xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp (revision 36d6566e5985030fd2f1100bd9c1387bbe0bd290)
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSymbolXCOFF.h"
78 #include "llvm/Support/AtomicOrdering.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <list>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 
103 #define DEBUG_TYPE "ppc-lowering"
104 
105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
113 
114 static cl::opt<bool> DisableSCO("disable-ppc-sco",
115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
116 
117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
119 
120 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
121 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
122 
123 STATISTIC(NumTailCalls, "Number of tail calls");
124 STATISTIC(NumSiblingCalls, "Number of sibling calls");
125 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
126 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
127 
128 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
129 
130 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
131 
132 // FIXME: Remove this once the bug has been fixed!
133 extern cl::opt<bool> ANDIGlueBug;
134 
135 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
136                                      const PPCSubtarget &STI)
137     : TargetLowering(TM), Subtarget(STI) {
138   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
139   // arguments are at least 4/8 bytes aligned.
140   bool isPPC64 = Subtarget.isPPC64();
141   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
142 
143   // Set up the register classes.
144   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
145   if (!useSoftFloat()) {
146     if (hasSPE()) {
147       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
148       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
149     } else {
150       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
151       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
152     }
153   }
154 
155   // Match BITREVERSE to customized fast code sequence in the td file.
156   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
157   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
158 
159   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
160   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
161 
162   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
163   for (MVT VT : MVT::integer_valuetypes()) {
164     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
166   }
167 
168   if (Subtarget.isISA3_0()) {
169     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
170     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
171     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
172     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
173   } else {
174     // No extending loads from f16 or HW conversions back and forth.
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
176     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
177     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
178     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
179     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
180     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
181     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
182     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
183   }
184 
185   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
186 
187   // PowerPC has pre-inc load and store's.
188   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
189   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
190   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
191   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
192   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
193   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
194   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
195   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
196   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
197   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
198   if (!Subtarget.hasSPE()) {
199     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
200     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
201     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
202     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
203   }
204 
205   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
206   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
207   for (MVT VT : ScalarIntVTs) {
208     setOperationAction(ISD::ADDC, VT, Legal);
209     setOperationAction(ISD::ADDE, VT, Legal);
210     setOperationAction(ISD::SUBC, VT, Legal);
211     setOperationAction(ISD::SUBE, VT, Legal);
212   }
213 
214   if (Subtarget.useCRBits()) {
215     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
216 
217     if (isPPC64 || Subtarget.hasFPCVT()) {
218       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
219       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
220                          isPPC64 ? MVT::i64 : MVT::i32);
221       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
222       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
223                         isPPC64 ? MVT::i64 : MVT::i32);
224     } else {
225       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
226       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
227     }
228 
229     // PowerPC does not support direct load/store of condition registers.
230     setOperationAction(ISD::LOAD, MVT::i1, Custom);
231     setOperationAction(ISD::STORE, MVT::i1, Custom);
232 
233     // FIXME: Remove this once the ANDI glue bug is fixed:
234     if (ANDIGlueBug)
235       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
236 
237     for (MVT VT : MVT::integer_valuetypes()) {
238       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
239       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
240       setTruncStoreAction(VT, MVT::i1, Expand);
241     }
242 
243     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
244   }
245 
246   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
247   // PPC (the libcall is not available).
248   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
249   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
250 
251   // We do not currently implement these libm ops for PowerPC.
252   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
253   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
254   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
255   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
256   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
257   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
258 
259   // PowerPC has no SREM/UREM instructions unless we are on P9
260   // On P9 we may use a hardware instruction to compute the remainder.
261   // When the result of both the remainder and the division is required it is
262   // more efficient to compute the remainder from the result of the division
263   // rather than use the remainder instruction. The instructions are legalized
264   // directly because the DivRemPairsPass performs the transformation at the IR
265   // level.
266   if (Subtarget.isISA3_0()) {
267     setOperationAction(ISD::SREM, MVT::i32, Legal);
268     setOperationAction(ISD::UREM, MVT::i32, Legal);
269     setOperationAction(ISD::SREM, MVT::i64, Legal);
270     setOperationAction(ISD::UREM, MVT::i64, Legal);
271   } else {
272     setOperationAction(ISD::SREM, MVT::i32, Expand);
273     setOperationAction(ISD::UREM, MVT::i32, Expand);
274     setOperationAction(ISD::SREM, MVT::i64, Expand);
275     setOperationAction(ISD::UREM, MVT::i64, Expand);
276   }
277 
278   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
279   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
280   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
281   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
282   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
283   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
284   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
285   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
286   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
287 
288   // Handle constrained floating-point operations of scalar.
289   // TODO: Handle SPE specific operation.
290   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
291   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
292   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
293   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
294   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
295   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
296 
297   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
298   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
299   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
300   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
301   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
302   if (Subtarget.hasVSX())
303     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
304 
305   if (Subtarget.hasFSQRT()) {
306     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
307     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
308   }
309 
310   if (Subtarget.hasFPRND()) {
311     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
312     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
313     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
314     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
315 
316     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
317     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
318     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
319     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
320   }
321 
322   // We don't support sin/cos/sqrt/fmod/pow
323   setOperationAction(ISD::FSIN , MVT::f64, Expand);
324   setOperationAction(ISD::FCOS , MVT::f64, Expand);
325   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
326   setOperationAction(ISD::FREM , MVT::f64, Expand);
327   setOperationAction(ISD::FPOW , MVT::f64, Expand);
328   setOperationAction(ISD::FSIN , MVT::f32, Expand);
329   setOperationAction(ISD::FCOS , MVT::f32, Expand);
330   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
331   setOperationAction(ISD::FREM , MVT::f32, Expand);
332   setOperationAction(ISD::FPOW , MVT::f32, Expand);
333   if (Subtarget.hasSPE()) {
334     setOperationAction(ISD::FMA  , MVT::f64, Expand);
335     setOperationAction(ISD::FMA  , MVT::f32, Expand);
336   } else {
337     setOperationAction(ISD::FMA  , MVT::f64, Legal);
338     setOperationAction(ISD::FMA  , MVT::f32, Legal);
339   }
340 
341   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
342 
343   // If we're enabling GP optimizations, use hardware square root
344   if (!Subtarget.hasFSQRT() &&
345       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
346         Subtarget.hasFRE()))
347     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
348 
349   if (!Subtarget.hasFSQRT() &&
350       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
351         Subtarget.hasFRES()))
352     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
353 
354   if (Subtarget.hasFCPSGN()) {
355     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
356     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
357   } else {
358     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
359     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
360   }
361 
362   if (Subtarget.hasFPRND()) {
363     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
364     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
365     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
366     setOperationAction(ISD::FROUND, MVT::f64, Legal);
367 
368     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
369     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
370     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
371     setOperationAction(ISD::FROUND, MVT::f32, Legal);
372   }
373 
374   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
375   // to speed up scalar BSWAP64.
376   // CTPOP or CTTZ were introduced in P8/P9 respectively
377   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
378   if (Subtarget.hasP9Vector())
379     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
380   else
381     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
382   if (Subtarget.isISA3_0()) {
383     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
384     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
385   } else {
386     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
387     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
388   }
389 
390   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
391     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
392     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
393   } else {
394     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
395     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
396   }
397 
398   // PowerPC does not have ROTR
399   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
400   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
401 
402   if (!Subtarget.useCRBits()) {
403     // PowerPC does not have Select
404     setOperationAction(ISD::SELECT, MVT::i32, Expand);
405     setOperationAction(ISD::SELECT, MVT::i64, Expand);
406     setOperationAction(ISD::SELECT, MVT::f32, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Expand);
408   }
409 
410   // PowerPC wants to turn select_cc of FP into fsel when possible.
411   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
412   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
413 
414   // PowerPC wants to optimize integer setcc a bit
415   if (!Subtarget.useCRBits())
416     setOperationAction(ISD::SETCC, MVT::i32, Custom);
417 
418   // PowerPC does not have BRCOND which requires SetCC
419   if (!Subtarget.useCRBits())
420     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
421 
422   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
423 
424   if (Subtarget.hasSPE()) {
425     // SPE has built-in conversions
426     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
427     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
428     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
429     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
430     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
431     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
432   } else {
433     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
434     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
435 
436     // PowerPC does not have [U|S]INT_TO_FP
437     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
438     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
439   }
440 
441   if (Subtarget.hasDirectMove() && isPPC64) {
442     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
443     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
444     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
445     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
446     if (TM.Options.UnsafeFPMath) {
447       setOperationAction(ISD::LRINT, MVT::f64, Legal);
448       setOperationAction(ISD::LRINT, MVT::f32, Legal);
449       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
450       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
451       setOperationAction(ISD::LROUND, MVT::f64, Legal);
452       setOperationAction(ISD::LROUND, MVT::f32, Legal);
453       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
454       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
455     }
456   } else {
457     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
458     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
459     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
460     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
461   }
462 
463   // We cannot sextinreg(i1).  Expand to shifts.
464   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
465 
466   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
467   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
468   // support continuation, user-level threading, and etc.. As a result, no
469   // other SjLj exception interfaces are implemented and please don't build
470   // your own exception handling based on them.
471   // LLVM/Clang supports zero-cost DWARF exception handling.
472   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
473   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
474 
475   // We want to legalize GlobalAddress and ConstantPool nodes into the
476   // appropriate instructions to materialize the address.
477   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
478   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
479   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
480   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
481   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
482   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
483   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
484   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
485   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
486   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
487 
488   // TRAP is legal.
489   setOperationAction(ISD::TRAP, MVT::Other, Legal);
490 
491   // TRAMPOLINE is custom lowered.
492   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
493   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
494 
495   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
496   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
497 
498   if (Subtarget.is64BitELFABI()) {
499     // VAARG always uses double-word chunks, so promote anything smaller.
500     setOperationAction(ISD::VAARG, MVT::i1, Promote);
501     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
502     setOperationAction(ISD::VAARG, MVT::i8, Promote);
503     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
504     setOperationAction(ISD::VAARG, MVT::i16, Promote);
505     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
506     setOperationAction(ISD::VAARG, MVT::i32, Promote);
507     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
508     setOperationAction(ISD::VAARG, MVT::Other, Expand);
509   } else if (Subtarget.is32BitELFABI()) {
510     // VAARG is custom lowered with the 32-bit SVR4 ABI.
511     setOperationAction(ISD::VAARG, MVT::Other, Custom);
512     setOperationAction(ISD::VAARG, MVT::i64, Custom);
513   } else
514     setOperationAction(ISD::VAARG, MVT::Other, Expand);
515 
516   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
517   if (Subtarget.is32BitELFABI())
518     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
519   else
520     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
521 
522   // Use the default implementation.
523   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
524   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
525   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
526   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
527   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
528   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
529   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
530   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
531   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
532 
533   // We want to custom lower some of our intrinsics.
534   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
535 
536   // To handle counter-based loop conditions.
537   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
538 
539   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
540   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
541   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
542   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
543 
544   // Comparisons that require checking two conditions.
545   if (Subtarget.hasSPE()) {
546     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
547     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
548     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
549     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
550   }
551   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
552   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
553   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
554   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
555   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
556   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
557   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
558   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
559   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
560   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
561   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
562   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
563 
564   if (Subtarget.has64BitSupport()) {
565     // They also have instructions for converting between i64 and fp.
566     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
567     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
568     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
569     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
570     // This is just the low 32 bits of a (signed) fp->i64 conversion.
571     // We cannot do this with Promote because i64 is not a legal type.
572     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
573 
574     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
575       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
576   } else {
577     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
578     if (Subtarget.hasSPE()) {
579       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
580       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
581     } else
582       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
583   }
584 
585   // With the instructions enabled under FPCVT, we can do everything.
586   if (Subtarget.hasFPCVT()) {
587     if (Subtarget.has64BitSupport()) {
588       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
589       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
590       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
591       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
592     }
593 
594     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
595     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
596     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
597     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
598   }
599 
600   if (Subtarget.use64BitRegs()) {
601     // 64-bit PowerPC implementations can support i64 types directly
602     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
603     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
604     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
605     // 64-bit PowerPC wants to expand i128 shifts itself.
606     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
607     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
608     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
609   } else {
610     // 32-bit PowerPC wants to expand i64 shifts itself.
611     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
612     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
613     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
614   }
615 
616   if (Subtarget.hasVSX()) {
617     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
618     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
619     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
620     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
621   }
622 
623   if (Subtarget.hasAltivec()) {
624     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
625       setOperationAction(ISD::SADDSAT, VT, Legal);
626       setOperationAction(ISD::SSUBSAT, VT, Legal);
627       setOperationAction(ISD::UADDSAT, VT, Legal);
628       setOperationAction(ISD::USUBSAT, VT, Legal);
629     }
630     // First set operation action for all vector types to expand. Then we
631     // will selectively turn on ones that can be effectively codegen'd.
632     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
633       // add/sub are legal for all supported vector VT's.
634       setOperationAction(ISD::ADD, VT, Legal);
635       setOperationAction(ISD::SUB, VT, Legal);
636 
637       // For v2i64, these are only valid with P8Vector. This is corrected after
638       // the loop.
639       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
640         setOperationAction(ISD::SMAX, VT, Legal);
641         setOperationAction(ISD::SMIN, VT, Legal);
642         setOperationAction(ISD::UMAX, VT, Legal);
643         setOperationAction(ISD::UMIN, VT, Legal);
644       }
645       else {
646         setOperationAction(ISD::SMAX, VT, Expand);
647         setOperationAction(ISD::SMIN, VT, Expand);
648         setOperationAction(ISD::UMAX, VT, Expand);
649         setOperationAction(ISD::UMIN, VT, Expand);
650       }
651 
652       if (Subtarget.hasVSX()) {
653         setOperationAction(ISD::FMAXNUM, VT, Legal);
654         setOperationAction(ISD::FMINNUM, VT, Legal);
655       }
656 
657       // Vector instructions introduced in P8
658       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
659         setOperationAction(ISD::CTPOP, VT, Legal);
660         setOperationAction(ISD::CTLZ, VT, Legal);
661       }
662       else {
663         setOperationAction(ISD::CTPOP, VT, Expand);
664         setOperationAction(ISD::CTLZ, VT, Expand);
665       }
666 
667       // Vector instructions introduced in P9
668       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
669         setOperationAction(ISD::CTTZ, VT, Legal);
670       else
671         setOperationAction(ISD::CTTZ, VT, Expand);
672 
673       // We promote all shuffles to v16i8.
674       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
675       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
676 
677       // We promote all non-typed operations to v4i32.
678       setOperationAction(ISD::AND   , VT, Promote);
679       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
680       setOperationAction(ISD::OR    , VT, Promote);
681       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
682       setOperationAction(ISD::XOR   , VT, Promote);
683       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
684       setOperationAction(ISD::LOAD  , VT, Promote);
685       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
686       setOperationAction(ISD::SELECT, VT, Promote);
687       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
688       setOperationAction(ISD::VSELECT, VT, Legal);
689       setOperationAction(ISD::SELECT_CC, VT, Promote);
690       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
691       setOperationAction(ISD::STORE, VT, Promote);
692       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
693 
694       // No other operations are legal.
695       setOperationAction(ISD::MUL , VT, Expand);
696       setOperationAction(ISD::SDIV, VT, Expand);
697       setOperationAction(ISD::SREM, VT, Expand);
698       setOperationAction(ISD::UDIV, VT, Expand);
699       setOperationAction(ISD::UREM, VT, Expand);
700       setOperationAction(ISD::FDIV, VT, Expand);
701       setOperationAction(ISD::FREM, VT, Expand);
702       setOperationAction(ISD::FNEG, VT, Expand);
703       setOperationAction(ISD::FSQRT, VT, Expand);
704       setOperationAction(ISD::FLOG, VT, Expand);
705       setOperationAction(ISD::FLOG10, VT, Expand);
706       setOperationAction(ISD::FLOG2, VT, Expand);
707       setOperationAction(ISD::FEXP, VT, Expand);
708       setOperationAction(ISD::FEXP2, VT, Expand);
709       setOperationAction(ISD::FSIN, VT, Expand);
710       setOperationAction(ISD::FCOS, VT, Expand);
711       setOperationAction(ISD::FABS, VT, Expand);
712       setOperationAction(ISD::FFLOOR, VT, Expand);
713       setOperationAction(ISD::FCEIL,  VT, Expand);
714       setOperationAction(ISD::FTRUNC, VT, Expand);
715       setOperationAction(ISD::FRINT,  VT, Expand);
716       setOperationAction(ISD::FNEARBYINT, VT, Expand);
717       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
718       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
719       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
720       setOperationAction(ISD::MULHU, VT, Expand);
721       setOperationAction(ISD::MULHS, VT, Expand);
722       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
723       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
724       setOperationAction(ISD::UDIVREM, VT, Expand);
725       setOperationAction(ISD::SDIVREM, VT, Expand);
726       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
727       setOperationAction(ISD::FPOW, VT, Expand);
728       setOperationAction(ISD::BSWAP, VT, Expand);
729       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
730       setOperationAction(ISD::ROTL, VT, Expand);
731       setOperationAction(ISD::ROTR, VT, Expand);
732 
733       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
734         setTruncStoreAction(VT, InnerVT, Expand);
735         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
736         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
737         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
738       }
739     }
740     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
741     if (!Subtarget.hasP8Vector()) {
742       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
743       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
744       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
745       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
746     }
747 
748     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
749       setOperationAction(ISD::ABS, VT, Custom);
750 
751     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
752     // with merges, splats, etc.
753     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
754 
755     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
756     // are cheap, so handle them before they get expanded to scalar.
757     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
758     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
759     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
760     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
761     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
762 
763     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
764     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
765     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
766     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
767     setOperationAction(ISD::SELECT, MVT::v4i32,
768                        Subtarget.useCRBits() ? Legal : Expand);
769     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
770     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
771     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
772     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
773     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
774     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
775     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
776     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
777     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
778 
779     // Without hasP8Altivec set, v2i64 SMAX isn't available.
780     // But ABS custom lowering requires SMAX support.
781     if (!Subtarget.hasP8Altivec())
782       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
783 
784     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
785     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
786     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
787     if (Subtarget.hasAltivec())
788       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
789         setOperationAction(ISD::ROTL, VT, Legal);
790     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
791     if (Subtarget.hasP8Altivec())
792       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
793 
794     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
795     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
796     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
797     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
798 
799     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
800     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
801 
802     if (Subtarget.hasVSX()) {
803       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
804       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
805     }
806 
807     if (Subtarget.hasP8Altivec())
808       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
809     else
810       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
811 
812     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
813     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
814 
815     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
816     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
817 
818     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
819     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
820     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
821     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
822 
823     // Altivec does not contain unordered floating-point compare instructions
824     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
825     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
826     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
827     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
828 
829     if (Subtarget.hasVSX()) {
830       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
831       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
832       if (Subtarget.hasP8Vector()) {
833         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
834         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
835       }
836       if (Subtarget.hasDirectMove() && isPPC64) {
837         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
838         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
839         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
840         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
841         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
842         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
843         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
844         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
845       }
846       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
847 
848       // The nearbyint variants are not allowed to raise the inexact exception
849       // so we can only code-gen them with unsafe math.
850       if (TM.Options.UnsafeFPMath) {
851         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
852         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
853       }
854 
855       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
856       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
857       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
858       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
859       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
860       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
861       setOperationAction(ISD::FROUND, MVT::f64, Legal);
862       setOperationAction(ISD::FRINT, MVT::f64, Legal);
863 
864       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
865       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
866       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
867       setOperationAction(ISD::FROUND, MVT::f32, Legal);
868       setOperationAction(ISD::FRINT, MVT::f32, Legal);
869 
870       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
871       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
872 
873       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
874       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
875 
876       // Share the Altivec comparison restrictions.
877       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
878       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
879       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
880       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
881 
882       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
883       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
884 
885       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
886 
887       if (Subtarget.hasP8Vector())
888         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
889 
890       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
891 
892       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
893       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
894       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
895 
896       if (Subtarget.hasP8Altivec()) {
897         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
898         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
899         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
900 
901         // 128 bit shifts can be accomplished via 3 instructions for SHL and
902         // SRL, but not for SRA because of the instructions available:
903         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
904         // doing
905         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
906         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
907         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
908 
909         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
910       }
911       else {
912         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
913         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
914         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
915 
916         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
917 
918         // VSX v2i64 only supports non-arithmetic operations.
919         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
920         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
921       }
922 
923       setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
924 
925       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
926       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
927       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
928       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
929 
930       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
931 
932       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
933       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
934       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
935       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
936 
937       // Custom handling for partial vectors of integers converted to
938       // floating point. We already have optimal handling for v2i32 through
939       // the DAG combine, so those aren't necessary.
940       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
941       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
942       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
943       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
944       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
945       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
946       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
947       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
948 
949       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
950       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
951       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
952       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
953       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
954       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
955 
956       if (Subtarget.hasDirectMove())
957         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
958       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
959 
960       // Handle constrained floating-point operations of vector.
961       // The predictor is `hasVSX` because altivec instruction has
962       // no exception but VSX vector instruction has.
963       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
964       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
965       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
966       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
967       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
968       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
969       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
970       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
971       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
972       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
973       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
974       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
975       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
976 
977       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
978       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
979       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
980       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
981       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
982       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
983       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
984       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
985       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
986       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
987       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
988       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
989       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
990 
991       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
992     }
993 
994     if (Subtarget.hasP8Altivec()) {
995       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
996       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
997     }
998 
999     if (Subtarget.hasP9Vector()) {
1000       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1001       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1002 
1003       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1004       // SRL, but not for SRA because of the instructions available:
1005       // VS{RL} and VS{RL}O.
1006       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1007       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1008       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1009 
1010       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1011       setOperationAction(ISD::FADD, MVT::f128, Legal);
1012       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1013       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1014       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1015       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1016       // No extending loads to f128 on PPC.
1017       for (MVT FPT : MVT::fp_valuetypes())
1018         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1019       setOperationAction(ISD::FMA, MVT::f128, Legal);
1020       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1021       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1022       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1023       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1024       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1025       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1026 
1027       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1028       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1029       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1030       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1031       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1032       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1033 
1034       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1035       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1036       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1037       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1038       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1039       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1040       // No implementation for these ops for PowerPC.
1041       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1042       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1043       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1044       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1045       setOperationAction(ISD::FREM, MVT::f128, Expand);
1046 
1047       // Handle constrained floating-point operations of fp128
1048       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1049       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1050       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1051       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1052       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1053       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1054       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1055       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1056       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1057       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1058       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1059       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1060       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1061       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1062       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1063       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1064       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1065       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1066       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1067       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1068     }
1069 
1070     if (Subtarget.hasP9Altivec()) {
1071       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1072       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1073 
1074       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1075       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1076       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1077       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1078       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1079       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1080       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1081     }
1082   }
1083 
1084   if (Subtarget.hasQPX()) {
1085     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1086     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1087     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1088     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
1089 
1090     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
1091     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
1092 
1093     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
1094     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
1095 
1096     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
1097     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
1098 
1099     if (!Subtarget.useCRBits())
1100       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
1101     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1102 
1103     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
1104     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1105     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1106     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1107     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1108     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1109     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1110 
1111     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1112     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1113 
1114     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1115     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1116 
1117     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1118     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1119     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1120     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1121     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1122     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1123     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1124     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1125     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1126     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1127 
1128     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1129     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1130 
1131     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1132     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1133 
1134     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1135 
1136     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1137     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1138     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1139     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1140 
1141     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1142     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1143 
1144     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1145     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1146 
1147     if (!Subtarget.useCRBits())
1148       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1149     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1150 
1151     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1152     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1153     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1154     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1155     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1156     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1157     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1158 
1159     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1160     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1161 
1162     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1163     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1164     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1165     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1166     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1167     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1168     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1169     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1170     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1171     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1172 
1173     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1174     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1175 
1176     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1177     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1178 
1179     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1180 
1181     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1182     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1183     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1184 
1185     if (!Subtarget.useCRBits())
1186       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1187     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1188 
1189     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1190     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1191 
1192     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1193     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1194     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1195     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1196     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1197     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1198     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1199 
1200     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1201     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1202 
1203     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1204 
1205     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1206     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1207     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1208     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1209 
1210     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1211     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1212     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1213     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1214 
1215     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1216     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1217 
1218     // These need to set FE_INEXACT, and so cannot be vectorized here.
1219     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1220     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1221 
1222     if (TM.Options.UnsafeFPMath) {
1223       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1224       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1225 
1226       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1227       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1228     } else {
1229       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1230       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1231 
1232       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1233       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1234     }
1235 
1236     // TODO: Handle constrained floating-point operations of v4f64
1237   }
1238 
1239   if (Subtarget.has64BitSupport())
1240     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1241 
1242   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1243 
1244   if (!isPPC64) {
1245     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1246     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1247   }
1248 
1249   setBooleanContents(ZeroOrOneBooleanContent);
1250 
1251   if (Subtarget.hasAltivec()) {
1252     // Altivec instructions set fields to all zeros or all ones.
1253     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1254   }
1255 
1256   if (!isPPC64) {
1257     // These libcalls are not available in 32-bit.
1258     setLibcallName(RTLIB::SHL_I128, nullptr);
1259     setLibcallName(RTLIB::SRL_I128, nullptr);
1260     setLibcallName(RTLIB::SRA_I128, nullptr);
1261   }
1262 
1263   if (!isPPC64)
1264     setMaxAtomicSizeInBitsSupported(32);
1265 
1266   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1267 
1268   // We have target-specific dag combine patterns for the following nodes:
1269   setTargetDAGCombine(ISD::ADD);
1270   setTargetDAGCombine(ISD::SHL);
1271   setTargetDAGCombine(ISD::SRA);
1272   setTargetDAGCombine(ISD::SRL);
1273   setTargetDAGCombine(ISD::MUL);
1274   setTargetDAGCombine(ISD::FMA);
1275   setTargetDAGCombine(ISD::SINT_TO_FP);
1276   setTargetDAGCombine(ISD::BUILD_VECTOR);
1277   if (Subtarget.hasFPCVT())
1278     setTargetDAGCombine(ISD::UINT_TO_FP);
1279   setTargetDAGCombine(ISD::LOAD);
1280   setTargetDAGCombine(ISD::STORE);
1281   setTargetDAGCombine(ISD::BR_CC);
1282   if (Subtarget.useCRBits())
1283     setTargetDAGCombine(ISD::BRCOND);
1284   setTargetDAGCombine(ISD::BSWAP);
1285   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1286   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1287   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1288 
1289   setTargetDAGCombine(ISD::SIGN_EXTEND);
1290   setTargetDAGCombine(ISD::ZERO_EXTEND);
1291   setTargetDAGCombine(ISD::ANY_EXTEND);
1292 
1293   setTargetDAGCombine(ISD::TRUNCATE);
1294   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1295 
1296 
1297   if (Subtarget.useCRBits()) {
1298     setTargetDAGCombine(ISD::TRUNCATE);
1299     setTargetDAGCombine(ISD::SETCC);
1300     setTargetDAGCombine(ISD::SELECT_CC);
1301   }
1302 
1303   if (Subtarget.hasP9Altivec()) {
1304     setTargetDAGCombine(ISD::ABS);
1305     setTargetDAGCombine(ISD::VSELECT);
1306   }
1307 
1308   setLibcallName(RTLIB::LOG_F128, "logf128");
1309   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1310   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1311   setLibcallName(RTLIB::EXP_F128, "expf128");
1312   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1313   setLibcallName(RTLIB::SIN_F128, "sinf128");
1314   setLibcallName(RTLIB::COS_F128, "cosf128");
1315   setLibcallName(RTLIB::POW_F128, "powf128");
1316   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1317   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1318   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1319   setLibcallName(RTLIB::REM_F128, "fmodf128");
1320 
1321   // With 32 condition bits, we don't need to sink (and duplicate) compares
1322   // aggressively in CodeGenPrep.
1323   if (Subtarget.useCRBits()) {
1324     setHasMultipleConditionRegisters();
1325     setJumpIsExpensive();
1326   }
1327 
1328   setMinFunctionAlignment(Align(4));
1329 
1330   switch (Subtarget.getCPUDirective()) {
1331   default: break;
1332   case PPC::DIR_970:
1333   case PPC::DIR_A2:
1334   case PPC::DIR_E500:
1335   case PPC::DIR_E500mc:
1336   case PPC::DIR_E5500:
1337   case PPC::DIR_PWR4:
1338   case PPC::DIR_PWR5:
1339   case PPC::DIR_PWR5X:
1340   case PPC::DIR_PWR6:
1341   case PPC::DIR_PWR6X:
1342   case PPC::DIR_PWR7:
1343   case PPC::DIR_PWR8:
1344   case PPC::DIR_PWR9:
1345   case PPC::DIR_PWR10:
1346   case PPC::DIR_PWR_FUTURE:
1347     setPrefLoopAlignment(Align(16));
1348     setPrefFunctionAlignment(Align(16));
1349     break;
1350   }
1351 
1352   if (Subtarget.enableMachineScheduler())
1353     setSchedulingPreference(Sched::Source);
1354   else
1355     setSchedulingPreference(Sched::Hybrid);
1356 
1357   computeRegisterProperties(STI.getRegisterInfo());
1358 
1359   // The Freescale cores do better with aggressive inlining of memcpy and
1360   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1361   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1362       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1363     MaxStoresPerMemset = 32;
1364     MaxStoresPerMemsetOptSize = 16;
1365     MaxStoresPerMemcpy = 32;
1366     MaxStoresPerMemcpyOptSize = 8;
1367     MaxStoresPerMemmove = 32;
1368     MaxStoresPerMemmoveOptSize = 8;
1369   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1370     // The A2 also benefits from (very) aggressive inlining of memcpy and
1371     // friends. The overhead of a the function call, even when warm, can be
1372     // over one hundred cycles.
1373     MaxStoresPerMemset = 128;
1374     MaxStoresPerMemcpy = 128;
1375     MaxStoresPerMemmove = 128;
1376     MaxLoadsPerMemcmp = 128;
1377   } else {
1378     MaxLoadsPerMemcmp = 8;
1379     MaxLoadsPerMemcmpOptSize = 4;
1380   }
1381 
1382   // Let the subtarget (CPU) decide if a predictable select is more expensive
1383   // than the corresponding branch. This information is used in CGP to decide
1384   // when to convert selects into branches.
1385   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1386 }
1387 
1388 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1389 /// the desired ByVal argument alignment.
1390 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1391   if (MaxAlign == MaxMaxAlign)
1392     return;
1393   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1394     if (MaxMaxAlign >= 32 &&
1395         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1396       MaxAlign = Align(32);
1397     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1398              MaxAlign < 16)
1399       MaxAlign = Align(16);
1400   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1401     Align EltAlign;
1402     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1403     if (EltAlign > MaxAlign)
1404       MaxAlign = EltAlign;
1405   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1406     for (auto *EltTy : STy->elements()) {
1407       Align EltAlign;
1408       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1409       if (EltAlign > MaxAlign)
1410         MaxAlign = EltAlign;
1411       if (MaxAlign == MaxMaxAlign)
1412         break;
1413     }
1414   }
1415 }
1416 
1417 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1418 /// function arguments in the caller parameter area.
1419 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1420                                                   const DataLayout &DL) const {
1421   // 16byte and wider vectors are passed on 16byte boundary.
1422   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1423   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1424   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1425     getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16));
1426   return Alignment.value();
1427 }
1428 
1429 bool PPCTargetLowering::useSoftFloat() const {
1430   return Subtarget.useSoftFloat();
1431 }
1432 
1433 bool PPCTargetLowering::hasSPE() const {
1434   return Subtarget.hasSPE();
1435 }
1436 
1437 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1438   return VT.isScalarInteger();
1439 }
1440 
1441 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1442 /// type is cheaper than a multiply followed by a shift.
1443 /// This is true for words and doublewords on 64-bit PowerPC.
1444 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1445   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1446                               isOperationLegal(ISD::MULHU, Type)))
1447     return true;
1448   return TargetLowering::isMulhCheaperThanMulShift(Type);
1449 }
1450 
1451 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1452   switch ((PPCISD::NodeType)Opcode) {
1453   case PPCISD::FIRST_NUMBER:    break;
1454   case PPCISD::FSEL:            return "PPCISD::FSEL";
1455   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1456   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1457   case PPCISD::FCFID:           return "PPCISD::FCFID";
1458   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1459   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1460   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1461   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1462   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1463   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1464   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1465   case PPCISD::FP_TO_UINT_IN_VSR:
1466                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1467   case PPCISD::FP_TO_SINT_IN_VSR:
1468                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1469   case PPCISD::FRE:             return "PPCISD::FRE";
1470   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1471   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1472   case PPCISD::VPERM:           return "PPCISD::VPERM";
1473   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1474   case PPCISD::XXSPLTI_SP_TO_DP:
1475     return "PPCISD::XXSPLTI_SP_TO_DP";
1476   case PPCISD::XXSPLTI32DX:
1477     return "PPCISD::XXSPLTI32DX";
1478   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1479   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1480   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1481   case PPCISD::CMPB:            return "PPCISD::CMPB";
1482   case PPCISD::Hi:              return "PPCISD::Hi";
1483   case PPCISD::Lo:              return "PPCISD::Lo";
1484   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1485   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1486   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1487   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1488   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1489   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1490   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1491   case PPCISD::SRL:             return "PPCISD::SRL";
1492   case PPCISD::SRA:             return "PPCISD::SRA";
1493   case PPCISD::SHL:             return "PPCISD::SHL";
1494   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1495   case PPCISD::CALL:            return "PPCISD::CALL";
1496   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1497   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1498   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1499   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1500   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1501   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1502   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1503   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1504   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1505   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1506   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1507   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1508   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1509   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1510   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1511   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1512     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1513   case PPCISD::ANDI_rec_1_EQ_BIT:
1514     return "PPCISD::ANDI_rec_1_EQ_BIT";
1515   case PPCISD::ANDI_rec_1_GT_BIT:
1516     return "PPCISD::ANDI_rec_1_GT_BIT";
1517   case PPCISD::VCMP:            return "PPCISD::VCMP";
1518   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1519   case PPCISD::LBRX:            return "PPCISD::LBRX";
1520   case PPCISD::STBRX:           return "PPCISD::STBRX";
1521   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1522   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1523   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1524   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1525   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1526   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1527   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1528   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1529   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1530   case PPCISD::ST_VSR_SCAL_INT:
1531                                 return "PPCISD::ST_VSR_SCAL_INT";
1532   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1533   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1534   case PPCISD::BDZ:             return "PPCISD::BDZ";
1535   case PPCISD::MFFS:            return "PPCISD::MFFS";
1536   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1537   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1538   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1539   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1540   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1541   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1542   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1543   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1544   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1545   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1546   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1547   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1548   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1549   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1550   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1551   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1552   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1553   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1554   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1555   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1556   case PPCISD::SC:              return "PPCISD::SC";
1557   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1558   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1559   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1560   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1561   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1562   case PPCISD::VABSD:           return "PPCISD::VABSD";
1563   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1564   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1565   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1566   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1567   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1568   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1569   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1570   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1571   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1572   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1573   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1574   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1575   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1576   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1577   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1578   }
1579   return nullptr;
1580 }
1581 
1582 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1583                                           EVT VT) const {
1584   if (!VT.isVector())
1585     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1586 
1587   if (Subtarget.hasQPX())
1588     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1589 
1590   return VT.changeVectorElementTypeToInteger();
1591 }
1592 
1593 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1594   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1595   return true;
1596 }
1597 
1598 //===----------------------------------------------------------------------===//
1599 // Node matching predicates, for use by the tblgen matching code.
1600 //===----------------------------------------------------------------------===//
1601 
1602 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1603 static bool isFloatingPointZero(SDValue Op) {
1604   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1605     return CFP->getValueAPF().isZero();
1606   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1607     // Maybe this has already been legalized into the constant pool?
1608     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1609       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1610         return CFP->getValueAPF().isZero();
1611   }
1612   return false;
1613 }
1614 
1615 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1616 /// true if Op is undef or if it matches the specified value.
1617 static bool isConstantOrUndef(int Op, int Val) {
1618   return Op < 0 || Op == Val;
1619 }
1620 
1621 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1622 /// VPKUHUM instruction.
1623 /// The ShuffleKind distinguishes between big-endian operations with
1624 /// two different inputs (0), either-endian operations with two identical
1625 /// inputs (1), and little-endian operations with two different inputs (2).
1626 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1627 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1628                                SelectionDAG &DAG) {
1629   bool IsLE = DAG.getDataLayout().isLittleEndian();
1630   if (ShuffleKind == 0) {
1631     if (IsLE)
1632       return false;
1633     for (unsigned i = 0; i != 16; ++i)
1634       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1635         return false;
1636   } else if (ShuffleKind == 2) {
1637     if (!IsLE)
1638       return false;
1639     for (unsigned i = 0; i != 16; ++i)
1640       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1641         return false;
1642   } else if (ShuffleKind == 1) {
1643     unsigned j = IsLE ? 0 : 1;
1644     for (unsigned i = 0; i != 8; ++i)
1645       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1646           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1647         return false;
1648   }
1649   return true;
1650 }
1651 
1652 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1653 /// VPKUWUM instruction.
1654 /// The ShuffleKind distinguishes between big-endian operations with
1655 /// two different inputs (0), either-endian operations with two identical
1656 /// inputs (1), and little-endian operations with two different inputs (2).
1657 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1658 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1659                                SelectionDAG &DAG) {
1660   bool IsLE = DAG.getDataLayout().isLittleEndian();
1661   if (ShuffleKind == 0) {
1662     if (IsLE)
1663       return false;
1664     for (unsigned i = 0; i != 16; i += 2)
1665       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1666           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1667         return false;
1668   } else if (ShuffleKind == 2) {
1669     if (!IsLE)
1670       return false;
1671     for (unsigned i = 0; i != 16; i += 2)
1672       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1673           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1674         return false;
1675   } else if (ShuffleKind == 1) {
1676     unsigned j = IsLE ? 0 : 2;
1677     for (unsigned i = 0; i != 8; i += 2)
1678       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1679           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1680           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1681           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1682         return false;
1683   }
1684   return true;
1685 }
1686 
1687 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1688 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1689 /// current subtarget.
1690 ///
1691 /// The ShuffleKind distinguishes between big-endian operations with
1692 /// two different inputs (0), either-endian operations with two identical
1693 /// inputs (1), and little-endian operations with two different inputs (2).
1694 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1695 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1696                                SelectionDAG &DAG) {
1697   const PPCSubtarget& Subtarget =
1698       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1699   if (!Subtarget.hasP8Vector())
1700     return false;
1701 
1702   bool IsLE = DAG.getDataLayout().isLittleEndian();
1703   if (ShuffleKind == 0) {
1704     if (IsLE)
1705       return false;
1706     for (unsigned i = 0; i != 16; i += 4)
1707       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1708           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1709           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1710           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1711         return false;
1712   } else if (ShuffleKind == 2) {
1713     if (!IsLE)
1714       return false;
1715     for (unsigned i = 0; i != 16; i += 4)
1716       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1717           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1718           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1719           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1720         return false;
1721   } else if (ShuffleKind == 1) {
1722     unsigned j = IsLE ? 0 : 4;
1723     for (unsigned i = 0; i != 8; i += 4)
1724       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1725           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1726           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1727           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1728           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1729           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1730           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1731           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1732         return false;
1733   }
1734   return true;
1735 }
1736 
1737 /// isVMerge - Common function, used to match vmrg* shuffles.
1738 ///
1739 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1740                      unsigned LHSStart, unsigned RHSStart) {
1741   if (N->getValueType(0) != MVT::v16i8)
1742     return false;
1743   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1744          "Unsupported merge size!");
1745 
1746   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1747     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1748       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1749                              LHSStart+j+i*UnitSize) ||
1750           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1751                              RHSStart+j+i*UnitSize))
1752         return false;
1753     }
1754   return true;
1755 }
1756 
1757 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1758 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1759 /// The ShuffleKind distinguishes between big-endian merges with two
1760 /// different inputs (0), either-endian merges with two identical inputs (1),
1761 /// and little-endian merges with two different inputs (2).  For the latter,
1762 /// the input operands are swapped (see PPCInstrAltivec.td).
1763 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1764                              unsigned ShuffleKind, SelectionDAG &DAG) {
1765   if (DAG.getDataLayout().isLittleEndian()) {
1766     if (ShuffleKind == 1) // unary
1767       return isVMerge(N, UnitSize, 0, 0);
1768     else if (ShuffleKind == 2) // swapped
1769       return isVMerge(N, UnitSize, 0, 16);
1770     else
1771       return false;
1772   } else {
1773     if (ShuffleKind == 1) // unary
1774       return isVMerge(N, UnitSize, 8, 8);
1775     else if (ShuffleKind == 0) // normal
1776       return isVMerge(N, UnitSize, 8, 24);
1777     else
1778       return false;
1779   }
1780 }
1781 
1782 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1783 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1784 /// The ShuffleKind distinguishes between big-endian merges with two
1785 /// different inputs (0), either-endian merges with two identical inputs (1),
1786 /// and little-endian merges with two different inputs (2).  For the latter,
1787 /// the input operands are swapped (see PPCInstrAltivec.td).
1788 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1789                              unsigned ShuffleKind, SelectionDAG &DAG) {
1790   if (DAG.getDataLayout().isLittleEndian()) {
1791     if (ShuffleKind == 1) // unary
1792       return isVMerge(N, UnitSize, 8, 8);
1793     else if (ShuffleKind == 2) // swapped
1794       return isVMerge(N, UnitSize, 8, 24);
1795     else
1796       return false;
1797   } else {
1798     if (ShuffleKind == 1) // unary
1799       return isVMerge(N, UnitSize, 0, 0);
1800     else if (ShuffleKind == 0) // normal
1801       return isVMerge(N, UnitSize, 0, 16);
1802     else
1803       return false;
1804   }
1805 }
1806 
1807 /**
1808  * Common function used to match vmrgew and vmrgow shuffles
1809  *
1810  * The indexOffset determines whether to look for even or odd words in
1811  * the shuffle mask. This is based on the of the endianness of the target
1812  * machine.
1813  *   - Little Endian:
1814  *     - Use offset of 0 to check for odd elements
1815  *     - Use offset of 4 to check for even elements
1816  *   - Big Endian:
1817  *     - Use offset of 0 to check for even elements
1818  *     - Use offset of 4 to check for odd elements
1819  * A detailed description of the vector element ordering for little endian and
1820  * big endian can be found at
1821  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1822  * Targeting your applications - what little endian and big endian IBM XL C/C++
1823  * compiler differences mean to you
1824  *
1825  * The mask to the shuffle vector instruction specifies the indices of the
1826  * elements from the two input vectors to place in the result. The elements are
1827  * numbered in array-access order, starting with the first vector. These vectors
1828  * are always of type v16i8, thus each vector will contain 16 elements of size
1829  * 8. More info on the shuffle vector can be found in the
1830  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1831  * Language Reference.
1832  *
1833  * The RHSStartValue indicates whether the same input vectors are used (unary)
1834  * or two different input vectors are used, based on the following:
1835  *   - If the instruction uses the same vector for both inputs, the range of the
1836  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1837  *     be 0.
1838  *   - If the instruction has two different vectors then the range of the
1839  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1840  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1841  *     to 31 specify elements in the second vector).
1842  *
1843  * \param[in] N The shuffle vector SD Node to analyze
1844  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1845  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1846  * vector to the shuffle_vector instruction
1847  * \return true iff this shuffle vector represents an even or odd word merge
1848  */
1849 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1850                      unsigned RHSStartValue) {
1851   if (N->getValueType(0) != MVT::v16i8)
1852     return false;
1853 
1854   for (unsigned i = 0; i < 2; ++i)
1855     for (unsigned j = 0; j < 4; ++j)
1856       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1857                              i*RHSStartValue+j+IndexOffset) ||
1858           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1859                              i*RHSStartValue+j+IndexOffset+8))
1860         return false;
1861   return true;
1862 }
1863 
1864 /**
1865  * Determine if the specified shuffle mask is suitable for the vmrgew or
1866  * vmrgow instructions.
1867  *
1868  * \param[in] N The shuffle vector SD Node to analyze
1869  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1870  * \param[in] ShuffleKind Identify the type of merge:
1871  *   - 0 = big-endian merge with two different inputs;
1872  *   - 1 = either-endian merge with two identical inputs;
1873  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1874  *     little-endian merges).
1875  * \param[in] DAG The current SelectionDAG
1876  * \return true iff this shuffle mask
1877  */
1878 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1879                               unsigned ShuffleKind, SelectionDAG &DAG) {
1880   if (DAG.getDataLayout().isLittleEndian()) {
1881     unsigned indexOffset = CheckEven ? 4 : 0;
1882     if (ShuffleKind == 1) // Unary
1883       return isVMerge(N, indexOffset, 0);
1884     else if (ShuffleKind == 2) // swapped
1885       return isVMerge(N, indexOffset, 16);
1886     else
1887       return false;
1888   }
1889   else {
1890     unsigned indexOffset = CheckEven ? 0 : 4;
1891     if (ShuffleKind == 1) // Unary
1892       return isVMerge(N, indexOffset, 0);
1893     else if (ShuffleKind == 0) // Normal
1894       return isVMerge(N, indexOffset, 16);
1895     else
1896       return false;
1897   }
1898   return false;
1899 }
1900 
1901 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1902 /// amount, otherwise return -1.
1903 /// The ShuffleKind distinguishes between big-endian operations with two
1904 /// different inputs (0), either-endian operations with two identical inputs
1905 /// (1), and little-endian operations with two different inputs (2).  For the
1906 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1907 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1908                              SelectionDAG &DAG) {
1909   if (N->getValueType(0) != MVT::v16i8)
1910     return -1;
1911 
1912   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1913 
1914   // Find the first non-undef value in the shuffle mask.
1915   unsigned i;
1916   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1917     /*search*/;
1918 
1919   if (i == 16) return -1;  // all undef.
1920 
1921   // Otherwise, check to see if the rest of the elements are consecutively
1922   // numbered from this value.
1923   unsigned ShiftAmt = SVOp->getMaskElt(i);
1924   if (ShiftAmt < i) return -1;
1925 
1926   ShiftAmt -= i;
1927   bool isLE = DAG.getDataLayout().isLittleEndian();
1928 
1929   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1930     // Check the rest of the elements to see if they are consecutive.
1931     for (++i; i != 16; ++i)
1932       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1933         return -1;
1934   } else if (ShuffleKind == 1) {
1935     // Check the rest of the elements to see if they are consecutive.
1936     for (++i; i != 16; ++i)
1937       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1938         return -1;
1939   } else
1940     return -1;
1941 
1942   if (isLE)
1943     ShiftAmt = 16 - ShiftAmt;
1944 
1945   return ShiftAmt;
1946 }
1947 
1948 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1949 /// specifies a splat of a single element that is suitable for input to
1950 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1951 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1952   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1953          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1954 
1955   // The consecutive indices need to specify an element, not part of two
1956   // different elements.  So abandon ship early if this isn't the case.
1957   if (N->getMaskElt(0) % EltSize != 0)
1958     return false;
1959 
1960   // This is a splat operation if each element of the permute is the same, and
1961   // if the value doesn't reference the second vector.
1962   unsigned ElementBase = N->getMaskElt(0);
1963 
1964   // FIXME: Handle UNDEF elements too!
1965   if (ElementBase >= 16)
1966     return false;
1967 
1968   // Check that the indices are consecutive, in the case of a multi-byte element
1969   // splatted with a v16i8 mask.
1970   for (unsigned i = 1; i != EltSize; ++i)
1971     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1972       return false;
1973 
1974   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1975     if (N->getMaskElt(i) < 0) continue;
1976     for (unsigned j = 0; j != EltSize; ++j)
1977       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1978         return false;
1979   }
1980   return true;
1981 }
1982 
1983 /// Check that the mask is shuffling N byte elements. Within each N byte
1984 /// element of the mask, the indices could be either in increasing or
1985 /// decreasing order as long as they are consecutive.
1986 /// \param[in] N the shuffle vector SD Node to analyze
1987 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1988 /// Word/DoubleWord/QuadWord).
1989 /// \param[in] StepLen the delta indices number among the N byte element, if
1990 /// the mask is in increasing/decreasing order then it is 1/-1.
1991 /// \return true iff the mask is shuffling N byte elements.
1992 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1993                                    int StepLen) {
1994   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1995          "Unexpected element width.");
1996   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1997 
1998   unsigned NumOfElem = 16 / Width;
1999   unsigned MaskVal[16]; //  Width is never greater than 16
2000   for (unsigned i = 0; i < NumOfElem; ++i) {
2001     MaskVal[0] = N->getMaskElt(i * Width);
2002     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2003       return false;
2004     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2005       return false;
2006     }
2007 
2008     for (unsigned int j = 1; j < Width; ++j) {
2009       MaskVal[j] = N->getMaskElt(i * Width + j);
2010       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2011         return false;
2012       }
2013     }
2014   }
2015 
2016   return true;
2017 }
2018 
2019 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2020                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2021   if (!isNByteElemShuffleMask(N, 4, 1))
2022     return false;
2023 
2024   // Now we look at mask elements 0,4,8,12
2025   unsigned M0 = N->getMaskElt(0) / 4;
2026   unsigned M1 = N->getMaskElt(4) / 4;
2027   unsigned M2 = N->getMaskElt(8) / 4;
2028   unsigned M3 = N->getMaskElt(12) / 4;
2029   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2030   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2031 
2032   // Below, let H and L be arbitrary elements of the shuffle mask
2033   // where H is in the range [4,7] and L is in the range [0,3].
2034   // H, 1, 2, 3 or L, 5, 6, 7
2035   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2036       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2037     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2038     InsertAtByte = IsLE ? 12 : 0;
2039     Swap = M0 < 4;
2040     return true;
2041   }
2042   // 0, H, 2, 3 or 4, L, 6, 7
2043   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2044       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2045     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2046     InsertAtByte = IsLE ? 8 : 4;
2047     Swap = M1 < 4;
2048     return true;
2049   }
2050   // 0, 1, H, 3 or 4, 5, L, 7
2051   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2052       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2053     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2054     InsertAtByte = IsLE ? 4 : 8;
2055     Swap = M2 < 4;
2056     return true;
2057   }
2058   // 0, 1, 2, H or 4, 5, 6, L
2059   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2060       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2061     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2062     InsertAtByte = IsLE ? 0 : 12;
2063     Swap = M3 < 4;
2064     return true;
2065   }
2066 
2067   // If both vector operands for the shuffle are the same vector, the mask will
2068   // contain only elements from the first one and the second one will be undef.
2069   if (N->getOperand(1).isUndef()) {
2070     ShiftElts = 0;
2071     Swap = true;
2072     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2073     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2074       InsertAtByte = IsLE ? 12 : 0;
2075       return true;
2076     }
2077     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2078       InsertAtByte = IsLE ? 8 : 4;
2079       return true;
2080     }
2081     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2082       InsertAtByte = IsLE ? 4 : 8;
2083       return true;
2084     }
2085     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2086       InsertAtByte = IsLE ? 0 : 12;
2087       return true;
2088     }
2089   }
2090 
2091   return false;
2092 }
2093 
2094 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2095                                bool &Swap, bool IsLE) {
2096   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2097   // Ensure each byte index of the word is consecutive.
2098   if (!isNByteElemShuffleMask(N, 4, 1))
2099     return false;
2100 
2101   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2102   unsigned M0 = N->getMaskElt(0) / 4;
2103   unsigned M1 = N->getMaskElt(4) / 4;
2104   unsigned M2 = N->getMaskElt(8) / 4;
2105   unsigned M3 = N->getMaskElt(12) / 4;
2106 
2107   // If both vector operands for the shuffle are the same vector, the mask will
2108   // contain only elements from the first one and the second one will be undef.
2109   if (N->getOperand(1).isUndef()) {
2110     assert(M0 < 4 && "Indexing into an undef vector?");
2111     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2112       return false;
2113 
2114     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2115     Swap = false;
2116     return true;
2117   }
2118 
2119   // Ensure each word index of the ShuffleVector Mask is consecutive.
2120   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2121     return false;
2122 
2123   if (IsLE) {
2124     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2125       // Input vectors don't need to be swapped if the leading element
2126       // of the result is one of the 3 left elements of the second vector
2127       // (or if there is no shift to be done at all).
2128       Swap = false;
2129       ShiftElts = (8 - M0) % 8;
2130     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2131       // Input vectors need to be swapped if the leading element
2132       // of the result is one of the 3 left elements of the first vector
2133       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2134       Swap = true;
2135       ShiftElts = (4 - M0) % 4;
2136     }
2137 
2138     return true;
2139   } else {                                          // BE
2140     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2141       // Input vectors don't need to be swapped if the leading element
2142       // of the result is one of the 4 elements of the first vector.
2143       Swap = false;
2144       ShiftElts = M0;
2145     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2146       // Input vectors need to be swapped if the leading element
2147       // of the result is one of the 4 elements of the right vector.
2148       Swap = true;
2149       ShiftElts = M0 - 4;
2150     }
2151 
2152     return true;
2153   }
2154 }
2155 
2156 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2157   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2158 
2159   if (!isNByteElemShuffleMask(N, Width, -1))
2160     return false;
2161 
2162   for (int i = 0; i < 16; i += Width)
2163     if (N->getMaskElt(i) != i + Width - 1)
2164       return false;
2165 
2166   return true;
2167 }
2168 
2169 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2170   return isXXBRShuffleMaskHelper(N, 2);
2171 }
2172 
2173 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2174   return isXXBRShuffleMaskHelper(N, 4);
2175 }
2176 
2177 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2178   return isXXBRShuffleMaskHelper(N, 8);
2179 }
2180 
2181 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2182   return isXXBRShuffleMaskHelper(N, 16);
2183 }
2184 
2185 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2186 /// if the inputs to the instruction should be swapped and set \p DM to the
2187 /// value for the immediate.
2188 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2189 /// AND element 0 of the result comes from the first input (LE) or second input
2190 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2191 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2192 /// mask.
2193 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2194                                bool &Swap, bool IsLE) {
2195   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2196 
2197   // Ensure each byte index of the double word is consecutive.
2198   if (!isNByteElemShuffleMask(N, 8, 1))
2199     return false;
2200 
2201   unsigned M0 = N->getMaskElt(0) / 8;
2202   unsigned M1 = N->getMaskElt(8) / 8;
2203   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2204 
2205   // If both vector operands for the shuffle are the same vector, the mask will
2206   // contain only elements from the first one and the second one will be undef.
2207   if (N->getOperand(1).isUndef()) {
2208     if ((M0 | M1) < 2) {
2209       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2210       Swap = false;
2211       return true;
2212     } else
2213       return false;
2214   }
2215 
2216   if (IsLE) {
2217     if (M0 > 1 && M1 < 2) {
2218       Swap = false;
2219     } else if (M0 < 2 && M1 > 1) {
2220       M0 = (M0 + 2) % 4;
2221       M1 = (M1 + 2) % 4;
2222       Swap = true;
2223     } else
2224       return false;
2225 
2226     // Note: if control flow comes here that means Swap is already set above
2227     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2228     return true;
2229   } else { // BE
2230     if (M0 < 2 && M1 > 1) {
2231       Swap = false;
2232     } else if (M0 > 1 && M1 < 2) {
2233       M0 = (M0 + 2) % 4;
2234       M1 = (M1 + 2) % 4;
2235       Swap = true;
2236     } else
2237       return false;
2238 
2239     // Note: if control flow comes here that means Swap is already set above
2240     DM = (M0 << 1) + (M1 & 1);
2241     return true;
2242   }
2243 }
2244 
2245 
2246 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2247 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2248 /// elements are counted from the left of the vector register).
2249 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2250                                          SelectionDAG &DAG) {
2251   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2252   assert(isSplatShuffleMask(SVOp, EltSize));
2253   if (DAG.getDataLayout().isLittleEndian())
2254     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2255   else
2256     return SVOp->getMaskElt(0) / EltSize;
2257 }
2258 
2259 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2260 /// by using a vspltis[bhw] instruction of the specified element size, return
2261 /// the constant being splatted.  The ByteSize field indicates the number of
2262 /// bytes of each element [124] -> [bhw].
2263 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2264   SDValue OpVal(nullptr, 0);
2265 
2266   // If ByteSize of the splat is bigger than the element size of the
2267   // build_vector, then we have a case where we are checking for a splat where
2268   // multiple elements of the buildvector are folded together into a single
2269   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2270   unsigned EltSize = 16/N->getNumOperands();
2271   if (EltSize < ByteSize) {
2272     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2273     SDValue UniquedVals[4];
2274     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2275 
2276     // See if all of the elements in the buildvector agree across.
2277     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2278       if (N->getOperand(i).isUndef()) continue;
2279       // If the element isn't a constant, bail fully out.
2280       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2281 
2282       if (!UniquedVals[i&(Multiple-1)].getNode())
2283         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2284       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2285         return SDValue();  // no match.
2286     }
2287 
2288     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2289     // either constant or undef values that are identical for each chunk.  See
2290     // if these chunks can form into a larger vspltis*.
2291 
2292     // Check to see if all of the leading entries are either 0 or -1.  If
2293     // neither, then this won't fit into the immediate field.
2294     bool LeadingZero = true;
2295     bool LeadingOnes = true;
2296     for (unsigned i = 0; i != Multiple-1; ++i) {
2297       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2298 
2299       LeadingZero &= isNullConstant(UniquedVals[i]);
2300       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2301     }
2302     // Finally, check the least significant entry.
2303     if (LeadingZero) {
2304       if (!UniquedVals[Multiple-1].getNode())
2305         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2306       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2307       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2308         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2309     }
2310     if (LeadingOnes) {
2311       if (!UniquedVals[Multiple-1].getNode())
2312         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2313       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2314       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2315         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2316     }
2317 
2318     return SDValue();
2319   }
2320 
2321   // Check to see if this buildvec has a single non-undef value in its elements.
2322   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2323     if (N->getOperand(i).isUndef()) continue;
2324     if (!OpVal.getNode())
2325       OpVal = N->getOperand(i);
2326     else if (OpVal != N->getOperand(i))
2327       return SDValue();
2328   }
2329 
2330   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2331 
2332   unsigned ValSizeInBytes = EltSize;
2333   uint64_t Value = 0;
2334   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2335     Value = CN->getZExtValue();
2336   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2337     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2338     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2339   }
2340 
2341   // If the splat value is larger than the element value, then we can never do
2342   // this splat.  The only case that we could fit the replicated bits into our
2343   // immediate field for would be zero, and we prefer to use vxor for it.
2344   if (ValSizeInBytes < ByteSize) return SDValue();
2345 
2346   // If the element value is larger than the splat value, check if it consists
2347   // of a repeated bit pattern of size ByteSize.
2348   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2349     return SDValue();
2350 
2351   // Properly sign extend the value.
2352   int MaskVal = SignExtend32(Value, ByteSize * 8);
2353 
2354   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2355   if (MaskVal == 0) return SDValue();
2356 
2357   // Finally, if this value fits in a 5 bit sext field, return it
2358   if (SignExtend32<5>(MaskVal) == MaskVal)
2359     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2360   return SDValue();
2361 }
2362 
2363 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2364 /// amount, otherwise return -1.
2365 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2366   EVT VT = N->getValueType(0);
2367   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2368     return -1;
2369 
2370   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2371 
2372   // Find the first non-undef value in the shuffle mask.
2373   unsigned i;
2374   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2375     /*search*/;
2376 
2377   if (i == 4) return -1;  // all undef.
2378 
2379   // Otherwise, check to see if the rest of the elements are consecutively
2380   // numbered from this value.
2381   unsigned ShiftAmt = SVOp->getMaskElt(i);
2382   if (ShiftAmt < i) return -1;
2383   ShiftAmt -= i;
2384 
2385   // Check the rest of the elements to see if they are consecutive.
2386   for (++i; i != 4; ++i)
2387     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2388       return -1;
2389 
2390   return ShiftAmt;
2391 }
2392 
2393 //===----------------------------------------------------------------------===//
2394 //  Addressing Mode Selection
2395 //===----------------------------------------------------------------------===//
2396 
2397 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2398 /// or 64-bit immediate, and if the value can be accurately represented as a
2399 /// sign extension from a 16-bit value.  If so, this returns true and the
2400 /// immediate.
2401 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2402   if (!isa<ConstantSDNode>(N))
2403     return false;
2404 
2405   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2406   if (N->getValueType(0) == MVT::i32)
2407     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2408   else
2409     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2410 }
2411 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2412   return isIntS16Immediate(Op.getNode(), Imm);
2413 }
2414 
2415 
2416 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2417 /// be represented as an indexed [r+r] operation.
2418 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2419                                                SDValue &Index,
2420                                                SelectionDAG &DAG) const {
2421   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2422       UI != E; ++UI) {
2423     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2424       if (Memop->getMemoryVT() == MVT::f64) {
2425           Base = N.getOperand(0);
2426           Index = N.getOperand(1);
2427           return true;
2428       }
2429     }
2430   }
2431   return false;
2432 }
2433 
2434 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2435 /// can be represented as an indexed [r+r] operation.  Returns false if it
2436 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2437 /// non-zero and N can be represented by a base register plus a signed 16-bit
2438 /// displacement, make a more precise judgement by checking (displacement % \p
2439 /// EncodingAlignment).
2440 bool PPCTargetLowering::SelectAddressRegReg(
2441     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2442     MaybeAlign EncodingAlignment) const {
2443   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2444   // a [pc+imm].
2445   if (SelectAddressPCRel(N, Base))
2446     return false;
2447 
2448   int16_t Imm = 0;
2449   if (N.getOpcode() == ISD::ADD) {
2450     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2451     // SPE load/store can only handle 8-bit offsets.
2452     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2453         return true;
2454     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2455         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2456       return false; // r+i
2457     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2458       return false;    // r+i
2459 
2460     Base = N.getOperand(0);
2461     Index = N.getOperand(1);
2462     return true;
2463   } else if (N.getOpcode() == ISD::OR) {
2464     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2465         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2466       return false; // r+i can fold it if we can.
2467 
2468     // If this is an or of disjoint bitfields, we can codegen this as an add
2469     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2470     // disjoint.
2471     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2472 
2473     if (LHSKnown.Zero.getBoolValue()) {
2474       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2475       // If all of the bits are known zero on the LHS or RHS, the add won't
2476       // carry.
2477       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2478         Base = N.getOperand(0);
2479         Index = N.getOperand(1);
2480         return true;
2481       }
2482     }
2483   }
2484 
2485   return false;
2486 }
2487 
2488 // If we happen to be doing an i64 load or store into a stack slot that has
2489 // less than a 4-byte alignment, then the frame-index elimination may need to
2490 // use an indexed load or store instruction (because the offset may not be a
2491 // multiple of 4). The extra register needed to hold the offset comes from the
2492 // register scavenger, and it is possible that the scavenger will need to use
2493 // an emergency spill slot. As a result, we need to make sure that a spill slot
2494 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2495 // stack slot.
2496 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2497   // FIXME: This does not handle the LWA case.
2498   if (VT != MVT::i64)
2499     return;
2500 
2501   // NOTE: We'll exclude negative FIs here, which come from argument
2502   // lowering, because there are no known test cases triggering this problem
2503   // using packed structures (or similar). We can remove this exclusion if
2504   // we find such a test case. The reason why this is so test-case driven is
2505   // because this entire 'fixup' is only to prevent crashes (from the
2506   // register scavenger) on not-really-valid inputs. For example, if we have:
2507   //   %a = alloca i1
2508   //   %b = bitcast i1* %a to i64*
2509   //   store i64* a, i64 b
2510   // then the store should really be marked as 'align 1', but is not. If it
2511   // were marked as 'align 1' then the indexed form would have been
2512   // instruction-selected initially, and the problem this 'fixup' is preventing
2513   // won't happen regardless.
