xref: /freebsd/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/StringSwitch.h"
36 #include "llvm/CodeGen/CallingConvLower.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineJumpTableInfo.h"
44 #include "llvm/CodeGen/MachineLoopInfo.h"
45 #include "llvm/CodeGen/MachineMemOperand.h"
46 #include "llvm/CodeGen/MachineModuleInfo.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/Constant.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Intrinsics.h"
68 #include "llvm/IR/IntrinsicsPowerPC.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/MC/MCExpr.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/MC/MCSectionXCOFF.h"
77 #include "llvm/MC/MCSymbolXCOFF.h"
78 #include "llvm/Support/AtomicOrdering.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <list>
98 #include <optional>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 static cl::opt<bool>
130     DisablePerfectShuffle("ppc-disable-perfect-shuffle",
131                           cl::desc("disable vector permute decomposition"),
132                           cl::init(true), cl::Hidden);
133 
134 cl::opt<bool> DisableAutoPairedVecSt(
135     "disable-auto-paired-vec-st",
136     cl::desc("disable automatically generated 32byte paired vector stores"),
137     cl::init(true), cl::Hidden);
138 
139 STATISTIC(NumTailCalls, "Number of tail calls");
140 STATISTIC(NumSiblingCalls, "Number of sibling calls");
141 STATISTIC(ShufflesHandledWithVPERM,
142           "Number of shuffles lowered to a VPERM or XXPERM");
143 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
144 
145 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
146 
147 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
148 
149 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
150 
151 // FIXME: Remove this once the bug has been fixed!
152 extern cl::opt<bool> ANDIGlueBug;
153 
154 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
155                                      const PPCSubtarget &STI)
156     : TargetLowering(TM), Subtarget(STI) {
157   // Initialize map that relates the PPC addressing modes to the computed flags
158   // of a load/store instruction. The map is used to determine the optimal
159   // addressing mode when selecting load and stores.
160   initializeAddrModeMap();
161   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
162   // arguments are at least 4/8 bytes aligned.
163   bool isPPC64 = Subtarget.isPPC64();
164   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
165 
166   // Set up the register classes.
167   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
168   if (!useSoftFloat()) {
169     if (hasSPE()) {
170       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
171       // EFPU2 APU only supports f32
172       if (!Subtarget.hasEFPU2())
173         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
174     } else {
175       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
176       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
177     }
178   }
179 
180   // Match BITREVERSE to customized fast code sequence in the td file.
181   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
182   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
183 
184   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
185   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
186 
187   // Custom lower inline assembly to check for special registers.
188   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
189   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
190 
191   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
192   for (MVT VT : MVT::integer_valuetypes()) {
193     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
194     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
195   }
196 
197   if (Subtarget.isISA3_0()) {
198     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
199     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
200     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
201     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
202   } else {
203     // No extending loads from f16 or HW conversions back and forth.
204     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
205     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
206     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
207     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
208     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
209     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
210     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
211     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
212   }
213 
214   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
215 
216   // PowerPC has pre-inc load and store's.
217   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
218   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
219   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
220   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
221   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
222   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
223   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
224   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
225   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
226   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
227   if (!Subtarget.hasSPE()) {
228     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
229     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
230     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
231     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
232   }
233 
234   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
235   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
236   for (MVT VT : ScalarIntVTs) {
237     setOperationAction(ISD::ADDC, VT, Legal);
238     setOperationAction(ISD::ADDE, VT, Legal);
239     setOperationAction(ISD::SUBC, VT, Legal);
240     setOperationAction(ISD::SUBE, VT, Legal);
241   }
242 
243   if (Subtarget.useCRBits()) {
244     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
245 
246     if (isPPC64 || Subtarget.hasFPCVT()) {
247       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
248       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
249                         isPPC64 ? MVT::i64 : MVT::i32);
250       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
251       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253 
254       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
255       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
256                          isPPC64 ? MVT::i64 : MVT::i32);
257       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
258       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
259                         isPPC64 ? MVT::i64 : MVT::i32);
260 
261       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
262       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
263                         isPPC64 ? MVT::i64 : MVT::i32);
264       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
265       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
266                         isPPC64 ? MVT::i64 : MVT::i32);
267 
268       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
269       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
270                         isPPC64 ? MVT::i64 : MVT::i32);
271       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
272       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
273                         isPPC64 ? MVT::i64 : MVT::i32);
274     } else {
275       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
276       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
277       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
278       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
279     }
280 
281     // PowerPC does not support direct load/store of condition registers.
282     setOperationAction(ISD::LOAD, MVT::i1, Custom);
283     setOperationAction(ISD::STORE, MVT::i1, Custom);
284 
285     // FIXME: Remove this once the ANDI glue bug is fixed:
286     if (ANDIGlueBug)
287       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
288 
289     for (MVT VT : MVT::integer_valuetypes()) {
290       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
291       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
292       setTruncStoreAction(VT, MVT::i1, Expand);
293     }
294 
295     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
296   }
297 
298   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
299   // PPC (the libcall is not available).
300   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
301   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
302   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
303   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
304 
305   // We do not currently implement these libm ops for PowerPC.
306   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
307   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
308   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
309   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
310   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
311   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
312 
313   // PowerPC has no SREM/UREM instructions unless we are on P9
314   // On P9 we may use a hardware instruction to compute the remainder.
315   // When the result of both the remainder and the division is required it is
316   // more efficient to compute the remainder from the result of the division
317   // rather than use the remainder instruction. The instructions are legalized
318   // directly because the DivRemPairsPass performs the transformation at the IR
319   // level.
320   if (Subtarget.isISA3_0()) {
321     setOperationAction(ISD::SREM, MVT::i32, Legal);
322     setOperationAction(ISD::UREM, MVT::i32, Legal);
323     setOperationAction(ISD::SREM, MVT::i64, Legal);
324     setOperationAction(ISD::UREM, MVT::i64, Legal);
325   } else {
326     setOperationAction(ISD::SREM, MVT::i32, Expand);
327     setOperationAction(ISD::UREM, MVT::i32, Expand);
328     setOperationAction(ISD::SREM, MVT::i64, Expand);
329     setOperationAction(ISD::UREM, MVT::i64, Expand);
330   }
331 
332   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
333   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
334   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
335   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
336   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
337   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
338   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
339   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
340   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
341 
342   // Handle constrained floating-point operations of scalar.
343   // TODO: Handle SPE specific operation.
344   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
345   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
346   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
347   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
348   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
349 
350   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
351   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
352   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
353   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
354 
355   if (!Subtarget.hasSPE()) {
356     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
357     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
358   }
359 
360   if (Subtarget.hasVSX()) {
361     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
363   }
364 
365   if (Subtarget.hasFSQRT()) {
366     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
367     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
368   }
369 
370   if (Subtarget.hasFPRND()) {
371     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
372     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
373     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
374     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
375 
376     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
377     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
378     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
379     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
380   }
381 
382   // We don't support sin/cos/sqrt/fmod/pow
383   setOperationAction(ISD::FSIN , MVT::f64, Expand);
384   setOperationAction(ISD::FCOS , MVT::f64, Expand);
385   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
386   setOperationAction(ISD::FREM , MVT::f64, Expand);
387   setOperationAction(ISD::FPOW , MVT::f64, Expand);
388   setOperationAction(ISD::FSIN , MVT::f32, Expand);
389   setOperationAction(ISD::FCOS , MVT::f32, Expand);
390   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
391   setOperationAction(ISD::FREM , MVT::f32, Expand);
392   setOperationAction(ISD::FPOW , MVT::f32, Expand);
393 
394   // MASS transformation for LLVM intrinsics with replicating fast-math flag
395   // to be consistent to PPCGenScalarMASSEntries pass
396   if (TM.getOptLevel() == CodeGenOpt::Aggressive) {
397     setOperationAction(ISD::FSIN , MVT::f64, Custom);
398     setOperationAction(ISD::FCOS , MVT::f64, Custom);
399     setOperationAction(ISD::FPOW , MVT::f64, Custom);
400     setOperationAction(ISD::FLOG, MVT::f64, Custom);
401     setOperationAction(ISD::FLOG10, MVT::f64, Custom);
402     setOperationAction(ISD::FEXP, MVT::f64, Custom);
403     setOperationAction(ISD::FSIN , MVT::f32, Custom);
404     setOperationAction(ISD::FCOS , MVT::f32, Custom);
405     setOperationAction(ISD::FPOW , MVT::f32, Custom);
406     setOperationAction(ISD::FLOG, MVT::f32, Custom);
407     setOperationAction(ISD::FLOG10, MVT::f32, Custom);
408     setOperationAction(ISD::FEXP, MVT::f32, Custom);
409   }
410 
411   if (Subtarget.hasSPE()) {
412     setOperationAction(ISD::FMA  , MVT::f64, Expand);
413     setOperationAction(ISD::FMA  , MVT::f32, Expand);
414   } else {
415     setOperationAction(ISD::FMA  , MVT::f64, Legal);
416     setOperationAction(ISD::FMA  , MVT::f32, Legal);
417   }
418 
419   if (Subtarget.hasSPE())
420     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
421 
422   setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
423 
424   // If we're enabling GP optimizations, use hardware square root
425   if (!Subtarget.hasFSQRT() &&
426       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
427         Subtarget.hasFRE()))
428     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
429 
430   if (!Subtarget.hasFSQRT() &&
431       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
432         Subtarget.hasFRES()))
433     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
434 
435   if (Subtarget.hasFCPSGN()) {
436     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
437     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
438   } else {
439     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
440     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
441   }
442 
443   if (Subtarget.hasFPRND()) {
444     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
445     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
446     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
447     setOperationAction(ISD::FROUND, MVT::f64, Legal);
448 
449     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
450     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
451     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
452     setOperationAction(ISD::FROUND, MVT::f32, Legal);
453   }
454 
455   // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP
456   // instruction xxbrd to speed up scalar BSWAP64.
457   if (Subtarget.isISA3_1()) {
458     setOperationAction(ISD::BSWAP, MVT::i32, Legal);
459     setOperationAction(ISD::BSWAP, MVT::i64, Legal);
460   } else {
461     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
462     setOperationAction(
463         ISD::BSWAP, MVT::i64,
464         (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand);
465   }
466 
467   // CTPOP or CTTZ were introduced in P8/P9 respectively
468   if (Subtarget.isISA3_0()) {
469     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
470     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
471   } else {
472     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
473     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
474   }
475 
476   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
477     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
478     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
479   } else {
480     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
481     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
482   }
483 
484   // PowerPC does not have ROTR
485   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
486   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
487 
488   if (!Subtarget.useCRBits()) {
489     // PowerPC does not have Select
490     setOperationAction(ISD::SELECT, MVT::i32, Expand);
491     setOperationAction(ISD::SELECT, MVT::i64, Expand);
492     setOperationAction(ISD::SELECT, MVT::f32, Expand);
493     setOperationAction(ISD::SELECT, MVT::f64, Expand);
494   }
495 
496   // PowerPC wants to turn select_cc of FP into fsel when possible.
497   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
498   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
499 
500   // PowerPC wants to optimize integer setcc a bit
501   if (!Subtarget.useCRBits())
502     setOperationAction(ISD::SETCC, MVT::i32, Custom);
503 
504   if (Subtarget.hasFPU()) {
505     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
506     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
507     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
508 
509     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
510     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
511     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
512   }
513 
514   // PowerPC does not have BRCOND which requires SetCC
515   if (!Subtarget.useCRBits())
516     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
517 
518   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
519 
520   if (Subtarget.hasSPE()) {
521     // SPE has built-in conversions
522     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
523     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
524     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
525     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
526     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
527     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
528 
529     // SPE supports signaling compare of f32/f64.
530     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
531     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
532   } else {
533     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
534     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
535     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
536 
537     // PowerPC does not have [U|S]INT_TO_FP
538     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
539     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
540     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
541     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
542   }
543 
544   if (Subtarget.hasDirectMove() && isPPC64) {
545     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
546     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
547     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
548     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
549     if (TM.Options.UnsafeFPMath) {
550       setOperationAction(ISD::LRINT, MVT::f64, Legal);
551       setOperationAction(ISD::LRINT, MVT::f32, Legal);
552       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
553       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
554       setOperationAction(ISD::LROUND, MVT::f64, Legal);
555       setOperationAction(ISD::LROUND, MVT::f32, Legal);
556       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
557       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
558     }
559   } else {
560     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
561     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
562     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
563     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
564   }
565 
566   // We cannot sextinreg(i1).  Expand to shifts.
567   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
568 
569   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
570   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
571   // support continuation, user-level threading, and etc.. As a result, no
572   // other SjLj exception interfaces are implemented and please don't build
573   // your own exception handling based on them.
574   // LLVM/Clang supports zero-cost DWARF exception handling.
575   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
576   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
577 
578   // We want to legalize GlobalAddress and ConstantPool nodes into the
579   // appropriate instructions to materialize the address.
580   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
581   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
582   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
583   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
584   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
585   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
586   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
587   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
588   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
589   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
590 
591   // TRAP is legal.
592   setOperationAction(ISD::TRAP, MVT::Other, Legal);
593 
594   // TRAMPOLINE is custom lowered.
595   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
596   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
597 
598   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
599   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
600 
601   if (Subtarget.is64BitELFABI()) {
602     // VAARG always uses double-word chunks, so promote anything smaller.
603     setOperationAction(ISD::VAARG, MVT::i1, Promote);
604     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
605     setOperationAction(ISD::VAARG, MVT::i8, Promote);
606     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
607     setOperationAction(ISD::VAARG, MVT::i16, Promote);
608     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
609     setOperationAction(ISD::VAARG, MVT::i32, Promote);
610     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
611     setOperationAction(ISD::VAARG, MVT::Other, Expand);
612   } else if (Subtarget.is32BitELFABI()) {
613     // VAARG is custom lowered with the 32-bit SVR4 ABI.
614     setOperationAction(ISD::VAARG, MVT::Other, Custom);
615     setOperationAction(ISD::VAARG, MVT::i64, Custom);
616   } else
617     setOperationAction(ISD::VAARG, MVT::Other, Expand);
618 
619   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
620   if (Subtarget.is32BitELFABI())
621     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
622   else
623     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
624 
625   // Use the default implementation.
626   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
627   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
628   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
629   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
630   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
631   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
632   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
633   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
634   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
635 
636   // We want to custom lower some of our intrinsics.
637   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
638   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
639   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
640   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
641   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom);
642 
643   // To handle counter-based loop conditions.
644   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
645 
646   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
647   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
648   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
649   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
650 
651   // Comparisons that require checking two conditions.
652   if (Subtarget.hasSPE()) {
653     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
654     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
655     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
656     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
657   }
658   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
659   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
660   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
661   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
662   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
663   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
664   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
665   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
666   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
667   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
668   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
669   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
670 
671   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
672   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
673 
674   if (Subtarget.has64BitSupport()) {
675     // They also have instructions for converting between i64 and fp.
676     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
677     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
678     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
679     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
680     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
681     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
682     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
683     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
684     // This is just the low 32 bits of a (signed) fp->i64 conversion.
685     // We cannot do this with Promote because i64 is not a legal type.
686     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
687     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
688 
689     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
690       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
691       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
692     }
693   } else {
694     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
695     if (Subtarget.hasSPE()) {
696       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
697       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
698     } else {
699       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
700       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
701     }
702   }
703 
704   // With the instructions enabled under FPCVT, we can do everything.
705   if (Subtarget.hasFPCVT()) {
706     if (Subtarget.has64BitSupport()) {
707       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
708       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
709       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
710       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
711       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
712       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
713       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
714       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
715     }
716 
717     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
718     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
719     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
720     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
721     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
722     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
723     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
724     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
725   }
726 
727   if (Subtarget.use64BitRegs()) {
728     // 64-bit PowerPC implementations can support i64 types directly
729     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
730     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
731     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
732     // 64-bit PowerPC wants to expand i128 shifts itself.
733     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
734     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
735     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
736   } else {
737     // 32-bit PowerPC wants to expand i64 shifts itself.
738     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
739     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
740     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
741   }
742 
743   // PowerPC has better expansions for funnel shifts than the generic
744   // TargetLowering::expandFunnelShift.
745   if (Subtarget.has64BitSupport()) {
746     setOperationAction(ISD::FSHL, MVT::i64, Custom);
747     setOperationAction(ISD::FSHR, MVT::i64, Custom);
748   }
749   setOperationAction(ISD::FSHL, MVT::i32, Custom);
750   setOperationAction(ISD::FSHR, MVT::i32, Custom);
751 
752   if (Subtarget.hasVSX()) {
753     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
754     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
755     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
756     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
757   }
758 
759   if (Subtarget.hasAltivec()) {
760     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
761       setOperationAction(ISD::SADDSAT, VT, Legal);
762       setOperationAction(ISD::SSUBSAT, VT, Legal);
763       setOperationAction(ISD::UADDSAT, VT, Legal);
764       setOperationAction(ISD::USUBSAT, VT, Legal);
765     }
766     // First set operation action for all vector types to expand. Then we
767     // will selectively turn on ones that can be effectively codegen'd.
768     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
769       // add/sub are legal for all supported vector VT's.
770       setOperationAction(ISD::ADD, VT, Legal);
771       setOperationAction(ISD::SUB, VT, Legal);
772 
773       // For v2i64, these are only valid with P8Vector. This is corrected after
774       // the loop.
775       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
776         setOperationAction(ISD::SMAX, VT, Legal);
777         setOperationAction(ISD::SMIN, VT, Legal);
778         setOperationAction(ISD::UMAX, VT, Legal);
779         setOperationAction(ISD::UMIN, VT, Legal);
780       }
781       else {
782         setOperationAction(ISD::SMAX, VT, Expand);
783         setOperationAction(ISD::SMIN, VT, Expand);
784         setOperationAction(ISD::UMAX, VT, Expand);
785         setOperationAction(ISD::UMIN, VT, Expand);
786       }
787 
788       if (Subtarget.hasVSX()) {
789         setOperationAction(ISD::FMAXNUM, VT, Legal);
790         setOperationAction(ISD::FMINNUM, VT, Legal);
791       }
792 
793       // Vector instructions introduced in P8
794       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
795         setOperationAction(ISD::CTPOP, VT, Legal);
796         setOperationAction(ISD::CTLZ, VT, Legal);
797       }
798       else {
799         setOperationAction(ISD::CTPOP, VT, Expand);
800         setOperationAction(ISD::CTLZ, VT, Expand);
801       }
802 
803       // Vector instructions introduced in P9
804       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
805         setOperationAction(ISD::CTTZ, VT, Legal);
806       else
807         setOperationAction(ISD::CTTZ, VT, Expand);
808 
809       // We promote all shuffles to v16i8.
810       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
811       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
812 
813       // We promote all non-typed operations to v4i32.
814       setOperationAction(ISD::AND   , VT, Promote);
815       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
816       setOperationAction(ISD::OR    , VT, Promote);
817       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
818       setOperationAction(ISD::XOR   , VT, Promote);
819       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
820       setOperationAction(ISD::LOAD  , VT, Promote);
821       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
822       setOperationAction(ISD::SELECT, VT, Promote);
823       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
824       setOperationAction(ISD::VSELECT, VT, Legal);
825       setOperationAction(ISD::SELECT_CC, VT, Promote);
826       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
827       setOperationAction(ISD::STORE, VT, Promote);
828       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
829 
830       // No other operations are legal.
831       setOperationAction(ISD::MUL , VT, Expand);
832       setOperationAction(ISD::SDIV, VT, Expand);
833       setOperationAction(ISD::SREM, VT, Expand);
834       setOperationAction(ISD::UDIV, VT, Expand);
835       setOperationAction(ISD::UREM, VT, Expand);
836       setOperationAction(ISD::FDIV, VT, Expand);
837       setOperationAction(ISD::FREM, VT, Expand);
838       setOperationAction(ISD::FNEG, VT, Expand);
839       setOperationAction(ISD::FSQRT, VT, Expand);
840       setOperationAction(ISD::FLOG, VT, Expand);
841       setOperationAction(ISD::FLOG10, VT, Expand);
842       setOperationAction(ISD::FLOG2, VT, Expand);
843       setOperationAction(ISD::FEXP, VT, Expand);
844       setOperationAction(ISD::FEXP2, VT, Expand);
845       setOperationAction(ISD::FSIN, VT, Expand);
846       setOperationAction(ISD::FCOS, VT, Expand);
847       setOperationAction(ISD::FABS, VT, Expand);
848       setOperationAction(ISD::FFLOOR, VT, Expand);
849       setOperationAction(ISD::FCEIL,  VT, Expand);
850       setOperationAction(ISD::FTRUNC, VT, Expand);
851       setOperationAction(ISD::FRINT,  VT, Expand);
852       setOperationAction(ISD::FNEARBYINT, VT, Expand);
853       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
854       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
855       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
856       setOperationAction(ISD::MULHU, VT, Expand);
857       setOperationAction(ISD::MULHS, VT, Expand);
858       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
859       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
860       setOperationAction(ISD::UDIVREM, VT, Expand);
861       setOperationAction(ISD::SDIVREM, VT, Expand);
862       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
863       setOperationAction(ISD::FPOW, VT, Expand);
864       setOperationAction(ISD::BSWAP, VT, Expand);
865       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
866       setOperationAction(ISD::ROTL, VT, Expand);
867       setOperationAction(ISD::ROTR, VT, Expand);
868 
869       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
870         setTruncStoreAction(VT, InnerVT, Expand);
871         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
872         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
873         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
874       }
875     }
876     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
877     if (!Subtarget.hasP8Vector()) {
878       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
879       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
880       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
881       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
882     }
883 
884     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
885     // with merges, splats, etc.
886     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
887 
888     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
889     // are cheap, so handle them before they get expanded to scalar.
890     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
891     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
892     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
893     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
894     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
895 
896     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
897     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
898     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
899     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
900     setOperationAction(ISD::SELECT, MVT::v4i32,
901                        Subtarget.useCRBits() ? Legal : Expand);
902     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
903     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
904     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
905     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
906     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
907     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
908     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
909     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
910     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
911     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
912     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
913     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
914     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
915 
916     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
917     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
918     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
919     if (Subtarget.hasAltivec())
920       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
921         setOperationAction(ISD::ROTL, VT, Legal);
922     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
923     if (Subtarget.hasP8Altivec())
924       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
925 
926     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
927     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
928     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
929     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
930 
931     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
932     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
933 
934     if (Subtarget.hasVSX()) {
935       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
936       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
937       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
938     }
939 
940     if (Subtarget.hasP8Altivec())
941       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
942     else
943       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
944 
945     if (Subtarget.isISA3_1()) {
946       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
947       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
948       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
949       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
950       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
951       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
952       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
953       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
954       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
955       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
956       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
957       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
958       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
959       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
960       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
961       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
962       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
963       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
964     }
965 
966     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
967     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
968 
969     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
970     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
971 
972     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
973     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
974     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
975     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
976 
977     // Altivec does not contain unordered floating-point compare instructions
978     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
979     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
980     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
981     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
982 
983     if (Subtarget.hasVSX()) {
984       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
985       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
986       if (Subtarget.hasP8Vector()) {
987         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
988         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
989       }
990       if (Subtarget.hasDirectMove() && isPPC64) {
991         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
992         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
993         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
994         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
995         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
996         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
997         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
998         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
999       }
1000       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
1001 
1002       // The nearbyint variants are not allowed to raise the inexact exception
1003       // so we can only code-gen them with unsafe math.
1004       if (TM.Options.UnsafeFPMath) {
1005         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1006         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1007       }
1008 
1009       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
1010       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
1011       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
1012       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
1013       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
1014       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
1015       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1016       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1017 
1018       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
1019       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
1020       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1021       setOperationAction(ISD::FROUND, MVT::f32, Legal);
1022       setOperationAction(ISD::FRINT, MVT::f32, Legal);
1023 
1024       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
1025       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
1026 
1027       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
1028       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
1029 
1030       // Share the Altivec comparison restrictions.
