flags based on 17961 // FI alignment. 17962 if (!IsAdd) { 17963 if ((FrameIndexAlign % 4) == 0) 17964 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17965 if ((FrameIndexAlign % 16) == 0) 17966 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17967 } 17968 } 17969 17970 /// Given a node, compute flags that are used for address computation when 17971 /// selecting load and store instructions. The flags computed are stored in 17972 /// FlagSet. This function takes into account whether the node is a constant, 17973 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17974 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17975 SelectionDAG &DAG) { 17976 // Set the alignment flags for the node depending on if the node is 17977 // 4-byte or 16-byte aligned. 17978 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17979 if ((Imm & 0x3) == 0) 17980 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17981 if ((Imm & 0xf) == 0) 17982 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17983 }; 17984 17985 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17986 // All 32-bit constants can be computed as LIS + Disp. 17987 const APInt &ConstImm = CN->getAPIntValue(); 17988 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17989 FlagSet |= PPC::MOF_AddrIsSImm32; 17990 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17991 setAlignFlagsForFI(N, FlagSet, DAG); 17992 } 17993 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17994 FlagSet |= PPC::MOF_RPlusSImm34; 17995 else // Let constant materialization handle large constants. 17996 FlagSet |= PPC::MOF_NotAddNorCst; 17997 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17998 // This address can be represented as an addition of: 17999 // - Register + Imm16 (possibly a multiple of 4/16) 18000 // - Register + Imm34 18001 // - Register + PPCISD::Lo 18002 // - Register + Register 18003 // In any case, we won't have to match this as Base + Zero. 18004 SDValue RHS = N.getOperand(1); 18005 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 18006 const APInt &ConstImm = CN->getAPIntValue(); 18007 if (ConstImm.isSignedIntN(16)) { 18008 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 18009 SetAlignFlagsForImm(ConstImm.getZExtValue()); 18010 setAlignFlagsForFI(N, FlagSet, DAG); 18011 } 18012 if (ConstImm.isSignedIntN(34)) 18013 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 18014 else 18015 FlagSet |= PPC::MOF_RPlusR; // Register. 18016 } else if (RHS.getOpcode() == PPCISD::Lo && 18017 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 18018 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 18019 else 18020 FlagSet |= PPC::MOF_RPlusR; 18021 } else { // The address computation is not a constant or an addition. 18022 setAlignFlagsForFI(N, FlagSet, DAG); 18023 FlagSet |= PPC::MOF_NotAddNorCst; 18024 } 18025 } 18026 18027 static bool isPCRelNode(SDValue N) { 18028 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 18029 isValidPCRelNode<ConstantPoolSDNode>(N) || 18030 isValidPCRelNode<GlobalAddressSDNode>(N) || 18031 isValidPCRelNode<JumpTableSDNode>(N) || 18032 isValidPCRelNode<BlockAddressSDNode>(N)); 18033 } 18034 18035 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 18036 /// the address flags of the load/store instruction that is to be matched. 18037 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 18038 SelectionDAG &DAG) const { 18039 unsigned FlagSet = PPC::MOF_None; 18040 18041 // Compute subtarget flags. 18042 if (!Subtarget.hasP9Vector()) 18043 FlagSet |= PPC::MOF_SubtargetBeforeP9; 18044 else { 18045 FlagSet |= PPC::MOF_SubtargetP9; 18046 if (Subtarget.hasPrefixInstrs()) 18047 FlagSet |= PPC::MOF_SubtargetP10; 18048 } 18049 if (Subtarget.hasSPE()) 18050 FlagSet |= PPC::MOF_SubtargetSPE; 18051 18052 // Check if we have a PCRel node and return early. 18053 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 18054 return FlagSet; 18055 18056 // If the node is the paired load/store intrinsics, compute flags for 18057 // address computation and return early. 18058 unsigned ParentOp = Parent->getOpcode(); 18059 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 18060 (ParentOp == ISD::INTRINSIC_VOID))) { 18061 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 18062 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 18063 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 18064 ? Parent->getOperand(2) 18065 : Parent->getOperand(3); 18066 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 18067 FlagSet |= PPC::MOF_Vector; 18068 return FlagSet; 18069 } 18070 } 18071 18072 // Mark this as something we don't want to handle here if it is atomic 18073 // or pre-increment instruction. 18074 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 18075 if (LSB->isIndexed()) 18076 return PPC::MOF_None; 18077 18078 // Compute in-memory type flags. This is based on if there are scalars, 18079 // floats or vectors. 