2514   if (FrameIdx < 0)
2515     return;
2516 
2517   MachineFunction &MF = DAG.getMachineFunction();
2518   MachineFrameInfo &MFI = MF.getFrameInfo();
2519 
2520   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2521     return;
2522 
2523   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2524   FuncInfo->setHasNonRISpills();
2525 }
2526 
2527 /// Returns true if the address N can be represented by a base register plus
2528 /// a signed 16-bit displacement [r+imm], and if it is not better
2529 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2530 /// displacements that are multiples of that value.
2531 bool PPCTargetLowering::SelectAddressRegImm(
2532     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2533     MaybeAlign EncodingAlignment) const {
2534   // FIXME dl should come from parent load or store, not from address
2535   SDLoc dl(N);
2536 
2537   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2538   // a [pc+imm].
2539   if (SelectAddressPCRel(N, Base))
2540     return false;
2541 
2542   // If this can be more profitably realized as r+r, fail.
2543   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2544     return false;
2545 
2546   if (N.getOpcode() == ISD::ADD) {
2547     int16_t imm = 0;
2548     if (isIntS16Immediate(N.getOperand(1), imm) &&
2549         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2550       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2551       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2552         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2553         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2554       } else {
2555         Base = N.getOperand(0);
2556       }
2557       return true; // [r+i]
2558     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2559       // Match LOAD (ADD (X, Lo(G))).
2560       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2561              && "Cannot handle constant offsets yet!");
2562       Disp = N.getOperand(1).getOperand(0);  // The global address.
2563       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2564              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2565              Disp.getOpcode() == ISD::TargetConstantPool ||
2566              Disp.getOpcode() == ISD::TargetJumpTable);
2567       Base = N.getOperand(0);
2568       return true;  // [&g+r]
2569     }
2570   } else if (N.getOpcode() == ISD::OR) {
2571     int16_t imm = 0;
2572     if (isIntS16Immediate(N.getOperand(1), imm) &&
2573         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2574       // If this is an or of disjoint bitfields, we can codegen this as an add
2575       // (for better address arithmetic) if the LHS and RHS of the OR are
2576       // provably disjoint.
2577       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2578 
2579       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2580         // If all of the bits are known zero on the LHS or RHS, the add won't
2581         // carry.
2582         if (FrameIndexSDNode *FI =
2583               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2584           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2585           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2586         } else {
2587           Base = N.getOperand(0);
2588         }
2589         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2590         return true;
2591       }
2592     }
2593   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2594     // Loading from a constant address.
2595 
2596     // If this address fits entirely in a 16-bit sext immediate field, codegen
2597     // this as "d, 0"
2598     int16_t Imm;
2599     if (isIntS16Immediate(CN, Imm) &&
2600         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2601       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2602       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2603                              CN->getValueType(0));
2604       return true;
2605     }
2606 
2607     // Handle 32-bit sext immediates with LIS + addr mode.
2608     if ((CN->getValueType(0) == MVT::i32 ||
2609          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2610         (!EncodingAlignment ||
2611          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2612       int Addr = (int)CN->getZExtValue();
2613 
2614       // Otherwise, break this down into an LIS + disp.
2615       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2616 
2617       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2618                                    MVT::i32);
2619       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2620       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2621       return true;
2622     }
2623   }
2624 
2625   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2626   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2627     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2628     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2629   } else
2630     Base = N;
2631   return true;      // [r+0]
2632 }
2633 
2634 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2635 /// represented as an indexed [r+r] operation.
2636 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2637                                                 SDValue &Index,
2638                                                 SelectionDAG &DAG) const {
2639   // Check to see if we can easily represent this as an [r+r] address.  This
2640   // will fail if it thinks that the address is more profitably represented as
2641   // reg+imm, e.g. where imm = 0.
2642   if (SelectAddressRegReg(N, Base, Index, DAG))
2643     return true;
2644 
2645   // If the address is the result of an add, we will utilize the fact that the
2646   // address calculation includes an implicit add.  However, we can reduce
2647   // register pressure if we do not materialize a constant just for use as the
2648   // index register.  We only get rid of the add if it is not an add of a
2649   // value and a 16-bit signed constant and both have a single use.
2650   int16_t imm = 0;
2651   if (N.getOpcode() == ISD::ADD &&
2652       (!isIntS16Immediate(N.getOperand(1), imm) ||
2653        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2654     Base = N.getOperand(0);
2655     Index = N.getOperand(1);
2656     return true;
2657   }
2658 
2659   // Otherwise, do it the hard way, using R0 as the base register.
2660   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2661                          N.getValueType());
2662   Index = N;
2663   return true;
2664 }
2665 
2666 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2667   Ty *PCRelCand = dyn_cast<Ty>(N);
2668   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2669 }
2670 
2671 /// Returns true if this address is a PC Relative address.
2672 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2673 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2674 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2675   // This is a materialize PC Relative node. Always select this as PC Relative.
2676   Base = N;
2677   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2678     return true;
2679   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2680       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2681       isValidPCRelNode<JumpTableSDNode>(N) ||
2682       isValidPCRelNode<BlockAddressSDNode>(N))
2683     return true;
2684   return false;
2685 }
2686 
2687 /// Returns true if we should use a direct load into vector instruction
2688 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2689 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2690 
2691   // If there are any other uses other than scalar to vector, then we should
2692   // keep it as a scalar load -> direct move pattern to prevent multiple
2693   // loads.
2694   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2695   if (!LD)
2696     return false;
2697 
2698   EVT MemVT = LD->getMemoryVT();
2699   if (!MemVT.isSimple())
2700     return false;
2701   switch(MemVT.getSimpleVT().SimpleTy) {
2702   case MVT::i64:
2703     break;
2704   case MVT::i32:
2705     if (!ST.hasP8Vector())
2706       return false;
2707     break;
2708   case MVT::i16:
2709   case MVT::i8:
2710     if (!ST.hasP9Vector())
2711       return false;
2712     break;
2713   default:
2714     return false;
2715   }
2716 
2717   SDValue LoadedVal(N, 0);
2718   if (!LoadedVal.hasOneUse())
2719     return false;
2720 
2721   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2722        UI != UE; ++UI)
2723     if (UI.getUse().get().getResNo() == 0 &&
2724         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2725         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2726       return false;
2727 
2728   return true;
2729 }
2730 
2731 /// getPreIndexedAddressParts - returns true by value, base pointer and
2732 /// offset pointer and addressing mode by reference if the node's address
2733 /// can be legally represented as pre-indexed load / store address.
2734 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2735                                                   SDValue &Offset,
2736                                                   ISD::MemIndexedMode &AM,
2737                                                   SelectionDAG &DAG) const {
2738   if (DisablePPCPreinc) return false;
2739 
2740   bool isLoad = true;
2741   SDValue Ptr;
2742   EVT VT;
2743   unsigned Alignment;
2744   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2745     Ptr = LD->getBasePtr();
2746     VT = LD->getMemoryVT();
2747     Alignment = LD->getAlignment();
2748   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2749     Ptr = ST->getBasePtr();
2750     VT  = ST->getMemoryVT();
2751     Alignment = ST->getAlignment();
2752     isLoad = false;
2753   } else
2754     return false;
2755 
2756   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2757   // instructions because we can fold these into a more efficient instruction
2758   // instead, (such as LXSD).
2759   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2760     return false;
2761   }
2762 
2763   // PowerPC doesn't have preinc load/store instructions for vectors (except
2764   // for QPX, which does have preinc r+r forms).
2765   if (VT.isVector()) {
2766     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2767       return false;
2768     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2769       AM = ISD::PRE_INC;
2770       return true;
2771     }
2772   }
2773 
2774   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2775     // Common code will reject creating a pre-inc form if the base pointer
2776     // is a frame index, or if N is a store and the base pointer is either
2777     // the same as or a predecessor of the value being stored.  Check for
2778     // those situations here, and try with swapped Base/Offset instead.
2779     bool Swap = false;
2780 
2781     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2782       Swap = true;
2783     else if (!isLoad) {
2784       SDValue Val = cast<StoreSDNode>(N)->getValue();
2785       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2786         Swap = true;
2787     }
2788 
2789     if (Swap)
2790       std::swap(Base, Offset);
2791 
2792     AM = ISD::PRE_INC;
2793     return true;
2794   }
2795 
2796   // LDU/STU can only handle immediates that are a multiple of 4.
2797   if (VT != MVT::i64) {
2798     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2799       return false;
2800   } else {
2801     // LDU/STU need an address with at least 4-byte alignment.
2802     if (Alignment < 4)
2803       return false;
2804 
2805     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2806       return false;
2807   }
2808 
2809   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2810     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2811     // sext i32 to i64 when addr mode is r+i.
2812     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2813         LD->getExtensionType() == ISD::SEXTLOAD &&
2814         isa<ConstantSDNode>(Offset))
2815       return false;
2816   }
2817 
2818   AM = ISD::PRE_INC;
2819   return true;
2820 }
2821 
2822 //===----------------------------------------------------------------------===//
2823 //  LowerOperation implementation
2824 //===----------------------------------------------------------------------===//
2825 
2826 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2827 /// and LoOpFlags to the target MO flags.
2828 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2829                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2830                                const GlobalValue *GV = nullptr) {
2831   HiOpFlags = PPCII::MO_HA;
2832   LoOpFlags = PPCII::MO_LO;
2833 
2834   // Don't use the pic base if not in PIC relocation model.
2835   if (IsPIC) {
2836     HiOpFlags |= PPCII::MO_PIC_FLAG;
2837     LoOpFlags |= PPCII::MO_PIC_FLAG;
2838   }
2839 }
2840 
2841 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2842                              SelectionDAG &DAG) {
2843   SDLoc DL(HiPart);
2844   EVT PtrVT = HiPart.getValueType();
2845   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2846 
2847   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2848   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2849 
2850   // With PIC, the first instruction is actually "GR+hi(&G)".
2851   if (isPIC)
2852     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2853                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2854 
2855   // Generate non-pic code that has direct accesses to the constant pool.
2856   // The address of the global is just (hi(&g)+lo(&g)).
2857   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2858 }
2859 
2860 static void setUsesTOCBasePtr(MachineFunction &MF) {
2861   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2862   FuncInfo->setUsesTOCBasePtr();
2863 }
2864 
2865 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2866   setUsesTOCBasePtr(DAG.getMachineFunction());
2867 }
2868 
2869 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2870                                        SDValue GA) const {
2871   const bool Is64Bit = Subtarget.isPPC64();
2872   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2873   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2874                         : Subtarget.isAIXABI()
2875                               ? DAG.getRegister(PPC::R2, VT)
2876                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2877   SDValue Ops[] = { GA, Reg };
2878   return DAG.getMemIntrinsicNode(
2879       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2880       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2881       MachineMemOperand::MOLoad);
2882 }
2883 
2884 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2885                                              SelectionDAG &DAG) const {
2886   EVT PtrVT = Op.getValueType();
2887   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2888   const Constant *C = CP->getConstVal();
2889 
2890   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2891   // The actual address of the GlobalValue is stored in the TOC.
2892   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2893     if (Subtarget.isUsingPCRelativeCalls()) {
2894       SDLoc DL(CP);
2895       EVT Ty = getPointerTy(DAG.getDataLayout());
2896       SDValue ConstPool = DAG.getTargetConstantPool(
2897           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2898       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2899     }
2900     setUsesTOCBasePtr(DAG);
2901     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2902     return getTOCEntry(DAG, SDLoc(CP), GA);
2903   }
2904 
2905   unsigned MOHiFlag, MOLoFlag;
2906   bool IsPIC = isPositionIndependent();
2907   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2908 
2909   if (IsPIC && Subtarget.isSVR4ABI()) {
2910     SDValue GA =
2911         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2912     return getTOCEntry(DAG, SDLoc(CP), GA);
2913   }
2914 
2915   SDValue CPIHi =
2916       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2917   SDValue CPILo =
2918       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2919   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2920 }
2921 
2922 // For 64-bit PowerPC, prefer the more compact relative encodings.
2923 // This trades 32 bits per jump table entry for one or two instructions
2924 // on the jump site.
2925 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2926   if (isJumpTableRelative())
2927     return MachineJumpTableInfo::EK_LabelDifference32;
2928 
2929   return TargetLowering::getJumpTableEncoding();
2930 }
2931 
2932 bool PPCTargetLowering::isJumpTableRelative() const {
2933   if (UseAbsoluteJumpTables)
2934     return false;
2935   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2936     return true;
2937   return TargetLowering::isJumpTableRelative();
2938 }
2939 
2940 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2941                                                     SelectionDAG &DAG) const {
2942   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2943     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2944 
2945   switch (getTargetMachine().getCodeModel()) {
2946   case CodeModel::Small:
2947   case CodeModel::Medium:
2948     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2949   default:
2950     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2951                        getPointerTy(DAG.getDataLayout()));
2952   }
2953 }
2954 
2955 const MCExpr *
2956 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2957                                                 unsigned JTI,
2958                                                 MCContext &Ctx) const {
2959   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2960     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2961 
2962   switch (getTargetMachine().getCodeModel()) {
2963   case CodeModel::Small:
2964   case CodeModel::Medium:
2965     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2966   default:
2967     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2968   }
2969 }
2970 
2971 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2972   EVT PtrVT = Op.getValueType();
2973   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2974 
2975   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2976   if (Subtarget.isUsingPCRelativeCalls()) {
2977     SDLoc DL(JT);
2978     EVT Ty = getPointerTy(DAG.getDataLayout());
2979     SDValue GA =
2980         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2981     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2982     return MatAddr;
2983   }
2984 
2985   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2986   // The actual address of the GlobalValue is stored in the TOC.
2987   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2988     setUsesTOCBasePtr(DAG);
2989     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2990     return getTOCEntry(DAG, SDLoc(JT), GA);
2991   }
2992 
2993   unsigned MOHiFlag, MOLoFlag;
2994   bool IsPIC = isPositionIndependent();
2995   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2996 
2997   if (IsPIC && Subtarget.isSVR4ABI()) {
2998     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2999                                         PPCII::MO_PIC_FLAG);
3000     return getTOCEntry(DAG, SDLoc(GA), GA);
3001   }
3002 
3003   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3004   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3005   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3006 }
3007 
3008 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3009                                              SelectionDAG &DAG) const {
3010   EVT PtrVT = Op.getValueType();
3011   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3012   const BlockAddress *BA = BASDN->getBlockAddress();
3013 
3014   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3015   if (Subtarget.isUsingPCRelativeCalls()) {
3016     SDLoc DL(BASDN);
3017     EVT Ty = getPointerTy(DAG.getDataLayout());
3018     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3019                                            PPCII::MO_PCREL_FLAG);
3020     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3021     return MatAddr;
3022   }
3023 
3024   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3025   // The actual BlockAddress is stored in the TOC.
3026   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3027     setUsesTOCBasePtr(DAG);
3028     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3029     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3030   }
3031 
3032   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3033   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3034     return getTOCEntry(
3035         DAG, SDLoc(BASDN),
3036         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3037 
3038   unsigned MOHiFlag, MOLoFlag;
3039   bool IsPIC = isPositionIndependent();
3040   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3041   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3042   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3043   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3044 }
3045 
3046 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3047                                               SelectionDAG &DAG) const {
3048   // FIXME: TLS addresses currently use medium model code sequences,
3049   // which is the most useful form.  Eventually support for small and
3050   // large models could be added if users need it, at the cost of
3051   // additional complexity.
3052   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3053   if (DAG.getTarget().useEmulatedTLS())
3054     return LowerToTLSEmulatedModel(GA, DAG);
3055 
3056   SDLoc dl(GA);
3057   const GlobalValue *GV = GA->getGlobal();
3058   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3059   bool is64bit = Subtarget.isPPC64();
3060   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3061   PICLevel::Level picLevel = M->getPICLevel();
3062 
3063   const TargetMachine &TM = getTargetMachine();
3064   TLSModel::Model Model = TM.getTLSModel(GV);
3065 
3066   if (Model == TLSModel::LocalExec) {
3067     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3068                                                PPCII::MO_TPREL_HA);
3069     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3070                                                PPCII::MO_TPREL_LO);
3071     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3072                              : DAG.getRegister(PPC::R2, MVT::i32);
3073 
3074     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3075     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3076   }
3077 
3078   if (Model == TLSModel::InitialExec) {
3079     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3080     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3081                                                 PPCII::MO_TLS);
3082     SDValue GOTPtr;
3083     if (is64bit) {
3084       setUsesTOCBasePtr(DAG);
3085       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3086       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
3087                            PtrVT, GOTReg, TGA);
3088     } else {
3089       if (!TM.isPositionIndependent())
3090         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3091       else if (picLevel == PICLevel::SmallPIC)
3092         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3093       else
3094         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3095     }
3096     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
3097                                    PtrVT, TGA, GOTPtr);
3098     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3099   }
3100 
3101   if (Model == TLSModel::GeneralDynamic) {
3102     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3103     SDValue GOTPtr;
3104     if (is64bit) {
3105       setUsesTOCBasePtr(DAG);
3106       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3107       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3108                                    GOTReg, TGA);
3109     } else {
3110       if (picLevel == PICLevel::SmallPIC)
3111         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3112       else
3113         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3114     }
3115     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3116                        GOTPtr, TGA, TGA);
3117   }
3118 
3119   if (Model == TLSModel::LocalDynamic) {
3120     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3121     SDValue GOTPtr;
3122     if (is64bit) {
3123       setUsesTOCBasePtr(DAG);
3124       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3125       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3126                            GOTReg, TGA);
3127     } else {
3128       if (picLevel == PICLevel::SmallPIC)
3129         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3130       else
3131         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3132     }
3133     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3134                                   PtrVT, GOTPtr, TGA, TGA);
3135     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3136                                       PtrVT, TLSAddr, TGA);
3137     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3138   }
3139 
3140   llvm_unreachable("Unknown TLS model!");
3141 }
3142 
3143 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3144                                               SelectionDAG &DAG) const {
3145   EVT PtrVT = Op.getValueType();
3146   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3147   SDLoc DL(GSDN);
3148   const GlobalValue *GV = GSDN->getGlobal();
3149 
3150   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3151   // The actual address of the GlobalValue is stored in the TOC.
3152   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3153     if (Subtarget.isUsingPCRelativeCalls()) {
3154       EVT Ty = getPointerTy(DAG.getDataLayout());
3155       if (isAccessedAsGotIndirect(Op)) {
3156         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3157                                                 PPCII::MO_PCREL_FLAG |
3158                                                     PPCII::MO_GOT_FLAG);
3159         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3160         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3161                                    MachinePointerInfo());
3162         return Load;
3163       } else {
3164         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3165                                                 PPCII::MO_PCREL_FLAG);
3166         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3167       }
3168     }
3169     setUsesTOCBasePtr(DAG);
3170     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3171     return getTOCEntry(DAG, DL, GA);
3172   }
3173 
3174   unsigned MOHiFlag, MOLoFlag;
3175   bool IsPIC = isPositionIndependent();
3176   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3177 
3178   if (IsPIC && Subtarget.isSVR4ABI()) {
3179     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3180                                             GSDN->getOffset(),
3181                                             PPCII::MO_PIC_FLAG);
3182     return getTOCEntry(DAG, DL, GA);
3183   }
3184 
3185   SDValue GAHi =
3186     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3187   SDValue GALo =
3188     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3189 
3190   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3191 }
3192 
3193 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3194   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3195   SDLoc dl(Op);
3196 
3197   if (Op.getValueType() == MVT::v2i64) {
3198     // When the operands themselves are v2i64 values, we need to do something
3199     // special because VSX has no underlying comparison operations for these.
3200     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3201       // Equality can be handled by casting to the legal type for Altivec
3202       // comparisons, everything else needs to be expanded.
3203       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3204         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3205                  DAG.getSetCC(dl, MVT::v4i32,
3206                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3207                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3208                    CC));
3209       }
3210 
3211       return SDValue();
3212     }
3213 
3214     // We handle most of these in the usual way.
3215     return Op;
3216   }
3217 
3218   // If we're comparing for equality to zero, expose the fact that this is
3219   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3220   // fold the new nodes.
3221   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3222     return V;
3223 
3224   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3225     // Leave comparisons against 0 and -1 alone for now, since they're usually
3226     // optimized.  FIXME: revisit this when we can custom lower all setcc
3227     // optimizations.
3228     if (C->isAllOnesValue() || C->isNullValue())
3229       return SDValue();
3230   }
3231 
3232   // If we have an integer seteq/setne, turn it into a compare against zero
3233   // by xor'ing the rhs with the lhs, which is faster than setting a
3234   // condition register, reading it back out, and masking the correct bit.  The
3235   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3236   // the result to other bit-twiddling opportunities.
3237   EVT LHSVT = Op.getOperand(0).getValueType();
3238   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3239     EVT VT = Op.getValueType();
3240     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3241                                 Op.getOperand(1));
3242     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3243   }
3244   return SDValue();
3245 }
3246 
3247 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3248   SDNode *Node = Op.getNode();
3249   EVT VT = Node->getValueType(0);
3250   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3251   SDValue InChain = Node->getOperand(0);
3252   SDValue VAListPtr = Node->getOperand(1);
3253   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3254   SDLoc dl(Node);
3255 
3256   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3257 
3258   // gpr_index
3259   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3260                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3261   InChain = GprIndex.getValue(1);
3262 
3263   if (VT == MVT::i64) {
3264     // Check if GprIndex is even
3265     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3266                                  DAG.getConstant(1, dl, MVT::i32));
3267     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3268                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3269     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3270                                           DAG.getConstant(1, dl, MVT::i32));
3271     // Align GprIndex to be even if it isn't
3272     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3273                            GprIndex);
3274   }
3275 
3276   // fpr index is 1 byte after gpr
3277   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3278                                DAG.getConstant(1, dl, MVT::i32));
3279 
3280   // fpr
3281   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3282                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3283   InChain = FprIndex.getValue(1);
3284 
3285   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3286                                        DAG.getConstant(8, dl, MVT::i32));
3287 
3288   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3289                                         DAG.getConstant(4, dl, MVT::i32));
3290 
3291   // areas
3292   SDValue OverflowArea =
3293       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3294   InChain = OverflowArea.getValue(1);
3295 
3296   SDValue RegSaveArea =
3297       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3298   InChain = RegSaveArea.getValue(1);
3299 
3300   // select overflow_area if index > 8
3301   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3302                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3303 
3304   // adjustment constant gpr_index * 4/8
3305   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3306                                     VT.isInteger() ? GprIndex : FprIndex,
3307                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3308                                                     MVT::i32));
3309 
3310   // OurReg = RegSaveArea + RegConstant
3311   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3312                                RegConstant);
3313 
3314   // Floating types are 32 bytes into RegSaveArea
3315   if (VT.isFloatingPoint())
3316     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3317                          DAG.getConstant(32, dl, MVT::i32));
3318 
3319   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3320   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3321                                    VT.isInteger() ? GprIndex : FprIndex,
3322                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3323                                                    MVT::i32));
3324 
3325   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3326                               VT.isInteger() ? VAListPtr : FprPtr,
3327                               MachinePointerInfo(SV), MVT::i8);
3328 
3329   // determine if we should load from reg_save_area or overflow_area
3330   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3331 
3332   // increase overflow_area by 4/8 if gpr/fpr > 8
3333   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3334                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3335                                           dl, MVT::i32));
3336 
3337   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3338                              OverflowAreaPlusN);
3339 
3340   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3341                               MachinePointerInfo(), MVT::i32);
3342 
3343   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3344 }
3345 
3346 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3347   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3348 
3349   // We have to copy the entire va_list struct:
3350   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3351   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3352                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3353                        false, true, false, MachinePointerInfo(),
3354                        MachinePointerInfo());
3355 }
3356 
3357 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3358                                                   SelectionDAG &DAG) const {
3359   if (Subtarget.isAIXABI())
3360     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3361 
3362   return Op.getOperand(0);
3363 }
3364 
3365 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3366                                                 SelectionDAG &DAG) const {
3367   if (Subtarget.isAIXABI())
3368     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3369 
3370   SDValue Chain = Op.getOperand(0);
3371   SDValue Trmp = Op.getOperand(1); // trampoline
3372   SDValue FPtr = Op.getOperand(2); // nested function
3373   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3374   SDLoc dl(Op);
3375 
3376   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3377   bool isPPC64 = (PtrVT == MVT::i64);
3378   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3379 
3380   TargetLowering::ArgListTy Args;
3381   TargetLowering::ArgListEntry Entry;
3382 
3383   Entry.Ty = IntPtrTy;
3384   Entry.Node = Trmp; Args.push_back(Entry);
3385 
3386   // TrampSize == (isPPC64 ? 48 : 40);
3387   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3388                                isPPC64 ? MVT::i64 : MVT::i32);
3389   Args.push_back(Entry);
3390 
3391   Entry.Node = FPtr; Args.push_back(Entry);
3392   Entry.Node = Nest; Args.push_back(Entry);
3393 
3394   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3395   TargetLowering::CallLoweringInfo CLI(DAG);
3396   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3397       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3398       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3399 
3400   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3401   return CallResult.second;
3402 }
3403 
3404 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3405   MachineFunction &MF = DAG.getMachineFunction();
3406   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3407   EVT PtrVT = getPointerTy(MF.getDataLayout());
3408 
3409   SDLoc dl(Op);
3410 
3411   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3412     // vastart just stores the address of the VarArgsFrameIndex slot into the
3413     // memory location argument.
3414     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3415     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3416     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3417                         MachinePointerInfo(SV));
3418   }
3419 
3420   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3421   // We suppose the given va_list is already allocated.
3422   //
3423   // typedef struct {
3424   //  char gpr;     /* index into the array of 8 GPRs
3425   //                 * stored in the register save area
3426   //                 * gpr=0 corresponds to r3,
3427   //                 * gpr=1 to r4, etc.
3428   //                 */
3429   //  char fpr;     /* index into the array of 8 FPRs
3430   //                 * stored in the register save area
3431   //                 * fpr=0 corresponds to f1,
3432   //                 * fpr=1 to f2, etc.
3433   //                 */
3434   //  char *overflow_arg_area;
3435   //                /* location on stack that holds
3436   //                 * the next overflow argument
3437   //                 */
3438   //  char *reg_save_area;
3439   //               /* where r3:r10 and f1:f8 (if saved)
3440   //                * are stored
3441   //                */
3442   // } va_list[1];
3443 
3444   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3445   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3446   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3447                                             PtrVT);
3448   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3449                                  PtrVT);
3450 
3451   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3452   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3453 
3454   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3455   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3456 
3457   uint64_t FPROffset = 1;
3458   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3459 
3460   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3461 
3462   // Store first byte : number of int regs
3463   SDValue firstStore =
3464       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3465                         MachinePointerInfo(SV), MVT::i8);
3466   uint64_t nextOffset = FPROffset;
3467   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3468                                   ConstFPROffset);
3469 
3470   // Store second byte : number of float regs
3471   SDValue secondStore =
3472       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3473                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3474   nextOffset += StackOffset;
3475   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3476 
3477   // Store second word : arguments given on stack
3478   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3479                                     MachinePointerInfo(SV, nextOffset));
3480   nextOffset += FrameOffset;
3481   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3482 
3483   // Store third word : arguments given in registers
3484   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3485                       MachinePointerInfo(SV, nextOffset));
3486 }
3487 
3488 /// FPR - The set of FP registers that should be allocated for arguments
3489 /// on Darwin and AIX.
3490 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3491                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3492                                 PPC::F11, PPC::F12, PPC::F13};
3493 
3494 /// QFPR - The set of QPX registers that should be allocated for arguments.
3495 static const MCPhysReg QFPR[] = {
3496     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3497     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3498 
3499 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3500 /// the stack.
3501 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3502                                        unsigned PtrByteSize) {
3503   unsigned ArgSize = ArgVT.getStoreSize();
3504   if (Flags.isByVal())
3505     ArgSize = Flags.getByValSize();
3506 
3507   // Round up to multiples of the pointer size, except for array members,
3508   // which are always packed.
3509   if (!Flags.isInConsecutiveRegs())
3510     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3511 
3512   return ArgSize;
3513 }
3514 
3515 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3516 /// on the stack.
3517 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3518                                          ISD::ArgFlagsTy Flags,
3519                                          unsigned PtrByteSize) {
3520   Align Alignment(PtrByteSize);
3521 
3522   // Altivec parameters are padded to a 16 byte boundary.
3523   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3524       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3525       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3526       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3527     Alignment = Align(16);
3528   // QPX vector types stored in double-precision are padded to a 32 byte
3529   // boundary.
3530   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3531     Alignment = Align(32);
3532 
3533   // ByVal parameters are aligned as requested.
3534   if (Flags.isByVal()) {
3535     auto BVAlign = Flags.getNonZeroByValAlign();
3536     if (BVAlign > PtrByteSize) {
3537       if (BVAlign.value() % PtrByteSize != 0)
3538         llvm_unreachable(
3539             "ByVal alignment is not a multiple of the pointer size");
3540 
3541       Alignment = BVAlign;
3542     }
3543   }
3544 
3545   // Array members are always packed to their original alignment.
3546   if (Flags.isInConsecutiveRegs()) {
3547     // If the array member was split into multiple registers, the first
3548     // needs to be aligned to the size of the full type.  (Except for
3549     // ppcf128, which is only aligned as its f64 components.)
3550     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3551       Alignment = Align(OrigVT.getStoreSize());
3552     else
3553       Alignment = Align(ArgVT.getStoreSize());
3554   }
3555 
3556   return Alignment;
3557 }
3558 
3559 /// CalculateStackSlotUsed - Return whether this argument will use its
3560 /// stack slot (instead of being passed in registers).  ArgOffset,
3561 /// AvailableFPRs, and AvailableVRs must hold the current argument
3562 /// position, and will be updated to account for this argument.
3563 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3564                                    ISD::ArgFlagsTy Flags,
3565                                    unsigned PtrByteSize,
3566                                    unsigned LinkageSize,
3567                                    unsigned ParamAreaSize,
3568                                    unsigned &ArgOffset,
3569                                    unsigned &AvailableFPRs,
3570                                    unsigned &AvailableVRs, bool HasQPX) {
3571   bool UseMemory = false;
3572 
3573   // Respect alignment of argument on the stack.
3574   Align Alignment =
3575       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3576   ArgOffset = alignTo(ArgOffset, Alignment);
3577   // If there's no space left in the argument save area, we must
3578   // use memory (this check also catches zero-sized arguments).
3579   if (ArgOffset >= LinkageSize + ParamAreaSize)
3580     UseMemory = true;
3581 
3582   // Allocate argument on the stack.
3583   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3584   if (Flags.isInConsecutiveRegsLast())
3585     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3586   // If we overran the argument save area, we must use memory
3587   // (this check catches arguments passed partially in memory)
3588   if (ArgOffset > LinkageSize + ParamAreaSize)
3589     UseMemory = true;
3590 
3591   // However, if the argument is actually passed in an FPR or a VR,
3592   // we don't use memory after all.
3593   if (!Flags.isByVal()) {
3594     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3595         // QPX registers overlap with the scalar FP registers.
3596         (HasQPX && (ArgVT == MVT::v4f32 ||
3597                     ArgVT == MVT::v4f64 ||
3598                     ArgVT == MVT::v4i1)))
3599       if (AvailableFPRs > 0) {
3600         --AvailableFPRs;
3601         return false;
3602       }
3603     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3604         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3605         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3606         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3607       if (AvailableVRs > 0) {
3608         --AvailableVRs;
3609         return false;
3610       }
3611   }
3612 
3613   return UseMemory;
3614 }
3615 
3616 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3617 /// ensure minimum alignment required for target.
3618 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3619                                      unsigned NumBytes) {
3620   return alignTo(NumBytes, Lowering->getStackAlign());
3621 }
3622 
3623 SDValue PPCTargetLowering::LowerFormalArguments(
3624     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3625     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3626     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3627   if (Subtarget.isAIXABI())
3628     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3629                                     InVals);
3630   if (Subtarget.is64BitELFABI())
3631     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3632                                        InVals);
3633   if (Subtarget.is32BitELFABI())
3634     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3635                                        InVals);
3636 
3637   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3638                                      InVals);
3639 }
3640 
3641 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3642     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3643     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3644     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3645 
3646   // 32-bit SVR4 ABI Stack Frame Layout:
3647   //              +-----------------------------------+
3648   //        +-->  |            Back chain             |
3649   //        |     +-----------------------------------+
3650   //        |     | Floating-point register save area |
3651   //        |     +-----------------------------------+
3652   //        |     |    General register save area     |
3653   //        |     +-----------------------------------+
3654   //        |     |          CR save word             |
3655   //        |     +-----------------------------------+
3656   //        |     |         VRSAVE save word          |
3657   //        |     +-----------------------------------+
3658   //        |     |         Alignment padding         |
3659   //        |     +-----------------------------------+
3660   //        |     |     Vector register save area     |
3661   //        |     +-----------------------------------+
3662   //        |     |       Local variable space        |
3663   //        |     +-----------------------------------+
3664   //        |     |        Parameter list area        |
3665   //        |     +-----------------------------------+
3666   //        |     |           LR save word            |
3667   //        |     +-----------------------------------+
3668   // SP-->  +---  |            Back chain             |
3669   //              +-----------------------------------+
3670   //
3671   // Specifications:
3672   //   System V Application Binary Interface PowerPC Processor Supplement
3673   //   AltiVec Technology Programming Interface Manual
3674 
3675   MachineFunction &MF = DAG.getMachineFunction();
3676   MachineFrameInfo &MFI = MF.getFrameInfo();
3677   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3678 
3679   EVT PtrVT = getPointerTy(MF.getDataLayout());
3680   // Potential tail calls could cause overwriting of argument stack slots.
3681   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3682                        (CallConv == CallingConv::Fast));
3683   const Align PtrAlign(4);
3684 
3685   // Assign locations to all of the incoming arguments.
3686   SmallVector<CCValAssign, 16> ArgLocs;
3687   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3688                  *DAG.getContext());
3689 
3690   // Reserve space for the linkage area on the stack.
3691   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3692   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3693   if (useSoftFloat())
3694     CCInfo.PreAnalyzeFormalArguments(Ins);
3695 
3696   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3697   CCInfo.clearWasPPCF128();
3698 
3699   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3700     CCValAssign &VA = ArgLocs[i];
3701 
3702     // Arguments stored in registers.
3703     if (VA.isRegLoc()) {
3704       const TargetRegisterClass *RC;
3705       EVT ValVT = VA.getValVT();
3706 
3707       switch (ValVT.getSimpleVT().SimpleTy) {
3708         default:
3709           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3710         case MVT::i1:
3711         case MVT::i32:
3712           RC = &PPC::GPRCRegClass;
3713           break;
3714         case MVT::f32:
3715           if (Subtarget.hasP8Vector())
3716             RC = &PPC::VSSRCRegClass;
3717           else if (Subtarget.hasSPE())
3718             RC = &PPC::GPRCRegClass;
3719           else
3720             RC = &PPC::F4RCRegClass;
3721           break;
3722         case MVT::f64:
3723           if (Subtarget.hasVSX())
3724             RC = &PPC::VSFRCRegClass;
3725           else if (Subtarget.hasSPE())
3726             // SPE passes doubles in GPR pairs.
3727             RC = &PPC::GPRCRegClass;
3728           else
3729             RC = &PPC::F8RCRegClass;
3730           break;
3731         case MVT::v16i8:
3732         case MVT::v8i16:
3733         case MVT::v4i32:
3734           RC = &PPC::VRRCRegClass;
3735           break;
3736         case MVT::v4f32:
3737           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3738           break;
3739         case MVT::v2f64:
3740         case MVT::v2i64:
3741           RC = &PPC::VRRCRegClass;
3742           break;
3743         case MVT::v4f64:
3744           RC = &PPC::QFRCRegClass;
3745           break;
3746         case MVT::v4i1:
3747           RC = &PPC::QBRCRegClass;
3748           break;
3749       }
3750 
3751       SDValue ArgValue;
3752       // Transform the arguments stored in physical registers into
3753       // virtual ones.
3754       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3755         assert(i + 1 < e && "No second half of double precision argument");
3756         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3757         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3758         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3759         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3760         if (!Subtarget.isLittleEndian())
3761           std::swap (ArgValueLo, ArgValueHi);
3762         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3763                                ArgValueHi);
3764       } else {
3765         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3766         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3767                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3768         if (ValVT == MVT::i1)
3769           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3770       }
3771 
3772       InVals.push_back(ArgValue);
3773     } else {
3774       // Argument stored in memory.
3775       assert(VA.isMemLoc());
3776 
3777       // Get the extended size of the argument type in stack
3778       unsigned ArgSize = VA.getLocVT().getStoreSize();
3779       // Get the actual size of the argument type
3780       unsigned ObjSize = VA.getValVT().getStoreSize();
3781       unsigned ArgOffset = VA.getLocMemOffset();
3782       // Stack objects in PPC32 are right justified.
3783       ArgOffset += ArgSize - ObjSize;
3784       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3785 
3786       // Create load nodes to retrieve arguments from the stack.
3787       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3788       InVals.push_back(
3789           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3790     }
3791   }
3792 
3793   // Assign locations to all of the incoming aggregate by value arguments.
3794   // Aggregates passed by value are stored in the local variable space of the
3795   // caller's stack frame, right above the parameter list area.
3796   SmallVector<CCValAssign, 16> ByValArgLocs;
3797   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3798                       ByValArgLocs, *DAG.getContext());
3799 
3800   // Reserve stack space for the allocations in CCInfo.
3801   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3802 
3803   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3804 
3805   // Area that is at least reserved in the caller of this function.
3806   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3807   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3808 
3809   // Set the size that is at least reserved in caller of this function.  Tail
3810   // call optimized function's reserved stack space needs to be aligned so that
3811   // taking the difference between two stack areas will result in an aligned
3812   // stack.
3813   MinReservedArea =
3814       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3815   FuncInfo->setMinReservedArea(MinReservedArea);
3816 
3817   SmallVector<SDValue, 8> MemOps;
3818 
3819   // If the function takes variable number of arguments, make a frame index for
3820   // the start of the first vararg value... for expansion of llvm.va_start.
3821   if (isVarArg) {
3822     static const MCPhysReg GPArgRegs[] = {
3823       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3824       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3825     };
3826     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3827 
3828     static const MCPhysReg FPArgRegs[] = {
3829       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3830       PPC::F8
3831     };
3832     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3833 
3834     if (useSoftFloat() || hasSPE())
3835        NumFPArgRegs = 0;
3836 
3837     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3838     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3839 
3840     // Make room for NumGPArgRegs and NumFPArgRegs.
3841     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3842                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3843 
3844     FuncInfo->setVarArgsStackOffset(
3845       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3846                             CCInfo.getNextStackOffset(), true));
3847 
3848     FuncInfo->setVarArgsFrameIndex(
3849         MFI.CreateStackObject(Depth, Align(8), false));
3850     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3851 
3852     // The fixed integer arguments of a variadic function are stored to the
3853     // VarArgsFrameIndex on the stack so that they may be loaded by
3854     // dereferencing the result of va_next.
3855     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3856       // Get an existing live-in vreg, or add a new one.
3857       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3858       if (!VReg)
3859         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3860 
3861       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3862       SDValue Store =
3863           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3864       MemOps.push_back(Store);
3865       // Increment the address by four for the next argument to store
3866       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3867       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3868     }
3869 
3870     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3871     // is set.
3872     // The double arguments are stored to the VarArgsFrameIndex
3873     // on the stack.
3874     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3875       // Get an existing live-in vreg, or add a new one.
3876       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3877       if (!VReg)
3878         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3879 
3880       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3881       SDValue Store =
3882           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3883       MemOps.push_back(Store);
3884       // Increment the address by eight for the next argument to store
3885       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3886                                          PtrVT);
3887       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3888     }
3889   }
3890 
3891   if (!MemOps.empty())
3892     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3893 
3894   return Chain;
3895 }
3896 
3897 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3898 // value to MVT::i64 and then truncate to the correct register size.
3899 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3900                                              EVT ObjectVT, SelectionDAG &DAG,
3901                                              SDValue ArgVal,
3902                                              const SDLoc &dl) const {
3903   if (Flags.isSExt())
3904     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3905                          DAG.getValueType(ObjectVT));
3906   else if (Flags.isZExt())
3907     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3908                          DAG.getValueType(ObjectVT));
3909 
3910   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3911 }
3912 
3913 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3914     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3915     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3916     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3917   // TODO: add description of PPC stack frame format, or at least some docs.
3918   //
3919   bool isELFv2ABI = Subtarget.isELFv2ABI();
3920   bool isLittleEndian = Subtarget.isLittleEndian();
3921   MachineFunction &MF = DAG.getMachineFunction();
3922   MachineFrameInfo &MFI = MF.getFrameInfo();
3923   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3924 
3925   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3926          "fastcc not supported on varargs functions");
3927 
3928   EVT PtrVT = getPointerTy(MF.getDataLayout());
3929   // Potential tail calls could cause overwriting of argument stack slots.
3930   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3931                        (CallConv == CallingConv::Fast));
3932   unsigned PtrByteSize = 8;
3933   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3934 
3935   static const MCPhysReg GPR[] = {
3936     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3937     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3938   };
3939   static const MCPhysReg VR[] = {
3940     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3941     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3942   };
3943 
3944   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3945   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3946   const unsigned Num_VR_Regs  = array_lengthof(VR);
3947   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3948 
3949   // Do a first pass over the arguments to determine whether the ABI
3950   // guarantees that our caller has allocated the parameter save area
3951   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3952   // in the ELFv2 ABI, it is true if this is a vararg function or if
3953   // any parameter is located in a stack slot.
3954 
3955   bool HasParameterArea = !isELFv2ABI || isVarArg;
3956   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3957   unsigned NumBytes = LinkageSize;
3958   unsigned AvailableFPRs = Num_FPR_Regs;
3959   unsigned AvailableVRs = Num_VR_Regs;
3960   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3961     if (Ins[i].Flags.isNest())
3962       continue;
3963 
3964     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3965                                PtrByteSize, LinkageSize, ParamAreaSize,
3966                                NumBytes, AvailableFPRs, AvailableVRs,
3967                                Subtarget.hasQPX()))
3968       HasParameterArea = true;
3969   }
3970 
3971   // Add DAG nodes to load the arguments or copy them out of registers.  On
3972   // entry to a function on PPC, the arguments start after the linkage area,
3973   // although the first ones are often in registers.
3974 
3975   unsigned ArgOffset = LinkageSize;
3976   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3977   unsigned &QFPR_idx = FPR_idx;
3978   SmallVector<SDValue, 8> MemOps;
3979   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3980   unsigned CurArgIdx = 0;
3981   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3982     SDValue ArgVal;
3983     bool needsLoad = false;
3984     EVT ObjectVT = Ins[ArgNo].VT;
3985     EVT OrigVT = Ins[ArgNo].ArgVT;
3986     unsigned ObjSize = ObjectVT.getStoreSize();
3987     unsigned ArgSize = ObjSize;
3988     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3989     if (Ins[ArgNo].isOrigArg()) {
3990       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3991       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3992     }
3993     // We re-align the argument offset for each argument, except when using the
3994     // fast calling convention, when we need to make sure we do that only when
3995     // we'll actually use a stack slot.
3996     unsigned CurArgOffset;
3997     Align Alignment;
3998     auto ComputeArgOffset = [&]() {
3999       /* Respect alignment of argument on the stack.  */
4000       Alignment =
4001           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4002       ArgOffset = alignTo(ArgOffset, Alignment);
4003       CurArgOffset = ArgOffset;
4004     };
4005 
4006     if (CallConv != CallingConv::Fast) {
4007       ComputeArgOffset();
4008 
4009       /* Compute GPR index associated with argument offset.  */
4010       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4011       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4012     }
4013 
4014     // FIXME the codegen can be much improved in some cases.
4015     // We do not have to keep everything in memory.
4016     if (Flags.isByVal()) {
4017       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4018 
4019       if (CallConv == CallingConv::Fast)
4020         ComputeArgOffset();
4021 
4022       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4023       ObjSize = Flags.getByValSize();
4024       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4025       // Empty aggregate parameters do not take up registers.  Examples:
4026       //   struct { } a;
4027       //   union  { } b;
4028       //   int c[0];
4029       // etc.  However, we have to provide a place-holder in InVals, so
4030       // pretend we have an 8-byte item at the current address for that
4031       // purpose.
4032       if (!ObjSize) {
4033         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4034         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4035         InVals.push_back(FIN);
4036         continue;
4037       }
4038 
4039       // Create a stack object covering all stack doublewords occupied
4040       // by the argument.  If the argument is (fully or partially) on
4041       // the stack, or if the argument is fully in registers but the
4042       // caller has allocated the parameter save anyway, we can refer
4043       // directly to the caller's stack frame.  Otherwise, create a
4044       // local copy in our own frame.
4045       int FI;
4046       if (HasParameterArea ||
4047           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4048         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4049       else
4050         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4051       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4052 
4053       // Handle aggregates smaller than 8 bytes.
4054       if (ObjSize < PtrByteSize) {
4055         // The value of the object is its address, which differs from the
4056         // address of the enclosing doubleword on big-endian systems.
4057         SDValue Arg = FIN;
4058         if (!isLittleEndian) {
4059           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4060           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4061         }
4062         InVals.push_back(Arg);
4063 
4064         if (GPR_idx != Num_GPR_Regs) {
4065           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4066           FuncInfo->addLiveInAttr(VReg, Flags);
4067           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4068           SDValue Store;
4069 
4070           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4071             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4072                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4073             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4074                                       MachinePointerInfo(&*FuncArg), ObjType);
4075           } else {
4076             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4077             // store the whole register as-is to the parameter save area
4078             // slot.
4079             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4080                                  MachinePointerInfo(&*FuncArg));
4081           }
4082 
4083           MemOps.push_back(Store);
4084         }
4085         // Whether we copied from a register or not, advance the offset
4086         // into the parameter save area by a full doubleword.
4087         ArgOffset += PtrByteSize;
4088         continue;
4089       }
4090 
4091       // The value of the object is its address, which is the address of
4092       // its first stack doubleword.
4093       InVals.push_back(FIN);
4094 
4095       // Store whatever pieces of the object are in registers to memory.
4096       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4097         if (GPR_idx == Num_GPR_Regs)
4098           break;
4099 
4100         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4101         FuncInfo->addLiveInAttr(VReg, Flags);
4102         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4103         SDValue Addr = FIN;
4104         if (j) {
4105           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4106           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4107         }
4108         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4109                                      MachinePointerInfo(&*FuncArg, j));
4110         MemOps.push_back(Store);
4111         ++GPR_idx;
4112       }
4113       ArgOffset += ArgSize;
4114       continue;
4115     }
4116 
4117     switch (ObjectVT.getSimpleVT().SimpleTy) {
4118     default: llvm_unreachable("Unhandled argument type!");
4119     case MVT::i1:
4120     case MVT::i32:
4121     case MVT::i64:
4122       if (Flags.isNest()) {
4123         // The 'nest' parameter, if any, is passed in R11.
4124         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4125         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4126 
4127         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4128           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4129 
4130         break;
4131       }
4132 
4133       // These can be scalar arguments or elements of an integer array type
4134       // passed directly.  Clang may use those instead of "byval" aggregate
4135       // types to avoid forcing arguments to memory unnecessarily.
4136       if (GPR_idx != Num_GPR_Regs) {
4137         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4138         FuncInfo->addLiveInAttr(VReg, Flags);
4139         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4140 
4141         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4142           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4143           // value to MVT::i64 and then truncate to the correct register size.
4144           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4145       } else {
4146         if (CallConv == CallingConv::Fast)
4147           ComputeArgOffset();
4148 
4149         needsLoad = true;
4150         ArgSize = PtrByteSize;
4151       }
4152       if (CallConv != CallingConv::Fast || needsLoad)
4153         ArgOffset += 8;
4154       break;
4155 
4156     case MVT::f32:
4157     case MVT::f64:
4158       // These can be scalar arguments or elements of a float array type
4159       // passed directly.  The latter are used to implement ELFv2 homogenous
4160       // float aggregates.
4161       if (FPR_idx != Num_FPR_Regs) {
4162         unsigned VReg;
4163 
4164         if (ObjectVT == MVT::f32)
4165           VReg = MF.addLiveIn(FPR[FPR_idx],
4166                               Subtarget.hasP8Vector()
4167                                   ? &PPC::VSSRCRegClass
4168                                   : &PPC::F4RCRegClass);
4169         else
4170           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4171                                                 ? &PPC::VSFRCRegClass
4172                                                 : &PPC::F8RCRegClass);
4173 
4174         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4175         ++FPR_idx;
4176       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4177         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4178         // once we support fp <-> gpr moves.
4179 
4180         // This can only ever happen in the presence of f32 array types,
4181         // since otherwise we never run out of FPRs before running out
4182         // of GPRs.
4183         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4184         FuncInfo->addLiveInAttr(VReg, Flags);
4185         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4186 
4187         if (ObjectVT == MVT::f32) {
4188           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4189             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4190                                  DAG.getConstant(32, dl, MVT::i32));
4191           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4192         }
4193 
4194         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4195       } else {
4196         if (CallConv == CallingConv::Fast)
4197           ComputeArgOffset();
4198 
4199         needsLoad = true;
4200       }
4201 
4202       // When passing an array of floats, the array occupies consecutive
4203       // space in the argument area; only round up to the next doubleword
4204       // at the end of the array.  Otherwise, each float takes 8 bytes.
4205       if (CallConv != CallingConv::Fast || needsLoad) {
4206         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4207         ArgOffset += ArgSize;
4208         if (Flags.isInConsecutiveRegsLast())
4209           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4210       }
4211       break;
4212     case MVT::v4f32:
4213     case MVT::v4i32:
4214     case MVT::v8i16:
4215     case MVT::v16i8:
4216     case MVT::v2f64:
4217     case MVT::v2i64:
4218     case MVT::v1i128:
4219     case MVT::f128:
4220       if (!Subtarget.hasQPX()) {
4221         // These can be scalar arguments or elements of a vector array type
4222         // passed directly.  The latter are used to implement ELFv2 homogenous
4223         // vector aggregates.
4224         if (VR_idx != Num_VR_Regs) {
4225           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4226           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4227           ++VR_idx;
4228         } else {
4229           if (CallConv == CallingConv::Fast)
4230             ComputeArgOffset();
4231           needsLoad = true;
4232         }
4233         if (CallConv != CallingConv::Fast || needsLoad)
4234           ArgOffset += 16;
4235         break;
4236       } // not QPX
4237 
4238       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4239              "Invalid QPX parameter type");
4240       LLVM_FALLTHROUGH;
4241 
4242     case MVT::v4f64:
4243     case MVT::v4i1:
4244       // QPX vectors are treated like their scalar floating-point subregisters
4245       // (except that they're larger).
4246       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4247       if (QFPR_idx != Num_QFPR_Regs) {
4248         const TargetRegisterClass *RC;
4249         switch (ObjectVT.getSimpleVT().SimpleTy) {
4250         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4251         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4252         default:         RC = &PPC::QBRCRegClass; break;
4253         }
4254 
4255         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4256         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4257         ++QFPR_idx;
4258       } else {
4259         if (CallConv == CallingConv::Fast)
4260           ComputeArgOffset();
4261         needsLoad = true;
4262       }
4263       if (CallConv != CallingConv::Fast || needsLoad)
4264         ArgOffset += Sz;
4265       break;
4266     }
4267 
4268     // We need to load the argument to a virtual register if we determined
4269     // above that we ran out of physical registers of the appropriate type.
4270     if (needsLoad) {
4271       if (ObjSize < ArgSize && !isLittleEndian)
4272         CurArgOffset += ArgSize - ObjSize;
4273       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4274       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4275       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4276     }
4277 
4278     InVals.push_back(ArgVal);
4279   }
4280 
4281   // Area that is at least reserved in the caller of this function.
4282   unsigned MinReservedArea;
4283   if (HasParameterArea)
4284     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4285   else
4286     MinReservedArea = LinkageSize;
4287 
4288   // Set the size that is at least reserved in caller of this function.  Tail
4289   // call optimized functions' reserved stack space needs to be aligned so that
4290   // taking the difference between two stack areas will result in an aligned
4291   // stack.
4292   MinReservedArea =
4293       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4294   FuncInfo->setMinReservedArea(MinReservedArea);
4295 
4296   // If the function takes variable number of arguments, make a frame index for
4297   // the start of the first vararg value... for expansion of llvm.va_start.
4298   // On ELFv2ABI spec, it writes:
4299   // C programs that are intended to be *portable* across different compilers
4300   // and architectures must use the header file <stdarg.h> to deal with variable
4301   // argument lists.
4302   if (isVarArg && MFI.hasVAStart()) {
4303     int Depth = ArgOffset;
4304 
4305     FuncInfo->setVarArgsFrameIndex(
4306       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4307     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4308 
4309     // If this function is vararg, store any remaining integer argument regs
4310     // to their spots on the stack so that they may be loaded by dereferencing
4311     // the result of va_next.
4312     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4313          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4314       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4315       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4316       SDValue Store =
4317           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4318       MemOps.push_back(Store);
4319       // Increment the address by four for the next argument to store
4320       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4321       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4322     }
4323   }
4324 
4325   if (!MemOps.empty())
4326     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4327 
4328   return Chain;
4329 }
4330 
4331 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4332     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4333     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4334     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4335   // TODO: add description of PPC stack frame format, or at least some docs.
4336   //
4337   MachineFunction &MF = DAG.getMachineFunction();
4338   MachineFrameInfo &MFI = MF.getFrameInfo();
4339   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4340 
4341   EVT PtrVT = getPointerTy(MF.getDataLayout());
4342   bool isPPC64 = PtrVT == MVT::i64;
4343   // Potential tail calls could cause overwriting of argument stack slots.
4344   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4345                        (CallConv == CallingConv::Fast));
4346   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4347   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4348   unsigned ArgOffset = LinkageSize;
4349   // Area that is at least reserved in caller of this function.
4350   unsigned MinReservedArea = ArgOffset;
4351 
4352   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4353     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4354     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4355   };
4356   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4357     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4358     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4359   };
4360   static const MCPhysReg VR[] = {
4361     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4362     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4363   };
4364 
4365   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4366   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4367   const unsigned Num_VR_Regs  = array_lengthof( VR);
4368 
4369   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4370 
4371   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4372 
4373   // In 32-bit non-varargs functions, the stack space for vectors is after the
4374   // stack space for non-vectors.  We do not use this space unless we have
4375   // too many vectors to fit in registers, something that only occurs in
4376   // constructed examples:), but we have to walk the arglist to figure
4377   // that out...for the pathological case, compute VecArgOffset as the
4378   // start of the vector parameter area.  Computing VecArgOffset is the
4379   // entire point of the following loop.
4380   unsigned VecArgOffset = ArgOffset;
4381   if (!isVarArg && !isPPC64) {
4382     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4383          ++ArgNo) {
4384       EVT ObjectVT = Ins[ArgNo].VT;
4385       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4386 
4387       if (Flags.isByVal()) {
4388         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4389         unsigned ObjSize = Flags.getByValSize();
4390         unsigned ArgSize =
4391                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4392         VecArgOffset += ArgSize;
4393         continue;
4394       }
4395 
4396       switch(ObjectVT.getSimpleVT().SimpleTy) {
4397       default: llvm_unreachable("Unhandled argument type!");
4398       case MVT::i1:
4399       case MVT::i32:
4400       case MVT::f32:
4401         VecArgOffset += 4;
4402         break;
4403       case MVT::i64:  // PPC64
4404       case MVT::f64:
4405         // FIXME: We are guaranteed to be !isPPC64 at this point.
4406         // Does MVT::i64 apply?
4407         VecArgOffset += 8;
4408         break;
4409       case MVT::v4f32:
4410       case MVT::v4i32:
4411       case MVT::v8i16:
4412       case MVT::v16i8:
4413         // Nothing to do, we're only looking at Nonvector args here.
4414         break;
4415       }
4416     }
4417   }
4418   // We've found where the vector parameter area in memory is.  Skip the
4419   // first 12 parameters; these don't use that memory.
4420   VecArgOffset = ((VecArgOffset+15)/16)*16;
4421   VecArgOffset += 12*16;
4422 
4423   // Add DAG nodes to load the arguments or copy them out of registers.  On
4424   // entry to a function on PPC, the arguments start after the linkage area,
4425   // although the first ones are often in registers.
4426 
4427   SmallVector<SDValue, 8> MemOps;
4428   unsigned nAltivecParamsAtEnd = 0;
4429   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4430   unsigned CurArgIdx = 0;
4431   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4432     SDValue ArgVal;
4433     bool needsLoad = false;
4434     EVT ObjectVT = Ins[ArgNo].VT;
4435     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4436     unsigned ArgSize = ObjSize;
4437     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4438     if (Ins[ArgNo].isOrigArg()) {
4439       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4440       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4441     }
4442     unsigned CurArgOffset = ArgOffset;
4443 
4444     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4445     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4446         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4447       if (isVarArg || isPPC64) {
4448         MinReservedArea = ((MinReservedArea+15)/16)*16;
4449         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4450                                                   Flags,
4451                                                   PtrByteSize);
4452       } else  nAltivecParamsAtEnd++;
4453     } else
4454       // Calculate min reserved area.
4455       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4456                                                 Flags,
4457                                                 PtrByteSize);
4458 
4459     // FIXME the codegen can be much improved in some cases.
4460     // We do not have to keep everything in memory.
4461     if (Flags.isByVal()) {
4462       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4463 
4464       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4465       ObjSize = Flags.getByValSize();
4466       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4467       // Objects of size 1 and 2 are right justified, everything else is
4468       // left justified.  This means the memory address is adjusted forwards.
4469       if (ObjSize==1 || ObjSize==2) {
4470         CurArgOffset = CurArgOffset + (4 - ObjSize);
4471       }
4472       // The value of the object is its address.
4473       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4474       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4475       InVals.push_back(FIN);
4476       if (ObjSize==1 || ObjSize==2) {
4477         if (GPR_idx != Num_GPR_Regs) {
4478           unsigned VReg;
4479           if (isPPC64)
4480             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4481           else
4482             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4483           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4484           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4485           SDValue Store =
4486               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4487                                 MachinePointerInfo(&*FuncArg), ObjType);
4488           MemOps.push_back(Store);
4489           ++GPR_idx;
4490         }
4491 
4492         ArgOffset += PtrByteSize;
4493 
4494         continue;
4495       }
4496       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4497         // Store whatever pieces of the object are in registers
4498         // to memory.  ArgOffset will be the address of the beginning
4499         // of the object.
4500         if (GPR_idx != Num_GPR_Regs) {
4501           unsigned VReg;
4502           if (isPPC64)
4503             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4504           else
4505             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4506           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4507           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4508           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4509           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4510                                        MachinePointerInfo(&*FuncArg, j));
4511           MemOps.push_back(Store);
4512           ++GPR_idx;
4513           ArgOffset += PtrByteSize;
4514         } else {
4515           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4516           break;
4517         }
4518       }
4519       continue;
4520     }
4521 
4522     switch (ObjectVT.getSimpleVT().SimpleTy) {
4523     default: llvm_unreachable("Unhandled argument type!");
4524     case MVT::i1:
4525     case MVT::i32:
4526       if (!isPPC64) {
4527         if (GPR_idx != Num_GPR_Regs) {
4528           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4529           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4530 
4531           if (ObjectVT == MVT::i1)
4532             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4533 
4534           ++GPR_idx;
4535         } else {
4536           needsLoad = true;
4537           ArgSize = PtrByteSize;
4538         }
4539         // All int arguments reserve stack space in the Darwin ABI.
4540         ArgOffset += PtrByteSize;
4541         break;
4542       }
4543       LLVM_FALLTHROUGH;
4544     case MVT::i64:  // PPC64
4545       if (GPR_idx != Num_GPR_Regs) {
4546         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4547         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4548 
4549         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4550           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4551           // value to MVT::i64 and then truncate to the correct register size.
4552           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4553 
4554         ++GPR_idx;
4555       } else {
4556         needsLoad = true;
4557         ArgSize = PtrByteSize;
4558       }
4559       // All int arguments reserve stack space in the Darwin ABI.
4560       ArgOffset += 8;
4561       break;
4562 
4563     case MVT::f32:
4564     case MVT::f64:
4565       // Every 4 bytes of argument space consumes one of the GPRs available for
4566       // argument passing.
4567       if (GPR_idx != Num_GPR_Regs) {
4568         ++GPR_idx;
4569         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4570           ++GPR_idx;
4571       }
4572       if (FPR_idx != Num_FPR_Regs) {
4573         unsigned VReg;
4574 
4575         if (ObjectVT == MVT::f32)
4576           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4577         else
4578           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4579 
4580         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4581         ++FPR_idx;
4582       } else {
4583         needsLoad = true;
4584       }
4585 
4586       // All FP arguments reserve stack space in the Darwin ABI.
4587       ArgOffset += isPPC64 ? 8 : ObjSize;
4588       break;
4589     case MVT::v4f32:
4590     case MVT::v4i32:
4591     case MVT::v8i16:
4592     case MVT::v16i8:
4593       // Note that vector arguments in registers don't reserve stack space,
4594       // except in varargs functions.
4595       if (VR_idx != Num_VR_Regs) {
4596         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4597         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4598         if (isVarArg) {
4599           while ((ArgOffset % 16) != 0) {
4600             ArgOffset += PtrByteSize;
4601             if (GPR_idx != Num_GPR_Regs)
4602               GPR_idx++;
4603           }
4604           ArgOffset += 16;
4605           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4606         }
4607         ++VR_idx;
4608       } else {
4609         if (!isVarArg && !isPPC64) {
4610           // Vectors go after all the nonvectors.
4611           CurArgOffset = VecArgOffset;
4612           VecArgOffset += 16;
4613         } else {
4614           // Vectors are aligned.
4615           ArgOffset = ((ArgOffset+15)/16)*16;
4616           CurArgOffset = ArgOffset;
4617           ArgOffset += 16;
4618         }
4619         needsLoad = true;
4620       }
4621       break;
4622     }
4623 
4624     // We need to load the argument to a virtual register if we determined above
4625     // that we ran out of physical registers of the appropriate type.
4626     if (needsLoad) {
4627       int FI = MFI.CreateFixedObject(ObjSize,
4628                                      CurArgOffset + (ArgSize - ObjSize),
4629                                      isImmutable);
4630       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4631       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4632     }
4633 
4634     InVals.push_back(ArgVal);
4635   }
4636 
4637   // Allow for Altivec parameters at the end, if needed.
4638   if (nAltivecParamsAtEnd) {
4639     MinReservedArea = ((MinReservedArea+15)/16)*16;
4640     MinReservedArea += 16*nAltivecParamsAtEnd;
4641   }
4642 
4643   // Area that is at least reserved in the caller of this function.
4644   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4645 
4646   // Set the size that is at least reserved in caller of this function.  Tail
4647   // call optimized functions' reserved stack space needs to be aligned so that
4648   // taking the difference between two stack areas will result in an aligned
4649   // stack.