1031       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
1032       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
1033       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
1034       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
1035 
1036       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1037       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1038 
1039       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
1040 
1041       if (Subtarget.hasP8Vector())
1042         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1043 
1044       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1045 
1046       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1047       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1048       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1049 
1050       if (Subtarget.hasP8Altivec()) {
1051         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1052         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1053         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1054 
1055         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1056         // SRL, but not for SRA because of the instructions available:
1057         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1058         // doing
1059         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1060         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1061         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1062 
1063         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1064       }
1065       else {
1066         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1067         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1068         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1069 
1070         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1071 
1072         // VSX v2i64 only supports non-arithmetic operations.
1073         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1074         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1075       }
1076 
1077       if (Subtarget.isISA3_1())
1078         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1079       else
1080         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1081 
1082       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1083       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1084       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1085       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1086 
1087       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
1088 
1089       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1090       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1091       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1092       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1093       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1094       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1095       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1096       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1097 
1098       // Custom handling for partial vectors of integers converted to
1099       // floating point. We already have optimal handling for v2i32 through
1100       // the DAG combine, so those aren't necessary.
1101       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1102       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1103       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1104       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1105       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1106       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1107       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1108       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1109       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1110       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1111       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1112       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1113       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1114       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1115       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1116       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1117 
1118       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1119       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1120       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1121       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1122       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1123       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1124 
1125       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1126       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1127 
1128       // Handle constrained floating-point operations of vector.
1129       // The predictor is `hasVSX` because altivec instruction has
1130       // no exception but VSX vector instruction has.
1131       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1132       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1133       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1134       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1135       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1136       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1137       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1138       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1139       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1140       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1141       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1142       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1143       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1144 
1145       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1146       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1147       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1148       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1149       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1150       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1151       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1152       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1153       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1154       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1155       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1156       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1157       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1158 
1159       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1160       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1161 
1162       for (MVT FPT : MVT::fp_valuetypes())
1163         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1164 
1165       // Expand the SELECT to SELECT_CC
1166       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1167 
1168       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1169       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1170 
1171       // No implementation for these ops for PowerPC.
1172       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1173       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1174       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1175       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1176       setOperationAction(ISD::FREM, MVT::f128, Expand);
1177     }
1178 
1179     if (Subtarget.hasP8Altivec()) {
1180       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1181       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1182     }
1183 
1184     if (Subtarget.hasP9Vector()) {
1185       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1186       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1187 
1188       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1189       // SRL, but not for SRA because of the instructions available:
1190       // VS{RL} and VS{RL}O.
1191       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1192       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1193       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1194 
1195       setOperationAction(ISD::FADD, MVT::f128, Legal);
1196       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1197       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1198       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1199       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1200 
1201       setOperationAction(ISD::FMA, MVT::f128, Legal);
1202       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1203       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1204       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1205       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1206       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1207       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1208 
1209       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1210       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1211       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1212       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1213       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1214       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1215 
1216       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1217       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1218       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1219 
1220       // Handle constrained floating-point operations of fp128
1221       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1222       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1223       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1224       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1225       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1226       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1227       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1228       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1229       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1230       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1231       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1232       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1233       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1234       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1235       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1236       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1237       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1238       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1239       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1240       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1241     } else if (Subtarget.hasVSX()) {
1242       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1243       setOperationAction(ISD::STORE, MVT::f128, Promote);
1244 
1245       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1246       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1247 
1248       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1249       // fp_to_uint and int_to_fp.
1250       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1251       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1252 
1253       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1254       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1255       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1256       setOperationAction(ISD::FABS, MVT::f128, Expand);
1257       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1258       setOperationAction(ISD::FMA, MVT::f128, Expand);
1259       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1260 
1261       // Expand the fp_extend if the target type is fp128.
1262       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1263       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1264 
1265       // Expand the fp_round if the source type is fp128.
1266       for (MVT VT : {MVT::f32, MVT::f64}) {
1267         setOperationAction(ISD::FP_ROUND, VT, Custom);
1268         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1269       }
1270 
1271       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1272       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1273       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1274       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1275 
1276       // Lower following f128 select_cc pattern:
1277       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1278       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1279 
1280       // We need to handle f128 SELECT_CC with integer result type.
1281       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1282       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1283     }
1284 
1285     if (Subtarget.hasP9Altivec()) {
1286       if (Subtarget.isISA3_1()) {
1287         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1288         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1289         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1290         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1291       } else {
1292         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1293         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1294       }
1295       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1296       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1297       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1298       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1299       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1300       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1301       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1302     }
1303 
1304     if (Subtarget.hasP10Vector()) {
1305       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1306     }
1307   }
1308 
1309   if (Subtarget.pairedVectorMemops()) {
1310     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1311     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1312     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1313   }
1314   if (Subtarget.hasMMA()) {
1315     if (Subtarget.isISAFuture())
1316       addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass);
1317     else
1318       addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1319     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1320     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1321     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1322   }
1323 
1324   if (Subtarget.has64BitSupport())
1325     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1326 
1327   if (Subtarget.isISA3_1())
1328     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1329 
1330   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1331 
1332   if (!isPPC64) {
1333     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1334     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1335   }
1336 
1337   if (shouldInlineQuadwordAtomics()) {
1338     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1339     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1340     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1341   }
1342 
1343   setBooleanContents(ZeroOrOneBooleanContent);
1344 
1345   if (Subtarget.hasAltivec()) {
1346     // Altivec instructions set fields to all zeros or all ones.
1347     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1348   }
1349 
1350   setLibcallName(RTLIB::MULO_I128, nullptr);
1351   if (!isPPC64) {
1352     // These libcalls are not available in 32-bit.
1353     setLibcallName(RTLIB::SHL_I128, nullptr);
1354     setLibcallName(RTLIB::SRL_I128, nullptr);
1355     setLibcallName(RTLIB::SRA_I128, nullptr);
1356     setLibcallName(RTLIB::MUL_I128, nullptr);
1357     setLibcallName(RTLIB::MULO_I64, nullptr);
1358   }
1359 
1360   if (!isPPC64)
1361     setMaxAtomicSizeInBitsSupported(32);
1362   else if (shouldInlineQuadwordAtomics())
1363     setMaxAtomicSizeInBitsSupported(128);
1364   else
1365     setMaxAtomicSizeInBitsSupported(64);
1366 
1367   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1368 
1369   // We have target-specific dag combine patterns for the following nodes:
1370   setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL,
1371                        ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR});
1372   if (Subtarget.hasFPCVT())
1373     setTargetDAGCombine(ISD::UINT_TO_FP);
1374   setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC});
1375   if (Subtarget.useCRBits())
1376     setTargetDAGCombine(ISD::BRCOND);
1377   setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN,
1378                        ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID});
1379 
1380   setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND});
1381 
1382   setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE});
1383 
1384   if (Subtarget.useCRBits()) {
1385     setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC});
1386   }
1387 
1388   if (Subtarget.hasP9Altivec()) {
1389     setTargetDAGCombine({ISD::ABS, ISD::VSELECT});
1390   }
1391 
1392   setLibcallName(RTLIB::LOG_F128, "logf128");
1393   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1394   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1395   setLibcallName(RTLIB::EXP_F128, "expf128");
1396   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1397   setLibcallName(RTLIB::SIN_F128, "sinf128");
1398   setLibcallName(RTLIB::COS_F128, "cosf128");
1399   setLibcallName(RTLIB::POW_F128, "powf128");
1400   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1401   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1402   setLibcallName(RTLIB::REM_F128, "fmodf128");
1403   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1404   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1405   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1406   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1407   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1408   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1409   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1410   setLibcallName(RTLIB::RINT_F128, "rintf128");
1411   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1412   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1413   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1414   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1415 
1416   // With 32 condition bits, we don't need to sink (and duplicate) compares
1417   // aggressively in CodeGenPrep.
1418   if (Subtarget.useCRBits()) {
1419     setHasMultipleConditionRegisters();
1420     setJumpIsExpensive();
1421   }
1422 
1423   setMinFunctionAlignment(Align(4));
1424 
1425   switch (Subtarget.getCPUDirective()) {
1426   default: break;
1427   case PPC::DIR_970:
1428   case PPC::DIR_A2:
1429   case PPC::DIR_E500:
1430   case PPC::DIR_E500mc:
1431   case PPC::DIR_E5500:
1432   case PPC::DIR_PWR4:
1433   case PPC::DIR_PWR5:
1434   case PPC::DIR_PWR5X:
1435   case PPC::DIR_PWR6:
1436   case PPC::DIR_PWR6X:
1437   case PPC::DIR_PWR7:
1438   case PPC::DIR_PWR8:
1439   case PPC::DIR_PWR9:
1440   case PPC::DIR_PWR10:
1441   case PPC::DIR_PWR_FUTURE:
1442     setPrefLoopAlignment(Align(16));
1443     setPrefFunctionAlignment(Align(16));
1444     break;
1445   }
1446 
1447   if (Subtarget.enableMachineScheduler())
1448     setSchedulingPreference(Sched::Source);
1449   else
1450     setSchedulingPreference(Sched::Hybrid);
1451 
1452   computeRegisterProperties(STI.getRegisterInfo());
1453 
1454   // The Freescale cores do better with aggressive inlining of memcpy and
1455   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1456   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1457       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1458     MaxStoresPerMemset = 32;
1459     MaxStoresPerMemsetOptSize = 16;
1460     MaxStoresPerMemcpy = 32;
1461     MaxStoresPerMemcpyOptSize = 8;
1462     MaxStoresPerMemmove = 32;
1463     MaxStoresPerMemmoveOptSize = 8;
1464   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1465     // The A2 also benefits from (very) aggressive inlining of memcpy and
1466     // friends. The overhead of a the function call, even when warm, can be
1467     // over one hundred cycles.
1468     MaxStoresPerMemset = 128;
1469     MaxStoresPerMemcpy = 128;
1470     MaxStoresPerMemmove = 128;
1471     MaxLoadsPerMemcmp = 128;
1472   } else {
1473     MaxLoadsPerMemcmp = 8;
1474     MaxLoadsPerMemcmpOptSize = 4;
1475   }
1476 
1477   IsStrictFPEnabled = true;
1478 
1479   // Let the subtarget (CPU) decide if a predictable select is more expensive
1480   // than the corresponding branch. This information is used in CGP to decide
1481   // when to convert selects into branches.
1482   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1483 }
1484 
1485 // *********************************** NOTE ************************************
1486 // For selecting load and store instructions, the addressing modes are defined
1487 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1488 // patterns to match the load the store instructions.
1489 //
1490 // The TD definitions for the addressing modes correspond to their respective
1491 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1492 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1493 // address mode flags of a particular node. Afterwards, the computed address
1494 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1495 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1496 // accordingly, based on the preferred addressing mode.
1497 //
1498 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1499 // MemOpFlags contains all the possible flags that can be used to compute the
1500 // optimal addressing mode for load and store instructions.
1501 // AddrMode contains all the possible load and store addressing modes available
1502 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1503 //
1504 // When adding new load and store instructions, it is possible that new address
1505 // flags may need to be added into MemOpFlags, and a new addressing mode will
1506 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1507 // of the minimal and main distinguishing address flags for the new load/store
1508 // instructions) will need to be added into initializeAddrModeMap() below.
1509 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1510 // need to be updated to account for selecting the optimal addressing mode.
1511 // *****************************************************************************
1512 /// Initialize the map that relates the different addressing modes of the load
1513 /// and store instructions to a set of flags. This ensures the load/store
1514 /// instruction is correctly matched during instruction selection.
1515 void PPCTargetLowering::initializeAddrModeMap() {
1516   AddrModesMap[PPC::AM_DForm] = {
1517       // LWZ, STW
1518       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1519       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1520       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1521       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1522       // LBZ, LHZ, STB, STH
1523       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1524       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1525       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1526       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1527       // LHA
1528       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1529       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1530       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1531       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1532       // LFS, LFD, STFS, STFD
1533       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1534       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1535       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1536       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1537   };
1538   AddrModesMap[PPC::AM_DSForm] = {
1539       // LWA
1540       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1541       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1542       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1543       // LD, STD
1544       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1545       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1546       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1547       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1548       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1549       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1550       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1551   };
1552   AddrModesMap[PPC::AM_DQForm] = {
1553       // LXV, STXV
1554       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1555       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1556       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1557   };
1558   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1559                                        PPC::MOF_SubtargetP10};
1560   // TODO: Add mapping for quadword load/store.
1561 }
1562 
1563 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1564 /// the desired ByVal argument alignment.
1565 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1566   if (MaxAlign == MaxMaxAlign)
1567     return;
1568   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1569     if (MaxMaxAlign >= 32 &&
1570         VTy->getPrimitiveSizeInBits().getFixedValue() >= 256)
1571       MaxAlign = Align(32);
1572     else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 &&
1573              MaxAlign < 16)
1574       MaxAlign = Align(16);
1575   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1576     Align EltAlign;
1577     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1578     if (EltAlign > MaxAlign)
1579       MaxAlign = EltAlign;
1580   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1581     for (auto *EltTy : STy->elements()) {
1582       Align EltAlign;
1583       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1584       if (EltAlign > MaxAlign)
1585         MaxAlign = EltAlign;
1586       if (MaxAlign == MaxMaxAlign)
1587         break;
1588     }
1589   }
1590 }
1591 
1592 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1593 /// function arguments in the caller parameter area.
1594 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1595                                                   const DataLayout &DL) const {
1596   // 16byte and wider vectors are passed on 16byte boundary.
1597   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1598   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1599   if (Subtarget.hasAltivec())
1600     getMaxByValAlign(Ty, Alignment, Align(16));
1601   return Alignment.value();
1602 }
1603 
1604 bool PPCTargetLowering::useSoftFloat() const {
1605   return Subtarget.useSoftFloat();
1606 }
1607 
1608 bool PPCTargetLowering::hasSPE() const {
1609   return Subtarget.hasSPE();
1610 }
1611 
1612 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1613   return VT.isScalarInteger();
1614 }
1615 
1616 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1617   switch ((PPCISD::NodeType)Opcode) {
1618   case PPCISD::FIRST_NUMBER:    break;
1619   case PPCISD::FSEL:            return "PPCISD::FSEL";
1620   case PPCISD::XSMAXC:          return "PPCISD::XSMAXC";
1621   case PPCISD::XSMINC:          return "PPCISD::XSMINC";
1622   case PPCISD::FCFID:           return "PPCISD::FCFID";
1623   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1624   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1625   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1626   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1627   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1628   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1629   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1630   case PPCISD::FP_TO_UINT_IN_VSR:
1631                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1632   case PPCISD::FP_TO_SINT_IN_VSR:
1633                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1634   case PPCISD::FRE:             return "PPCISD::FRE";
1635   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1636   case PPCISD::FTSQRT:
1637     return "PPCISD::FTSQRT";
1638   case PPCISD::FSQRT:
1639     return "PPCISD::FSQRT";
1640   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1641   case PPCISD::VPERM:           return "PPCISD::VPERM";
1642   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1643   case PPCISD::XXSPLTI_SP_TO_DP:
1644     return "PPCISD::XXSPLTI_SP_TO_DP";
1645   case PPCISD::XXSPLTI32DX:
1646     return "PPCISD::XXSPLTI32DX";
1647   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1648   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1649   case PPCISD::XXPERM:
1650     return "PPCISD::XXPERM";
1651   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1652   case PPCISD::CMPB:            return "PPCISD::CMPB";
1653   case PPCISD::Hi:              return "PPCISD::Hi";
1654   case PPCISD::Lo:              return "PPCISD::Lo";
1655   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1656   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1657   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1658   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1659   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1660   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1661   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1662   case PPCISD::SRL:             return "PPCISD::SRL";
1663   case PPCISD::SRA:             return "PPCISD::SRA";
1664   case PPCISD::SHL:             return "PPCISD::SHL";
1665   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1666   case PPCISD::CALL:            return "PPCISD::CALL";
1667   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1668   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1669   case PPCISD::CALL_RM:
1670     return "PPCISD::CALL_RM";
1671   case PPCISD::CALL_NOP_RM:
1672     return "PPCISD::CALL_NOP_RM";
1673   case PPCISD::CALL_NOTOC_RM:
1674     return "PPCISD::CALL_NOTOC_RM";
1675   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1676   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1677   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1678   case PPCISD::BCTRL_RM:
1679     return "PPCISD::BCTRL_RM";
1680   case PPCISD::BCTRL_LOAD_TOC_RM:
1681     return "PPCISD::BCTRL_LOAD_TOC_RM";
1682   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1683   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1684   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1685   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1686   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1687   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1688   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1689   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1690   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1691   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1692   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1693     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1694   case PPCISD::ANDI_rec_1_EQ_BIT:
1695     return "PPCISD::ANDI_rec_1_EQ_BIT";
1696   case PPCISD::ANDI_rec_1_GT_BIT:
1697     return "PPCISD::ANDI_rec_1_GT_BIT";
1698   case PPCISD::VCMP:            return "PPCISD::VCMP";
1699   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1700   case PPCISD::LBRX:            return "PPCISD::LBRX";
1701   case PPCISD::STBRX:           return "PPCISD::STBRX";
1702   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1703   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1704   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1705   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1706   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1707   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1708   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1709   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1710   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1711   case PPCISD::ST_VSR_SCAL_INT:
1712                                 return "PPCISD::ST_VSR_SCAL_INT";
1713   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1714   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1715   case PPCISD::BDZ:             return "PPCISD::BDZ";
1716   case PPCISD::MFFS:            return "PPCISD::MFFS";
1717   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1718   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1719   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1720   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1721   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1722   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1723   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1724   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1725   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1726   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1727   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1728   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1729   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1730   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1731   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1732   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1733   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1734   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1735   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1736   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1737   case PPCISD::PADDI_DTPREL:
1738     return "PPCISD::PADDI_DTPREL";
1739   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1740   case PPCISD::SC:              return "PPCISD::SC";
1741   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1742   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1743   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1744   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1745   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1746   case PPCISD::VABSD:           return "PPCISD::VABSD";
1747   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1748   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1749   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1750   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1751   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1752   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1753   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1754   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1755     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1756   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1757     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1758   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1759   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1760   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1761   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1762   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1763   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1764   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1765   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1766   case PPCISD::STRICT_FADDRTZ:
1767     return "PPCISD::STRICT_FADDRTZ";
1768   case PPCISD::STRICT_FCTIDZ:
1769     return "PPCISD::STRICT_FCTIDZ";
1770   case PPCISD::STRICT_FCTIWZ:
1771     return "PPCISD::STRICT_FCTIWZ";
1772   case PPCISD::STRICT_FCTIDUZ:
1773     return "PPCISD::STRICT_FCTIDUZ";
1774   case PPCISD::STRICT_FCTIWUZ:
1775     return "PPCISD::STRICT_FCTIWUZ";
1776   case PPCISD::STRICT_FCFID:
1777     return "PPCISD::STRICT_FCFID";
1778   case PPCISD::STRICT_FCFIDU:
1779     return "PPCISD::STRICT_FCFIDU";
1780   case PPCISD::STRICT_FCFIDS:
1781     return "PPCISD::STRICT_FCFIDS";
1782   case PPCISD::STRICT_FCFIDUS:
1783     return "PPCISD::STRICT_FCFIDUS";
1784   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1785   case PPCISD::STORE_COND:
1786     return "PPCISD::STORE_COND";
1787   }
1788   return nullptr;
1789 }
1790 
1791 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1792                                           EVT VT) const {
1793   if (!VT.isVector())
1794     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1795 
1796   return VT.changeVectorElementTypeToInteger();
1797 }
1798 
1799 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1800   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1801   return true;
1802 }
1803 
1804 //===----------------------------------------------------------------------===//
1805 // Node matching predicates, for use by the tblgen matching code.
1806 //===----------------------------------------------------------------------===//
1807 
1808 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1809 static bool isFloatingPointZero(SDValue Op) {
1810   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1811     return CFP->getValueAPF().isZero();
1812   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1813     // Maybe this has already been legalized into the constant pool?
1814     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1815       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1816         return CFP->getValueAPF().isZero();
1817   }
1818   return false;
1819 }
1820 
1821 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1822 /// true if Op is undef or if it matches the specified value.
1823 static bool isConstantOrUndef(int Op, int Val) {
1824   return Op < 0 || Op == Val;
1825 }
1826 
1827 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1828 /// VPKUHUM instruction.
1829 /// The ShuffleKind distinguishes between big-endian operations with
1830 /// two different inputs (0), either-endian operations with two identical
1831 /// inputs (1), and little-endian operations with two different inputs (2).
1832 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1833 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1834                                SelectionDAG &DAG) {
1835   bool IsLE = DAG.getDataLayout().isLittleEndian();
1836   if (ShuffleKind == 0) {
1837     if (IsLE)
1838       return false;
1839     for (unsigned i = 0; i != 16; ++i)
1840       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1841         return false;
1842   } else if (ShuffleKind == 2) {
1843     if (!IsLE)
1844       return false;
1845     for (unsigned i = 0; i != 16; ++i)
1846       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1847         return false;
1848   } else if (ShuffleKind == 1) {
1849     unsigned j = IsLE ? 0 : 1;
1850     for (unsigned i = 0; i != 8; ++i)
1851       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1852           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1853         return false;
1854   }
1855   return true;
1856 }
1857 
1858 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1859 /// VPKUWUM instruction.
1860 /// The ShuffleKind distinguishes between big-endian operations with
1861 /// two different inputs (0), either-endian operations with two identical
1862 /// inputs (1), and little-endian operations with two different inputs (2).
1863 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1864 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1865                                SelectionDAG &DAG) {
1866   bool IsLE = DAG.getDataLayout().isLittleEndian();
1867   if (ShuffleKind == 0) {
1868     if (IsLE)
1869       return false;
1870     for (unsigned i = 0; i != 16; i += 2)
1871       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1872           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1873         return false;
1874   } else if (ShuffleKind == 2) {
1875     if (!IsLE)
1876       return false;
1877     for (unsigned i = 0; i != 16; i += 2)
1878       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1879           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1880         return false;
1881   } else if (ShuffleKind == 1) {
1882     unsigned j = IsLE ? 0 : 2;
1883     for (unsigned i = 0; i != 8; i += 2)
1884       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1885           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1886           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1887           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1888         return false;
1889   }
1890   return true;
1891 }
1892 
1893 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1894 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1895 /// current subtarget.
1896 ///
1897 /// The ShuffleKind distinguishes between big-endian operations with
1898 /// two different inputs (0), either-endian operations with two identical
1899 /// inputs (1), and little-endian operations with two different inputs (2).
1900 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1901 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1902                                SelectionDAG &DAG) {
1903   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
1904   if (!Subtarget.hasP8Vector())
1905     return false;
1906 
1907   bool IsLE = DAG.getDataLayout().isLittleEndian();
1908   if (ShuffleKind == 0) {
1909     if (IsLE)
1910       return false;
1911     for (unsigned i = 0; i != 16; i += 4)
1912       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1913           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1914           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1915           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1916         return false;
1917   } else if (ShuffleKind == 2) {
1918     if (!IsLE)
1919       return false;
1920     for (unsigned i = 0; i != 16; i += 4)
1921       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1922           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1923           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1924           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1925         return false;
1926   } else if (ShuffleKind == 1) {
1927     unsigned j = IsLE ? 0 : 4;
1928     for (unsigned i = 0; i != 8; i += 4)
1929       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1930           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1931           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1932           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1933           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1934           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1935           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1936           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1937         return false;
1938   }
1939   return true;
1940 }
1941 
1942 /// isVMerge - Common function, used to match vmrg* shuffles.
1943 ///
1944 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1945                      unsigned LHSStart, unsigned RHSStart) {
1946   if (N->getValueType(0) != MVT::v16i8)
1947     return false;
1948   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1949          "Unsupported merge size!");
1950 
1951   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1952     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1953       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1954                              LHSStart+j+i*UnitSize) ||
1955           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1956                              RHSStart+j+i*UnitSize))
1957         return false;
1958     }
1959   return true;
1960 }
1961 
1962 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1963 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1964 /// The ShuffleKind distinguishes between big-endian merges with two
1965 /// different inputs (0), either-endian merges with two identical inputs (1),
1966 /// and little-endian merges with two different inputs (2).  For the latter,
1967 /// the input operands are swapped (see PPCInstrAltivec.td).