18080 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 18081 assert(MN && "Parent should be a MemSDNode!"); 18082 EVT MemVT = MN->getMemoryVT(); 18083 unsigned Size = MemVT.getSizeInBits(); 18084 if (MemVT.isScalarInteger()) { 18085 assert(Size <= 128 && 18086 "Not expecting scalar integers larger than 16 bytes!"); 18087 if (Size < 32) 18088 FlagSet |= PPC::MOF_SubWordInt; 18089 else if (Size == 32) 18090 FlagSet |= PPC::MOF_WordInt; 18091 else 18092 FlagSet |= PPC::MOF_DoubleWordInt; 18093 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 18094 if (Size == 128) 18095 FlagSet |= PPC::MOF_Vector; 18096 else if (Size == 256) { 18097 assert(Subtarget.pairedVectorMemops() && 18098 "256-bit vectors are only available when paired vector memops is " 18099 "enabled!"); 18100 FlagSet |= PPC::MOF_Vector; 18101 } else 18102 llvm_unreachable("Not expecting illegal vectors!"); 18103 } else { // Floating point type: can be scalar, f128 or vector types. 18104 if (Size == 32 || Size == 64) 18105 FlagSet |= PPC::MOF_ScalarFloat; 18106 else if (MemVT == MVT::f128 || MemVT.isVector()) 18107 FlagSet |= PPC::MOF_Vector; 18108 else 18109 llvm_unreachable("Not expecting illegal scalar floats!"); 18110 } 18111 18112 // Compute flags for address computation. 18113 computeFlagsForAddressComputation(N, FlagSet, DAG); 18114 18115 // Compute type extension flags. 18116 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 18117 switch (LN->getExtensionType()) { 18118 case ISD::SEXTLOAD: 18119 FlagSet |= PPC::MOF_SExt; 18120 break; 18121 case ISD::EXTLOAD: 18122 case ISD::ZEXTLOAD: 18123 FlagSet |= PPC::MOF_ZExt; 18124 break; 18125 case ISD::NON_EXTLOAD: 18126 FlagSet |= PPC::MOF_NoExt; 18127 break; 18128 } 18129 } else 18130 FlagSet |= PPC::MOF_NoExt; 18131 18132 // For integers, no extension is the same as zero extension. 18133 // We set the extension mode to zero extension so we don't have 18134 // to add separate entries in AddrModesMap for loads and stores. 18135 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 18136 FlagSet |= PPC::MOF_ZExt; 18137 FlagSet &= ~PPC::MOF_NoExt; 18138 } 18139 18140 // If we don't have prefixed instructions, 34-bit constants should be 18141 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 18142 bool IsNonP1034BitConst = 18143 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 18144 FlagSet) == PPC::MOF_RPlusSImm34; 18145 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 18146 IsNonP1034BitConst) 18147 FlagSet |= PPC::MOF_NotAddNorCst; 18148 18149 return FlagSet; 18150 } 18151 18152 /// SelectForceXFormMode - Given the specified address, force it to be 18153 /// represented as an indexed [r+r] operation (an XForm instruction). 18154 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 18155 SDValue &Base, 18156 SelectionDAG &DAG) const { 18157 18158 PPC::AddrMode Mode = PPC::AM_XForm; 18159 int16_t ForceXFormImm = 0; 18160 if (provablyDisjointOr(DAG, N) && 18161 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 18162 Disp = N.getOperand(0); 18163 Base = N.getOperand(1); 18164 return Mode; 18165 } 18166 18167 // If the address is the result of an add, we will utilize the fact that the 18168 // address calculation includes an implicit add. However, we can reduce 18169 // register pressure if we do not materialize a constant just for use as the 18170 // index register. We only get rid of the add if it is not an add of a 18171 // value and a 16-bit signed constant and both have a single use. 18172 if (N.getOpcode() == ISD::ADD && 18173 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 18174 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 18175 Disp = N.getOperand(0); 18176 Base = N.getOperand(1); 18177 return Mode; 18178 } 18179 18180 // Otherwise, use R0 as the base register. 18181 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18182 N.getValueType()); 18183 Base = N; 18184 18185 return Mode; 18186 } 18187 18188 bool PPCTargetLowering::splitValueIntoRegisterParts( 18189 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 18190 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 18191 EVT ValVT = Val.getValueType(); 18192 // If we are splitting a scalar integer into f64 parts (i.e. so they 18193 // can be placed into VFRC registers), we need to zero extend and 18194 // bitcast the values. This will ensure the value is placed into a 18195 // VSR using direct moves or stack operations as needed. 