4650   MinReservedArea =
4651       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4652   FuncInfo->setMinReservedArea(MinReservedArea);
4653 
4654   // If the function takes variable number of arguments, make a frame index for
4655   // the start of the first vararg value... for expansion of llvm.va_start.
4656   if (isVarArg) {
4657     int Depth = ArgOffset;
4658 
4659     FuncInfo->setVarArgsFrameIndex(
4660       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4661                             Depth, true));
4662     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4663 
4664     // If this function is vararg, store any remaining integer argument regs
4665     // to their spots on the stack so that they may be loaded by dereferencing
4666     // the result of va_next.
4667     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4668       unsigned VReg;
4669 
4670       if (isPPC64)
4671         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4672       else
4673         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4674 
4675       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4676       SDValue Store =
4677           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4678       MemOps.push_back(Store);
4679       // Increment the address by four for the next argument to store
4680       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4681       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4682     }
4683   }
4684 
4685   if (!MemOps.empty())
4686     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4687 
4688   return Chain;
4689 }
4690 
4691 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4692 /// adjusted to accommodate the arguments for the tailcall.
4693 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4694                                    unsigned ParamSize) {
4695 
4696   if (!isTailCall) return 0;
4697 
4698   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4699   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4700   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4701   // Remember only if the new adjustment is bigger.
4702   if (SPDiff < FI->getTailCallSPDelta())
4703     FI->setTailCallSPDelta(SPDiff);
4704 
4705   return SPDiff;
4706 }
4707 
4708 static bool isFunctionGlobalAddress(SDValue Callee);
4709 
4710 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4711                               const TargetMachine &TM) {
4712   // It does not make sense to call callsShareTOCBase() with a caller that
4713   // is PC Relative since PC Relative callers do not have a TOC.
4714 #ifndef NDEBUG
4715   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4716   assert(!STICaller->isUsingPCRelativeCalls() &&
4717          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4718 #endif
4719 
4720   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4721   // don't have enough information to determine if the caller and callee share
4722   // the same  TOC base, so we have to pessimistically assume they don't for
4723   // correctness.
4724   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4725   if (!G)
4726     return false;
4727 
4728   const GlobalValue *GV = G->getGlobal();
4729 
4730   // If the callee is preemptable, then the static linker will use a plt-stub
4731   // which saves the toc to the stack, and needs a nop after the call
4732   // instruction to convert to a toc-restore.
4733   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4734     return false;
4735 
4736   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4737   // We may need a TOC restore in the situation where the caller requires a
4738   // valid TOC but the callee is PC Relative and does not.
4739   const Function *F = dyn_cast<Function>(GV);
4740   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4741 
4742   // If we have an Alias we can try to get the function from there.
4743   if (Alias) {
4744     const GlobalObject *GlobalObj = Alias->getBaseObject();
4745     F = dyn_cast<Function>(GlobalObj);
4746   }
4747 
4748   // If we still have no valid function pointer we do not have enough
4749   // information to determine if the callee uses PC Relative calls so we must
4750   // assume that it does.
4751   if (!F)
4752     return false;
4753 
4754   // If the callee uses PC Relative we cannot guarantee that the callee won't
4755   // clobber the TOC of the caller and so we must assume that the two
4756   // functions do not share a TOC base.
4757   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4758   if (STICallee->isUsingPCRelativeCalls())
4759     return false;
4760 
4761   // The medium and large code models are expected to provide a sufficiently
4762   // large TOC to provide all data addressing needs of a module with a
4763   // single TOC.
4764   if (CodeModel::Medium == TM.getCodeModel() ||
4765       CodeModel::Large == TM.getCodeModel())
4766     return true;
4767 
4768   // Otherwise we need to ensure callee and caller are in the same section,
4769   // since the linker may allocate multiple TOCs, and we don't know which
4770   // sections will belong to the same TOC base.
4771   if (!GV->isStrongDefinitionForLinker())
4772     return false;
4773 
4774   // Any explicitly-specified sections and section prefixes must also match.
4775   // Also, if we're using -ffunction-sections, then each function is always in
4776   // a different section (the same is true for COMDAT functions).
4777   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4778       GV->getSection() != Caller->getSection())
4779     return false;
4780   if (const auto *F = dyn_cast<Function>(GV)) {
4781     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4782       return false;
4783   }
4784 
4785   return true;
4786 }
4787 
4788 static bool
4789 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4790                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4791   assert(Subtarget.is64BitELFABI());
4792 
4793   const unsigned PtrByteSize = 8;
4794   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4795 
4796   static const MCPhysReg GPR[] = {
4797     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4798     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4799   };
4800   static const MCPhysReg VR[] = {
4801     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4802     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4803   };
4804 
4805   const unsigned NumGPRs = array_lengthof(GPR);
4806   const unsigned NumFPRs = 13;
4807   const unsigned NumVRs = array_lengthof(VR);
4808   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4809 
4810   unsigned NumBytes = LinkageSize;
4811   unsigned AvailableFPRs = NumFPRs;
4812   unsigned AvailableVRs = NumVRs;
4813 
4814   for (const ISD::OutputArg& Param : Outs) {
4815     if (Param.Flags.isNest()) continue;
4816 
4817     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4818                                PtrByteSize, LinkageSize, ParamAreaSize,
4819                                NumBytes, AvailableFPRs, AvailableVRs,
4820                                Subtarget.hasQPX()))
4821       return true;
4822   }
4823   return false;
4824 }
4825 
4826 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4827   if (CB.arg_size() != CallerFn->arg_size())
4828     return false;
4829 
4830   auto CalleeArgIter = CB.arg_begin();
4831   auto CalleeArgEnd = CB.arg_end();
4832   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4833 
4834   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4835     const Value* CalleeArg = *CalleeArgIter;
4836     const Value* CallerArg = &(*CallerArgIter);
4837     if (CalleeArg == CallerArg)
4838       continue;
4839 
4840     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4841     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4842     //      }
4843     // 1st argument of callee is undef and has the same type as caller.
4844     if (CalleeArg->getType() == CallerArg->getType() &&
4845         isa<UndefValue>(CalleeArg))
4846       continue;
4847 
4848     return false;
4849   }
4850 
4851   return true;
4852 }
4853 
4854 // Returns true if TCO is possible between the callers and callees
4855 // calling conventions.
4856 static bool
4857 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4858                                     CallingConv::ID CalleeCC) {
4859   // Tail calls are possible with fastcc and ccc.
4860   auto isTailCallableCC  = [] (CallingConv::ID CC){
4861       return  CC == CallingConv::C || CC == CallingConv::Fast;
4862   };
4863   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4864     return false;
4865 
4866   // We can safely tail call both fastcc and ccc callees from a c calling
4867   // convention caller. If the caller is fastcc, we may have less stack space
4868   // than a non-fastcc caller with the same signature so disable tail-calls in
4869   // that case.
4870   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4871 }
4872 
4873 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4874     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4875     const SmallVectorImpl<ISD::OutputArg> &Outs,
4876     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4877   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4878 
4879   if (DisableSCO && !TailCallOpt) return false;
4880 
4881   // Variadic argument functions are not supported.
4882   if (isVarArg) return false;
4883 
4884   auto &Caller = DAG.getMachineFunction().getFunction();
4885   // Check that the calling conventions are compatible for tco.
4886   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4887     return false;
4888 
4889   // Caller contains any byval parameter is not supported.
4890   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4891     return false;
4892 
4893   // Callee contains any byval parameter is not supported, too.
4894   // Note: This is a quick work around, because in some cases, e.g.
4895   // caller's stack size > callee's stack size, we are still able to apply
4896   // sibling call optimization. For example, gcc is able to do SCO for caller1
4897   // in the following example, but not for caller2.
4898   //   struct test {
4899   //     long int a;
4900   //     char ary[56];
4901   //   } gTest;
4902   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4903   //     b->a = v.a;
4904   //     return 0;
4905   //   }
4906   //   void caller1(struct test a, struct test c, struct test *b) {
4907   //     callee(gTest, b); }
4908   //   void caller2(struct test *b) { callee(gTest, b); }
4909   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4910     return false;
4911 
4912   // If callee and caller use different calling conventions, we cannot pass
4913   // parameters on stack since offsets for the parameter area may be different.
4914   if (Caller.getCallingConv() != CalleeCC &&
4915       needStackSlotPassParameters(Subtarget, Outs))
4916     return false;
4917 
4918   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4919   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4920   // callee potentially have different TOC bases then we cannot tail call since
4921   // we need to restore the TOC pointer after the call.
4922   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4923   // We cannot guarantee this for indirect calls or calls to external functions.
4924   // When PC-Relative addressing is used, the concept of the TOC is no longer
4925   // applicable so this check is not required.
4926   // Check first for indirect calls.
4927   if (!Subtarget.isUsingPCRelativeCalls() &&
4928       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4929     return false;
4930 
4931   // Check if we share the TOC base.
4932   if (!Subtarget.isUsingPCRelativeCalls() &&
4933       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4934     return false;
4935 
4936   // TCO allows altering callee ABI, so we don't have to check further.
4937   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4938     return true;
4939 
4940   if (DisableSCO) return false;
4941 
4942   // If callee use the same argument list that caller is using, then we can
4943   // apply SCO on this case. If it is not, then we need to check if callee needs
4944   // stack for passing arguments.
4945   // PC Relative tail calls may not have a CallBase.
4946   // If there is no CallBase we cannot verify if we have the same argument
4947   // list so assume that we don't have the same argument list.
4948   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4949       needStackSlotPassParameters(Subtarget, Outs))
4950     return false;
4951   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4952     return false;
4953 
4954   return true;
4955 }
4956 
4957 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4958 /// for tail call optimization. Targets which want to do tail call
4959 /// optimization should implement this function.
4960 bool
4961 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4962                                                      CallingConv::ID CalleeCC,
4963                                                      bool isVarArg,
4964                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4965                                                      SelectionDAG& DAG) const {
4966   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4967     return false;
4968 
4969   // Variable argument functions are not supported.
4970   if (isVarArg)
4971     return false;
4972 
4973   MachineFunction &MF = DAG.getMachineFunction();
4974   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4975   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4976     // Functions containing by val parameters are not supported.
4977     for (unsigned i = 0; i != Ins.size(); i++) {
4978        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4979        if (Flags.isByVal()) return false;
4980     }
4981 
4982     // Non-PIC/GOT tail calls are supported.
4983     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4984       return true;
4985 
4986     // At the moment we can only do local tail calls (in same module, hidden
4987     // or protected) if we are generating PIC.
4988     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4989       return G->getGlobal()->hasHiddenVisibility()
4990           || G->getGlobal()->hasProtectedVisibility();
4991   }
4992 
4993   return false;
4994 }
4995 
4996 /// isCallCompatibleAddress - Return the immediate to use if the specified
4997 /// 32-bit value is representable in the immediate field of a BxA instruction.
4998 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4999   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5000   if (!C) return nullptr;
5001 
5002   int Addr = C->getZExtValue();
5003   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
5004       SignExtend32<26>(Addr) != Addr)
5005     return nullptr;  // Top 6 bits have to be sext of immediate.
5006 
5007   return DAG
5008       .getConstant(
5009           (int)C->getZExtValue() >> 2, SDLoc(Op),
5010           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
5011       .getNode();
5012 }
5013 
5014 namespace {
5015 
5016 struct TailCallArgumentInfo {
5017   SDValue Arg;
5018   SDValue FrameIdxOp;
5019   int FrameIdx = 0;
5020 
5021   TailCallArgumentInfo() = default;
5022 };
5023 
5024 } // end anonymous namespace
5025 
5026 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
5027 static void StoreTailCallArgumentsToStackSlot(
5028     SelectionDAG &DAG, SDValue Chain,
5029     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
5030     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
5031   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
5032     SDValue Arg = TailCallArgs[i].Arg;
5033     SDValue FIN = TailCallArgs[i].FrameIdxOp;
5034     int FI = TailCallArgs[i].FrameIdx;
5035     // Store relative to framepointer.
5036     MemOpChains.push_back(DAG.getStore(
5037         Chain, dl, Arg, FIN,
5038         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
5039   }
5040 }
5041 
5042 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
5043 /// the appropriate stack slot for the tail call optimized function call.
5044 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
5045                                              SDValue OldRetAddr, SDValue OldFP,
5046                                              int SPDiff, const SDLoc &dl) {
5047   if (SPDiff) {
5048     // Calculate the new stack slot for the return address.
5049     MachineFunction &MF = DAG.getMachineFunction();
5050     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5051     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5052     bool isPPC64 = Subtarget.isPPC64();
5053     int SlotSize = isPPC64 ? 8 : 4;
5054     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5055     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5056                                                          NewRetAddrLoc, true);
5057     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5058     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5059     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5060                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5061   }
5062   return Chain;
5063 }
5064 
5065 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5066 /// the position of the argument.
5067 static void
5068 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5069                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5070                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5071   int Offset = ArgOffset + SPDiff;
5072   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5073   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5074   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5075   SDValue FIN = DAG.getFrameIndex(FI, VT);
5076   TailCallArgumentInfo Info;
5077   Info.Arg = Arg;
5078   Info.FrameIdxOp = FIN;
5079   Info.FrameIdx = FI;
5080   TailCallArguments.push_back(Info);
5081 }
5082 
5083 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5084 /// stack slot. Returns the chain as result and the loaded frame pointers in
5085 /// LROpOut/FPOpout. Used when tail calling.
5086 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5087     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5088     SDValue &FPOpOut, const SDLoc &dl) const {
5089   if (SPDiff) {
5090     // Load the LR and FP stack slot for later adjusting.
5091     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5092     LROpOut = getReturnAddrFrameIndex(DAG);
5093     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5094     Chain = SDValue(LROpOut.getNode(), 1);
5095   }
5096   return Chain;
5097 }
5098 
5099 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5100 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5101 /// specified by the specific parameter attribute. The copy will be passed as
5102 /// a byval function parameter.
5103 /// Sometimes what we are copying is the end of a larger object, the part that
5104 /// does not fit in registers.
5105 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5106                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5107                                          SelectionDAG &DAG, const SDLoc &dl) {
5108   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5109   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5110                        Flags.getNonZeroByValAlign(), false, false, false,
5111                        MachinePointerInfo(), MachinePointerInfo());
5112 }
5113 
5114 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5115 /// tail calls.
5116 static void LowerMemOpCallTo(
5117     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5118     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5119     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5120     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5121   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5122   if (!isTailCall) {
5123     if (isVector) {
5124       SDValue StackPtr;
5125       if (isPPC64)
5126         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5127       else
5128         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5129       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5130                            DAG.getConstant(ArgOffset, dl, PtrVT));
5131     }
5132     MemOpChains.push_back(
5133         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5134     // Calculate and remember argument location.
5135   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5136                                   TailCallArguments);
5137 }
5138 
5139 static void
5140 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5141                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5142                 SDValue FPOp,
5143                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5144   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5145   // might overwrite each other in case of tail call optimization.
5146   SmallVector<SDValue, 8> MemOpChains2;
5147   // Do not flag preceding copytoreg stuff together with the following stuff.
5148   InFlag = SDValue();
5149   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5150                                     MemOpChains2, dl);
5151   if (!MemOpChains2.empty())
5152     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5153 
5154   // Store the return address to the appropriate stack slot.
5155   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5156 
5157   // Emit callseq_end just before tailcall node.
5158   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5159                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5160   InFlag = Chain.getValue(1);
5161 }
5162 
5163 // Is this global address that of a function that can be called by name? (as
5164 // opposed to something that must hold a descriptor for an indirect call).
5165 static bool isFunctionGlobalAddress(SDValue Callee) {
5166   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5167     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5168         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5169       return false;
5170 
5171     return G->getGlobal()->getValueType()->isFunctionTy();
5172   }
5173 
5174   return false;
5175 }
5176 
5177 SDValue PPCTargetLowering::LowerCallResult(
5178     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5179     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5180     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5181   SmallVector<CCValAssign, 16> RVLocs;
5182   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5183                     *DAG.getContext());
5184 
5185   CCRetInfo.AnalyzeCallResult(
5186       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5187                ? RetCC_PPC_Cold
5188                : RetCC_PPC);
5189 
5190   // Copy all of the result registers out of their specified physreg.
5191   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5192     CCValAssign &VA = RVLocs[i];
5193     assert(VA.isRegLoc() && "Can only return in registers!");
5194 
5195     SDValue Val;
5196 
5197     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5198       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5199                                       InFlag);
5200       Chain = Lo.getValue(1);
5201       InFlag = Lo.getValue(2);
5202       VA = RVLocs[++i]; // skip ahead to next loc
5203       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5204                                       InFlag);
5205       Chain = Hi.getValue(1);
5206       InFlag = Hi.getValue(2);
5207       if (!Subtarget.isLittleEndian())
5208         std::swap (Lo, Hi);
5209       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5210     } else {
5211       Val = DAG.getCopyFromReg(Chain, dl,
5212                                VA.getLocReg(), VA.getLocVT(), InFlag);
5213       Chain = Val.getValue(1);
5214       InFlag = Val.getValue(2);
5215     }
5216 
5217     switch (VA.getLocInfo()) {
5218     default: llvm_unreachable("Unknown loc info!");
5219     case CCValAssign::Full: break;
5220     case CCValAssign::AExt:
5221       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5222       break;
5223     case CCValAssign::ZExt:
5224       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5225                         DAG.getValueType(VA.getValVT()));
5226       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5227       break;
5228     case CCValAssign::SExt:
5229       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5230                         DAG.getValueType(VA.getValVT()));
5231       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5232       break;
5233     }
5234 
5235     InVals.push_back(Val);
5236   }
5237 
5238   return Chain;
5239 }
5240 
5241 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5242                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5243   // PatchPoint calls are not indirect.
5244   if (isPatchPoint)
5245     return false;
5246 
5247   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5248     return false;
5249 
5250   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5251   // becuase the immediate function pointer points to a descriptor instead of
5252   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5253   // pointer immediate points to the global entry point, while the BLA would
5254   // need to jump to the local entry point (see rL211174).
5255   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5256       isBLACompatibleAddress(Callee, DAG))
5257     return false;
5258 
5259   return true;
5260 }
5261 
5262 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5263 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5264   return Subtarget.isAIXABI() ||
5265          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5266 }
5267 
5268 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5269                               const Function &Caller,
5270                               const SDValue &Callee,
5271                               const PPCSubtarget &Subtarget,
5272                               const TargetMachine &TM) {
5273   if (CFlags.IsTailCall)
5274     return PPCISD::TC_RETURN;
5275 
5276   // This is a call through a function pointer.
5277   if (CFlags.IsIndirect) {
5278     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5279     // indirect calls. The save of the caller's TOC pointer to the stack will be
5280     // inserted into the DAG as part of call lowering. The restore of the TOC
5281     // pointer is modeled by using a pseudo instruction for the call opcode that
5282     // represents the 2 instruction sequence of an indirect branch and link,
5283     // immediately followed by a load of the TOC pointer from the the stack save
5284     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5285     // as it is not saved or used.
5286     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5287                                                : PPCISD::BCTRL;
5288   }
5289 
5290   if (Subtarget.isUsingPCRelativeCalls()) {
5291     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5292     return PPCISD::CALL_NOTOC;
5293   }
5294 
5295   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5296   // immediately following the call instruction if the caller and callee may
5297   // have different TOC bases. At link time if the linker determines the calls
5298   // may not share a TOC base, the call is redirected to a trampoline inserted
5299   // by the linker. The trampoline will (among other things) save the callers
5300   // TOC pointer at an ABI designated offset in the linkage area and the linker
5301   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5302   // into gpr2.
5303   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5304     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5305                                                   : PPCISD::CALL_NOP;
5306 
5307   return PPCISD::CALL;
5308 }
5309 
5310 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5311                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5312   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5313     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5314       return SDValue(Dest, 0);
5315 
5316   // Returns true if the callee is local, and false otherwise.
5317   auto isLocalCallee = [&]() {
5318     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5319     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5320     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5321 
5322     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5323            !dyn_cast_or_null<GlobalIFunc>(GV);
5324   };
5325 
5326   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5327   // a static relocation model causes some versions of GNU LD (2.17.50, at
5328   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5329   // built with secure-PLT.
5330   bool UsePlt =
5331       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5332       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5333 
5334   // On AIX, direct function calls reference the symbol for the function's
5335   // entry point, which is named by prepending a "." before the function's
5336   // C-linkage name.
5337   const auto getAIXFuncEntryPointSymbolSDNode =
5338       [&](StringRef FuncName, bool IsDeclaration,
5339           const XCOFF::StorageClass &SC) {
5340         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5341 
5342         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5343             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5344 
5345         if (IsDeclaration && !S->hasRepresentedCsectSet()) {
5346           // On AIX, an undefined symbol needs to be associated with a
5347           // MCSectionXCOFF to get the correct storage mapping class.
5348           // In this case, XCOFF::XMC_PR.
5349           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5350               S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5351               SectionKind::getMetadata());
5352           S->setRepresentedCsect(Sec);
5353         }
5354 
5355         MVT PtrVT =
5356             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5357         return DAG.getMCSymbol(S, PtrVT);
5358       };
5359 
5360   if (isFunctionGlobalAddress(Callee)) {
5361     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5362     const GlobalValue *GV = G->getGlobal();
5363 
5364     if (!Subtarget.isAIXABI())
5365       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5366                                         UsePlt ? PPCII::MO_PLT : 0);
5367 
5368     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5369     const GlobalObject *GO = cast<GlobalObject>(GV);
5370     const XCOFF::StorageClass SC =
5371         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5372     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5373                                             SC);
5374   }
5375 
5376   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5377     const char *SymName = S->getSymbol();
5378     if (!Subtarget.isAIXABI())
5379       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5380                                          UsePlt ? PPCII::MO_PLT : 0);
5381 
5382     // If there exists a user-declared function whose name is the same as the
5383     // ExternalSymbol's, then we pick up the user-declared version.
5384     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5385     if (const Function *F =
5386             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5387       const XCOFF::StorageClass SC =
5388           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5389       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5390                                               SC);
5391     }
5392 
5393     return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5394   }
5395 
5396   // No transformation needed.
5397   assert(Callee.getNode() && "What no callee?");
5398   return Callee;
5399 }
5400 
5401 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5402   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5403          "Expected a CALLSEQ_STARTSDNode.");
5404 
5405   // The last operand is the chain, except when the node has glue. If the node
5406   // has glue, then the last operand is the glue, and the chain is the second
5407   // last operand.
5408   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5409   if (LastValue.getValueType() != MVT::Glue)
5410     return LastValue;
5411 
5412   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5413 }
5414 
5415 // Creates the node that moves a functions address into the count register
5416 // to prepare for an indirect call instruction.
5417 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5418                                 SDValue &Glue, SDValue &Chain,
5419                                 const SDLoc &dl) {
5420   SDValue MTCTROps[] = {Chain, Callee, Glue};
5421   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5422   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5423                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5424   // The glue is the second value produced.
5425   Glue = Chain.getValue(1);
5426 }
5427 
5428 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5429                                           SDValue &Glue, SDValue &Chain,
5430                                           SDValue CallSeqStart,
5431                                           const CallBase *CB, const SDLoc &dl,
5432                                           bool hasNest,
5433                                           const PPCSubtarget &Subtarget) {
5434   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5435   // entry point, but to the function descriptor (the function entry point
5436   // address is part of the function descriptor though).
5437   // The function descriptor is a three doubleword structure with the
5438   // following fields: function entry point, TOC base address and
5439   // environment pointer.
5440   // Thus for a call through a function pointer, the following actions need
5441   // to be performed:
5442   //   1. Save the TOC of the caller in the TOC save area of its stack
5443   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5444   //   2. Load the address of the function entry point from the function
5445   //      descriptor.
5446   //   3. Load the TOC of the callee from the function descriptor into r2.
5447   //   4. Load the environment pointer from the function descriptor into
5448   //      r11.
5449   //   5. Branch to the function entry point address.
5450   //   6. On return of the callee, the TOC of the caller needs to be
5451   //      restored (this is done in FinishCall()).
5452   //
5453   // The loads are scheduled at the beginning of the call sequence, and the
5454   // register copies are flagged together to ensure that no other
5455   // operations can be scheduled in between. E.g. without flagging the
5456   // copies together, a TOC access in the caller could be scheduled between
5457   // the assignment of the callee TOC and the branch to the callee, which leads
5458   // to incorrect code.
5459 
5460   // Start by loading the function address from the descriptor.
5461   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5462   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5463                       ? (MachineMemOperand::MODereferenceable |
5464                          MachineMemOperand::MOInvariant)
5465                       : MachineMemOperand::MONone;
5466 
5467   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5468 
5469   // Registers used in building the DAG.
5470   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5471   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5472 
5473   // Offsets of descriptor members.
5474   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5475   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5476 
5477   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5478   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5479 
5480   // One load for the functions entry point address.
5481   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5482                                     Alignment, MMOFlags);
5483 
5484   // One for loading the TOC anchor for the module that contains the called
5485   // function.
5486   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5487   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5488   SDValue TOCPtr =
5489       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5490                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5491 
5492   // One for loading the environment pointer.
5493   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5494   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5495   SDValue LoadEnvPtr =
5496       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5497                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5498 
5499 
5500   // Then copy the newly loaded TOC anchor to the TOC pointer.
5501   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5502   Chain = TOCVal.getValue(0);
5503   Glue = TOCVal.getValue(1);
5504 
5505   // If the function call has an explicit 'nest' parameter, it takes the
5506   // place of the environment pointer.
5507   assert((!hasNest || !Subtarget.isAIXABI()) &&
5508          "Nest parameter is not supported on AIX.");
5509   if (!hasNest) {
5510     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5511     Chain = EnvVal.getValue(0);
5512     Glue = EnvVal.getValue(1);
5513   }
5514 
5515   // The rest of the indirect call sequence is the same as the non-descriptor
5516   // DAG.
5517   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5518 }
5519 
5520 static void
5521 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5522                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5523                   SelectionDAG &DAG,
5524                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5525                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5526                   const PPCSubtarget &Subtarget) {
5527   const bool IsPPC64 = Subtarget.isPPC64();
5528   // MVT for a general purpose register.
5529   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5530 
5531   // First operand is always the chain.
5532   Ops.push_back(Chain);
5533 
5534   // If it's a direct call pass the callee as the second operand.
5535   if (!CFlags.IsIndirect)
5536     Ops.push_back(Callee);
5537   else {
5538     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5539 
5540     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5541     // on the stack (this would have been done in `LowerCall_64SVR4` or
5542     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5543     // represents both the indirect branch and a load that restores the TOC
5544     // pointer from the linkage area. The operand for the TOC restore is an add
5545     // of the TOC save offset to the stack pointer. This must be the second
5546     // operand: after the chain input but before any other variadic arguments.
5547     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5548     // saved or used.
5549     if (isTOCSaveRestoreRequired(Subtarget)) {
5550       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5551 
5552       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5553       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5554       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5555       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5556       Ops.push_back(AddTOC);
5557     }
5558 
5559     // Add the register used for the environment pointer.
5560     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5561       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5562                                     RegVT));
5563 
5564 
5565     // Add CTR register as callee so a bctr can be emitted later.
5566     if (CFlags.IsTailCall)
5567       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5568   }
5569 
5570   // If this is a tail call add stack pointer delta.
5571   if (CFlags.IsTailCall)
5572     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5573 
5574   // Add argument registers to the end of the list so that they are known live
5575   // into the call.
5576   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5577     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5578                                   RegsToPass[i].second.getValueType()));
5579 
5580   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5581   // no way to mark dependencies as implicit here.
5582   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5583   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5584        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5585     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5586 
5587   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5588   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5589     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5590 
5591   // Add a register mask operand representing the call-preserved registers.
5592   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5593   const uint32_t *Mask =
5594       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5595   assert(Mask && "Missing call preserved mask for calling convention");
5596   Ops.push_back(DAG.getRegisterMask(Mask));
5597 
5598   // If the glue is valid, it is the last operand.
5599   if (Glue.getNode())
5600     Ops.push_back(Glue);
5601 }
5602 
5603 SDValue PPCTargetLowering::FinishCall(
5604     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5605     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5606     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5607     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5608     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5609 
5610   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5611       Subtarget.isAIXABI())
5612     setUsesTOCBasePtr(DAG);
5613 
5614   unsigned CallOpc =
5615       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5616                     Subtarget, DAG.getTarget());
5617 
5618   if (!CFlags.IsIndirect)
5619     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5620   else if (Subtarget.usesFunctionDescriptors())
5621     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5622                                   dl, CFlags.HasNest, Subtarget);
5623   else
5624     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5625 
5626   // Build the operand list for the call instruction.
5627   SmallVector<SDValue, 8> Ops;
5628   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5629                     SPDiff, Subtarget);
5630 
5631   // Emit tail call.
5632   if (CFlags.IsTailCall) {
5633     // Indirect tail call when using PC Relative calls do not have the same
5634     // constraints.
5635     assert(((Callee.getOpcode() == ISD::Register &&
5636              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5637             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5638             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5639             isa<ConstantSDNode>(Callee) ||
5640             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5641            "Expecting a global address, external symbol, absolute value, "
5642            "register or an indirect tail call when PC Relative calls are "
5643            "used.");
5644     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5645     assert(CallOpc == PPCISD::TC_RETURN &&
5646            "Unexpected call opcode for a tail call.");
5647     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5648     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5649   }
5650 
5651   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5652   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5653   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5654   Glue = Chain.getValue(1);
5655 
5656   // When performing tail call optimization the callee pops its arguments off
5657   // the stack. Account for this here so these bytes can be pushed back on in
5658   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5659   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5660                          getTargetMachine().Options.GuaranteedTailCallOpt)
5661                             ? NumBytes
5662                             : 0;
5663 
5664   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5665                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5666                              Glue, dl);
5667   Glue = Chain.getValue(1);
5668 
5669   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5670                          DAG, InVals);
5671 }
5672 
5673 SDValue
5674 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5675                              SmallVectorImpl<SDValue> &InVals) const {
5676   SelectionDAG &DAG                     = CLI.DAG;
5677   SDLoc &dl                             = CLI.DL;
5678   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5679   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5680   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5681   SDValue Chain                         = CLI.Chain;
5682   SDValue Callee                        = CLI.Callee;
5683   bool &isTailCall                      = CLI.IsTailCall;
5684   CallingConv::ID CallConv              = CLI.CallConv;
5685   bool isVarArg                         = CLI.IsVarArg;
5686   bool isPatchPoint                     = CLI.IsPatchPoint;
5687   const CallBase *CB                    = CLI.CB;
5688 
5689   if (isTailCall) {
5690     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5691       isTailCall = false;
5692     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5693       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5694           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5695     else
5696       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5697                                                      Ins, DAG);
5698     if (isTailCall) {
5699       ++NumTailCalls;
5700       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5701         ++NumSiblingCalls;
5702 
5703       // PC Relative calls no longer guarantee that the callee is a Global
5704       // Address Node. The callee could be an indirect tail call in which
5705       // case the SDValue for the callee could be a load (to load the address
5706       // of a function pointer) or it may be a register copy (to move the
5707       // address of the callee from a function parameter into a virtual
5708       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5709       assert((Subtarget.isUsingPCRelativeCalls() ||
5710               isa<GlobalAddressSDNode>(Callee)) &&
5711              "Callee should be an llvm::Function object.");
5712 
5713       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5714                         << "\nTCO callee: ");
5715       LLVM_DEBUG(Callee.dump());
5716     }
5717   }
5718 
5719   if (!isTailCall && CB && CB->isMustTailCall())
5720     report_fatal_error("failed to perform tail call elimination on a call "
5721                        "site marked musttail");
5722 
5723   // When long calls (i.e. indirect calls) are always used, calls are always
5724   // made via function pointer. If we have a function name, first translate it
5725   // into a pointer.
5726   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5727       !isTailCall)
5728     Callee = LowerGlobalAddress(Callee, DAG);
5729 
5730   CallFlags CFlags(
5731       CallConv, isTailCall, isVarArg, isPatchPoint,
5732       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5733       // hasNest
5734       Subtarget.is64BitELFABI() &&
5735           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5736       CLI.NoMerge);
5737 
5738   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5739     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5740                             InVals, CB);
5741 
5742   if (Subtarget.isSVR4ABI())
5743     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5744                             InVals, CB);
5745 
5746   if (Subtarget.isAIXABI())
5747     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5748                          InVals, CB);
5749 
5750   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5751                           InVals, CB);
5752 }
5753 
5754 SDValue PPCTargetLowering::LowerCall_32SVR4(
5755     SDValue Chain, SDValue Callee, CallFlags CFlags,
5756     const SmallVectorImpl<ISD::OutputArg> &Outs,
5757     const SmallVectorImpl<SDValue> &OutVals,
5758     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5759     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5760     const CallBase *CB) const {
5761   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5762   // of the 32-bit SVR4 ABI stack frame layout.
5763 
5764   const CallingConv::ID CallConv = CFlags.CallConv;
5765   const bool IsVarArg = CFlags.IsVarArg;
5766   const bool IsTailCall = CFlags.IsTailCall;
5767 
5768   assert((CallConv == CallingConv::C ||
5769           CallConv == CallingConv::Cold ||
5770           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5771 
5772   const Align PtrAlign(4);
5773 
5774   MachineFunction &MF = DAG.getMachineFunction();
5775 
5776   // Mark this function as potentially containing a function that contains a
5777   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5778   // and restoring the callers stack pointer in this functions epilog. This is
5779   // done because by tail calling the called function might overwrite the value
5780   // in this function's (MF) stack pointer stack slot 0(SP).
5781   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5782       CallConv == CallingConv::Fast)
5783     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5784 
5785   // Count how many bytes are to be pushed on the stack, including the linkage
5786   // area, parameter list area and the part of the local variable space which
5787   // contains copies of aggregates which are passed by value.
5788 
5789   // Assign locations to all of the outgoing arguments.
5790   SmallVector<CCValAssign, 16> ArgLocs;
5791   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5792 
5793   // Reserve space for the linkage area on the stack.
5794   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5795                        PtrAlign);
5796   if (useSoftFloat())
5797     CCInfo.PreAnalyzeCallOperands(Outs);
5798 
5799   if (IsVarArg) {
5800     // Handle fixed and variable vector arguments differently.
5801     // Fixed vector arguments go into registers as long as registers are
5802     // available. Variable vector arguments always go into memory.
5803     unsigned NumArgs = Outs.size();
5804 
5805     for (unsigned i = 0; i != NumArgs; ++i) {
5806       MVT ArgVT = Outs[i].VT;
5807       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5808       bool Result;
5809 
5810       if (Outs[i].IsFixed) {
5811         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5812                                CCInfo);
5813       } else {
5814         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5815                                       ArgFlags, CCInfo);
5816       }
5817 
5818       if (Result) {
5819 #ifndef NDEBUG
5820         errs() << "Call operand #" << i << " has unhandled type "
5821              << EVT(ArgVT).getEVTString() << "\n";
5822 #endif
5823         llvm_unreachable(nullptr);
5824       }
5825     }
5826   } else {
5827     // All arguments are treated the same.
5828     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5829   }
5830   CCInfo.clearWasPPCF128();
5831 
5832   // Assign locations to all of the outgoing aggregate by value arguments.
5833   SmallVector<CCValAssign, 16> ByValArgLocs;
5834   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5835 
5836   // Reserve stack space for the allocations in CCInfo.
5837   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5838 
5839   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5840 
5841   // Size of the linkage area, parameter list area and the part of the local
5842   // space variable where copies of aggregates which are passed by value are
5843   // stored.
5844   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5845 
5846   // Calculate by how many bytes the stack has to be adjusted in case of tail
5847   // call optimization.
5848   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5849 
5850   // Adjust the stack pointer for the new arguments...
5851   // These operations are automatically eliminated by the prolog/epilog pass
5852   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5853   SDValue CallSeqStart = Chain;
5854 
5855   // Load the return address and frame pointer so it can be moved somewhere else
5856   // later.
5857   SDValue LROp, FPOp;
5858   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5859 
5860   // Set up a copy of the stack pointer for use loading and storing any
5861   // arguments that may not fit in the registers available for argument
5862   // passing.
5863   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5864 
5865   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5866   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5867   SmallVector<SDValue, 8> MemOpChains;
5868 
5869   bool seenFloatArg = false;
5870   // Walk the register/memloc assignments, inserting copies/loads.
5871   // i - Tracks the index into the list of registers allocated for the call
5872   // RealArgIdx - Tracks the index into the list of actual function arguments
5873   // j - Tracks the index into the list of byval arguments
5874   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5875        i != e;
5876        ++i, ++RealArgIdx) {
5877     CCValAssign &VA = ArgLocs[i];
5878     SDValue Arg = OutVals[RealArgIdx];
5879     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5880 
5881     if (Flags.isByVal()) {
5882       // Argument is an aggregate which is passed by value, thus we need to
5883       // create a copy of it in the local variable space of the current stack
5884       // frame (which is the stack frame of the caller) and pass the address of
5885       // this copy to the callee.
5886       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5887       CCValAssign &ByValVA = ByValArgLocs[j++];
5888       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5889 
5890       // Memory reserved in the local variable space of the callers stack frame.
5891       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5892 
5893       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5894       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5895                            StackPtr, PtrOff);
5896 
5897       // Create a copy of the argument in the local area of the current
5898       // stack frame.
5899       SDValue MemcpyCall =
5900         CreateCopyOfByValArgument(Arg, PtrOff,
5901                                   CallSeqStart.getNode()->getOperand(0),
5902                                   Flags, DAG, dl);
5903 
5904       // This must go outside the CALLSEQ_START..END.
5905       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5906                                                      SDLoc(MemcpyCall));
5907       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5908                              NewCallSeqStart.getNode());
5909       Chain = CallSeqStart = NewCallSeqStart;
5910 
5911       // Pass the address of the aggregate copy on the stack either in a
5912       // physical register or in the parameter list area of the current stack
5913       // frame to the callee.
5914       Arg = PtrOff;
5915     }
5916 
5917     // When useCRBits() is true, there can be i1 arguments.
5918     // It is because getRegisterType(MVT::i1) => MVT::i1,
5919     // and for other integer types getRegisterType() => MVT::i32.
5920     // Extend i1 and ensure callee will get i32.
5921     if (Arg.getValueType() == MVT::i1)
5922       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5923                         dl, MVT::i32, Arg);
5924 
5925     if (VA.isRegLoc()) {
5926       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5927       // Put argument in a physical register.
5928       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5929         bool IsLE = Subtarget.isLittleEndian();
5930         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5931                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5932         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5933         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5934                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5935         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5936                              SVal.getValue(0)));
5937       } else
5938         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5939     } else {
5940       // Put argument in the parameter list area of the current stack frame.
5941       assert(VA.isMemLoc());
5942       unsigned LocMemOffset = VA.getLocMemOffset();
5943 
5944       if (!IsTailCall) {
5945         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5946         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5947                              StackPtr, PtrOff);
5948 
5949         MemOpChains.push_back(
5950             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5951       } else {
5952         // Calculate and remember argument location.
5953         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5954                                  TailCallArguments);
5955       }
5956     }
5957   }
5958 
5959   if (!MemOpChains.empty())
5960     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5961 
5962   // Build a sequence of copy-to-reg nodes chained together with token chain
5963   // and flag operands which copy the outgoing args into the appropriate regs.
5964   SDValue InFlag;
5965   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5966     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5967                              RegsToPass[i].second, InFlag);
5968     InFlag = Chain.getValue(1);
5969   }
5970 
5971   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5972   // registers.
5973   if (IsVarArg) {
5974     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5975     SDValue Ops[] = { Chain, InFlag };
5976 
5977     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5978                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5979 
5980     InFlag = Chain.getValue(1);
5981   }
5982 
5983   if (IsTailCall)
5984     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5985                     TailCallArguments);
5986 
5987   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5988                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5989 }
5990 
5991 // Copy an argument into memory, being careful to do this outside the
5992 // call sequence for the call to which the argument belongs.
5993 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5994     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5995     SelectionDAG &DAG, const SDLoc &dl) const {
5996   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5997                         CallSeqStart.getNode()->getOperand(0),
5998                         Flags, DAG, dl);
5999   // The MEMCPY must go outside the CALLSEQ_START..END.
6000   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
6001   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
6002                                                  SDLoc(MemcpyCall));
6003   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
6004                          NewCallSeqStart.getNode());
6005   return NewCallSeqStart;
6006 }
6007 
6008 SDValue PPCTargetLowering::LowerCall_64SVR4(
6009     SDValue Chain, SDValue Callee, CallFlags CFlags,
6010     const SmallVectorImpl<ISD::OutputArg> &Outs,
6011     const SmallVectorImpl<SDValue> &OutVals,
6012     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6013     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6014     const CallBase *CB) const {
6015   bool isELFv2ABI = Subtarget.isELFv2ABI();
6016   bool isLittleEndian = Subtarget.isLittleEndian();
6017   unsigned NumOps = Outs.size();
6018   bool IsSibCall = false;
6019   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
6020 
6021   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6022   unsigned PtrByteSize = 8;
6023 
6024   MachineFunction &MF = DAG.getMachineFunction();
6025 
6026   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
6027     IsSibCall = true;
6028 
6029   // Mark this function as potentially containing a function that contains a
6030   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6031   // and restoring the callers stack pointer in this functions epilog. This is
6032   // done because by tail calling the called function might overwrite the value
6033   // in this function's (MF) stack pointer stack slot 0(SP).
6034   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6035     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6036 
6037   assert(!(IsFastCall && CFlags.IsVarArg) &&
6038          "fastcc not supported on varargs functions");
6039 
6040   // Count how many bytes are to be pushed on the stack, including the linkage
6041   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
6042   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
6043   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6044   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6045   unsigned NumBytes = LinkageSize;
6046   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6047   unsigned &QFPR_idx = FPR_idx;
6048 
6049   static const MCPhysReg GPR[] = {
6050     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6051     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6052   };
6053   static const MCPhysReg VR[] = {
6054     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6055     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6056   };
6057 
6058   const unsigned NumGPRs = array_lengthof(GPR);
6059   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6060   const unsigned NumVRs  = array_lengthof(VR);
6061   const unsigned NumQFPRs = NumFPRs;
6062 
6063   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6064   // can be passed to the callee in registers.
6065   // For the fast calling convention, there is another check below.
6066   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6067   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6068   if (!HasParameterArea) {
6069     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6070     unsigned AvailableFPRs = NumFPRs;
6071     unsigned AvailableVRs = NumVRs;
6072     unsigned NumBytesTmp = NumBytes;
6073     for (unsigned i = 0; i != NumOps; ++i) {
6074       if (Outs[i].Flags.isNest()) continue;
6075       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6076                                 PtrByteSize, LinkageSize, ParamAreaSize,
6077                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
6078                                 Subtarget.hasQPX()))
6079         HasParameterArea = true;
6080     }
6081   }
6082 
6083   // When using the fast calling convention, we don't provide backing for
6084   // arguments that will be in registers.
6085   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6086 
6087   // Avoid allocating parameter area for fastcc functions if all the arguments
6088   // can be passed in the registers.
6089   if (IsFastCall)
6090     HasParameterArea = false;
6091 
6092   // Add up all the space actually used.
6093   for (unsigned i = 0; i != NumOps; ++i) {
6094     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6095     EVT ArgVT = Outs[i].VT;
6096     EVT OrigVT = Outs[i].ArgVT;
6097 
6098     if (Flags.isNest())
6099       continue;
6100 
6101     if (IsFastCall) {
6102       if (Flags.isByVal()) {
6103         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6104         if (NumGPRsUsed > NumGPRs)
6105           HasParameterArea = true;
6106       } else {
6107         switch (ArgVT.getSimpleVT().SimpleTy) {
6108         default: llvm_unreachable("Unexpected ValueType for argument!");
6109         case MVT::i1:
6110         case MVT::i32:
6111         case MVT::i64:
6112           if (++NumGPRsUsed <= NumGPRs)
6113             continue;
6114           break;
6115         case MVT::v4i32:
6116         case MVT::v8i16:
6117         case MVT::v16i8:
6118         case MVT::v2f64:
6119         case MVT::v2i64:
6120         case MVT::v1i128:
6121         case MVT::f128:
6122           if (++NumVRsUsed <= NumVRs)
6123             continue;
6124           break;
6125         case MVT::v4f32:
6126           // When using QPX, this is handled like a FP register, otherwise, it
6127           // is an Altivec register.
6128           if (Subtarget.hasQPX()) {
6129             if (++NumFPRsUsed <= NumFPRs)
6130               continue;
6131           } else {
6132             if (++NumVRsUsed <= NumVRs)
6133               continue;
6134           }
6135           break;
6136         case MVT::f32:
6137         case MVT::f64:
6138         case MVT::v4f64: // QPX
6139         case MVT::v4i1:  // QPX
6140           if (++NumFPRsUsed <= NumFPRs)
6141             continue;
6142           break;
6143         }
6144         HasParameterArea = true;
6145       }
6146     }
6147 
6148     /* Respect alignment of argument on the stack.  */
6149     auto Alignement =
6150         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6151     NumBytes = alignTo(NumBytes, Alignement);
6152 
6153     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6154     if (Flags.isInConsecutiveRegsLast())
6155       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6156   }
6157 
6158   unsigned NumBytesActuallyUsed = NumBytes;
6159 
6160   // In the old ELFv1 ABI,
6161   // the prolog code of the callee may store up to 8 GPR argument registers to
6162   // the stack, allowing va_start to index over them in memory if its varargs.
6163   // Because we cannot tell if this is needed on the caller side, we have to
6164   // conservatively assume that it is needed.  As such, make sure we have at
6165   // least enough stack space for the caller to store the 8 GPRs.
6166   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6167   // really requires memory operands, e.g. a vararg function.
6168   if (HasParameterArea)
6169     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6170   else
6171     NumBytes = LinkageSize;
6172 
6173   // Tail call needs the stack to be aligned.
6174   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6175     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6176 
6177   int SPDiff = 0;
6178 
6179   // Calculate by how many bytes the stack has to be adjusted in case of tail
6180   // call optimization.
6181   if (!IsSibCall)
6182     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6183 
6184   // To protect arguments on the stack from being clobbered in a tail call,
6185   // force all the loads to happen before doing any other lowering.
6186   if (CFlags.IsTailCall)
6187     Chain = DAG.getStackArgumentTokenFactor(Chain);
6188 
6189   // Adjust the stack pointer for the new arguments...
6190   // These operations are automatically eliminated by the prolog/epilog pass
6191   if (!IsSibCall)
6192     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6193   SDValue CallSeqStart = Chain;
6194 
6195   // Load the return address and frame pointer so it can be move somewhere else
6196   // later.
6197   SDValue LROp, FPOp;
6198   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6199 
6200   // Set up a copy of the stack pointer for use loading and storing any
6201   // arguments that may not fit in the registers available for argument
6202   // passing.
6203   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6204 
6205   // Figure out which arguments are going to go in registers, and which in
6206   // memory.  Also, if this is a vararg function, floating point operations
6207   // must be stored to our stack, and loaded into integer regs as well, if
6208   // any integer regs are available for argument passing.
6209   unsigned ArgOffset = LinkageSize;
6210 
6211   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6212   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6213 
6214   SmallVector<SDValue, 8> MemOpChains;
6215   for (unsigned i = 0; i != NumOps; ++i) {
6216     SDValue Arg = OutVals[i];
6217     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6218     EVT ArgVT = Outs[i].VT;
6219     EVT OrigVT = Outs[i].ArgVT;
6220 
6221     // PtrOff will be used to store the current argument to the stack if a
6222     // register cannot be found for it.
6223     SDValue PtrOff;
6224 
6225     // We re-align the argument offset for each argument, except when using the
6226     // fast calling convention, when we need to make sure we do that only when
6227     // we'll actually use a stack slot.
6228     auto ComputePtrOff = [&]() {
6229       /* Respect alignment of argument on the stack.  */
6230       auto Alignment =
6231           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6232       ArgOffset = alignTo(ArgOffset, Alignment);
6233 
6234       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6235 
6236       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6237     };
6238 
6239     if (!IsFastCall) {
6240       ComputePtrOff();
6241 
6242       /* Compute GPR index associated with argument offset.  */
6243       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6244       GPR_idx = std::min(GPR_idx, NumGPRs);
6245     }
6246 
6247     // Promote integers to 64-bit values.
6248     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6249       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6250       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6251       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6252     }
6253 
6254     // FIXME memcpy is used way more than necessary.  Correctness first.
6255     // Note: "by value" is code for passing a structure by value, not
6256     // basic types.
6257     if (Flags.isByVal()) {
6258       // Note: Size includes alignment padding, so
6259       //   struct x { short a; char b; }
6260       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6261       // These are the proper values we need for right-justifying the
6262       // aggregate in a parameter register.
6263       unsigned Size = Flags.getByValSize();
6264 
6265       // An empty aggregate parameter takes up no storage and no
6266       // registers.
6267       if (Size == 0)
6268         continue;
6269 
6270       if (IsFastCall)
6271         ComputePtrOff();
6272 
6273       // All aggregates smaller than 8 bytes must be passed right-justified.
6274       if (Size==1 || Size==2 || Size==4) {
6275         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6276         if (GPR_idx != NumGPRs) {
6277           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6278                                         MachinePointerInfo(), VT);
6279           MemOpChains.push_back(Load.getValue(1));
6280           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6281 
6282           ArgOffset += PtrByteSize;
6283           continue;
6284         }
6285       }
6286 
6287       if (GPR_idx == NumGPRs && Size < 8) {
6288         SDValue AddPtr = PtrOff;
6289         if (!isLittleEndian) {
6290           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6291                                           PtrOff.getValueType());
6292           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6293         }
6294         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6295                                                           CallSeqStart,
6296                                                           Flags, DAG, dl);
6297         ArgOffset += PtrByteSize;
6298         continue;
6299       }
6300       // Copy entire object into memory.  There are cases where gcc-generated
6301       // code assumes it is there, even if it could be put entirely into
6302       // registers.  (This is not what the doc says.)
6303 
6304       // FIXME: The above statement is likely due to a misunderstanding of the
6305       // documents.  All arguments must be copied into the parameter area BY
6306       // THE CALLEE in the event that the callee takes the address of any
6307       // formal argument.  That has not yet been implemented.  However, it is
6308       // reasonable to use the stack area as a staging area for the register
6309       // load.
6310 
6311       // Skip this for small aggregates, as we will use the same slot for a
6312       // right-justified copy, below.
6313       if (Size >= 8)
6314         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6315                                                           CallSeqStart,
6316                                                           Flags, DAG, dl);
6317 
6318       // When a register is available, pass a small aggregate right-justified.
6319       if (Size < 8 && GPR_idx != NumGPRs) {
6320         // The easiest way to get this right-justified in a register
6321         // is to copy the structure into the rightmost portion of a
6322         // local variable slot, then load the whole slot into the
6323         // register.
6324         // FIXME: The memcpy seems to produce pretty awful code for
6325         // small aggregates, particularly for packed ones.
6326         // FIXME: It would be preferable to use the slot in the
6327         // parameter save area instead of a new local variable.
6328         SDValue AddPtr = PtrOff;
6329         if (!isLittleEndian) {
6330           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6331           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6332         }
6333         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6334                                                           CallSeqStart,
6335                                                           Flags, DAG, dl);
6336 
6337         // Load the slot into the register.
6338         SDValue Load =
6339             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6340         MemOpChains.push_back(Load.getValue(1));
6341         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6342 
6343         // Done with this argument.
6344         ArgOffset += PtrByteSize;
6345         continue;
6346       }
6347 
6348       // For aggregates larger than PtrByteSize, copy the pieces of the
6349       // object that fit into registers from the parameter save area.
6350       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6351         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6352         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6353         if (GPR_idx != NumGPRs) {
6354           SDValue Load =
6355               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6356           MemOpChains.push_back(Load.getValue(1));
6357           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6358           ArgOffset += PtrByteSize;
6359         } else {
6360           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6361           break;
6362         }
6363       }
6364       continue;
6365     }
6366 
6367     switch (Arg.getSimpleValueType().SimpleTy) {
6368     default: llvm_unreachable("Unexpected ValueType for argument!");
6369     case MVT::i1:
6370     case MVT::i32:
6371     case MVT::i64:
6372       if (Flags.isNest()) {
6373         // The 'nest' parameter, if any, is passed in R11.
6374         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6375         break;
6376       }
6377 
6378       // These can be scalar arguments or elements of an integer array type
6379       // passed directly.  Clang may use those instead of "byval" aggregate
6380       // types to avoid forcing arguments to memory unnecessarily.
6381       if (GPR_idx != NumGPRs) {
6382         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6383       } else {
6384         if (IsFastCall)
6385           ComputePtrOff();
6386 
6387         assert(HasParameterArea &&
6388                "Parameter area must exist to pass an argument in memory.");
6389         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6390                          true, CFlags.IsTailCall, false, MemOpChains,
6391                          TailCallArguments, dl);
6392         if (IsFastCall)
6393           ArgOffset += PtrByteSize;
6394       }
6395       if (!IsFastCall)
6396         ArgOffset += PtrByteSize;
6397       break;
6398     case MVT::f32:
6399     case MVT::f64: {
6400       // These can be scalar arguments or elements of a float array type
6401       // passed directly.  The latter are used to implement ELFv2 homogenous
6402       // float aggregates.
6403 
6404       // Named arguments go into FPRs first, and once they overflow, the
6405       // remaining arguments go into GPRs and then the parameter save area.
6406       // Unnamed arguments for vararg functions always go to GPRs and
6407       // then the parameter save area.  For now, put all arguments to vararg
6408       // routines always in both locations (FPR *and* GPR or stack slot).
6409       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6410       bool NeededLoad = false;
6411 
6412       // First load the argument into the next available FPR.
6413       if (FPR_idx != NumFPRs)
6414         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6415 
6416       // Next, load the argument into GPR or stack slot if needed.
6417       if (!NeedGPROrStack)
6418         ;
6419       else if (GPR_idx != NumGPRs && !IsFastCall) {
6420         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6421         // once we support fp <-> gpr moves.
6422 
6423         // In the non-vararg case, this can only ever happen in the
6424         // presence of f32 array types, since otherwise we never run
6425         // out of FPRs before running out of GPRs.
6426         SDValue ArgVal;
6427 
6428         // Double values are always passed in a single GPR.
6429         if (Arg.getValueType() != MVT::f32) {
6430           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6431 
6432         // Non-array float values are extended and passed in a GPR.
6433         } else if (!Flags.isInConsecutiveRegs()) {
6434           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6435           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6436 
6437         // If we have an array of floats, we collect every odd element
6438         // together with its predecessor into one GPR.
6439         } else if (ArgOffset % PtrByteSize != 0) {
6440           SDValue Lo, Hi;
6441           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6442           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6443           if (!isLittleEndian)
6444             std::swap(Lo, Hi);
6445           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6446 
6447         // The final element, if even, goes into the first half of a GPR.
6448         } else if (Flags.isInConsecutiveRegsLast()) {
6449           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6450           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6451           if (!isLittleEndian)
6452             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6453                                  DAG.getConstant(32, dl, MVT::i32));
6454 
6455         // Non-final even elements are skipped; they will be handled
6456         // together the with subsequent argument on the next go-around.
6457         } else
6458           ArgVal = SDValue();
6459 
6460         if (ArgVal.getNode())
6461           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6462       } else {
6463         if (IsFastCall)
6464           ComputePtrOff();
6465 
6466         // Single-precision floating-point values are mapped to the
6467         // second (rightmost) word of the stack doubleword.
6468         if (Arg.getValueType() == MVT::f32 &&
6469             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6470           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6471           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6472         }
6473 
6474         assert(HasParameterArea &&
6475                "Parameter area must exist to pass an argument in memory.");
6476         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6477                          true, CFlags.IsTailCall, false, MemOpChains,
6478                          TailCallArguments, dl);
6479 
6480         NeededLoad = true;
6481       }
6482       // When passing an array of floats, the array occupies consecutive
6483       // space in the argument area; only round up to the next doubleword
6484       // at the end of the array.  Otherwise, each float takes 8 bytes.
6485       if (!IsFastCall || NeededLoad) {
6486         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6487                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6488         if (Flags.isInConsecutiveRegsLast())
6489           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6490       }
6491       break;
6492     }
6493     case MVT::v4f32:
6494     case MVT::v4i32:
6495     case MVT::v8i16:
6496     case MVT::v16i8:
6497     case MVT::v2f64:
6498     case MVT::v2i64:
6499     case MVT::v1i128:
6500     case MVT::f128:
6501       if (!Subtarget.hasQPX()) {
6502       // These can be scalar arguments or elements of a vector array type
6503       // passed directly.  The latter are used to implement ELFv2 homogenous
6504       // vector aggregates.
6505 
6506       // For a varargs call, named arguments go into VRs or on the stack as
6507       // usual; unnamed arguments always go to the stack or the corresponding
6508       // GPRs when within range.  For now, we always put the value in both
6509       // locations (or even all three).
6510       if (CFlags.IsVarArg) {
6511         assert(HasParameterArea &&
6512                "Parameter area must exist if we have a varargs call.");
6513         // We could elide this store in the case where the object fits
6514         // entirely in R registers.  Maybe later.
6515         SDValue Store =
6516             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6517         MemOpChains.push_back(Store);
6518         if (VR_idx != NumVRs) {
6519           SDValue Load =
6520               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6521           MemOpChains.push_back(Load.getValue(1));
6522           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6523         }
6524         ArgOffset += 16;
6525         for (unsigned i=0; i<16; i+=PtrByteSize) {
6526           if (GPR_idx == NumGPRs)
6527             break;
6528           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6529                                    DAG.getConstant(i, dl, PtrVT));
6530           SDValue Load =
6531               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6532           MemOpChains.push_back(Load.getValue(1));
6533           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6534         }
6535         break;
6536       }
6537 
6538       // Non-varargs Altivec params go into VRs or on the stack.
6539       if (VR_idx != NumVRs) {
6540         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6541       } else {
6542         if (IsFastCall)
6543           ComputePtrOff();
6544 
6545         assert(HasParameterArea &&
6546                "Parameter area must exist to pass an argument in memory.");
6547         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6548                          true, CFlags.IsTailCall, true, MemOpChains,
6549                          TailCallArguments, dl);
6550         if (IsFastCall)
6551           ArgOffset += 16;
6552       }
6553 
6554       if (!IsFastCall)
6555         ArgOffset += 16;
6556       break;
6557       } // not QPX
6558 
6559       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6560              "Invalid QPX parameter type");
6561 
6562       LLVM_FALLTHROUGH;
6563     case MVT::v4f64:
6564     case MVT::v4i1: {
6565       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6566       if (CFlags.IsVarArg) {
6567         assert(HasParameterArea &&
6568                "Parameter area must exist if we have a varargs call.");
6569         // We could elide this store in the case where the object fits
6570         // entirely in R registers.  Maybe later.
6571         SDValue Store =
6572             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6573         MemOpChains.push_back(Store);
6574         if (QFPR_idx != NumQFPRs) {
6575           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6576                                      PtrOff, MachinePointerInfo());
6577           MemOpChains.push_back(Load.getValue(1));
6578           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6579         }
6580         ArgOffset += (IsF32 ? 16 : 32);
6581         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6582           if (GPR_idx == NumGPRs)
6583             break;
6584           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6585                                    DAG.getConstant(i, dl, PtrVT));
6586           SDValue Load =
6587               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6588           MemOpChains.push_back(Load.getValue(1));
6589           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6590         }
6591         break;
6592       }
6593 
6594       // Non-varargs QPX params go into registers or on the stack.
6595       if (QFPR_idx != NumQFPRs) {
6596         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6597       } else {
6598         if (IsFastCall)
6599           ComputePtrOff();
6600 
6601         assert(HasParameterArea &&
6602                "Parameter area must exist to pass an argument in memory.");
6603         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6604                          true, CFlags.IsTailCall, true, MemOpChains,
6605                          TailCallArguments, dl);
6606         if (IsFastCall)
6607           ArgOffset += (IsF32 ? 16 : 32);
6608       }
6609 
6610       if (!IsFastCall)
6611         ArgOffset += (IsF32 ? 16 : 32);
6612       break;
6613       }
6614     }
6615   }
6616 
6617   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6618          "mismatch in size of parameter area");
6619   (void)NumBytesActuallyUsed;
6620 
6621   if (!MemOpChains.empty())
6622     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6623 
6624   // Check if this is an indirect call (MTCTR/BCTRL).
6625   // See prepareDescriptorIndirectCall and buildCallOperands for more
6626   // information about calls through function pointers in the 64-bit SVR4 ABI.
6627   if (CFlags.IsIndirect) {
6628     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6629     // caller in the TOC save area.
6630     if (isTOCSaveRestoreRequired(Subtarget)) {
6631       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6632       // Load r2 into a virtual register and store it to the TOC save area.
6633       setUsesTOCBasePtr(DAG);
6634       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6635       // TOC save area offset.
6636       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6637       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6638       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6639       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6640                            MachinePointerInfo::getStack(
6641                                DAG.getMachineFunction(), TOCSaveOffset));
6642     }
6643     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6644     // This does not mean the MTCTR instruction must use R12; it's easier
6645     // to model this as an extra parameter, so do that.
6646     if (isELFv2ABI && !CFlags.IsPatchPoint)
6647       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6648   }
6649 
6650   // Build a sequence of copy-to-reg nodes chained together with token chain
6651   // and flag operands which copy the outgoing args into the appropriate regs.
6652   SDValue InFlag;
6653   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6654     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6655                              RegsToPass[i].second, InFlag);
6656     InFlag = Chain.getValue(1);
6657   }
6658 
6659   if (CFlags.IsTailCall && !IsSibCall)
6660     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6661                     TailCallArguments);
6662 
6663   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6664                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6665 }
6666 
6667 SDValue PPCTargetLowering::LowerCall_Darwin(
6668     SDValue Chain, SDValue Callee, CallFlags CFlags,
6669     const SmallVectorImpl<ISD::OutputArg> &Outs,
6670     const SmallVectorImpl<SDValue> &OutVals,
6671     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6672     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6673     const CallBase *CB) const {
6674   unsigned NumOps = Outs.size();
6675 
6676   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6677   bool isPPC64 = PtrVT == MVT::i64;
6678   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6679 
6680   MachineFunction &MF = DAG.getMachineFunction();
6681 
6682   // Mark this function as potentially containing a function that contains a
6683   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6684   // and restoring the callers stack pointer in this functions epilog. This is
6685   // done because by tail calling the called function might overwrite the value
6686   // in this function's (MF) stack pointer stack slot 0(SP).
6687   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6688       CFlags.CallConv == CallingConv::Fast)
6689     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6690 
6691   // Count how many bytes are to be pushed on the stack, including the linkage
6692   // area, and parameter passing area.  We start with 24/48 bytes, which is
6693   // prereserved space for [SP][CR][LR][3 x unused].
6694   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6695   unsigned NumBytes = LinkageSize;
6696 
6697   // Add up all the space actually used.
6698   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6699   // they all go in registers, but we must reserve stack space for them for
6700   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6701   // assigned stack space in order, with padding so Altivec parameters are
6702   // 16-byte aligned.
6703   unsigned nAltivecParamsAtEnd = 0;
6704   for (unsigned i = 0; i != NumOps; ++i) {
6705     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6706     EVT ArgVT = Outs[i].VT;
6707     // Varargs Altivec parameters are padded to a 16 byte boundary.