1968 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1969                              unsigned ShuffleKind, SelectionDAG &DAG) {
1970   if (DAG.getDataLayout().isLittleEndian()) {
1971     if (ShuffleKind == 1) // unary
1972       return isVMerge(N, UnitSize, 0, 0);
1973     else if (ShuffleKind == 2) // swapped
1974       return isVMerge(N, UnitSize, 0, 16);
1975     else
1976       return false;
1977   } else {
1978     if (ShuffleKind == 1) // unary
1979       return isVMerge(N, UnitSize, 8, 8);
1980     else if (ShuffleKind == 0) // normal
1981       return isVMerge(N, UnitSize, 8, 24);
1982     else
1983       return false;
1984   }
1985 }
1986 
1987 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1988 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1989 /// The ShuffleKind distinguishes between big-endian merges with two
1990 /// different inputs (0), either-endian merges with two identical inputs (1),
1991 /// and little-endian merges with two different inputs (2).  For the latter,
1992 /// the input operands are swapped (see PPCInstrAltivec.td).
1993 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1994                              unsigned ShuffleKind, SelectionDAG &DAG) {
1995   if (DAG.getDataLayout().isLittleEndian()) {
1996     if (ShuffleKind == 1) // unary
1997       return isVMerge(N, UnitSize, 8, 8);
1998     else if (ShuffleKind == 2) // swapped
1999       return isVMerge(N, UnitSize, 8, 24);
2000     else
2001       return false;
2002   } else {
2003     if (ShuffleKind == 1) // unary
2004       return isVMerge(N, UnitSize, 0, 0);
2005     else if (ShuffleKind == 0) // normal
2006       return isVMerge(N, UnitSize, 0, 16);
2007     else
2008       return false;
2009   }
2010 }
2011 
2012 /**
2013  * Common function used to match vmrgew and vmrgow shuffles
2014  *
2015  * The indexOffset determines whether to look for even or odd words in
2016  * the shuffle mask. This is based on the of the endianness of the target
2017  * machine.
2018  *   - Little Endian:
2019  *     - Use offset of 0 to check for odd elements
2020  *     - Use offset of 4 to check for even elements
2021  *   - Big Endian:
2022  *     - Use offset of 0 to check for even elements
2023  *     - Use offset of 4 to check for odd elements
2024  * A detailed description of the vector element ordering for little endian and
2025  * big endian can be found at
2026  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
2027  * Targeting your applications - what little endian and big endian IBM XL C/C++
2028  * compiler differences mean to you
2029  *
2030  * The mask to the shuffle vector instruction specifies the indices of the
2031  * elements from the two input vectors to place in the result. The elements are
2032  * numbered in array-access order, starting with the first vector. These vectors
2033  * are always of type v16i8, thus each vector will contain 16 elements of size
2034  * 8. More info on the shuffle vector can be found in the
2035  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2036  * Language Reference.
2037  *
2038  * The RHSStartValue indicates whether the same input vectors are used (unary)
2039  * or two different input vectors are used, based on the following:
2040  *   - If the instruction uses the same vector for both inputs, the range of the
2041  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2042  *     be 0.
2043  *   - If the instruction has two different vectors then the range of the
2044  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2045  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2046  *     to 31 specify elements in the second vector).
2047  *
2048  * \param[in] N The shuffle vector SD Node to analyze
2049  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2050  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2051  * vector to the shuffle_vector instruction
2052  * \return true iff this shuffle vector represents an even or odd word merge
2053  */
2054 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2055                      unsigned RHSStartValue) {
2056   if (N->getValueType(0) != MVT::v16i8)
2057     return false;
2058 
2059   for (unsigned i = 0; i < 2; ++i)
2060     for (unsigned j = 0; j < 4; ++j)
2061       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2062                              i*RHSStartValue+j+IndexOffset) ||
2063           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2064                              i*RHSStartValue+j+IndexOffset+8))
2065         return false;
2066   return true;
2067 }
2068 
2069 /**
2070  * Determine if the specified shuffle mask is suitable for the vmrgew or
2071  * vmrgow instructions.
2072  *
2073  * \param[in] N The shuffle vector SD Node to analyze
2074  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2075  * \param[in] ShuffleKind Identify the type of merge:
2076  *   - 0 = big-endian merge with two different inputs;
2077  *   - 1 = either-endian merge with two identical inputs;
2078  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2079  *     little-endian merges).
2080  * \param[in] DAG The current SelectionDAG
2081  * \return true iff this shuffle mask
2082  */
2083 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2084                               unsigned ShuffleKind, SelectionDAG &DAG) {
2085   if (DAG.getDataLayout().isLittleEndian()) {
2086     unsigned indexOffset = CheckEven ? 4 : 0;
2087     if (ShuffleKind == 1) // Unary
2088       return isVMerge(N, indexOffset, 0);
2089     else if (ShuffleKind == 2) // swapped
2090       return isVMerge(N, indexOffset, 16);
2091     else
2092       return false;
2093   }
2094   else {
2095     unsigned indexOffset = CheckEven ? 0 : 4;
2096     if (ShuffleKind == 1) // Unary
2097       return isVMerge(N, indexOffset, 0);
2098     else if (ShuffleKind == 0) // Normal
2099       return isVMerge(N, indexOffset, 16);
2100     else
2101       return false;
2102   }
2103   return false;
2104 }
2105 
2106 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2107 /// amount, otherwise return -1.
2108 /// The ShuffleKind distinguishes between big-endian operations with two
2109 /// different inputs (0), either-endian operations with two identical inputs
2110 /// (1), and little-endian operations with two different inputs (2).  For the
2111 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2112 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2113                              SelectionDAG &DAG) {
2114   if (N->getValueType(0) != MVT::v16i8)
2115     return -1;
2116 
2117   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2118 
2119   // Find the first non-undef value in the shuffle mask.
2120   unsigned i;
2121   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2122     /*search*/;
2123 
2124   if (i == 16) return -1;  // all undef.
2125 
2126   // Otherwise, check to see if the rest of the elements are consecutively
2127   // numbered from this value.
2128   unsigned ShiftAmt = SVOp->getMaskElt(i);
2129   if (ShiftAmt < i) return -1;
2130 
2131   ShiftAmt -= i;
2132   bool isLE = DAG.getDataLayout().isLittleEndian();
2133 
2134   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2135     // Check the rest of the elements to see if they are consecutive.
2136     for (++i; i != 16; ++i)
2137       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2138         return -1;
2139   } else if (ShuffleKind == 1) {
2140     // Check the rest of the elements to see if they are consecutive.
2141     for (++i; i != 16; ++i)
2142       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2143         return -1;
2144   } else
2145     return -1;
2146 
2147   if (isLE)
2148     ShiftAmt = 16 - ShiftAmt;
2149 
2150   return ShiftAmt;
2151 }
2152 
2153 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2154 /// specifies a splat of a single element that is suitable for input to
2155 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2156 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2157   EVT VT = N->getValueType(0);
2158   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2159     return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1);
2160 
2161   assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2162          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2163 
2164   // The consecutive indices need to specify an element, not part of two
2165   // different elements.  So abandon ship early if this isn't the case.
2166   if (N->getMaskElt(0) % EltSize != 0)
2167     return false;
2168 
2169   // This is a splat operation if each element of the permute is the same, and
2170   // if the value doesn't reference the second vector.
2171   unsigned ElementBase = N->getMaskElt(0);
2172 
2173   // FIXME: Handle UNDEF elements too!
2174   if (ElementBase >= 16)
2175     return false;
2176 
2177   // Check that the indices are consecutive, in the case of a multi-byte element
2178   // splatted with a v16i8 mask.
2179   for (unsigned i = 1; i != EltSize; ++i)
2180     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2181       return false;
2182 
2183   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2184     if (N->getMaskElt(i) < 0) continue;
2185     for (unsigned j = 0; j != EltSize; ++j)
2186       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2187         return false;
2188   }
2189   return true;
2190 }
2191 
2192 /// Check that the mask is shuffling N byte elements. Within each N byte
2193 /// element of the mask, the indices could be either in increasing or
2194 /// decreasing order as long as they are consecutive.
2195 /// \param[in] N the shuffle vector SD Node to analyze
2196 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2197 /// Word/DoubleWord/QuadWord).
2198 /// \param[in] StepLen the delta indices number among the N byte element, if
2199 /// the mask is in increasing/decreasing order then it is 1/-1.
2200 /// \return true iff the mask is shuffling N byte elements.
2201 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2202                                    int StepLen) {
2203   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2204          "Unexpected element width.");
2205   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2206 
2207   unsigned NumOfElem = 16 / Width;
2208   unsigned MaskVal[16]; //  Width is never greater than 16
2209   for (unsigned i = 0; i < NumOfElem; ++i) {
2210     MaskVal[0] = N->getMaskElt(i * Width);
2211     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2212       return false;
2213     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2214       return false;
2215     }
2216 
2217     for (unsigned int j = 1; j < Width; ++j) {
2218       MaskVal[j] = N->getMaskElt(i * Width + j);
2219       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2220         return false;
2221       }
2222     }
2223   }
2224 
2225   return true;
2226 }
2227 
2228 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2229                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2230   if (!isNByteElemShuffleMask(N, 4, 1))
2231     return false;
2232 
2233   // Now we look at mask elements 0,4,8,12
2234   unsigned M0 = N->getMaskElt(0) / 4;
2235   unsigned M1 = N->getMaskElt(4) / 4;
2236   unsigned M2 = N->getMaskElt(8) / 4;
2237   unsigned M3 = N->getMaskElt(12) / 4;
2238   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2239   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2240 
2241   // Below, let H and L be arbitrary elements of the shuffle mask
2242   // where H is in the range [4,7] and L is in the range [0,3].
2243   // H, 1, 2, 3 or L, 5, 6, 7
2244   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2245       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2246     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2247     InsertAtByte = IsLE ? 12 : 0;
2248     Swap = M0 < 4;
2249     return true;
2250   }
2251   // 0, H, 2, 3 or 4, L, 6, 7
2252   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2253       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2254     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2255     InsertAtByte = IsLE ? 8 : 4;
2256     Swap = M1 < 4;
2257     return true;
2258   }
2259   // 0, 1, H, 3 or 4, 5, L, 7
2260   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2261       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2262     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2263     InsertAtByte = IsLE ? 4 : 8;
2264     Swap = M2 < 4;
2265     return true;
2266   }
2267   // 0, 1, 2, H or 4, 5, 6, L
2268   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2269       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2270     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2271     InsertAtByte = IsLE ? 0 : 12;
2272     Swap = M3 < 4;
2273     return true;
2274   }
2275 
2276   // If both vector operands for the shuffle are the same vector, the mask will
2277   // contain only elements from the first one and the second one will be undef.
2278   if (N->getOperand(1).isUndef()) {
2279     ShiftElts = 0;
2280     Swap = true;
2281     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2282     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2283       InsertAtByte = IsLE ? 12 : 0;
2284       return true;
2285     }
2286     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2287       InsertAtByte = IsLE ? 8 : 4;
2288       return true;
2289     }
2290     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2291       InsertAtByte = IsLE ? 4 : 8;
2292       return true;
2293     }
2294     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2295       InsertAtByte = IsLE ? 0 : 12;
2296       return true;
2297     }
2298   }
2299 
2300   return false;
2301 }
2302 
2303 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2304                                bool &Swap, bool IsLE) {
2305   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2306   // Ensure each byte index of the word is consecutive.
2307   if (!isNByteElemShuffleMask(N, 4, 1))
2308     return false;
2309 
2310   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2311   unsigned M0 = N->getMaskElt(0) / 4;
2312   unsigned M1 = N->getMaskElt(4) / 4;
2313   unsigned M2 = N->getMaskElt(8) / 4;
2314   unsigned M3 = N->getMaskElt(12) / 4;
2315 
2316   // If both vector operands for the shuffle are the same vector, the mask will
2317   // contain only elements from the first one and the second one will be undef.
2318   if (N->getOperand(1).isUndef()) {
2319     assert(M0 < 4 && "Indexing into an undef vector?");
2320     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2321       return false;
2322 
2323     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2324     Swap = false;
2325     return true;
2326   }
2327 
2328   // Ensure each word index of the ShuffleVector Mask is consecutive.
2329   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2330     return false;
2331 
2332   if (IsLE) {
2333     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2334       // Input vectors don't need to be swapped if the leading element
2335       // of the result is one of the 3 left elements of the second vector
2336       // (or if there is no shift to be done at all).
2337       Swap = false;
2338       ShiftElts = (8 - M0) % 8;
2339     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2340       // Input vectors need to be swapped if the leading element
2341       // of the result is one of the 3 left elements of the first vector
2342       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2343       Swap = true;
2344       ShiftElts = (4 - M0) % 4;
2345     }
2346 
2347     return true;
2348   } else {                                          // BE
2349     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2350       // Input vectors don't need to be swapped if the leading element
2351       // of the result is one of the 4 elements of the first vector.
2352       Swap = false;
2353       ShiftElts = M0;
2354     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2355       // Input vectors need to be swapped if the leading element
2356       // of the result is one of the 4 elements of the right vector.
2357       Swap = true;
2358       ShiftElts = M0 - 4;
2359     }
2360 
2361     return true;
2362   }
2363 }
2364 
2365 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2366   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2367 
2368   if (!isNByteElemShuffleMask(N, Width, -1))
2369     return false;
2370 
2371   for (int i = 0; i < 16; i += Width)
2372     if (N->getMaskElt(i) != i + Width - 1)
2373       return false;
2374 
2375   return true;
2376 }
2377 
2378 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2379   return isXXBRShuffleMaskHelper(N, 2);
2380 }
2381 
2382 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2383   return isXXBRShuffleMaskHelper(N, 4);
2384 }
2385 
2386 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2387   return isXXBRShuffleMaskHelper(N, 8);
2388 }
2389 
2390 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2391   return isXXBRShuffleMaskHelper(N, 16);
2392 }
2393 
2394 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2395 /// if the inputs to the instruction should be swapped and set \p DM to the
2396 /// value for the immediate.
2397 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2398 /// AND element 0 of the result comes from the first input (LE) or second input
2399 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2400 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2401 /// mask.
2402 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2403                                bool &Swap, bool IsLE) {
2404   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2405 
2406   // Ensure each byte index of the double word is consecutive.
2407   if (!isNByteElemShuffleMask(N, 8, 1))
2408     return false;
2409 
2410   unsigned M0 = N->getMaskElt(0) / 8;
2411   unsigned M1 = N->getMaskElt(8) / 8;
2412   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2413 
2414   // If both vector operands for the shuffle are the same vector, the mask will
2415   // contain only elements from the first one and the second one will be undef.
2416   if (N->getOperand(1).isUndef()) {
2417     if ((M0 | M1) < 2) {
2418       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2419       Swap = false;
2420       return true;
2421     } else
2422       return false;
2423   }
2424 
2425   if (IsLE) {
2426     if (M0 > 1 && M1 < 2) {
2427       Swap = false;
2428     } else if (M0 < 2 && M1 > 1) {
2429       M0 = (M0 + 2) % 4;
2430       M1 = (M1 + 2) % 4;
2431       Swap = true;
2432     } else
2433       return false;
2434 
2435     // Note: if control flow comes here that means Swap is already set above
2436     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2437     return true;
2438   } else { // BE
2439     if (M0 < 2 && M1 > 1) {
2440       Swap = false;
2441     } else if (M0 > 1 && M1 < 2) {
2442       M0 = (M0 + 2) % 4;
2443       M1 = (M1 + 2) % 4;
2444       Swap = true;
2445     } else
2446       return false;
2447 
2448     // Note: if control flow comes here that means Swap is already set above
2449     DM = (M0 << 1) + (M1 & 1);
2450     return true;
2451   }
2452 }
2453 
2454 
2455 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2456 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2457 /// elements are counted from the left of the vector register).
2458 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2459                                          SelectionDAG &DAG) {
2460   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2461   assert(isSplatShuffleMask(SVOp, EltSize));
2462   EVT VT = SVOp->getValueType(0);
2463 
2464   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2465     return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0)
2466                                                 : SVOp->getMaskElt(0);
2467 
2468   if (DAG.getDataLayout().isLittleEndian())
2469     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2470   else
2471     return SVOp->getMaskElt(0) / EltSize;
2472 }
2473 
2474 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2475 /// by using a vspltis[bhw] instruction of the specified element size, return
2476 /// the constant being splatted.  The ByteSize field indicates the number of
2477 /// bytes of each element [124] -> [bhw].
2478 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2479   SDValue OpVal;
2480 
2481   // If ByteSize of the splat is bigger than the element size of the
2482   // build_vector, then we have a case where we are checking for a splat where
2483   // multiple elements of the buildvector are folded together into a single
2484   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2485   unsigned EltSize = 16/N->getNumOperands();
2486   if (EltSize < ByteSize) {
2487     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2488     SDValue UniquedVals[4];
2489     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2490 
2491     // See if all of the elements in the buildvector agree across.
2492     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2493       if (N->getOperand(i).isUndef()) continue;
2494       // If the element isn't a constant, bail fully out.
2495       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2496 
2497       if (!UniquedVals[i&(Multiple-1)].getNode())
2498         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2499       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2500         return SDValue();  // no match.
2501     }
2502 
2503     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2504     // either constant or undef values that are identical for each chunk.  See
2505     // if these chunks can form into a larger vspltis*.
2506 
2507     // Check to see if all of the leading entries are either 0 or -1.  If
2508     // neither, then this won't fit into the immediate field.
2509     bool LeadingZero = true;
2510     bool LeadingOnes = true;
2511     for (unsigned i = 0; i != Multiple-1; ++i) {
2512       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2513 
2514       LeadingZero &= isNullConstant(UniquedVals[i]);
2515       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2516     }
2517     // Finally, check the least significant entry.
2518     if (LeadingZero) {
2519       if (!UniquedVals[Multiple-1].getNode())
2520         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2521       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2522       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2523         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2524     }
2525     if (LeadingOnes) {
2526       if (!UniquedVals[Multiple-1].getNode())
2527         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2528       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2529       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2530         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2531     }
2532 
2533     return SDValue();
2534   }
2535 
2536   // Check to see if this buildvec has a single non-undef value in its elements.
2537   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2538     if (N->getOperand(i).isUndef()) continue;
2539     if (!OpVal.getNode())
2540       OpVal = N->getOperand(i);
2541     else if (OpVal != N->getOperand(i))
2542       return SDValue();
2543   }
2544 
2545   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2546 
2547   unsigned ValSizeInBytes = EltSize;
2548   uint64_t Value = 0;
2549   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2550     Value = CN->getZExtValue();
2551   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2552     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2553     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2554   }
2555 
2556   // If the splat value is larger than the element value, then we can never do
2557   // this splat.  The only case that we could fit the replicated bits into our
2558   // immediate field for would be zero, and we prefer to use vxor for it.
2559   if (ValSizeInBytes < ByteSize) return SDValue();
2560 
2561   // If the element value is larger than the splat value, check if it consists
2562   // of a repeated bit pattern of size ByteSize.
2563   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2564     return SDValue();
2565 
2566   // Properly sign extend the value.
2567   int MaskVal = SignExtend32(Value, ByteSize * 8);
2568 
2569   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2570   if (MaskVal == 0) return SDValue();
2571 
2572   // Finally, if this value fits in a 5 bit sext field, return it
2573   if (SignExtend32<5>(MaskVal) == MaskVal)
2574     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2575   return SDValue();
2576 }
2577 
2578 //===----------------------------------------------------------------------===//
2579 //  Addressing Mode Selection
2580 //===----------------------------------------------------------------------===//
2581 
2582 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2583 /// or 64-bit immediate, and if the value can be accurately represented as a
2584 /// sign extension from a 16-bit value.  If so, this returns true and the
2585 /// immediate.
2586 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2587   if (!isa<ConstantSDNode>(N))
2588     return false;
2589 
2590   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2591   if (N->getValueType(0) == MVT::i32)
2592     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2593   else
2594     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2595 }
2596 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2597   return isIntS16Immediate(Op.getNode(), Imm);
2598 }
2599 
2600 /// Used when computing address flags for selecting loads and stores.
2601 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2602 /// An OR of two provably disjoint values is equivalent to an ADD.
2603 /// Most PPC load/store instructions compute the effective address as a sum,
2604 /// so doing this conversion is useful.
2605 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2606   if (N.getOpcode() != ISD::OR)
2607     return false;
2608   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2609   if (!LHSKnown.Zero.getBoolValue())
2610     return false;
2611   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2612   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2613 }
2614 
2615 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2616 /// be represented as an indexed [r+r] operation.
2617 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2618                                                SDValue &Index,
2619                                                SelectionDAG &DAG) const {
2620   for (SDNode *U : N->uses()) {
2621     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2622       if (Memop->getMemoryVT() == MVT::f64) {
2623           Base = N.getOperand(0);
2624           Index = N.getOperand(1);
2625           return true;
2626       }
2627     }
2628   }
2629   return false;
2630 }
2631 
2632 /// isIntS34Immediate - This method tests if value of node given can be
2633 /// accurately represented as a sign extension from a 34-bit value.  If so,
2634 /// this returns true and the immediate.
2635 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2636   if (!isa<ConstantSDNode>(N))
2637     return false;
2638 
2639   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2640   return isInt<34>(Imm);
2641 }
2642 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2643   return isIntS34Immediate(Op.getNode(), Imm);
2644 }
2645 
2646 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2647 /// can be represented as an indexed [r+r] operation.  Returns false if it
2648 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2649 /// non-zero and N can be represented by a base register plus a signed 16-bit
2650 /// displacement, make a more precise judgement by checking (displacement % \p
2651 /// EncodingAlignment).
2652 bool PPCTargetLowering::SelectAddressRegReg(
2653     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2654     MaybeAlign EncodingAlignment) const {
2655   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2656   // a [pc+imm].
2657   if (SelectAddressPCRel(N, Base))
2658     return false;
2659 
2660   int16_t Imm = 0;
2661   if (N.getOpcode() == ISD::ADD) {
2662     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2663     // SPE load/store can only handle 8-bit offsets.
2664     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2665         return true;
2666     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2667         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2668       return false; // r+i
2669     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2670       return false;    // r+i
2671 
2672     Base = N.getOperand(0);
2673     Index = N.getOperand(1);
2674     return true;
2675   } else if (N.getOpcode() == ISD::OR) {
2676     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2677         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2678       return false; // r+i can fold it if we can.
2679 
2680     // If this is an or of disjoint bitfields, we can codegen this as an add
2681     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2682     // disjoint.
2683     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2684 
2685     if (LHSKnown.Zero.getBoolValue()) {
2686       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2687       // If all of the bits are known zero on the LHS or RHS, the add won't
2688       // carry.
2689       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2690         Base = N.getOperand(0);
2691         Index = N.getOperand(1);
2692         return true;
2693       }
2694     }
2695   }
2696 
2697   return false;
2698 }
2699 
2700 // If we happen to be doing an i64 load or store into a stack slot that has
2701 // less than a 4-byte alignment, then the frame-index elimination may need to
2702 // use an indexed load or store instruction (because the offset may not be a
2703 // multiple of 4). The extra register needed to hold the offset comes from the
2704 // register scavenger, and it is possible that the scavenger will need to use
2705 // an emergency spill slot. As a result, we need to make sure that a spill slot
2706 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2707 // stack slot.
2708 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2709   // FIXME: This does not handle the LWA case.
2710   if (VT != MVT::i64)
2711     return;
2712 
2713   // NOTE: We'll exclude negative FIs here, which come from argument
2714   // lowering, because there are no known test cases triggering this problem
2715   // using packed structures (or similar). We can remove this exclusion if
2716   // we find such a test case. The reason why this is so test-case driven is
2717   // because this entire 'fixup' is only to prevent crashes (from the
2718   // register scavenger) on not-really-valid inputs. For example, if we have:
2719   //   %a = alloca i1
2720   //   %b = bitcast i1* %a to i64*
2721   //   store i64* a, i64 b
2722   // then the store should really be marked as 'align 1', but is not. If it
2723   // were marked as 'align 1' then the indexed form would have been
2724   // instruction-selected initially, and the problem this 'fixup' is preventing
2725   // won't happen regardless.