18196 if (PartVT == MVT::f64 && 18197 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 18198 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 18199 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 18200 Parts[0] = Val; 18201 return true; 18202 } 18203 return false; 18204 } 18205 18206 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 18207 SelectionDAG &DAG) const { 18208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 18209 TargetLowering::CallLoweringInfo CLI(DAG); 18210 EVT RetVT = Op.getValueType(); 18211 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 18212 SDValue Callee = 18213 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 18214 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 18215 TargetLowering::ArgListTy Args; 18216 TargetLowering::ArgListEntry Entry; 18217 for (const SDValue &N : Op->op_values()) { 18218 EVT ArgVT = N.getValueType(); 18219 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 18220 Entry.Node = N; 18221 Entry.Ty = ArgTy; 18222 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 18223 Entry.IsZExt = !Entry.IsSExt; 18224 Args.push_back(Entry); 18225 } 18226 18227 SDValue InChain = DAG.getEntryNode(); 18228 SDValue TCChain = InChain; 18229 const Function &F = DAG.getMachineFunction().getFunction(); 18230 bool isTailCall = 18231 TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && 18232 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 18233 if (isTailCall) 18234 InChain = TCChain; 18235 CLI.setDebugLoc(SDLoc(Op)) 18236 .setChain(InChain) 18237 .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) 18238 .setTailCall(isTailCall) 18239 .setSExtResult(SignExtend) 18240 .setZExtResult(!SignExtend) 18241 .setIsPostTypeLegalization(true); 18242 return TLI.LowerCallTo(CLI).first; 18243 } 18244 18245 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 18246 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 18247 SelectionDAG &DAG) const { 18248 if (Op.getValueType() == MVT::f32) 18249 return lowerToLibCall(LibCallFloatName, Op, DAG); 18250 18251 if (Op.getValueType() == MVT::f64) 18252 return lowerToLibCall(LibCallDoubleName, Op, DAG); 18253 18254 return SDValue(); 18255 } 18256 18257 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 18258 SDNodeFlags Flags = Op.getNode()->getFlags(); 18259 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 18260 Flags.hasNoNaNs() && Flags.hasNoInfs(); 18261 } 18262 18263 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 18264 return Op.getNode()->getFlags().hasApproximateFuncs(); 18265 } 18266 18267 bool PPCTargetLowering::isScalarMASSConversionEnabled() const { 18268 return getTargetMachine().Options.PPCGenScalarMASSEntries; 18269 } 18270 18271 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 18272 const char *LibCallFloatName, 18273 const char *LibCallDoubleNameFinite, 18274 const char *LibCallFloatNameFinite, 18275 SDValue Op, 18276 SelectionDAG &DAG) const { 18277 if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op)) 18278 return SDValue(); 18279 18280 if (!isLowringToMASSFiniteSafe(Op)) 18281 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 18282 DAG); 18283 18284 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 18285 LibCallDoubleNameFinite, Op, DAG); 18286 } 18287 18288 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 18289 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 18290 "__xl_powf_finite", Op, DAG); 18291 } 18292 18293 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 18294 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 18295 "__xl_sinf_finite", Op, DAG); 18296 } 18297 18298 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 18299 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 18300 "__xl_cosf_finite", Op, DAG); 18301 } 18302 18303 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 18304 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 18305 "__xl_logf_finite", Op, DAG); 18306 } 18307 18308 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 18309 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 18310 "__xl_log10f_finite", Op, DAG); 18311 } 18312 18313 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 18314 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 18315 "__xl_expf_finite", Op, DAG); 18316 } 18317 18318 // If we happen to match to an aligned D-Form, check if the Frame Index is 18319 // adequately aligned. If it is not, reset the mode to match to X-Form. 18320 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 18321 PPC::AddrMode &Mode) { 18322 if (!isa<FrameIndexSDNode>(N)) 18323 return; 18324 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 18325 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 18326 Mode = PPC::AM_XForm; 18327 } 18328 18329 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 18330 /// compute the address flags of the node, get the optimal address mode based 18331 /// on the flags, and set the Base and Disp based on the address mode. 18332 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 18333 SDValue N, SDValue &Disp, 18334 SDValue &Base, 18335 SelectionDAG &DAG, 18336 MaybeAlign Align) const { 18337 SDLoc DL(Parent); 18338 18339 // Compute the address flags. 