6708     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6709         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6710         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6711       if (!CFlags.IsVarArg && !isPPC64) {
6712         // Non-varargs Altivec parameters go after all the non-Altivec
6713         // parameters; handle those later so we know how much padding we need.
6714         nAltivecParamsAtEnd++;
6715         continue;
6716       }
6717       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6718       NumBytes = ((NumBytes+15)/16)*16;
6719     }
6720     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6721   }
6722 
6723   // Allow for Altivec parameters at the end, if needed.
6724   if (nAltivecParamsAtEnd) {
6725     NumBytes = ((NumBytes+15)/16)*16;
6726     NumBytes += 16*nAltivecParamsAtEnd;
6727   }
6728 
6729   // The prolog code of the callee may store up to 8 GPR argument registers to
6730   // the stack, allowing va_start to index over them in memory if its varargs.
6731   // Because we cannot tell if this is needed on the caller side, we have to
6732   // conservatively assume that it is needed.  As such, make sure we have at
6733   // least enough stack space for the caller to store the 8 GPRs.
6734   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6735 
6736   // Tail call needs the stack to be aligned.
6737   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6738       CFlags.CallConv == CallingConv::Fast)
6739     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6740 
6741   // Calculate by how many bytes the stack has to be adjusted in case of tail
6742   // call optimization.
6743   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6744 
6745   // To protect arguments on the stack from being clobbered in a tail call,
6746   // force all the loads to happen before doing any other lowering.
6747   if (CFlags.IsTailCall)
6748     Chain = DAG.getStackArgumentTokenFactor(Chain);
6749 
6750   // Adjust the stack pointer for the new arguments...
6751   // These operations are automatically eliminated by the prolog/epilog pass
6752   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6753   SDValue CallSeqStart = Chain;
6754 
6755   // Load the return address and frame pointer so it can be move somewhere else
6756   // later.
6757   SDValue LROp, FPOp;
6758   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6759 
6760   // Set up a copy of the stack pointer for use loading and storing any
6761   // arguments that may not fit in the registers available for argument
6762   // passing.
6763   SDValue StackPtr;
6764   if (isPPC64)
6765     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6766   else
6767     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6768 
6769   // Figure out which arguments are going to go in registers, and which in
6770   // memory.  Also, if this is a vararg function, floating point operations
6771   // must be stored to our stack, and loaded into integer regs as well, if
6772   // any integer regs are available for argument passing.
6773   unsigned ArgOffset = LinkageSize;
6774   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6775 
6776   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6777     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6778     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6779   };
6780   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6781     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6782     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6783   };
6784   static const MCPhysReg VR[] = {
6785     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6786     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6787   };
6788   const unsigned NumGPRs = array_lengthof(GPR_32);
6789   const unsigned NumFPRs = 13;
6790   const unsigned NumVRs  = array_lengthof(VR);
6791 
6792   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6793 
6794   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6795   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6796 
6797   SmallVector<SDValue, 8> MemOpChains;
6798   for (unsigned i = 0; i != NumOps; ++i) {
6799     SDValue Arg = OutVals[i];
6800     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6801 
6802     // PtrOff will be used to store the current argument to the stack if a
6803     // register cannot be found for it.
6804     SDValue PtrOff;
6805 
6806     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6807 
6808     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6809 
6810     // On PPC64, promote integers to 64-bit values.
6811     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6812       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6813       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6814       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6815     }
6816 
6817     // FIXME memcpy is used way more than necessary.  Correctness first.
6818     // Note: "by value" is code for passing a structure by value, not
6819     // basic types.
6820     if (Flags.isByVal()) {
6821       unsigned Size = Flags.getByValSize();
6822       // Very small objects are passed right-justified.  Everything else is
6823       // passed left-justified.
6824       if (Size==1 || Size==2) {
6825         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6826         if (GPR_idx != NumGPRs) {
6827           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6828                                         MachinePointerInfo(), VT);
6829           MemOpChains.push_back(Load.getValue(1));
6830           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6831 
6832           ArgOffset += PtrByteSize;
6833         } else {
6834           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6835                                           PtrOff.getValueType());
6836           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6837           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6838                                                             CallSeqStart,
6839                                                             Flags, DAG, dl);
6840           ArgOffset += PtrByteSize;
6841         }
6842         continue;
6843       }
6844       // Copy entire object into memory.  There are cases where gcc-generated
6845       // code assumes it is there, even if it could be put entirely into
6846       // registers.  (This is not what the doc says.)
6847       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6848                                                         CallSeqStart,
6849                                                         Flags, DAG, dl);
6850 
6851       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6852       // copy the pieces of the object that fit into registers from the
6853       // parameter save area.
6854       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6855         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6856         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6857         if (GPR_idx != NumGPRs) {
6858           SDValue Load =
6859               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6860           MemOpChains.push_back(Load.getValue(1));
6861           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6862           ArgOffset += PtrByteSize;
6863         } else {
6864           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6865           break;
6866         }
6867       }
6868       continue;
6869     }
6870 
6871     switch (Arg.getSimpleValueType().SimpleTy) {
6872     default: llvm_unreachable("Unexpected ValueType for argument!");
6873     case MVT::i1:
6874     case MVT::i32:
6875     case MVT::i64:
6876       if (GPR_idx != NumGPRs) {
6877         if (Arg.getValueType() == MVT::i1)
6878           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6879 
6880         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6881       } else {
6882         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6883                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6884                          TailCallArguments, dl);
6885       }
6886       ArgOffset += PtrByteSize;
6887       break;
6888     case MVT::f32:
6889     case MVT::f64:
6890       if (FPR_idx != NumFPRs) {
6891         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6892 
6893         if (CFlags.IsVarArg) {
6894           SDValue Store =
6895               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6896           MemOpChains.push_back(Store);
6897 
6898           // Float varargs are always shadowed in available integer registers
6899           if (GPR_idx != NumGPRs) {
6900             SDValue Load =
6901                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6902             MemOpChains.push_back(Load.getValue(1));
6903             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6904           }
6905           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6906             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6907             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6908             SDValue Load =
6909                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6910             MemOpChains.push_back(Load.getValue(1));
6911             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6912           }
6913         } else {
6914           // If we have any FPRs remaining, we may also have GPRs remaining.
6915           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6916           // GPRs.
6917           if (GPR_idx != NumGPRs)
6918             ++GPR_idx;
6919           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6920               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6921             ++GPR_idx;
6922         }
6923       } else
6924         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6925                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6926                          TailCallArguments, dl);
6927       if (isPPC64)
6928         ArgOffset += 8;
6929       else
6930         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6931       break;
6932     case MVT::v4f32:
6933     case MVT::v4i32:
6934     case MVT::v8i16:
6935     case MVT::v16i8:
6936       if (CFlags.IsVarArg) {
6937         // These go aligned on the stack, or in the corresponding R registers
6938         // when within range.  The Darwin PPC ABI doc claims they also go in
6939         // V registers; in fact gcc does this only for arguments that are
6940         // prototyped, not for those that match the ...  We do it for all
6941         // arguments, seems to work.
6942         while (ArgOffset % 16 !=0) {
6943           ArgOffset += PtrByteSize;
6944           if (GPR_idx != NumGPRs)
6945             GPR_idx++;
6946         }
6947         // We could elide this store in the case where the object fits
6948         // entirely in R registers.  Maybe later.
6949         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6950                              DAG.getConstant(ArgOffset, dl, PtrVT));
6951         SDValue Store =
6952             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6953         MemOpChains.push_back(Store);
6954         if (VR_idx != NumVRs) {
6955           SDValue Load =
6956               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6957           MemOpChains.push_back(Load.getValue(1));
6958           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6959         }
6960         ArgOffset += 16;
6961         for (unsigned i=0; i<16; i+=PtrByteSize) {
6962           if (GPR_idx == NumGPRs)
6963             break;
6964           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6965                                    DAG.getConstant(i, dl, PtrVT));
6966           SDValue Load =
6967               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6968           MemOpChains.push_back(Load.getValue(1));
6969           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6970         }
6971         break;
6972       }
6973 
6974       // Non-varargs Altivec params generally go in registers, but have
6975       // stack space allocated at the end.
6976       if (VR_idx != NumVRs) {
6977         // Doesn't have GPR space allocated.
6978         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6979       } else if (nAltivecParamsAtEnd==0) {
6980         // We are emitting Altivec params in order.
6981         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6982                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6983                          TailCallArguments, dl);
6984         ArgOffset += 16;
6985       }
6986       break;
6987     }
6988   }
6989   // If all Altivec parameters fit in registers, as they usually do,
6990   // they get stack space following the non-Altivec parameters.  We
6991   // don't track this here because nobody below needs it.
6992   // If there are more Altivec parameters than fit in registers emit
6993   // the stores here.
6994   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6995     unsigned j = 0;
6996     // Offset is aligned; skip 1st 12 params which go in V registers.
6997     ArgOffset = ((ArgOffset+15)/16)*16;
6998     ArgOffset += 12*16;
6999     for (unsigned i = 0; i != NumOps; ++i) {
7000       SDValue Arg = OutVals[i];
7001       EVT ArgType = Outs[i].VT;
7002       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
7003           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
7004         if (++j > NumVRs) {
7005           SDValue PtrOff;
7006           // We are emitting Altivec params in order.
7007           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
7008                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
7009                            TailCallArguments, dl);
7010           ArgOffset += 16;
7011         }
7012       }
7013     }
7014   }
7015 
7016   if (!MemOpChains.empty())
7017     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7018 
7019   // On Darwin, R12 must contain the address of an indirect callee.  This does
7020   // not mean the MTCTR instruction must use R12; it's easier to model this as
7021   // an extra parameter, so do that.
7022   if (CFlags.IsIndirect) {
7023     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7024     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
7025                                                    PPC::R12), Callee));
7026   }
7027 
7028   // Build a sequence of copy-to-reg nodes chained together with token chain
7029   // and flag operands which copy the outgoing args into the appropriate regs.
7030   SDValue InFlag;
7031   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
7032     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
7033                              RegsToPass[i].second, InFlag);
7034     InFlag = Chain.getValue(1);
7035   }
7036 
7037   if (CFlags.IsTailCall)
7038     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
7039                     TailCallArguments);
7040 
7041   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7042                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7043 }
7044 
7045 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
7046                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
7047                    CCState &State) {
7048 
7049   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
7050       State.getMachineFunction().getSubtarget());
7051   const bool IsPPC64 = Subtarget.isPPC64();
7052   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
7053   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
7054 
7055   assert((!ValVT.isInteger() ||
7056           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
7057          "Integer argument exceeds register size: should have been legalized");
7058 
7059   if (ValVT == MVT::f128)
7060     report_fatal_error("f128 is unimplemented on AIX.");
7061 
7062   if (ArgFlags.isNest())
7063     report_fatal_error("Nest arguments are unimplemented.");
7064 
7065   if (ValVT.isVector() || LocVT.isVector())
7066     report_fatal_error("Vector arguments are unimplemented on AIX.");
7067 
7068   static const MCPhysReg GPR_32[] = {// 32-bit registers.
7069                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7070                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7071   static const MCPhysReg GPR_64[] = {// 64-bit registers.
7072                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7073                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7074 
7075   if (ArgFlags.isByVal()) {
7076     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
7077       report_fatal_error("Pass-by-value arguments with alignment greater than "
7078                          "register width are not supported.");
7079 
7080     const unsigned ByValSize = ArgFlags.getByValSize();
7081 
7082     // An empty aggregate parameter takes up no storage and no registers,
7083     // but needs a MemLoc for a stack slot for the formal arguments side.
7084     if (ByValSize == 0) {
7085       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7086                                        State.getNextStackOffset(), RegVT,
7087                                        LocInfo));
7088       return false;
7089     }
7090 
7091     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
7092     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
7093     for (const unsigned E = Offset + StackSize; Offset < E;
7094          Offset += PtrAlign.value()) {
7095       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7096         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7097       else {
7098         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7099                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
7100                                          LocInfo));
7101         break;
7102       }
7103     }
7104     return false;
7105   }
7106 
7107   // Arguments always reserve parameter save area.
7108   switch (ValVT.SimpleTy) {
7109   default:
7110     report_fatal_error("Unhandled value type for argument.");
7111   case MVT::i64:
7112     // i64 arguments should have been split to i32 for PPC32.
7113     assert(IsPPC64 && "PPC32 should have split i64 values.");
7114     LLVM_FALLTHROUGH;
7115   case MVT::i1:
7116   case MVT::i32: {
7117     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
7118     // AIX integer arguments are always passed in register width.
7119     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
7120       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
7121                                   : CCValAssign::LocInfo::ZExt;
7122     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7123       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7124     else
7125       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
7126 
7127     return false;
7128   }
7129   case MVT::f32:
7130   case MVT::f64: {
7131     // Parameter save area (PSA) is reserved even if the float passes in fpr.
7132     const unsigned StoreSize = LocVT.getStoreSize();
7133     // Floats are always 4-byte aligned in the PSA on AIX.
7134     // This includes f64 in 64-bit mode for ABI compatibility.
7135     const unsigned Offset =
7136         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
7137     unsigned FReg = State.AllocateReg(FPR);
7138     if (FReg)
7139       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
7140 
7141     // Reserve and initialize GPRs or initialize the PSA as required.
7142     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
7143       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
7144         assert(FReg && "An FPR should be available when a GPR is reserved.");
7145         if (State.isVarArg()) {
7146           // Successfully reserved GPRs are only initialized for vararg calls.
7147           // Custom handling is required for:
7148           //   f64 in PPC32 needs to be split into 2 GPRs.
7149           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
7150           State.addLoc(
7151               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7152         }
7153       } else {
7154         // If there are insufficient GPRs, the PSA needs to be initialized.
7155         // Initialization occurs even if an FPR was initialized for
7156         // compatibility with the AIX XL compiler. The full memory for the
7157         // argument will be initialized even if a prior word is saved in GPR.
7158         // A custom memLoc is used when the argument also passes in FPR so
7159         // that the callee handling can skip over it easily.
7160         State.addLoc(
7161             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7162                                              LocInfo)
7163                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7164         break;
7165       }
7166     }
7167 
7168     return false;
7169   }
7170   }
7171   return true;
7172 }
7173 
7174 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7175                                                     bool IsPPC64) {
7176   assert((IsPPC64 || SVT != MVT::i64) &&
7177          "i64 should have been split for 32-bit codegen.");
7178 
7179   switch (SVT) {
7180   default:
7181     report_fatal_error("Unexpected value type for formal argument");
7182   case MVT::i1:
7183   case MVT::i32:
7184   case MVT::i64:
7185     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7186   case MVT::f32:
7187     return &PPC::F4RCRegClass;
7188   case MVT::f64:
7189     return &PPC::F8RCRegClass;
7190   }
7191 }
7192 
7193 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7194                                         SelectionDAG &DAG, SDValue ArgValue,
7195                                         MVT LocVT, const SDLoc &dl) {
7196   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7197   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7198 
7199   if (Flags.isSExt())
7200     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7201                            DAG.getValueType(ValVT));
7202   else if (Flags.isZExt())
7203     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7204                            DAG.getValueType(ValVT));
7205 
7206   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7207 }
7208 
7209 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7210   const unsigned LASize = FL->getLinkageSize();
7211 
7212   if (PPC::GPRCRegClass.contains(Reg)) {
7213     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7214            "Reg must be a valid argument register!");
7215     return LASize + 4 * (Reg - PPC::R3);
7216   }
7217 
7218   if (PPC::G8RCRegClass.contains(Reg)) {
7219     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7220            "Reg must be a valid argument register!");
7221     return LASize + 8 * (Reg - PPC::X3);
7222   }
7223 
7224   llvm_unreachable("Only general purpose registers expected.");
7225 }
7226 
7227 //   AIX ABI Stack Frame Layout:
7228 //
7229 //   Low Memory +--------------------------------------------+
7230 //   SP   +---> | Back chain                                 | ---+
7231 //        |     +--------------------------------------------+    |
7232 //        |     | Saved Condition Register                   |    |
7233 //        |     +--------------------------------------------+    |
7234 //        |     | Saved Linkage Register                     |    |
7235 //        |     +--------------------------------------------+    | Linkage Area
7236 //        |     | Reserved for compilers                     |    |
7237 //        |     +--------------------------------------------+    |
7238 //        |     | Reserved for binders                       |    |
7239 //        |     +--------------------------------------------+    |
7240 //        |     | Saved TOC pointer                          | ---+
7241 //        |     +--------------------------------------------+
7242 //        |     | Parameter save area                        |
7243 //        |     +--------------------------------------------+
7244 //        |     | Alloca space                               |
7245 //        |     +--------------------------------------------+
7246 //        |     | Local variable space                       |
7247 //        |     +--------------------------------------------+
7248 //        |     | Float/int conversion temporary             |
7249 //        |     +--------------------------------------------+
7250 //        |     | Save area for AltiVec registers            |
7251 //        |     +--------------------------------------------+
7252 //        |     | AltiVec alignment padding                  |
7253 //        |     +--------------------------------------------+
7254 //        |     | Save area for VRSAVE register              |
7255 //        |     +--------------------------------------------+
7256 //        |     | Save area for General Purpose registers    |
7257 //        |     +--------------------------------------------+
7258 //        |     | Save area for Floating Point registers     |
7259 //        |     +--------------------------------------------+
7260 //        +---- | Back chain                                 |
7261 // High Memory  +--------------------------------------------+
7262 //
7263 //  Specifications:
7264 //  AIX 7.2 Assembler Language Reference
7265 //  Subroutine linkage convention
7266 
7267 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7268     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7269     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7270     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7271 
7272   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7273           CallConv == CallingConv::Fast) &&
7274          "Unexpected calling convention!");
7275 
7276   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7277     report_fatal_error("Tail call support is unimplemented on AIX.");
7278 
7279   if (useSoftFloat())
7280     report_fatal_error("Soft float support is unimplemented on AIX.");
7281 
7282   const PPCSubtarget &Subtarget =
7283       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7284   if (Subtarget.hasQPX())
7285     report_fatal_error("QPX support is not supported on AIX.");
7286 
7287   const bool IsPPC64 = Subtarget.isPPC64();
7288   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7289 
7290   // Assign locations to all of the incoming arguments.
7291   SmallVector<CCValAssign, 16> ArgLocs;
7292   MachineFunction &MF = DAG.getMachineFunction();
7293   MachineFrameInfo &MFI = MF.getFrameInfo();
7294   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7295 
7296   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7297   // Reserve space for the linkage area on the stack.
7298   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7299   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7300   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7301 
7302   SmallVector<SDValue, 8> MemOps;
7303 
7304   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7305     CCValAssign &VA = ArgLocs[I++];
7306     MVT LocVT = VA.getLocVT();
7307     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7308 
7309     // For compatibility with the AIX XL compiler, the float args in the
7310     // parameter save area are initialized even if the argument is available
7311     // in register.  The caller is required to initialize both the register
7312     // and memory, however, the callee can choose to expect it in either.
7313     // The memloc is dismissed here because the argument is retrieved from
7314     // the register.
7315     if (VA.isMemLoc() && VA.needsCustom())
7316       continue;
7317 
7318     if (Flags.isByVal() && VA.isMemLoc()) {
7319       const unsigned Size =
7320           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7321                   PtrByteSize);
7322       const int FI = MF.getFrameInfo().CreateFixedObject(
7323           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7324           /* IsAliased */ true);
7325       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7326       InVals.push_back(FIN);
7327 
7328       continue;
7329     }
7330 
7331     if (Flags.isByVal()) {
7332       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7333 
7334       const MCPhysReg ArgReg = VA.getLocReg();
7335       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7336 
7337       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7338         report_fatal_error("Over aligned byvals not supported yet.");
7339 
7340       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7341       const int FI = MF.getFrameInfo().CreateFixedObject(
7342           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7343           /* IsAliased */ true);
7344       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7345       InVals.push_back(FIN);
7346 
7347       // Add live ins for all the RegLocs for the same ByVal.
7348       const TargetRegisterClass *RegClass =
7349           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7350 
7351       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7352                                                unsigned Offset) {
7353         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7354         // Since the callers side has left justified the aggregate in the
7355         // register, we can simply store the entire register into the stack
7356         // slot.
7357         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7358         // The store to the fixedstack object is needed becuase accessing a
7359         // field of the ByVal will use a gep and load. Ideally we will optimize
7360         // to extracting the value from the register directly, and elide the
7361         // stores when the arguments address is not taken, but that will need to
7362         // be future work.
7363         SDValue Store =
7364             DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
7365                          DAG.getObjectPtrOffset(dl, FIN, Offset),
7366                          MachinePointerInfo::getFixedStack(MF, FI, Offset));
7367 
7368         MemOps.push_back(Store);
7369       };
7370 
7371       unsigned Offset = 0;
7372       HandleRegLoc(VA.getLocReg(), Offset);
7373       Offset += PtrByteSize;
7374       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7375            Offset += PtrByteSize) {
7376         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7377                "RegLocs should be for ByVal argument.");
7378 
7379         const CCValAssign RL = ArgLocs[I++];
7380         HandleRegLoc(RL.getLocReg(), Offset);
7381       }
7382 
7383       if (Offset != StackSize) {
7384         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7385                "Expected MemLoc for remaining bytes.");
7386         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7387         // Consume the MemLoc.The InVal has already been emitted, so nothing
7388         // more needs to be done.
7389         ++I;
7390       }
7391 
7392       continue;
7393     }
7394 
7395     EVT ValVT = VA.getValVT();
7396     if (VA.isRegLoc() && !VA.needsCustom()) {
7397       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7398       unsigned VReg =
7399           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7400       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7401       if (ValVT.isScalarInteger() &&
7402           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7403         ArgValue =
7404             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7405       }
7406       InVals.push_back(ArgValue);
7407       continue;
7408     }
7409     if (VA.isMemLoc()) {
7410       const unsigned LocSize = LocVT.getStoreSize();
7411       const unsigned ValSize = ValVT.getStoreSize();
7412       assert((ValSize <= LocSize) &&
7413              "Object size is larger than size of MemLoc");
7414       int CurArgOffset = VA.getLocMemOffset();
7415       // Objects are right-justified because AIX is big-endian.
7416       if (LocSize > ValSize)
7417         CurArgOffset += LocSize - ValSize;
7418       // Potential tail calls could cause overwriting of argument stack slots.
7419       const bool IsImmutable =
7420           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7421             (CallConv == CallingConv::Fast));
7422       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7423       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7424       SDValue ArgValue =
7425           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7426       InVals.push_back(ArgValue);
7427       continue;
7428     }
7429   }
7430 
7431   // On AIX a minimum of 8 words is saved to the parameter save area.
7432   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7433   // Area that is at least reserved in the caller of this function.
7434   unsigned CallerReservedArea =
7435       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7436 
7437   // Set the size that is at least reserved in caller of this function. Tail
7438   // call optimized function's reserved stack space needs to be aligned so
7439   // that taking the difference between two stack areas will result in an
7440   // aligned stack.
7441   CallerReservedArea =
7442       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7443   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7444   FuncInfo->setMinReservedArea(CallerReservedArea);
7445 
7446   if (isVarArg) {
7447     FuncInfo->setVarArgsFrameIndex(
7448         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7449     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7450 
7451     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7452                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7453 
7454     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7455                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7456     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7457 
7458     // The fixed integer arguments of a variadic function are stored to the
7459     // VarArgsFrameIndex on the stack so that they may be loaded by
7460     // dereferencing the result of va_next.
7461     for (unsigned GPRIndex =
7462              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7463          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7464 
7465       const unsigned VReg =
7466           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7467                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7468 
7469       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7470       SDValue Store =
7471           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7472       MemOps.push_back(Store);
7473       // Increment the address for the next argument to store.
7474       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7475       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7476     }
7477   }
7478 
7479   if (!MemOps.empty())
7480     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7481 
7482   return Chain;
7483 }
7484 
7485 SDValue PPCTargetLowering::LowerCall_AIX(
7486     SDValue Chain, SDValue Callee, CallFlags CFlags,
7487     const SmallVectorImpl<ISD::OutputArg> &Outs,
7488     const SmallVectorImpl<SDValue> &OutVals,
7489     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7490     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7491     const CallBase *CB) const {
7492   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7493   // AIX ABI stack frame layout.
7494 
7495   assert((CFlags.CallConv == CallingConv::C ||
7496           CFlags.CallConv == CallingConv::Cold ||
7497           CFlags.CallConv == CallingConv::Fast) &&
7498          "Unexpected calling convention!");
7499 
7500   if (CFlags.IsPatchPoint)
7501     report_fatal_error("This call type is unimplemented on AIX.");
7502 
7503   const PPCSubtarget& Subtarget =
7504       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7505   if (Subtarget.hasQPX())
7506     report_fatal_error("QPX is not supported on AIX.");
7507   if (Subtarget.hasAltivec())
7508     report_fatal_error("Altivec support is unimplemented on AIX.");
7509 
7510   MachineFunction &MF = DAG.getMachineFunction();
7511   SmallVector<CCValAssign, 16> ArgLocs;
7512   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7513                  *DAG.getContext());
7514 
7515   // Reserve space for the linkage save area (LSA) on the stack.
7516   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7517   //   [SP][CR][LR][2 x reserved][TOC].
7518   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7519   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7520   const bool IsPPC64 = Subtarget.isPPC64();
7521   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7522   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7523   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7524   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7525 
7526   // The prolog code of the callee may store up to 8 GPR argument registers to
7527   // the stack, allowing va_start to index over them in memory if the callee
7528   // is variadic.
7529   // Because we cannot tell if this is needed on the caller side, we have to
7530   // conservatively assume that it is needed.  As such, make sure we have at
7531   // least enough stack space for the caller to store the 8 GPRs.
7532   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7533   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7534                                      CCInfo.getNextStackOffset());
7535 
7536   // Adjust the stack pointer for the new arguments...
7537   // These operations are automatically eliminated by the prolog/epilog pass.
7538   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7539   SDValue CallSeqStart = Chain;
7540 
7541   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7542   SmallVector<SDValue, 8> MemOpChains;
7543 
7544   // Set up a copy of the stack pointer for loading and storing any
7545   // arguments that may not fit in the registers available for argument
7546   // passing.
7547   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7548                                    : DAG.getRegister(PPC::R1, MVT::i32);
7549 
7550   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7551     const unsigned ValNo = ArgLocs[I].getValNo();
7552     SDValue Arg = OutVals[ValNo];
7553     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7554 
7555     if (Flags.isByVal()) {
7556       const unsigned ByValSize = Flags.getByValSize();
7557 
7558       // Nothing to do for zero-sized ByVals on the caller side.
7559       if (!ByValSize) {
7560         ++I;
7561         continue;
7562       }
7563 
7564       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7565         return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
7566                               (LoadOffset != 0)
7567                                   ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7568                                   : Arg,
7569                               MachinePointerInfo(), VT);
7570       };
7571 
7572       unsigned LoadOffset = 0;
7573 
7574       // Initialize registers, which are fully occupied by the by-val argument.
7575       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7576         SDValue Load = GetLoad(PtrVT, LoadOffset);
7577         MemOpChains.push_back(Load.getValue(1));
7578         LoadOffset += PtrByteSize;
7579         const CCValAssign &ByValVA = ArgLocs[I++];
7580         assert(ByValVA.getValNo() == ValNo &&
7581                "Unexpected location for pass-by-value argument.");
7582         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7583       }
7584 
7585       if (LoadOffset == ByValSize)
7586         continue;
7587 
7588       // There must be one more loc to handle the remainder.
7589       assert(ArgLocs[I].getValNo() == ValNo &&
7590              "Expected additional location for by-value argument.");
7591 
7592       if (ArgLocs[I].isMemLoc()) {
7593         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7594         const CCValAssign &ByValVA = ArgLocs[I++];
7595         ISD::ArgFlagsTy MemcpyFlags = Flags;
7596         // Only memcpy the bytes that don't pass in register.
7597         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7598         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7599             (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7600                               : Arg,
7601             DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
7602             CallSeqStart, MemcpyFlags, DAG, dl);
7603         continue;
7604       }
7605 
7606       // Initialize the final register residue.
7607       // Any residue that occupies the final by-val arg register must be
7608       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7609       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7610       // 2 and 1 byte loads.
7611       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7612       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7613              "Unexpected register residue for by-value argument.");
7614       SDValue ResidueVal;
7615       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7616         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7617         const MVT VT =
7618             N == 1 ? MVT::i8
7619                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7620         SDValue Load = GetLoad(VT, LoadOffset);
7621         MemOpChains.push_back(Load.getValue(1));
7622         LoadOffset += N;
7623         Bytes += N;
7624 
7625         // By-val arguments are passed left-justfied in register.
7626         // Every load here needs to be shifted, otherwise a full register load
7627         // should have been used.
7628         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7629                "Unexpected load emitted during handling of pass-by-value "
7630                "argument.");
7631         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7632         EVT ShiftAmountTy =
7633             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7634         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7635         SDValue ShiftedLoad =
7636             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7637         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7638                                               ShiftedLoad)
7639                                 : ShiftedLoad;
7640       }
7641 
7642       const CCValAssign &ByValVA = ArgLocs[I++];
7643       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7644       continue;
7645     }
7646 
7647     CCValAssign &VA = ArgLocs[I++];
7648     const MVT LocVT = VA.getLocVT();
7649     const MVT ValVT = VA.getValVT();
7650 
7651     switch (VA.getLocInfo()) {
7652     default:
7653       report_fatal_error("Unexpected argument extension type.");
7654     case CCValAssign::Full:
7655       break;
7656     case CCValAssign::ZExt:
7657       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7658       break;
7659     case CCValAssign::SExt:
7660       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7661       break;
7662     }
7663 
7664     if (VA.isRegLoc() && !VA.needsCustom()) {
7665       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7666       continue;
7667     }
7668 
7669     if (VA.isMemLoc()) {
7670       SDValue PtrOff =
7671           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7672       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7673       MemOpChains.push_back(
7674           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7675 
7676       continue;
7677     }
7678 
7679     // Custom handling is used for GPR initializations for vararg float
7680     // arguments.
7681     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7682            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7683            "Unexpected register handling for calling convention.");
7684 
7685     SDValue ArgAsInt =
7686         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7687 
7688     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7689       // f32 in 32-bit GPR
7690       // f64 in 64-bit GPR
7691       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7692     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7693       // f32 in 64-bit GPR.
7694       RegsToPass.push_back(std::make_pair(
7695           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7696     else {
7697       // f64 in two 32-bit GPRs
7698       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7699       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7700              "Unexpected custom register for argument!");
7701       CCValAssign &GPR1 = VA;
7702       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7703                                      DAG.getConstant(32, dl, MVT::i8));
7704       RegsToPass.push_back(std::make_pair(
7705           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7706 
7707       if (I != E) {
7708         // If only 1 GPR was available, there will only be one custom GPR and
7709         // the argument will also pass in memory.
7710         CCValAssign &PeekArg = ArgLocs[I];
7711         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7712           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7713           CCValAssign &GPR2 = ArgLocs[I++];
7714           RegsToPass.push_back(std::make_pair(
7715               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7716         }
7717       }
7718     }
7719   }
7720 
7721   if (!MemOpChains.empty())
7722     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7723 
7724   // For indirect calls, we need to save the TOC base to the stack for
7725   // restoration after the call.
7726   if (CFlags.IsIndirect) {
7727     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7728     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7729     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7730     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7731     const unsigned TOCSaveOffset =
7732         Subtarget.getFrameLowering()->getTOCSaveOffset();
7733 
7734     setUsesTOCBasePtr(DAG);
7735     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7736     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7737     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7738     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7739     Chain = DAG.getStore(
7740         Val.getValue(1), dl, Val, AddPtr,
7741         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7742   }
7743 
7744   // Build a sequence of copy-to-reg nodes chained together with token chain
7745   // and flag operands which copy the outgoing args into the appropriate regs.
7746   SDValue InFlag;
7747   for (auto Reg : RegsToPass) {
7748     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7749     InFlag = Chain.getValue(1);
7750   }
7751 
7752   const int SPDiff = 0;
7753   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7754                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7755 }
7756 
7757 bool
7758 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7759                                   MachineFunction &MF, bool isVarArg,
7760                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7761                                   LLVMContext &Context) const {
7762   SmallVector<CCValAssign, 16> RVLocs;
7763   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7764   return CCInfo.CheckReturn(
7765       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7766                 ? RetCC_PPC_Cold
7767                 : RetCC_PPC);
7768 }
7769 
7770 SDValue
7771 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7772                                bool isVarArg,
7773                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7774                                const SmallVectorImpl<SDValue> &OutVals,
7775                                const SDLoc &dl, SelectionDAG &DAG) const {
7776   SmallVector<CCValAssign, 16> RVLocs;
7777   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7778                  *DAG.getContext());
7779   CCInfo.AnalyzeReturn(Outs,
7780                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7781                            ? RetCC_PPC_Cold
7782                            : RetCC_PPC);
7783 
7784   SDValue Flag;
7785   SmallVector<SDValue, 4> RetOps(1, Chain);
7786 
7787   // Copy the result values into the output registers.
7788   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7789     CCValAssign &VA = RVLocs[i];
7790     assert(VA.isRegLoc() && "Can only return in registers!");
7791 
7792     SDValue Arg = OutVals[RealResIdx];
7793 
7794     switch (VA.getLocInfo()) {
7795     default: llvm_unreachable("Unknown loc info!");
7796     case CCValAssign::Full: break;
7797     case CCValAssign::AExt:
7798       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7799       break;
7800     case CCValAssign::ZExt:
7801       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7802       break;
7803     case CCValAssign::SExt:
7804       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7805       break;
7806     }
7807     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7808       bool isLittleEndian = Subtarget.isLittleEndian();
7809       // Legalize ret f64 -> ret 2 x i32.
7810       SDValue SVal =
7811           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7812                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7813       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7814       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7815       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7816                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7817       Flag = Chain.getValue(1);
7818       VA = RVLocs[++i]; // skip ahead to next loc
7819       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7820     } else
7821       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7822     Flag = Chain.getValue(1);
7823     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7824   }
7825 
7826   RetOps[0] = Chain;  // Update chain.
7827 
7828   // Add the flag if we have it.
7829   if (Flag.getNode())
7830     RetOps.push_back(Flag);
7831 
7832   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7833 }
7834 
7835 SDValue
7836 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7837                                                 SelectionDAG &DAG) const {
7838   SDLoc dl(Op);
7839 
7840   // Get the correct type for integers.
7841   EVT IntVT = Op.getValueType();
7842 
7843   // Get the inputs.
7844   SDValue Chain = Op.getOperand(0);
7845   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7846   // Build a DYNAREAOFFSET node.
7847   SDValue Ops[2] = {Chain, FPSIdx};
7848   SDVTList VTs = DAG.getVTList(IntVT);
7849   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7850 }
7851 
7852 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7853                                              SelectionDAG &DAG) const {
7854   // When we pop the dynamic allocation we need to restore the SP link.
7855   SDLoc dl(Op);
7856 
7857   // Get the correct type for pointers.
7858   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7859 
7860   // Construct the stack pointer operand.
7861   bool isPPC64 = Subtarget.isPPC64();
7862   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7863   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7864 
7865   // Get the operands for the STACKRESTORE.
7866   SDValue Chain = Op.getOperand(0);
7867   SDValue SaveSP = Op.getOperand(1);
7868 
7869   // Load the old link SP.
7870   SDValue LoadLinkSP =
7871       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7872 
7873   // Restore the stack pointer.
7874   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7875 
7876   // Store the old link SP.
7877   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7878 }
7879 
7880 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7881   MachineFunction &MF = DAG.getMachineFunction();
7882   bool isPPC64 = Subtarget.isPPC64();
7883   EVT PtrVT = getPointerTy(MF.getDataLayout());
7884 
7885   // Get current frame pointer save index.  The users of this index will be
7886   // primarily DYNALLOC instructions.
7887   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7888   int RASI = FI->getReturnAddrSaveIndex();
7889 
7890   // If the frame pointer save index hasn't been defined yet.
7891   if (!RASI) {
7892     // Find out what the fix offset of the frame pointer save area.
7893     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7894     // Allocate the frame index for frame pointer save area.
7895     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7896     // Save the result.
7897     FI->setReturnAddrSaveIndex(RASI);
7898   }
7899   return DAG.getFrameIndex(RASI, PtrVT);
7900 }
7901 
7902 SDValue
7903 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7904   MachineFunction &MF = DAG.getMachineFunction();
7905   bool isPPC64 = Subtarget.isPPC64();
7906   EVT PtrVT = getPointerTy(MF.getDataLayout());
7907 
7908   // Get current frame pointer save index.  The users of this index will be
7909   // primarily DYNALLOC instructions.
7910   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7911   int FPSI = FI->getFramePointerSaveIndex();
7912 
7913   // If the frame pointer save index hasn't been defined yet.
7914   if (!FPSI) {
7915     // Find out what the fix offset of the frame pointer save area.
7916     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7917     // Allocate the frame index for frame pointer save area.
7918     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7919     // Save the result.
7920     FI->setFramePointerSaveIndex(FPSI);
7921   }
7922   return DAG.getFrameIndex(FPSI, PtrVT);
7923 }
7924 
7925 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7926                                                    SelectionDAG &DAG) const {
7927   MachineFunction &MF = DAG.getMachineFunction();
7928   // Get the inputs.
7929   SDValue Chain = Op.getOperand(0);
7930   SDValue Size  = Op.getOperand(1);
7931   SDLoc dl(Op);
7932 
7933   // Get the correct type for pointers.
7934   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7935   // Negate the size.
7936   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7937                                 DAG.getConstant(0, dl, PtrVT), Size);
7938   // Construct a node for the frame pointer save index.
7939   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7940   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7941   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7942   if (hasInlineStackProbe(MF))
7943     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7944   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7945 }
7946 
7947 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7948                                                      SelectionDAG &DAG) const {
7949   MachineFunction &MF = DAG.getMachineFunction();
7950 
7951   bool isPPC64 = Subtarget.isPPC64();
7952   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7953 
7954   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7955   return DAG.getFrameIndex(FI, PtrVT);
7956 }
7957 
7958 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7959                                                SelectionDAG &DAG) const {
7960   SDLoc DL(Op);
7961   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7962                      DAG.getVTList(MVT::i32, MVT::Other),
7963                      Op.getOperand(0), Op.getOperand(1));
7964 }
7965 
7966 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7967                                                 SelectionDAG &DAG) const {
7968   SDLoc DL(Op);
7969   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7970                      Op.getOperand(0), Op.getOperand(1));
7971 }
7972 
7973 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7974   if (Op.getValueType().isVector())
7975     return LowerVectorLoad(Op, DAG);
7976 
7977   assert(Op.getValueType() == MVT::i1 &&
7978          "Custom lowering only for i1 loads");
7979 
7980   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7981 
7982   SDLoc dl(Op);
7983   LoadSDNode *LD = cast<LoadSDNode>(Op);
7984 
7985   SDValue Chain = LD->getChain();
7986   SDValue BasePtr = LD->getBasePtr();
7987   MachineMemOperand *MMO = LD->getMemOperand();
7988 
7989   SDValue NewLD =
7990       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7991                      BasePtr, MVT::i8, MMO);
7992   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7993 
7994   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7995   return DAG.getMergeValues(Ops, dl);
7996 }
7997 
7998 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7999   if (Op.getOperand(1).getValueType().isVector())
8000     return LowerVectorStore(Op, DAG);
8001 
8002   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
8003          "Custom lowering only for i1 stores");
8004 
8005   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
8006 
8007   SDLoc dl(Op);
8008   StoreSDNode *ST = cast<StoreSDNode>(Op);
8009 
8010   SDValue Chain = ST->getChain();
8011   SDValue BasePtr = ST->getBasePtr();
8012   SDValue Value = ST->getValue();
8013   MachineMemOperand *MMO = ST->getMemOperand();
8014 
8015   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
8016                       Value);
8017   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
8018 }
8019 
8020 // FIXME: Remove this once the ANDI glue bug is fixed:
8021 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8022   assert(Op.getValueType() == MVT::i1 &&
8023          "Custom lowering only for i1 results");
8024 
8025   SDLoc DL(Op);
8026   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
8027 }
8028 
8029 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
8030                                                SelectionDAG &DAG) const {
8031 
8032   // Implements a vector truncate that fits in a vector register as a shuffle.
8033   // We want to legalize vector truncates down to where the source fits in
8034   // a vector register (and target is therefore smaller than vector register
8035   // size).  At that point legalization will try to custom lower the sub-legal
8036   // result and get here - where we can contain the truncate as a single target
8037   // operation.
8038 
8039   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
8040   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
8041   //
8042   // We will implement it for big-endian ordering as this (where x denotes
8043   // undefined):
8044   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
8045   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
8046   //
8047   // The same operation in little-endian ordering will be:
8048   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
8049   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
8050 
8051   assert(Op.getValueType().isVector() && "Vector type expected.");
8052 
8053   SDLoc DL(Op);
8054   SDValue N1 = Op.getOperand(0);
8055   unsigned SrcSize = N1.getValueType().getSizeInBits();
8056   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
8057   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
8058 
8059   EVT TrgVT = Op.getValueType();
8060   unsigned TrgNumElts = TrgVT.getVectorNumElements();
8061   EVT EltVT = TrgVT.getVectorElementType();
8062   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8063   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8064 
8065   // First list the elements we want to keep.
8066   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
8067   SmallVector<int, 16> ShuffV;
8068   if (Subtarget.isLittleEndian())
8069     for (unsigned i = 0; i < TrgNumElts; ++i)
8070       ShuffV.push_back(i * SizeMult);
8071   else
8072     for (unsigned i = 1; i <= TrgNumElts; ++i)
8073       ShuffV.push_back(i * SizeMult - 1);
8074 
8075   // Populate the remaining elements with undefs.
8076   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
8077     // ShuffV.push_back(i + WideNumElts);
8078     ShuffV.push_back(WideNumElts + 1);
8079 
8080   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
8081   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
8082 }
8083 
8084 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
8085 /// possible.
8086 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
8087   // Not FP? Not a fsel.
8088   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
8089       !Op.getOperand(2).getValueType().isFloatingPoint())
8090     return Op;
8091 
8092   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
8093 
8094   EVT ResVT = Op.getValueType();
8095   EVT CmpVT = Op.getOperand(0).getValueType();
8096   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8097   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
8098   SDLoc dl(Op);
8099   SDNodeFlags Flags = Op.getNode()->getFlags();
8100 
8101   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
8102   // presence of infinities.
8103   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
8104     switch (CC) {
8105     default:
8106       break;
8107     case ISD::SETOGT:
8108     case ISD::SETGT:
8109       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
8110     case ISD::SETOLT:
8111     case ISD::SETLT:
8112       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
8113     }
8114   }
8115 
8116   // We might be able to do better than this under some circumstances, but in
8117   // general, fsel-based lowering of select is a finite-math-only optimization.
8118   // For more information, see section F.3 of the 2.06 ISA specification.
8119   // With ISA 3.0
8120   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
8121       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
8122     return Op;
8123 
8124   // If the RHS of the comparison is a 0.0, we don't need to do the
8125   // subtraction at all.
8126   SDValue Sel1;
8127   if (isFloatingPointZero(RHS))
8128     switch (CC) {
8129     default: break;       // SETUO etc aren't handled by fsel.
8130     case ISD::SETNE:
8131       std::swap(TV, FV);
8132       LLVM_FALLTHROUGH;
8133     case ISD::SETEQ:
8134       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8135         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8136       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8137       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8138         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8139       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8140                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8141     case ISD::SETULT:
8142     case ISD::SETLT:
8143       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8144       LLVM_FALLTHROUGH;
8145     case ISD::SETOGE:
8146     case ISD::SETGE:
8147       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8148         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8149       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8150     case ISD::SETUGT:
8151     case ISD::SETGT:
8152       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8153       LLVM_FALLTHROUGH;
8154     case ISD::SETOLE:
8155     case ISD::SETLE:
8156       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8157         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8158       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8159                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8160     }
8161 
8162   SDValue Cmp;
8163   switch (CC) {
8164   default: break;       // SETUO etc aren't handled by fsel.
8165   case ISD::SETNE:
8166     std::swap(TV, FV);
8167     LLVM_FALLTHROUGH;
8168   case ISD::SETEQ:
8169     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8170     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8171       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8172     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8173     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8174       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8175     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8176                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8177   case ISD::SETULT:
8178   case ISD::SETLT:
8179     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8180     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8181       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8182     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8183   case ISD::SETOGE:
8184   case ISD::SETGE:
8185     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8186     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8187       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8188     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8189   case ISD::SETUGT:
8190   case ISD::SETGT:
8191     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8192     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8193       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8194     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8195   case ISD::SETOLE:
8196   case ISD::SETLE:
8197     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8198     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8199       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8200     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8201   }
8202   return Op;
8203 }
8204 
8205 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8206                                                SelectionDAG &DAG,
8207                                                const SDLoc &dl) const {
8208   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8209   SDValue Src = Op.getOperand(0);
8210   if (Src.getValueType() == MVT::f32)
8211     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8212 
8213   SDValue Tmp;
8214   switch (Op.getSimpleValueType().SimpleTy) {
8215   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8216   case MVT::i32:
8217     Tmp = DAG.getNode(
8218         Op.getOpcode() == ISD::FP_TO_SINT
8219             ? PPCISD::FCTIWZ
8220             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8221         dl, MVT::f64, Src);
8222     break;
8223   case MVT::i64:
8224     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8225            "i64 FP_TO_UINT is supported only with FPCVT");
8226     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8227                                                         PPCISD::FCTIDUZ,
8228                       dl, MVT::f64, Src);
8229     break;
8230   }
8231 
8232   // Convert the FP value to an int value through memory.
8233   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8234     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
8235   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8236   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8237   MachinePointerInfo MPI =
8238       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8239 
8240   // Emit a store to the stack slot.
8241   SDValue Chain;
8242   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8243   if (i32Stack) {
8244     MachineFunction &MF = DAG.getMachineFunction();
8245     Alignment = Align(4);
8246     MachineMemOperand *MMO =
8247         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8248     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
8249     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8250               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8251   } else
8252     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
8253 
8254   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8255   // add in a bias on big endian.
8256   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8257     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8258                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8259     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8260   }
8261 
8262   RLI.Chain = Chain;
8263   RLI.Ptr = FIPtr;
8264   RLI.MPI = MPI;
8265   RLI.Alignment = Alignment;
8266 }
8267 
8268 /// Custom lowers floating point to integer conversions to use
8269 /// the direct move instructions available in ISA 2.07 to avoid the
8270 /// need for load/store combinations.
8271 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8272                                                     SelectionDAG &DAG,
8273                                                     const SDLoc &dl) const {
8274   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8275   SDValue Src = Op.getOperand(0);
8276 
8277   if (Src.getValueType() == MVT::f32)
8278     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8279 
8280   SDValue Tmp;
8281   switch (Op.getSimpleValueType().SimpleTy) {
8282   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8283   case MVT::i32:
8284     Tmp = DAG.getNode(
8285         Op.getOpcode() == ISD::FP_TO_SINT
8286             ? PPCISD::FCTIWZ
8287             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8288         dl, MVT::f64, Src);
8289     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
8290     break;
8291   case MVT::i64:
8292     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8293            "i64 FP_TO_UINT is supported only with FPCVT");
8294     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8295                                                         PPCISD::FCTIDUZ,
8296                       dl, MVT::f64, Src);
8297     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
8298     break;
8299   }
8300   return Tmp;
8301 }
8302 
8303 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8304                                           const SDLoc &dl) const {
8305 
8306   // FP to INT conversions are legal for f128.
8307   if (Op->getOperand(0).getValueType() == MVT::f128)
8308     return Op;
8309 
8310   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8311   // PPC (the libcall is not available).
8312   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
8313     if (Op.getValueType() == MVT::i32) {
8314       if (Op.getOpcode() == ISD::FP_TO_SINT) {
8315         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8316                                  MVT::f64, Op.getOperand(0),
8317                                  DAG.getIntPtrConstant(0, dl));
8318         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8319                                  MVT::f64, Op.getOperand(0),
8320                                  DAG.getIntPtrConstant(1, dl));
8321 
8322         // Add the two halves of the long double in round-to-zero mode.
8323         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8324 
8325         // Now use a smaller FP_TO_SINT.
8326         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8327       }
8328       if (Op.getOpcode() == ISD::FP_TO_UINT) {
8329         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8330         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8331         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8332         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8333         // FIXME: generated code sucks.
8334         // TODO: Are there fast-math-flags to propagate to this FSUB?
8335         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
8336                                    Op.getOperand(0), Tmp);
8337         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8338         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8339                            DAG.getConstant(0x80000000, dl, MVT::i32));
8340         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
8341                                     Op.getOperand(0));
8342         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
8343                                ISD::SETGE);
8344       }
8345     }
8346 
8347     return SDValue();
8348   }
8349 
8350   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8351     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8352 
8353   ReuseLoadInfo RLI;
8354   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8355 
8356   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8357                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8358 }
8359 
8360 // We're trying to insert a regular store, S, and then a load, L. If the
8361 // incoming value, O, is a load, we might just be able to have our load use the
8362 // address used by O. However, we don't know if anything else will store to
8363 // that address before we can load from it. To prevent this situation, we need
8364 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8365 // the same chain operand as O, we create a token factor from the chain results
8366 // of O and L, and we replace all uses of O's chain result with that token
8367 // factor (see spliceIntoChain below for this last part).
8368 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8369                                             ReuseLoadInfo &RLI,
8370                                             SelectionDAG &DAG,
8371                                             ISD::LoadExtType ET) const {
8372   SDLoc dl(Op);
8373   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8374                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8375   if (ET == ISD::NON_EXTLOAD &&
8376       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8377       isOperationLegalOrCustom(Op.getOpcode(),
8378                                Op.getOperand(0).getValueType())) {
8379 
8380     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8381     return true;
8382   }
8383 
8384   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8385   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8386       LD->isNonTemporal())
8387     return false;
8388   if (LD->getMemoryVT() != MemVT)
8389     return false;
8390 
8391   RLI.Ptr = LD->getBasePtr();
8392   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8393     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8394            "Non-pre-inc AM on PPC?");
8395     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8396                           LD->getOffset());
8397   }
8398 
8399   RLI.Chain = LD->getChain();
8400   RLI.MPI = LD->getPointerInfo();
8401   RLI.IsDereferenceable = LD->isDereferenceable();
8402   RLI.IsInvariant = LD->isInvariant();
8403   RLI.Alignment = LD->getAlign();
8404   RLI.AAInfo = LD->getAAInfo();
8405   RLI.Ranges = LD->getRanges();
8406 
8407   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8408   return true;
8409 }
8410 
8411 // Given the head of the old chain, ResChain, insert a token factor containing
8412 // it and NewResChain, and make users of ResChain now be users of that token
8413 // factor.
8414 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8415 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8416                                         SDValue NewResChain,
8417                                         SelectionDAG &DAG) const {
8418   if (!ResChain)
8419     return;
8420 
8421   SDLoc dl(NewResChain);
8422 
8423   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8424                            NewResChain, DAG.getUNDEF(MVT::Other));
8425   assert(TF.getNode() != NewResChain.getNode() &&
8426          "A new TF really is required here");
8427 
8428   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8429   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8430 }
8431 
8432 /// Analyze profitability of direct move
8433 /// prefer float load to int load plus direct move
8434 /// when there is no integer use of int load
8435 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8436   SDNode *Origin = Op.getOperand(0).getNode();
8437   if (Origin->getOpcode() != ISD::LOAD)
8438     return true;
8439 
8440   // If there is no LXSIBZX/LXSIHZX, like Power8,
8441   // prefer direct move if the memory size is 1 or 2 bytes.
8442   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8443   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8444     return true;
8445 
8446   for (SDNode::use_iterator UI = Origin->use_begin(),
8447                             UE = Origin->use_end();
8448        UI != UE; ++UI) {
8449 
8450     // Only look at the users of the loaded value.
8451     if (UI.getUse().get().getResNo() != 0)
8452       continue;
8453 
8454     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8455         UI->getOpcode() != ISD::UINT_TO_FP)
8456       return true;
8457   }
8458 
8459   return false;
8460 }
8461 
8462 /// Custom lowers integer to floating point conversions to use
8463 /// the direct move instructions available in ISA 2.07 to avoid the
8464 /// need for load/store combinations.
8465 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8466                                                     SelectionDAG &DAG,
8467                                                     const SDLoc &dl) const {
8468   assert((Op.getValueType() == MVT::f32 ||
8469           Op.getValueType() == MVT::f64) &&
8470          "Invalid floating point type as target of conversion");
8471   assert(Subtarget.hasFPCVT() &&
8472          "Int to FP conversions with direct moves require FPCVT");
8473   SDValue FP;
8474   SDValue Src = Op.getOperand(0);
8475   bool SinglePrec = Op.getValueType() == MVT::f32;
8476   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8477   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8478   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
8479                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
8480 
8481   if (WordInt) {
8482     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
8483                      dl, MVT::f64, Src);
8484     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8485   }
8486   else {
8487     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
8488     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8489   }
8490 
8491   return FP;
8492 }
8493 
8494 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8495 
8496   EVT VecVT = Vec.getValueType();
8497   assert(VecVT.isVector() && "Expected a vector type.");
8498   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8499 
8500   EVT EltVT = VecVT.getVectorElementType();
8501   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8502   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8503 
8504   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8505   SmallVector<SDValue, 16> Ops(NumConcat);
8506   Ops[0] = Vec;
8507   SDValue UndefVec = DAG.getUNDEF(VecVT);
8508   for (unsigned i = 1; i < NumConcat; ++i)
8509     Ops[i] = UndefVec;
8510 
8511   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8512 }
8513 
8514 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8515                                                 const SDLoc &dl) const {
8516 
8517   unsigned Opc = Op.getOpcode();
8518   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8519          "Unexpected conversion type");
8520   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8521          "Supports conversions to v2f64/v4f32 only.");
8522 
8523   bool SignedConv = Opc == ISD::SINT_TO_FP;
8524   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8525 
8526   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8527   EVT WideVT = Wide.getValueType();
8528   unsigned WideNumElts = WideVT.getVectorNumElements();
8529   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8530 
8531   SmallVector<int, 16> ShuffV;
8532   for (unsigned i = 0; i < WideNumElts; ++i)
8533     ShuffV.push_back(i + WideNumElts);
8534 
8535   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8536   int SaveElts = FourEltRes ? 4 : 2;
8537   if (Subtarget.isLittleEndian())
8538     for (int i = 0; i < SaveElts; i++)
8539       ShuffV[i * Stride] = i;
8540   else
8541     for (int i = 1; i <= SaveElts; i++)
8542       ShuffV[i * Stride - 1] = i - 1;
8543 
8544   SDValue ShuffleSrc2 =
8545       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8546   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8547 
8548   SDValue Extend;
8549   if (SignedConv) {
8550     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8551     EVT ExtVT = Op.getOperand(0).getValueType();
8552     if (Subtarget.hasP9Altivec())
8553       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8554                                IntermediateVT.getVectorNumElements());
8555 
8556     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8557                          DAG.getValueType(ExtVT));
8558   } else
8559     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8560 
8561   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8562 }
8563 
8564 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8565                                           SelectionDAG &DAG) const {
8566   SDLoc dl(Op);
8567 
8568   EVT InVT = Op.getOperand(0).getValueType();
8569   EVT OutVT = Op.getValueType();
8570   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8571       isOperationCustom(Op.getOpcode(), InVT))
8572     return LowerINT_TO_FPVector(Op, DAG, dl);
8573 
8574   // Conversions to f128 are legal.
8575   if (Op.getValueType() == MVT::f128)
8576     return Op;
8577 
8578   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8579     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8580       return SDValue();
8581 
8582     SDValue Value = Op.getOperand(0);
8583     // The values are now known to be -1 (false) or 1 (true). To convert this
8584     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8585     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8586     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8587 
8588     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8589 
8590     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8591 
8592     if (Op.getValueType() != MVT::v4f64)
8593       Value = DAG.getNode(ISD::FP_ROUND, dl,
8594                           Op.getValueType(), Value,
8595                           DAG.getIntPtrConstant(1, dl));
8596     return Value;
8597   }
8598 
8599   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8600   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8601     return SDValue();
8602 
8603   if (Op.getOperand(0).getValueType() == MVT::i1)
8604     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8605                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8606                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8607 
8608   // If we have direct moves, we can do all the conversion, skip the store/load
8609   // however, without FPCVT we can't do most conversions.
8610   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8611       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8612     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8613 
8614   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8615          "UINT_TO_FP is supported only with FPCVT");
8616 
8617   // If we have FCFIDS, then use it when converting to single-precision.
8618   // Otherwise, convert to double-precision and then round.
8619   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8620                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8621                                                             : PPCISD::FCFIDS)
8622                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8623                                                             : PPCISD::FCFID);
8624   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8625                   ? MVT::f32
8626                   : MVT::f64;
8627 
8628   if (Op.getOperand(0).getValueType() == MVT::i64) {
8629     SDValue SINT = Op.getOperand(0);
8630     // When converting to single-precision, we actually need to convert
8631     // to double-precision first and then round to single-precision.
8632     // To avoid double-rounding effects during that operation, we have
8633     // to prepare the input operand.  Bits that might be truncated when
8634     // converting to double-precision are replaced by a bit that won't
8635     // be lost at this stage, but is below the single-precision rounding
8636     // position.
8637     //
8638     // However, if -enable-unsafe-fp-math is in effect, accept double
8639     // rounding to avoid the extra overhead.
8640     if (Op.getValueType() == MVT::f32 &&
8641         !Subtarget.hasFPCVT() &&
8642         !DAG.getTarget().Options.UnsafeFPMath) {
8643 
8644       // Twiddle input to make sure the low 11 bits are zero.  (If this
8645       // is the case, we are guaranteed the value will fit into the 53 bit
8646       // mantissa of an IEEE double-precision value without rounding.)
8647       // If any of those low 11 bits were not zero originally, make sure
8648       // bit 12 (value 2048) is set instead, so that the final rounding
8649       // to single-precision gets the correct result.
8650       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8651                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8652       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8653                           Round, DAG.getConstant(2047, dl, MVT::i64));
8654       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8655       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8656                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8657 
8658       // However, we cannot use that value unconditionally: if the magnitude
8659       // of the input value is small, the bit-twiddling we did above might
8660       // end up visibly changing the output.  Fortunately, in that case, we
8661       // don't need to twiddle bits since the original input will convert
8662       // exactly to double-precision floating-point already.  Therefore,
8663       // construct a conditional to use the original value if the top 11
8664       // bits are all sign-bit copies, and use the rounded value computed
8665       // above otherwise.
8666       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8667                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8668       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8669                          Cond, DAG.getConstant(1, dl, MVT::i64));
8670       Cond = DAG.getSetCC(
8671           dl,
8672           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8673           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8674 
8675       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8676     }
8677 
8678     ReuseLoadInfo RLI;
8679     SDValue Bits;
8680 
8681     MachineFunction &MF = DAG.getMachineFunction();
8682     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8683       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8684                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8685       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8686     } else if (Subtarget.hasLFIWAX() &&
8687                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8688       MachineMemOperand *MMO =
8689         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8690                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8691       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8692       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8693                                      DAG.getVTList(MVT::f64, MVT::Other),
8694                                      Ops, MVT::i32, MMO);
8695       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8696     } else if (Subtarget.hasFPCVT() &&
8697                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8698       MachineMemOperand *MMO =
8699         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8700                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8701       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8702       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8703                                      DAG.getVTList(MVT::f64, MVT::Other),
8704                                      Ops, MVT::i32, MMO);
8705       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8706     } else if (((Subtarget.hasLFIWAX() &&
8707                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8708                 (Subtarget.hasFPCVT() &&
8709                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8710                SINT.getOperand(0).getValueType() == MVT::i32) {
8711       MachineFrameInfo &MFI = MF.getFrameInfo();
8712       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8713 
8714       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8715       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8716 
8717       SDValue Store =
8718           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8719                        MachinePointerInfo::getFixedStack(
8720                            DAG.getMachineFunction(), FrameIdx));
8721 
8722       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8723              "Expected an i32 store");
8724 
8725       RLI.Ptr = FIdx;
8726       RLI.Chain = Store;
8727       RLI.MPI =
8728           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8729       RLI.Alignment = Align(4);
8730 
8731       MachineMemOperand *MMO =
8732         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8733                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8734       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8735       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8736                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8737                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8738                                      Ops, MVT::i32, MMO);
8739     } else
8740       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8741 
8742     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8743 
8744     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8745       FP = DAG.getNode(ISD::FP_ROUND, dl,
8746                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8747     return FP;
8748   }
8749 
8750   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8751          "Unhandled INT_TO_FP type in custom expander!");
8752   // Since we only generate this in 64-bit mode, we can take advantage of
8753   // 64-bit registers.  In particular, sign extend the input value into the
8754   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8755   // then lfd it and fcfid it.
8756   MachineFunction &MF = DAG.getMachineFunction();
8757   MachineFrameInfo &MFI = MF.getFrameInfo();
8758   EVT PtrVT = getPointerTy(MF.getDataLayout());
8759 
8760   SDValue Ld;
8761   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8762     ReuseLoadInfo RLI;
8763     bool ReusingLoad;
8764     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8765                                             DAG))) {
8766       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8767       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8768 
8769       SDValue Store =
8770           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8771                        MachinePointerInfo::getFixedStack(
8772                            DAG.getMachineFunction(), FrameIdx));
8773 
8774       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8775              "Expected an i32 store");
8776 
8777       RLI.Ptr = FIdx;
8778       RLI.Chain = Store;
8779       RLI.MPI =
8780           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8781       RLI.Alignment = Align(4);
8782     }
8783 
8784     MachineMemOperand *MMO =
8785       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8786                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8787     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8788     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8789                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8790                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8791                                  Ops, MVT::i32, MMO);
8792     if (ReusingLoad)
8793       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8794   } else {
8795     assert(Subtarget.isPPC64() &&
8796            "i32->FP without LFIWAX supported only on PPC64");
8797 
8798     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8799     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8800 
8801     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8802                                 Op.getOperand(0));
8803 
8804     // STD the extended value into the stack slot.
8805     SDValue Store = DAG.getStore(
8806         DAG.getEntryNode(), dl, Ext64, FIdx,
8807         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8808 
8809     // Load the value as a double.
8810     Ld = DAG.getLoad(
8811         MVT::f64, dl, Store, FIdx,
8812         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8813   }
8814 
8815   // FCFID it and return it.
8816   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8817   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8818     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8819                      DAG.getIntPtrConstant(0, dl));
8820   return FP;
8821 }
8822 
8823 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8824                                             SelectionDAG &DAG) const {
8825   SDLoc dl(Op);
8826   /*
8827    The rounding mode is in bits 30:31 of FPSR, and has the following
8828    settings:
8829      00 Round to nearest
8830      01 Round to 0
8831      10 Round to +inf
8832      11 Round to -inf
8833 
8834   FLT_ROUNDS, on the other hand, expects the following:
8835     -1 Undefined
8836      0 Round to 0
8837      1 Round to nearest
8838      2 Round to +inf
8839      3 Round to -inf
8840 
8841   To perform the conversion, we do:
8842     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8843   */
8844 
8845   MachineFunction &MF = DAG.getMachineFunction();
8846   EVT VT = Op.getValueType();
8847   EVT PtrVT = getPointerTy(MF.getDataLayout());
8848 
8849   // Save FP Control Word to register
8850   SDValue Chain = Op.getOperand(0);
8851   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8852   Chain = MFFS.getValue(1);
8853 
8854   // Save FP register to stack slot
8855   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8856   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8857   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8858 
8859   // Load FP Control Word from low 32 bits of stack slot.