2726   if (FrameIdx < 0)
2727     return;
2728 
2729   MachineFunction &MF = DAG.getMachineFunction();
2730   MachineFrameInfo &MFI = MF.getFrameInfo();
2731 
2732   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2733     return;
2734 
2735   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2736   FuncInfo->setHasNonRISpills();
2737 }
2738 
2739 /// Returns true if the address N can be represented by a base register plus
2740 /// a signed 16-bit displacement [r+imm], and if it is not better
2741 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2742 /// displacements that are multiples of that value.
2743 bool PPCTargetLowering::SelectAddressRegImm(
2744     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2745     MaybeAlign EncodingAlignment) const {
2746   // FIXME dl should come from parent load or store, not from address
2747   SDLoc dl(N);
2748 
2749   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2750   // a [pc+imm].
2751   if (SelectAddressPCRel(N, Base))
2752     return false;
2753 
2754   // If this can be more profitably realized as r+r, fail.
2755   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2756     return false;
2757 
2758   if (N.getOpcode() == ISD::ADD) {
2759     int16_t imm = 0;
2760     if (isIntS16Immediate(N.getOperand(1), imm) &&
2761         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2762       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2763       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2764         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2765         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2766       } else {
2767         Base = N.getOperand(0);
2768       }
2769       return true; // [r+i]
2770     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2771       // Match LOAD (ADD (X, Lo(G))).
2772       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2773              && "Cannot handle constant offsets yet!");
2774       Disp = N.getOperand(1).getOperand(0);  // The global address.
2775       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2776              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2777              Disp.getOpcode() == ISD::TargetConstantPool ||
2778              Disp.getOpcode() == ISD::TargetJumpTable);
2779       Base = N.getOperand(0);
2780       return true;  // [&g+r]
2781     }
2782   } else if (N.getOpcode() == ISD::OR) {
2783     int16_t imm = 0;
2784     if (isIntS16Immediate(N.getOperand(1), imm) &&
2785         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2786       // If this is an or of disjoint bitfields, we can codegen this as an add
2787       // (for better address arithmetic) if the LHS and RHS of the OR are
2788       // provably disjoint.
2789       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2790 
2791       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2792         // If all of the bits are known zero on the LHS or RHS, the add won't
2793         // carry.
2794         if (FrameIndexSDNode *FI =
2795               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2796           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2797           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2798         } else {
2799           Base = N.getOperand(0);
2800         }
2801         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2802         return true;
2803       }
2804     }
2805   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2806     // Loading from a constant address.
2807 
2808     // If this address fits entirely in a 16-bit sext immediate field, codegen
2809     // this as "d, 0"
2810     int16_t Imm;
2811     if (isIntS16Immediate(CN, Imm) &&
2812         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2813       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2814       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2815                              CN->getValueType(0));
2816       return true;
2817     }
2818 
2819     // Handle 32-bit sext immediates with LIS + addr mode.
2820     if ((CN->getValueType(0) == MVT::i32 ||
2821          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2822         (!EncodingAlignment ||
2823          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2824       int Addr = (int)CN->getZExtValue();
2825 
2826       // Otherwise, break this down into an LIS + disp.
2827       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2828 
2829       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2830                                    MVT::i32);
2831       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2832       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2833       return true;
2834     }
2835   }
2836 
2837   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2838   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2839     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2840     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2841   } else
2842     Base = N;
2843   return true;      // [r+0]
2844 }
2845 
2846 /// Similar to the 16-bit case but for instructions that take a 34-bit
2847 /// displacement field (prefixed loads/stores).
2848 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2849                                               SDValue &Base,
2850                                               SelectionDAG &DAG) const {
2851   // Only on 64-bit targets.
2852   if (N.getValueType() != MVT::i64)
2853     return false;
2854 
2855   SDLoc dl(N);
2856   int64_t Imm = 0;
2857 
2858   if (N.getOpcode() == ISD::ADD) {
2859     if (!isIntS34Immediate(N.getOperand(1), Imm))
2860       return false;
2861     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2862     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2863       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2864     else
2865       Base = N.getOperand(0);
2866     return true;
2867   }
2868 
2869   if (N.getOpcode() == ISD::OR) {
2870     if (!isIntS34Immediate(N.getOperand(1), Imm))
2871       return false;
2872     // If this is an or of disjoint bitfields, we can codegen this as an add
2873     // (for better address arithmetic) if the LHS and RHS of the OR are
2874     // provably disjoint.
2875     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2876     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2877       return false;
2878     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2879       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2880     else
2881       Base = N.getOperand(0);
2882     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2883     return true;
2884   }
2885 
2886   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2887     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2888     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2889     return true;
2890   }
2891 
2892   return false;
2893 }
2894 
2895 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2896 /// represented as an indexed [r+r] operation.
2897 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2898                                                 SDValue &Index,
2899                                                 SelectionDAG &DAG) const {
2900   // Check to see if we can easily represent this as an [r+r] address.  This
2901   // will fail if it thinks that the address is more profitably represented as
2902   // reg+imm, e.g. where imm = 0.
2903   if (SelectAddressRegReg(N, Base, Index, DAG))
2904     return true;
2905 
2906   // If the address is the result of an add, we will utilize the fact that the
2907   // address calculation includes an implicit add.  However, we can reduce
2908   // register pressure if we do not materialize a constant just for use as the
2909   // index register.  We only get rid of the add if it is not an add of a
2910   // value and a 16-bit signed constant and both have a single use.
2911   int16_t imm = 0;
2912   if (N.getOpcode() == ISD::ADD &&
2913       (!isIntS16Immediate(N.getOperand(1), imm) ||
2914        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2915     Base = N.getOperand(0);
2916     Index = N.getOperand(1);
2917     return true;
2918   }
2919 
2920   // Otherwise, do it the hard way, using R0 as the base register.
2921   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2922                          N.getValueType());
2923   Index = N;
2924   return true;
2925 }
2926 
2927 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2928   Ty *PCRelCand = dyn_cast<Ty>(N);
2929   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2930 }
2931 
2932 /// Returns true if this address is a PC Relative address.
2933 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2934 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2935 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2936   // This is a materialize PC Relative node. Always select this as PC Relative.
2937   Base = N;
2938   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2939     return true;
2940   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2941       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2942       isValidPCRelNode<JumpTableSDNode>(N) ||
2943       isValidPCRelNode<BlockAddressSDNode>(N))
2944     return true;
2945   return false;
2946 }
2947 
2948 /// Returns true if we should use a direct load into vector instruction
2949 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2950 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2951 
2952   // If there are any other uses other than scalar to vector, then we should
2953   // keep it as a scalar load -> direct move pattern to prevent multiple
2954   // loads.
2955   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2956   if (!LD)
2957     return false;
2958 
2959   EVT MemVT = LD->getMemoryVT();
2960   if (!MemVT.isSimple())
2961     return false;
2962   switch(MemVT.getSimpleVT().SimpleTy) {
2963   case MVT::i64:
2964     break;
2965   case MVT::i32:
2966     if (!ST.hasP8Vector())
2967       return false;
2968     break;
2969   case MVT::i16:
2970   case MVT::i8:
2971     if (!ST.hasP9Vector())
2972       return false;
2973     break;
2974   default:
2975     return false;
2976   }
2977 
2978   SDValue LoadedVal(N, 0);
2979   if (!LoadedVal.hasOneUse())
2980     return false;
2981 
2982   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2983        UI != UE; ++UI)
2984     if (UI.getUse().get().getResNo() == 0 &&
2985         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2986         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2987       return false;
2988 
2989   return true;
2990 }
2991 
2992 /// getPreIndexedAddressParts - returns true by value, base pointer and
2993 /// offset pointer and addressing mode by reference if the node's address
2994 /// can be legally represented as pre-indexed load / store address.
2995 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2996                                                   SDValue &Offset,
2997                                                   ISD::MemIndexedMode &AM,
2998                                                   SelectionDAG &DAG) const {
2999   if (DisablePPCPreinc) return false;
3000 
3001   bool isLoad = true;
3002   SDValue Ptr;
3003   EVT VT;
3004   Align Alignment;
3005   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3006     Ptr = LD->getBasePtr();
3007     VT = LD->getMemoryVT();
3008     Alignment = LD->getAlign();
3009   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3010     Ptr = ST->getBasePtr();
3011     VT  = ST->getMemoryVT();
3012     Alignment = ST->getAlign();
3013     isLoad = false;
3014   } else
3015     return false;
3016 
3017   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
3018   // instructions because we can fold these into a more efficient instruction
3019   // instead, (such as LXSD).
3020   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
3021     return false;
3022   }
3023 
3024   // PowerPC doesn't have preinc load/store instructions for vectors
3025   if (VT.isVector())
3026     return false;
3027 
3028   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
3029     // Common code will reject creating a pre-inc form if the base pointer
3030     // is a frame index, or if N is a store and the base pointer is either
3031     // the same as or a predecessor of the value being stored.  Check for
3032     // those situations here, and try with swapped Base/Offset instead.
3033     bool Swap = false;
3034 
3035     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
3036       Swap = true;
3037     else if (!isLoad) {
3038       SDValue Val = cast<StoreSDNode>(N)->getValue();
3039       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
3040         Swap = true;
3041     }
3042 
3043     if (Swap)
3044       std::swap(Base, Offset);
3045 
3046     AM = ISD::PRE_INC;
3047     return true;
3048   }
3049 
3050   // LDU/STU can only handle immediates that are a multiple of 4.
3051   if (VT != MVT::i64) {
3052     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt))
3053       return false;
3054   } else {
3055     // LDU/STU need an address with at least 4-byte alignment.
3056     if (Alignment < Align(4))
3057       return false;
3058 
3059     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3060       return false;
3061   }
3062 
3063   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3064     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3065     // sext i32 to i64 when addr mode is r+i.
3066     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3067         LD->getExtensionType() == ISD::SEXTLOAD &&
3068         isa<ConstantSDNode>(Offset))
3069       return false;
3070   }
3071 
3072   AM = ISD::PRE_INC;
3073   return true;
3074 }
3075 
3076 //===----------------------------------------------------------------------===//
3077 //  LowerOperation implementation
3078 //===----------------------------------------------------------------------===//
3079 
3080 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3081 /// and LoOpFlags to the target MO flags.
3082 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3083                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3084                                const GlobalValue *GV = nullptr) {
3085   HiOpFlags = PPCII::MO_HA;
3086   LoOpFlags = PPCII::MO_LO;
3087 
3088   // Don't use the pic base if not in PIC relocation model.
3089   if (IsPIC) {
3090     HiOpFlags |= PPCII::MO_PIC_FLAG;
3091     LoOpFlags |= PPCII::MO_PIC_FLAG;
3092   }
3093 }
3094 
3095 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3096                              SelectionDAG &DAG) {
3097   SDLoc DL(HiPart);
3098   EVT PtrVT = HiPart.getValueType();
3099   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3100 
3101   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3102   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3103 
3104   // With PIC, the first instruction is actually "GR+hi(&G)".
3105   if (isPIC)
3106     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3107                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3108 
3109   // Generate non-pic code that has direct accesses to the constant pool.
3110   // The address of the global is just (hi(&g)+lo(&g)).
3111   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3112 }
3113 
3114 static void setUsesTOCBasePtr(MachineFunction &MF) {
3115   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3116   FuncInfo->setUsesTOCBasePtr();
3117 }
3118 
3119 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3120   setUsesTOCBasePtr(DAG.getMachineFunction());
3121 }
3122 
3123 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3124                                        SDValue GA) const {
3125   const bool Is64Bit = Subtarget.isPPC64();
3126   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3127   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3128                         : Subtarget.isAIXABI()
3129                               ? DAG.getRegister(PPC::R2, VT)
3130                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3131   SDValue Ops[] = { GA, Reg };
3132   return DAG.getMemIntrinsicNode(
3133       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3134       MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt,
3135       MachineMemOperand::MOLoad);
3136 }
3137 
3138 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3139                                              SelectionDAG &DAG) const {
3140   EVT PtrVT = Op.getValueType();
3141   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3142   const Constant *C = CP->getConstVal();
3143 
3144   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3145   // The actual address of the GlobalValue is stored in the TOC.
3146   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3147     if (Subtarget.isUsingPCRelativeCalls()) {
3148       SDLoc DL(CP);
3149       EVT Ty = getPointerTy(DAG.getDataLayout());
3150       SDValue ConstPool = DAG.getTargetConstantPool(
3151           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3152       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3153     }
3154     setUsesTOCBasePtr(DAG);
3155     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3156     return getTOCEntry(DAG, SDLoc(CP), GA);
3157   }
3158 
3159   unsigned MOHiFlag, MOLoFlag;
3160   bool IsPIC = isPositionIndependent();
3161   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3162 
3163   if (IsPIC && Subtarget.isSVR4ABI()) {
3164     SDValue GA =
3165         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3166     return getTOCEntry(DAG, SDLoc(CP), GA);
3167   }
3168 
3169   SDValue CPIHi =
3170       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3171   SDValue CPILo =
3172       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3173   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3174 }
3175 
3176 // For 64-bit PowerPC, prefer the more compact relative encodings.
3177 // This trades 32 bits per jump table entry for one or two instructions
3178 // on the jump site.
3179 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3180   if (isJumpTableRelative())
3181     return MachineJumpTableInfo::EK_LabelDifference32;
3182 
3183   return TargetLowering::getJumpTableEncoding();
3184 }
3185 
3186 bool PPCTargetLowering::isJumpTableRelative() const {
3187   if (UseAbsoluteJumpTables)
3188     return false;
3189   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3190     return true;
3191   return TargetLowering::isJumpTableRelative();
3192 }
3193 
3194 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3195                                                     SelectionDAG &DAG) const {
3196   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3197     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3198 
3199   switch (getTargetMachine().getCodeModel()) {
3200   case CodeModel::Small:
3201   case CodeModel::Medium:
3202     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3203   default:
3204     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3205                        getPointerTy(DAG.getDataLayout()));
3206   }
3207 }
3208 
3209 const MCExpr *
3210 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3211                                                 unsigned JTI,
3212                                                 MCContext &Ctx) const {
3213   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3214     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3215 
3216   switch (getTargetMachine().getCodeModel()) {
3217   case CodeModel::Small:
3218   case CodeModel::Medium:
3219     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3220   default:
3221     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3222   }
3223 }
3224 
3225 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3226   EVT PtrVT = Op.getValueType();
3227   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3228 
3229   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3230   if (Subtarget.isUsingPCRelativeCalls()) {
3231     SDLoc DL(JT);
3232     EVT Ty = getPointerTy(DAG.getDataLayout());
3233     SDValue GA =
3234         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3235     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3236     return MatAddr;
3237   }
3238 
3239   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3240   // The actual address of the GlobalValue is stored in the TOC.
3241   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3242     setUsesTOCBasePtr(DAG);
3243     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3244     return getTOCEntry(DAG, SDLoc(JT), GA);
3245   }
3246 
3247   unsigned MOHiFlag, MOLoFlag;
3248   bool IsPIC = isPositionIndependent();
3249   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3250 
3251   if (IsPIC && Subtarget.isSVR4ABI()) {
3252     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3253                                         PPCII::MO_PIC_FLAG);
3254     return getTOCEntry(DAG, SDLoc(GA), GA);
3255   }
3256 
3257   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3258   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3259   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3260 }
3261 
3262 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3263                                              SelectionDAG &DAG) const {
3264   EVT PtrVT = Op.getValueType();
3265   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3266   const BlockAddress *BA = BASDN->getBlockAddress();
3267 
3268   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3269   if (Subtarget.isUsingPCRelativeCalls()) {
3270     SDLoc DL(BASDN);
3271     EVT Ty = getPointerTy(DAG.getDataLayout());
3272     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3273                                            PPCII::MO_PCREL_FLAG);
3274     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3275     return MatAddr;
3276   }
3277 
3278   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3279   // The actual BlockAddress is stored in the TOC.
3280   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3281     setUsesTOCBasePtr(DAG);
3282     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3283     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3284   }
3285 
3286   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3287   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3288     return getTOCEntry(
3289         DAG, SDLoc(BASDN),
3290         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3291 
3292   unsigned MOHiFlag, MOLoFlag;
3293   bool IsPIC = isPositionIndependent();
3294   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3295   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3296   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3297   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3298 }
3299 
3300 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3301                                               SelectionDAG &DAG) const {
3302   if (Subtarget.isAIXABI())
3303     return LowerGlobalTLSAddressAIX(Op, DAG);
3304 
3305   return LowerGlobalTLSAddressLinux(Op, DAG);
3306 }
3307 
3308 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3309                                                     SelectionDAG &DAG) const {
3310   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3311 
3312   if (DAG.getTarget().useEmulatedTLS())
3313     report_fatal_error("Emulated TLS is not yet supported on AIX");
3314 
3315   SDLoc dl(GA);
3316   const GlobalValue *GV = GA->getGlobal();
3317   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3318 
3319   // The general-dynamic model is the only access model supported for now, so
3320   // all the GlobalTLSAddress nodes are lowered with this model.
3321   // We need to generate two TOC entries, one for the variable offset, one for
3322   // the region handle. The global address for the TOC entry of the region
3323   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3324   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3325   SDValue VariableOffsetTGA =
3326       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3327   SDValue RegionHandleTGA =
3328       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3329   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3330   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3331   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3332                      RegionHandle);
3333 }
3334 
3335 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3336                                                       SelectionDAG &DAG) const {
3337   // FIXME: TLS addresses currently use medium model code sequences,
3338   // which is the most useful form.  Eventually support for small and
3339   // large models could be added if users need it, at the cost of
3340   // additional complexity.
3341   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3342   if (DAG.getTarget().useEmulatedTLS())
3343     return LowerToTLSEmulatedModel(GA, DAG);
3344 
3345   SDLoc dl(GA);
3346   const GlobalValue *GV = GA->getGlobal();
3347   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3348   bool is64bit = Subtarget.isPPC64();
3349   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3350   PICLevel::Level picLevel = M->getPICLevel();
3351 
3352   const TargetMachine &TM = getTargetMachine();
3353   TLSModel::Model Model = TM.getTLSModel(GV);
3354 
3355   if (Model == TLSModel::LocalExec) {
3356     if (Subtarget.isUsingPCRelativeCalls()) {
3357       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3358       SDValue TGA = DAG.getTargetGlobalAddress(
3359           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3360       SDValue MatAddr =
3361           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3362       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3363     }
3364 
3365     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3366                                                PPCII::MO_TPREL_HA);
3367     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3368                                                PPCII::MO_TPREL_LO);
3369     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3370                              : DAG.getRegister(PPC::R2, MVT::i32);
3371 
3372     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3373     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3374   }
3375 
3376   if (Model == TLSModel::InitialExec) {
3377     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3378     SDValue TGA = DAG.getTargetGlobalAddress(
3379         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3380     SDValue TGATLS = DAG.getTargetGlobalAddress(
3381         GV, dl, PtrVT, 0,
3382         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3383     SDValue TPOffset;
3384     if (IsPCRel) {
3385       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3386       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3387                              MachinePointerInfo());
3388     } else {
3389       SDValue GOTPtr;
3390       if (is64bit) {
3391         setUsesTOCBasePtr(DAG);
3392         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3393         GOTPtr =
3394             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3395       } else {
3396         if (!TM.isPositionIndependent())
3397           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3398         else if (picLevel == PICLevel::SmallPIC)
3399           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3400         else
3401           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3402       }
3403       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3404     }
3405     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3406   }
3407 
3408   if (Model == TLSModel::GeneralDynamic) {
3409     if (Subtarget.isUsingPCRelativeCalls()) {
3410       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3411                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3412       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3413     }
3414 
3415     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3416     SDValue GOTPtr;
3417     if (is64bit) {
3418       setUsesTOCBasePtr(DAG);
3419       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3420       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3421                                    GOTReg, TGA);
3422     } else {
3423       if (picLevel == PICLevel::SmallPIC)
3424         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3425       else
3426         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3427     }
3428     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3429                        GOTPtr, TGA, TGA);
3430   }
3431 
3432   if (Model == TLSModel::LocalDynamic) {
3433     if (Subtarget.isUsingPCRelativeCalls()) {
3434       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3435                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3436       SDValue MatPCRel =
3437           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3438       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3439     }
3440 
3441     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3442     SDValue GOTPtr;
3443     if (is64bit) {
3444       setUsesTOCBasePtr(DAG);
3445       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3446       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3447                            GOTReg, TGA);
3448     } else {
3449       if (picLevel == PICLevel::SmallPIC)
3450         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3451       else
3452         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3453     }
3454     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3455                                   PtrVT, GOTPtr, TGA, TGA);
3456     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3457                                       PtrVT, TLSAddr, TGA);
3458     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3459   }
3460 
3461   llvm_unreachable("Unknown TLS model!");
3462 }
3463 
3464 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3465                                               SelectionDAG &DAG) const {
3466   EVT PtrVT = Op.getValueType();
3467   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3468   SDLoc DL(GSDN);
3469   const GlobalValue *GV = GSDN->getGlobal();
3470 
3471   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3472   // The actual address of the GlobalValue is stored in the TOC.
3473   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3474     if (Subtarget.isUsingPCRelativeCalls()) {
3475       EVT Ty = getPointerTy(DAG.getDataLayout());
3476       if (isAccessedAsGotIndirect(Op)) {
3477         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3478                                                 PPCII::MO_PCREL_FLAG |
3479                                                     PPCII::MO_GOT_FLAG);
3480         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3481         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3482                                    MachinePointerInfo());
3483         return Load;
3484       } else {
3485         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3486                                                 PPCII::MO_PCREL_FLAG);
3487         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3488       }
3489     }
3490     setUsesTOCBasePtr(DAG);
3491     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3492     return getTOCEntry(DAG, DL, GA);
3493   }
3494 
3495   unsigned MOHiFlag, MOLoFlag;
3496   bool IsPIC = isPositionIndependent();
3497   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3498 
3499   if (IsPIC && Subtarget.isSVR4ABI()) {
3500     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3501                                             GSDN->getOffset(),
3502                                             PPCII::MO_PIC_FLAG);
3503     return getTOCEntry(DAG, DL, GA);
3504   }
3505 
3506   SDValue GAHi =
3507     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3508   SDValue GALo =
3509     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3510 
3511   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3512 }
3513 
3514 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3515   bool IsStrict = Op->isStrictFPOpcode();
3516   ISD::CondCode CC =
3517       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3518   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3519   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3520   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3521   EVT LHSVT = LHS.getValueType();
3522   SDLoc dl(Op);
3523 
3524   // Soften the setcc with libcall if it is fp128.
3525   if (LHSVT == MVT::f128) {
3526     assert(!Subtarget.hasP9Vector() &&
3527            "SETCC for f128 is already legal under Power9!");
3528     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3529                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3530     if (RHS.getNode())
3531       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3532                         DAG.getCondCode(CC));
3533     if (IsStrict)
3534       return DAG.getMergeValues({LHS, Chain}, dl);
3535     return LHS;
3536   }
3537 
3538   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3539 
3540   if (Op.getValueType() == MVT::v2i64) {
3541     // When the operands themselves are v2i64 values, we need to do something
3542     // special because VSX has no underlying comparison operations for these.
3543     if (LHS.getValueType() == MVT::v2i64) {
3544       // Equality can be handled by casting to the legal type for Altivec
3545       // comparisons, everything else needs to be expanded.
3546       if (CC != ISD::SETEQ && CC != ISD::SETNE)
3547         return SDValue();
3548       SDValue SetCC32 = DAG.getSetCC(
3549           dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3550           DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3551       int ShuffV[] = {1, 0, 3, 2};
3552       SDValue Shuff =
3553           DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3554       return DAG.getBitcast(MVT::v2i64,
3555                             DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR,
3556                                         dl, MVT::v4i32, Shuff, SetCC32));
3557     }
3558 
3559     // We handle most of these in the usual way.
3560     return Op;
3561   }
3562 
3563   // If we're comparing for equality to zero, expose the fact that this is
3564   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3565   // fold the new nodes.
3566   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3567     return V;
3568 
3569   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3570     // Leave comparisons against 0 and -1 alone for now, since they're usually
3571     // optimized.  FIXME: revisit this when we can custom lower all setcc
3572     // optimizations.