18340 unsigned Flags = computeMOFlags(Parent, N, DAG); 18341 18342 // Get the optimal address mode based on the Flags. 18343 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 18344 18345 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 18346 // Select an X-Form load if it is not. 18347 setXFormForUnalignedFI(N, Flags, Mode); 18348 18349 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 18350 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 18351 assert(Subtarget.isUsingPCRelativeCalls() && 18352 "Must be using PC-Relative calls when a valid PC-Relative node is " 18353 "present!"); 18354 Mode = PPC::AM_PCRel; 18355 } 18356 18357 // Set Base and Disp accordingly depending on the address mode. 18358 switch (Mode) { 18359 case PPC::AM_DForm: 18360 case PPC::AM_DSForm: 18361 case PPC::AM_DQForm: { 18362 // This is a register plus a 16-bit immediate. The base will be the 18363 // register and the displacement will be the immediate unless it 18364 // isn't sufficiently aligned. 18365 if (Flags & PPC::MOF_RPlusSImm16) { 18366 SDValue Op0 = N.getOperand(0); 18367 SDValue Op1 = N.getOperand(1); 18368 int16_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue(); 18369 if (!Align || isAligned(*Align, Imm)) { 18370 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 18371 Base = Op0; 18372 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 18373 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18374 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 18375 } 18376 break; 18377 } 18378 } 18379 // This is a register plus the @lo relocation. The base is the register 18380 // and the displacement is the global address. 18381 else if (Flags & PPC::MOF_RPlusLo) { 18382 Disp = N.getOperand(1).getOperand(0); // The global address. 18383 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 18384 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 18385 Disp.getOpcode() == ISD::TargetConstantPool || 18386 Disp.getOpcode() == ISD::TargetJumpTable); 18387 Base = N.getOperand(0); 18388 break; 18389 } 18390 // This is a constant address at most 32 bits. The base will be 18391 // zero or load-immediate-shifted and the displacement will be 18392 // the low 16 bits of the address. 18393 else if (Flags & PPC::MOF_AddrIsSImm32) { 18394 auto *CN = cast<ConstantSDNode>(N); 18395 EVT CNType = CN->getValueType(0); 18396 uint64_t CNImm = CN->getZExtValue(); 18397 // If this address fits entirely in a 16-bit sext immediate field, codegen 18398 // this as "d, 0". 18399 int16_t Imm; 18400 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 18401 Disp = DAG.getTargetConstant(Imm, DL, CNType); 18402 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18403 CNType); 18404 break; 18405 } 18406 // Handle 32-bit sext immediate with LIS + Addr mode. 18407 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 18408 (!Align || isAligned(*Align, CNImm))) { 18409 int32_t Addr = (int32_t)CNImm; 18410 // Otherwise, break this down into LIS + Disp. 18411 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 18412 Base = 18413 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 18414 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 18415 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 18416 break; 18417 } 18418 } 18419 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 18420 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 18421 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 18422 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18423 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 18424 } else 18425 Base = N; 18426 break; 18427 } 18428 case PPC::AM_PrefixDForm: { 18429 int64_t Imm34 = 0; 18430 unsigned Opcode = N.getOpcode(); 18431 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 18432 (isIntS34Immediate(N.getOperand(1), Imm34))) { 18433 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 18434 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18435 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 18436 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18437 else 18438 Base = N.getOperand(0); 18439 } else if (isIntS34Immediate(N, Imm34)) { 18440 // The address is a 34-bit signed immediate. 18441 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18442 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 18443 } 18444 break; 18445 } 18446 case PPC::AM_PCRel: { 18447 // When selecting PC-Relative instructions, "Base" is not utilized as 18448 // we select the address as [PC+imm]. 18449 Disp = N; 18450 break; 18451 } 18452 case PPC::AM_None: 18453 break; 18454 default: { // By default, X-Form is always available to be selected. 18455 // When a frame index is not aligned, we also match by XForm. 