8860   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8861   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8862   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8863   Chain = CWD.getValue(1);
8864 
8865   // Transform as necessary
8866   SDValue CWD1 =
8867     DAG.getNode(ISD::AND, dl, MVT::i32,
8868                 CWD, DAG.getConstant(3, dl, MVT::i32));
8869   SDValue CWD2 =
8870     DAG.getNode(ISD::SRL, dl, MVT::i32,
8871                 DAG.getNode(ISD::AND, dl, MVT::i32,
8872                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8873                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8874                             DAG.getConstant(3, dl, MVT::i32)),
8875                 DAG.getConstant(1, dl, MVT::i32));
8876 
8877   SDValue RetVal =
8878     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8879 
8880   RetVal =
8881       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8882                   dl, VT, RetVal);
8883 
8884   return DAG.getMergeValues({RetVal, Chain}, dl);
8885 }
8886 
8887 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8888   EVT VT = Op.getValueType();
8889   unsigned BitWidth = VT.getSizeInBits();
8890   SDLoc dl(Op);
8891   assert(Op.getNumOperands() == 3 &&
8892          VT == Op.getOperand(1).getValueType() &&
8893          "Unexpected SHL!");
8894 
8895   // Expand into a bunch of logical ops.  Note that these ops
8896   // depend on the PPC behavior for oversized shift amounts.
8897   SDValue Lo = Op.getOperand(0);
8898   SDValue Hi = Op.getOperand(1);
8899   SDValue Amt = Op.getOperand(2);
8900   EVT AmtVT = Amt.getValueType();
8901 
8902   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8903                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8904   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8905   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8906   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8907   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8908                              DAG.getConstant(-BitWidth, dl, AmtVT));
8909   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8910   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8911   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8912   SDValue OutOps[] = { OutLo, OutHi };
8913   return DAG.getMergeValues(OutOps, dl);
8914 }
8915 
8916 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8917   EVT VT = Op.getValueType();
8918   SDLoc dl(Op);
8919   unsigned BitWidth = VT.getSizeInBits();
8920   assert(Op.getNumOperands() == 3 &&
8921          VT == Op.getOperand(1).getValueType() &&
8922          "Unexpected SRL!");
8923 
8924   // Expand into a bunch of logical ops.  Note that these ops
8925   // depend on the PPC behavior for oversized shift amounts.
8926   SDValue Lo = Op.getOperand(0);
8927   SDValue Hi = Op.getOperand(1);
8928   SDValue Amt = Op.getOperand(2);
8929   EVT AmtVT = Amt.getValueType();
8930 
8931   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8932                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8933   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8934   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8935   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8936   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8937                              DAG.getConstant(-BitWidth, dl, AmtVT));
8938   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8939   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8940   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8941   SDValue OutOps[] = { OutLo, OutHi };
8942   return DAG.getMergeValues(OutOps, dl);
8943 }
8944 
8945 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8946   SDLoc dl(Op);
8947   EVT VT = Op.getValueType();
8948   unsigned BitWidth = VT.getSizeInBits();
8949   assert(Op.getNumOperands() == 3 &&
8950          VT == Op.getOperand(1).getValueType() &&
8951          "Unexpected SRA!");
8952 
8953   // Expand into a bunch of logical ops, followed by a select_cc.
8954   SDValue Lo = Op.getOperand(0);
8955   SDValue Hi = Op.getOperand(1);
8956   SDValue Amt = Op.getOperand(2);
8957   EVT AmtVT = Amt.getValueType();
8958 
8959   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8960                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8961   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8962   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8963   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8964   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8965                              DAG.getConstant(-BitWidth, dl, AmtVT));
8966   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8967   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8968   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8969                                   Tmp4, Tmp6, ISD::SETLE);
8970   SDValue OutOps[] = { OutLo, OutHi };
8971   return DAG.getMergeValues(OutOps, dl);
8972 }
8973 
8974 //===----------------------------------------------------------------------===//
8975 // Vector related lowering.
8976 //
8977 
8978 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8979 /// element size of SplatSize. Cast the result to VT.
8980 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8981                                       SelectionDAG &DAG, const SDLoc &dl) {
8982   static const MVT VTys[] = { // canonical VT to use for each size.
8983     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8984   };
8985 
8986   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8987 
8988   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8989   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
8990     SplatSize = 1;
8991     Val = 0xFF;
8992   }
8993 
8994   EVT CanonicalVT = VTys[SplatSize-1];
8995 
8996   // Build a canonical splat for this value.
8997   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8998 }
8999 
9000 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
9001 /// specified intrinsic ID.
9002 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
9003                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
9004   if (DestVT == MVT::Other) DestVT = Op.getValueType();
9005   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9006                      DAG.getConstant(IID, dl, MVT::i32), Op);
9007 }
9008 
9009 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
9010 /// specified intrinsic ID.
9011 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
9012                                 SelectionDAG &DAG, const SDLoc &dl,
9013                                 EVT DestVT = MVT::Other) {
9014   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
9015   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9016                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
9017 }
9018 
9019 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
9020 /// specified intrinsic ID.
9021 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
9022                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
9023                                 EVT DestVT = MVT::Other) {
9024   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
9025   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9026                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
9027 }
9028 
9029 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9030 /// amount.  The result has the specified value type.
9031 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9032                            SelectionDAG &DAG, const SDLoc &dl) {
9033   // Force LHS/RHS to be the right type.
9034   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9035   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9036 
9037   int Ops[16];
9038   for (unsigned i = 0; i != 16; ++i)
9039     Ops[i] = i + Amt;
9040   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9041   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9042 }
9043 
9044 /// Do we have an efficient pattern in a .td file for this node?
9045 ///
9046 /// \param V - pointer to the BuildVectorSDNode being matched
9047 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9048 ///
9049 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9050 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9051 /// the opposite is true (expansion is beneficial) are:
9052 /// - The node builds a vector out of integers that are not 32 or 64-bits
9053 /// - The node builds a vector out of constants
9054 /// - The node is a "load-and-splat"
9055 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9056 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9057                                             bool HasDirectMove,
9058                                             bool HasP8Vector) {
9059   EVT VecVT = V->getValueType(0);
9060   bool RightType = VecVT == MVT::v2f64 ||
9061     (HasP8Vector && VecVT == MVT::v4f32) ||
9062     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9063   if (!RightType)
9064     return false;
9065 
9066   bool IsSplat = true;
9067   bool IsLoad = false;
9068   SDValue Op0 = V->getOperand(0);
9069 
9070   // This function is called in a block that confirms the node is not a constant
9071   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9072   // different constants.
9073   if (V->isConstant())
9074     return false;
9075   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9076     if (V->getOperand(i).isUndef())
9077       return false;
9078     // We want to expand nodes that represent load-and-splat even if the
9079     // loaded value is a floating point truncation or conversion to int.
9080     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9081         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9082          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9083         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9084          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9085         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9086          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9087       IsLoad = true;
9088     // If the operands are different or the input is not a load and has more
9089     // uses than just this BV node, then it isn't a splat.
9090     if (V->getOperand(i) != Op0 ||
9091         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9092       IsSplat = false;
9093   }
9094   return !(IsSplat && IsLoad);
9095 }
9096 
9097 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9098 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9099 
9100   SDLoc dl(Op);
9101   SDValue Op0 = Op->getOperand(0);
9102 
9103   if ((Op.getValueType() != MVT::f128) ||
9104       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9105       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9106       (Op0.getOperand(1).getValueType() != MVT::i64))
9107     return SDValue();
9108 
9109   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9110                      Op0.getOperand(1));
9111 }
9112 
9113 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9114   const SDValue *InputLoad = &Op;
9115   if (InputLoad->getOpcode() == ISD::BITCAST)
9116     InputLoad = &InputLoad->getOperand(0);
9117   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9118       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9119     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9120     InputLoad = &InputLoad->getOperand(0);
9121   }
9122   if (InputLoad->getOpcode() != ISD::LOAD)
9123     return nullptr;
9124   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9125   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9126 }
9127 
9128 // Convert the argument APFloat to a single precision APFloat if there is no
9129 // loss in information during the conversion to single precision APFloat and the
9130 // resulting number is not a denormal number. Return true if successful.
9131 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9132   APFloat APFloatToConvert = ArgAPFloat;
9133   bool LosesInfo = true;
9134   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9135                            &LosesInfo);
9136   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9137   if (Success)
9138     ArgAPFloat = APFloatToConvert;
9139   return Success;
9140 }
9141 
9142 // Bitcast the argument APInt to a double and convert it to a single precision
9143 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9144 // argument if there is no loss in information during the conversion from
9145 // double to single precision APFloat and the resulting number is not a denormal
9146 // number. Return true if successful.
9147 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9148   double DpValue = ArgAPInt.bitsToDouble();
9149   APFloat APFloatDp(DpValue);
9150   bool Success = convertToNonDenormSingle(APFloatDp);
9151   if (Success)
9152     ArgAPInt = APFloatDp.bitcastToAPInt();
9153   return Success;
9154 }
9155 
9156 // If this is a case we can't handle, return null and let the default
9157 // expansion code take care of it.  If we CAN select this case, and if it
9158 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9159 // this case more efficiently than a constant pool load, lower it to the
9160 // sequence of ops that should be used.
9161 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9162                                              SelectionDAG &DAG) const {
9163   SDLoc dl(Op);
9164   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9165   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9166 
9167   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
9168     // We first build an i32 vector, load it into a QPX register,
9169     // then convert it to a floating-point vector and compare it
9170     // to a zero vector to get the boolean result.
9171     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9172     int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
9173     MachinePointerInfo PtrInfo =
9174         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9175     EVT PtrVT = getPointerTy(DAG.getDataLayout());
9176     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9177 
9178     assert(BVN->getNumOperands() == 4 &&
9179       "BUILD_VECTOR for v4i1 does not have 4 operands");
9180 
9181     bool IsConst = true;
9182     for (unsigned i = 0; i < 4; ++i) {
9183       if (BVN->getOperand(i).isUndef()) continue;
9184       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
9185         IsConst = false;
9186         break;
9187       }
9188     }
9189 
9190     if (IsConst) {
9191       Constant *One =
9192         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
9193       Constant *NegOne =
9194         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
9195 
9196       Constant *CV[4];
9197       for (unsigned i = 0; i < 4; ++i) {
9198         if (BVN->getOperand(i).isUndef())
9199           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
9200         else if (isNullConstant(BVN->getOperand(i)))
9201           CV[i] = NegOne;
9202         else
9203           CV[i] = One;
9204       }
9205 
9206       Constant *CP = ConstantVector::get(CV);
9207       SDValue CPIdx =
9208           DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16));
9209 
9210       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
9211       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
9212       return DAG.getMemIntrinsicNode(
9213           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
9214           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
9215     }
9216 
9217     SmallVector<SDValue, 4> Stores;
9218     for (unsigned i = 0; i < 4; ++i) {
9219       if (BVN->getOperand(i).isUndef()) continue;
9220 
9221       unsigned Offset = 4*i;
9222       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9223       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9224 
9225       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
9226       if (StoreSize > 4) {
9227         Stores.push_back(
9228             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
9229                               PtrInfo.getWithOffset(Offset), MVT::i32));
9230       } else {
9231         SDValue StoreValue = BVN->getOperand(i);
9232         if (StoreSize < 4)
9233           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
9234 
9235         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
9236                                       PtrInfo.getWithOffset(Offset)));
9237       }
9238     }
9239 
9240     SDValue StoreChain;
9241     if (!Stores.empty())
9242       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9243     else
9244       StoreChain = DAG.getEntryNode();
9245 
9246     // Now load from v4i32 into the QPX register; this will extend it to
9247     // v4i64 but not yet convert it to a floating point. Nevertheless, this
9248     // is typed as v4f64 because the QPX register integer states are not
9249     // explicitly represented.
9250 
9251     SDValue Ops[] = {StoreChain,
9252                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
9253                      FIdx};
9254     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
9255 
9256     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
9257       dl, VTs, Ops, MVT::v4i32, PtrInfo);
9258     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9259       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
9260       LoadedVect);
9261 
9262     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
9263 
9264     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
9265   }
9266 
9267   // All other QPX vectors are handled by generic code.
9268   if (Subtarget.hasQPX())
9269     return SDValue();
9270 
9271   // Check if this is a splat of a constant value.
9272   APInt APSplatBits, APSplatUndef;
9273   unsigned SplatBitSize;
9274   bool HasAnyUndefs;
9275   bool BVNIsConstantSplat =
9276       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9277                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9278 
9279   // If it is a splat of a double, check if we can shrink it to a 32 bit
9280   // non-denormal float which when converted back to double gives us the same
9281   // double. This is to exploit the XXSPLTIDP instruction.
9282   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
9283       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
9284       convertToNonDenormSingle(APSplatBits)) {
9285     SDValue SplatNode = DAG.getNode(
9286         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9287         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9288     return DAG.getBitcast(Op.getValueType(), SplatNode);
9289   }
9290 
9291   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9292 
9293     bool IsPermutedLoad = false;
9294     const SDValue *InputLoad =
9295         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9296     // Handle load-and-splat patterns as we have instructions that will do this
9297     // in one go.
9298     if (InputLoad && DAG.isSplatValue(Op, true)) {
9299       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9300 
9301       // We have handling for 4 and 8 byte elements.
9302       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9303 
9304       // Checking for a single use of this load, we have to check for vector
9305       // width (128 bits) / ElementSize uses (since each operand of the
9306       // BUILD_VECTOR is a separate use of the value.
9307       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9308           ((Subtarget.hasVSX() && ElementSize == 64) ||
9309            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9310         SDValue Ops[] = {
9311           LD->getChain(),    // Chain
9312           LD->getBasePtr(),  // Ptr
9313           DAG.getValueType(Op.getValueType()) // VT
9314         };
9315         return
9316           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9317                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9318                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9319       }
9320     }
9321 
9322     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9323     // lowered to VSX instructions under certain conditions.
9324     // Without VSX, there is no pattern more efficient than expanding the node.
9325     if (Subtarget.hasVSX() &&
9326         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9327                                         Subtarget.hasP8Vector()))
9328       return Op;
9329     return SDValue();
9330   }
9331 
9332   uint64_t SplatBits = APSplatBits.getZExtValue();
9333   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9334   unsigned SplatSize = SplatBitSize / 8;
9335 
9336   // First, handle single instruction cases.
9337 
9338   // All zeros?
9339   if (SplatBits == 0) {
9340     // Canonicalize all zero vectors to be v4i32.
9341     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9342       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9343       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9344     }
9345     return Op;
9346   }
9347 
9348   // We have XXSPLTIW for constant splats four bytes wide.
9349   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9350   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9351   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9352   // turned into a 4-byte splat of 0xABABABAB.
9353   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9354     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
9355                                   Op.getValueType(), DAG, dl);
9356 
9357   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9358     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9359                                   dl);
9360 
9361   // We have XXSPLTIB for constant splats one byte wide.
9362   if (Subtarget.hasP9Vector() && SplatSize == 1)
9363     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9364                                   dl);
9365 
9366   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9367   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9368                     (32-SplatBitSize));
9369   if (SextVal >= -16 && SextVal <= 15)
9370     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9371                                   dl);
9372 
9373   // Two instruction sequences.
9374 
9375   // If this value is in the range [-32,30] and is even, use:
9376   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9377   // If this value is in the range [17,31] and is odd, use:
9378   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9379   // If this value is in the range [-31,-17] and is odd, use:
9380   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9381   // Note the last two are three-instruction sequences.
9382   if (SextVal >= -32 && SextVal <= 31) {
9383     // To avoid having these optimizations undone by constant folding,
9384     // we convert to a pseudo that will be expanded later into one of
9385     // the above forms.
9386     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9387     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9388               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9389     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9390     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9391     if (VT == Op.getValueType())
9392       return RetVal;
9393     else
9394       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9395   }
9396 
9397   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9398   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9399   // for fneg/fabs.
9400   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9401     // Make -1 and vspltisw -1:
9402     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9403 
9404     // Make the VSLW intrinsic, computing 0x8000_0000.
9405     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9406                                    OnesV, DAG, dl);
9407 
9408     // xor by OnesV to invert it.
9409     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9410     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9411   }
9412 
9413   // Check to see if this is a wide variety of vsplti*, binop self cases.
9414   static const signed char SplatCsts[] = {
9415     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9416     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9417   };
9418 
9419   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9420     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9421     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9422     int i = SplatCsts[idx];
9423 
9424     // Figure out what shift amount will be used by altivec if shifted by i in
9425     // this splat size.
9426     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9427 
9428     // vsplti + shl self.
9429     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9430       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9431       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9432         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9433         Intrinsic::ppc_altivec_vslw
9434       };
9435       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9436       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9437     }
9438 
9439     // vsplti + srl self.
9440     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9441       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9442       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9443         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9444         Intrinsic::ppc_altivec_vsrw
9445       };
9446       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9447       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9448     }
9449 
9450     // vsplti + sra self.
9451     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9452       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9453       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9454         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9455         Intrinsic::ppc_altivec_vsraw
9456       };
9457       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9458       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9459     }
9460 
9461     // vsplti + rol self.
9462     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9463                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9464       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9465       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9466         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9467         Intrinsic::ppc_altivec_vrlw
9468       };
9469       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9470       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9471     }
9472 
9473     // t = vsplti c, result = vsldoi t, t, 1
9474     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9475       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9476       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9477       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9478     }
9479     // t = vsplti c, result = vsldoi t, t, 2
9480     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9481       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9482       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9483       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9484     }
9485     // t = vsplti c, result = vsldoi t, t, 3
9486     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9487       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9488       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9489       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9490     }
9491   }
9492 
9493   return SDValue();
9494 }
9495 
9496 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9497 /// the specified operations to build the shuffle.
9498 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9499                                       SDValue RHS, SelectionDAG &DAG,
9500                                       const SDLoc &dl) {
9501   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9502   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9503   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9504 
9505   enum {
9506     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9507     OP_VMRGHW,
9508     OP_VMRGLW,
9509     OP_VSPLTISW0,
9510     OP_VSPLTISW1,
9511     OP_VSPLTISW2,
9512     OP_VSPLTISW3,
9513     OP_VSLDOI4,
9514     OP_VSLDOI8,
9515     OP_VSLDOI12
9516   };
9517 
9518   if (OpNum == OP_COPY) {
9519     if (LHSID == (1*9+2)*9+3) return LHS;
9520     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9521     return RHS;
9522   }
9523 
9524   SDValue OpLHS, OpRHS;
9525   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9526   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9527 
9528   int ShufIdxs[16];
9529   switch (OpNum) {
9530   default: llvm_unreachable("Unknown i32 permute!");
9531   case OP_VMRGHW:
9532     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9533     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9534     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9535     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9536     break;
9537   case OP_VMRGLW:
9538     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9539     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9540     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9541     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9542     break;
9543   case OP_VSPLTISW0:
9544     for (unsigned i = 0; i != 16; ++i)
9545       ShufIdxs[i] = (i&3)+0;
9546     break;
9547   case OP_VSPLTISW1:
9548     for (unsigned i = 0; i != 16; ++i)
9549       ShufIdxs[i] = (i&3)+4;
9550     break;
9551   case OP_VSPLTISW2:
9552     for (unsigned i = 0; i != 16; ++i)
9553       ShufIdxs[i] = (i&3)+8;
9554     break;
9555   case OP_VSPLTISW3:
9556     for (unsigned i = 0; i != 16; ++i)
9557       ShufIdxs[i] = (i&3)+12;
9558     break;
9559   case OP_VSLDOI4:
9560     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9561   case OP_VSLDOI8:
9562     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9563   case OP_VSLDOI12:
9564     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9565   }
9566   EVT VT = OpLHS.getValueType();
9567   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9568   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9569   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9570   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9571 }
9572 
9573 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9574 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9575 /// SDValue.
9576 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9577                                            SelectionDAG &DAG) const {
9578   const unsigned BytesInVector = 16;
9579   bool IsLE = Subtarget.isLittleEndian();
9580   SDLoc dl(N);
9581   SDValue V1 = N->getOperand(0);
9582   SDValue V2 = N->getOperand(1);
9583   unsigned ShiftElts = 0, InsertAtByte = 0;
9584   bool Swap = false;
9585 
9586   // Shifts required to get the byte we want at element 7.
9587   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9588                                    0, 15, 14, 13, 12, 11, 10, 9};
9589   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9590                                 1, 2,  3,  4,  5,  6,  7,  8};
9591 
9592   ArrayRef<int> Mask = N->getMask();
9593   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9594 
9595   // For each mask element, find out if we're just inserting something
9596   // from V2 into V1 or vice versa.
9597   // Possible permutations inserting an element from V2 into V1:
9598   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9599   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9600   //   ...
9601   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9602   // Inserting from V1 into V2 will be similar, except mask range will be
9603   // [16,31].
9604 
9605   bool FoundCandidate = false;
9606   // If both vector operands for the shuffle are the same vector, the mask
9607   // will contain only elements from the first one and the second one will be
9608   // undef.
9609   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9610   // Go through the mask of half-words to find an element that's being moved
9611   // from one vector to the other.
9612   for (unsigned i = 0; i < BytesInVector; ++i) {
9613     unsigned CurrentElement = Mask[i];
9614     // If 2nd operand is undefined, we should only look for element 7 in the
9615     // Mask.
9616     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9617       continue;
9618 
9619     bool OtherElementsInOrder = true;
9620     // Examine the other elements in the Mask to see if they're in original
9621     // order.
9622     for (unsigned j = 0; j < BytesInVector; ++j) {
9623       if (j == i)
9624         continue;
9625       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9626       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9627       // in which we always assume we're always picking from the 1st operand.
9628       int MaskOffset =
9629           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9630       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9631         OtherElementsInOrder = false;
9632         break;
9633       }
9634     }
9635     // If other elements are in original order, we record the number of shifts
9636     // we need to get the element we want into element 7. Also record which byte
9637     // in the vector we should insert into.
9638     if (OtherElementsInOrder) {
9639       // If 2nd operand is undefined, we assume no shifts and no swapping.
9640       if (V2.isUndef()) {
9641         ShiftElts = 0;
9642         Swap = false;
9643       } else {
9644         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9645         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9646                          : BigEndianShifts[CurrentElement & 0xF];
9647         Swap = CurrentElement < BytesInVector;
9648       }
9649       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9650       FoundCandidate = true;
9651       break;
9652     }
9653   }
9654 
9655   if (!FoundCandidate)
9656     return SDValue();
9657 
9658   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9659   // optionally with VECSHL if shift is required.
9660   if (Swap)
9661     std::swap(V1, V2);
9662   if (V2.isUndef())
9663     V2 = V1;
9664   if (ShiftElts) {
9665     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9666                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9667     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9668                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9669   }
9670   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9671                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9672 }
9673 
9674 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9675 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9676 /// SDValue.
9677 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9678                                            SelectionDAG &DAG) const {
9679   const unsigned NumHalfWords = 8;
9680   const unsigned BytesInVector = NumHalfWords * 2;
9681   // Check that the shuffle is on half-words.
9682   if (!isNByteElemShuffleMask(N, 2, 1))
9683     return SDValue();
9684 
9685   bool IsLE = Subtarget.isLittleEndian();
9686   SDLoc dl(N);
9687   SDValue V1 = N->getOperand(0);
9688   SDValue V2 = N->getOperand(1);
9689   unsigned ShiftElts = 0, InsertAtByte = 0;
9690   bool Swap = false;
9691 
9692   // Shifts required to get the half-word we want at element 3.
9693   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9694   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9695 
9696   uint32_t Mask = 0;
9697   uint32_t OriginalOrderLow = 0x1234567;
9698   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9699   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9700   // 32-bit space, only need 4-bit nibbles per element.
9701   for (unsigned i = 0; i < NumHalfWords; ++i) {
9702     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9703     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9704   }
9705 
9706   // For each mask element, find out if we're just inserting something
9707   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9708   // from V2 into V1:
9709   //   X, 1, 2, 3, 4, 5, 6, 7
9710   //   0, X, 2, 3, 4, 5, 6, 7
9711   //   0, 1, X, 3, 4, 5, 6, 7
9712   //   0, 1, 2, X, 4, 5, 6, 7
9713   //   0, 1, 2, 3, X, 5, 6, 7
9714   //   0, 1, 2, 3, 4, X, 6, 7
9715   //   0, 1, 2, 3, 4, 5, X, 7
9716   //   0, 1, 2, 3, 4, 5, 6, X
9717   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9718 
9719   bool FoundCandidate = false;
9720   // Go through the mask of half-words to find an element that's being moved
9721   // from one vector to the other.
9722   for (unsigned i = 0; i < NumHalfWords; ++i) {
9723     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9724     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9725     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9726     uint32_t TargetOrder = 0x0;
9727 
9728     // If both vector operands for the shuffle are the same vector, the mask
9729     // will contain only elements from the first one and the second one will be
9730     // undef.
9731     if (V2.isUndef()) {
9732       ShiftElts = 0;
9733       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9734       TargetOrder = OriginalOrderLow;
9735       Swap = false;
9736       // Skip if not the correct element or mask of other elements don't equal
9737       // to our expected order.
9738       if (MaskOneElt == VINSERTHSrcElem &&
9739           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9740         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9741         FoundCandidate = true;
9742         break;
9743       }
9744     } else { // If both operands are defined.
9745       // Target order is [8,15] if the current mask is between [0,7].
9746       TargetOrder =
9747           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9748       // Skip if mask of other elements don't equal our expected order.
9749       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9750         // We only need the last 3 bits for the number of shifts.
9751         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9752                          : BigEndianShifts[MaskOneElt & 0x7];
9753         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9754         Swap = MaskOneElt < NumHalfWords;
9755         FoundCandidate = true;
9756         break;
9757       }
9758     }
9759   }
9760 
9761   if (!FoundCandidate)
9762     return SDValue();
9763 
9764   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9765   // optionally with VECSHL if shift is required.
9766   if (Swap)
9767     std::swap(V1, V2);
9768   if (V2.isUndef())
9769     V2 = V1;
9770   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9771   if (ShiftElts) {
9772     // Double ShiftElts because we're left shifting on v16i8 type.
9773     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9774                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9775     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9776     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9777                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9778     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9779   }
9780   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9781   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9782                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9783   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9784 }
9785 
9786 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9787 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9788 /// return the default SDValue.
9789 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9790                                               SelectionDAG &DAG) const {
9791   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9792   // to v16i8. Peek through the bitcasts to get the actual operands.
9793   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9794   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9795 
9796   auto ShuffleMask = SVN->getMask();
9797   SDValue VecShuffle(SVN, 0);
9798   SDLoc DL(SVN);
9799 
9800   // Check that we have a four byte shuffle.
9801   if (!isNByteElemShuffleMask(SVN, 4, 1))
9802     return SDValue();
9803 
9804   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9805   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9806     std::swap(LHS, RHS);
9807     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9808     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9809   }
9810 
9811   // Ensure that the RHS is a vector of constants.
9812   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9813   if (!BVN)
9814     return SDValue();
9815 
9816   // Check if RHS is a splat of 4-bytes (or smaller).
9817   APInt APSplatValue, APSplatUndef;
9818   unsigned SplatBitSize;
9819   bool HasAnyUndefs;
9820   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9821                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9822       SplatBitSize > 32)
9823     return SDValue();
9824 
9825   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9826   // The instruction splats a constant C into two words of the source vector
9827   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9828   // Thus we check that the shuffle mask is the equivalent  of
9829   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9830   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9831   // within each word are consecutive, so we only need to check the first byte.
9832   SDValue Index;
9833   bool IsLE = Subtarget.isLittleEndian();
9834   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9835       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9836        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9837     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9838   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9839            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9840             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9841     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9842   else
9843     return SDValue();
9844 
9845   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9846   // for XXSPLTI32DX.
9847   unsigned SplatVal = APSplatValue.getZExtValue();
9848   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9849     SplatVal |= (SplatVal << SplatBitSize);
9850 
9851   SDValue SplatNode = DAG.getNode(
9852       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9853       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9854   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9855 }
9856 
9857 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9858 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9859 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9860 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9861 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9862   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9863   assert(Op.getValueType() == MVT::v1i128 &&
9864          "Only set v1i128 as custom, other type shouldn't reach here!");
9865   SDLoc dl(Op);
9866   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9867   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9868   unsigned SHLAmt = N1.getConstantOperandVal(0);
9869   if (SHLAmt % 8 == 0) {
9870     SmallVector<int, 16> Mask(16, 0);
9871     std::iota(Mask.begin(), Mask.end(), 0);
9872     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9873     if (SDValue Shuffle =
9874             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9875                                  DAG.getUNDEF(MVT::v16i8), Mask))
9876       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9877   }
9878   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9879   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9880                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9881   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9882                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9883   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9884   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9885 }
9886 
9887 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9888 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9889 /// return the code it can be lowered into.  Worst case, it can always be
9890 /// lowered into a vperm.
9891 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9892                                                SelectionDAG &DAG) const {
9893   SDLoc dl(Op);
9894   SDValue V1 = Op.getOperand(0);
9895   SDValue V2 = Op.getOperand(1);
9896   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9897 
9898   // Any nodes that were combined in the target-independent combiner prior
9899   // to vector legalization will not be sent to the target combine. Try to
9900   // combine it here.
9901   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9902     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9903       return NewShuffle;
9904     Op = NewShuffle;
9905     SVOp = cast<ShuffleVectorSDNode>(Op);
9906     V1 = Op.getOperand(0);
9907     V2 = Op.getOperand(1);
9908   }
9909   EVT VT = Op.getValueType();
9910   bool isLittleEndian = Subtarget.isLittleEndian();
9911 
9912   unsigned ShiftElts, InsertAtByte;
9913   bool Swap = false;
9914 
9915   // If this is a load-and-splat, we can do that with a single instruction
9916   // in some cases. However if the load has multiple uses, we don't want to
9917   // combine it because that will just produce multiple loads.
9918   bool IsPermutedLoad = false;
9919   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9920   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9921       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9922       InputLoad->hasOneUse()) {
9923     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9924     int SplatIdx =
9925       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9926 
9927     // The splat index for permuted loads will be in the left half of the vector
9928     // which is strictly wider than the loaded value by 8 bytes. So we need to
9929     // adjust the splat index to point to the correct address in memory.
9930     if (IsPermutedLoad) {
9931       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9932       SplatIdx += IsFourByte ? 2 : 1;
9933       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9934              "Splat of a value outside of the loaded memory");
9935     }
9936 
9937     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9938     // For 4-byte load-and-splat, we need Power9.
9939     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9940       uint64_t Offset = 0;
9941       if (IsFourByte)
9942         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9943       else
9944         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9945 
9946       SDValue BasePtr = LD->getBasePtr();
9947       if (Offset != 0)
9948         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9949                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9950       SDValue Ops[] = {
9951         LD->getChain(),    // Chain
9952         BasePtr,           // BasePtr
9953         DAG.getValueType(Op.getValueType()) // VT
9954       };
9955       SDVTList VTL =
9956         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9957       SDValue LdSplt =
9958         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9959                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9960       if (LdSplt.getValueType() != SVOp->getValueType(0))
9961         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9962       return LdSplt;
9963     }
9964   }
9965   if (Subtarget.hasP9Vector() &&
9966       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9967                            isLittleEndian)) {
9968     if (Swap)
9969       std::swap(V1, V2);
9970     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9971     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9972     if (ShiftElts) {
9973       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9974                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9975       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9976                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9977       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9978     }
9979     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9980                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9981     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9982   }
9983 
9984   if (Subtarget.hasPrefixInstrs()) {
9985     SDValue SplatInsertNode;
9986     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9987       return SplatInsertNode;
9988   }
9989 
9990   if (Subtarget.hasP9Altivec()) {
9991     SDValue NewISDNode;
9992     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9993       return NewISDNode;
9994 
9995     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9996       return NewISDNode;
9997   }
9998 
9999   if (Subtarget.hasVSX() &&
10000       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
10001     if (Swap)
10002       std::swap(V1, V2);
10003     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10004     SDValue Conv2 =
10005         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
10006 
10007     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
10008                               DAG.getConstant(ShiftElts, dl, MVT::i32));
10009     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
10010   }
10011 
10012   if (Subtarget.hasVSX() &&
10013     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
10014     if (Swap)
10015       std::swap(V1, V2);
10016     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10017     SDValue Conv2 =
10018         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
10019 
10020     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
10021                               DAG.getConstant(ShiftElts, dl, MVT::i32));
10022     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
10023   }
10024 
10025   if (Subtarget.hasP9Vector()) {
10026      if (PPC::isXXBRHShuffleMask(SVOp)) {
10027       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10028       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
10029       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
10030     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
10031       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10032       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
10033       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
10034     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
10035       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10036       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
10037       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
10038     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
10039       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
10040       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
10041       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
10042     }
10043   }
10044 
10045   if (Subtarget.hasVSX()) {
10046     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
10047       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
10048 
10049       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10050       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
10051                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
10052       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
10053     }
10054 
10055     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10056     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10057       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10058       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10059       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10060     }
10061   }
10062 
10063   if (Subtarget.hasQPX()) {
10064     if (VT.getVectorNumElements() != 4)
10065       return SDValue();
10066 
10067     if (V2.isUndef()) V2 = V1;
10068 
10069     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
10070     if (AlignIdx != -1) {
10071       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
10072                          DAG.getConstant(AlignIdx, dl, MVT::i32));
10073     } else if (SVOp->isSplat()) {
10074       int SplatIdx = SVOp->getSplatIndex();
10075       if (SplatIdx >= 4) {
10076         std::swap(V1, V2);
10077         SplatIdx -= 4;
10078       }
10079 
10080       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
10081                          DAG.getConstant(SplatIdx, dl, MVT::i32));
10082     }
10083 
10084     // Lower this into a qvgpci/qvfperm pair.
10085 
10086     // Compute the qvgpci literal
10087     unsigned idx = 0;
10088     for (unsigned i = 0; i < 4; ++i) {
10089       int m = SVOp->getMaskElt(i);
10090       unsigned mm = m >= 0 ? (unsigned) m : i;
10091       idx |= mm << (3-i)*3;
10092     }
10093 
10094     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
10095                              DAG.getConstant(idx, dl, MVT::i32));
10096     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
10097   }
10098 
10099   // Cases that are handled by instructions that take permute immediates
10100   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10101   // selected by the instruction selector.
10102   if (V2.isUndef()) {
10103     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10104         PPC::isSplatShuffleMask(SVOp, 2) ||
10105         PPC::isSplatShuffleMask(SVOp, 4) ||
10106         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10107         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10108         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10109         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10110         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10111         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10112         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10113         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10114         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10115         (Subtarget.hasP8Altivec() && (
10116          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10117          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10118          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10119       return Op;
10120     }
10121   }
10122 
10123   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10124   // and produce a fixed permutation.  If any of these match, do not lower to
10125   // VPERM.
10126   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10127   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10128       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10129       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10130       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10131       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10132       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10133       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10134       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10135       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10136       (Subtarget.hasP8Altivec() && (
10137        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10138        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10139        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10140     return Op;
10141 
10142   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10143   // perfect shuffle table to emit an optimal matching sequence.
10144   ArrayRef<int> PermMask = SVOp->getMask();
10145 
10146   unsigned PFIndexes[4];
10147   bool isFourElementShuffle = true;
10148   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
10149     unsigned EltNo = 8;   // Start out undef.
10150     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
10151       if (PermMask[i*4+j] < 0)
10152         continue;   // Undef, ignore it.
10153 
10154       unsigned ByteSource = PermMask[i*4+j];
10155       if ((ByteSource & 3) != j) {
10156         isFourElementShuffle = false;
10157         break;
10158       }
10159 
10160       if (EltNo == 8) {
10161         EltNo = ByteSource/4;
10162       } else if (EltNo != ByteSource/4) {
10163         isFourElementShuffle = false;
10164         break;
10165       }
10166     }
10167     PFIndexes[i] = EltNo;
10168   }
10169 
10170   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10171   // perfect shuffle vector to determine if it is cost effective to do this as
10172   // discrete instructions, or whether we should use a vperm.
10173   // For now, we skip this for little endian until such time as we have a
10174   // little-endian perfect shuffle table.
10175   if (isFourElementShuffle && !isLittleEndian) {
10176     // Compute the index in the perfect shuffle table.
10177     unsigned PFTableIndex =
10178       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10179 
10180     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10181     unsigned Cost  = (PFEntry >> 30);
10182 
10183     // Determining when to avoid vperm is tricky.  Many things affect the cost
10184     // of vperm, particularly how many times the perm mask needs to be computed.
10185     // For example, if the perm mask can be hoisted out of a loop or is already
10186     // used (perhaps because there are multiple permutes with the same shuffle
10187     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10188     // the loop requires an extra register.
10189     //
10190     // As a compromise, we only emit discrete instructions if the shuffle can be
10191     // generated in 3 or fewer operations.  When we have loop information
10192     // available, if this block is within a loop, we should avoid using vperm
10193     // for 3-operation perms and use a constant pool load instead.
10194     if (Cost < 3)
10195       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10196   }
10197 
10198   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10199   // vector that will get spilled to the constant pool.
10200   if (V2.isUndef()) V2 = V1;
10201 
10202   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10203   // that it is in input element units, not in bytes.  Convert now.
10204 
10205   // For little endian, the order of the input vectors is reversed, and
10206   // the permutation mask is complemented with respect to 31.  This is
10207   // necessary to produce proper semantics with the big-endian-biased vperm
10208   // instruction.
10209   EVT EltVT = V1.getValueType().getVectorElementType();
10210   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10211 
10212   SmallVector<SDValue, 16> ResultMask;
10213   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10214     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10215 
10216     for (unsigned j = 0; j != BytesPerElement; ++j)
10217       if (isLittleEndian)
10218         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10219                                              dl, MVT::i32));
10220       else
10221         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10222                                              MVT::i32));
10223   }
10224 
10225   ShufflesHandledWithVPERM++;
10226   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10227   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10228   LLVM_DEBUG(SVOp->dump());
10229   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10230   LLVM_DEBUG(VPermMask.dump());
10231 
10232   if (isLittleEndian)
10233     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10234                        V2, V1, VPermMask);
10235   else
10236     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10237                        V1, V2, VPermMask);
10238 }
10239 
10240 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10241 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10242 /// information about the intrinsic.
10243 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10244                                  bool &isDot, const PPCSubtarget &Subtarget) {
10245   unsigned IntrinsicID =
10246       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10247   CompareOpc = -1;
10248   isDot = false;
10249   switch (IntrinsicID) {
10250   default:
10251     return false;
10252   // Comparison predicates.
10253   case Intrinsic::ppc_altivec_vcmpbfp_p:
10254     CompareOpc = 966;
10255     isDot = true;
10256     break;
10257   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10258     CompareOpc = 198;
10259     isDot = true;
10260     break;
10261   case Intrinsic::ppc_altivec_vcmpequb_p:
10262     CompareOpc = 6;
10263     isDot = true;
10264     break;
10265   case Intrinsic::ppc_altivec_vcmpequh_p:
10266     CompareOpc = 70;
10267     isDot = true;
10268     break;
10269   case Intrinsic::ppc_altivec_vcmpequw_p:
10270     CompareOpc = 134;
10271     isDot = true;
10272     break;
10273   case Intrinsic::ppc_altivec_vcmpequd_p:
10274     if (Subtarget.hasP8Altivec()) {
10275       CompareOpc = 199;
10276       isDot = true;
10277     } else
10278       return false;
10279     break;
10280   case Intrinsic::ppc_altivec_vcmpneb_p:
10281   case Intrinsic::ppc_altivec_vcmpneh_p:
10282   case Intrinsic::ppc_altivec_vcmpnew_p:
10283   case Intrinsic::ppc_altivec_vcmpnezb_p:
10284   case Intrinsic::ppc_altivec_vcmpnezh_p:
10285   case Intrinsic::ppc_altivec_vcmpnezw_p:
10286     if (Subtarget.hasP9Altivec()) {
10287       switch (IntrinsicID) {
10288       default:
10289         llvm_unreachable("Unknown comparison intrinsic.");
10290       case Intrinsic::ppc_altivec_vcmpneb_p:
10291         CompareOpc = 7;
10292         break;
10293       case Intrinsic::ppc_altivec_vcmpneh_p:
10294         CompareOpc = 71;
10295         break;
10296       case Intrinsic::ppc_altivec_vcmpnew_p:
10297         CompareOpc = 135;
10298         break;
10299       case Intrinsic::ppc_altivec_vcmpnezb_p:
10300         CompareOpc = 263;
10301         break;
10302       case Intrinsic::ppc_altivec_vcmpnezh_p:
10303         CompareOpc = 327;
10304         break;
10305       case Intrinsic::ppc_altivec_vcmpnezw_p:
10306         CompareOpc = 391;
10307         break;
10308       }
10309       isDot = true;
10310     } else
10311       return false;
10312     break;
10313   case Intrinsic::ppc_altivec_vcmpgefp_p:
10314     CompareOpc = 454;
10315     isDot = true;
10316     break;
10317   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10318     CompareOpc = 710;
10319     isDot = true;
10320     break;
10321   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10322     CompareOpc = 774;
10323     isDot = true;
10324     break;
10325   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10326     CompareOpc = 838;
10327     isDot = true;
10328     break;
10329   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10330     CompareOpc = 902;
10331     isDot = true;
10332     break;
10333   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10334     if (Subtarget.hasP8Altivec()) {
10335       CompareOpc = 967;
10336       isDot = true;
10337     } else
10338       return false;
10339     break;
10340   case Intrinsic::ppc_altivec_vcmpgtub_p:
10341     CompareOpc = 518;
10342     isDot = true;
10343     break;
10344   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10345     CompareOpc = 582;
10346     isDot = true;
10347     break;
10348   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10349     CompareOpc = 646;
10350     isDot = true;
10351     break;
10352   case Intrinsic::ppc_altivec_vcmpgtud_p:
10353     if (Subtarget.hasP8Altivec()) {
10354       CompareOpc = 711;
10355       isDot = true;
10356     } else
10357       return false;
10358     break;
10359 
10360   // VSX predicate comparisons use the same infrastructure
10361   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10362   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10363   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10364   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10365   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10366   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10367     if (Subtarget.hasVSX()) {
10368       switch (IntrinsicID) {
10369       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10370         CompareOpc = 99;
10371         break;
10372       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10373         CompareOpc = 115;
10374         break;
10375       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10376         CompareOpc = 107;
10377         break;
10378       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10379         CompareOpc = 67;
10380         break;
10381       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10382         CompareOpc = 83;
10383         break;
10384       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10385         CompareOpc = 75;
10386         break;
10387       }
10388       isDot = true;
10389     } else
10390       return false;
10391     break;
10392 
10393   // Normal Comparisons.
10394   case Intrinsic::ppc_altivec_vcmpbfp:
10395     CompareOpc = 966;
10396     break;
10397   case Intrinsic::ppc_altivec_vcmpeqfp:
10398     CompareOpc = 198;
10399     break;
10400   case Intrinsic::ppc_altivec_vcmpequb:
10401     CompareOpc = 6;
10402     break;
10403   case Intrinsic::ppc_altivec_vcmpequh:
10404     CompareOpc = 70;
10405     break;
10406   case Intrinsic::ppc_altivec_vcmpequw:
10407     CompareOpc = 134;
10408     break;
10409   case Intrinsic::ppc_altivec_vcmpequd:
10410     if (Subtarget.hasP8Altivec())
10411       CompareOpc = 199;
10412     else
10413       return false;
10414     break;
10415   case Intrinsic::ppc_altivec_vcmpneb:
10416   case Intrinsic::ppc_altivec_vcmpneh:
10417   case Intrinsic::ppc_altivec_vcmpnew:
10418   case Intrinsic::ppc_altivec_vcmpnezb:
10419   case Intrinsic::ppc_altivec_vcmpnezh:
10420   case Intrinsic::ppc_altivec_vcmpnezw:
10421     if (Subtarget.hasP9Altivec())
10422       switch (IntrinsicID) {
10423       default:
10424         llvm_unreachable("Unknown comparison intrinsic.");
10425       case Intrinsic::ppc_altivec_vcmpneb:
10426         CompareOpc = 7;
10427         break;
10428       case Intrinsic::ppc_altivec_vcmpneh:
10429         CompareOpc = 71;
10430         break;
10431       case Intrinsic::ppc_altivec_vcmpnew:
10432         CompareOpc = 135;
10433         break;
10434       case Intrinsic::ppc_altivec_vcmpnezb:
10435         CompareOpc = 263;
10436         break;
10437       case Intrinsic::ppc_altivec_vcmpnezh:
10438         CompareOpc = 327;
10439         break;
10440       case Intrinsic::ppc_altivec_vcmpnezw:
10441         CompareOpc = 391;
10442         break;
10443       }
10444     else
10445       return false;
10446     break;
10447   case Intrinsic::ppc_altivec_vcmpgefp:
10448     CompareOpc = 454;
10449     break;
10450   case Intrinsic::ppc_altivec_vcmpgtfp:
10451     CompareOpc = 710;
10452     break;
10453   case Intrinsic::ppc_altivec_vcmpgtsb:
10454     CompareOpc = 774;
10455     break;
10456   case Intrinsic::ppc_altivec_vcmpgtsh:
10457     CompareOpc = 838;
10458     break;
10459   case Intrinsic::ppc_altivec_vcmpgtsw:
10460     CompareOpc = 902;
10461     break;
10462   case Intrinsic::ppc_altivec_vcmpgtsd:
10463     if (Subtarget.hasP8Altivec())
10464       CompareOpc = 967;
10465     else
10466       return false;
10467     break;
10468   case Intrinsic::ppc_altivec_vcmpgtub:
10469     CompareOpc = 518;
10470     break;
10471   case Intrinsic::ppc_altivec_vcmpgtuh:
10472     CompareOpc = 582;
10473     break;
10474   case Intrinsic::ppc_altivec_vcmpgtuw:
10475     CompareOpc = 646;
10476     break;
10477   case Intrinsic::ppc_altivec_vcmpgtud:
10478     if (Subtarget.hasP8Altivec())
10479       CompareOpc = 711;
10480     else
10481       return false;
10482     break;
10483   }
10484   return true;
10485 }
10486 
10487 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10488 /// lower, do it, otherwise return null.
10489 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10490                                                    SelectionDAG &DAG) const {
10491   unsigned IntrinsicID =
10492     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10493 
10494   SDLoc dl(Op);
10495 
10496   if (IntrinsicID == Intrinsic::thread_pointer) {
10497     // Reads the thread pointer register, used for __builtin_thread_pointer.
10498     if (Subtarget.isPPC64())
10499       return DAG.getRegister(PPC::X13, MVT::i64);
10500     return DAG.getRegister(PPC::R2, MVT::i32);
10501   }
10502 
10503   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10504   // opcode number of the comparison.
10505   int CompareOpc;
10506   bool isDot;
10507   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10508     return SDValue();    // Don't custom lower most intrinsics.
10509 
10510   // If this is a non-dot comparison, make the VCMP node and we are done.
10511   if (!isDot) {
10512     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10513                               Op.getOperand(1), Op.getOperand(2),
10514                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10515     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10516   }
10517 
10518   // Create the PPCISD altivec 'dot' comparison node.
10519   SDValue Ops[] = {
10520     Op.getOperand(2),  // LHS
10521     Op.getOperand(3),  // RHS
10522     DAG.getConstant(CompareOpc, dl, MVT::i32)
10523   };
10524   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10525   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10526 
10527   // Now that we have the comparison, emit a copy from the CR to a GPR.
10528   // This is flagged to the above dot comparison.
10529   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10530                                 DAG.getRegister(PPC::CR6, MVT::i32),
10531                                 CompNode.getValue(1));
10532 
10533   // Unpack the result based on how the target uses it.
10534   unsigned BitNo;   // Bit # of CR6.
10535   bool InvertBit;   // Invert result?
10536   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10537   default:  // Can't happen, don't crash on invalid number though.
10538   case 0:   // Return the value of the EQ bit of CR6.
10539     BitNo = 0; InvertBit = false;
10540     break;
10541   case 1:   // Return the inverted value of the EQ bit of CR6.
10542     BitNo = 0; InvertBit = true;
10543     break;
10544   case 2:   // Return the value of the LT bit of CR6.
10545     BitNo = 2; InvertBit = false;
10546     break;
10547   case 3:   // Return the inverted value of the LT bit of CR6.
10548     BitNo = 2; InvertBit = true;
10549     break;
10550   }
10551 
10552   // Shift the bit into the low position.
10553   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10554                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10555   // Isolate the bit.
10556   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10557                       DAG.getConstant(1, dl, MVT::i32));
10558 
10559   // If we are supposed to, toggle the bit.
10560   if (InvertBit)
10561     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10562                         DAG.getConstant(1, dl, MVT::i32));
10563   return Flags;
10564 }
10565 
10566 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10567                                                SelectionDAG &DAG) const {
10568   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10569   // the beginning of the argument list.
10570   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10571   SDLoc DL(Op);
10572   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10573   case Intrinsic::ppc_cfence: {
10574     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10575     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10576     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10577                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10578                                                   Op.getOperand(ArgStart + 1)),
10579                                       Op.getOperand(0)),
10580                    0);
10581   }
10582   default:
10583     break;
10584   }
10585   return SDValue();
10586 }
10587 
10588 // Lower scalar BSWAP64 to xxbrd.
10589 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10590   SDLoc dl(Op);
10591   // MTVSRDD
10592   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10593                    Op.getOperand(0));
10594   // XXBRD
10595   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10596   // MFVSRD
10597   int VectorIndex = 0;
10598   if (Subtarget.isLittleEndian())
10599     VectorIndex = 1;
10600   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10601                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10602   return Op;
10603 }
10604 
10605 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10606 // compared to a value that is atomically loaded (atomic loads zero-extend).
10607 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10608                                                 SelectionDAG &DAG) const {
10609   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10610          "Expecting an atomic compare-and-swap here.");
10611   SDLoc dl(Op);
10612   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10613   EVT MemVT = AtomicNode->getMemoryVT();
10614   if (MemVT.getSizeInBits() >= 32)
10615     return Op;
10616 
10617   SDValue CmpOp = Op.getOperand(2);
10618   // If this is already correctly zero-extended, leave it alone.
10619   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10620   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10621     return Op;
10622 
10623   // Clear the high bits of the compare operand.
10624   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10625   SDValue NewCmpOp =
10626     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10627                 DAG.getConstant(MaskVal, dl, MVT::i32));
10628 
10629   // Replace the existing compare operand with the properly zero-extended one.
10630   SmallVector<SDValue, 4> Ops;
10631   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10632     Ops.push_back(AtomicNode->getOperand(i));
10633   Ops[2] = NewCmpOp;
10634   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10635   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10636   auto NodeTy =
10637     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10638   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10639 }
10640 
10641 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10642                                                  SelectionDAG &DAG) const {
10643   SDLoc dl(Op);
10644   // Create a stack slot that is 16-byte aligned.
10645   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10646   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10647   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10648   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10649 
10650   // Store the input value into Value#0 of the stack slot.
10651   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10652                                MachinePointerInfo());
10653   // Load it out.
10654   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10655 }
10656 
10657 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10658                                                   SelectionDAG &DAG) const {
10659   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10660          "Should only be called for ISD::INSERT_VECTOR_ELT");
10661 
10662   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10663   // We have legal lowering for constant indices but not for variable ones.
10664   if (!C)
10665     return SDValue();
10666 
10667   EVT VT = Op.getValueType();
10668   SDLoc dl(Op);
10669   SDValue V1 = Op.getOperand(0);
10670   SDValue V2 = Op.getOperand(1);
10671   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10672   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10673     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10674     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10675     unsigned InsertAtElement = C->getZExtValue();
10676     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10677     if (Subtarget.isLittleEndian()) {
10678       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10679     }
10680     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10681                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10682   }
10683   return Op;
10684 }
10685 
10686 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10687                                                    SelectionDAG &DAG) const {
10688   SDLoc dl(Op);
10689   SDNode *N = Op.getNode();
10690 
10691   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
10692          "Unknown extract_vector_elt type");
10693 
10694   SDValue Value = N->getOperand(0);
10695 
10696   // The first part of this is like the store lowering except that we don't
10697   // need to track the chain.
10698 
10699   // The values are now known to be -1 (false) or 1 (true). To convert this
10700   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10701   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10702   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10703 
10704   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10705   // understand how to form the extending load.
10706   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10707 
10708   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10709 
10710   // Now convert to an integer and store.
10711   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10712     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10713     Value);
10714 
10715   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10716   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10717   MachinePointerInfo PtrInfo =
10718       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10719   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10720   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10721 
10722   SDValue StoreChain = DAG.getEntryNode();
10723   SDValue Ops[] = {StoreChain,
10724                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10725                    Value, FIdx};
10726   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10727 
10728   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10729     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10730 
10731   // Extract the value requested.
10732   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10733   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10734   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10735 
10736   SDValue IntVal =
10737       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10738 
10739   if (!Subtarget.useCRBits())
10740     return IntVal;
10741 
10742   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10743 }
10744 
10745 /// Lowering for QPX v4i1 loads
10746 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10747                                            SelectionDAG &DAG) const {
10748   SDLoc dl(Op);
10749   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10750   SDValue LoadChain = LN->getChain();
10751   SDValue BasePtr = LN->getBasePtr();
10752 
10753   if (Op.getValueType() == MVT::v4f64 ||
10754       Op.getValueType() == MVT::v4f32) {
10755     EVT MemVT = LN->getMemoryVT();
10756     unsigned Alignment = LN->getAlignment();
10757 
10758     // If this load is properly aligned, then it is legal.
10759     if (Alignment >= MemVT.getStoreSize())
10760       return Op;
10761 
10762     EVT ScalarVT = Op.getValueType().getScalarType(),
10763         ScalarMemVT = MemVT.getScalarType();
10764     unsigned Stride = ScalarMemVT.getStoreSize();
10765 
10766     SDValue Vals[4], LoadChains[4];
10767     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10768       SDValue Load;
10769       if (ScalarVT != ScalarMemVT)
10770         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10771                               BasePtr,
10772                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10773                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10774                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10775       else
10776         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10777                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10778                            MinAlign(Alignment, Idx * Stride),
10779                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10780 
10781       if (Idx == 0 && LN->isIndexed()) {
10782         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10783                "Unknown addressing mode on vector load");
10784         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10785                                   LN->getAddressingMode());
10786       }
10787 
10788       Vals[Idx] = Load;
10789       LoadChains[Idx] = Load.getValue(1);
10790 
10791       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10792                             DAG.getConstant(Stride, dl,
10793                                             BasePtr.getValueType()));
10794     }
10795 
10796     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10797     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10798 
10799     if (LN->isIndexed()) {
10800       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10801       return DAG.getMergeValues(RetOps, dl);
10802     }
10803 
10804     SDValue RetOps[] = { Value, TF };
10805     return DAG.getMergeValues(RetOps, dl);
10806   }
10807 
10808   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10809   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10810 
10811   // To lower v4i1 from a byte array, we load the byte elements of the
10812   // vector and then reuse the BUILD_VECTOR logic.
10813 
10814   SDValue VectElmts[4], VectElmtChains[4];
10815   for (unsigned i = 0; i < 4; ++i) {
10816     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10817     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10818 
10819     VectElmts[i] = DAG.getExtLoad(
10820         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10821         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10822         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10823     VectElmtChains[i] = VectElmts[i].getValue(1);
10824   }
10825 
10826   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10827   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10828 
10829   SDValue RVals[] = { Value, LoadChain };
10830   return DAG.getMergeValues(RVals, dl);
10831 }
10832 
10833 /// Lowering for QPX v4i1 stores
10834 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10835                                             SelectionDAG &DAG) const {
10836   SDLoc dl(Op);
10837   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10838   SDValue StoreChain = SN->getChain();
10839   SDValue BasePtr = SN->getBasePtr();
10840   SDValue Value = SN->getValue();
10841 
10842   if (Value.getValueType() == MVT::v4f64 ||
10843       Value.getValueType() == MVT::v4f32) {
10844     EVT MemVT = SN->getMemoryVT();
10845     unsigned Alignment = SN->getAlignment();
10846 
10847     // If this store is properly aligned, then it is legal.
10848     if (Alignment >= MemVT.getStoreSize())
10849       return Op;
10850 
10851     EVT ScalarVT = Value.getValueType().getScalarType(),
10852         ScalarMemVT = MemVT.getScalarType();
10853     unsigned Stride = ScalarMemVT.getStoreSize();
10854 
10855     SDValue Stores[4];
10856     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10857       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10858                                DAG.getVectorIdxConstant(Idx, dl));
10859       SDValue Store;
10860       if (ScalarVT != ScalarMemVT)
10861         Store =
10862             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10863                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10864                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10865                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10866       else
10867         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10868                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10869                              MinAlign(Alignment, Idx * Stride),
10870                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10871 
10872       if (Idx == 0 && SN->isIndexed()) {
10873         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10874                "Unknown addressing mode on vector store");
10875         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10876                                     SN->getAddressingMode());
10877       }
10878 
10879       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10880                             DAG.getConstant(Stride, dl,
10881                                             BasePtr.getValueType()));
10882       Stores[Idx] = Store;
10883     }
10884 
10885     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10886 
10887     if (SN->isIndexed()) {
10888       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10889       return DAG.getMergeValues(RetOps, dl);
10890     }
10891 
10892     return TF;
10893   }
10894 
10895   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10896   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10897 
10898   // The values are now known to be -1 (false) or 1 (true). To convert this
10899   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10900   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10901   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10902 
10903   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10904   // understand how to form the extending load.
10905   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10906 
10907   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10908 
10909   // Now convert to an integer and store.
10910   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10911     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10912     Value);
10913 
10914   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10915   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10916   MachinePointerInfo PtrInfo =
10917       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10918   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10919   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10920 
10921   SDValue Ops[] = {StoreChain,
10922                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10923                    Value, FIdx};
10924   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10925 
10926   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10927     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10928 
10929   // Move data into the byte array.
10930   SDValue Loads[4], LoadChains[4];
10931   for (unsigned i = 0; i < 4; ++i) {
10932     unsigned Offset = 4*i;
10933     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10934     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10935 
10936     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10937                            PtrInfo.getWithOffset(Offset));
10938     LoadChains[i] = Loads[i].getValue(1);
10939   }
10940 
10941   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10942 
10943   SDValue Stores[4];
10944   for (unsigned i = 0; i < 4; ++i) {
10945     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10946     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10947 
10948     Stores[i] = DAG.getTruncStore(
10949         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10950         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10951         SN->getAAInfo());
10952   }
10953 
10954   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10955 
10956   return StoreChain;
10957 }
10958 
10959 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10960   SDLoc dl(Op);
10961   if (Op.getValueType() == MVT::v4i32) {
10962     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10963 
10964     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10965     // +16 as shift amt.
10966     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10967     SDValue RHSSwap =   // = vrlw RHS, 16
10968       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10969 
10970     // Shrinkify inputs to v8i16.
10971     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10972     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10973     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10974 
10975     // Low parts multiplied together, generating 32-bit results (we ignore the
10976     // top parts).
10977     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10978                                         LHS, RHS, DAG, dl, MVT::v4i32);
10979 
10980     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10981                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10982     // Shift the high parts up 16 bits.
10983     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10984                               Neg16, DAG, dl);
10985     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10986   } else if (Op.getValueType() == MVT::v16i8) {
10987     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10988     bool isLittleEndian = Subtarget.isLittleEndian();
10989 
10990     // Multiply the even 8-bit parts, producing 16-bit sums.
10991     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10992                                            LHS, RHS, DAG, dl, MVT::v8i16);
10993     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10994 
10995     // Multiply the odd 8-bit parts, producing 16-bit sums.
10996     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10997                                           LHS, RHS, DAG, dl, MVT::v8i16);
10998     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10999 
11000     // Merge the results together.  Because vmuleub and vmuloub are
11001     // instructions with a big-endian bias, we must reverse the
11002     // element numbering and reverse the meaning of "odd" and "even"
11003     // when generating little endian code.
11004     int Ops[16];
11005     for (unsigned i = 0; i != 8; ++i) {
11006       if (isLittleEndian) {
11007         Ops[i*2  ] = 2*i;
11008         Ops[i*2+1] = 2*i+16;
11009       } else {
11010         Ops[i*2  ] = 2*i+1;
11011         Ops[i*2+1] = 2*i+1+16;
11012       }
11013     }
11014     if (isLittleEndian)
11015       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
11016     else
11017       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
11018   } else {
11019     llvm_unreachable("Unknown mul to lower!");
11020   }
11021 }
11022 
11023 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
11024 
11025   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
11026 
11027   EVT VT = Op.getValueType();
11028   assert(VT.isVector() &&
11029          "Only set vector abs as custom, scalar abs shouldn't reach here!");
11030   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11031           VT == MVT::v16i8) &&
11032          "Unexpected vector element type!");
11033   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
11034          "Current subtarget doesn't support smax v2i64!");
11035 
11036   // For vector abs, it can be lowered to:
11037   // abs x
11038   // ==>
11039   // y = -x
11040   // smax(x, y)
11041 
11042   SDLoc dl(Op);
11043   SDValue X = Op.getOperand(0);
11044   SDValue Zero = DAG.getConstant(0, dl, VT);
11045   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
11046 
11047   // SMAX patch https://reviews.llvm.org/D47332
11048   // hasn't landed yet, so use intrinsic first here.
11049   // TODO: Should use SMAX directly once SMAX patch landed
11050   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
11051   if (VT == MVT::v2i64)
11052     BifID = Intrinsic::ppc_altivec_vmaxsd;
11053   else if (VT == MVT::v8i16)
11054     BifID = Intrinsic::ppc_altivec_vmaxsh;
11055   else if (VT == MVT::v16i8)
11056     BifID = Intrinsic::ppc_altivec_vmaxsb;
11057 
11058   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
11059 }
11060 
11061 // Custom lowering for fpext vf32 to v2f64
11062 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11063 
11064   assert(Op.getOpcode() == ISD::FP_EXTEND &&
11065          "Should only be called for ISD::FP_EXTEND");
11066 
11067   // FIXME: handle extends from half precision float vectors on P9.
11068   // We only want to custom lower an extend from v2f32 to v2f64.
11069   if (Op.getValueType() != MVT::v2f64 ||
11070       Op.getOperand(0).getValueType() != MVT::v2f32)
11071     return SDValue();
11072 
11073   SDLoc dl(Op);
11074   SDValue Op0 = Op.getOperand(0);
11075 
11076   switch (Op0.getOpcode()) {
11077   default:
11078     return SDValue();
11079   case ISD::EXTRACT_SUBVECTOR: {
11080     assert(Op0.getNumOperands() == 2 &&
11081            isa<ConstantSDNode>(Op0->getOperand(1)) &&
11082            "Node should have 2 operands with second one being a constant!");
11083 
11084     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11085       return SDValue();
11086 
11087     // Custom lower is only done for high or low doubleword.
11088     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
11089     if (Idx % 2 != 0)
11090       return SDValue();
11091 
11092     // Since input is v4f32, at this point Idx is either 0 or 2.
11093     // Shift to get the doubleword position we want.