3573     if (C->isAllOnes() || C->isZero())
3574       return SDValue();
3575   }
3576 
3577   // If we have an integer seteq/setne, turn it into a compare against zero
3578   // by xor'ing the rhs with the lhs, which is faster than setting a
3579   // condition register, reading it back out, and masking the correct bit.  The
3580   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3581   // the result to other bit-twiddling opportunities.
3582   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3583     EVT VT = Op.getValueType();
3584     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3585     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3586   }
3587   return SDValue();
3588 }
3589 
3590 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3591   SDNode *Node = Op.getNode();
3592   EVT VT = Node->getValueType(0);
3593   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3594   SDValue InChain = Node->getOperand(0);
3595   SDValue VAListPtr = Node->getOperand(1);
3596   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3597   SDLoc dl(Node);
3598 
3599   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3600 
3601   // gpr_index
3602   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3603                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3604   InChain = GprIndex.getValue(1);
3605 
3606   if (VT == MVT::i64) {
3607     // Check if GprIndex is even
3608     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3609                                  DAG.getConstant(1, dl, MVT::i32));
3610     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3611                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3612     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3613                                           DAG.getConstant(1, dl, MVT::i32));
3614     // Align GprIndex to be even if it isn't
3615     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3616                            GprIndex);
3617   }
3618 
3619   // fpr index is 1 byte after gpr
3620   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3621                                DAG.getConstant(1, dl, MVT::i32));
3622 
3623   // fpr
3624   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3625                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3626   InChain = FprIndex.getValue(1);
3627 
3628   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3629                                        DAG.getConstant(8, dl, MVT::i32));
3630 
3631   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3632                                         DAG.getConstant(4, dl, MVT::i32));
3633 
3634   // areas
3635   SDValue OverflowArea =
3636       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3637   InChain = OverflowArea.getValue(1);
3638 
3639   SDValue RegSaveArea =
3640       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3641   InChain = RegSaveArea.getValue(1);
3642 
3643   // select overflow_area if index > 8
3644   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3645                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3646 
3647   // adjustment constant gpr_index * 4/8
3648   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3649                                     VT.isInteger() ? GprIndex : FprIndex,
3650                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3651                                                     MVT::i32));
3652 
3653   // OurReg = RegSaveArea + RegConstant
3654   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3655                                RegConstant);
3656 
3657   // Floating types are 32 bytes into RegSaveArea
3658   if (VT.isFloatingPoint())
3659     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3660                          DAG.getConstant(32, dl, MVT::i32));
3661 
3662   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3663   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3664                                    VT.isInteger() ? GprIndex : FprIndex,
3665                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3666                                                    MVT::i32));
3667 
3668   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3669                               VT.isInteger() ? VAListPtr : FprPtr,
3670                               MachinePointerInfo(SV), MVT::i8);
3671 
3672   // determine if we should load from reg_save_area or overflow_area
3673   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3674 
3675   // increase overflow_area by 4/8 if gpr/fpr > 8
3676   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3677                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3678                                           dl, MVT::i32));
3679 
3680   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3681                              OverflowAreaPlusN);
3682 
3683   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3684                               MachinePointerInfo(), MVT::i32);
3685 
3686   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3687 }
3688 
3689 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3690   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3691 
3692   // We have to copy the entire va_list struct:
3693   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3694   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3695                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3696                        false, true, false, MachinePointerInfo(),
3697                        MachinePointerInfo());
3698 }
3699 
3700 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3701                                                   SelectionDAG &DAG) const {
3702   if (Subtarget.isAIXABI())
3703     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3704 
3705   return Op.getOperand(0);
3706 }
3707 
3708 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3709   MachineFunction &MF = DAG.getMachineFunction();
3710   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3711 
3712   assert((Op.getOpcode() == ISD::INLINEASM ||
3713           Op.getOpcode() == ISD::INLINEASM_BR) &&
3714          "Expecting Inline ASM node.");
3715 
3716   // If an LR store is already known to be required then there is not point in
3717   // checking this ASM as well.
3718   if (MFI.isLRStoreRequired())
3719     return Op;
3720 
3721   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3722   // type MVT::Glue. We want to ignore this last operand if that is the case.
3723   unsigned NumOps = Op.getNumOperands();
3724   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3725     --NumOps;
3726 
3727   // Check all operands that may contain the LR.
3728   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3729     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3730     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3731     ++i; // Skip the ID value.
3732 
3733     switch (InlineAsm::getKind(Flags)) {
3734     default:
3735       llvm_unreachable("Bad flags!");
3736     case InlineAsm::Kind_RegUse:
3737     case InlineAsm::Kind_Imm:
3738     case InlineAsm::Kind_Mem:
3739       i += NumVals;
3740       break;
3741     case InlineAsm::Kind_Clobber:
3742     case InlineAsm::Kind_RegDef:
3743     case InlineAsm::Kind_RegDefEarlyClobber: {
3744       for (; NumVals; --NumVals, ++i) {
3745         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3746         if (Reg != PPC::LR && Reg != PPC::LR8)
3747           continue;
3748         MFI.setLRStoreRequired();
3749         return Op;
3750       }
3751       break;
3752     }
3753     }
3754   }
3755 
3756   return Op;
3757 }
3758 
3759 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3760                                                 SelectionDAG &DAG) const {
3761   if (Subtarget.isAIXABI())
3762     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3763 
3764   SDValue Chain = Op.getOperand(0);
3765   SDValue Trmp = Op.getOperand(1); // trampoline
3766   SDValue FPtr = Op.getOperand(2); // nested function
3767   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3768   SDLoc dl(Op);
3769 
3770   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3771   bool isPPC64 = (PtrVT == MVT::i64);
3772   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3773 
3774   TargetLowering::ArgListTy Args;
3775   TargetLowering::ArgListEntry Entry;
3776 
3777   Entry.Ty = IntPtrTy;
3778   Entry.Node = Trmp; Args.push_back(Entry);
3779 
3780   // TrampSize == (isPPC64 ? 48 : 40);
3781   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3782                                isPPC64 ? MVT::i64 : MVT::i32);
3783   Args.push_back(Entry);
3784 
3785   Entry.Node = FPtr; Args.push_back(Entry);
3786   Entry.Node = Nest; Args.push_back(Entry);
3787 
3788   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3789   TargetLowering::CallLoweringInfo CLI(DAG);
3790   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3791       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3792       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3793 
3794   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3795   return CallResult.second;
3796 }
3797 
3798 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3799   MachineFunction &MF = DAG.getMachineFunction();
3800   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3801   EVT PtrVT = getPointerTy(MF.getDataLayout());
3802 
3803   SDLoc dl(Op);
3804 
3805   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3806     // vastart just stores the address of the VarArgsFrameIndex slot into the
3807     // memory location argument.
3808     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3809     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3810     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3811                         MachinePointerInfo(SV));
3812   }
3813 
3814   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3815   // We suppose the given va_list is already allocated.
3816   //
3817   // typedef struct {
3818   //  char gpr;     /* index into the array of 8 GPRs
3819   //                 * stored in the register save area
3820   //                 * gpr=0 corresponds to r3,
3821   //                 * gpr=1 to r4, etc.
3822   //                 */
3823   //  char fpr;     /* index into the array of 8 FPRs
3824   //                 * stored in the register save area
3825   //                 * fpr=0 corresponds to f1,
3826   //                 * fpr=1 to f2, etc.
3827   //                 */
3828   //  char *overflow_arg_area;
3829   //                /* location on stack that holds
3830   //                 * the next overflow argument
3831   //                 */
3832   //  char *reg_save_area;
3833   //               /* where r3:r10 and f1:f8 (if saved)
3834   //                * are stored
3835   //                */
3836   // } va_list[1];
3837 
3838   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3839   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3840   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3841                                             PtrVT);
3842   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3843                                  PtrVT);
3844 
3845   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3846   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3847 
3848   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3849   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3850 
3851   uint64_t FPROffset = 1;
3852   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3853 
3854   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3855 
3856   // Store first byte : number of int regs
3857   SDValue firstStore =
3858       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3859                         MachinePointerInfo(SV), MVT::i8);
3860   uint64_t nextOffset = FPROffset;
3861   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3862                                   ConstFPROffset);
3863 
3864   // Store second byte : number of float regs
3865   SDValue secondStore =
3866       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3867                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3868   nextOffset += StackOffset;
3869   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3870 
3871   // Store second word : arguments given on stack
3872   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3873                                     MachinePointerInfo(SV, nextOffset));
3874   nextOffset += FrameOffset;
3875   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3876 
3877   // Store third word : arguments given in registers
3878   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3879                       MachinePointerInfo(SV, nextOffset));
3880 }
3881 
3882 /// FPR - The set of FP registers that should be allocated for arguments
3883 /// on Darwin and AIX.
3884 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3885                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3886                                 PPC::F11, PPC::F12, PPC::F13};
3887 
3888 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3889 /// the stack.
3890 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3891                                        unsigned PtrByteSize) {
3892   unsigned ArgSize = ArgVT.getStoreSize();
3893   if (Flags.isByVal())
3894     ArgSize = Flags.getByValSize();
3895 
3896   // Round up to multiples of the pointer size, except for array members,
3897   // which are always packed.
3898   if (!Flags.isInConsecutiveRegs())
3899     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3900 
3901   return ArgSize;
3902 }
3903 
3904 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3905 /// on the stack.
3906 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3907                                          ISD::ArgFlagsTy Flags,
3908                                          unsigned PtrByteSize) {
3909   Align Alignment(PtrByteSize);
3910 
3911   // Altivec parameters are padded to a 16 byte boundary.
3912   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3913       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3914       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3915       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3916     Alignment = Align(16);
3917 
3918   // ByVal parameters are aligned as requested.
3919   if (Flags.isByVal()) {
3920     auto BVAlign = Flags.getNonZeroByValAlign();
3921     if (BVAlign > PtrByteSize) {
3922       if (BVAlign.value() % PtrByteSize != 0)
3923         llvm_unreachable(
3924             "ByVal alignment is not a multiple of the pointer size");
3925 
3926       Alignment = BVAlign;
3927     }
3928   }
3929 
3930   // Array members are always packed to their original alignment.
3931   if (Flags.isInConsecutiveRegs()) {
3932     // If the array member was split into multiple registers, the first
3933     // needs to be aligned to the size of the full type.  (Except for
3934     // ppcf128, which is only aligned as its f64 components.)
3935     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3936       Alignment = Align(OrigVT.getStoreSize());
3937     else
3938       Alignment = Align(ArgVT.getStoreSize());
3939   }
3940 
3941   return Alignment;
3942 }
3943 
3944 /// CalculateStackSlotUsed - Return whether this argument will use its
3945 /// stack slot (instead of being passed in registers).  ArgOffset,
3946 /// AvailableFPRs, and AvailableVRs must hold the current argument
3947 /// position, and will be updated to account for this argument.
3948 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3949                                    unsigned PtrByteSize, unsigned LinkageSize,
3950                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3951                                    unsigned &AvailableFPRs,
3952                                    unsigned &AvailableVRs) {
3953   bool UseMemory = false;
3954 
3955   // Respect alignment of argument on the stack.
3956   Align Alignment =
3957       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3958   ArgOffset = alignTo(ArgOffset, Alignment);
3959   // If there's no space left in the argument save area, we must
3960   // use memory (this check also catches zero-sized arguments).
3961   if (ArgOffset >= LinkageSize + ParamAreaSize)
3962     UseMemory = true;
3963 
3964   // Allocate argument on the stack.
3965   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3966   if (Flags.isInConsecutiveRegsLast())
3967     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3968   // If we overran the argument save area, we must use memory
3969   // (this check catches arguments passed partially in memory)
3970   if (ArgOffset > LinkageSize + ParamAreaSize)
3971     UseMemory = true;
3972 
3973   // However, if the argument is actually passed in an FPR or a VR,
3974   // we don't use memory after all.
3975   if (!Flags.isByVal()) {
3976     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3977       if (AvailableFPRs > 0) {
3978         --AvailableFPRs;
3979         return false;
3980       }
3981     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3982         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3983         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3984         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3985       if (AvailableVRs > 0) {
3986         --AvailableVRs;
3987         return false;
3988       }
3989   }
3990 
3991   return UseMemory;
3992 }
3993 
3994 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3995 /// ensure minimum alignment required for target.
3996 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3997                                      unsigned NumBytes) {
3998   return alignTo(NumBytes, Lowering->getStackAlign());
3999 }
4000 
4001 SDValue PPCTargetLowering::LowerFormalArguments(
4002     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4003     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4004     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4005   if (Subtarget.isAIXABI())
4006     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
4007                                     InVals);
4008   if (Subtarget.is64BitELFABI())
4009     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4010                                        InVals);
4011   assert(Subtarget.is32BitELFABI());
4012   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4013                                      InVals);
4014 }
4015 
4016 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
4017     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4018     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4019     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4020 
4021   // 32-bit SVR4 ABI Stack Frame Layout:
4022   //              +-----------------------------------+
4023   //        +-->  |            Back chain             |
4024   //        |     +-----------------------------------+
4025   //        |     | Floating-point register save area |
4026   //        |     +-----------------------------------+
4027   //        |     |    General register save area     |
4028   //        |     +-----------------------------------+
4029   //        |     |          CR save word             |
4030   //        |     +-----------------------------------+
4031   //        |     |         VRSAVE save word          |
4032   //        |     +-----------------------------------+
4033   //        |     |         Alignment padding         |
4034   //        |     +-----------------------------------+
4035   //        |     |     Vector register save area     |
4036   //        |     +-----------------------------------+
4037   //        |     |       Local variable space        |
4038   //        |     +-----------------------------------+
4039   //        |     |        Parameter list area        |
4040   //        |     +-----------------------------------+
4041   //        |     |           LR save word            |
4042   //        |     +-----------------------------------+
4043   // SP-->  +---  |            Back chain             |
4044   //              +-----------------------------------+
4045   //
4046   // Specifications:
4047   //   System V Application Binary Interface PowerPC Processor Supplement
4048   //   AltiVec Technology Programming Interface Manual
4049 
4050   MachineFunction &MF = DAG.getMachineFunction();
4051   MachineFrameInfo &MFI = MF.getFrameInfo();
4052   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4053 
4054   EVT PtrVT = getPointerTy(MF.getDataLayout());
4055   // Potential tail calls could cause overwriting of argument stack slots.
4056   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4057                        (CallConv == CallingConv::Fast));
4058   const Align PtrAlign(4);
4059 
4060   // Assign locations to all of the incoming arguments.
4061   SmallVector<CCValAssign, 16> ArgLocs;
4062   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4063                  *DAG.getContext());
4064 
4065   // Reserve space for the linkage area on the stack.
4066   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4067   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4068   if (useSoftFloat())
4069     CCInfo.PreAnalyzeFormalArguments(Ins);
4070 
4071   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4072   CCInfo.clearWasPPCF128();
4073 
4074   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4075     CCValAssign &VA = ArgLocs[i];
4076 
4077     // Arguments stored in registers.
4078     if (VA.isRegLoc()) {
4079       const TargetRegisterClass *RC;
4080       EVT ValVT = VA.getValVT();
4081 
4082       switch (ValVT.getSimpleVT().SimpleTy) {
4083         default:
4084           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4085         case MVT::i1:
4086         case MVT::i32:
4087           RC = &PPC::GPRCRegClass;
4088           break;
4089         case MVT::f32:
4090           if (Subtarget.hasP8Vector())
4091             RC = &PPC::VSSRCRegClass;
4092           else if (Subtarget.hasSPE())
4093             RC = &PPC::GPRCRegClass;
4094           else
4095             RC = &PPC::F4RCRegClass;
4096           break;
4097         case MVT::f64:
4098           if (Subtarget.hasVSX())
4099             RC = &PPC::VSFRCRegClass;
4100           else if (Subtarget.hasSPE())
4101             // SPE passes doubles in GPR pairs.
4102             RC = &PPC::GPRCRegClass;
4103           else
4104             RC = &PPC::F8RCRegClass;
4105           break;
4106         case MVT::v16i8:
4107         case MVT::v8i16:
4108         case MVT::v4i32:
4109           RC = &PPC::VRRCRegClass;
4110           break;
4111         case MVT::v4f32:
4112           RC = &PPC::VRRCRegClass;
4113           break;
4114         case MVT::v2f64:
4115         case MVT::v2i64:
4116           RC = &PPC::VRRCRegClass;
4117           break;
4118       }
4119 
4120       SDValue ArgValue;
4121       // Transform the arguments stored in physical registers into
4122       // virtual ones.
4123       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4124         assert(i + 1 < e && "No second half of double precision argument");
4125         Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4126         Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4127         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4128         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4129         if (!Subtarget.isLittleEndian())
4130           std::swap (ArgValueLo, ArgValueHi);
4131         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4132                                ArgValueHi);
4133       } else {
4134         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4135         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4136                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4137         if (ValVT == MVT::i1)
4138           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4139       }
4140 
4141       InVals.push_back(ArgValue);
4142     } else {
4143       // Argument stored in memory.
4144       assert(VA.isMemLoc());
4145 
4146       // Get the extended size of the argument type in stack
4147       unsigned ArgSize = VA.getLocVT().getStoreSize();
4148       // Get the actual size of the argument type
4149       unsigned ObjSize = VA.getValVT().getStoreSize();
4150       unsigned ArgOffset = VA.getLocMemOffset();
4151       // Stack objects in PPC32 are right justified.
4152       ArgOffset += ArgSize - ObjSize;
4153       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4154 
4155       // Create load nodes to retrieve arguments from the stack.
4156       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4157       InVals.push_back(
4158           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4159     }
4160   }
4161 
4162   // Assign locations to all of the incoming aggregate by value arguments.
4163   // Aggregates passed by value are stored in the local variable space of the
4164   // caller's stack frame, right above the parameter list area.
4165   SmallVector<CCValAssign, 16> ByValArgLocs;
4166   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4167                       ByValArgLocs, *DAG.getContext());
4168 
4169   // Reserve stack space for the allocations in CCInfo.
4170   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4171 
4172   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4173 
4174   // Area that is at least reserved in the caller of this function.
4175   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4176   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4177 
4178   // Set the size that is at least reserved in caller of this function.  Tail
4179   // call optimized function's reserved stack space needs to be aligned so that
4180   // taking the difference between two stack areas will result in an aligned
4181   // stack.
4182   MinReservedArea =
4183       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4184   FuncInfo->setMinReservedArea(MinReservedArea);
4185 
4186   SmallVector<SDValue, 8> MemOps;
4187 
4188   // If the function takes variable number of arguments, make a frame index for
4189   // the start of the first vararg value... for expansion of llvm.va_start.
4190   if (isVarArg) {
4191     static const MCPhysReg GPArgRegs[] = {
4192       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4193       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4194     };
4195     const unsigned NumGPArgRegs = std::size(GPArgRegs);
4196 
4197     static const MCPhysReg FPArgRegs[] = {
4198       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4199       PPC::F8
4200     };
4201     unsigned NumFPArgRegs = std::size(FPArgRegs);
4202 
4203     if (useSoftFloat() || hasSPE())
4204        NumFPArgRegs = 0;
4205 
4206     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4207     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4208 
4209     // Make room for NumGPArgRegs and NumFPArgRegs.
4210     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4211                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4212 
4213     FuncInfo->setVarArgsStackOffset(
4214       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4215                             CCInfo.getNextStackOffset(), true));
4216 
4217     FuncInfo->setVarArgsFrameIndex(
4218         MFI.CreateStackObject(Depth, Align(8), false));
4219     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4220 
4221     // The fixed integer arguments of a variadic function are stored to the
4222     // VarArgsFrameIndex on the stack so that they may be loaded by
4223     // dereferencing the result of va_next.
4224     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4225       // Get an existing live-in vreg, or add a new one.
4226       Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4227       if (!VReg)
4228         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4229 
4230       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4231       SDValue Store =
4232           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4233       MemOps.push_back(Store);
4234       // Increment the address by four for the next argument to store
4235       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4236       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4237     }
4238 
4239     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4240     // is set.
4241     // The double arguments are stored to the VarArgsFrameIndex
4242     // on the stack.
4243     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4244       // Get an existing live-in vreg, or add a new one.
4245       Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4246       if (!VReg)
4247         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4248 
4249       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4250       SDValue Store =
4251           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4252       MemOps.push_back(Store);
4253       // Increment the address by eight for the next argument to store
4254       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4255                                          PtrVT);
4256       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4257     }
4258   }
4259 
4260   if (!MemOps.empty())
4261     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4262 
4263   return Chain;
4264 }
4265 
4266 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4267 // value to MVT::i64 and then truncate to the correct register size.
4268 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4269                                              EVT ObjectVT, SelectionDAG &DAG,
4270                                              SDValue ArgVal,
4271                                              const SDLoc &dl) const {
4272   if (Flags.isSExt())
4273     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4274                          DAG.getValueType(ObjectVT));
4275   else if (Flags.isZExt())
4276     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4277                          DAG.getValueType(ObjectVT));
4278 
4279   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4280 }
4281 
4282 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4283     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4284     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4285     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4286   // TODO: add description of PPC stack frame format, or at least some docs.
4287   //
4288   bool isELFv2ABI = Subtarget.isELFv2ABI();
4289   bool isLittleEndian = Subtarget.isLittleEndian();
4290   MachineFunction &MF = DAG.getMachineFunction();
4291   MachineFrameInfo &MFI = MF.getFrameInfo();
4292   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4293 
4294   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4295          "fastcc not supported on varargs functions");
4296 
4297   EVT PtrVT = getPointerTy(MF.getDataLayout());
4298   // Potential tail calls could cause overwriting of argument stack slots.
4299   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4300                        (CallConv == CallingConv::Fast));
4301   unsigned PtrByteSize = 8;
4302   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4303 
4304   static const MCPhysReg GPR[] = {
4305     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4306     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4307   };
4308   static const MCPhysReg VR[] = {
4309     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4310     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4311   };
4312 
4313   const unsigned Num_GPR_Regs = std::size(GPR);
4314   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4315   const unsigned Num_VR_Regs = std::size(VR);
4316 
4317   // Do a first pass over the arguments to determine whether the ABI
4318   // guarantees that our caller has allocated the parameter save area
4319   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4320   // in the ELFv2 ABI, it is true if this is a vararg function or if
4321   // any parameter is located in a stack slot.
4322 
4323   bool HasParameterArea = !isELFv2ABI || isVarArg;
4324   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4325   unsigned NumBytes = LinkageSize;
4326   unsigned AvailableFPRs = Num_FPR_Regs;
4327   unsigned AvailableVRs = Num_VR_Regs;
4328   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4329     if (Ins[i].Flags.isNest())
4330       continue;
4331 
4332     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4333                                PtrByteSize, LinkageSize, ParamAreaSize,
4334                                NumBytes, AvailableFPRs, AvailableVRs))
4335       HasParameterArea = true;
4336   }
4337 
4338   // Add DAG nodes to load the arguments or copy them out of registers.  On
4339   // entry to a function on PPC, the arguments start after the linkage area,
4340   // although the first ones are often in registers.
4341 
4342   unsigned ArgOffset = LinkageSize;
4343   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4344   SmallVector<SDValue, 8> MemOps;
4345   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4346   unsigned CurArgIdx = 0;
4347   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4348     SDValue ArgVal;
4349     bool needsLoad = false;
4350     EVT ObjectVT = Ins[ArgNo].VT;
4351     EVT OrigVT = Ins[ArgNo].ArgVT;
4352     unsigned ObjSize = ObjectVT.getStoreSize();
4353     unsigned ArgSize = ObjSize;
4354     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4355     if (Ins[ArgNo].isOrigArg()) {
4356       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4357       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4358     }
4359     // We re-align the argument offset for each argument, except when using the
4360     // fast calling convention, when we need to make sure we do that only when
4361     // we'll actually use a stack slot.
4362     unsigned CurArgOffset;
4363     Align Alignment;
4364     auto ComputeArgOffset = [&]() {
4365       /* Respect alignment of argument on the stack.  */
4366       Alignment =
4367           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4368       ArgOffset = alignTo(ArgOffset, Alignment);
4369       CurArgOffset = ArgOffset;
4370     };
4371 
4372     if (CallConv != CallingConv::Fast) {
4373       ComputeArgOffset();
4374 
4375       /* Compute GPR index associated with argument offset.  */
4376       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4377       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4378     }
4379 
4380     // FIXME the codegen can be much improved in some cases.