18456 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 18457 Base = FI ? N : N.getOperand(1); 18458 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18459 N.getValueType()) 18460 : N.getOperand(0); 18461 break; 18462 } 18463 } 18464 return Mode; 18465 } 18466 18467 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18468 bool Return, 18469 bool IsVarArg) const { 18470 switch (CC) { 18471 case CallingConv::Cold: 18472 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF); 18473 default: 18474 return CC_PPC64_ELF; 18475 } 18476 } 18477 18478 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const { 18479 return Subtarget.isPPC64() && Subtarget.hasQuadwordAtomics(); 18480 } 18481 18482 TargetLowering::AtomicExpansionKind 18483 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18484 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18485 if (shouldInlineQuadwordAtomics() && Size == 128) 18486 return AtomicExpansionKind::MaskedIntrinsic; 18487 18488 switch (AI->getOperation()) { 18489 case AtomicRMWInst::UIncWrap: 18490 case AtomicRMWInst::UDecWrap: 18491 return AtomicExpansionKind::CmpXChg; 18492 default: 18493 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18494 } 18495 18496 llvm_unreachable("unreachable atomicrmw operation"); 18497 } 18498 18499 TargetLowering::AtomicExpansionKind 18500 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18501 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18502 if (shouldInlineQuadwordAtomics() && Size == 128) 18503 return AtomicExpansionKind::MaskedIntrinsic; 18504 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18505 } 18506 18507 static Intrinsic::ID 18508 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18509 switch (BinOp) { 18510 default: 18511 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18512 case AtomicRMWInst::Xchg: 18513 return Intrinsic::ppc_atomicrmw_xchg_i128; 18514 case AtomicRMWInst::Add: 18515 return Intrinsic::ppc_atomicrmw_add_i128; 18516 case AtomicRMWInst::Sub: 18517 return Intrinsic::ppc_atomicrmw_sub_i128; 18518 case AtomicRMWInst::And: 18519 return Intrinsic::ppc_atomicrmw_and_i128; 18520 case AtomicRMWInst::Or: 18521 return Intrinsic::ppc_atomicrmw_or_i128; 18522 case AtomicRMWInst::Xor: 18523 return Intrinsic::ppc_atomicrmw_xor_i128; 18524 case AtomicRMWInst::Nand: 18525 return Intrinsic::ppc_atomicrmw_nand_i128; 18526 } 18527 } 18528 18529 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18530 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18531 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18532 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18533 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18534 Type *ValTy = Incr->getType(); 18535 assert(ValTy->getPrimitiveSizeInBits() == 128); 18536 Function *RMW = Intrinsic::getDeclaration( 18537 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18538 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18539 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18540 Value *IncrHi = 18541 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18542 Value *Addr = 18543 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18544 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 18545 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18546 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18547 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18548 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18549 return Builder.CreateOr( 18550 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18551 } 18552 18553 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18554 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18555 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18556 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18557 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18558 Type *ValTy = CmpVal->getType(); 18559 assert(ValTy->getPrimitiveSizeInBits() == 128); 18560 Function *IntCmpXchg = 18561 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18562 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18563 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18564 Value *CmpHi = 18565 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18566 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18567 Value *NewHi = 18568 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18569 Value *Addr = 18570 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18571 emitLeadingFence(Builder, CI, Ord); 18572 Value *LoHi = 18573 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 18574 emitTrailingFence(Builder, CI, Ord); 18575 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18576 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18577 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18578 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18579 return Builder.CreateOr( 18580 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18581 } 18582