11094     int DWord = Idx >> 1;
11095 
11096     // High and low word positions are different on little endian.
11097     if (Subtarget.isLittleEndian())
11098       DWord ^= 0x1;
11099 
11100     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11101                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11102   }
11103   case ISD::FADD:
11104   case ISD::FMUL:
11105   case ISD::FSUB: {
11106     SDValue NewLoad[2];
11107     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11108       // Ensure both input are loads.
11109       SDValue LdOp = Op0.getOperand(i);
11110       if (LdOp.getOpcode() != ISD::LOAD)
11111         return SDValue();
11112       // Generate new load node.
11113       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11114       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11115       NewLoad[i] = DAG.getMemIntrinsicNode(
11116           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11117           LD->getMemoryVT(), LD->getMemOperand());
11118     }
11119     SDValue NewOp =
11120         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11121                     NewLoad[1], Op0.getNode()->getFlags());
11122     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11123                        DAG.getConstant(0, dl, MVT::i32));
11124   }
11125   case ISD::LOAD: {
11126     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11127     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11128     SDValue NewLd = DAG.getMemIntrinsicNode(
11129         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11130         LD->getMemoryVT(), LD->getMemOperand());
11131     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11132                        DAG.getConstant(0, dl, MVT::i32));
11133   }
11134   }
11135   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11136 }
11137 
11138 /// LowerOperation - Provide custom lowering hooks for some operations.
11139 ///
11140 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11141   switch (Op.getOpcode()) {
11142   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11143   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11144   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11145   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11146   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11147   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11148   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11149   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11150   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11151 
11152   // Variable argument lowering.
11153   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11154   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11155   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11156 
11157   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11158   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11159   case ISD::GET_DYNAMIC_AREA_OFFSET:
11160     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11161 
11162   // Exception handling lowering.
11163   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11164   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11165   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11166 
11167   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11168   case ISD::STORE:              return LowerSTORE(Op, DAG);
11169   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11170   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11171   case ISD::FP_TO_UINT:
11172   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11173   case ISD::UINT_TO_FP:
11174   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11175   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11176 
11177   // Lower 64-bit shifts.
11178   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11179   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11180   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11181 
11182   // Vector-related lowering.
11183   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11184   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11185   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11186   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11187   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11188   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11189   case ISD::MUL:                return LowerMUL(Op, DAG);
11190   case ISD::ABS:                return LowerABS(Op, DAG);
11191   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11192   case ISD::ROTL:               return LowerROTL(Op, DAG);
11193 
11194   // For counter-based loop handling.
11195   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11196 
11197   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11198 
11199   // Frame & Return address.
11200   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11201   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11202 
11203   case ISD::INTRINSIC_VOID:
11204     return LowerINTRINSIC_VOID(Op, DAG);
11205   case ISD::BSWAP:
11206     return LowerBSWAP(Op, DAG);
11207   case ISD::ATOMIC_CMP_SWAP:
11208     return LowerATOMIC_CMP_SWAP(Op, DAG);
11209   }
11210 }
11211 
11212 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11213                                            SmallVectorImpl<SDValue>&Results,
11214                                            SelectionDAG &DAG) const {
11215   SDLoc dl(N);
11216   switch (N->getOpcode()) {
11217   default:
11218     llvm_unreachable("Do not know how to custom type legalize this operation!");
11219   case ISD::READCYCLECOUNTER: {
11220     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11221     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11222 
11223     Results.push_back(
11224         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11225     Results.push_back(RTB.getValue(2));
11226     break;
11227   }
11228   case ISD::INTRINSIC_W_CHAIN: {
11229     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11230         Intrinsic::loop_decrement)
11231       break;
11232 
11233     assert(N->getValueType(0) == MVT::i1 &&
11234            "Unexpected result type for CTR decrement intrinsic");
11235     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11236                                  N->getValueType(0));
11237     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11238     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11239                                  N->getOperand(1));
11240 
11241     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11242     Results.push_back(NewInt.getValue(1));
11243     break;
11244   }
11245   case ISD::VAARG: {
11246     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11247       return;
11248 
11249     EVT VT = N->getValueType(0);
11250 
11251     if (VT == MVT::i64) {
11252       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11253 
11254       Results.push_back(NewNode);
11255       Results.push_back(NewNode.getValue(1));
11256     }
11257     return;
11258   }
11259   case ISD::FP_TO_SINT:
11260   case ISD::FP_TO_UINT:
11261     // LowerFP_TO_INT() can only handle f32 and f64.
11262     if (N->getOperand(0).getValueType() == MVT::ppcf128)
11263       return;
11264     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11265     return;
11266   case ISD::TRUNCATE: {
11267     EVT TrgVT = N->getValueType(0);
11268     EVT OpVT = N->getOperand(0).getValueType();
11269     if (TrgVT.isVector() &&
11270         isOperationCustom(N->getOpcode(), TrgVT) &&
11271         OpVT.getSizeInBits() <= 128 &&
11272         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
11273       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
11274     return;
11275   }
11276   case ISD::BITCAST:
11277     // Don't handle bitcast here.
11278     return;
11279   case ISD::FP_EXTEND:
11280     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11281     if (Lowered)
11282       Results.push_back(Lowered);
11283     return;
11284   }
11285 }
11286 
11287 //===----------------------------------------------------------------------===//
11288 //  Other Lowering Code
11289 //===----------------------------------------------------------------------===//
11290 
11291 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
11292   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11293   Function *Func = Intrinsic::getDeclaration(M, Id);
11294   return Builder.CreateCall(Func, {});
11295 }
11296 
11297 // The mappings for emitLeading/TrailingFence is taken from
11298 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11299 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11300                                                  Instruction *Inst,
11301                                                  AtomicOrdering Ord) const {
11302   if (Ord == AtomicOrdering::SequentiallyConsistent)
11303     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11304   if (isReleaseOrStronger(Ord))
11305     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11306   return nullptr;
11307 }
11308 
11309 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11310                                                   Instruction *Inst,
11311                                                   AtomicOrdering Ord) const {
11312   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11313     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11314     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11315     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11316     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11317       return Builder.CreateCall(
11318           Intrinsic::getDeclaration(
11319               Builder.GetInsertBlock()->getParent()->getParent(),
11320               Intrinsic::ppc_cfence, {Inst->getType()}),
11321           {Inst});
11322     // FIXME: Can use isync for rmw operation.
11323     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11324   }
11325   return nullptr;
11326 }
11327 
11328 MachineBasicBlock *
11329 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11330                                     unsigned AtomicSize,
11331                                     unsigned BinOpcode,
11332                                     unsigned CmpOpcode,
11333                                     unsigned CmpPred) const {
11334   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11335   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11336 
11337   auto LoadMnemonic = PPC::LDARX;
11338   auto StoreMnemonic = PPC::STDCX;
11339   switch (AtomicSize) {
11340   default:
11341     llvm_unreachable("Unexpected size of atomic entity");
11342   case 1:
11343     LoadMnemonic = PPC::LBARX;
11344     StoreMnemonic = PPC::STBCX;
11345     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11346     break;
11347   case 2:
11348     LoadMnemonic = PPC::LHARX;
11349     StoreMnemonic = PPC::STHCX;
11350     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11351     break;
11352   case 4:
11353     LoadMnemonic = PPC::LWARX;
11354     StoreMnemonic = PPC::STWCX;
11355     break;
11356   case 8:
11357     LoadMnemonic = PPC::LDARX;
11358     StoreMnemonic = PPC::STDCX;
11359     break;
11360   }
11361 
11362   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11363   MachineFunction *F = BB->getParent();
11364   MachineFunction::iterator It = ++BB->getIterator();
11365 
11366   Register dest = MI.getOperand(0).getReg();
11367   Register ptrA = MI.getOperand(1).getReg();
11368   Register ptrB = MI.getOperand(2).getReg();
11369   Register incr = MI.getOperand(3).getReg();
11370   DebugLoc dl = MI.getDebugLoc();
11371 
11372   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11373   MachineBasicBlock *loop2MBB =
11374     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11375   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11376   F->insert(It, loopMBB);
11377   if (CmpOpcode)
11378     F->insert(It, loop2MBB);
11379   F->insert(It, exitMBB);
11380   exitMBB->splice(exitMBB->begin(), BB,
11381                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11382   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11383 
11384   MachineRegisterInfo &RegInfo = F->getRegInfo();
11385   Register TmpReg = (!BinOpcode) ? incr :
11386     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11387                                            : &PPC::GPRCRegClass);
11388 
11389   //  thisMBB:
11390   //   ...
11391   //   fallthrough --> loopMBB
11392   BB->addSuccessor(loopMBB);
11393 
11394   //  loopMBB:
11395   //   l[wd]arx dest, ptr
11396   //   add r0, dest, incr
11397   //   st[wd]cx. r0, ptr
11398   //   bne- loopMBB
11399   //   fallthrough --> exitMBB
11400 
11401   // For max/min...
11402   //  loopMBB:
11403   //   l[wd]arx dest, ptr
11404   //   cmpl?[wd] incr, dest
11405   //   bgt exitMBB
11406   //  loop2MBB:
11407   //   st[wd]cx. dest, ptr
11408   //   bne- loopMBB
11409   //   fallthrough --> exitMBB
11410 
11411   BB = loopMBB;
11412   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11413     .addReg(ptrA).addReg(ptrB);
11414   if (BinOpcode)
11415     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11416   if (CmpOpcode) {
11417     // Signed comparisons of byte or halfword values must be sign-extended.
11418     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11419       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11420       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11421               ExtReg).addReg(dest);
11422       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11423         .addReg(incr).addReg(ExtReg);
11424     } else
11425       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11426         .addReg(incr).addReg(dest);
11427 
11428     BuildMI(BB, dl, TII->get(PPC::BCC))
11429       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11430     BB->addSuccessor(loop2MBB);
11431     BB->addSuccessor(exitMBB);
11432     BB = loop2MBB;
11433   }
11434   BuildMI(BB, dl, TII->get(StoreMnemonic))
11435     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11436   BuildMI(BB, dl, TII->get(PPC::BCC))
11437     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11438   BB->addSuccessor(loopMBB);
11439   BB->addSuccessor(exitMBB);
11440 
11441   //  exitMBB:
11442   //   ...
11443   BB = exitMBB;
11444   return BB;
11445 }
11446 
11447 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11448     MachineInstr &MI, MachineBasicBlock *BB,
11449     bool is8bit, // operation
11450     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11451   // If we support part-word atomic mnemonics, just use them
11452   if (Subtarget.hasPartwordAtomics())
11453     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11454                             CmpPred);
11455 
11456   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11457   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11458   // In 64 bit mode we have to use 64 bits for addresses, even though the
11459   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11460   // registers without caring whether they're 32 or 64, but here we're
11461   // doing actual arithmetic on the addresses.
11462   bool is64bit = Subtarget.isPPC64();
11463   bool isLittleEndian = Subtarget.isLittleEndian();
11464   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11465 
11466   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11467   MachineFunction *F = BB->getParent();
11468   MachineFunction::iterator It = ++BB->getIterator();
11469 
11470   Register dest = MI.getOperand(0).getReg();
11471   Register ptrA = MI.getOperand(1).getReg();
11472   Register ptrB = MI.getOperand(2).getReg();
11473   Register incr = MI.getOperand(3).getReg();
11474   DebugLoc dl = MI.getDebugLoc();
11475 
11476   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11477   MachineBasicBlock *loop2MBB =
11478       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11479   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11480   F->insert(It, loopMBB);
11481   if (CmpOpcode)
11482     F->insert(It, loop2MBB);
11483   F->insert(It, exitMBB);
11484   exitMBB->splice(exitMBB->begin(), BB,
11485                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11486   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11487 
11488   MachineRegisterInfo &RegInfo = F->getRegInfo();
11489   const TargetRegisterClass *RC =
11490       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11491   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11492 
11493   Register PtrReg = RegInfo.createVirtualRegister(RC);
11494   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11495   Register ShiftReg =
11496       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11497   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11498   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11499   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11500   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11501   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11502   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11503   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11504   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11505   Register Ptr1Reg;
11506   Register TmpReg =
11507       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11508 
11509   //  thisMBB:
11510   //   ...
11511   //   fallthrough --> loopMBB
11512   BB->addSuccessor(loopMBB);
11513 
11514   // The 4-byte load must be aligned, while a char or short may be
11515   // anywhere in the word.  Hence all this nasty bookkeeping code.
11516   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11517   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11518   //   xori shift, shift1, 24 [16]
11519   //   rlwinm ptr, ptr1, 0, 0, 29
11520   //   slw incr2, incr, shift
11521   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11522   //   slw mask, mask2, shift
11523   //  loopMBB:
11524   //   lwarx tmpDest, ptr
11525   //   add tmp, tmpDest, incr2
11526   //   andc tmp2, tmpDest, mask
11527   //   and tmp3, tmp, mask
11528   //   or tmp4, tmp3, tmp2
11529   //   stwcx. tmp4, ptr
11530   //   bne- loopMBB
11531   //   fallthrough --> exitMBB
11532   //   srw dest, tmpDest, shift
11533   if (ptrA != ZeroReg) {
11534     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11535     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11536         .addReg(ptrA)
11537         .addReg(ptrB);
11538   } else {
11539     Ptr1Reg = ptrB;
11540   }
11541   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11542   // mode.
11543   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11544       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11545       .addImm(3)
11546       .addImm(27)
11547       .addImm(is8bit ? 28 : 27);
11548   if (!isLittleEndian)
11549     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11550         .addReg(Shift1Reg)
11551         .addImm(is8bit ? 24 : 16);
11552   if (is64bit)
11553     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11554         .addReg(Ptr1Reg)
11555         .addImm(0)
11556         .addImm(61);
11557   else
11558     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11559         .addReg(Ptr1Reg)
11560         .addImm(0)
11561         .addImm(0)
11562         .addImm(29);
11563   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11564   if (is8bit)
11565     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11566   else {
11567     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11568     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11569         .addReg(Mask3Reg)
11570         .addImm(65535);
11571   }
11572   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11573       .addReg(Mask2Reg)
11574       .addReg(ShiftReg);
11575 
11576   BB = loopMBB;
11577   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11578       .addReg(ZeroReg)
11579       .addReg(PtrReg);
11580   if (BinOpcode)
11581     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11582         .addReg(Incr2Reg)
11583         .addReg(TmpDestReg);
11584   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11585       .addReg(TmpDestReg)
11586       .addReg(MaskReg);
11587   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11588   if (CmpOpcode) {
11589     // For unsigned comparisons, we can directly compare the shifted values.
11590     // For signed comparisons we shift and sign extend.
11591     Register SReg = RegInfo.createVirtualRegister(GPRC);
11592     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11593         .addReg(TmpDestReg)
11594         .addReg(MaskReg);
11595     unsigned ValueReg = SReg;
11596     unsigned CmpReg = Incr2Reg;
11597     if (CmpOpcode == PPC::CMPW) {
11598       ValueReg = RegInfo.createVirtualRegister(GPRC);
11599       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11600           .addReg(SReg)
11601           .addReg(ShiftReg);
11602       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11603       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11604           .addReg(ValueReg);
11605       ValueReg = ValueSReg;
11606       CmpReg = incr;
11607     }
11608     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11609         .addReg(CmpReg)
11610         .addReg(ValueReg);
11611     BuildMI(BB, dl, TII->get(PPC::BCC))
11612         .addImm(CmpPred)
11613         .addReg(PPC::CR0)
11614         .addMBB(exitMBB);
11615     BB->addSuccessor(loop2MBB);
11616     BB->addSuccessor(exitMBB);
11617     BB = loop2MBB;
11618   }
11619   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11620   BuildMI(BB, dl, TII->get(PPC::STWCX))
11621       .addReg(Tmp4Reg)
11622       .addReg(ZeroReg)
11623       .addReg(PtrReg);
11624   BuildMI(BB, dl, TII->get(PPC::BCC))
11625       .addImm(PPC::PRED_NE)
11626       .addReg(PPC::CR0)
11627       .addMBB(loopMBB);
11628   BB->addSuccessor(loopMBB);
11629   BB->addSuccessor(exitMBB);
11630 
11631   //  exitMBB:
11632   //   ...
11633   BB = exitMBB;
11634   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11635       .addReg(TmpDestReg)
11636       .addReg(ShiftReg);
11637   return BB;
11638 }
11639 
11640 llvm::MachineBasicBlock *
11641 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11642                                     MachineBasicBlock *MBB) const {
11643   DebugLoc DL = MI.getDebugLoc();
11644   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11645   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11646 
11647   MachineFunction *MF = MBB->getParent();
11648   MachineRegisterInfo &MRI = MF->getRegInfo();
11649 
11650   const BasicBlock *BB = MBB->getBasicBlock();
11651   MachineFunction::iterator I = ++MBB->getIterator();
11652 
11653   Register DstReg = MI.getOperand(0).getReg();
11654   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11655   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11656   Register mainDstReg = MRI.createVirtualRegister(RC);
11657   Register restoreDstReg = MRI.createVirtualRegister(RC);
11658 
11659   MVT PVT = getPointerTy(MF->getDataLayout());
11660   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11661          "Invalid Pointer Size!");
11662   // For v = setjmp(buf), we generate
11663   //
11664   // thisMBB:
11665   //  SjLjSetup mainMBB
11666   //  bl mainMBB
11667   //  v_restore = 1
11668   //  b sinkMBB
11669   //
11670   // mainMBB:
11671   //  buf[LabelOffset] = LR
11672   //  v_main = 0
11673   //
11674   // sinkMBB:
11675   //  v = phi(main, restore)
11676   //
11677 
11678   MachineBasicBlock *thisMBB = MBB;
11679   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11680   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11681   MF->insert(I, mainMBB);
11682   MF->insert(I, sinkMBB);
11683 
11684   MachineInstrBuilder MIB;
11685 
11686   // Transfer the remainder of BB and its successor edges to sinkMBB.
11687   sinkMBB->splice(sinkMBB->begin(), MBB,
11688                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11689   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11690 
11691   // Note that the structure of the jmp_buf used here is not compatible
11692   // with that used by libc, and is not designed to be. Specifically, it
11693   // stores only those 'reserved' registers that LLVM does not otherwise
11694   // understand how to spill. Also, by convention, by the time this
11695   // intrinsic is called, Clang has already stored the frame address in the
11696   // first slot of the buffer and stack address in the third. Following the
11697   // X86 target code, we'll store the jump address in the second slot. We also
11698   // need to save the TOC pointer (R2) to handle jumps between shared
11699   // libraries, and that will be stored in the fourth slot. The thread
11700   // identifier (R13) is not affected.
11701 
11702   // thisMBB:
11703   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11704   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11705   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11706 
11707   // Prepare IP either in reg.
11708   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11709   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11710   Register BufReg = MI.getOperand(1).getReg();
11711 
11712   if (Subtarget.is64BitELFABI()) {
11713     setUsesTOCBasePtr(*MBB->getParent());
11714     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11715               .addReg(PPC::X2)
11716               .addImm(TOCOffset)
11717               .addReg(BufReg)
11718               .cloneMemRefs(MI);
11719   }
11720 
11721   // Naked functions never have a base pointer, and so we use r1. For all
11722   // other functions, this decision must be delayed until during PEI.
11723   unsigned BaseReg;
11724   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11725     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11726   else
11727     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11728 
11729   MIB = BuildMI(*thisMBB, MI, DL,
11730                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11731             .addReg(BaseReg)
11732             .addImm(BPOffset)
11733             .addReg(BufReg)
11734             .cloneMemRefs(MI);
11735 
11736   // Setup
11737   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11738   MIB.addRegMask(TRI->getNoPreservedMask());
11739 
11740   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11741 
11742   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11743           .addMBB(mainMBB);
11744   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11745 
11746   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11747   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11748 
11749   // mainMBB:
11750   //  mainDstReg = 0
11751   MIB =
11752       BuildMI(mainMBB, DL,
11753               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11754 
11755   // Store IP
11756   if (Subtarget.isPPC64()) {
11757     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11758             .addReg(LabelReg)
11759             .addImm(LabelOffset)
11760             .addReg(BufReg);
11761   } else {
11762     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11763             .addReg(LabelReg)
11764             .addImm(LabelOffset)
11765             .addReg(BufReg);
11766   }
11767   MIB.cloneMemRefs(MI);
11768 
11769   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11770   mainMBB->addSuccessor(sinkMBB);
11771 
11772   // sinkMBB:
11773   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11774           TII->get(PPC::PHI), DstReg)
11775     .addReg(mainDstReg).addMBB(mainMBB)
11776     .addReg(restoreDstReg).addMBB(thisMBB);
11777 
11778   MI.eraseFromParent();
11779   return sinkMBB;
11780 }
11781 
11782 MachineBasicBlock *
11783 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11784                                      MachineBasicBlock *MBB) const {
11785   DebugLoc DL = MI.getDebugLoc();
11786   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11787 
11788   MachineFunction *MF = MBB->getParent();
11789   MachineRegisterInfo &MRI = MF->getRegInfo();
11790 
11791   MVT PVT = getPointerTy(MF->getDataLayout());
11792   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11793          "Invalid Pointer Size!");
11794 
11795   const TargetRegisterClass *RC =
11796     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11797   Register Tmp = MRI.createVirtualRegister(RC);
11798   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11799   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11800   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11801   unsigned BP =
11802       (PVT == MVT::i64)
11803           ? PPC::X30
11804           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11805                                                               : PPC::R30);
11806 
11807   MachineInstrBuilder MIB;
11808 
11809   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11810   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11811   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11812   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11813 
11814   Register BufReg = MI.getOperand(0).getReg();
11815 
11816   // Reload FP (the jumped-to function may not have had a
11817   // frame pointer, and if so, then its r31 will be restored
11818   // as necessary).
11819   if (PVT == MVT::i64) {
11820     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11821             .addImm(0)
11822             .addReg(BufReg);
11823   } else {
11824     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11825             .addImm(0)
11826             .addReg(BufReg);
11827   }
11828   MIB.cloneMemRefs(MI);
11829 
11830   // Reload IP
11831   if (PVT == MVT::i64) {
11832     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11833             .addImm(LabelOffset)
11834             .addReg(BufReg);
11835   } else {
11836     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11837             .addImm(LabelOffset)
11838             .addReg(BufReg);
11839   }
11840   MIB.cloneMemRefs(MI);
11841 
11842   // Reload SP
11843   if (PVT == MVT::i64) {
11844     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11845             .addImm(SPOffset)
11846             .addReg(BufReg);
11847   } else {
11848     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11849             .addImm(SPOffset)
11850             .addReg(BufReg);
11851   }
11852   MIB.cloneMemRefs(MI);
11853 
11854   // Reload BP
11855   if (PVT == MVT::i64) {
11856     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11857             .addImm(BPOffset)
11858             .addReg(BufReg);
11859   } else {
11860     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11861             .addImm(BPOffset)
11862             .addReg(BufReg);
11863   }
11864   MIB.cloneMemRefs(MI);
11865 
11866   // Reload TOC
11867   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11868     setUsesTOCBasePtr(*MBB->getParent());
11869     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11870               .addImm(TOCOffset)
11871               .addReg(BufReg)
11872               .cloneMemRefs(MI);
11873   }
11874 
11875   // Jump
11876   BuildMI(*MBB, MI, DL,
11877           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11878   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11879 
11880   MI.eraseFromParent();
11881   return MBB;
11882 }
11883 
11884 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11885   // If the function specifically requests inline stack probes, emit them.
11886   if (MF.getFunction().hasFnAttribute("probe-stack"))
11887     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11888            "inline-asm";
11889   return false;
11890 }
11891 
11892 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11893   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11894   unsigned StackAlign = TFI->getStackAlignment();
11895   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11896          "Unexpected stack alignment");
11897   // The default stack probe size is 4096 if the function has no
11898   // stack-probe-size attribute.
11899   unsigned StackProbeSize = 4096;
11900   const Function &Fn = MF.getFunction();
11901   if (Fn.hasFnAttribute("stack-probe-size"))
11902     Fn.getFnAttribute("stack-probe-size")
11903         .getValueAsString()
11904         .getAsInteger(0, StackProbeSize);
11905   // Round down to the stack alignment.
11906   StackProbeSize &= ~(StackAlign - 1);
11907   return StackProbeSize ? StackProbeSize : StackAlign;
11908 }
11909 
11910 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11911 // into three phases. In the first phase, it uses pseudo instruction
11912 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11913 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11914 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11915 // MaxCallFrameSize so that it can calculate correct data area pointer.
11916 MachineBasicBlock *
11917 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11918                                     MachineBasicBlock *MBB) const {
11919   const bool isPPC64 = Subtarget.isPPC64();
11920   MachineFunction *MF = MBB->getParent();
11921   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11922   DebugLoc DL = MI.getDebugLoc();
11923   const unsigned ProbeSize = getStackProbeSize(*MF);
11924   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11925   MachineRegisterInfo &MRI = MF->getRegInfo();
11926   // The CFG of probing stack looks as
11927   //         +-----+
11928   //         | MBB |
11929   //         +--+--+
11930   //            |
11931   //       +----v----+
11932   //  +--->+ TestMBB +---+
11933   //  |    +----+----+   |
11934   //  |         |        |
11935   //  |   +-----v----+   |
11936   //  +---+ BlockMBB |   |
11937   //      +----------+   |
11938   //                     |
11939   //       +---------+   |
11940   //       | TailMBB +<--+
11941   //       +---------+
11942   // In MBB, calculate previous frame pointer and final stack pointer.
11943   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11944   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11945   // TailMBB is spliced via \p MI.
11946   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11947   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11948   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11949 
11950   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11951   MF->insert(MBBIter, TestMBB);
11952   MF->insert(MBBIter, BlockMBB);
11953   MF->insert(MBBIter, TailMBB);
11954 
11955   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11956   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11957 
11958   Register DstReg = MI.getOperand(0).getReg();
11959   Register NegSizeReg = MI.getOperand(1).getReg();
11960   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11961   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11962   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11963   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11964 
11965   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11966   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11967   // NegSize.
11968   unsigned ProbeOpc;
11969   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11970     ProbeOpc =
11971         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11972   else
11973     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11974     // and NegSizeReg will be allocated in the same phyreg to avoid
11975     // redundant copy when NegSizeReg has only one use which is current MI and
11976     // will be replaced by PREPARE_PROBED_ALLOCA then.
11977     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11978                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11979   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11980       .addDef(ActualNegSizeReg)
11981       .addReg(NegSizeReg)
11982       .add(MI.getOperand(2))
11983       .add(MI.getOperand(3));
11984 
11985   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11986   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11987           FinalStackPtr)
11988       .addReg(SPReg)
11989       .addReg(ActualNegSizeReg);
11990 
11991   // Materialize a scratch register for update.
11992   int64_t NegProbeSize = -(int64_t)ProbeSize;
11993   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11994   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11995   if (!isInt<16>(NegProbeSize)) {
11996     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11997     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11998         .addImm(NegProbeSize >> 16);
11999     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12000             ScratchReg)
12001         .addReg(TempReg)
12002         .addImm(NegProbeSize & 0xFFFF);
12003   } else
12004     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12005         .addImm(NegProbeSize);
12006 
12007   {
12008     // Probing leading residual part.
12009     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12010     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12011         .addReg(ActualNegSizeReg)
12012         .addReg(ScratchReg);
12013     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12014     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12015         .addReg(Div)
12016         .addReg(ScratchReg);
12017     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12018     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12019         .addReg(Mul)
12020         .addReg(ActualNegSizeReg);
12021     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12022         .addReg(FramePointer)
12023         .addReg(SPReg)
12024         .addReg(NegMod);
12025   }
12026 
12027   {
12028     // Remaining part should be multiple of ProbeSize.
12029     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12030     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12031         .addReg(SPReg)
12032         .addReg(FinalStackPtr);
12033     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12034         .addImm(PPC::PRED_EQ)
12035         .addReg(CmpResult)
12036         .addMBB(TailMBB);
12037     TestMBB->addSuccessor(BlockMBB);
12038     TestMBB->addSuccessor(TailMBB);
12039   }
12040 
12041   {
12042     // Touch the block.
12043     // |P...|P...|P...
12044     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12045         .addReg(FramePointer)
12046         .addReg(SPReg)
12047         .addReg(ScratchReg);
12048     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12049     BlockMBB->addSuccessor(TestMBB);
12050   }
12051 
12052   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12053   // DYNAREAOFFSET pseudo instruction to get the future result.
12054   Register MaxCallFrameSizeReg =
12055       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12056   BuildMI(TailMBB, DL,
12057           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12058           MaxCallFrameSizeReg)
12059       .add(MI.getOperand(2))
12060       .add(MI.getOperand(3));
12061   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12062       .addReg(SPReg)
12063       .addReg(MaxCallFrameSizeReg);
12064 
12065   // Splice instructions after MI to TailMBB.
12066   TailMBB->splice(TailMBB->end(), MBB,
12067                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12068   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12069   MBB->addSuccessor(TestMBB);
12070 
12071   // Delete the pseudo instruction.
12072   MI.eraseFromParent();
12073 
12074   ++NumDynamicAllocaProbed;
12075   return TailMBB;
12076 }
12077 
12078 MachineBasicBlock *
12079 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12080                                                MachineBasicBlock *BB) const {
12081   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12082       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12083     if (Subtarget.is64BitELFABI() &&
12084         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12085         !Subtarget.isUsingPCRelativeCalls()) {
12086       // Call lowering should have added an r2 operand to indicate a dependence
12087       // on the TOC base pointer value. It can't however, because there is no
12088       // way to mark the dependence as implicit there, and so the stackmap code
12089       // will confuse it with a regular operand. Instead, add the dependence
12090       // here.
12091       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12092     }
12093 
12094     return emitPatchPoint(MI, BB);
12095   }
12096 
12097   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12098       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12099     return emitEHSjLjSetJmp(MI, BB);
12100   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12101              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12102     return emitEHSjLjLongJmp(MI, BB);
12103   }
12104 
12105   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12106 
12107   // To "insert" these instructions we actually have to insert their
12108   // control-flow patterns.
12109   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12110   MachineFunction::iterator It = ++BB->getIterator();
12111 
12112   MachineFunction *F = BB->getParent();
12113 
12114   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12115       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12116       MI.getOpcode() == PPC::SELECT_I8) {
12117     SmallVector<MachineOperand, 2> Cond;
12118     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12119         MI.getOpcode() == PPC::SELECT_CC_I8)
12120       Cond.push_back(MI.getOperand(4));
12121     else
12122       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12123     Cond.push_back(MI.getOperand(1));
12124 
12125     DebugLoc dl = MI.getDebugLoc();
12126     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12127                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12128   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12129              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12130              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12131              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
12132              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
12133              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
12134              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12135              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12136              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12137              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12138              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12139              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12140              MI.getOpcode() == PPC::SELECT_F4 ||
12141              MI.getOpcode() == PPC::SELECT_F8 ||
12142              MI.getOpcode() == PPC::SELECT_F16 ||
12143              MI.getOpcode() == PPC::SELECT_QFRC ||
12144              MI.getOpcode() == PPC::SELECT_QSRC ||
12145              MI.getOpcode() == PPC::SELECT_QBRC ||
12146              MI.getOpcode() == PPC::SELECT_SPE ||
12147              MI.getOpcode() == PPC::SELECT_SPE4 ||
12148              MI.getOpcode() == PPC::SELECT_VRRC ||
12149              MI.getOpcode() == PPC::SELECT_VSFRC ||
12150              MI.getOpcode() == PPC::SELECT_VSSRC ||
12151              MI.getOpcode() == PPC::SELECT_VSRC) {
12152     // The incoming instruction knows the destination vreg to set, the
12153     // condition code register to branch on, the true/false values to
12154     // select between, and a branch opcode to use.
12155 
12156     //  thisMBB:
12157     //  ...
12158     //   TrueVal = ...
12159     //   cmpTY ccX, r1, r2
12160     //   bCC copy1MBB
12161     //   fallthrough --> copy0MBB
12162     MachineBasicBlock *thisMBB = BB;
12163     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12164     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12165     DebugLoc dl = MI.getDebugLoc();
12166     F->insert(It, copy0MBB);
12167     F->insert(It, sinkMBB);
12168 
12169     // Transfer the remainder of BB and its successor edges to sinkMBB.
12170     sinkMBB->splice(sinkMBB->begin(), BB,
12171                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12172     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12173 
12174     // Next, add the true and fallthrough blocks as its successors.
12175     BB->addSuccessor(copy0MBB);
12176     BB->addSuccessor(sinkMBB);
12177 
12178     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12179         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12180         MI.getOpcode() == PPC::SELECT_F16 ||
12181         MI.getOpcode() == PPC::SELECT_SPE4 ||
12182         MI.getOpcode() == PPC::SELECT_SPE ||
12183         MI.getOpcode() == PPC::SELECT_QFRC ||
12184         MI.getOpcode() == PPC::SELECT_QSRC ||
12185         MI.getOpcode() == PPC::SELECT_QBRC ||
12186         MI.getOpcode() == PPC::SELECT_VRRC ||
12187         MI.getOpcode() == PPC::SELECT_VSFRC ||
12188         MI.getOpcode() == PPC::SELECT_VSSRC ||
12189         MI.getOpcode() == PPC::SELECT_VSRC) {
12190       BuildMI(BB, dl, TII->get(PPC::BC))
12191           .addReg(MI.getOperand(1).getReg())
12192           .addMBB(sinkMBB);
12193     } else {
12194       unsigned SelectPred = MI.getOperand(4).getImm();
12195       BuildMI(BB, dl, TII->get(PPC::BCC))
12196           .addImm(SelectPred)
12197           .addReg(MI.getOperand(1).getReg())
12198           .addMBB(sinkMBB);
12199     }
12200 
12201     //  copy0MBB:
12202     //   %FalseValue = ...
12203     //   # fallthrough to sinkMBB
12204     BB = copy0MBB;
12205 
12206     // Update machine-CFG edges
12207     BB->addSuccessor(sinkMBB);
12208 
12209     //  sinkMBB:
12210     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12211     //  ...
12212     BB = sinkMBB;
12213     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12214         .addReg(MI.getOperand(3).getReg())
12215         .addMBB(copy0MBB)
12216         .addReg(MI.getOperand(2).getReg())
12217         .addMBB(thisMBB);
12218   } else if (MI.getOpcode() == PPC::ReadTB) {
12219     // To read the 64-bit time-base register on a 32-bit target, we read the
12220     // two halves. Should the counter have wrapped while it was being read, we
12221     // need to try again.
12222     // ...
12223     // readLoop:
12224     // mfspr Rx,TBU # load from TBU
12225     // mfspr Ry,TB  # load from TB
12226     // mfspr Rz,TBU # load from TBU
12227     // cmpw crX,Rx,Rz # check if 'old'='new'
12228     // bne readLoop   # branch if they're not equal
12229     // ...
12230 
12231     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12232     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12233     DebugLoc dl = MI.getDebugLoc();
12234     F->insert(It, readMBB);
12235     F->insert(It, sinkMBB);
12236 
12237     // Transfer the remainder of BB and its successor edges to sinkMBB.
12238     sinkMBB->splice(sinkMBB->begin(), BB,
12239                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12240     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12241 
12242     BB->addSuccessor(readMBB);
12243     BB = readMBB;
12244 
12245     MachineRegisterInfo &RegInfo = F->getRegInfo();
12246     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12247     Register LoReg = MI.getOperand(0).getReg();
12248     Register HiReg = MI.getOperand(1).getReg();
12249 
12250     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12251     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12252     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12253 
12254     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12255 
12256     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12257         .addReg(HiReg)
12258         .addReg(ReadAgainReg);
12259     BuildMI(BB, dl, TII->get(PPC::BCC))
12260         .addImm(PPC::PRED_NE)
12261         .addReg(CmpReg)
12262         .addMBB(readMBB);
12263 
12264     BB->addSuccessor(readMBB);
12265     BB->addSuccessor(sinkMBB);
12266   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12267     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12268   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12269     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12270   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12271     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12272   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12273     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12274 
12275   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12276     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12277   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12278     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12279   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12280     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12281   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12282     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12283 
12284   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12285     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12286   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12287     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12288   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12289     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12290   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12291     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12292 
12293   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12294     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12295   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12296     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12297   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12298     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12299   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12300     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12301 
12302   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12303     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12304   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12305     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12306   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12307     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12308   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12309     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12310 
12311   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12312     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12313   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12314     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12315   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12316     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12317   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12318     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12319 
12320   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12321     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12322   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12323     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12324   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12325     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12326   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12327     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12328 
12329   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12330     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12331   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12332     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12333   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12334     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12335   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12336     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12337 
12338   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12339     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12340   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12341     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12342   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12343     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12344   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12345     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12346 
12347   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12348     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12349   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12350     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12351   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12352     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12353   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12354     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12355 
12356   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12357     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12358   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12359     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12360   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12361     BB = EmitAtomicBinary(MI, BB, 4, 0);
12362   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12363     BB = EmitAtomicBinary(MI, BB, 8, 0);
12364   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12365            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12366            (Subtarget.hasPartwordAtomics() &&
12367             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12368            (Subtarget.hasPartwordAtomics() &&
12369             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12370     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12371 
12372     auto LoadMnemonic = PPC::LDARX;
12373     auto StoreMnemonic = PPC::STDCX;
12374     switch (MI.getOpcode()) {
12375     default:
12376       llvm_unreachable("Compare and swap of unknown size");
12377     case PPC::ATOMIC_CMP_SWAP_I8:
12378       LoadMnemonic = PPC::LBARX;
12379       StoreMnemonic = PPC::STBCX;
12380       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12381       break;
12382     case PPC::ATOMIC_CMP_SWAP_I16:
12383       LoadMnemonic = PPC::LHARX;
12384       StoreMnemonic = PPC::STHCX;
12385       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12386       break;
12387     case PPC::ATOMIC_CMP_SWAP_I32:
12388       LoadMnemonic = PPC::LWARX;
12389       StoreMnemonic = PPC::STWCX;
12390       break;
12391     case PPC::ATOMIC_CMP_SWAP_I64:
12392       LoadMnemonic = PPC::LDARX;
12393       StoreMnemonic = PPC::STDCX;
12394       break;
12395     }
12396     Register dest = MI.getOperand(0).getReg();
12397     Register ptrA = MI.getOperand(1).getReg();
12398     Register ptrB = MI.getOperand(2).getReg();
12399     Register oldval = MI.getOperand(3).getReg();
12400     Register newval = MI.getOperand(4).getReg();
12401     DebugLoc dl = MI.getDebugLoc();
12402 
12403     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12404     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12405     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12406     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12407     F->insert(It, loop1MBB);
12408     F->insert(It, loop2MBB);
12409     F->insert(It, midMBB);
12410     F->insert(It, exitMBB);
12411     exitMBB->splice(exitMBB->begin(), BB,
12412                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12413     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12414 
12415     //  thisMBB:
12416     //   ...
12417     //   fallthrough --> loopMBB
12418     BB->addSuccessor(loop1MBB);
12419 
12420     // loop1MBB:
12421     //   l[bhwd]arx dest, ptr
12422     //   cmp[wd] dest, oldval
12423     //   bne- midMBB
12424     // loop2MBB:
12425     //   st[bhwd]cx. newval, ptr
12426     //   bne- loopMBB
12427     //   b exitBB
12428     // midMBB:
12429     //   st[bhwd]cx. dest, ptr
12430     // exitBB:
12431     BB = loop1MBB;
12432     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12433     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12434         .addReg(oldval)
12435         .addReg(dest);
12436     BuildMI(BB, dl, TII->get(PPC::BCC))
12437         .addImm(PPC::PRED_NE)
12438         .addReg(PPC::CR0)
12439         .addMBB(midMBB);
12440     BB->addSuccessor(loop2MBB);
12441     BB->addSuccessor(midMBB);
12442 
12443     BB = loop2MBB;
12444     BuildMI(BB, dl, TII->get(StoreMnemonic))
12445         .addReg(newval)
12446         .addReg(ptrA)
12447         .addReg(ptrB);
12448     BuildMI(BB, dl, TII->get(PPC::BCC))
12449         .addImm(PPC::PRED_NE)
12450         .addReg(PPC::CR0)
12451         .addMBB(loop1MBB);
12452     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12453     BB->addSuccessor(loop1MBB);
12454     BB->addSuccessor(exitMBB);
12455 
12456     BB = midMBB;
12457     BuildMI(BB, dl, TII->get(StoreMnemonic))
12458         .addReg(dest)
12459         .addReg(ptrA)
12460         .addReg(ptrB);
12461     BB->addSuccessor(exitMBB);
12462 
12463     //  exitMBB:
12464     //   ...
12465     BB = exitMBB;
12466   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12467              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12468     // We must use 64-bit registers for addresses when targeting 64-bit,
12469     // since we're actually doing arithmetic on them.  Other registers
12470     // can be 32-bit.
12471     bool is64bit = Subtarget.isPPC64();
12472     bool isLittleEndian = Subtarget.isLittleEndian();
12473     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12474 
12475     Register dest = MI.getOperand(0).getReg();
12476     Register ptrA = MI.getOperand(1).getReg();
12477     Register ptrB = MI.getOperand(2).getReg();
12478     Register oldval = MI.getOperand(3).getReg();
12479     Register newval = MI.getOperand(4).getReg();
12480     DebugLoc dl = MI.getDebugLoc();
12481 
12482     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12483     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12484     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12485     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12486     F->insert(It, loop1MBB);
12487     F->insert(It, loop2MBB);
12488     F->insert(It, midMBB);
12489     F->insert(It, exitMBB);
12490     exitMBB->splice(exitMBB->begin(), BB,
12491                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12492     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12493 
12494     MachineRegisterInfo &RegInfo = F->getRegInfo();
12495     const TargetRegisterClass *RC =
12496         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12497     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12498 
12499     Register PtrReg = RegInfo.createVirtualRegister(RC);
12500     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12501     Register ShiftReg =
12502         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12503     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12504     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12505     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12506     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12507     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12508     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12509     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12510     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12511     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12512     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12513     Register Ptr1Reg;
12514     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12515     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12516     //  thisMBB:
12517     //   ...
12518     //   fallthrough --> loopMBB
12519     BB->addSuccessor(loop1MBB);
12520 
12521     // The 4-byte load must be aligned, while a char or short may be
12522     // anywhere in the word.  Hence all this nasty bookkeeping code.
12523     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12524     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12525     //   xori shift, shift1, 24 [16]
12526     //   rlwinm ptr, ptr1, 0, 0, 29
12527     //   slw newval2, newval, shift
12528     //   slw oldval2, oldval,shift
12529     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12530     //   slw mask, mask2, shift
12531     //   and newval3, newval2, mask
12532     //   and oldval3, oldval2, mask
12533     // loop1MBB:
12534     //   lwarx tmpDest, ptr
12535     //   and tmp, tmpDest, mask
12536     //   cmpw tmp, oldval3
12537     //   bne- midMBB
12538     // loop2MBB:
12539     //   andc tmp2, tmpDest, mask
12540     //   or tmp4, tmp2, newval3
12541     //   stwcx. tmp4, ptr
12542     //   bne- loop1MBB
12543     //   b exitBB
12544     // midMBB:
12545     //   stwcx. tmpDest, ptr
12546     // exitBB:
12547     //   srw dest, tmpDest, shift
12548     if (ptrA != ZeroReg) {
12549       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12550       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12551           .addReg(ptrA)
12552           .addReg(ptrB);
12553     } else {
12554       Ptr1Reg = ptrB;
12555     }
12556 
12557     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12558     // mode.
12559     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12560         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12561         .addImm(3)
12562         .addImm(27)
12563         .addImm(is8bit ? 28 : 27);
12564     if (!isLittleEndian)
12565       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12566           .addReg(Shift1Reg)
12567           .addImm(is8bit ? 24 : 16);
12568     if (is64bit)
12569       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12570           .addReg(Ptr1Reg)
12571           .addImm(0)
12572           .addImm(61);
12573     else
12574       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12575           .addReg(Ptr1Reg)
12576           .addImm(0)
12577           .addImm(0)
12578           .addImm(29);
12579     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12580         .addReg(newval)
12581         .addReg(ShiftReg);
12582     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12583         .addReg(oldval)
12584         .addReg(ShiftReg);
12585     if (is8bit)
12586       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12587     else {
12588       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12589       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12590           .addReg(Mask3Reg)
12591           .addImm(65535);
12592     }
12593     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12594         .addReg(Mask2Reg)
12595         .addReg(ShiftReg);
12596     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12597         .addReg(NewVal2Reg)
12598         .addReg(MaskReg);
12599     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12600         .addReg(OldVal2Reg)
12601         .addReg(MaskReg);
12602 
12603     BB = loop1MBB;
12604     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12605         .addReg(ZeroReg)
12606         .addReg(PtrReg);
12607     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12608         .addReg(TmpDestReg)
12609         .addReg(MaskReg);
12610     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12611         .addReg(TmpReg)
12612         .addReg(OldVal3Reg);
12613     BuildMI(BB, dl, TII->get(PPC::BCC))
12614         .addImm(PPC::PRED_NE)
12615         .addReg(PPC::CR0)
12616         .addMBB(midMBB);
12617     BB->addSuccessor(loop2MBB);
12618     BB->addSuccessor(midMBB);
12619 
12620     BB = loop2MBB;
12621     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12622         .addReg(TmpDestReg)
12623         .addReg(MaskReg);
12624     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12625         .addReg(Tmp2Reg)
12626         .addReg(NewVal3Reg);
12627     BuildMI(BB, dl, TII->get(PPC::STWCX))
12628         .addReg(Tmp4Reg)
12629         .addReg(ZeroReg)
12630         .addReg(PtrReg);
12631     BuildMI(BB, dl, TII->get(PPC::BCC))
12632         .addImm(PPC::PRED_NE)
12633         .addReg(PPC::CR0)
12634         .addMBB(loop1MBB);
12635     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12636     BB->addSuccessor(loop1MBB);
12637     BB->addSuccessor(exitMBB);
12638 
12639     BB = midMBB;
12640     BuildMI(BB, dl, TII->get(PPC::STWCX))
12641         .addReg(TmpDestReg)
12642         .addReg(ZeroReg)
12643         .addReg(PtrReg);
12644     BB->addSuccessor(exitMBB);
12645 
12646     //  exitMBB:
12647     //   ...
12648     BB = exitMBB;
12649     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12650         .addReg(TmpReg)
12651         .addReg(ShiftReg);
12652   } else if (MI.getOpcode() == PPC::FADDrtz) {
12653     // This pseudo performs an FADD with rounding mode temporarily forced
12654     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12655     // is not modeled at the SelectionDAG level.
12656     Register Dest = MI.getOperand(0).getReg();
12657     Register Src1 = MI.getOperand(1).getReg();
12658     Register Src2 = MI.getOperand(2).getReg();
12659     DebugLoc dl = MI.getDebugLoc();
12660 
12661     MachineRegisterInfo &RegInfo = F->getRegInfo();
12662     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12663 
12664     // Save FPSCR value.
12665     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12666 
12667     // Set rounding mode to round-to-zero.
12668     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
12669     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
12670 
12671     // Perform addition.
12672     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
12673 
12674     // Restore FPSCR value.
12675     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12676   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12677              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12678              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12679              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12680     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12681                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12682                           ? PPC::ANDI8_rec
12683                           : PPC::ANDI_rec;
12684     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12685                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12686 
12687     MachineRegisterInfo &RegInfo = F->getRegInfo();
12688     Register Dest = RegInfo.createVirtualRegister(
12689         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12690 
12691     DebugLoc Dl = MI.getDebugLoc();
12692     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12693         .addReg(MI.getOperand(1).getReg())
12694         .addImm(1);
12695     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12696             MI.getOperand(0).getReg())
12697         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12698   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12699     DebugLoc Dl = MI.getDebugLoc();
12700     MachineRegisterInfo &RegInfo = F->getRegInfo();
12701     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12702     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12703     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12704             MI.getOperand(0).getReg())
12705         .addReg(CRReg);
12706   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12707     DebugLoc Dl = MI.getDebugLoc();
12708     unsigned Imm = MI.getOperand(1).getImm();
12709     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12710     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12711             MI.getOperand(0).getReg())
12712         .addReg(PPC::CR0EQ);
12713   } else if (MI.getOpcode() == PPC::SETRNDi) {
12714     DebugLoc dl = MI.getDebugLoc();
12715     Register OldFPSCRReg = MI.getOperand(0).getReg();
12716 
12717     // Save FPSCR value.
12718     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12719 
12720     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12721     // the following settings:
12722     //   00 Round to nearest
12723     //   01 Round to 0
12724     //   10 Round to +inf
12725     //   11 Round to -inf
12726 
12727     // When the operand is immediate, using the two least significant bits of
12728     // the immediate to set the bits 62:63 of FPSCR.
12729     unsigned Mode = MI.getOperand(1).getImm();
12730     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12731       .addImm(31);
12732 
12733     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12734       .addImm(30);
12735   } else if (MI.getOpcode() == PPC::SETRND) {
12736     DebugLoc dl = MI.getDebugLoc();
12737 
12738     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12739     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12740     // If the target doesn't have DirectMove, we should use stack to do the
12741     // conversion, because the target doesn't have the instructions like mtvsrd
12742     // or mfvsrd to do this conversion directly.
12743     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12744       if (Subtarget.hasDirectMove()) {
12745         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12746           .addReg(SrcReg);
12747       } else {
12748         // Use stack to do the register copy.
12749         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12750         MachineRegisterInfo &RegInfo = F->getRegInfo();
12751         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12752         if (RC == &PPC::F8RCRegClass) {
12753           // Copy register from F8RCRegClass to G8RCRegclass.
12754           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12755                  "Unsupported RegClass.");
12756 
12757           StoreOp = PPC::STFD;
12758           LoadOp = PPC::LD;
12759         } else {
12760           // Copy register from G8RCRegClass to F8RCRegclass.
12761           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12762                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12763                  "Unsupported RegClass.");
12764         }
12765 
12766         MachineFrameInfo &MFI = F->getFrameInfo();
12767         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12768 
12769         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12770             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12771             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12772             MFI.getObjectAlign(FrameIdx));
12773 
12774         // Store the SrcReg into the stack.
12775         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12776           .addReg(SrcReg)
12777           .addImm(0)
12778           .addFrameIndex(FrameIdx)
12779           .addMemOperand(MMOStore);
12780 
12781         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12782             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12783             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12784             MFI.getObjectAlign(FrameIdx));
12785 
12786         // Load from the stack where SrcReg is stored, and save to DestReg,
12787         // so we have done the RegClass conversion from RegClass::SrcReg to
12788         // RegClass::DestReg.
12789         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12790           .addImm(0)
12791           .addFrameIndex(FrameIdx)
12792           .addMemOperand(MMOLoad);
12793       }
12794     };
12795 
12796     Register OldFPSCRReg = MI.getOperand(0).getReg();
12797 
12798     // Save FPSCR value.
12799     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12800 
12801     // When the operand is gprc register, use two least significant bits of the
12802     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12803     //
12804     // copy OldFPSCRTmpReg, OldFPSCRReg
12805     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12806     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12807     // copy NewFPSCRReg, NewFPSCRTmpReg
12808     // mtfsf 255, NewFPSCRReg
12809     MachineOperand SrcOp = MI.getOperand(1);
12810     MachineRegisterInfo &RegInfo = F->getRegInfo();
12811     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12812 
12813     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12814 
12815     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12816     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12817 
12818     // The first operand of INSERT_SUBREG should be a register which has
12819     // subregisters, we only care about its RegClass, so we should use an
12820     // IMPLICIT_DEF register.
12821     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12822     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12823       .addReg(ImDefReg)
12824       .add(SrcOp)
12825       .addImm(1);
12826 
12827     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12828     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12829       .addReg(OldFPSCRTmpReg)
12830       .addReg(ExtSrcReg)
12831       .addImm(0)
12832       .addImm(62);
12833 
12834     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12835     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12836 
12837     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12838     // bits of FPSCR.
12839     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12840       .addImm(255)
12841       .addReg(NewFPSCRReg)
12842       .addImm(0)
12843       .addImm(0);
12844   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12845              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12846     return emitProbedAlloca(MI, BB);
12847   } else {
12848     llvm_unreachable("Unexpected instr type to insert");
12849   }
12850 
12851   MI.eraseFromParent(); // The pseudo instruction is gone now.
12852   return BB;
12853 }
12854 
12855 //===----------------------------------------------------------------------===//
12856 // Target Optimization Hooks
12857 //===----------------------------------------------------------------------===//
12858 
12859 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12860   // For the estimates, convergence is quadratic, so we essentially double the
12861   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12862   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12863   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12864   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12865   if (VT.getScalarType() == MVT::f64)
12866     RefinementSteps++;
12867   return RefinementSteps;
12868 }
12869 
12870 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12871                                            int Enabled, int &RefinementSteps,
12872                                            bool &UseOneConstNR,
12873                                            bool Reciprocal) const {
12874   EVT VT = Operand.getValueType();
12875   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12876       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12877       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12878       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12879       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12880       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12881     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12882       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12883 
12884     // The Newton-Raphson computation with a single constant does not provide
12885     // enough accuracy on some CPUs.
12886     UseOneConstNR = !Subtarget.needsTwoConstNR();
12887     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12888   }
12889   return SDValue();
12890 }
12891 
12892 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12893                                             int Enabled,
12894                                             int &RefinementSteps) const {
12895   EVT VT = Operand.getValueType();
12896   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12897       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12898       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12899       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12900       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12901       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12902     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12903       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12904     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12905   }
12906   return SDValue();
12907 }
12908 
12909 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12910   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12911   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12912   // enabled for division), this functionality is redundant with the default
12913   // combiner logic (once the division -> reciprocal/multiply transformation
12914   // has taken place). As a result, this matters more for older cores than for
12915   // newer ones.
12916 
12917   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12918   // reciprocal if there are two or more FDIVs (for embedded cores with only
12919   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12920   switch (Subtarget.getCPUDirective()) {
12921   default:
12922     return 3;
12923   case PPC::DIR_440:
12924   case PPC::DIR_A2:
12925   case PPC::DIR_E500:
12926   case PPC::DIR_E500mc:
12927   case PPC::DIR_E5500:
12928     return 2;
12929   }
12930 }
12931 
12932 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12933 // collapsed, and so we need to look through chains of them.
12934 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12935                                      int64_t& Offset, SelectionDAG &DAG) {
12936   if (DAG.isBaseWithConstantOffset(Loc)) {
12937     Base = Loc.getOperand(0);
12938     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12939 
12940     // The base might itself be a base plus an offset, and if so, accumulate
12941     // that as well.
12942     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12943   }
12944 }
12945 
12946 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12947                             unsigned Bytes, int Dist,
12948                             SelectionDAG &DAG) {
12949   if (VT.getSizeInBits() / 8 != Bytes)
12950     return false;
12951 
12952   SDValue BaseLoc = Base->getBasePtr();
12953   if (Loc.getOpcode() == ISD::FrameIndex) {
12954     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12955       return false;
12956     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12957     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12958     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12959     int FS  = MFI.getObjectSize(FI);
12960     int BFS = MFI.getObjectSize(BFI);
12961     if (FS != BFS || FS != (int)Bytes) return false;
12962     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12963   }
12964 
12965   SDValue Base1 = Loc, Base2 = BaseLoc;
12966   int64_t Offset1 = 0, Offset2 = 0;
12967   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12968   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12969   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12970     return true;
12971 
12972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12973   const GlobalValue *GV1 = nullptr;
12974   const GlobalValue *GV2 = nullptr;
12975   Offset1 = 0;
12976   Offset2 = 0;
12977   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12978   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12979   if (isGA1 && isGA2 && GV1 == GV2)
12980     return Offset1 == (Offset2 + Dist*Bytes);
12981   return false;
12982 }
12983 
12984 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12985 // not enforce equality of the chain operands.
12986 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12987                             unsigned Bytes, int Dist,
12988                             SelectionDAG &DAG) {
12989   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12990     EVT VT = LS->getMemoryVT();
12991     SDValue Loc = LS->getBasePtr();
12992     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12993   }
12994 
12995   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12996     EVT VT;
12997     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12998     default: return false;
12999     case Intrinsic::ppc_qpx_qvlfd:
13000     case Intrinsic::ppc_qpx_qvlfda:
13001       VT = MVT::v4f64;
13002       break;
13003     case Intrinsic::ppc_qpx_qvlfs:
13004     case Intrinsic::ppc_qpx_qvlfsa:
13005       VT = MVT::v4f32;
13006       break;
13007     case Intrinsic::ppc_qpx_qvlfcd:
13008     case Intrinsic::ppc_qpx_qvlfcda:
13009       VT = MVT::v2f64;
13010       break;
13011     case Intrinsic::ppc_qpx_qvlfcs:
13012     case Intrinsic::ppc_qpx_qvlfcsa:
13013       VT = MVT::v2f32;
13014       break;
13015     case Intrinsic::ppc_qpx_qvlfiwa:
13016     case Intrinsic::ppc_qpx_qvlfiwz:
13017     case Intrinsic::ppc_altivec_lvx:
13018     case Intrinsic::ppc_altivec_lvxl:
13019     case Intrinsic::ppc_vsx_lxvw4x:
13020     case Intrinsic::ppc_vsx_lxvw4x_be:
13021       VT = MVT::v4i32;
13022       break;
13023     case Intrinsic::ppc_vsx_lxvd2x:
13024     case Intrinsic::ppc_vsx_lxvd2x_be:
13025       VT = MVT::v2f64;
13026       break;
13027     case Intrinsic::ppc_altivec_lvebx:
13028       VT = MVT::i8;
13029       break;
13030     case Intrinsic::ppc_altivec_lvehx:
13031       VT = MVT::i16;
13032       break;
13033     case Intrinsic::ppc_altivec_lvewx:
13034       VT = MVT::i32;
13035       break;
13036     }
13037 
13038     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13039   }
13040 
13041   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13042     EVT VT;
13043     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13044     default: return false;
13045     case Intrinsic::ppc_qpx_qvstfd:
13046     case Intrinsic::ppc_qpx_qvstfda:
13047       VT = MVT::v4f64;
13048       break;
13049     case Intrinsic::ppc_qpx_qvstfs:
13050     case Intrinsic::ppc_qpx_qvstfsa:
13051       VT = MVT::v4f32;
13052       break;
13053     case Intrinsic::ppc_qpx_qvstfcd:
13054     case Intrinsic::ppc_qpx_qvstfcda:
13055       VT = MVT::v2f64;
13056       break;
13057     case Intrinsic::ppc_qpx_qvstfcs:
13058     case Intrinsic::ppc_qpx_qvstfcsa:
13059       VT = MVT::v2f32;
13060       break;
13061     case Intrinsic::ppc_qpx_qvstfiw:
13062     case Intrinsic::ppc_qpx_qvstfiwa:
13063     case Intrinsic::ppc_altivec_stvx:
13064     case Intrinsic::ppc_altivec_stvxl:
13065     case Intrinsic::ppc_vsx_stxvw4x:
13066       VT = MVT::v4i32;
13067       break;
13068     case Intrinsic::ppc_vsx_stxvd2x:
13069       VT = MVT::v2f64;
13070       break;
13071     case Intrinsic::ppc_vsx_stxvw4x_be:
13072       VT = MVT::v4i32;
13073       break;
13074     case Intrinsic::ppc_vsx_stxvd2x_be:
13075       VT = MVT::v2f64;
13076       break;
13077     case Intrinsic::ppc_altivec_stvebx:
13078       VT = MVT::i8;
13079       break;
13080     case Intrinsic::ppc_altivec_stvehx:
13081       VT = MVT::i16;
13082       break;
13083     case Intrinsic::ppc_altivec_stvewx:
13084       VT = MVT::i32;
13085       break;
13086     }
13087 
13088     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13089   }
13090 
13091   return false;
13092 }
13093 
13094 // Return true is there is a nearyby consecutive load to the one provided
13095 // (regardless of alignment). We search up and down the chain, looking though
13096 // token factors and other loads (but nothing else). As a result, a true result
13097 // indicates that it is safe to create a new consecutive load adjacent to the
13098 // load provided.
13099 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13100   SDValue Chain = LD->getChain();
13101   EVT VT = LD->getMemoryVT();
13102 
13103   SmallSet<SDNode *, 16> LoadRoots;
13104   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13105   SmallSet<SDNode *, 16> Visited;
13106 
13107   // First, search up the chain, branching to follow all token-factor operands.
13108   // If we find a consecutive load, then we're done, otherwise, record all
13109   // nodes just above the top-level loads and token factors.
13110   while (!Queue.empty()) {
13111     SDNode *ChainNext = Queue.pop_back_val();
13112     if (!Visited.insert(ChainNext).second)
13113       continue;
13114 
13115     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13116       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13117         return true;
13118 
13119       if (!Visited.count(ChainLD->getChain().getNode()))
13120         Queue.push_back(ChainLD->getChain().getNode());
13121     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13122       for (const SDUse &O : ChainNext->ops())
13123         if (!Visited.count(O.getNode()))
13124           Queue.push_back(O.getNode());
13125     } else
13126       LoadRoots.insert(ChainNext);
13127   }
13128 
13129   // Second, search down the chain, starting from the top-level nodes recorded
13130   // in the first phase. These top-level nodes are the nodes just above all
13131   // loads and token factors. Starting with their uses, recursively look though
13132   // all loads (just the chain uses) and token factors to find a consecutive
13133   // load.
13134   Visited.clear();
13135   Queue.clear();
13136 
13137   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13138        IE = LoadRoots.end(); I != IE; ++I) {
13139     Queue.push_back(*I);
13140 
13141     while (!Queue.empty()) {
13142       SDNode *LoadRoot = Queue.pop_back_val();
13143       if (!Visited.insert(LoadRoot).second)
13144         continue;
13145 
13146       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13147         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13148           return true;
13149 
13150       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
13151            UE = LoadRoot->use_end(); UI != UE; ++UI)
13152         if (((isa<MemSDNode>(*UI) &&
13153             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
13154             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
13155           Queue.push_back(*UI);
13156     }
13157   }
13158 
13159   return false;
13160 }
13161 
13162 /// This function is called when we have proved that a SETCC node can be replaced
13163 /// by subtraction (and other supporting instructions) so that the result of
13164 /// comparison is kept in a GPR instead of CR. This function is purely for
13165 /// codegen purposes and has some flags to guide the codegen process.
13166 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13167                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13168   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13169 
13170   // Zero extend the operands to the largest legal integer. Originally, they
13171   // must be of a strictly smaller size.
13172   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13173                          DAG.getConstant(Size, DL, MVT::i32));
13174   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13175                          DAG.getConstant(Size, DL, MVT::i32));
13176 
13177   // Swap if needed. Depends on the condition code.
13178   if (Swap)
13179     std::swap(Op0, Op1);
13180 
13181   // Subtract extended integers.
13182   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13183 
13184   // Move the sign bit to the least significant position and zero out the rest.
13185   // Now the least significant bit carries the result of original comparison.
13186   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13187                              DAG.getConstant(Size - 1, DL, MVT::i32));
13188   auto Final = Shifted;
13189 
13190   // Complement the result if needed. Based on the condition code.
13191   if (Complement)
13192     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13193                         DAG.getConstant(1, DL, MVT::i64));
13194 
13195   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13196 }
13197 
13198 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13199                                                   DAGCombinerInfo &DCI) const {
13200   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13201 
13202   SelectionDAG &DAG = DCI.DAG;
13203   SDLoc DL(N);
13204 
13205   // Size of integers being compared has a critical role in the following
13206   // analysis, so we prefer to do this when all types are legal.