4381     // We do not have to keep everything in memory.
4382     if (Flags.isByVal()) {
4383       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4384 
4385       if (CallConv == CallingConv::Fast)
4386         ComputeArgOffset();
4387 
4388       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4389       ObjSize = Flags.getByValSize();
4390       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4391       // Empty aggregate parameters do not take up registers.  Examples:
4392       //   struct { } a;
4393       //   union  { } b;
4394       //   int c[0];
4395       // etc.  However, we have to provide a place-holder in InVals, so
4396       // pretend we have an 8-byte item at the current address for that
4397       // purpose.
4398       if (!ObjSize) {
4399         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4400         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4401         InVals.push_back(FIN);
4402         continue;
4403       }
4404 
4405       // Create a stack object covering all stack doublewords occupied
4406       // by the argument.  If the argument is (fully or partially) on
4407       // the stack, or if the argument is fully in registers but the
4408       // caller has allocated the parameter save anyway, we can refer
4409       // directly to the caller's stack frame.  Otherwise, create a
4410       // local copy in our own frame.
4411       int FI;
4412       if (HasParameterArea ||
4413           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4414         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4415       else
4416         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4417       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4418 
4419       // Handle aggregates smaller than 8 bytes.
4420       if (ObjSize < PtrByteSize) {
4421         // The value of the object is its address, which differs from the
4422         // address of the enclosing doubleword on big-endian systems.
4423         SDValue Arg = FIN;
4424         if (!isLittleEndian) {
4425           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4426           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4427         }
4428         InVals.push_back(Arg);
4429 
4430         if (GPR_idx != Num_GPR_Regs) {
4431           Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4432           FuncInfo->addLiveInAttr(VReg, Flags);
4433           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4434           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4435           SDValue Store =
4436               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4437                                 MachinePointerInfo(&*FuncArg), ObjType);
4438           MemOps.push_back(Store);
4439         }
4440         // Whether we copied from a register or not, advance the offset
4441         // into the parameter save area by a full doubleword.
4442         ArgOffset += PtrByteSize;
4443         continue;
4444       }
4445 
4446       // The value of the object is its address, which is the address of
4447       // its first stack doubleword.
4448       InVals.push_back(FIN);
4449 
4450       // Store whatever pieces of the object are in registers to memory.
4451       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4452         if (GPR_idx == Num_GPR_Regs)
4453           break;
4454 
4455         Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4456         FuncInfo->addLiveInAttr(VReg, Flags);
4457         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4458         SDValue Addr = FIN;
4459         if (j) {
4460           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4461           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4462         }
4463         unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8;
4464         EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits);
4465         SDValue Store =
4466             DAG.getTruncStore(Val.getValue(1), dl, Val, Addr,
4467                               MachinePointerInfo(&*FuncArg, j), ObjType);
4468         MemOps.push_back(Store);
4469         ++GPR_idx;
4470       }
4471       ArgOffset += ArgSize;
4472       continue;
4473     }
4474 
4475     switch (ObjectVT.getSimpleVT().SimpleTy) {
4476     default: llvm_unreachable("Unhandled argument type!");
4477     case MVT::i1:
4478     case MVT::i32:
4479     case MVT::i64:
4480       if (Flags.isNest()) {
4481         // The 'nest' parameter, if any, is passed in R11.
4482         Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4483         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4484 
4485         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4486           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4487 
4488         break;
4489       }
4490 
4491       // These can be scalar arguments or elements of an integer array type
4492       // passed directly.  Clang may use those instead of "byval" aggregate
4493       // types to avoid forcing arguments to memory unnecessarily.
4494       if (GPR_idx != Num_GPR_Regs) {
4495         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4496         FuncInfo->addLiveInAttr(VReg, Flags);
4497         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4498 
4499         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4500           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4501           // value to MVT::i64 and then truncate to the correct register size.
4502           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4503       } else {
4504         if (CallConv == CallingConv::Fast)
4505           ComputeArgOffset();
4506 
4507         needsLoad = true;
4508         ArgSize = PtrByteSize;
4509       }
4510       if (CallConv != CallingConv::Fast || needsLoad)
4511         ArgOffset += 8;
4512       break;
4513 
4514     case MVT::f32:
4515     case MVT::f64:
4516       // These can be scalar arguments or elements of a float array type
4517       // passed directly.  The latter are used to implement ELFv2 homogenous
4518       // float aggregates.
4519       if (FPR_idx != Num_FPR_Regs) {
4520         unsigned VReg;
4521 
4522         if (ObjectVT == MVT::f32)
4523           VReg = MF.addLiveIn(FPR[FPR_idx],
4524                               Subtarget.hasP8Vector()
4525                                   ? &PPC::VSSRCRegClass
4526                                   : &PPC::F4RCRegClass);
4527         else
4528           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4529                                                 ? &PPC::VSFRCRegClass
4530                                                 : &PPC::F8RCRegClass);
4531 
4532         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4533         ++FPR_idx;
4534       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4535         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4536         // once we support fp <-> gpr moves.
4537 
4538         // This can only ever happen in the presence of f32 array types,
4539         // since otherwise we never run out of FPRs before running out
4540         // of GPRs.
4541         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4542         FuncInfo->addLiveInAttr(VReg, Flags);
4543         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4544 
4545         if (ObjectVT == MVT::f32) {
4546           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4547             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4548                                  DAG.getConstant(32, dl, MVT::i32));
4549           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4550         }
4551 
4552         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4553       } else {
4554         if (CallConv == CallingConv::Fast)
4555           ComputeArgOffset();
4556 
4557         needsLoad = true;
4558       }
4559 
4560       // When passing an array of floats, the array occupies consecutive
4561       // space in the argument area; only round up to the next doubleword
4562       // at the end of the array.  Otherwise, each float takes 8 bytes.
4563       if (CallConv != CallingConv::Fast || needsLoad) {
4564         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4565         ArgOffset += ArgSize;
4566         if (Flags.isInConsecutiveRegsLast())
4567           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4568       }
4569       break;
4570     case MVT::v4f32:
4571     case MVT::v4i32:
4572     case MVT::v8i16:
4573     case MVT::v16i8:
4574     case MVT::v2f64:
4575     case MVT::v2i64:
4576     case MVT::v1i128:
4577     case MVT::f128:
4578       // These can be scalar arguments or elements of a vector array type
4579       // passed directly.  The latter are used to implement ELFv2 homogenous
4580       // vector aggregates.
4581       if (VR_idx != Num_VR_Regs) {
4582         Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4583         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4584         ++VR_idx;
4585       } else {
4586         if (CallConv == CallingConv::Fast)
4587           ComputeArgOffset();
4588         needsLoad = true;
4589       }
4590       if (CallConv != CallingConv::Fast || needsLoad)
4591         ArgOffset += 16;
4592       break;
4593     }
4594 
4595     // We need to load the argument to a virtual register if we determined
4596     // above that we ran out of physical registers of the appropriate type.
4597     if (needsLoad) {
4598       if (ObjSize < ArgSize && !isLittleEndian)
4599         CurArgOffset += ArgSize - ObjSize;
4600       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4601       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4602       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4603     }
4604 
4605     InVals.push_back(ArgVal);
4606   }
4607 
4608   // Area that is at least reserved in the caller of this function.
4609   unsigned MinReservedArea;
4610   if (HasParameterArea)
4611     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4612   else
4613     MinReservedArea = LinkageSize;
4614 
4615   // Set the size that is at least reserved in caller of this function.  Tail
4616   // call optimized functions' reserved stack space needs to be aligned so that
4617   // taking the difference between two stack areas will result in an aligned
4618   // stack.
4619   MinReservedArea =
4620       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4621   FuncInfo->setMinReservedArea(MinReservedArea);
4622 
4623   // If the function takes variable number of arguments, make a frame index for
4624   // the start of the first vararg value... for expansion of llvm.va_start.
4625   // On ELFv2ABI spec, it writes:
4626   // C programs that are intended to be *portable* across different compilers
4627   // and architectures must use the header file <stdarg.h> to deal with variable
4628   // argument lists.
4629   if (isVarArg && MFI.hasVAStart()) {
4630     int Depth = ArgOffset;
4631 
4632     FuncInfo->setVarArgsFrameIndex(
4633       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4634     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4635 
4636     // If this function is vararg, store any remaining integer argument regs
4637     // to their spots on the stack so that they may be loaded by dereferencing
4638     // the result of va_next.
4639     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4640          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4641       Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4642       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4643       SDValue Store =
4644           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4645       MemOps.push_back(Store);
4646       // Increment the address by four for the next argument to store
4647       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4648       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4649     }
4650   }
4651 
4652   if (!MemOps.empty())
4653     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4654 
4655   return Chain;
4656 }
4657 
4658 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4659 /// adjusted to accommodate the arguments for the tailcall.
4660 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4661                                    unsigned ParamSize) {
4662 
4663   if (!isTailCall) return 0;
4664 
4665   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4666   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4667   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4668   // Remember only if the new adjustment is bigger.
4669   if (SPDiff < FI->getTailCallSPDelta())
4670     FI->setTailCallSPDelta(SPDiff);
4671 
4672   return SPDiff;
4673 }
4674 
4675 static bool isFunctionGlobalAddress(SDValue Callee);
4676 
4677 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4678                               const TargetMachine &TM) {
4679   // It does not make sense to call callsShareTOCBase() with a caller that
4680   // is PC Relative since PC Relative callers do not have a TOC.
4681 #ifndef NDEBUG
4682   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4683   assert(!STICaller->isUsingPCRelativeCalls() &&
4684          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4685 #endif
4686 
4687   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4688   // don't have enough information to determine if the caller and callee share
4689   // the same  TOC base, so we have to pessimistically assume they don't for
4690   // correctness.
4691   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4692   if (!G)
4693     return false;
4694 
4695   const GlobalValue *GV = G->getGlobal();
4696 
4697   // If the callee is preemptable, then the static linker will use a plt-stub
4698   // which saves the toc to the stack, and needs a nop after the call
4699   // instruction to convert to a toc-restore.
4700   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4701     return false;
4702 
4703   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4704   // We may need a TOC restore in the situation where the caller requires a
4705   // valid TOC but the callee is PC Relative and does not.
4706   const Function *F = dyn_cast<Function>(GV);
4707   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4708 
4709   // If we have an Alias we can try to get the function from there.
4710   if (Alias) {
4711     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4712     F = dyn_cast<Function>(GlobalObj);
4713   }
4714 
4715   // If we still have no valid function pointer we do not have enough
4716   // information to determine if the callee uses PC Relative calls so we must
4717   // assume that it does.
4718   if (!F)
4719     return false;
4720 
4721   // If the callee uses PC Relative we cannot guarantee that the callee won't
4722   // clobber the TOC of the caller and so we must assume that the two
4723   // functions do not share a TOC base.
4724   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4725   if (STICallee->isUsingPCRelativeCalls())
4726     return false;
4727 
4728   // If the GV is not a strong definition then we need to assume it can be
4729   // replaced by another function at link time. The function that replaces
4730   // it may not share the same TOC as the caller since the callee may be
4731   // replaced by a PC Relative version of the same function.
4732   if (!GV->isStrongDefinitionForLinker())
4733     return false;
4734 
4735   // The medium and large code models are expected to provide a sufficiently
4736   // large TOC to provide all data addressing needs of a module with a
4737   // single TOC.
4738   if (CodeModel::Medium == TM.getCodeModel() ||
4739       CodeModel::Large == TM.getCodeModel())
4740     return true;
4741 
4742   // Any explicitly-specified sections and section prefixes must also match.
4743   // Also, if we're using -ffunction-sections, then each function is always in
4744   // a different section (the same is true for COMDAT functions).
4745   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4746       GV->getSection() != Caller->getSection())
4747     return false;
4748   if (const auto *F = dyn_cast<Function>(GV)) {
4749     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4750       return false;
4751   }
4752 
4753   return true;
4754 }
4755 
4756 static bool
4757 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4758                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4759   assert(Subtarget.is64BitELFABI());
4760 
4761   const unsigned PtrByteSize = 8;
4762   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4763 
4764   static const MCPhysReg GPR[] = {
4765     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4766     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4767   };
4768   static const MCPhysReg VR[] = {
4769     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4770     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4771   };
4772 
4773   const unsigned NumGPRs = std::size(GPR);
4774   const unsigned NumFPRs = 13;
4775   const unsigned NumVRs = std::size(VR);
4776   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4777 
4778   unsigned NumBytes = LinkageSize;
4779   unsigned AvailableFPRs = NumFPRs;
4780   unsigned AvailableVRs = NumVRs;
4781 
4782   for (const ISD::OutputArg& Param : Outs) {
4783     if (Param.Flags.isNest()) continue;
4784 
4785     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4786                                LinkageSize, ParamAreaSize, NumBytes,
4787                                AvailableFPRs, AvailableVRs))
4788       return true;
4789   }
4790   return false;
4791 }
4792 
4793 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4794   if (CB.arg_size() != CallerFn->arg_size())
4795     return false;
4796 
4797   auto CalleeArgIter = CB.arg_begin();
4798   auto CalleeArgEnd = CB.arg_end();
4799   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4800 
4801   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4802     const Value* CalleeArg = *CalleeArgIter;
4803     const Value* CallerArg = &(*CallerArgIter);
4804     if (CalleeArg == CallerArg)
4805       continue;
4806 
4807     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4808     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4809     //      }
4810     // 1st argument of callee is undef and has the same type as caller.
4811     if (CalleeArg->getType() == CallerArg->getType() &&
4812         isa<UndefValue>(CalleeArg))
4813       continue;
4814 
4815     return false;
4816   }
4817 
4818   return true;
4819 }
4820 
4821 // Returns true if TCO is possible between the callers and callees
4822 // calling conventions.
4823 static bool
4824 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4825                                     CallingConv::ID CalleeCC) {
4826   // Tail calls are possible with fastcc and ccc.
4827   auto isTailCallableCC  = [] (CallingConv::ID CC){
4828       return  CC == CallingConv::C || CC == CallingConv::Fast;
4829   };
4830   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4831     return false;
4832 
4833   // We can safely tail call both fastcc and ccc callees from a c calling
4834   // convention caller. If the caller is fastcc, we may have less stack space
4835   // than a non-fastcc caller with the same signature so disable tail-calls in
4836   // that case.
4837   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4838 }
4839 
4840 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4841     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4842     const SmallVectorImpl<ISD::OutputArg> &Outs,
4843     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4844   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4845 
4846   if (DisableSCO && !TailCallOpt) return false;
4847 
4848   // Variadic argument functions are not supported.
4849   if (isVarArg) return false;
4850 
4851   auto &Caller = DAG.getMachineFunction().getFunction();
4852   // Check that the calling conventions are compatible for tco.
4853   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4854     return false;
4855 
4856   // Caller contains any byval parameter is not supported.
4857   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4858     return false;
4859 
4860   // Callee contains any byval parameter is not supported, too.
4861   // Note: This is a quick work around, because in some cases, e.g.
4862   // caller's stack size > callee's stack size, we are still able to apply
4863   // sibling call optimization. For example, gcc is able to do SCO for caller1
4864   // in the following example, but not for caller2.
4865   //   struct test {
4866   //     long int a;
4867   //     char ary[56];
4868   //   } gTest;
4869   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4870   //     b->a = v.a;
4871   //     return 0;
4872   //   }
4873   //   void caller1(struct test a, struct test c, struct test *b) {
4874   //     callee(gTest, b); }
4875   //   void caller2(struct test *b) { callee(gTest, b); }
4876   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4877     return false;
4878 
4879   // If callee and caller use different calling conventions, we cannot pass
4880   // parameters on stack since offsets for the parameter area may be different.
4881   if (Caller.getCallingConv() != CalleeCC &&
4882       needStackSlotPassParameters(Subtarget, Outs))
4883     return false;
4884 
4885   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4886   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4887   // callee potentially have different TOC bases then we cannot tail call since
4888   // we need to restore the TOC pointer after the call.
4889   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4890   // We cannot guarantee this for indirect calls or calls to external functions.
4891   // When PC-Relative addressing is used, the concept of the TOC is no longer
4892   // applicable so this check is not required.
4893   // Check first for indirect calls.
4894   if (!Subtarget.isUsingPCRelativeCalls() &&
4895       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4896     return false;
4897 
4898   // Check if we share the TOC base.
4899   if (!Subtarget.isUsingPCRelativeCalls() &&
4900       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4901     return false;
4902 
4903   // TCO allows altering callee ABI, so we don't have to check further.
4904   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4905     return true;
4906 
4907   if (DisableSCO) return false;
4908 
4909   // If callee use the same argument list that caller is using, then we can
4910   // apply SCO on this case. If it is not, then we need to check if callee needs
4911   // stack for passing arguments.
4912   // PC Relative tail calls may not have a CallBase.
4913   // If there is no CallBase we cannot verify if we have the same argument
4914   // list so assume that we don't have the same argument list.
4915   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4916       needStackSlotPassParameters(Subtarget, Outs))
4917     return false;
4918   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4919     return false;
4920 
4921   return true;
4922 }
4923 
4924 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4925 /// for tail call optimization. Targets which want to do tail call
4926 /// optimization should implement this function.
4927 bool
4928 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4929                                                      CallingConv::ID CalleeCC,
4930                                                      bool isVarArg,
4931                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4932                                                      SelectionDAG& DAG) const {
4933   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4934     return false;
4935 
4936   // Variable argument functions are not supported.
4937   if (isVarArg)
4938     return false;
4939 
4940   MachineFunction &MF = DAG.getMachineFunction();
4941   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4942   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4943     // Functions containing by val parameters are not supported.
4944     for (unsigned i = 0; i != Ins.size(); i++) {
4945        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4946        if (Flags.isByVal()) return false;
4947     }
4948 
4949     // Non-PIC/GOT tail calls are supported.
4950     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4951       return true;
4952 
4953     // At the moment we can only do local tail calls (in same module, hidden
4954     // or protected) if we are generating PIC.
4955     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4956       return G->getGlobal()->hasHiddenVisibility()
4957           || G->getGlobal()->hasProtectedVisibility();
4958   }
4959 
4960   return false;
4961 }
4962 
4963 /// isCallCompatibleAddress - Return the immediate to use if the specified
4964 /// 32-bit value is representable in the immediate field of a BxA instruction.
4965 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4966   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4967   if (!C) return nullptr;
4968 
4969   int Addr = C->getZExtValue();
4970   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4971       SignExtend32<26>(Addr) != Addr)
4972     return nullptr;  // Top 6 bits have to be sext of immediate.
4973 
4974   return DAG
4975       .getConstant(
4976           (int)C->getZExtValue() >> 2, SDLoc(Op),
4977           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4978       .getNode();
4979 }
4980 
4981 namespace {
4982 
4983 struct TailCallArgumentInfo {
4984   SDValue Arg;
4985   SDValue FrameIdxOp;
4986   int FrameIdx = 0;
4987 
4988   TailCallArgumentInfo() = default;
4989 };
4990 
4991 } // end anonymous namespace
4992 
4993 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4994 static void StoreTailCallArgumentsToStackSlot(
4995     SelectionDAG &DAG, SDValue Chain,
4996     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4997     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4998   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4999     SDValue Arg = TailCallArgs[i].Arg;
5000     SDValue FIN = TailCallArgs[i].FrameIdxOp;
5001     int FI = TailCallArgs[i].FrameIdx;
5002     // Store relative to framepointer.
5003     MemOpChains.push_back(DAG.getStore(
5004         Chain, dl, Arg, FIN,
5005         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
5006   }
5007 }
5008 
5009 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
5010 /// the appropriate stack slot for the tail call optimized function call.
5011 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
5012                                              SDValue OldRetAddr, SDValue OldFP,
5013                                              int SPDiff, const SDLoc &dl) {
5014   if (SPDiff) {
5015     // Calculate the new stack slot for the return address.
5016     MachineFunction &MF = DAG.getMachineFunction();
5017     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5018     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5019     bool isPPC64 = Subtarget.isPPC64();
5020     int SlotSize = isPPC64 ? 8 : 4;
5021     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5022     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5023                                                          NewRetAddrLoc, true);
5024     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5025     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5026     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5027                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5028   }
5029   return Chain;
5030 }
5031 
5032 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5033 /// the position of the argument.
5034 static void
5035 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5036                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5037                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5038   int Offset = ArgOffset + SPDiff;
5039   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5040   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5041   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5042   SDValue FIN = DAG.getFrameIndex(FI, VT);
5043   TailCallArgumentInfo Info;
5044   Info.Arg = Arg;
5045   Info.FrameIdxOp = FIN;
5046   Info.FrameIdx = FI;
5047   TailCallArguments.push_back(Info);
5048 }
5049 
5050 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5051 /// stack slot. Returns the chain as result and the loaded frame pointers in
5052 /// LROpOut/FPOpout. Used when tail calling.
5053 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5054     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5055     SDValue &FPOpOut, const SDLoc &dl) const {
5056   if (SPDiff) {
5057     // Load the LR and FP stack slot for later adjusting.
5058     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5059     LROpOut = getReturnAddrFrameIndex(DAG);
5060     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5061     Chain = SDValue(LROpOut.getNode(), 1);
5062   }
5063   return Chain;
5064 }
5065 
5066 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5067 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5068 /// specified by the specific parameter attribute. The copy will be passed as
5069 /// a byval function parameter.
5070 /// Sometimes what we are copying is the end of a larger object, the part that
5071 /// does not fit in registers.
5072 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5073                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5074                                          SelectionDAG &DAG, const SDLoc &dl) {
5075   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5076   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5077                        Flags.getNonZeroByValAlign(), false, false, false,
5078                        MachinePointerInfo(), MachinePointerInfo());
5079 }
5080 
5081 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5082 /// tail calls.
5083 static void LowerMemOpCallTo(
5084     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5085     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5086     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5087     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5088   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5089   if (!isTailCall) {
5090     if (isVector) {
5091       SDValue StackPtr;
5092       if (isPPC64)
5093         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5094       else
5095         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5096       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5097                            DAG.getConstant(ArgOffset, dl, PtrVT));
5098     }
5099     MemOpChains.push_back(
5100         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5101     // Calculate and remember argument location.
5102   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5103                                   TailCallArguments);
5104 }
5105 
5106 static void
5107 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5108                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5109                 SDValue FPOp,
5110                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5111   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5112   // might overwrite each other in case of tail call optimization.
5113   SmallVector<SDValue, 8> MemOpChains2;
5114   // Do not flag preceding copytoreg stuff together with the following stuff.
5115   InFlag = SDValue();
5116   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5117                                     MemOpChains2, dl);
5118   if (!MemOpChains2.empty())
5119     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5120 
5121   // Store the return address to the appropriate stack slot.
5122   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5123 
5124   // Emit callseq_end just before tailcall node.
5125   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, dl);
5126   InFlag = Chain.getValue(1);
5127 }
5128 
5129 // Is this global address that of a function that can be called by name? (as
5130 // opposed to something that must hold a descriptor for an indirect call).
5131 static bool isFunctionGlobalAddress(SDValue Callee) {
5132   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5133     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5134         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5135       return false;
5136 
5137     return G->getGlobal()->getValueType()->isFunctionTy();
5138   }
5139 
5140   return false;
5141 }
5142 
5143 SDValue PPCTargetLowering::LowerCallResult(
5144     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5145     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5146     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5147   SmallVector<CCValAssign, 16> RVLocs;
5148   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5149                     *DAG.getContext());
5150 
5151   CCRetInfo.AnalyzeCallResult(
5152       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5153                ? RetCC_PPC_Cold
5154                : RetCC_PPC);
5155 
5156   // Copy all of the result registers out of their specified physreg.
5157   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5158     CCValAssign &VA = RVLocs[i];
5159     assert(VA.isRegLoc() && "Can only return in registers!");
5160 
5161     SDValue Val;
5162 
5163     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5164       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5165                                       InFlag);
5166       Chain = Lo.getValue(1);
5167       InFlag = Lo.getValue(2);
5168       VA = RVLocs[++i]; // skip ahead to next loc
5169       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5170                                       InFlag);
5171       Chain = Hi.getValue(1);
5172       InFlag = Hi.getValue(2);
5173       if (!Subtarget.isLittleEndian())
5174         std::swap (Lo, Hi);
5175       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5176     } else {
5177       Val = DAG.getCopyFromReg(Chain, dl,
5178                                VA.getLocReg(), VA.getLocVT(), InFlag);
5179       Chain = Val.getValue(1);
5180       InFlag = Val.getValue(2);
5181     }
5182 
5183     switch (VA.getLocInfo()) {
5184     default: llvm_unreachable("Unknown loc info!");
5185     case CCValAssign::Full: break;
5186     case CCValAssign::AExt:
5187       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5188       break;
5189     case CCValAssign::ZExt:
5190       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5191                         DAG.getValueType(VA.getValVT()));
5192       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5193       break;
5194     case CCValAssign::SExt:
5195       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5196                         DAG.getValueType(VA.getValVT()));
5197       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5198       break;
5199     }
5200 
5201     InVals.push_back(Val);
5202   }
5203 
5204   return Chain;
5205 }
5206 
5207 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5208                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5209   // PatchPoint calls are not indirect.
5210   if (isPatchPoint)
5211     return false;
5212 
5213   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5214     return false;
5215 
5216   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5217   // becuase the immediate function pointer points to a descriptor instead of
5218   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5219   // pointer immediate points to the global entry point, while the BLA would
5220   // need to jump to the local entry point (see rL211174).
5221   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5222       isBLACompatibleAddress(Callee, DAG))
5223     return false;
5224 
5225   return true;
5226 }
5227 
5228 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5229 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5230   return Subtarget.isAIXABI() ||
5231          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5232 }
5233 
5234 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5235                               const Function &Caller, const SDValue &Callee,
5236                               const PPCSubtarget &Subtarget,
5237                               const TargetMachine &TM,
5238                               bool IsStrictFPCall = false) {
5239   if (CFlags.IsTailCall)
5240     return PPCISD::TC_RETURN;
5241 
5242   unsigned RetOpc = 0;
5243   // This is a call through a function pointer.
5244   if (CFlags.IsIndirect) {
5245     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5246     // indirect calls. The save of the caller's TOC pointer to the stack will be
5247     // inserted into the DAG as part of call lowering. The restore of the TOC
5248     // pointer is modeled by using a pseudo instruction for the call opcode that
5249     // represents the 2 instruction sequence of an indirect branch and link,
5250     // immediately followed by a load of the TOC pointer from the the stack save
5251     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5252     // as it is not saved or used.
5253     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5254                                                  : PPCISD::BCTRL;
5255   } else if (Subtarget.isUsingPCRelativeCalls()) {
5256     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5257     RetOpc = PPCISD::CALL_NOTOC;
5258   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5259     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5260     // immediately following the call instruction if the caller and callee may
5261     // have different TOC bases. At link time if the linker determines the calls
5262     // may not share a TOC base, the call is redirected to a trampoline inserted
5263     // by the linker. The trampoline will (among other things) save the callers
5264     // TOC pointer at an ABI designated offset in the linkage area and the
5265     // linker will rewrite the nop to be a load of the TOC pointer from the
5266     // linkage area into gpr2.
5267     RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5268                                                     : PPCISD::CALL_NOP;
5269   else
5270     RetOpc = PPCISD::CALL;
5271   if (IsStrictFPCall) {
5272     switch (RetOpc) {
5273     default:
5274       llvm_unreachable("Unknown call opcode");
5275     case PPCISD::BCTRL_LOAD_TOC:
5276       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5277       break;
5278     case PPCISD::BCTRL:
5279       RetOpc = PPCISD::BCTRL_RM;
5280       break;
5281     case PPCISD::CALL_NOTOC:
5282       RetOpc = PPCISD::CALL_NOTOC_RM;
5283       break;
5284     case PPCISD::CALL:
5285       RetOpc = PPCISD::CALL_RM;
5286       break;
5287     case PPCISD::CALL_NOP:
5288       RetOpc = PPCISD::CALL_NOP_RM;
5289       break;
5290     }
5291   }
5292   return RetOpc;
5293 }
5294 
5295 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5296                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5297   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5298     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5299       return SDValue(Dest, 0);
5300 
5301   // Returns true if the callee is local, and false otherwise.
5302   auto isLocalCallee = [&]() {
5303     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5304     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5305     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5306 
5307     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5308            !isa_and_nonnull<GlobalIFunc>(GV);
5309   };
5310 
5311   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5312   // a static relocation model causes some versions of GNU LD (2.17.50, at
5313   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5314   // built with secure-PLT.
5315   bool UsePlt =
5316       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5317       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5318 
5319   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5320     const TargetMachine &TM = Subtarget.getTargetMachine();
5321     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5322     MCSymbolXCOFF *S =
5323         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5324 
5325     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5326     return DAG.getMCSymbol(S, PtrVT);
5327   };
5328 
5329   if (isFunctionGlobalAddress(Callee)) {
5330     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5331 
5332     if (Subtarget.isAIXABI()) {
5333       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5334       return getAIXFuncEntryPointSymbolSDNode(GV);
5335     }
5336     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5337                                       UsePlt ? PPCII::MO_PLT : 0);
5338   }
5339 
5340   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5341     const char *SymName = S->getSymbol();
5342     if (Subtarget.isAIXABI()) {
5343       // If there exists a user-declared function whose name is the same as the
5344       // ExternalSymbol's, then we pick up the user-declared version.
5345       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5346       if (const Function *F =
5347               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5348         return getAIXFuncEntryPointSymbolSDNode(F);
5349 
5350       // On AIX, direct function calls reference the symbol for the function's
5351       // entry point, which is named by prepending a "." before the function's
5352       // C-linkage name. A Qualname is returned here because an external
5353       // function entry point is a csect with XTY_ER property.
5354       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5355         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5356         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5357             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5358             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5359         return Sec->getQualNameSymbol();
5360       };
5361 
5362       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5363     }
5364     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5365                                        UsePlt ? PPCII::MO_PLT : 0);
5366   }
5367 
5368   // No transformation needed.
5369   assert(Callee.getNode() && "What no callee?");
5370   return Callee;
5371 }
5372 
5373 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5374   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5375          "Expected a CALLSEQ_STARTSDNode.");
5376 
5377   // The last operand is the chain, except when the node has glue. If the node
5378   // has glue, then the last operand is the glue, and the chain is the second
5379   // last operand.
5380   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5381   if (LastValue.getValueType() != MVT::Glue)
5382     return LastValue;
5383 
5384   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5385 }
5386 
5387 // Creates the node that moves a functions address into the count register
5388 // to prepare for an indirect call instruction.
5389 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5390                                 SDValue &Glue, SDValue &Chain,
5391                                 const SDLoc &dl) {
5392   SDValue MTCTROps[] = {Chain, Callee, Glue};
5393   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5394   Chain = DAG.getNode(PPCISD::MTCTR, dl, ArrayRef(ReturnTypes, 2),
5395                       ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5396   // The glue is the second value produced.
5397   Glue = Chain.getValue(1);
5398 }
5399 
5400 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5401                                           SDValue &Glue, SDValue &Chain,
5402                                           SDValue CallSeqStart,
5403                                           const CallBase *CB, const SDLoc &dl,
5404                                           bool hasNest,
5405                                           const PPCSubtarget &Subtarget) {
5406   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5407   // entry point, but to the function descriptor (the function entry point
5408   // address is part of the function descriptor though).
5409   // The function descriptor is a three doubleword structure with the
5410   // following fields: function entry point, TOC base address and
5411   // environment pointer.
5412   // Thus for a call through a function pointer, the following actions need
5413   // to be performed:
5414   //   1. Save the TOC of the caller in the TOC save area of its stack
5415   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5416   //   2. Load the address of the function entry point from the function
5417   //      descriptor.
5418   //   3. Load the TOC of the callee from the function descriptor into r2.
5419   //   4. Load the environment pointer from the function descriptor into
5420   //      r11.
5421   //   5. Branch to the function entry point address.
5422   //   6. On return of the callee, the TOC of the caller needs to be
5423   //      restored (this is done in FinishCall()).
5424   //
5425   // The loads are scheduled at the beginning of the call sequence, and the
5426   // register copies are flagged together to ensure that no other
5427   // operations can be scheduled in between. E.g. without flagging the
5428   // copies together, a TOC access in the caller could be scheduled between
5429   // the assignment of the callee TOC and the branch to the callee, which leads
5430   // to incorrect code.
5431 
5432   // Start by loading the function address from the descriptor.
5433   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5434   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5435                       ? (MachineMemOperand::MODereferenceable |
5436                          MachineMemOperand::MOInvariant)
5437                       : MachineMemOperand::MONone;
5438 
5439   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5440 
5441   // Registers used in building the DAG.
5442   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5443   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5444 
5445   // Offsets of descriptor members.
5446   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5447   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5448 
5449   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5450   const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
5451 
5452   // One load for the functions entry point address.
5453   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5454                                     Alignment, MMOFlags);
5455 
5456   // One for loading the TOC anchor for the module that contains the called
5457   // function.
5458   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5459   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5460   SDValue TOCPtr =
5461       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5462                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5463 
5464   // One for loading the environment pointer.
5465   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5466   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5467   SDValue LoadEnvPtr =
5468       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5469                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5470 
5471 
5472   // Then copy the newly loaded TOC anchor to the TOC pointer.
5473   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5474   Chain = TOCVal.getValue(0);
5475   Glue = TOCVal.getValue(1);
5476 
5477   // If the function call has an explicit 'nest' parameter, it takes the
5478   // place of the environment pointer.
5479   assert((!hasNest || !Subtarget.isAIXABI()) &&
5480          "Nest parameter is not supported on AIX.");
5481   if (!hasNest) {
5482     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5483     Chain = EnvVal.getValue(0);
5484     Glue = EnvVal.getValue(1);
5485   }
5486 
5487   // The rest of the indirect call sequence is the same as the non-descriptor
5488   // DAG.
5489   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5490 }
5491 
5492 static void
5493 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5494                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5495                   SelectionDAG &DAG,
5496                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5497                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5498                   const PPCSubtarget &Subtarget) {
5499   const bool IsPPC64 = Subtarget.isPPC64();
5500   // MVT for a general purpose register.
5501   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5502 
5503   // First operand is always the chain.
5504   Ops.push_back(Chain);
5505 
5506   // If it's a direct call pass the callee as the second operand.
5507   if (!CFlags.IsIndirect)
5508     Ops.push_back(Callee);
5509   else {
5510     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5511 
5512     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5513     // on the stack (this would have been done in `LowerCall_64SVR4` or
5514     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5515     // represents both the indirect branch and a load that restores the TOC
5516     // pointer from the linkage area. The operand for the TOC restore is an add
5517     // of the TOC save offset to the stack pointer. This must be the second
5518     // operand: after the chain input but before any other variadic arguments.
5519     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5520     // saved or used.
5521     if (isTOCSaveRestoreRequired(Subtarget)) {
5522       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5523 
5524       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5525       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5526       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5527       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5528       Ops.push_back(AddTOC);
5529     }
5530 
5531     // Add the register used for the environment pointer.
5532     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5533       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5534                                     RegVT));
5535 
5536 
5537     // Add CTR register as callee so a bctr can be emitted later.
5538     if (CFlags.IsTailCall)
5539       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5540   }
5541 
5542   // If this is a tail call add stack pointer delta.
5543   if (CFlags.IsTailCall)
5544     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5545 
5546   // Add argument registers to the end of the list so that they are known live
5547   // into the call.
5548   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5549     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5550                                   RegsToPass[i].second.getValueType()));
5551 
5552   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5553   // no way to mark dependencies as implicit here.
5554   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5555   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5556        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5557     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5558 
5559   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5560   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5561     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5562 
5563   // Add a register mask operand representing the call-preserved registers.
5564   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5565   const uint32_t *Mask =
5566       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5567   assert(Mask && "Missing call preserved mask for calling convention");
5568   Ops.push_back(DAG.getRegisterMask(Mask));
5569 
5570   // If the glue is valid, it is the last operand.
5571   if (Glue.getNode())
5572     Ops.push_back(Glue);
5573 }
5574 
5575 SDValue PPCTargetLowering::FinishCall(
5576     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5577     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5578     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5579     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5580     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5581 
5582   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5583       Subtarget.isAIXABI())
5584     setUsesTOCBasePtr(DAG);
5585 
5586   unsigned CallOpc =
5587       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5588                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5589 
5590   if (!CFlags.IsIndirect)
5591     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5592   else if (Subtarget.usesFunctionDescriptors())
5593     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5594                                   dl, CFlags.HasNest, Subtarget);
5595   else
5596     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5597 
5598   // Build the operand list for the call instruction.
5599   SmallVector<SDValue, 8> Ops;
5600   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5601                     SPDiff, Subtarget);
5602 
5603   // Emit tail call.
5604   if (CFlags.IsTailCall) {
5605     // Indirect tail call when using PC Relative calls do not have the same
5606     // constraints.
5607     assert(((Callee.getOpcode() == ISD::Register &&
5608              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5609             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5610             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5611             isa<ConstantSDNode>(Callee) ||
5612             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5613            "Expecting a global address, external symbol, absolute value, "
5614            "register or an indirect tail call when PC Relative calls are "
5615            "used.");
5616     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5617     assert(CallOpc == PPCISD::TC_RETURN &&
5618            "Unexpected call opcode for a tail call.");
5619     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5620     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5621   }
5622 
5623   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5624   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5625   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5626   Glue = Chain.getValue(1);
5627 
5628   // When performing tail call optimization the callee pops its arguments off
5629   // the stack. Account for this here so these bytes can be pushed back on in
5630   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5631   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5632                          getTargetMachine().Options.GuaranteedTailCallOpt)
5633                             ? NumBytes
5634                             : 0;
5635 
5636   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl);
5637   Glue = Chain.getValue(1);
5638 
5639   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5640                          DAG, InVals);
5641 }
5642 
5643 SDValue
5644 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5645                              SmallVectorImpl<SDValue> &InVals) const {
5646   SelectionDAG &DAG                     = CLI.DAG;
5647   SDLoc &dl                             = CLI.DL;
5648   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5649   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5650   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5651   SDValue Chain                         = CLI.Chain;
5652   SDValue Callee                        = CLI.Callee;
5653   bool &isTailCall                      = CLI.IsTailCall;
5654   CallingConv::ID CallConv              = CLI.CallConv;
5655   bool isVarArg                         = CLI.IsVarArg;
5656   bool isPatchPoint                     = CLI.IsPatchPoint;
5657   const CallBase *CB                    = CLI.CB;
5658 
5659   if (isTailCall) {
5660     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5661       isTailCall = false;
5662     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5663       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5664           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5665     else
5666       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5667                                                      Ins, DAG);
5668     if (isTailCall) {
5669       ++NumTailCalls;
5670       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5671         ++NumSiblingCalls;
5672 
5673       // PC Relative calls no longer guarantee that the callee is a Global
5674       // Address Node. The callee could be an indirect tail call in which
5675       // case the SDValue for the callee could be a load (to load the address
5676       // of a function pointer) or it may be a register copy (to move the
5677       // address of the callee from a function parameter into a virtual
5678       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5679       assert((Subtarget.isUsingPCRelativeCalls() ||
5680               isa<GlobalAddressSDNode>(Callee)) &&
5681              "Callee should be an llvm::Function object.");
5682 
5683       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5684                         << "\nTCO callee: ");
5685       LLVM_DEBUG(Callee.dump());
5686     }
5687   }
5688 
5689   if (!isTailCall && CB && CB->isMustTailCall())
5690     report_fatal_error("failed to perform tail call elimination on a call "
5691                        "site marked musttail");
5692 
5693   // When long calls (i.e. indirect calls) are always used, calls are always
5694   // made via function pointer. If we have a function name, first translate it
5695   // into a pointer.
5696   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5697       !isTailCall)
5698     Callee = LowerGlobalAddress(Callee, DAG);
5699 
5700   CallFlags CFlags(
5701       CallConv, isTailCall, isVarArg, isPatchPoint,
5702       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5703       // hasNest
5704       Subtarget.is64BitELFABI() &&
5705           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5706       CLI.NoMerge);
5707 
5708   if (Subtarget.isAIXABI())
5709     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5710                          InVals, CB);
5711 
5712   assert(Subtarget.isSVR4ABI());
5713   if (Subtarget.isPPC64())
5714     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5715                             InVals, CB);
5716   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5717                           InVals, CB);
5718 }
5719 
5720 SDValue PPCTargetLowering::LowerCall_32SVR4(
5721     SDValue Chain, SDValue Callee, CallFlags CFlags,
5722     const SmallVectorImpl<ISD::OutputArg> &Outs,
5723     const SmallVectorImpl<SDValue> &OutVals,
5724     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5725     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5726     const CallBase *CB) const {
5727   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5728   // of the 32-bit SVR4 ABI stack frame layout.
5729 
5730   const CallingConv::ID CallConv = CFlags.CallConv;
5731   const bool IsVarArg = CFlags.IsVarArg;
5732   const bool IsTailCall = CFlags.IsTailCall;
5733 
5734   assert((CallConv == CallingConv::C ||
5735           CallConv == CallingConv::Cold ||
5736           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5737 
5738   const Align PtrAlign(4);
5739 
5740   MachineFunction &MF = DAG.getMachineFunction();
5741 
5742   // Mark this function as potentially containing a function that contains a
5743   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5744   // and restoring the callers stack pointer in this functions epilog. This is
5745   // done because by tail calling the called function might overwrite the value
5746   // in this function's (MF) stack pointer stack slot 0(SP).
5747   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5748       CallConv == CallingConv::Fast)
5749     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5750 
5751   // Count how many bytes are to be pushed on the stack, including the linkage
5752   // area, parameter list area and the part of the local variable space which
5753   // contains copies of aggregates which are passed by value.
5754 
5755   // Assign locations to all of the outgoing arguments.
5756   SmallVector<CCValAssign, 16> ArgLocs;
5757   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5758 
5759   // Reserve space for the linkage area on the stack.
5760   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5761                        PtrAlign);
5762   if (useSoftFloat())
5763     CCInfo.PreAnalyzeCallOperands(Outs);
5764 
5765   if (IsVarArg) {
5766     // Handle fixed and variable vector arguments differently.
5767     // Fixed vector arguments go into registers as long as registers are
5768     // available. Variable vector arguments always go into memory.
5769     unsigned NumArgs = Outs.size();
5770 
5771     for (unsigned i = 0; i != NumArgs; ++i) {
5772       MVT ArgVT = Outs[i].VT;
5773       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5774       bool Result;
5775 
5776       if (Outs[i].IsFixed) {
5777         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5778                                CCInfo);
5779       } else {
5780         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5781                                       ArgFlags, CCInfo);
5782       }
5783 
5784       if (Result) {
5785 #ifndef NDEBUG
5786         errs() << "Call operand #" << i << " has unhandled type "
5787              << EVT(ArgVT).getEVTString() << "\n";
5788 #endif
5789         llvm_unreachable(nullptr);
5790       }
5791     }
5792   } else {
5793     // All arguments are treated the same.
5794     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5795   }
5796   CCInfo.clearWasPPCF128();
5797 
5798   // Assign locations to all of the outgoing aggregate by value arguments.
5799   SmallVector<CCValAssign, 16> ByValArgLocs;
5800   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5801 
5802   // Reserve stack space for the allocations in CCInfo.
5803   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5804 
5805   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5806 
5807   // Size of the linkage area, parameter list area and the part of the local
5808   // space variable where copies of aggregates which are passed by value are
5809   // stored.
5810   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5811 
5812   // Calculate by how many bytes the stack has to be adjusted in case of tail
5813   // call optimization.
5814   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5815 
5816   // Adjust the stack pointer for the new arguments...
5817   // These operations are automatically eliminated by the prolog/epilog pass
5818   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5819   SDValue CallSeqStart = Chain;
5820 
5821   // Load the return address and frame pointer so it can be moved somewhere else
5822   // later.
5823   SDValue LROp, FPOp;
5824   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5825 
5826   // Set up a copy of the stack pointer for use loading and storing any
5827   // arguments that may not fit in the registers available for argument
5828   // passing.
5829   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5830 
5831   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5832   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5833   SmallVector<SDValue, 8> MemOpChains;
5834 
5835   bool seenFloatArg = false;
5836   // Walk the register/memloc assignments, inserting copies/loads.
5837   // i - Tracks the index into the list of registers allocated for the call
5838   // RealArgIdx - Tracks the index into the list of actual function arguments
5839   // j - Tracks the index into the list of byval arguments
5840   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5841        i != e;
5842        ++i, ++RealArgIdx) {
5843     CCValAssign &VA = ArgLocs[i];
5844     SDValue Arg = OutVals[RealArgIdx];
5845     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5846 
5847     if (Flags.isByVal()) {
5848       // Argument is an aggregate which is passed by value, thus we need to
5849       // create a copy of it in the local variable space of the current stack
5850       // frame (which is the stack frame of the caller) and pass the address of
5851       // this copy to the callee.
5852       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5853       CCValAssign &ByValVA = ByValArgLocs[j++];
5854       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5855 
5856       // Memory reserved in the local variable space of the callers stack frame.
5857       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5858 
5859       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5860       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5861                            StackPtr, PtrOff);
5862 
5863       // Create a copy of the argument in the local area of the current
5864       // stack frame.
5865       SDValue MemcpyCall =
5866         CreateCopyOfByValArgument(Arg, PtrOff,
5867                                   CallSeqStart.getNode()->getOperand(0),
5868                                   Flags, DAG, dl);
5869 
5870       // This must go outside the CALLSEQ_START..END.
5871       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5872                                                      SDLoc(MemcpyCall));
5873       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5874                              NewCallSeqStart.getNode());
5875       Chain = CallSeqStart = NewCallSeqStart;
5876 
5877       // Pass the address of the aggregate copy on the stack either in a
5878       // physical register or in the parameter list area of the current stack
5879       // frame to the callee.
5880       Arg = PtrOff;
5881     }
5882 
5883     // When useCRBits() is true, there can be i1 arguments.
5884     // It is because getRegisterType(MVT::i1) => MVT::i1,
5885     // and for other integer types getRegisterType() => MVT::i32.
5886     // Extend i1 and ensure callee will get i32.
5887     if (Arg.getValueType() == MVT::i1)
5888       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5889                         dl, MVT::i32, Arg);
5890 
5891     if (VA.isRegLoc()) {
5892       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5893       // Put argument in a physical register.
5894       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5895         bool IsLE = Subtarget.isLittleEndian();
5896         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5897                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5898         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5899         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5900                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5901         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5902                              SVal.getValue(0)));
5903       } else
5904         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5905     } else {
5906       // Put argument in the parameter list area of the current stack frame.
5907       assert(VA.isMemLoc());
5908       unsigned LocMemOffset = VA.getLocMemOffset();
5909 
5910       if (!IsTailCall) {
5911         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5912         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5913                              StackPtr, PtrOff);
5914 
5915         MemOpChains.push_back(
5916             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5917       } else {
5918         // Calculate and remember argument location.
5919         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5920                                  TailCallArguments);
5921       }
5922     }
5923   }
5924 
5925   if (!MemOpChains.empty())
5926     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5927 
5928   // Build a sequence of copy-to-reg nodes chained together with token chain
5929   // and flag operands which copy the outgoing args into the appropriate regs.
5930   SDValue InFlag;
5931   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5932     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5933                              RegsToPass[i].second, InFlag);
5934     InFlag = Chain.getValue(1);
5935   }
5936 
5937   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5938   // registers.
5939   if (IsVarArg) {
5940     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5941     SDValue Ops[] = { Chain, InFlag };
5942 
5943     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl,
5944                         VTs, ArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5945 
5946     InFlag = Chain.getValue(1);
5947   }
5948 
5949   if (IsTailCall)
5950     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5951                     TailCallArguments);
5952 
5953   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5954                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5955 }
5956 
5957 // Copy an argument into memory, being careful to do this outside the
5958 // call sequence for the call to which the argument belongs.
5959 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5960     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5961     SelectionDAG &DAG, const SDLoc &dl) const {
5962   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5963                         CallSeqStart.getNode()->getOperand(0),
5964                         Flags, DAG, dl);
5965   // The MEMCPY must go outside the CALLSEQ_START..END.