13207   if (!DCI.isAfterLegalizeDAG())
13208     return SDValue();
13209 
13210   // If all users of SETCC extend its value to a legal integer type
13211   // then we replace SETCC with a subtraction
13212   for (SDNode::use_iterator UI = N->use_begin(),
13213        UE = N->use_end(); UI != UE; ++UI) {
13214     if (UI->getOpcode() != ISD::ZERO_EXTEND)
13215       return SDValue();
13216   }
13217 
13218   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13219   auto OpSize = N->getOperand(0).getValueSizeInBits();
13220 
13221   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13222 
13223   if (OpSize < Size) {
13224     switch (CC) {
13225     default: break;
13226     case ISD::SETULT:
13227       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13228     case ISD::SETULE:
13229       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13230     case ISD::SETUGT:
13231       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13232     case ISD::SETUGE:
13233       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13234     }
13235   }
13236 
13237   return SDValue();
13238 }
13239 
13240 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13241                                                   DAGCombinerInfo &DCI) const {
13242   SelectionDAG &DAG = DCI.DAG;
13243   SDLoc dl(N);
13244 
13245   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13246   // If we're tracking CR bits, we need to be careful that we don't have:
13247   //   trunc(binary-ops(zext(x), zext(y)))
13248   // or
13249   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13250   // such that we're unnecessarily moving things into GPRs when it would be
13251   // better to keep them in CR bits.
13252 
13253   // Note that trunc here can be an actual i1 trunc, or can be the effective
13254   // truncation that comes from a setcc or select_cc.
13255   if (N->getOpcode() == ISD::TRUNCATE &&
13256       N->getValueType(0) != MVT::i1)
13257     return SDValue();
13258 
13259   if (N->getOperand(0).getValueType() != MVT::i32 &&
13260       N->getOperand(0).getValueType() != MVT::i64)
13261     return SDValue();
13262 
13263   if (N->getOpcode() == ISD::SETCC ||
13264       N->getOpcode() == ISD::SELECT_CC) {
13265     // If we're looking at a comparison, then we need to make sure that the
13266     // high bits (all except for the first) don't matter the result.
13267     ISD::CondCode CC =
13268       cast<CondCodeSDNode>(N->getOperand(
13269         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13270     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13271 
13272     if (ISD::isSignedIntSetCC(CC)) {
13273       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13274           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13275         return SDValue();
13276     } else if (ISD::isUnsignedIntSetCC(CC)) {
13277       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13278                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13279           !DAG.MaskedValueIsZero(N->getOperand(1),
13280                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13281         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13282                                              : SDValue());
13283     } else {
13284       // This is neither a signed nor an unsigned comparison, just make sure
13285       // that the high bits are equal.
13286       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13287       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13288 
13289       // We don't really care about what is known about the first bit (if
13290       // anything), so clear it in all masks prior to comparing them.
13291       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
13292       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
13293 
13294       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
13295         return SDValue();
13296     }
13297   }
13298 
13299   // We now know that the higher-order bits are irrelevant, we just need to
13300   // make sure that all of the intermediate operations are bit operations, and
13301   // all inputs are extensions.
13302   if (N->getOperand(0).getOpcode() != ISD::AND &&
13303       N->getOperand(0).getOpcode() != ISD::OR  &&
13304       N->getOperand(0).getOpcode() != ISD::XOR &&
13305       N->getOperand(0).getOpcode() != ISD::SELECT &&
13306       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13307       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13308       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13309       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13310       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13311     return SDValue();
13312 
13313   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13314       N->getOperand(1).getOpcode() != ISD::AND &&
13315       N->getOperand(1).getOpcode() != ISD::OR  &&
13316       N->getOperand(1).getOpcode() != ISD::XOR &&
13317       N->getOperand(1).getOpcode() != ISD::SELECT &&
13318       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13319       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13320       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13321       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13322       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13323     return SDValue();
13324 
13325   SmallVector<SDValue, 4> Inputs;
13326   SmallVector<SDValue, 8> BinOps, PromOps;
13327   SmallPtrSet<SDNode *, 16> Visited;
13328 
13329   for (unsigned i = 0; i < 2; ++i) {
13330     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13331           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13332           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13333           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13334         isa<ConstantSDNode>(N->getOperand(i)))
13335       Inputs.push_back(N->getOperand(i));
13336     else
13337       BinOps.push_back(N->getOperand(i));
13338 
13339     if (N->getOpcode() == ISD::TRUNCATE)
13340       break;
13341   }
13342 
13343   // Visit all inputs, collect all binary operations (and, or, xor and
13344   // select) that are all fed by extensions.
13345   while (!BinOps.empty()) {
13346     SDValue BinOp = BinOps.back();
13347     BinOps.pop_back();
13348 
13349     if (!Visited.insert(BinOp.getNode()).second)
13350       continue;
13351 
13352     PromOps.push_back(BinOp);
13353 
13354     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13355       // The condition of the select is not promoted.
13356       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13357         continue;
13358       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13359         continue;
13360 
13361       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13362             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13363             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13364            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13365           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13366         Inputs.push_back(BinOp.getOperand(i));
13367       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13368                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13369                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13370                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13371                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13372                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13373                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13374                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13375                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13376         BinOps.push_back(BinOp.getOperand(i));
13377       } else {
13378         // We have an input that is not an extension or another binary
13379         // operation; we'll abort this transformation.
13380         return SDValue();
13381       }
13382     }
13383   }
13384 
13385   // Make sure that this is a self-contained cluster of operations (which
13386   // is not quite the same thing as saying that everything has only one
13387   // use).
13388   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13389     if (isa<ConstantSDNode>(Inputs[i]))
13390       continue;
13391 
13392     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13393                               UE = Inputs[i].getNode()->use_end();
13394          UI != UE; ++UI) {
13395       SDNode *User = *UI;
13396       if (User != N && !Visited.count(User))
13397         return SDValue();
13398 
13399       // Make sure that we're not going to promote the non-output-value
13400       // operand(s) or SELECT or SELECT_CC.
13401       // FIXME: Although we could sometimes handle this, and it does occur in
13402       // practice that one of the condition inputs to the select is also one of
13403       // the outputs, we currently can't deal with this.
13404       if (User->getOpcode() == ISD::SELECT) {
13405         if (User->getOperand(0) == Inputs[i])
13406           return SDValue();
13407       } else if (User->getOpcode() == ISD::SELECT_CC) {
13408         if (User->getOperand(0) == Inputs[i] ||
13409             User->getOperand(1) == Inputs[i])
13410           return SDValue();
13411       }
13412     }
13413   }
13414 
13415   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13416     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13417                               UE = PromOps[i].getNode()->use_end();
13418          UI != UE; ++UI) {
13419       SDNode *User = *UI;
13420       if (User != N && !Visited.count(User))
13421         return SDValue();
13422 
13423       // Make sure that we're not going to promote the non-output-value
13424       // operand(s) or SELECT or SELECT_CC.
13425       // FIXME: Although we could sometimes handle this, and it does occur in
13426       // practice that one of the condition inputs to the select is also one of
13427       // the outputs, we currently can't deal with this.
13428       if (User->getOpcode() == ISD::SELECT) {
13429         if (User->getOperand(0) == PromOps[i])
13430           return SDValue();
13431       } else if (User->getOpcode() == ISD::SELECT_CC) {
13432         if (User->getOperand(0) == PromOps[i] ||
13433             User->getOperand(1) == PromOps[i])
13434           return SDValue();
13435       }
13436     }
13437   }
13438 
13439   // Replace all inputs with the extension operand.
13440   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13441     // Constants may have users outside the cluster of to-be-promoted nodes,
13442     // and so we need to replace those as we do the promotions.
13443     if (isa<ConstantSDNode>(Inputs[i]))
13444       continue;
13445     else
13446       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13447   }
13448 
13449   std::list<HandleSDNode> PromOpHandles;
13450   for (auto &PromOp : PromOps)
13451     PromOpHandles.emplace_back(PromOp);
13452 
13453   // Replace all operations (these are all the same, but have a different
13454   // (i1) return type). DAG.getNode will validate that the types of
13455   // a binary operator match, so go through the list in reverse so that
13456   // we've likely promoted both operands first. Any intermediate truncations or
13457   // extensions disappear.
13458   while (!PromOpHandles.empty()) {
13459     SDValue PromOp = PromOpHandles.back().getValue();
13460     PromOpHandles.pop_back();
13461 
13462     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13463         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13464         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13465         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13466       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13467           PromOp.getOperand(0).getValueType() != MVT::i1) {
13468         // The operand is not yet ready (see comment below).
13469         PromOpHandles.emplace_front(PromOp);
13470         continue;
13471       }
13472 
13473       SDValue RepValue = PromOp.getOperand(0);
13474       if (isa<ConstantSDNode>(RepValue))
13475         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13476 
13477       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13478       continue;
13479     }
13480 
13481     unsigned C;
13482     switch (PromOp.getOpcode()) {
13483     default:             C = 0; break;
13484     case ISD::SELECT:    C = 1; break;
13485     case ISD::SELECT_CC: C = 2; break;
13486     }
13487 
13488     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13489          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13490         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13491          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13492       // The to-be-promoted operands of this node have not yet been
13493       // promoted (this should be rare because we're going through the
13494       // list backward, but if one of the operands has several users in
13495       // this cluster of to-be-promoted nodes, it is possible).
13496       PromOpHandles.emplace_front(PromOp);
13497       continue;
13498     }
13499 
13500     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13501                                 PromOp.getNode()->op_end());
13502 
13503     // If there are any constant inputs, make sure they're replaced now.
13504     for (unsigned i = 0; i < 2; ++i)
13505       if (isa<ConstantSDNode>(Ops[C+i]))
13506         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13507 
13508     DAG.ReplaceAllUsesOfValueWith(PromOp,
13509       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13510   }
13511 
13512   // Now we're left with the initial truncation itself.
13513   if (N->getOpcode() == ISD::TRUNCATE)
13514     return N->getOperand(0);
13515 
13516   // Otherwise, this is a comparison. The operands to be compared have just
13517   // changed type (to i1), but everything else is the same.
13518   return SDValue(N, 0);
13519 }
13520 
13521 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13522                                                   DAGCombinerInfo &DCI) const {
13523   SelectionDAG &DAG = DCI.DAG;
13524   SDLoc dl(N);
13525 
13526   // If we're tracking CR bits, we need to be careful that we don't have:
13527   //   zext(binary-ops(trunc(x), trunc(y)))
13528   // or
13529   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13530   // such that we're unnecessarily moving things into CR bits that can more
13531   // efficiently stay in GPRs. Note that if we're not certain that the high
13532   // bits are set as required by the final extension, we still may need to do
13533   // some masking to get the proper behavior.
13534 
13535   // This same functionality is important on PPC64 when dealing with
13536   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13537   // the return values of functions. Because it is so similar, it is handled
13538   // here as well.
13539 
13540   if (N->getValueType(0) != MVT::i32 &&
13541       N->getValueType(0) != MVT::i64)
13542     return SDValue();
13543 
13544   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13545         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13546     return SDValue();
13547 
13548   if (N->getOperand(0).getOpcode() != ISD::AND &&
13549       N->getOperand(0).getOpcode() != ISD::OR  &&
13550       N->getOperand(0).getOpcode() != ISD::XOR &&
13551       N->getOperand(0).getOpcode() != ISD::SELECT &&
13552       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13553     return SDValue();
13554 
13555   SmallVector<SDValue, 4> Inputs;
13556   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13557   SmallPtrSet<SDNode *, 16> Visited;
13558 
13559   // Visit all inputs, collect all binary operations (and, or, xor and
13560   // select) that are all fed by truncations.
13561   while (!BinOps.empty()) {
13562     SDValue BinOp = BinOps.back();
13563     BinOps.pop_back();
13564 
13565     if (!Visited.insert(BinOp.getNode()).second)
13566       continue;
13567 
13568     PromOps.push_back(BinOp);
13569 
13570     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13571       // The condition of the select is not promoted.
13572       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13573         continue;
13574       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13575         continue;
13576 
13577       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13578           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13579         Inputs.push_back(BinOp.getOperand(i));
13580       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13581                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13582                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13583                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13584                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13585         BinOps.push_back(BinOp.getOperand(i));
13586       } else {
13587         // We have an input that is not a truncation or another binary
13588         // operation; we'll abort this transformation.
13589         return SDValue();
13590       }
13591     }
13592   }
13593 
13594   // The operands of a select that must be truncated when the select is
13595   // promoted because the operand is actually part of the to-be-promoted set.
13596   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13597 
13598   // Make sure that this is a self-contained cluster of operations (which
13599   // is not quite the same thing as saying that everything has only one
13600   // use).
13601   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13602     if (isa<ConstantSDNode>(Inputs[i]))
13603       continue;
13604 
13605     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13606                               UE = Inputs[i].getNode()->use_end();
13607          UI != UE; ++UI) {
13608       SDNode *User = *UI;
13609       if (User != N && !Visited.count(User))
13610         return SDValue();
13611 
13612       // If we're going to promote the non-output-value operand(s) or SELECT or
13613       // SELECT_CC, record them for truncation.
13614       if (User->getOpcode() == ISD::SELECT) {
13615         if (User->getOperand(0) == Inputs[i])
13616           SelectTruncOp[0].insert(std::make_pair(User,
13617                                     User->getOperand(0).getValueType()));
13618       } else if (User->getOpcode() == ISD::SELECT_CC) {
13619         if (User->getOperand(0) == Inputs[i])
13620           SelectTruncOp[0].insert(std::make_pair(User,
13621                                     User->getOperand(0).getValueType()));
13622         if (User->getOperand(1) == Inputs[i])
13623           SelectTruncOp[1].insert(std::make_pair(User,
13624                                     User->getOperand(1).getValueType()));
13625       }
13626     }
13627   }
13628 
13629   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13630     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13631                               UE = PromOps[i].getNode()->use_end();
13632          UI != UE; ++UI) {
13633       SDNode *User = *UI;
13634       if (User != N && !Visited.count(User))
13635         return SDValue();
13636 
13637       // If we're going to promote the non-output-value operand(s) or SELECT or
13638       // SELECT_CC, record them for truncation.
13639       if (User->getOpcode() == ISD::SELECT) {
13640         if (User->getOperand(0) == PromOps[i])
13641           SelectTruncOp[0].insert(std::make_pair(User,
13642                                     User->getOperand(0).getValueType()));
13643       } else if (User->getOpcode() == ISD::SELECT_CC) {
13644         if (User->getOperand(0) == PromOps[i])
13645           SelectTruncOp[0].insert(std::make_pair(User,
13646                                     User->getOperand(0).getValueType()));
13647         if (User->getOperand(1) == PromOps[i])
13648           SelectTruncOp[1].insert(std::make_pair(User,
13649                                     User->getOperand(1).getValueType()));
13650       }
13651     }
13652   }
13653 
13654   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13655   bool ReallyNeedsExt = false;
13656   if (N->getOpcode() != ISD::ANY_EXTEND) {
13657     // If all of the inputs are not already sign/zero extended, then
13658     // we'll still need to do that at the end.
13659     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13660       if (isa<ConstantSDNode>(Inputs[i]))
13661         continue;
13662 
13663       unsigned OpBits =
13664         Inputs[i].getOperand(0).getValueSizeInBits();
13665       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13666 
13667       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13668            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13669                                   APInt::getHighBitsSet(OpBits,
13670                                                         OpBits-PromBits))) ||
13671           (N->getOpcode() == ISD::SIGN_EXTEND &&
13672            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13673              (OpBits-(PromBits-1)))) {
13674         ReallyNeedsExt = true;
13675         break;
13676       }
13677     }
13678   }
13679 
13680   // Replace all inputs, either with the truncation operand, or a
13681   // truncation or extension to the final output type.
13682   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13683     // Constant inputs need to be replaced with the to-be-promoted nodes that
13684     // use them because they might have users outside of the cluster of
13685     // promoted nodes.
13686     if (isa<ConstantSDNode>(Inputs[i]))
13687       continue;
13688 
13689     SDValue InSrc = Inputs[i].getOperand(0);
13690     if (Inputs[i].getValueType() == N->getValueType(0))
13691       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13692     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13693       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13694         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13695     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13696       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13697         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13698     else
13699       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13700         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13701   }
13702 
13703   std::list<HandleSDNode> PromOpHandles;
13704   for (auto &PromOp : PromOps)
13705     PromOpHandles.emplace_back(PromOp);
13706 
13707   // Replace all operations (these are all the same, but have a different
13708   // (promoted) return type). DAG.getNode will validate that the types of
13709   // a binary operator match, so go through the list in reverse so that
13710   // we've likely promoted both operands first.
13711   while (!PromOpHandles.empty()) {
13712     SDValue PromOp = PromOpHandles.back().getValue();
13713     PromOpHandles.pop_back();
13714 
13715     unsigned C;
13716     switch (PromOp.getOpcode()) {
13717     default:             C = 0; break;
13718     case ISD::SELECT:    C = 1; break;
13719     case ISD::SELECT_CC: C = 2; break;
13720     }
13721 
13722     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13723          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13724         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13725          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13726       // The to-be-promoted operands of this node have not yet been
13727       // promoted (this should be rare because we're going through the
13728       // list backward, but if one of the operands has several users in
13729       // this cluster of to-be-promoted nodes, it is possible).
13730       PromOpHandles.emplace_front(PromOp);
13731       continue;
13732     }
13733 
13734     // For SELECT and SELECT_CC nodes, we do a similar check for any
13735     // to-be-promoted comparison inputs.
13736     if (PromOp.getOpcode() == ISD::SELECT ||
13737         PromOp.getOpcode() == ISD::SELECT_CC) {
13738       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13739            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13740           (SelectTruncOp[1].count(PromOp.getNode()) &&
13741            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13742         PromOpHandles.emplace_front(PromOp);
13743         continue;
13744       }
13745     }
13746 
13747     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13748                                 PromOp.getNode()->op_end());
13749 
13750     // If this node has constant inputs, then they'll need to be promoted here.
13751     for (unsigned i = 0; i < 2; ++i) {
13752       if (!isa<ConstantSDNode>(Ops[C+i]))
13753         continue;
13754       if (Ops[C+i].getValueType() == N->getValueType(0))
13755         continue;
13756 
13757       if (N->getOpcode() == ISD::SIGN_EXTEND)
13758         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13759       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13760         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13761       else
13762         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13763     }
13764 
13765     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13766     // truncate them again to the original value type.
13767     if (PromOp.getOpcode() == ISD::SELECT ||
13768         PromOp.getOpcode() == ISD::SELECT_CC) {
13769       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13770       if (SI0 != SelectTruncOp[0].end())
13771         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13772       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13773       if (SI1 != SelectTruncOp[1].end())
13774         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13775     }
13776 
13777     DAG.ReplaceAllUsesOfValueWith(PromOp,
13778       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13779   }
13780 
13781   // Now we're left with the initial extension itself.
13782   if (!ReallyNeedsExt)
13783     return N->getOperand(0);
13784 
13785   // To zero extend, just mask off everything except for the first bit (in the
13786   // i1 case).
13787   if (N->getOpcode() == ISD::ZERO_EXTEND)
13788     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13789                        DAG.getConstant(APInt::getLowBitsSet(
13790                                          N->getValueSizeInBits(0), PromBits),
13791                                        dl, N->getValueType(0)));
13792 
13793   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13794          "Invalid extension type");
13795   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13796   SDValue ShiftCst =
13797       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13798   return DAG.getNode(
13799       ISD::SRA, dl, N->getValueType(0),
13800       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13801       ShiftCst);
13802 }
13803 
13804 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13805                                         DAGCombinerInfo &DCI) const {
13806   assert(N->getOpcode() == ISD::SETCC &&
13807          "Should be called with a SETCC node");
13808 
13809   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13810   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13811     SDValue LHS = N->getOperand(0);
13812     SDValue RHS = N->getOperand(1);
13813 
13814     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13815     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13816         LHS.hasOneUse())
13817       std::swap(LHS, RHS);
13818 
13819     // x == 0-y --> x+y == 0
13820     // x != 0-y --> x+y != 0
13821     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13822         RHS.hasOneUse()) {
13823       SDLoc DL(N);
13824       SelectionDAG &DAG = DCI.DAG;
13825       EVT VT = N->getValueType(0);
13826       EVT OpVT = LHS.getValueType();
13827       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13828       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13829     }
13830   }
13831 
13832   return DAGCombineTruncBoolExt(N, DCI);
13833 }
13834 
13835 // Is this an extending load from an f32 to an f64?
13836 static bool isFPExtLoad(SDValue Op) {
13837   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13838     return LD->getExtensionType() == ISD::EXTLOAD &&
13839       Op.getValueType() == MVT::f64;
13840   return false;
13841 }
13842 
13843 /// Reduces the number of fp-to-int conversion when building a vector.
13844 ///
13845 /// If this vector is built out of floating to integer conversions,
13846 /// transform it to a vector built out of floating point values followed by a
13847 /// single floating to integer conversion of the vector.
13848 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13849 /// becomes (fptosi (build_vector ($A, $B, ...)))
13850 SDValue PPCTargetLowering::
13851 combineElementTruncationToVectorTruncation(SDNode *N,
13852                                            DAGCombinerInfo &DCI) const {
13853   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13854          "Should be called with a BUILD_VECTOR node");
13855 
13856   SelectionDAG &DAG = DCI.DAG;
13857   SDLoc dl(N);
13858 
13859   SDValue FirstInput = N->getOperand(0);
13860   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13861          "The input operand must be an fp-to-int conversion.");
13862 
13863   // This combine happens after legalization so the fp_to_[su]i nodes are
13864   // already converted to PPCSISD nodes.
13865   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13866   if (FirstConversion == PPCISD::FCTIDZ ||
13867       FirstConversion == PPCISD::FCTIDUZ ||
13868       FirstConversion == PPCISD::FCTIWZ ||
13869       FirstConversion == PPCISD::FCTIWUZ) {
13870     bool IsSplat = true;
13871     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13872       FirstConversion == PPCISD::FCTIWUZ;
13873     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13874     SmallVector<SDValue, 4> Ops;
13875     EVT TargetVT = N->getValueType(0);
13876     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13877       SDValue NextOp = N->getOperand(i);
13878       if (NextOp.getOpcode() != PPCISD::MFVSR)
13879         return SDValue();
13880       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13881       if (NextConversion != FirstConversion)
13882         return SDValue();
13883       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13884       // This is not valid if the input was originally double precision. It is
13885       // also not profitable to do unless this is an extending load in which
13886       // case doing this combine will allow us to combine consecutive loads.
13887       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13888         return SDValue();
13889       if (N->getOperand(i) != FirstInput)
13890         IsSplat = false;
13891     }
13892 
13893     // If this is a splat, we leave it as-is since there will be only a single
13894     // fp-to-int conversion followed by a splat of the integer. This is better
13895     // for 32-bit and smaller ints and neutral for 64-bit ints.
13896     if (IsSplat)
13897       return SDValue();
13898 
13899     // Now that we know we have the right type of node, get its operands
13900     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13901       SDValue In = N->getOperand(i).getOperand(0);
13902       if (Is32Bit) {
13903         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13904         // here, we know that all inputs are extending loads so this is safe).
13905         if (In.isUndef())
13906           Ops.push_back(DAG.getUNDEF(SrcVT));
13907         else {
13908           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13909                                       MVT::f32, In.getOperand(0),
13910                                       DAG.getIntPtrConstant(1, dl));
13911           Ops.push_back(Trunc);
13912         }
13913       } else
13914         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13915     }
13916 
13917     unsigned Opcode;
13918     if (FirstConversion == PPCISD::FCTIDZ ||
13919         FirstConversion == PPCISD::FCTIWZ)
13920       Opcode = ISD::FP_TO_SINT;
13921     else
13922       Opcode = ISD::FP_TO_UINT;
13923 
13924     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13925     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13926     return DAG.getNode(Opcode, dl, TargetVT, BV);
13927   }
13928   return SDValue();
13929 }
13930 
13931 /// Reduce the number of loads when building a vector.
13932 ///
13933 /// Building a vector out of multiple loads can be converted to a load
13934 /// of the vector type if the loads are consecutive. If the loads are
13935 /// consecutive but in descending order, a shuffle is added at the end
13936 /// to reorder the vector.
13937 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13938   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13939          "Should be called with a BUILD_VECTOR node");
13940 
13941   SDLoc dl(N);
13942 
13943   // Return early for non byte-sized type, as they can't be consecutive.
13944   if (!N->getValueType(0).getVectorElementType().isByteSized())
13945     return SDValue();
13946 
13947   bool InputsAreConsecutiveLoads = true;
13948   bool InputsAreReverseConsecutive = true;
13949   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13950   SDValue FirstInput = N->getOperand(0);
13951   bool IsRoundOfExtLoad = false;
13952 
13953   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13954       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13955     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13956     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13957   }
13958   // Not a build vector of (possibly fp_rounded) loads.
13959   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13960       N->getNumOperands() == 1)
13961     return SDValue();
13962 
13963   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13964     // If any inputs are fp_round(extload), they all must be.
13965     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13966       return SDValue();
13967 
13968     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13969       N->getOperand(i);
13970     if (NextInput.getOpcode() != ISD::LOAD)
13971       return SDValue();
13972 
13973     SDValue PreviousInput =
13974       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13975     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13976     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13977 
13978     // If any inputs are fp_round(extload), they all must be.
13979     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13980       return SDValue();
13981 
13982     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13983       InputsAreConsecutiveLoads = false;
13984     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13985       InputsAreReverseConsecutive = false;
13986 
13987     // Exit early if the loads are neither consecutive nor reverse consecutive.
13988     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13989       return SDValue();
13990   }
13991 
13992   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13993          "The loads cannot be both consecutive and reverse consecutive.");
13994 
13995   SDValue FirstLoadOp =
13996     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13997   SDValue LastLoadOp =
13998     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13999                        N->getOperand(N->getNumOperands()-1);
14000 
14001   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
14002   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
14003   if (InputsAreConsecutiveLoads) {
14004     assert(LD1 && "Input needs to be a LoadSDNode.");
14005     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
14006                        LD1->getBasePtr(), LD1->getPointerInfo(),
14007                        LD1->getAlignment());
14008   }
14009   if (InputsAreReverseConsecutive) {
14010     assert(LDL && "Input needs to be a LoadSDNode.");
14011     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
14012                                LDL->getBasePtr(), LDL->getPointerInfo(),
14013                                LDL->getAlignment());
14014     SmallVector<int, 16> Ops;
14015     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14016       Ops.push_back(i);
14017 
14018     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
14019                                 DAG.getUNDEF(N->getValueType(0)), Ops);
14020   }
14021   return SDValue();
14022 }
14023 
14024 // This function adds the required vector_shuffle needed to get
14025 // the elements of the vector extract in the correct position
14026 // as specified by the CorrectElems encoding.
14027 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14028                                       SDValue Input, uint64_t Elems,
14029                                       uint64_t CorrectElems) {
14030   SDLoc dl(N);
14031 
14032   unsigned NumElems = Input.getValueType().getVectorNumElements();
14033   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14034 
14035   // Knowing the element indices being extracted from the original
14036   // vector and the order in which they're being inserted, just put
14037   // them at element indices required for the instruction.
14038   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14039     if (DAG.getDataLayout().isLittleEndian())
14040       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14041     else
14042       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14043     CorrectElems = CorrectElems >> 8;
14044     Elems = Elems >> 8;
14045   }
14046 
14047   SDValue Shuffle =
14048       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14049                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14050 
14051   EVT VT = N->getValueType(0);
14052   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14053 
14054   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14055                                Input.getValueType().getVectorElementType(),
14056                                VT.getVectorNumElements());
14057   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14058                      DAG.getValueType(ExtVT));
14059 }
14060 
14061 // Look for build vector patterns where input operands come from sign
14062 // extended vector_extract elements of specific indices. If the correct indices
14063 // aren't used, add a vector shuffle to fix up the indices and create
14064 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14065 // during instruction selection.
14066 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14067   // This array encodes the indices that the vector sign extend instructions
14068   // extract from when extending from one type to another for both BE and LE.
14069   // The right nibble of each byte corresponds to the LE incides.
14070   // and the left nibble of each byte corresponds to the BE incides.
14071   // For example: 0x3074B8FC  byte->word
14072   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14073   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14074   // For example: 0x000070F8  byte->double word
14075   // For LE: the allowed indices are: 0x0,0x8
14076   // For BE: the allowed indices are: 0x7,0xF
14077   uint64_t TargetElems[] = {
14078       0x3074B8FC, // b->w
14079       0x000070F8, // b->d
14080       0x10325476, // h->w
14081       0x00003074, // h->d
14082       0x00001032, // w->d
14083   };
14084 
14085   uint64_t Elems = 0;
14086   int Index;
14087   SDValue Input;
14088 
14089   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14090     if (!Op)
14091       return false;
14092     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14093         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14094       return false;
14095 
14096     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14097     // of the right width.
14098     SDValue Extract = Op.getOperand(0);
14099     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14100       Extract = Extract.getOperand(0);
14101     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14102       return false;
14103 
14104     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14105     if (!ExtOp)
14106       return false;
14107 
14108     Index = ExtOp->getZExtValue();
14109     if (Input && Input != Extract.getOperand(0))
14110       return false;
14111 
14112     if (!Input)
14113       Input = Extract.getOperand(0);
14114 
14115     Elems = Elems << 8;
14116     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14117     Elems |= Index;
14118 
14119     return true;
14120   };
14121 
14122   // If the build vector operands aren't sign extended vector extracts,
14123   // of the same input vector, then return.
14124   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14125     if (!isSExtOfVecExtract(N->getOperand(i))) {
14126       return SDValue();
14127     }
14128   }
14129 
14130   // If the vector extract indicies are not correct, add the appropriate
14131   // vector_shuffle.
14132   int TgtElemArrayIdx;
14133   int InputSize = Input.getValueType().getScalarSizeInBits();
14134   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14135   if (InputSize + OutputSize == 40)
14136     TgtElemArrayIdx = 0;
14137   else if (InputSize + OutputSize == 72)
14138     TgtElemArrayIdx = 1;
14139   else if (InputSize + OutputSize == 48)
14140     TgtElemArrayIdx = 2;
14141   else if (InputSize + OutputSize == 80)
14142     TgtElemArrayIdx = 3;
14143   else if (InputSize + OutputSize == 96)
14144     TgtElemArrayIdx = 4;
14145   else
14146     return SDValue();
14147 
14148   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14149   CorrectElems = DAG.getDataLayout().isLittleEndian()
14150                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14151                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14152   if (Elems != CorrectElems) {
14153     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14154   }
14155 
14156   // Regular lowering will catch cases where a shuffle is not needed.
14157   return SDValue();
14158 }
14159 
14160 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14161                                                  DAGCombinerInfo &DCI) const {
14162   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14163          "Should be called with a BUILD_VECTOR node");
14164 
14165   SelectionDAG &DAG = DCI.DAG;
14166   SDLoc dl(N);
14167 
14168   if (!Subtarget.hasVSX())
14169     return SDValue();
14170 
14171   // The target independent DAG combiner will leave a build_vector of
14172   // float-to-int conversions intact. We can generate MUCH better code for
14173   // a float-to-int conversion of a vector of floats.
14174   SDValue FirstInput = N->getOperand(0);
14175   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14176     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14177     if (Reduced)
14178       return Reduced;
14179   }
14180 
14181   // If we're building a vector out of consecutive loads, just load that
14182   // vector type.
14183   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14184   if (Reduced)
14185     return Reduced;
14186 
14187   // If we're building a vector out of extended elements from another vector
14188   // we have P9 vector integer extend instructions. The code assumes legal
14189   // input types (i.e. it can't handle things like v4i16) so do not run before
14190   // legalization.
14191   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14192     Reduced = combineBVOfVecSExt(N, DAG);
14193     if (Reduced)
14194       return Reduced;
14195   }
14196 
14197 
14198   if (N->getValueType(0) != MVT::v2f64)
14199     return SDValue();
14200 
14201   // Looking for:
14202   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14203   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14204       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14205     return SDValue();
14206   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14207       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14208     return SDValue();
14209   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14210     return SDValue();
14211 
14212   SDValue Ext1 = FirstInput.getOperand(0);
14213   SDValue Ext2 = N->getOperand(1).getOperand(0);
14214   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14215      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14216     return SDValue();
14217 
14218   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14219   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14220   if (!Ext1Op || !Ext2Op)
14221     return SDValue();
14222   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14223       Ext1.getOperand(0) != Ext2.getOperand(0))
14224     return SDValue();
14225 
14226   int FirstElem = Ext1Op->getZExtValue();
14227   int SecondElem = Ext2Op->getZExtValue();
14228   int SubvecIdx;
14229   if (FirstElem == 0 && SecondElem == 1)
14230     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14231   else if (FirstElem == 2 && SecondElem == 3)
14232     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14233   else
14234     return SDValue();
14235 
14236   SDValue SrcVec = Ext1.getOperand(0);
14237   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14238     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14239   return DAG.getNode(NodeType, dl, MVT::v2f64,
14240                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14241 }
14242 
14243 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14244                                               DAGCombinerInfo &DCI) const {
14245   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14246           N->getOpcode() == ISD::UINT_TO_FP) &&
14247          "Need an int -> FP conversion node here");
14248 
14249   if (useSoftFloat() || !Subtarget.has64BitSupport())
14250     return SDValue();
14251 
14252   SelectionDAG &DAG = DCI.DAG;
14253   SDLoc dl(N);
14254   SDValue Op(N, 0);
14255 
14256   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14257   // from the hardware.
14258   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14259     return SDValue();
14260   if (!Op.getOperand(0).getValueType().isSimple())
14261     return SDValue();
14262   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14263       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14264     return SDValue();
14265 
14266   SDValue FirstOperand(Op.getOperand(0));
14267   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14268     (FirstOperand.getValueType() == MVT::i8 ||
14269      FirstOperand.getValueType() == MVT::i16);
14270   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14271     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14272     bool DstDouble = Op.getValueType() == MVT::f64;
14273     unsigned ConvOp = Signed ?
14274       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14275       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14276     SDValue WidthConst =
14277       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14278                             dl, false);
14279     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14280     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14281     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14282                                          DAG.getVTList(MVT::f64, MVT::Other),
14283                                          Ops, MVT::i8, LDN->getMemOperand());
14284 
14285     // For signed conversion, we need to sign-extend the value in the VSR
14286     if (Signed) {
14287       SDValue ExtOps[] = { Ld, WidthConst };
14288       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14289       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14290     } else
14291       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14292   }
14293 
14294 
14295   // For i32 intermediate values, unfortunately, the conversion functions
14296   // leave the upper 32 bits of the value are undefined. Within the set of
14297   // scalar instructions, we have no method for zero- or sign-extending the
14298   // value. Thus, we cannot handle i32 intermediate values here.
14299   if (Op.getOperand(0).getValueType() == MVT::i32)
14300     return SDValue();
14301 
14302   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14303          "UINT_TO_FP is supported only with FPCVT");
14304 
14305   // If we have FCFIDS, then use it when converting to single-precision.
14306   // Otherwise, convert to double-precision and then round.
14307   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14308                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14309                                                             : PPCISD::FCFIDS)
14310                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14311                                                             : PPCISD::FCFID);
14312   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14313                   ? MVT::f32
14314                   : MVT::f64;
14315 
14316   // If we're converting from a float, to an int, and back to a float again,
14317   // then we don't need the store/load pair at all.
14318   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14319        Subtarget.hasFPCVT()) ||
14320       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14321     SDValue Src = Op.getOperand(0).getOperand(0);
14322     if (Src.getValueType() == MVT::f32) {
14323       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14324       DCI.AddToWorklist(Src.getNode());
14325     } else if (Src.getValueType() != MVT::f64) {
14326       // Make sure that we don't pick up a ppc_fp128 source value.
14327       return SDValue();
14328     }
14329 
14330     unsigned FCTOp =
14331       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14332                                                         PPCISD::FCTIDUZ;
14333 
14334     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14335     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14336 
14337     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14338       FP = DAG.getNode(ISD::FP_ROUND, dl,
14339                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14340       DCI.AddToWorklist(FP.getNode());
14341     }
14342 
14343     return FP;
14344   }
14345 
14346   return SDValue();
14347 }
14348 
14349 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14350 // builtins) into loads with swaps.
14351 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14352                                               DAGCombinerInfo &DCI) const {
14353   SelectionDAG &DAG = DCI.DAG;
14354   SDLoc dl(N);
14355   SDValue Chain;
14356   SDValue Base;
14357   MachineMemOperand *MMO;
14358 
14359   switch (N->getOpcode()) {
14360   default:
14361     llvm_unreachable("Unexpected opcode for little endian VSX load");
14362   case ISD::LOAD: {
14363     LoadSDNode *LD = cast<LoadSDNode>(N);
14364     Chain = LD->getChain();
14365     Base = LD->getBasePtr();
14366     MMO = LD->getMemOperand();
14367     // If the MMO suggests this isn't a load of a full vector, leave
14368     // things alone.  For a built-in, we have to make the change for
14369     // correctness, so if there is a size problem that will be a bug.
14370     if (MMO->getSize() < 16)
14371       return SDValue();
14372     break;
14373   }
14374   case ISD::INTRINSIC_W_CHAIN: {
14375     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14376     Chain = Intrin->getChain();
14377     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14378     // us what we want. Get operand 2 instead.
14379     Base = Intrin->getOperand(2);
14380     MMO = Intrin->getMemOperand();
14381     break;
14382   }
14383   }
14384 
14385   MVT VecTy = N->getValueType(0).getSimpleVT();
14386 
14387   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14388   // aligned and the type is a vector with elements up to 4 bytes
14389   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14390       VecTy.getScalarSizeInBits() <= 32) {
14391     return SDValue();
14392   }
14393 
14394   SDValue LoadOps[] = { Chain, Base };
14395   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14396                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14397                                          LoadOps, MVT::v2f64, MMO);
14398 
14399   DCI.AddToWorklist(Load.getNode());
14400   Chain = Load.getValue(1);
14401   SDValue Swap = DAG.getNode(
14402       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14403   DCI.AddToWorklist(Swap.getNode());
14404 
14405   // Add a bitcast if the resulting load type doesn't match v2f64.
14406   if (VecTy != MVT::v2f64) {
14407     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14408     DCI.AddToWorklist(N.getNode());
14409     // Package {bitcast value, swap's chain} to match Load's shape.
14410     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14411                        N, Swap.getValue(1));
14412   }
14413 
14414   return Swap;
14415 }
14416 
14417 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14418 // builtins) into stores with swaps.
14419 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14420                                                DAGCombinerInfo &DCI) const {
14421   SelectionDAG &DAG = DCI.DAG;
14422   SDLoc dl(N);
14423   SDValue Chain;
14424   SDValue Base;
14425   unsigned SrcOpnd;
14426   MachineMemOperand *MMO;
14427 
14428   switch (N->getOpcode()) {
14429   default:
14430     llvm_unreachable("Unexpected opcode for little endian VSX store");
14431   case ISD::STORE: {
14432     StoreSDNode *ST = cast<StoreSDNode>(N);
14433     Chain = ST->getChain();
14434     Base = ST->getBasePtr();
14435     MMO = ST->getMemOperand();
14436     SrcOpnd = 1;
14437     // If the MMO suggests this isn't a store of a full vector, leave
14438     // things alone.  For a built-in, we have to make the change for
14439     // correctness, so if there is a size problem that will be a bug.
14440     if (MMO->getSize() < 16)
14441       return SDValue();
14442     break;
14443   }
14444   case ISD::INTRINSIC_VOID: {
14445     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14446     Chain = Intrin->getChain();
14447     // Intrin->getBasePtr() oddly does not get what we want.
14448     Base = Intrin->getOperand(3);
14449     MMO = Intrin->getMemOperand();
14450     SrcOpnd = 2;
14451     break;
14452   }
14453   }
14454 
14455   SDValue Src = N->getOperand(SrcOpnd);
14456   MVT VecTy = Src.getValueType().getSimpleVT();
14457 
14458   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14459   // aligned and the type is a vector with elements up to 4 bytes
14460   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14461       VecTy.getScalarSizeInBits() <= 32) {
14462     return SDValue();
14463   }
14464 
14465   // All stores are done as v2f64 and possible bit cast.
14466   if (VecTy != MVT::v2f64) {
14467     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14468     DCI.AddToWorklist(Src.getNode());
14469   }
14470 
14471   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14472                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14473   DCI.AddToWorklist(Swap.getNode());
14474   Chain = Swap.getValue(1);
14475   SDValue StoreOps[] = { Chain, Swap, Base };
14476   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14477                                           DAG.getVTList(MVT::Other),
14478                                           StoreOps, VecTy, MMO);
14479   DCI.AddToWorklist(Store.getNode());
14480   return Store;
14481 }
14482 
14483 // Handle DAG combine for STORE (FP_TO_INT F).
14484 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14485                                                DAGCombinerInfo &DCI) const {
14486 
14487   SelectionDAG &DAG = DCI.DAG;
14488   SDLoc dl(N);
14489   unsigned Opcode = N->getOperand(1).getOpcode();
14490 
14491   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14492          && "Not a FP_TO_INT Instruction!");
14493 
14494   SDValue Val = N->getOperand(1).getOperand(0);
14495   EVT Op1VT = N->getOperand(1).getValueType();
14496   EVT ResVT = Val.getValueType();
14497 
14498   // Floating point types smaller than 32 bits are not legal on Power.
14499   if (ResVT.getScalarSizeInBits() < 32)
14500     return SDValue();
14501 
14502   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14503   bool ValidTypeForStoreFltAsInt =
14504         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14505          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14506 
14507   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14508       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14509     return SDValue();
14510 
14511   // Extend f32 values to f64
14512   if (ResVT.getScalarSizeInBits() == 32) {
14513     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14514     DCI.AddToWorklist(Val.getNode());
14515   }
14516 
14517   // Set signed or unsigned conversion opcode.
14518   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14519                           PPCISD::FP_TO_SINT_IN_VSR :
14520                           PPCISD::FP_TO_UINT_IN_VSR;
14521 
14522   Val = DAG.getNode(ConvOpcode,
14523                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14524   DCI.AddToWorklist(Val.getNode());
14525 
14526   // Set number of bytes being converted.
14527   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14528   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14529                     DAG.getIntPtrConstant(ByteSize, dl, false),
14530                     DAG.getValueType(Op1VT) };
14531 
14532   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14533           DAG.getVTList(MVT::Other), Ops,
14534           cast<StoreSDNode>(N)->getMemoryVT(),
14535           cast<StoreSDNode>(N)->getMemOperand());
14536 
14537   DCI.AddToWorklist(Val.getNode());
14538   return Val;
14539 }
14540 
14541 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14542   // Check that the source of the element keeps flipping
14543   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14544   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14545   for (int i = 1, e = Mask.size(); i < e; i++) {
14546     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14547       return false;
14548     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14549       return false;
14550     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14551   }
14552   return true;
14553 }
14554 
14555 static bool isSplatBV(SDValue Op) {
14556   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14557     return false;
14558   SDValue FirstOp;
14559 
14560   // Find first non-undef input.
14561   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14562     FirstOp = Op.getOperand(i);
14563     if (!FirstOp.isUndef())
14564       break;
14565   }
14566 
14567   // All inputs are undef or the same as the first non-undef input.
14568   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14569     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14570       return false;
14571   return true;
14572 }
14573 
14574 static SDValue isScalarToVec(SDValue Op) {
14575   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14576     return Op;
14577   if (Op.getOpcode() != ISD::BITCAST)
14578     return SDValue();
14579   Op = Op.getOperand(0);
14580   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14581     return Op;
14582   return SDValue();
14583 }
14584 
14585 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14586                                             int LHSMaxIdx, int RHSMinIdx,
14587                                             int RHSMaxIdx, int HalfVec) {
14588   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14589     int Idx = ShuffV[i];
14590     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14591       ShuffV[i] += HalfVec;
14592   }
14593   return;
14594 }
14595 
14596 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14597 // the original is:
14598 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14599 // In such a case, just change the shuffle mask to extract the element
14600 // from the permuted index.
14601 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14602   SDLoc dl(OrigSToV);
14603   EVT VT = OrigSToV.getValueType();
14604   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14605          "Expecting a SCALAR_TO_VECTOR here");
14606   SDValue Input = OrigSToV.getOperand(0);
14607 
14608   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14609     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14610     SDValue OrigVector = Input.getOperand(0);
14611 
14612     // Can't handle non-const element indices or different vector types
14613     // for the input to the extract and the output of the scalar_to_vector.
14614     if (Idx && VT == OrigVector.getValueType()) {
14615       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14616       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14617       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14618     }
14619   }
14620   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14621                      OrigSToV.getOperand(0));
14622 }
14623 
14624 // On little endian subtargets, combine shuffles such as:
14625 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14626 // into:
14627 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14628 // because the latter can be matched to a single instruction merge.
14629 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14630 // to put the value into element zero. Adjust the shuffle mask so that the
14631 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14632 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14633                                                 SelectionDAG &DAG) const {
14634   SDValue LHS = SVN->getOperand(0);
14635   SDValue RHS = SVN->getOperand(1);
14636   auto Mask = SVN->getMask();
14637   int NumElts = LHS.getValueType().getVectorNumElements();
14638   SDValue Res(SVN, 0);
14639   SDLoc dl(SVN);
14640 
14641   // None of these combines are useful on big endian systems since the ISA
14642   // already has a big endian bias.
14643   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14644     return Res;
14645 
14646   // If this is not a shuffle of a shuffle and the first element comes from
14647   // the second vector, canonicalize to the commuted form. This will make it
14648   // more likely to match one of the single instruction patterns.
14649   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14650       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14651     std::swap(LHS, RHS);
14652     Res = DAG.getCommutedVectorShuffle(*SVN);
14653     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14654   }
14655 
14656   // Adjust the shuffle mask if either input vector comes from a
14657   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14658   // form (to prevent the need for a swap).
14659   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14660   SDValue SToVLHS = isScalarToVec(LHS);
14661   SDValue SToVRHS = isScalarToVec(RHS);
14662   if (SToVLHS || SToVRHS) {
14663     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14664                             : SToVRHS.getValueType().getVectorNumElements();
14665     int NumEltsOut = ShuffV.size();
14666 
14667     // Initially assume that neither input is permuted. These will be adjusted
14668     // accordingly if either input is.
14669     int LHSMaxIdx = -1;
14670     int RHSMinIdx = -1;
14671     int RHSMaxIdx = -1;
14672     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14673 
14674     // Get the permuted scalar to vector nodes for the source(s) that come from
14675     // ISD::SCALAR_TO_VECTOR.
14676     if (SToVLHS) {
14677       // Set up the values for the shuffle vector fixup.
14678       LHSMaxIdx = NumEltsOut / NumEltsIn;
14679       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14680       if (SToVLHS.getValueType() != LHS.getValueType())
14681         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14682       LHS = SToVLHS;
14683     }
14684     if (SToVRHS) {
14685       RHSMinIdx = NumEltsOut;
14686       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14687       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14688       if (SToVRHS.getValueType() != RHS.getValueType())
14689         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14690       RHS = SToVRHS;
14691     }
14692 
14693     // Fix up the shuffle mask to reflect where the desired element actually is.
14694     // The minimum and maximum indices that correspond to element zero for both
14695     // the LHS and RHS are computed and will control which shuffle mask entries
14696     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14697     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14698     // HalfVec to refer to the corresponding element in the permuted vector.
14699     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14700                                     HalfVec);
14701     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14702 
14703     // We may have simplified away the shuffle. We won't be able to do anything
14704     // further with it here.
14705     if (!isa<ShuffleVectorSDNode>(Res))
14706       return Res;
14707     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14708   }
14709 
14710   // The common case after we commuted the shuffle is that the RHS is a splat
14711   // and we have elements coming in from the splat at indices that are not
14712   // conducive to using a merge.
14713   // Example:
14714   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14715   if (!isSplatBV(RHS))
14716     return Res;
14717 
14718   // We are looking for a mask such that all even elements are from
14719   // one vector and all odd elements from the other.
14720   if (!isAlternatingShuffMask(Mask, NumElts))
14721     return Res;
14722 
14723   // Adjust the mask so we are pulling in the same index from the splat
14724   // as the index from the interesting vector in consecutive elements.
14725   // Example (even elements from first vector):
14726   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14727   if (Mask[0] < NumElts)
14728     for (int i = 1, e = Mask.size(); i < e; i += 2)
14729       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14730   // Example (odd elements from first vector):
14731   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14732   else
14733     for (int i = 0, e = Mask.size(); i < e; i += 2)
14734       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14735 
14736   // If the RHS has undefs, we need to remove them since we may have created
14737   // a shuffle that adds those instead of the splat value.
14738   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14739   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14740 
14741   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14742   return Res;
14743 }
14744 
14745 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14746                                                 LSBaseSDNode *LSBase,
14747                                                 DAGCombinerInfo &DCI) const {
14748   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14749         "Not a reverse memop pattern!");
14750 
14751   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14752     auto Mask = SVN->getMask();
14753     int i = 0;
14754     auto I = Mask.rbegin();
14755     auto E = Mask.rend();
14756 
14757     for (; I != E; ++I) {
14758       if (*I != i)
14759         return false;
14760       i++;
14761     }
14762     return true;
14763   };
14764 
14765   SelectionDAG &DAG = DCI.DAG;
14766   EVT VT = SVN->getValueType(0);
14767 
14768   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14769     return SDValue();
14770 
14771   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14772   // See comment in PPCVSXSwapRemoval.cpp.
14773   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14774   if (!Subtarget.hasP9Vector())
14775     return SDValue();
14776 
14777   if(!IsElementReverse(SVN))
14778     return SDValue();
14779 
14780   if (LSBase->getOpcode() == ISD::LOAD) {
14781     SDLoc dl(SVN);
14782     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14783     return DAG.getMemIntrinsicNode(
14784         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14785         LSBase->getMemoryVT(), LSBase->getMemOperand());
14786   }
14787 
14788   if (LSBase->getOpcode() == ISD::STORE) {
14789     SDLoc dl(LSBase);
14790     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14791                           LSBase->getBasePtr()};
14792     return DAG.getMemIntrinsicNode(
14793         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14794         LSBase->getMemoryVT(), LSBase->getMemOperand());
14795   }
14796 
14797   llvm_unreachable("Expected a load or store node here");
14798 }
14799 
14800 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14801                                              DAGCombinerInfo &DCI) const {
14802   SelectionDAG &DAG = DCI.DAG;
14803   SDLoc dl(N);
14804   switch (N->getOpcode()) {
14805   default: break;
14806   case ISD::ADD:
14807     return combineADD(N, DCI);
14808   case ISD::SHL:
14809     return combineSHL(N, DCI);
14810   case ISD::SRA:
14811     return combineSRA(N, DCI);
14812   case ISD::SRL:
14813     return combineSRL(N, DCI);
14814   case ISD::MUL:
14815     return combineMUL(N, DCI);
14816   case ISD::FMA:
14817   case PPCISD::FNMSUB:
14818     return combineFMALike(N, DCI);
14819   case PPCISD::SHL:
14820     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14821         return N->getOperand(0);
14822     break;
14823   case PPCISD::SRL:
14824     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14825         return N->getOperand(0);
14826     break;
14827   case PPCISD::SRA:
14828     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14829       if (C->isNullValue() ||   //  0 >>s V -> 0.
14830           C->isAllOnesValue())    // -1 >>s V -> -1.
14831         return N->getOperand(0);
14832     }
14833     break;
14834   case ISD::SIGN_EXTEND:
14835   case ISD::ZERO_EXTEND:
14836   case ISD::ANY_EXTEND:
14837     return DAGCombineExtBoolTrunc(N, DCI);
14838   case ISD::TRUNCATE:
14839     return combineTRUNCATE(N, DCI);
14840   case ISD::SETCC:
14841     if (SDValue CSCC = combineSetCC(N, DCI))
14842       return CSCC;
14843     LLVM_FALLTHROUGH;
14844   case ISD::SELECT_CC:
14845     return DAGCombineTruncBoolExt(N, DCI);
14846   case ISD::SINT_TO_FP:
14847   case ISD::UINT_TO_FP:
14848     return combineFPToIntToFP(N, DCI);
14849   case ISD::VECTOR_SHUFFLE:
14850     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14851       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14852       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14853     }
14854     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14855   case ISD::STORE: {
14856 
14857     EVT Op1VT = N->getOperand(1).getValueType();
14858     unsigned Opcode = N->getOperand(1).getOpcode();
14859 
14860     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14861       SDValue Val= combineStoreFPToInt(N, DCI);
14862       if (Val)
14863         return Val;
14864     }
14865 
14866     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14867       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14868       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14869       if (Val)
14870         return Val;
14871     }
14872 
14873     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14874     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14875         N->getOperand(1).getNode()->hasOneUse() &&
14876         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14877          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14878 
14879       // STBRX can only handle simple types and it makes no sense to store less
14880       // two bytes in byte-reversed order.
14881       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14882       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14883         break;
14884 
14885       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14886       // Do an any-extend to 32-bits if this is a half-word input.
14887       if (BSwapOp.getValueType() == MVT::i16)
14888         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14889 
14890       // If the type of BSWAP operand is wider than stored memory width
14891       // it need to be shifted to the right side before STBRX.
14892       if (Op1VT.bitsGT(mVT)) {
14893         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14894         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14895                               DAG.getConstant(Shift, dl, MVT::i32));
14896         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14897         if (Op1VT == MVT::i64)
14898           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14899       }
14900 
14901       SDValue Ops[] = {
14902         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14903       };
14904       return
14905         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14906                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14907                                 cast<StoreSDNode>(N)->getMemOperand());
14908     }
14909 
14910     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14911     // So it can increase the chance of CSE constant construction.
14912     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14913         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14914       // Need to sign-extended to 64-bits to handle negative values.
14915       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14916       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14917                                     MemVT.getSizeInBits());
14918       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14919 
14920       // DAG.getTruncStore() can't be used here because it doesn't accept
14921       // the general (base + offset) addressing mode.
14922       // So we use UpdateNodeOperands and setTruncatingStore instead.
14923       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14924                              N->getOperand(3));
14925       cast<StoreSDNode>(N)->setTruncatingStore(true);
14926       return SDValue(N, 0);
14927     }
14928 
14929     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14930     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14931     if (Op1VT.isSimple()) {
14932       MVT StoreVT = Op1VT.getSimpleVT();
14933       if (Subtarget.needsSwapsForVSXMemOps() &&
14934           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14935            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14936         return expandVSXStoreForLE(N, DCI);
14937     }
14938     break;
14939   }
14940   case ISD::LOAD: {
14941     LoadSDNode *LD = cast<LoadSDNode>(N);
14942     EVT VT = LD->getValueType(0);
14943 
14944     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14945     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14946     if (VT.isSimple()) {
14947       MVT LoadVT = VT.getSimpleVT();
14948       if (Subtarget.needsSwapsForVSXMemOps() &&
14949           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14950            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14951         return expandVSXLoadForLE(N, DCI);
14952     }
14953 
14954     // We sometimes end up with a 64-bit integer load, from which we extract
14955     // two single-precision floating-point numbers. This happens with
14956     // std::complex<float>, and other similar structures, because of the way we
14957     // canonicalize structure copies. However, if we lack direct moves,
14958     // then the final bitcasts from the extracted integer values to the
14959     // floating-point numbers turn into store/load pairs. Even with direct moves,
14960     // just loading the two floating-point numbers is likely better.
14961     auto ReplaceTwoFloatLoad = [&]() {
14962       if (VT != MVT::i64)
14963         return false;
14964 
14965       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14966           LD->isVolatile())
14967         return false;
14968 
14969       //  We're looking for a sequence like this:
14970       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14971       //      t16: i64 = srl t13, Constant:i32<32>
14972       //    t17: i32 = truncate t16
14973       //  t18: f32 = bitcast t17
14974       //    t19: i32 = truncate t13
14975       //  t20: f32 = bitcast t19
14976 
14977       if (!LD->hasNUsesOfValue(2, 0))
14978         return false;
14979 
14980       auto UI = LD->use_begin();
14981       while (UI.getUse().getResNo() != 0) ++UI;
14982       SDNode *Trunc = *UI++;
14983       while (UI.getUse().getResNo() != 0) ++UI;
14984       SDNode *RightShift = *UI;
14985       if (Trunc->getOpcode() != ISD::TRUNCATE)
14986         std::swap(Trunc, RightShift);
14987 
14988       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14989           Trunc->getValueType(0) != MVT::i32 ||
14990           !Trunc->hasOneUse())
14991         return false;
14992       if (RightShift->getOpcode() != ISD::SRL ||
14993           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14994           RightShift->getConstantOperandVal(1) != 32 ||
14995           !RightShift->hasOneUse())
14996         return false;
14997 
14998       SDNode *Trunc2 = *RightShift->use_begin();
14999       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15000           Trunc2->getValueType(0) != MVT::i32 ||
15001           !Trunc2->hasOneUse())
15002         return false;
15003 
15004       SDNode *Bitcast = *Trunc->use_begin();
15005       SDNode *Bitcast2 = *Trunc2->use_begin();
15006 
15007       if (Bitcast->getOpcode() != ISD::BITCAST ||
15008           Bitcast->getValueType(0) != MVT::f32)
15009         return false;
15010       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15011           Bitcast2->getValueType(0) != MVT::f32)
15012         return false;
15013 
15014       if (Subtarget.isLittleEndian())
15015         std::swap(Bitcast, Bitcast2);
15016 
15017       // Bitcast has the second float (in memory-layout order) and Bitcast2
15018       // has the first one.
15019 
15020       SDValue BasePtr = LD->getBasePtr();
15021       if (LD->isIndexed()) {
15022         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15023                "Non-pre-inc AM on PPC?");
15024         BasePtr =
15025           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15026                       LD->getOffset());
15027       }
15028 
15029       auto MMOFlags =
15030           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15031       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15032                                       LD->getPointerInfo(), LD->getAlignment(),
15033                                       MMOFlags, LD->getAAInfo());
15034       SDValue AddPtr =
15035         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15036                     BasePtr, DAG.getIntPtrConstant(4, dl));
15037       SDValue FloatLoad2 = DAG.getLoad(
15038           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15039           LD->getPointerInfo().getWithOffset(4),
15040           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
15041 
15042       if (LD->isIndexed()) {
15043         // Note that DAGCombine should re-form any pre-increment load(s) from
15044         // what is produced here if that makes sense.
15045         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15046       }
15047 
15048       DCI.CombineTo(Bitcast2, FloatLoad);
15049       DCI.CombineTo(Bitcast, FloatLoad2);
15050 
15051       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15052                                     SDValue(FloatLoad2.getNode(), 1));
15053       return true;
15054     };
15055 
15056     if (ReplaceTwoFloatLoad())
15057       return SDValue(N, 0);
15058 
15059     EVT MemVT = LD->getMemoryVT();
15060     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15061     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15062     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
15063     Align ScalarABIAlignment = DAG.getDataLayout().getABITypeAlign(STy);
15064     if (LD->isUnindexed() && VT.isVector() &&
15065         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15066           // P8 and later hardware should just use LOAD.
15067           !Subtarget.hasP8Vector() &&
15068           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15069            VT == MVT::v4f32)) ||
15070          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
15071           LD->getAlign() >= ScalarABIAlignment)) &&
15072         LD->getAlign() < ABIAlignment) {
15073       // This is a type-legal unaligned Altivec or QPX load.
15074       SDValue Chain = LD->getChain();
15075       SDValue Ptr = LD->getBasePtr();
15076       bool isLittleEndian = Subtarget.isLittleEndian();
15077 
15078       // This implements the loading of unaligned vectors as described in
15079       // the venerable Apple Velocity Engine overview. Specifically:
15080       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15081       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15082       //
15083       // The general idea is to expand a sequence of one or more unaligned
15084       // loads into an alignment-based permutation-control instruction (lvsl
15085       // or lvsr), a series of regular vector loads (which always truncate
15086       // their input address to an aligned address), and a series of
15087       // permutations.  The results of these permutations are the requested
15088       // loaded values.  The trick is that the last "extra" load is not taken
15089       // from the address you might suspect (sizeof(vector) bytes after the
15090       // last requested load), but rather sizeof(vector) - 1 bytes after the
15091       // last requested vector. The point of this is to avoid a page fault if
15092       // the base address happened to be aligned. This works because if the
15093       // base address is aligned, then adding less than a full vector length
15094       // will cause the last vector in the sequence to be (re)loaded.
15095       // Otherwise, the next vector will be fetched as you might suspect was
15096       // necessary.
15097 
15098       // We might be able to reuse the permutation generation from
15099       // a different base address offset from this one by an aligned amount.
15100       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15101       // optimization later.
15102       Intrinsic::ID Intr, IntrLD, IntrPerm;
15103       MVT PermCntlTy, PermTy, LDTy;
15104       if (Subtarget.hasAltivec()) {
15105         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
15106                                  Intrinsic::ppc_altivec_lvsl;
15107         IntrLD = Intrinsic::ppc_altivec_lvx;
15108         IntrPerm = Intrinsic::ppc_altivec_vperm;
15109         PermCntlTy = MVT::v16i8;
15110         PermTy = MVT::v4i32;
15111         LDTy = MVT::v4i32;
15112       } else {
15113         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
15114                                        Intrinsic::ppc_qpx_qvlpcls;
15115         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
15116                                        Intrinsic::ppc_qpx_qvlfs;
15117         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
15118         PermCntlTy = MVT::v4f64;
15119         PermTy = MVT::v4f64;
15120         LDTy = MemVT.getSimpleVT();
15121       }
15122 
15123       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15124 
15125       // Create the new MMO for the new base load. It is like the original MMO,
15126       // but represents an area in memory almost twice the vector size centered
15127       // on the original address. If the address is unaligned, we might start
15128       // reading up to (sizeof(vector)-1) bytes below the address of the
15129       // original unaligned load.
15130       MachineFunction &MF = DAG.getMachineFunction();
15131       MachineMemOperand *BaseMMO =
15132         MF.getMachineMemOperand(LD->getMemOperand(),
15133                                 -(long)MemVT.getStoreSize()+1,
15134                                 2*MemVT.getStoreSize()-1);
15135 
15136       // Create the new base load.
15137       SDValue LDXIntID =
15138           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15139       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15140       SDValue BaseLoad =
15141         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15142                                 DAG.getVTList(PermTy, MVT::Other),
15143                                 BaseLoadOps, LDTy, BaseMMO);
15144 
15145       // Note that the value of IncOffset (which is provided to the next
15146       // load's pointer info offset value, and thus used to calculate the
15147       // alignment), and the value of IncValue (which is actually used to
15148       // increment the pointer value) are different! This is because we
15149       // require the next load to appear to be aligned, even though it
15150       // is actually offset from the base pointer by a lesser amount.
15151       int IncOffset = VT.getSizeInBits() / 8;
15152       int IncValue = IncOffset;
15153 
15154       // Walk (both up and down) the chain looking for another load at the real
15155       // (aligned) offset (the alignment of the other load does not matter in
15156       // this case). If found, then do not use the offset reduction trick, as
15157       // that will prevent the loads from being later combined (as they would
15158       // otherwise be duplicates).
15159       if (!findConsecutiveLoad(LD, DAG))
15160         --IncValue;
15161 
15162       SDValue Increment =
15163           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15164       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15165 
15166       MachineMemOperand *ExtraMMO =
15167         MF.getMachineMemOperand(LD->getMemOperand(),
15168                                 1, 2*MemVT.getStoreSize()-1);
15169       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15170       SDValue ExtraLoad =
15171         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15172                                 DAG.getVTList(PermTy, MVT::Other),
15173                                 ExtraLoadOps, LDTy, ExtraMMO);
15174 
15175       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15176         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15177 
15178       // Because vperm has a big-endian bias, we must reverse the order
15179       // of the input vectors and complement the permute control vector
15180       // when generating little endian code.  We have already handled the
15181       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15182       // and ExtraLoad here.
15183       SDValue Perm;
15184       if (isLittleEndian)
15185         Perm = BuildIntrinsicOp(IntrPerm,
15186                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15187       else
15188         Perm = BuildIntrinsicOp(IntrPerm,
15189                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15190 
15191       if (VT != PermTy)
15192         Perm = Subtarget.hasAltivec() ?
15193                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
15194                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
15195                                DAG.getTargetConstant(1, dl, MVT::i64));
15196                                // second argument is 1 because this rounding
15197                                // is always exact.
15198 
15199       // The output of the permutation is our loaded result, the TokenFactor is
15200       // our new chain.
15201       DCI.CombineTo(N, Perm, TF);
15202       return SDValue(N, 0);
15203     }
15204     }
15205     break;
15206     case ISD::INTRINSIC_WO_CHAIN: {
15207       bool isLittleEndian = Subtarget.isLittleEndian();
15208       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15209       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15210                                            : Intrinsic::ppc_altivec_lvsl);
15211       if ((IID == Intr ||
15212            IID == Intrinsic::ppc_qpx_qvlpcld  ||
15213            IID == Intrinsic::ppc_qpx_qvlpcls) &&
15214         N->getOperand(1)->getOpcode() == ISD::ADD) {
15215         SDValue Add = N->getOperand(1);
15216 
15217         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
15218                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
15219 
15220         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15221                                   APInt::getAllOnesValue(Bits /* alignment */)
15222                                       .zext(Add.getScalarValueSizeInBits()))) {
15223           SDNode *BasePtr = Add->getOperand(0).getNode();
15224           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15225                                     UE = BasePtr->use_end();
15226                UI != UE; ++UI) {
15227             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15228                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
15229               // We've found another LVSL/LVSR, and this address is an aligned
15230               // multiple of that one. The results will be the same, so use the
15231               // one we've just found instead.
15232 
15233               return SDValue(*UI, 0);
15234             }
15235           }
15236         }
15237 
15238         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15239           SDNode *BasePtr = Add->getOperand(0).getNode();
15240           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15241                UE = BasePtr->use_end(); UI != UE; ++UI) {
15242             if (UI->getOpcode() == ISD::ADD &&
15243                 isa<ConstantSDNode>(UI->getOperand(1)) &&
15244                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15245                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
15246                 (1ULL << Bits) == 0) {
15247               SDNode *OtherAdd = *UI;
15248               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
15249                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
15250                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15251                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
15252                   return SDValue(*VI, 0);
15253                 }
15254               }
15255             }
15256           }
15257         }
15258       }
15259 
15260       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15261       // Expose the vabsduw/h/b opportunity for down stream
15262       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15263           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15264            IID == Intrinsic::ppc_altivec_vmaxsh ||
15265            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15266         SDValue V1 = N->getOperand(1);
15267         SDValue V2 = N->getOperand(2);
15268         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15269              V1.getSimpleValueType() == MVT::v8i16 ||
15270              V1.getSimpleValueType() == MVT::v16i8) &&
15271             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15272           // (0-a, a)
15273           if (V1.getOpcode() == ISD::SUB &&
15274               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15275               V1.getOperand(1) == V2) {
15276             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15277           }
15278           // (a, 0-a)
15279           if (V2.getOpcode() == ISD::SUB &&
15280               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15281               V2.getOperand(1) == V1) {
15282             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15283           }
15284           // (x-y, y-x)
15285           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15286               V1.getOperand(0) == V2.getOperand(1) &&
15287               V1.getOperand(1) == V2.getOperand(0)) {
15288             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15289           }
15290         }
15291       }
15292     }
15293 
15294     break;
15295   case ISD::INTRINSIC_W_CHAIN:
15296     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15297     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15298     if (Subtarget.needsSwapsForVSXMemOps()) {
15299       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15300       default:
15301         break;
15302       case Intrinsic::ppc_vsx_lxvw4x:
15303       case Intrinsic::ppc_vsx_lxvd2x:
15304         return expandVSXLoadForLE(N, DCI);
15305       }
15306     }
15307     break;
15308   case ISD::INTRINSIC_VOID:
15309     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15310     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15311     if (Subtarget.needsSwapsForVSXMemOps()) {
15312       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15313       default:
15314         break;
15315       case Intrinsic::ppc_vsx_stxvw4x:
15316       case Intrinsic::ppc_vsx_stxvd2x:
15317         return expandVSXStoreForLE(N, DCI);
15318       }
15319     }
15320     break;
15321   case ISD::BSWAP:
15322     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15323     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
15324         N->getOperand(0).hasOneUse() &&
15325         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15326          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
15327           N->getValueType(0) == MVT::i64))) {
15328       SDValue Load = N->getOperand(0);
15329       LoadSDNode *LD = cast<LoadSDNode>(Load);
15330       // Create the byte-swapping load.
15331       SDValue Ops[] = {
15332         LD->getChain(),    // Chain
15333         LD->getBasePtr(),  // Ptr
15334         DAG.getValueType(N->getValueType(0)) // VT
15335       };
15336       SDValue BSLoad =
15337         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15338                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15339                                               MVT::i64 : MVT::i32, MVT::Other),
15340                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15341 
15342       // If this is an i16 load, insert the truncate.
15343       SDValue ResVal = BSLoad;
15344       if (N->getValueType(0) == MVT::i16)
15345         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15346 
15347       // First, combine the bswap away.  This makes the value produced by the
15348       // load dead.
15349       DCI.CombineTo(N, ResVal);
15350 
15351       // Next, combine the load away, we give it a bogus result value but a real
15352       // chain result.  The result value is dead because the bswap is dead.
15353       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15354 
15355       // Return N so it doesn't get rechecked!
15356       return SDValue(N, 0);
15357     }
15358     break;
15359   case PPCISD::VCMP:
15360     // If a VCMPo node already exists with exactly the same operands as this
15361     // node, use its result instead of this node (VCMPo computes both a CR6 and
15362     // a normal output).
15363     //
15364     if (!N->getOperand(0).hasOneUse() &&
15365         !N->getOperand(1).hasOneUse() &&
15366         !N->getOperand(2).hasOneUse()) {
15367 
15368       // Scan all of the users of the LHS, looking for VCMPo's that match.
15369       SDNode *VCMPoNode = nullptr;
15370 
15371       SDNode *LHSN = N->getOperand(0).getNode();
15372       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15373            UI != E; ++UI)
15374         if (UI->getOpcode() == PPCISD::VCMPo &&
15375             UI->getOperand(1) == N->getOperand(1) &&
15376             UI->getOperand(2) == N->getOperand(2) &&
15377             UI->getOperand(0) == N->getOperand(0)) {
15378           VCMPoNode = *UI;
15379           break;
15380         }
15381 
15382       // If there is no VCMPo node, or if the flag value has a single use, don't
15383       // transform this.
15384       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
15385         break;
15386 
15387       // Look at the (necessarily single) use of the flag value.  If it has a
15388       // chain, this transformation is more complex.  Note that multiple things
15389       // could use the value result, which we should ignore.
15390       SDNode *FlagUser = nullptr;
15391       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
15392            FlagUser == nullptr; ++UI) {
15393         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
15394         SDNode *User = *UI;
15395         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15396           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
15397             FlagUser = User;
15398             break;
15399           }
15400         }
15401       }
15402 
15403       // If the user is a MFOCRF instruction, we know this is safe.
15404       // Otherwise we give up for right now.
15405       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15406         return SDValue(VCMPoNode, 0);
15407     }
15408     break;
15409   case ISD::BRCOND: {
15410     SDValue Cond = N->getOperand(1);
15411     SDValue Target = N->getOperand(2);
15412 
15413     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15414         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15415           Intrinsic::loop_decrement) {
15416 
15417       // We now need to make the intrinsic dead (it cannot be instruction
15418       // selected).
15419       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15420       assert(Cond.getNode()->hasOneUse() &&
15421              "Counter decrement has more than one use");
15422 
15423       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15424                          N->getOperand(0), Target);
15425     }
15426   }
15427   break;
15428   case ISD::BR_CC: {
15429     // If this is a branch on an altivec predicate comparison, lower this so
15430     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15431     // lowering is done pre-legalize, because the legalizer lowers the predicate
15432     // compare down to code that is difficult to reassemble.
15433     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15434     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15435 
15436     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15437     // value. If so, pass-through the AND to get to the intrinsic.
15438     if (LHS.getOpcode() == ISD::AND &&
15439         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15440         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15441           Intrinsic::loop_decrement &&
15442         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15443         !isNullConstant(LHS.getOperand(1)))
15444       LHS = LHS.getOperand(0);
15445 
15446     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15447         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15448           Intrinsic::loop_decrement &&
15449         isa<ConstantSDNode>(RHS)) {
15450       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15451              "Counter decrement comparison is not EQ or NE");
15452 
15453       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15454       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15455                     (CC == ISD::SETNE && !Val);
15456 
15457       // We now need to make the intrinsic dead (it cannot be instruction
15458       // selected).
15459       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15460       assert(LHS.getNode()->hasOneUse() &&
15461              "Counter decrement has more than one use");
15462 
15463       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15464                          N->getOperand(0), N->getOperand(4));
15465     }
15466 
15467     int CompareOpc;
15468     bool isDot;
15469 
15470     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15471         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15472         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15473       assert(isDot && "Can't compare against a vector result!");
15474 
15475       // If this is a comparison against something other than 0/1, then we know
15476       // that the condition is never/always true.
15477       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15478       if (Val != 0 && Val != 1) {
15479         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15480           return N->getOperand(0);
15481         // Always !=, turn it into an unconditional branch.
15482         return DAG.getNode(ISD::BR, dl, MVT::Other,
15483                            N->getOperand(0), N->getOperand(4));
15484       }
15485 
15486       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15487 
15488       // Create the PPCISD altivec 'dot' comparison node.
15489       SDValue Ops[] = {
15490         LHS.getOperand(2),  // LHS of compare
15491         LHS.getOperand(3),  // RHS of compare
15492         DAG.getConstant(CompareOpc, dl, MVT::i32)
15493       };
15494       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15495       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15496 
15497       // Unpack the result based on how the target uses it.
15498       PPC::Predicate CompOpc;
15499       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15500       default:  // Can't happen, don't crash on invalid number though.
15501       case 0:   // Branch on the value of the EQ bit of CR6.
15502         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15503         break;
15504       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15505         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15506         break;
15507       case 2:   // Branch on the value of the LT bit of CR6.
15508         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15509         break;
15510       case 3:   // Branch on the inverted value of the LT bit of CR6.
15511         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15512         break;
15513       }
15514 
15515       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15516                          DAG.getConstant(CompOpc, dl, MVT::i32),
15517                          DAG.getRegister(PPC::CR6, MVT::i32),
15518                          N->getOperand(4), CompNode.getValue(1));
15519     }
15520     break;
15521   }
15522   case ISD::BUILD_VECTOR:
15523     return DAGCombineBuildVector(N, DCI);
15524   case ISD::ABS:
15525     return combineABS(N, DCI);
15526   case ISD::VSELECT:
15527     return combineVSelect(N, DCI);
15528   }
15529 
15530   return SDValue();
15531 }
15532 
15533 SDValue
15534 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15535                                  SelectionDAG &DAG,
15536                                  SmallVectorImpl<SDNode *> &Created) const {
15537   // fold (sdiv X, pow2)
15538   EVT VT = N->getValueType(0);
15539   if (VT == MVT::i64 && !Subtarget.isPPC64())
15540     return SDValue();
15541   if ((VT != MVT::i32 && VT != MVT::i64) ||
15542       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15543     return SDValue();
15544 
15545   SDLoc DL(N);
15546   SDValue N0 = N->getOperand(0);
15547 
15548   bool IsNegPow2 = (-Divisor).isPowerOf2();
15549   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15550   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15551 
15552   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15553   Created.push_back(Op.getNode());
15554 
15555   if (IsNegPow2) {
15556     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15557     Created.push_back(Op.getNode());
15558   }
15559 
15560   return Op;
15561 }
15562 
15563 //===----------------------------------------------------------------------===//
15564 // Inline Assembly Support
15565 //===----------------------------------------------------------------------===//
15566 
15567 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15568                                                       KnownBits &Known,
15569                                                       const APInt &DemandedElts,
15570                                                       const SelectionDAG &DAG,
15571                                                       unsigned Depth) const {
15572   Known.resetAll();
15573   switch (Op.getOpcode()) {
15574   default: break;
15575   case PPCISD::LBRX: {
15576     // lhbrx is known to have the top bits cleared out.
15577     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15578       Known.Zero = 0xFFFF0000;
15579     break;
15580   }
15581   case ISD::INTRINSIC_WO_CHAIN: {
15582     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15583     default: break;
15584     case Intrinsic::ppc_altivec_vcmpbfp_p:
15585     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15586     case Intrinsic::ppc_altivec_vcmpequb_p:
15587     case Intrinsic::ppc_altivec_vcmpequh_p:
15588     case Intrinsic::ppc_altivec_vcmpequw_p:
15589     case Intrinsic::ppc_altivec_vcmpequd_p:
15590     case Intrinsic::ppc_altivec_vcmpgefp_p:
15591     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15592     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15593     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15594     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15595     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15596     case Intrinsic::ppc_altivec_vcmpgtub_p:
15597     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15598     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15599     case Intrinsic::ppc_altivec_vcmpgtud_p:
15600       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15601       break;
15602     }
15603   }
15604   }
15605 }
15606 
15607 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15608   switch (Subtarget.getCPUDirective()) {
15609   default: break;
15610   case PPC::DIR_970:
15611   case PPC::DIR_PWR4:
15612   case PPC::DIR_PWR5:
15613   case PPC::DIR_PWR5X:
15614   case PPC::DIR_PWR6:
15615   case PPC::DIR_PWR6X:
15616   case PPC::DIR_PWR7:
15617   case PPC::DIR_PWR8:
15618   case PPC::DIR_PWR9:
15619   case PPC::DIR_PWR10:
15620   case PPC::DIR_PWR_FUTURE: {
15621     if (!ML)
15622       break;
15623 
15624     if (!DisableInnermostLoopAlign32) {
15625       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15626       // so that we can decrease cache misses and branch-prediction misses.
15627       // Actual alignment of the loop will depend on the hotness check and other
15628       // logic in alignBlocks.
15629       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15630         return Align(32);
15631     }
15632 
15633     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15634 
15635     // For small loops (between 5 and 8 instructions), align to a 32-byte
15636     // boundary so that the entire loop fits in one instruction-cache line.
15637     uint64_t LoopSize = 0;
15638     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15639       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15640         LoopSize += TII->getInstSizeInBytes(*J);
15641         if (LoopSize > 32)
15642           break;
15643       }
15644 
15645     if (LoopSize > 16 && LoopSize <= 32)
15646       return Align(32);
15647 
15648     break;
15649   }
15650   }
15651 
15652   return TargetLowering::getPrefLoopAlignment(ML);
15653 }
15654 
15655 /// getConstraintType - Given a constraint, return the type of
15656 /// constraint it is for this target.
15657 PPCTargetLowering::ConstraintType
15658 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15659   if (Constraint.size() == 1) {
15660     switch (Constraint[0]) {
15661     default: break;
15662     case 'b':
15663     case 'r':
15664     case 'f':
15665     case 'd':
15666     case 'v':
15667     case 'y':
15668       return C_RegisterClass;
15669     case 'Z':
15670       // FIXME: While Z does indicate a memory constraint, it specifically
15671       // indicates an r+r address (used in conjunction with the 'y' modifier
15672       // in the replacement string). Currently, we're forcing the base
15673       // register to be r0 in the asm printer (which is interpreted as zero)
15674       // and forming the complete address in the second register. This is
15675       // suboptimal.
15676       return C_Memory;
15677     }
15678   } else if (Constraint == "wc") { // individual CR bits.
15679     return C_RegisterClass;
15680   } else if (Constraint == "wa" || Constraint == "wd" ||
15681              Constraint == "wf" || Constraint == "ws" ||
15682              Constraint == "wi" || Constraint == "ww") {
15683     return C_RegisterClass; // VSX registers.
15684   }
15685   return TargetLowering::getConstraintType(Constraint);
15686 }
15687 
15688 /// Examine constraint type and operand type and determine a weight value.
15689 /// This object must already have been set up with the operand type
15690 /// and the current alternative constraint selected.
15691 TargetLowering::ConstraintWeight
15692 PPCTargetLowering::getSingleConstraintMatchWeight(
15693     AsmOperandInfo &info, const char *constraint) const {
15694   ConstraintWeight weight = CW_Invalid;
15695   Value *CallOperandVal = info.CallOperandVal;
15696     // If we don't have a value, we can't do a match,
15697     // but allow it at the lowest weight.
15698   if (!CallOperandVal)
15699     return CW_Default;
15700   Type *type = CallOperandVal->getType();
15701 
15702   // Look at the constraint type.
15703   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15704     return CW_Register; // an individual CR bit.
15705   else if ((StringRef(constraint) == "wa" ||
15706             StringRef(constraint) == "wd" ||
15707             StringRef(constraint) == "wf") &&
15708            type->isVectorTy())
15709     return CW_Register;
15710   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15711     return CW_Register; // just hold 64-bit integers data.
15712   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15713     return CW_Register;
15714   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15715     return CW_Register;
15716 
15717   switch (*constraint) {
15718   default:
15719     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15720     break;
15721   case 'b':
15722     if (type->isIntegerTy())
15723       weight = CW_Register;
15724     break;
15725   case 'f':
15726     if (type->isFloatTy())
15727       weight = CW_Register;
15728     break;
15729   case 'd':
15730     if (type->isDoubleTy())
15731       weight = CW_Register;
15732     break;
15733   case 'v':
15734     if (type->isVectorTy())
15735       weight = CW_Register;
15736     break;
15737   case 'y':
15738     weight = CW_Register;
15739     break;
15740   case 'Z':
15741     weight = CW_Memory;
15742     break;
15743   }
15744   return weight;
15745 }
15746 
15747 std::pair<unsigned, const TargetRegisterClass *>
15748 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15749                                                 StringRef Constraint,
15750                                                 MVT VT) const {
15751   if (Constraint.size() == 1) {
15752     // GCC RS6000 Constraint Letters
15753     switch (Constraint[0]) {
15754     case 'b':   // R1-R31
15755       if (VT == MVT::i64 && Subtarget.isPPC64())
15756         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15757       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15758     case 'r':   // R0-R31
15759       if (VT == MVT::i64 && Subtarget.isPPC64())
15760         return std::make_pair(0U, &PPC::G8RCRegClass);
15761       return std::make_pair(0U, &PPC::GPRCRegClass);
15762     // 'd' and 'f' constraints are both defined to be "the floating point
15763     // registers", where one is for 32-bit and the other for 64-bit. We don't
15764     // really care overly much here so just give them all the same reg classes.
15765     case 'd':
15766     case 'f':
15767       if (Subtarget.hasSPE()) {
15768         if (VT == MVT::f32 || VT == MVT::i32)
15769           return std::make_pair(0U, &PPC::GPRCRegClass);
15770         if (VT == MVT::f64 || VT == MVT::i64)
15771           return std::make_pair(0U, &PPC::SPERCRegClass);
15772       } else {
15773         if (VT == MVT::f32 || VT == MVT::i32)
15774           return std::make_pair(0U, &PPC::F4RCRegClass);
15775         if (VT == MVT::f64 || VT == MVT::i64)
15776           return std::make_pair(0U, &PPC::F8RCRegClass);
15777         if (VT == MVT::v4f64 && Subtarget.hasQPX())
15778           return std::make_pair(0U, &PPC::QFRCRegClass);
15779         if (VT == MVT::v4f32 && Subtarget.hasQPX())
15780           return std::make_pair(0U, &PPC::QSRCRegClass);
15781       }
15782       break;
15783     case 'v':
15784       if (VT == MVT::v4f64 && Subtarget.hasQPX())
15785         return std::make_pair(0U, &PPC::QFRCRegClass);
15786       if (VT == MVT::v4f32 && Subtarget.hasQPX())
15787         return std::make_pair(0U, &PPC::QSRCRegClass);
15788       if (Subtarget.hasAltivec())
15789         return std::make_pair(0U, &PPC::VRRCRegClass);
15790       break;
15791     case 'y':   // crrc
15792       return std::make_pair(0U, &PPC::CRRCRegClass);
15793     }
15794   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15795     // An individual CR bit.
15796     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15797   } else if ((Constraint == "wa" || Constraint == "wd" ||
15798              Constraint == "wf" || Constraint == "wi") &&
15799              Subtarget.hasVSX()) {
15800     return std::make_pair(0U, &PPC::VSRCRegClass);
15801   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15802     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15803       return std::make_pair(0U, &PPC::VSSRCRegClass);
15804     else
15805       return std::make_pair(0U, &PPC::VSFRCRegClass);
15806   }
15807 
15808   // If we name a VSX register, we can't defer to the base class because it
15809   // will not recognize the correct register (their names will be VSL{0-31}
15810   // and V{0-31} so they won't match). So we match them here.
15811   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15812     int VSNum = atoi(Constraint.data() + 3);
15813     assert(VSNum >= 0 && VSNum <= 63 &&
15814            "Attempted to access a vsr out of range");
15815     if (VSNum < 32)
15816       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15817     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15818   }
15819   std::pair<unsigned, const TargetRegisterClass *> R =
15820       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15821 
15822   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15823   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15824   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15825   // register.
15826   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15827   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15828   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15829       PPC::GPRCRegClass.contains(R.first))
15830     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15831                             PPC::sub_32, &PPC::G8RCRegClass),
15832                           &PPC::G8RCRegClass);
15833 
15834   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15835   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15836     R.first = PPC::CR0;
15837     R.second = &PPC::CRRCRegClass;
15838   }
15839 
15840   return R;
15841 }
15842 
15843 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15844 /// vector.  If it is invalid, don't add anything to Ops.
15845 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15846                                                      std::string &Constraint,
15847                                                      std::vector<SDValue>&Ops,
15848                                                      SelectionDAG &DAG) const {
15849   SDValue Result;
15850 
15851   // Only support length 1 constraints.
15852   if (Constraint.length() > 1) return;
15853 
15854   char Letter = Constraint[0];
15855   switch (Letter) {
15856   default: break;
15857   case 'I':
15858   case 'J':
15859   case 'K':
15860   case 'L':
15861   case 'M':
15862   case 'N':
15863   case 'O':
15864   case 'P': {
15865     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15866     if (!CST) return; // Must be an immediate to match.
15867     SDLoc dl(Op);
15868     int64_t Value = CST->getSExtValue();
15869     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15870                          // numbers are printed as such.
15871     switch (Letter) {
15872     default: llvm_unreachable("Unknown constraint letter!");
15873     case 'I':  // "I" is a signed 16-bit constant.
15874       if (isInt<16>(Value))
15875         Result = DAG.getTargetConstant(Value, dl, TCVT);
15876       break;
15877     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15878       if (isShiftedUInt<16, 16>(Value))
15879         Result = DAG.getTargetConstant(Value, dl, TCVT);
15880       break;
15881     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15882       if (isShiftedInt<16, 16>(Value))
15883         Result = DAG.getTargetConstant(Value, dl, TCVT);
15884       break;
15885     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15886       if (isUInt<16>(Value))
15887         Result = DAG.getTargetConstant(Value, dl, TCVT);
15888       break;
15889     case 'M':  // "M" is a constant that is greater than 31.
15890       if (Value > 31)
15891         Result = DAG.getTargetConstant(Value, dl, TCVT);
15892       break;
15893     case 'N':  // "N" is a positive constant that is an exact power of two.
15894       if (Value > 0 && isPowerOf2_64(Value))
15895         Result = DAG.getTargetConstant(Value, dl, TCVT);
15896       break;
15897     case 'O':  // "O" is the constant zero.
15898       if (Value == 0)
15899         Result = DAG.getTargetConstant(Value, dl, TCVT);
15900       break;
15901     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15902       if (isInt<16>(-Value))
15903         Result = DAG.getTargetConstant(Value, dl, TCVT);
15904       break;
15905     }
15906     break;
15907   }
15908   }
15909 
15910   if (Result.getNode()) {
15911     Ops.push_back(Result);
15912     return;
15913   }
15914 
15915   // Handle standard constraint letters.
15916   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15917 }
15918 
15919 // isLegalAddressingMode - Return true if the addressing mode represented
15920 // by AM is legal for this target, for a load/store of the specified type.
15921 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15922                                               const AddrMode &AM, Type *Ty,
15923                                               unsigned AS, Instruction *I) const {
15924   // PPC does not allow r+i addressing modes for vectors!
15925   if (Ty->isVectorTy() && AM.BaseOffs != 0)
15926     return false;
15927 
15928   // PPC allows a sign-extended 16-bit immediate field.
15929   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15930     return false;
15931 
15932   // No global is ever allowed as a base.
15933   if (AM.BaseGV)
15934     return false;
15935 
15936   // PPC only support r+r,
15937   switch (AM.Scale) {
15938   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15939     break;
15940   case 1:
15941     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15942       return false;
15943     // Otherwise we have r+r or r+i.
15944     break;
15945   case 2:
15946     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15947       return false;
15948     // Allow 2*r as r+r.
15949     break;
15950   default:
15951     // No other scales are supported.
15952     return false;
15953   }
15954 
15955   return true;
15956 }
15957 
15958 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15959                                            SelectionDAG &DAG) const {
15960   MachineFunction &MF = DAG.getMachineFunction();
15961   MachineFrameInfo &MFI = MF.getFrameInfo();
15962   MFI.setReturnAddressIsTaken(true);
15963 
15964   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15965     return SDValue();
15966 
15967   SDLoc dl(Op);
15968   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15969 
15970   // Make sure the function does not optimize away the store of the RA to
15971   // the stack.
15972   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15973   FuncInfo->setLRStoreRequired();
15974   bool isPPC64 = Subtarget.isPPC64();
15975   auto PtrVT = getPointerTy(MF.getDataLayout());
15976 
15977   if (Depth > 0) {
15978     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15979     SDValue Offset =
15980         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15981                         isPPC64 ? MVT::i64 : MVT::i32);
15982     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15983                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15984                        MachinePointerInfo());
15985   }
15986 
15987   // Just load the return address off the stack.
15988   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15989   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15990                      MachinePointerInfo());
15991 }
15992 
15993 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15994                                           SelectionDAG &DAG) const {
15995   SDLoc dl(Op);
15996   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15997 
15998   MachineFunction &MF = DAG.getMachineFunction();
15999   MachineFrameInfo &MFI = MF.getFrameInfo();
16000   MFI.setFrameAddressIsTaken(true);
16001 
16002   EVT PtrVT = getPointerTy(MF.getDataLayout());
16003   bool isPPC64 = PtrVT == MVT::i64;
16004 
16005   // Naked functions never have a frame pointer, and so we use r1. For all
16006   // other functions, this decision must be delayed until during PEI.
16007   unsigned FrameReg;
16008   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16009     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16010   else
16011     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16012 
16013   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16014                                          PtrVT);
16015   while (Depth--)
16016     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16017                             FrameAddr, MachinePointerInfo());
16018   return FrameAddr;
16019 }
16020 
16021 // FIXME? Maybe this could be a TableGen attribute on some registers and
16022 // this table could be generated automatically from RegInfo.
16023 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16024                                               const MachineFunction &MF) const {
16025   bool isPPC64 = Subtarget.isPPC64();
16026 
16027   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16028   if (!is64Bit && VT != LLT::scalar(32))
16029     report_fatal_error("Invalid register global variable type");
16030 
16031   Register Reg = StringSwitch<Register>(RegName)
16032                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16033                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16034                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16035                      .Default(Register());
16036 
16037   if (Reg)
16038     return Reg;
16039   report_fatal_error("Invalid register name global variable");
16040 }
16041 
16042 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16043   // 32-bit SVR4 ABI access everything as got-indirect.
16044   if (Subtarget.is32BitELFABI())
16045     return true;
16046 
16047   // AIX accesses everything indirectly through the TOC, which is similar to
16048   // the GOT.
16049   if (Subtarget.isAIXABI())
16050     return true;
16051 
16052   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16053   // If it is small or large code model, module locals are accessed
16054   // indirectly by loading their address from .toc/.got.
16055   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16056     return true;
16057 
16058   // JumpTable and BlockAddress are accessed as got-indirect.
16059   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16060     return true;
16061 
16062   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16063     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16064 
16065   return false;
16066 }
16067 
16068 bool
16069 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16070   // The PowerPC target isn't yet aware of offsets.
16071   return false;
16072 }
16073 
16074 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16075                                            const CallInst &I,
16076                                            MachineFunction &MF,
16077                                            unsigned Intrinsic) const {
16078   switch (Intrinsic) {
16079   case Intrinsic::ppc_qpx_qvlfd:
16080   case Intrinsic::ppc_qpx_qvlfs:
16081   case Intrinsic::ppc_qpx_qvlfcd:
16082   case Intrinsic::ppc_qpx_qvlfcs:
16083   case Intrinsic::ppc_qpx_qvlfiwa:
16084   case Intrinsic::ppc_qpx_qvlfiwz:
16085   case Intrinsic::ppc_altivec_lvx:
16086   case Intrinsic::ppc_altivec_lvxl:
16087   case Intrinsic::ppc_altivec_lvebx:
16088   case Intrinsic::ppc_altivec_lvehx:
16089   case Intrinsic::ppc_altivec_lvewx:
16090   case Intrinsic::ppc_vsx_lxvd2x:
16091   case Intrinsic::ppc_vsx_lxvw4x: {
16092     EVT VT;
16093     switch (Intrinsic) {
16094     case Intrinsic::ppc_altivec_lvebx:
16095       VT = MVT::i8;
16096       break;
16097     case Intrinsic::ppc_altivec_lvehx:
16098       VT = MVT::i16;
16099       break;
16100     case Intrinsic::ppc_altivec_lvewx:
16101       VT = MVT::i32;
16102       break;
16103     case Intrinsic::ppc_vsx_lxvd2x:
16104       VT = MVT::v2f64;
16105       break;
16106     case Intrinsic::ppc_qpx_qvlfd:
16107       VT = MVT::v4f64;
16108       break;
16109     case Intrinsic::ppc_qpx_qvlfs:
16110       VT = MVT::v4f32;
16111       break;
16112     case Intrinsic::ppc_qpx_qvlfcd:
16113       VT = MVT::v2f64;
16114       break;
16115     case Intrinsic::ppc_qpx_qvlfcs:
16116       VT = MVT::v2f32;
16117       break;
16118     default:
16119       VT = MVT::v4i32;
16120       break;
16121     }
16122 
16123     Info.opc = ISD::INTRINSIC_W_CHAIN;
16124     Info.memVT = VT;
16125     Info.ptrVal = I.getArgOperand(0);
16126     Info.offset = -VT.getStoreSize()+1;
16127     Info.size = 2*VT.getStoreSize()-1;
16128     Info.align = Align(1);
16129     Info.flags = MachineMemOperand::MOLoad;
16130     return true;
16131   }
16132   case Intrinsic::ppc_qpx_qvlfda:
16133   case Intrinsic::ppc_qpx_qvlfsa:
16134   case Intrinsic::ppc_qpx_qvlfcda:
16135   case Intrinsic::ppc_qpx_qvlfcsa:
16136   case Intrinsic::ppc_qpx_qvlfiwaa:
16137   case Intrinsic::ppc_qpx_qvlfiwza: {
16138     EVT VT;
16139     switch (Intrinsic) {
16140     case Intrinsic::ppc_qpx_qvlfda:
16141       VT = MVT::v4f64;
16142       break;
16143     case Intrinsic::ppc_qpx_qvlfsa:
16144       VT = MVT::v4f32;
16145       break;
16146     case Intrinsic::ppc_qpx_qvlfcda:
16147       VT = MVT::v2f64;
16148       break;
16149     case Intrinsic::ppc_qpx_qvlfcsa:
16150       VT = MVT::v2f32;
16151       break;
16152     default:
16153       VT = MVT::v4i32;
16154       break;
16155     }
16156 
16157     Info.opc = ISD::INTRINSIC_W_CHAIN;
16158     Info.memVT = VT;
16159     Info.ptrVal = I.getArgOperand(0);
16160     Info.offset = 0;
16161     Info.size = VT.getStoreSize();
16162     Info.align = Align(1);
16163     Info.flags = MachineMemOperand::MOLoad;
16164     return true;
16165   }
16166   case Intrinsic::ppc_qpx_qvstfd:
16167   case Intrinsic::ppc_qpx_qvstfs:
16168   case Intrinsic::ppc_qpx_qvstfcd:
16169   case Intrinsic::ppc_qpx_qvstfcs:
16170   case Intrinsic::ppc_qpx_qvstfiw:
16171   case Intrinsic::ppc_altivec_stvx:
16172   case Intrinsic::ppc_altivec_stvxl:
16173   case Intrinsic::ppc_altivec_stvebx:
16174   case Intrinsic::ppc_altivec_stvehx:
16175   case Intrinsic::ppc_altivec_stvewx:
16176   case Intrinsic::ppc_vsx_stxvd2x:
16177   case Intrinsic::ppc_vsx_stxvw4x: {
16178     EVT VT;
16179     switch (Intrinsic) {
16180     case Intrinsic::ppc_altivec_stvebx:
16181       VT = MVT::i8;
16182       break;
16183     case Intrinsic::ppc_altivec_stvehx:
16184       VT = MVT::i16;
16185       break;
16186     case Intrinsic::ppc_altivec_stvewx:
16187       VT = MVT::i32;
16188       break;
16189     case Intrinsic::ppc_vsx_stxvd2x:
16190       VT = MVT::v2f64;
16191       break;
16192     case Intrinsic::ppc_qpx_qvstfd:
16193       VT = MVT::v4f64;
16194       break;
16195     case Intrinsic::ppc_qpx_qvstfs:
16196       VT = MVT::v4f32;
16197       break;
16198     case Intrinsic::ppc_qpx_qvstfcd:
16199       VT = MVT::v2f64;
16200       break;
16201     case Intrinsic::ppc_qpx_qvstfcs:
16202       VT = MVT::v2f32;
16203       break;
16204     default:
16205       VT = MVT::v4i32;
16206       break;
16207     }
16208 
16209     Info.opc = ISD::INTRINSIC_VOID;
16210     Info.memVT = VT;
16211     Info.ptrVal = I.getArgOperand(1);
16212     Info.offset = -VT.getStoreSize()+1;
16213     Info.size = 2*VT.getStoreSize()-1;
16214     Info.align = Align(1);
16215     Info.flags = MachineMemOperand::MOStore;
16216     return true;
16217   }
16218   case Intrinsic::ppc_qpx_qvstfda:
16219   case Intrinsic::ppc_qpx_qvstfsa:
16220   case Intrinsic::ppc_qpx_qvstfcda:
16221   case Intrinsic::ppc_qpx_qvstfcsa:
16222   case Intrinsic::ppc_qpx_qvstfiwa: {
16223     EVT VT;
16224     switch (Intrinsic) {
16225     case Intrinsic::ppc_qpx_qvstfda:
16226       VT = MVT::v4f64;
16227       break;
16228     case Intrinsic::ppc_qpx_qvstfsa:
16229       VT = MVT::v4f32;
16230       break;
16231     case Intrinsic::ppc_qpx_qvstfcda:
16232       VT = MVT::v2f64;
16233       break;
16234     case Intrinsic::ppc_qpx_qvstfcsa:
16235       VT = MVT::v2f32;
16236       break;
16237     default:
16238       VT = MVT::v4i32;
16239       break;
16240     }
16241 
16242     Info.opc = ISD::INTRINSIC_VOID;
16243     Info.memVT = VT;
16244     Info.ptrVal = I.getArgOperand(1);
16245     Info.offset = 0;
16246     Info.size = VT.getStoreSize();
16247     Info.align = Align(1);
16248     Info.flags = MachineMemOperand::MOStore;
16249     return true;
16250   }
16251   default:
16252     break;
16253   }
16254 
16255   return false;
16256 }
16257 
16258 /// It returns EVT::Other if the type should be determined using generic
16259 /// target-independent logic.
16260 EVT PPCTargetLowering::getOptimalMemOpType(
16261     const MemOp &Op, const AttributeList &FuncAttributes) const {
16262   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16263     // When expanding a memset, require at least two QPX instructions to cover
16264     // the cost of loading the value to be stored from the constant pool.
16265     if (Subtarget.hasQPX() && Op.size() >= 32 &&
16266         (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
16267         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
16268       return MVT::v4f64;
16269     }
16270 
16271     // We should use Altivec/VSX loads and stores when available. For unaligned
16272     // addresses, unaligned VSX loads are only fast starting with the P8.
16273     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16274         (Op.isAligned(Align(16)) ||
16275          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16276       return MVT::v4i32;
16277   }
16278 
16279   if (Subtarget.isPPC64()) {
16280     return MVT::i64;
16281   }
16282 
16283   return MVT::i32;
16284 }
16285 
16286 /// Returns true if it is beneficial to convert a load of a constant
16287 /// to just the constant itself.
16288 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16289                                                           Type *Ty) const {
16290   assert(Ty->isIntegerTy());
16291 
16292   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16293   return !(BitSize == 0 || BitSize > 64);
16294 }
16295 
16296 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16297   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16298     return false;
16299   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16300   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16301   return NumBits1 == 64 && NumBits2 == 32;
16302 }
16303 
16304 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16305   if (!VT1.isInteger() || !VT2.isInteger())
16306     return false;
16307   unsigned NumBits1 = VT1.getSizeInBits();
16308   unsigned NumBits2 = VT2.getSizeInBits();
16309   return NumBits1 == 64 && NumBits2 == 32;
16310 }
16311 
16312 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16313   // Generally speaking, zexts are not free, but they are free when they can be
16314   // folded with other operations.
16315   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16316     EVT MemVT = LD->getMemoryVT();
16317     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16318          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16319         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16320          LD->getExtensionType() == ISD::ZEXTLOAD))
16321       return true;
16322   }
16323 
16324   // FIXME: Add other cases...
16325   //  - 32-bit shifts with a zext to i64
16326   //  - zext after ctlz, bswap, etc.
16327   //  - zext after and by a constant mask
16328 
16329   return TargetLowering::isZExtFree(Val, VT2);
16330 }
16331 
16332 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16333   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16334          "invalid fpext types");
16335   // Extending to float128 is not free.
16336   if (DestVT == MVT::f128)
16337     return false;
16338   return true;
16339 }
16340 
16341 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16342   return isInt<16>(Imm) || isUInt<16>(Imm);
16343 }
16344 
16345 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16346   return isInt<16>(Imm) || isUInt<16>(Imm);
16347 }
16348 
16349 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
16350                                                        unsigned,
16351                                                        unsigned,
16352                                                        MachineMemOperand::Flags,
16353                                                        bool *Fast) const {
16354   if (DisablePPCUnaligned)
16355     return false;
16356 
16357   // PowerPC supports unaligned memory access for simple non-vector types.
16358   // Although accessing unaligned addresses is not as efficient as accessing
16359   // aligned addresses, it is generally more efficient than manual expansion,
16360   // and generally only traps for software emulation when crossing page
16361   // boundaries.
16362 
16363   if (!VT.isSimple())
16364     return false;
16365 
16366   if (VT.isFloatingPoint() && !VT.isVector() &&
16367       !Subtarget.allowsUnalignedFPAccess())
16368     return false;
16369 
16370   if (VT.getSimpleVT().isVector()) {
16371     if (Subtarget.hasVSX()) {
16372       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16373           VT != MVT::v4f32 && VT != MVT::v4i32)
16374         return false;
16375     } else {
16376       return false;
16377     }
16378   }
16379 
16380   if (VT == MVT::ppcf128)
16381     return false;
16382 
16383   if (Fast)
16384     *Fast = true;
16385 
16386   return true;
16387 }
16388 
16389 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16390                                                    EVT VT) const {
16391   return isFMAFasterThanFMulAndFAdd(
16392       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16393 }
16394 
16395 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16396                                                    Type *Ty) const {
16397   switch (Ty->getScalarType()->getTypeID()) {
16398   case Type::FloatTyID:
16399   case Type::DoubleTyID:
16400     return true;
16401   case Type::FP128TyID:
16402     return Subtarget.hasP9Vector();
16403   default:
16404     return false;
16405   }
16406 }
16407 
16408 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
16409 // FIXME: add more patterns which are profitable to hoist.
16410 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16411   if (I->getOpcode() != Instruction::FMul)
16412     return true;
16413 
16414   if (!I->hasOneUse())
16415     return true;
16416 
16417   Instruction *User = I->user_back();
16418   assert(User && "A single use instruction with no uses.");
16419 
16420   if (User->getOpcode() != Instruction::FSub &&
16421       User->getOpcode() != Instruction::FAdd)
16422     return true;
16423 
16424   const TargetOptions &Options = getTargetMachine().Options;
16425   const Function *F = I->getFunction();
16426   const DataLayout &DL = F->getParent()->getDataLayout();
16427   Type *Ty = User->getOperand(0)->getType();
16428 
16429   return !(
16430       isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16431       isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16432       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16433 }
16434 
16435 const MCPhysReg *
16436 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16437   // LR is a callee-save register, but we must treat it as clobbered by any call
16438   // site. Hence we include LR in the scratch registers, which are in turn added
16439   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16440   // to CTR, which is used by any indirect call.
16441   static const MCPhysReg ScratchRegs[] = {
16442     PPC::X12, PPC::LR8, PPC::CTR8, 0
16443   };
16444 
16445   return ScratchRegs;
16446 }
16447 
16448 Register PPCTargetLowering::getExceptionPointerRegister(
16449     const Constant *PersonalityFn) const {
16450   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16451 }
16452 
16453 Register PPCTargetLowering::getExceptionSelectorRegister(
16454     const Constant *PersonalityFn) const {
16455   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16456 }
16457 
16458 bool
16459 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16460                      EVT VT , unsigned DefinedValues) const {
16461   if (VT == MVT::v2i64)
16462     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16463 
16464   if (Subtarget.hasVSX() || Subtarget.hasQPX())
16465     return true;
16466 
16467   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16468 }
16469 
16470 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16471   if (DisableILPPref || Subtarget.enableMachineScheduler())
16472     return TargetLowering::getSchedulingPreference(N);
16473 
16474   return Sched::ILP;
16475 }
16476 
16477 // Create a fast isel object.
16478 FastISel *
16479 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16480                                   const TargetLibraryInfo *LibInfo) const {
16481   return PPC::createFastISel(FuncInfo, LibInfo);
16482 }
16483 
16484 // 'Inverted' means the FMA opcode after negating one multiplicand.
16485 // For example, (fma -a b c) = (fnmsub a b c)
16486 static unsigned invertFMAOpcode(unsigned Opc) {
16487   switch (Opc) {
16488   default:
16489     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16490   case ISD::FMA:
16491     return PPCISD::FNMSUB;
16492   case PPCISD::FNMSUB:
16493     return ISD::FMA;
16494   }
16495 }
16496 
16497 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16498                                                 bool LegalOps, bool OptForSize,
16499                                                 NegatibleCost &Cost,
16500                                                 unsigned Depth) const {
16501   if (Depth > SelectionDAG::MaxRecursionDepth)
16502     return SDValue();
16503 
16504   unsigned Opc = Op.getOpcode();
16505   EVT VT = Op.getValueType();
16506   SDNodeFlags Flags = Op.getNode()->getFlags();
16507 
16508   switch (Opc) {
16509   case PPCISD::FNMSUB:
16510     // TODO: QPX subtarget is deprecated. No transformation here.
16511     if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX())
16512       break;
16513 
16514     const TargetOptions &Options = getTargetMachine().Options;
16515     SDValue N0 = Op.getOperand(0);
16516     SDValue N1 = Op.getOperand(1);
16517     SDValue N2 = Op.getOperand(2);
16518     SDLoc Loc(Op);
16519 
16520     NegatibleCost N2Cost = NegatibleCost::Expensive;
16521     SDValue NegN2 =
16522         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16523 
16524     if (!NegN2)
16525       return SDValue();
16526 
16527     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16528     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16529     // These transformations may change sign of zeroes. For example,
16530     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16531     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16532       // Try and choose the cheaper one to negate.
16533       NegatibleCost N0Cost = NegatibleCost::Expensive;
16534       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16535                                            N0Cost, Depth + 1);
16536 
16537       NegatibleCost N1Cost = NegatibleCost::Expensive;
16538       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16539                                            N1Cost, Depth + 1);
16540 
16541       if (NegN0 && N0Cost <= N1Cost) {
16542         Cost = std::min(N0Cost, N2Cost);
16543         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16544       } else if (NegN1) {
16545         Cost = std::min(N1Cost, N2Cost);
16546         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16547       }
16548     }
16549 
16550     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16551     if (isOperationLegal(ISD::FMA, VT)) {
16552       Cost = N2Cost;
16553       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16554     }
16555 
16556     break;
16557   }
16558 
16559   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16560                                               Cost, Depth);
16561 }
16562 
16563 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16564 bool PPCTargetLowering::useLoadStackGuardNode() const {
16565   if (!Subtarget.isTargetLinux())
16566     return TargetLowering::useLoadStackGuardNode();
16567   return true;
16568 }
16569 
16570 // Override to disable global variable loading on Linux.
16571 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16572   if (!Subtarget.isTargetLinux())
16573     return TargetLowering::insertSSPDeclarations(M);
16574 }
16575 
16576 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16577                                      bool ForCodeSize) const {
16578   if (!VT.isSimple() || !Subtarget.hasVSX())
16579     return false;
16580 
16581   switch(VT.getSimpleVT().SimpleTy) {
16582   default:
16583     // For FP types that are currently not supported by PPC backend, return
16584     // false. Examples: f16, f80.
16585     return false;
16586   case MVT::f32:
16587   case MVT::f64:
16588     if (Subtarget.hasPrefixInstrs()) {
16589       // With prefixed instructions, we can materialize anything that can be
16590       // represented with a 32-bit immediate, not just positive zero.
16591       APFloat APFloatOfImm = Imm;
16592       return convertToNonDenormSingle(APFloatOfImm);
16593     }
16594     LLVM_FALLTHROUGH;
16595   case MVT::ppcf128:
16596     return Imm.isPosZero();
16597   }
16598 }
16599 
16600 // For vector shift operation op, fold
16601 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16602 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16603                                   SelectionDAG &DAG) {
16604   SDValue N0 = N->getOperand(0);
16605   SDValue N1 = N->getOperand(1);
16606   EVT VT = N0.getValueType();
16607   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16608   unsigned Opcode = N->getOpcode();
16609   unsigned TargetOpcode;
16610 
16611   switch (Opcode) {
16612   default:
16613     llvm_unreachable("Unexpected shift operation");
16614   case ISD::SHL:
16615     TargetOpcode = PPCISD::SHL;
16616     break;
16617   case ISD::SRL:
16618     TargetOpcode = PPCISD::SRL;
16619     break;
16620   case ISD::SRA:
16621     TargetOpcode = PPCISD::SRA;
16622     break;
16623   }
16624 
16625   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16626       N1->getOpcode() == ISD::AND)
16627     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16628       if (Mask->getZExtValue() == OpSizeInBits - 1)
16629         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16630 
16631   return SDValue();
16632 }
16633 
16634 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16635   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16636     return Value;
16637 
16638   SDValue N0 = N->getOperand(0);
16639   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16640   if (!Subtarget.isISA3_0() ||
16641       N0.getOpcode() != ISD::SIGN_EXTEND ||
16642       N0.getOperand(0).getValueType() != MVT::i32 ||
16643       CN1 == nullptr || N->getValueType(0) != MVT::i64)
16644     return SDValue();
16645 
16646   // We can't save an operation here if the value is already extended, and
16647   // the existing shift is easier to combine.
16648   SDValue ExtsSrc = N0.getOperand(0);
16649   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16650       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16651     return SDValue();
16652 
16653   SDLoc DL(N0);
16654   SDValue ShiftBy = SDValue(CN1, 0);
16655   // We want the shift amount to be i32 on the extswli, but the shift could
16656   // have an i64.
16657   if (ShiftBy.getValueType() == MVT::i64)
16658     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16659 
16660   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16661                          ShiftBy);
16662 }
16663 
16664 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16665   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16666     return Value;
16667 
16668   return SDValue();
16669 }
16670 
16671 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16672   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16673     return Value;
16674 
16675   return SDValue();
16676 }
16677 
16678 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16679 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16680 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16681 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16682 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16683                                  const PPCSubtarget &Subtarget) {
16684   if (!Subtarget.isPPC64())
16685     return SDValue();
16686 
16687   SDValue LHS = N->getOperand(0);
16688   SDValue RHS = N->getOperand(1);
16689 
16690   auto isZextOfCompareWithConstant = [](SDValue Op) {
16691     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16692         Op.getValueType() != MVT::i64)
16693       return false;
16694 
16695     SDValue Cmp = Op.getOperand(0);
16696     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16697         Cmp.getOperand(0).getValueType() != MVT::i64)
16698       return false;
16699 
16700     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16701       int64_t NegConstant = 0 - Constant->getSExtValue();
16702       // Due to the limitations of the addi instruction,
16703       // -C is required to be [-32768, 32767].
16704       return isInt<16>(NegConstant);
16705     }
16706 
16707     return false;
16708   };
16709 
16710   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16711   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16712 
16713   // If there is a pattern, canonicalize a zext operand to the RHS.
16714   if (LHSHasPattern && !RHSHasPattern)
16715     std::swap(LHS, RHS);
16716   else if (!LHSHasPattern && !RHSHasPattern)
16717     return SDValue();
16718 
16719   SDLoc DL(N);
16720   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16721   SDValue Cmp = RHS.getOperand(0);
16722   SDValue Z = Cmp.getOperand(0);
16723   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16724 
16725   assert(Constant && "Constant Should not be a null pointer.");
16726   int64_t NegConstant = 0 - Constant->getSExtValue();
16727 
16728   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16729   default: break;
16730   case ISD::SETNE: {
16731     //                                 when C == 0
16732     //                             --> addze X, (addic Z, -1).carry
16733     //                            /
16734     // add X, (zext(setne Z, C))--
16735     //                            \    when -32768 <= -C <= 32767 && C != 0
16736     //                             --> addze X, (addic (addi Z, -C), -1).carry
16737     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16738                               DAG.getConstant(NegConstant, DL, MVT::i64));
16739     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16740     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16741                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16742     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16743                        SDValue(Addc.getNode(), 1));
16744     }
16745   case ISD::SETEQ: {
16746     //                                 when C == 0
16747     //                             --> addze X, (subfic Z, 0).carry
16748     //                            /
16749     // add X, (zext(sete  Z, C))--
16750     //                            \    when -32768 <= -C <= 32767 && C != 0
16751     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16752     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16753                               DAG.getConstant(NegConstant, DL, MVT::i64));
16754     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16755     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16756                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16757     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16758                        SDValue(Subc.getNode(), 1));
16759     }
16760   }
16761 
16762   return SDValue();
16763 }
16764 
16765 // Transform
16766 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16767 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16768 // In this case both C1 and C2 must be known constants.
16769 // C1+C2 must fit into a 34 bit signed integer.
16770 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16771                                           const PPCSubtarget &Subtarget) {
16772   if (!Subtarget.isUsingPCRelativeCalls())
16773     return SDValue();
16774 
16775   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16776   // If we find that node try to cast the Global Address and the Constant.
16777   SDValue LHS = N->getOperand(0);
16778   SDValue RHS = N->getOperand(1);
16779 
16780   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16781     std::swap(LHS, RHS);
16782 
16783   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16784     return SDValue();
16785 
16786   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16787   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16788   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16789 
16790   // Check that both casts succeeded.
16791   if (!GSDN || !ConstNode)
16792     return SDValue();
16793 
16794   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16795   SDLoc DL(GSDN);
16796 
16797   // The signed int offset needs to fit in 34 bits.
16798   if (!isInt<34>(NewOffset))
16799     return SDValue();
16800 
16801   // The new global address is a copy of the old global address except
16802   // that it has the updated Offset.
16803   SDValue GA =
16804       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16805                                  NewOffset, GSDN->getTargetFlags());
16806   SDValue MatPCRel =
16807       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16808   return MatPCRel;
16809 }
16810 
16811 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16812   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16813     return Value;
16814 
16815   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16816     return Value;
16817 
16818   return SDValue();
16819 }
16820 
16821 // Detect TRUNCATE operations on bitcasts of float128 values.
16822 // What we are looking for here is the situtation where we extract a subset
16823 // of bits from a 128 bit float.
16824 // This can be of two forms:
16825 // 1) BITCAST of f128 feeding TRUNCATE
16826 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16827 // The reason this is required is because we do not have a legal i128 type
16828 // and so we want to prevent having to store the f128 and then reload part
16829 // of it.
16830 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16831                                            DAGCombinerInfo &DCI) const {
16832   // If we are using CRBits then try that first.
16833   if (Subtarget.useCRBits()) {
16834     // Check if CRBits did anything and return that if it did.
16835     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16836       return CRTruncValue;
16837   }
16838 
16839   SDLoc dl(N);
16840   SDValue Op0 = N->getOperand(0);
16841 
16842   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16843   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16844     EVT VT = N->getValueType(0);
16845     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16846       return SDValue();
16847     SDValue Sub = Op0.getOperand(0);
16848     if (Sub.getOpcode() == ISD::SUB) {
16849       SDValue SubOp0 = Sub.getOperand(0);
16850       SDValue SubOp1 = Sub.getOperand(1);
16851       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16852           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16853         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16854                                SubOp1.getOperand(0),
16855                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16856       }
16857     }
16858   }
16859 
16860   // Looking for a truncate of i128 to i64.
16861   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16862     return SDValue();
16863 
16864   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16865 
16866   // SRL feeding TRUNCATE.
16867   if (Op0.getOpcode() == ISD::SRL) {
16868     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16869     // The right shift has to be by 64 bits.
16870     if (!ConstNode || ConstNode->getZExtValue() != 64)
16871       return SDValue();
16872 
16873     // Switch the element number to extract.
16874     EltToExtract = EltToExtract ? 0 : 1;
16875     // Update Op0 past the SRL.
16876     Op0 = Op0.getOperand(0);
16877   }
16878 
16879   // BITCAST feeding a TRUNCATE possibly via SRL.
16880   if (Op0.getOpcode() == ISD::BITCAST &&
16881       Op0.getValueType() == MVT::i128 &&
16882       Op0.getOperand(0).getValueType() == MVT::f128) {
16883     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16884     return DCI.DAG.getNode(
16885         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16886         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16887   }
16888   return SDValue();
16889 }
16890 
16891 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16892   SelectionDAG &DAG = DCI.DAG;
16893 
16894   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16895   if (!ConstOpOrElement)
16896     return SDValue();
16897 
16898   // An imul is usually smaller than the alternative sequence for legal type.
16899   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16900       isOperationLegal(ISD::MUL, N->getValueType(0)))
16901     return SDValue();
16902 
16903   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16904     switch (this->Subtarget.getCPUDirective()) {
16905     default:
16906       // TODO: enhance the condition for subtarget before pwr8
16907       return false;
16908     case PPC::DIR_PWR8:
16909       //  type        mul     add    shl
16910       // scalar        4       1      1
16911       // vector        7       2      2
16912       return true;
16913     case PPC::DIR_PWR9:
16914     case PPC::DIR_PWR10:
16915     case PPC::DIR_PWR_FUTURE:
16916       //  type        mul     add    shl
16917       // scalar        5       2      2
16918       // vector        7       2      2
16919 
16920       // The cycle RATIO of related operations are showed as a table above.
16921       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16922       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16923       // are 4, it is always profitable; but for 3 instrs patterns
16924       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16925       // So we should only do it for vector type.
16926       return IsAddOne && IsNeg ? VT.isVector() : true;
16927     }
16928   };
16929 
16930   EVT VT = N->getValueType(0);
16931   SDLoc DL(N);
16932 
16933   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16934   bool IsNeg = MulAmt.isNegative();
16935   APInt MulAmtAbs = MulAmt.abs();
16936 
16937   if ((MulAmtAbs - 1).isPowerOf2()) {
16938     // (mul x, 2^N + 1) => (add (shl x, N), x)
16939     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16940 
16941     if (!IsProfitable(IsNeg, true, VT))
16942       return SDValue();
16943 
16944     SDValue Op0 = N->getOperand(0);
16945     SDValue Op1 =
16946         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16947                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16948     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16949 
16950     if (!IsNeg)
16951       return Res;
16952 
16953     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16954   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16955     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16956     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16957 
16958     if (!IsProfitable(IsNeg, false, VT))
16959       return SDValue();
16960 
16961     SDValue Op0 = N->getOperand(0);
16962     SDValue Op1 =
16963         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16964                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16965 
16966     if (!IsNeg)
16967       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16968     else
16969       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16970 
16971   } else {
16972     return SDValue();
16973   }
16974 }
16975 
16976 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16977 // in combiner since we need to check SD flags and other subtarget features.
16978 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16979                                           DAGCombinerInfo &DCI) const {
16980   SDValue N0 = N->getOperand(0);
16981   SDValue N1 = N->getOperand(1);
16982   SDValue N2 = N->getOperand(2);
16983   SDNodeFlags Flags = N->getFlags();
16984   EVT VT = N->getValueType(0);
16985   SelectionDAG &DAG = DCI.DAG;
16986   const TargetOptions &Options = getTargetMachine().Options;
16987   unsigned Opc = N->getOpcode();
16988   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16989   bool LegalOps = !DCI.isBeforeLegalizeOps();
16990   SDLoc Loc(N);
16991 
16992   // TODO: QPX subtarget is deprecated. No transformation here.
16993   if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT))
16994     return SDValue();
16995 
16996   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16997   // since (fnmsub a b c)=-0 while c-ab=+0.
16998   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16999     return SDValue();
17000 
17001   // (fma (fneg a) b c) => (fnmsub a b c)
17002   // (fnmsub (fneg a) b c) => (fma a b c)
17003   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17004     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17005 
17006   // (fma a (fneg b) c) => (fnmsub a b c)
17007   // (fnmsub a (fneg b) c) => (fma a b c)
17008   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17009     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17010 
17011   return SDValue();
17012 }
17013 
17014 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17015   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17016   if (!Subtarget.is64BitELFABI())
17017     return false;
17018 
17019   // If not a tail call then no need to proceed.
17020   if (!CI->isTailCall())
17021     return false;
17022 
17023   // If sibling calls have been disabled and tail-calls aren't guaranteed
17024   // there is no reason to duplicate.
17025   auto &TM = getTargetMachine();
17026   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17027     return false;
17028 
17029   // Can't tail call a function called indirectly, or if it has variadic args.
17030   const Function *Callee = CI->getCalledFunction();
17031   if (!Callee || Callee->isVarArg())
17032     return false;
17033 
17034   // Make sure the callee and caller calling conventions are eligible for tco.
17035   const Function *Caller = CI->getParent()->getParent();
17036   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17037                                            CI->getCallingConv()))
17038       return false;
17039 
17040   // If the function is local then we have a good chance at tail-calling it
17041   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17042 }
17043 
17044 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17045   if (!Subtarget.hasVSX())
17046     return false;
17047   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17048     return true;
17049   return VT == MVT::f32 || VT == MVT::f64 ||
17050     VT == MVT::v4f32 || VT == MVT::v2f64;
17051 }
17052 
17053 bool PPCTargetLowering::
17054 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17055   const Value *Mask = AndI.getOperand(1);
17056   // If the mask is suitable for andi. or andis. we should sink the and.
17057   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17058     // Can't handle constants wider than 64-bits.
17059     if (CI->getBitWidth() > 64)
17060       return false;
17061     int64_t ConstVal = CI->getZExtValue();
17062     return isUInt<16>(ConstVal) ||
17063       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17064   }
17065 
17066   // For non-constant masks, we can always use the record-form and.
17067   return true;
17068 }
17069 
17070 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17071 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17072 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17073 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17074 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17075 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17076   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17077   assert(Subtarget.hasP9Altivec() &&
17078          "Only combine this when P9 altivec supported!");
17079   EVT VT = N->getValueType(0);
17080   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17081     return SDValue();
17082 
17083   SelectionDAG &DAG = DCI.DAG;
17084   SDLoc dl(N);
17085   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17086     // Even for signed integers, if it's known to be positive (as signed
17087     // integer) due to zero-extended inputs.
17088     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17089     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17090     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17091          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17092         (SubOpcd1 == ISD::ZERO_EXTEND ||
17093          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17094       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17095                          N->getOperand(0)->getOperand(0),
17096                          N->getOperand(0)->getOperand(1),
17097                          DAG.getTargetConstant(0, dl, MVT::i32));
17098     }
17099 
17100     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17101     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17102         N->getOperand(0).hasOneUse()) {
17103       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17104                          N->getOperand(0)->getOperand(0),
17105                          N->getOperand(0)->getOperand(1),
17106                          DAG.getTargetConstant(1, dl, MVT::i32));
17107     }
17108   }
17109 
17110   return SDValue();
17111 }
17112 
17113 // For type v4i32/v8ii16/v16i8, transform
17114 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17115 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17116 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17117 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17118 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17119                                           DAGCombinerInfo &DCI) const {
17120   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17121   assert(Subtarget.hasP9Altivec() &&
17122          "Only combine this when P9 altivec supported!");
17123 
17124   SelectionDAG &DAG = DCI.DAG;
17125   SDLoc dl(N);
17126   SDValue Cond = N->getOperand(0);
17127   SDValue TrueOpnd = N->getOperand(1);
17128   SDValue FalseOpnd = N->getOperand(2);
17129   EVT VT = N->getOperand(1).getValueType();
17130 
17131   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17132       FalseOpnd.getOpcode() != ISD::SUB)
17133     return SDValue();
17134 
17135   // ABSD only available for type v4i32/v8i16/v16i8
17136   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17137     return SDValue();
17138 
17139   // At least to save one more dependent computation
17140   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17141     return SDValue();
17142 
17143   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17144 
17145   // Can only handle unsigned comparison here
17146   switch (CC) {
17147   default:
17148     return SDValue();
17149   case ISD::SETUGT:
17150   case ISD::SETUGE:
17151     break;
17152   case ISD::SETULT:
17153   case ISD::SETULE:
17154     std::swap(TrueOpnd, FalseOpnd);
17155     break;
17156   }
17157 
17158   SDValue CmpOpnd1 = Cond.getOperand(0);
17159   SDValue CmpOpnd2 = Cond.getOperand(1);
17160 
17161   // SETCC CmpOpnd1 CmpOpnd2 cond
17162   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17163   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17164   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17165       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17166       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17167       FalseOpnd.getOperand(1) == CmpOpnd1) {
17168     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17169                        CmpOpnd1, CmpOpnd2,
17170                        DAG.getTargetConstant(0, dl, MVT::i32));
17171   }
17172 
17173   return SDValue();
17174 }
17175