5966   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5967   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5968                                                  SDLoc(MemcpyCall));
5969   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5970                          NewCallSeqStart.getNode());
5971   return NewCallSeqStart;
5972 }
5973 
5974 SDValue PPCTargetLowering::LowerCall_64SVR4(
5975     SDValue Chain, SDValue Callee, CallFlags CFlags,
5976     const SmallVectorImpl<ISD::OutputArg> &Outs,
5977     const SmallVectorImpl<SDValue> &OutVals,
5978     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5979     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5980     const CallBase *CB) const {
5981   bool isELFv2ABI = Subtarget.isELFv2ABI();
5982   bool isLittleEndian = Subtarget.isLittleEndian();
5983   unsigned NumOps = Outs.size();
5984   bool IsSibCall = false;
5985   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5986 
5987   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5988   unsigned PtrByteSize = 8;
5989 
5990   MachineFunction &MF = DAG.getMachineFunction();
5991 
5992   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5993     IsSibCall = true;
5994 
5995   // Mark this function as potentially containing a function that contains a
5996   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5997   // and restoring the callers stack pointer in this functions epilog. This is
5998   // done because by tail calling the called function might overwrite the value
5999   // in this function's (MF) stack pointer stack slot 0(SP).
6000   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6001     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6002 
6003   assert(!(IsFastCall && CFlags.IsVarArg) &&
6004          "fastcc not supported on varargs functions");
6005 
6006   // Count how many bytes are to be pushed on the stack, including the linkage
6007   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
6008   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
6009   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6010   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6011   unsigned NumBytes = LinkageSize;
6012   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6013 
6014   static const MCPhysReg GPR[] = {
6015     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6016     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6017   };
6018   static const MCPhysReg VR[] = {
6019     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6020     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6021   };
6022 
6023   const unsigned NumGPRs = std::size(GPR);
6024   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6025   const unsigned NumVRs = std::size(VR);
6026 
6027   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6028   // can be passed to the callee in registers.
6029   // For the fast calling convention, there is another check below.
6030   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6031   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6032   if (!HasParameterArea) {
6033     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6034     unsigned AvailableFPRs = NumFPRs;
6035     unsigned AvailableVRs = NumVRs;
6036     unsigned NumBytesTmp = NumBytes;
6037     for (unsigned i = 0; i != NumOps; ++i) {
6038       if (Outs[i].Flags.isNest()) continue;
6039       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6040                                  PtrByteSize, LinkageSize, ParamAreaSize,
6041                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6042         HasParameterArea = true;
6043     }
6044   }
6045 
6046   // When using the fast calling convention, we don't provide backing for
6047   // arguments that will be in registers.
6048   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6049 
6050   // Avoid allocating parameter area for fastcc functions if all the arguments
6051   // can be passed in the registers.
6052   if (IsFastCall)
6053     HasParameterArea = false;
6054 
6055   // Add up all the space actually used.
6056   for (unsigned i = 0; i != NumOps; ++i) {
6057     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6058     EVT ArgVT = Outs[i].VT;
6059     EVT OrigVT = Outs[i].ArgVT;
6060 
6061     if (Flags.isNest())
6062       continue;
6063 
6064     if (IsFastCall) {
6065       if (Flags.isByVal()) {
6066         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6067         if (NumGPRsUsed > NumGPRs)
6068           HasParameterArea = true;
6069       } else {
6070         switch (ArgVT.getSimpleVT().SimpleTy) {
6071         default: llvm_unreachable("Unexpected ValueType for argument!");
6072         case MVT::i1:
6073         case MVT::i32:
6074         case MVT::i64:
6075           if (++NumGPRsUsed <= NumGPRs)
6076             continue;
6077           break;
6078         case MVT::v4i32:
6079         case MVT::v8i16:
6080         case MVT::v16i8:
6081         case MVT::v2f64:
6082         case MVT::v2i64:
6083         case MVT::v1i128:
6084         case MVT::f128:
6085           if (++NumVRsUsed <= NumVRs)
6086             continue;
6087           break;
6088         case MVT::v4f32:
6089           if (++NumVRsUsed <= NumVRs)
6090             continue;
6091           break;
6092         case MVT::f32:
6093         case MVT::f64:
6094           if (++NumFPRsUsed <= NumFPRs)
6095             continue;
6096           break;
6097         }
6098         HasParameterArea = true;
6099       }
6100     }
6101 
6102     /* Respect alignment of argument on the stack.  */
6103     auto Alignement =
6104         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6105     NumBytes = alignTo(NumBytes, Alignement);
6106 
6107     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6108     if (Flags.isInConsecutiveRegsLast())
6109       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6110   }
6111 
6112   unsigned NumBytesActuallyUsed = NumBytes;
6113 
6114   // In the old ELFv1 ABI,
6115   // the prolog code of the callee may store up to 8 GPR argument registers to
6116   // the stack, allowing va_start to index over them in memory if its varargs.
6117   // Because we cannot tell if this is needed on the caller side, we have to
6118   // conservatively assume that it is needed.  As such, make sure we have at
6119   // least enough stack space for the caller to store the 8 GPRs.
6120   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6121   // really requires memory operands, e.g. a vararg function.
6122   if (HasParameterArea)
6123     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6124   else
6125     NumBytes = LinkageSize;
6126 
6127   // Tail call needs the stack to be aligned.
6128   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6129     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6130 
6131   int SPDiff = 0;
6132 
6133   // Calculate by how many bytes the stack has to be adjusted in case of tail
6134   // call optimization.
6135   if (!IsSibCall)
6136     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6137 
6138   // To protect arguments on the stack from being clobbered in a tail call,
6139   // force all the loads to happen before doing any other lowering.
6140   if (CFlags.IsTailCall)
6141     Chain = DAG.getStackArgumentTokenFactor(Chain);
6142 
6143   // Adjust the stack pointer for the new arguments...
6144   // These operations are automatically eliminated by the prolog/epilog pass
6145   if (!IsSibCall)
6146     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6147   SDValue CallSeqStart = Chain;
6148 
6149   // Load the return address and frame pointer so it can be move somewhere else
6150   // later.
6151   SDValue LROp, FPOp;
6152   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6153 
6154   // Set up a copy of the stack pointer for use loading and storing any
6155   // arguments that may not fit in the registers available for argument
6156   // passing.
6157   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6158 
6159   // Figure out which arguments are going to go in registers, and which in
6160   // memory.  Also, if this is a vararg function, floating point operations
6161   // must be stored to our stack, and loaded into integer regs as well, if
6162   // any integer regs are available for argument passing.
6163   unsigned ArgOffset = LinkageSize;
6164 
6165   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6166   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6167 
6168   SmallVector<SDValue, 8> MemOpChains;
6169   for (unsigned i = 0; i != NumOps; ++i) {
6170     SDValue Arg = OutVals[i];
6171     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6172     EVT ArgVT = Outs[i].VT;
6173     EVT OrigVT = Outs[i].ArgVT;
6174 
6175     // PtrOff will be used to store the current argument to the stack if a
6176     // register cannot be found for it.
6177     SDValue PtrOff;
6178 
6179     // We re-align the argument offset for each argument, except when using the
6180     // fast calling convention, when we need to make sure we do that only when
6181     // we'll actually use a stack slot.
6182     auto ComputePtrOff = [&]() {
6183       /* Respect alignment of argument on the stack.  */
6184       auto Alignment =
6185           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6186       ArgOffset = alignTo(ArgOffset, Alignment);
6187 
6188       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6189 
6190       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6191     };
6192 
6193     if (!IsFastCall) {
6194       ComputePtrOff();
6195 
6196       /* Compute GPR index associated with argument offset.  */
6197       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6198       GPR_idx = std::min(GPR_idx, NumGPRs);
6199     }
6200 
6201     // Promote integers to 64-bit values.
6202     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6203       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6204       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6205       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6206     }
6207 
6208     // FIXME memcpy is used way more than necessary.  Correctness first.
6209     // Note: "by value" is code for passing a structure by value, not
6210     // basic types.
6211     if (Flags.isByVal()) {
6212       // Note: Size includes alignment padding, so
6213       //   struct x { short a; char b; }
6214       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6215       // These are the proper values we need for right-justifying the
6216       // aggregate in a parameter register.
6217       unsigned Size = Flags.getByValSize();
6218 
6219       // An empty aggregate parameter takes up no storage and no
6220       // registers.
6221       if (Size == 0)
6222         continue;
6223 
6224       if (IsFastCall)
6225         ComputePtrOff();
6226 
6227       // All aggregates smaller than 8 bytes must be passed right-justified.
6228       if (Size==1 || Size==2 || Size==4) {
6229         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6230         if (GPR_idx != NumGPRs) {
6231           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6232                                         MachinePointerInfo(), VT);
6233           MemOpChains.push_back(Load.getValue(1));
6234           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6235 
6236           ArgOffset += PtrByteSize;
6237           continue;
6238         }
6239       }
6240 
6241       if (GPR_idx == NumGPRs && Size < 8) {
6242         SDValue AddPtr = PtrOff;
6243         if (!isLittleEndian) {
6244           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6245                                           PtrOff.getValueType());
6246           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6247         }
6248         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6249                                                           CallSeqStart,
6250                                                           Flags, DAG, dl);
6251         ArgOffset += PtrByteSize;
6252         continue;
6253       }
6254       // Copy the object to parameter save area if it can not be entirely passed
6255       // by registers.
6256       // FIXME: we only need to copy the parts which need to be passed in
6257       // parameter save area. For the parts passed by registers, we don't need
6258       // to copy them to the stack although we need to allocate space for them
6259       // in parameter save area.
6260       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6261         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6262                                                           CallSeqStart,
6263                                                           Flags, DAG, dl);
6264 
6265       // When a register is available, pass a small aggregate right-justified.
6266       if (Size < 8 && GPR_idx != NumGPRs) {
6267         // The easiest way to get this right-justified in a register
6268         // is to copy the structure into the rightmost portion of a
6269         // local variable slot, then load the whole slot into the
6270         // register.
6271         // FIXME: The memcpy seems to produce pretty awful code for
6272         // small aggregates, particularly for packed ones.
6273         // FIXME: It would be preferable to use the slot in the
6274         // parameter save area instead of a new local variable.
6275         SDValue AddPtr = PtrOff;
6276         if (!isLittleEndian) {
6277           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6278           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6279         }
6280         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6281                                                           CallSeqStart,
6282                                                           Flags, DAG, dl);
6283 
6284         // Load the slot into the register.
6285         SDValue Load =
6286             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6287         MemOpChains.push_back(Load.getValue(1));
6288         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6289 
6290         // Done with this argument.
6291         ArgOffset += PtrByteSize;
6292         continue;
6293       }
6294 
6295       // For aggregates larger than PtrByteSize, copy the pieces of the
6296       // object that fit into registers from the parameter save area.
6297       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6298         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6299         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6300         if (GPR_idx != NumGPRs) {
6301           unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8;
6302           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits);
6303           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg,
6304                                         MachinePointerInfo(), ObjType);
6305 
6306           MemOpChains.push_back(Load.getValue(1));
6307           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6308           ArgOffset += PtrByteSize;
6309         } else {
6310           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6311           break;
6312         }
6313       }
6314       continue;
6315     }
6316 
6317     switch (Arg.getSimpleValueType().SimpleTy) {
6318     default: llvm_unreachable("Unexpected ValueType for argument!");
6319     case MVT::i1:
6320     case MVT::i32:
6321     case MVT::i64:
6322       if (Flags.isNest()) {
6323         // The 'nest' parameter, if any, is passed in R11.
6324         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6325         break;
6326       }
6327 
6328       // These can be scalar arguments or elements of an integer array type
6329       // passed directly.  Clang may use those instead of "byval" aggregate
6330       // types to avoid forcing arguments to memory unnecessarily.
6331       if (GPR_idx != NumGPRs) {
6332         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6333       } else {
6334         if (IsFastCall)
6335           ComputePtrOff();
6336 
6337         assert(HasParameterArea &&
6338                "Parameter area must exist to pass an argument in memory.");
6339         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6340                          true, CFlags.IsTailCall, false, MemOpChains,
6341                          TailCallArguments, dl);
6342         if (IsFastCall)
6343           ArgOffset += PtrByteSize;
6344       }
6345       if (!IsFastCall)
6346         ArgOffset += PtrByteSize;
6347       break;
6348     case MVT::f32:
6349     case MVT::f64: {
6350       // These can be scalar arguments or elements of a float array type
6351       // passed directly.  The latter are used to implement ELFv2 homogenous
6352       // float aggregates.
6353 
6354       // Named arguments go into FPRs first, and once they overflow, the
6355       // remaining arguments go into GPRs and then the parameter save area.
6356       // Unnamed arguments for vararg functions always go to GPRs and
6357       // then the parameter save area.  For now, put all arguments to vararg
6358       // routines always in both locations (FPR *and* GPR or stack slot).
6359       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6360       bool NeededLoad = false;
6361 
6362       // First load the argument into the next available FPR.
6363       if (FPR_idx != NumFPRs)
6364         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6365 
6366       // Next, load the argument into GPR or stack slot if needed.
6367       if (!NeedGPROrStack)
6368         ;
6369       else if (GPR_idx != NumGPRs && !IsFastCall) {
6370         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6371         // once we support fp <-> gpr moves.
6372 
6373         // In the non-vararg case, this can only ever happen in the
6374         // presence of f32 array types, since otherwise we never run
6375         // out of FPRs before running out of GPRs.
6376         SDValue ArgVal;
6377 
6378         // Double values are always passed in a single GPR.
6379         if (Arg.getValueType() != MVT::f32) {
6380           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6381 
6382         // Non-array float values are extended and passed in a GPR.
6383         } else if (!Flags.isInConsecutiveRegs()) {
6384           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6385           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6386 
6387         // If we have an array of floats, we collect every odd element
6388         // together with its predecessor into one GPR.
6389         } else if (ArgOffset % PtrByteSize != 0) {
6390           SDValue Lo, Hi;
6391           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6392           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6393           if (!isLittleEndian)
6394             std::swap(Lo, Hi);
6395           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6396 
6397         // The final element, if even, goes into the first half of a GPR.
6398         } else if (Flags.isInConsecutiveRegsLast()) {
6399           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6400           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6401           if (!isLittleEndian)
6402             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6403                                  DAG.getConstant(32, dl, MVT::i32));
6404 
6405         // Non-final even elements are skipped; they will be handled
6406         // together the with subsequent argument on the next go-around.
6407         } else
6408           ArgVal = SDValue();
6409 
6410         if (ArgVal.getNode())
6411           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6412       } else {
6413         if (IsFastCall)
6414           ComputePtrOff();
6415 
6416         // Single-precision floating-point values are mapped to the
6417         // second (rightmost) word of the stack doubleword.
6418         if (Arg.getValueType() == MVT::f32 &&
6419             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6420           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6421           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6422         }
6423 
6424         assert(HasParameterArea &&
6425                "Parameter area must exist to pass an argument in memory.");
6426         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6427                          true, CFlags.IsTailCall, false, MemOpChains,
6428                          TailCallArguments, dl);
6429 
6430         NeededLoad = true;
6431       }
6432       // When passing an array of floats, the array occupies consecutive
6433       // space in the argument area; only round up to the next doubleword
6434       // at the end of the array.  Otherwise, each float takes 8 bytes.
6435       if (!IsFastCall || NeededLoad) {
6436         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6437                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6438         if (Flags.isInConsecutiveRegsLast())
6439           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6440       }
6441       break;
6442     }
6443     case MVT::v4f32:
6444     case MVT::v4i32:
6445     case MVT::v8i16:
6446     case MVT::v16i8:
6447     case MVT::v2f64:
6448     case MVT::v2i64:
6449     case MVT::v1i128:
6450     case MVT::f128:
6451       // These can be scalar arguments or elements of a vector array type
6452       // passed directly.  The latter are used to implement ELFv2 homogenous
6453       // vector aggregates.
6454 
6455       // For a varargs call, named arguments go into VRs or on the stack as
6456       // usual; unnamed arguments always go to the stack or the corresponding
6457       // GPRs when within range.  For now, we always put the value in both
6458       // locations (or even all three).
6459       if (CFlags.IsVarArg) {
6460         assert(HasParameterArea &&
6461                "Parameter area must exist if we have a varargs call.");
6462         // We could elide this store in the case where the object fits
6463         // entirely in R registers.  Maybe later.
6464         SDValue Store =
6465             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6466         MemOpChains.push_back(Store);
6467         if (VR_idx != NumVRs) {
6468           SDValue Load =
6469               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6470           MemOpChains.push_back(Load.getValue(1));
6471           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6472         }
6473         ArgOffset += 16;
6474         for (unsigned i=0; i<16; i+=PtrByteSize) {
6475           if (GPR_idx == NumGPRs)
6476             break;
6477           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6478                                    DAG.getConstant(i, dl, PtrVT));
6479           SDValue Load =
6480               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6481           MemOpChains.push_back(Load.getValue(1));
6482           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6483         }
6484         break;
6485       }
6486 
6487       // Non-varargs Altivec params go into VRs or on the stack.
6488       if (VR_idx != NumVRs) {
6489         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6490       } else {
6491         if (IsFastCall)
6492           ComputePtrOff();
6493 
6494         assert(HasParameterArea &&
6495                "Parameter area must exist to pass an argument in memory.");
6496         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6497                          true, CFlags.IsTailCall, true, MemOpChains,
6498                          TailCallArguments, dl);
6499         if (IsFastCall)
6500           ArgOffset += 16;
6501       }
6502 
6503       if (!IsFastCall)
6504         ArgOffset += 16;
6505       break;
6506     }
6507   }
6508 
6509   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6510          "mismatch in size of parameter area");
6511   (void)NumBytesActuallyUsed;
6512 
6513   if (!MemOpChains.empty())
6514     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6515 
6516   // Check if this is an indirect call (MTCTR/BCTRL).
6517   // See prepareDescriptorIndirectCall and buildCallOperands for more
6518   // information about calls through function pointers in the 64-bit SVR4 ABI.
6519   if (CFlags.IsIndirect) {
6520     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6521     // caller in the TOC save area.
6522     if (isTOCSaveRestoreRequired(Subtarget)) {
6523       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6524       // Load r2 into a virtual register and store it to the TOC save area.
6525       setUsesTOCBasePtr(DAG);
6526       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6527       // TOC save area offset.
6528       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6529       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6530       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6531       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6532                            MachinePointerInfo::getStack(
6533                                DAG.getMachineFunction(), TOCSaveOffset));
6534     }
6535     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6536     // This does not mean the MTCTR instruction must use R12; it's easier
6537     // to model this as an extra parameter, so do that.
6538     if (isELFv2ABI && !CFlags.IsPatchPoint)
6539       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6540   }
6541 
6542   // Build a sequence of copy-to-reg nodes chained together with token chain
6543   // and flag operands which copy the outgoing args into the appropriate regs.
6544   SDValue InFlag;
6545   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6546     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6547                              RegsToPass[i].second, InFlag);
6548     InFlag = Chain.getValue(1);
6549   }
6550 
6551   if (CFlags.IsTailCall && !IsSibCall)
6552     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6553                     TailCallArguments);
6554 
6555   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6556                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6557 }
6558 
6559 // Returns true when the shadow of a general purpose argument register
6560 // in the parameter save area is aligned to at least 'RequiredAlign'.
6561 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6562   assert(RequiredAlign.value() <= 16 &&
6563          "Required alignment greater than stack alignment.");
6564   switch (Reg) {
6565   default:
6566     report_fatal_error("called on invalid register.");
6567   case PPC::R5:
6568   case PPC::R9:
6569   case PPC::X3:
6570   case PPC::X5:
6571   case PPC::X7:
6572   case PPC::X9:
6573     // These registers are 16 byte aligned which is the most strict aligment
6574     // we can support.
6575     return true;
6576   case PPC::R3:
6577   case PPC::R7:
6578   case PPC::X4:
6579   case PPC::X6:
6580   case PPC::X8:
6581   case PPC::X10:
6582     // The shadow of these registers in the PSA is 8 byte aligned.
6583     return RequiredAlign <= 8;
6584   case PPC::R4:
6585   case PPC::R6:
6586   case PPC::R8:
6587   case PPC::R10:
6588     return RequiredAlign <= 4;
6589   }
6590 }
6591 
6592 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6593                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6594                    CCState &S) {
6595   AIXCCState &State = static_cast<AIXCCState &>(S);
6596   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6597       State.getMachineFunction().getSubtarget());
6598   const bool IsPPC64 = Subtarget.isPPC64();
6599   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6600   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6601 
6602   if (ValVT == MVT::f128)
6603     report_fatal_error("f128 is unimplemented on AIX.");
6604 
6605   if (ArgFlags.isNest())
6606     report_fatal_error("Nest arguments are unimplemented.");
6607 
6608   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6609                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6610                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6611   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6612                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6613                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6614 
6615   static const MCPhysReg VR[] = {// Vector registers.
6616                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6617                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6618                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6619 
6620   if (ArgFlags.isByVal()) {
6621     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6622       report_fatal_error("Pass-by-value arguments with alignment greater than "
6623                          "register width are not supported.");
6624 
6625     const unsigned ByValSize = ArgFlags.getByValSize();
6626 
6627     // An empty aggregate parameter takes up no storage and no registers,
6628     // but needs a MemLoc for a stack slot for the formal arguments side.
6629     if (ByValSize == 0) {
6630       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6631                                        State.getNextStackOffset(), RegVT,
6632                                        LocInfo));
6633       return false;
6634     }
6635 
6636     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6637     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6638     for (const unsigned E = Offset + StackSize; Offset < E;
6639          Offset += PtrAlign.value()) {
6640       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6641         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6642       else {
6643         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6644                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6645                                          LocInfo));
6646         break;
6647       }
6648     }
6649     return false;
6650   }
6651 
6652   // Arguments always reserve parameter save area.
6653   switch (ValVT.SimpleTy) {
6654   default:
6655     report_fatal_error("Unhandled value type for argument.");
6656   case MVT::i64:
6657     // i64 arguments should have been split to i32 for PPC32.
6658     assert(IsPPC64 && "PPC32 should have split i64 values.");
6659     [[fallthrough]];
6660   case MVT::i1:
6661   case MVT::i32: {
6662     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6663     // AIX integer arguments are always passed in register width.
6664     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6665       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6666                                   : CCValAssign::LocInfo::ZExt;
6667     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6668       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6669     else
6670       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6671 
6672     return false;
6673   }
6674   case MVT::f32:
6675   case MVT::f64: {
6676     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6677     const unsigned StoreSize = LocVT.getStoreSize();
6678     // Floats are always 4-byte aligned in the PSA on AIX.
6679     // This includes f64 in 64-bit mode for ABI compatibility.
6680     const unsigned Offset =
6681         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6682     unsigned FReg = State.AllocateReg(FPR);
6683     if (FReg)
6684       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6685 
6686     // Reserve and initialize GPRs or initialize the PSA as required.
6687     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6688       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6689         assert(FReg && "An FPR should be available when a GPR is reserved.");
6690         if (State.isVarArg()) {
6691           // Successfully reserved GPRs are only initialized for vararg calls.
6692           // Custom handling is required for:
6693           //   f64 in PPC32 needs to be split into 2 GPRs.
6694           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6695           State.addLoc(
6696               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6697         }
6698       } else {
6699         // If there are insufficient GPRs, the PSA needs to be initialized.
6700         // Initialization occurs even if an FPR was initialized for
6701         // compatibility with the AIX XL compiler. The full memory for the
6702         // argument will be initialized even if a prior word is saved in GPR.
6703         // A custom memLoc is used when the argument also passes in FPR so
6704         // that the callee handling can skip over it easily.
6705         State.addLoc(
6706             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6707                                              LocInfo)
6708                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6709         break;
6710       }
6711     }
6712 
6713     return false;
6714   }
6715   case MVT::v4f32:
6716   case MVT::v4i32:
6717   case MVT::v8i16:
6718   case MVT::v16i8:
6719   case MVT::v2i64:
6720   case MVT::v2f64:
6721   case MVT::v1i128: {
6722     const unsigned VecSize = 16;
6723     const Align VecAlign(VecSize);
6724 
6725     if (!State.isVarArg()) {
6726       // If there are vector registers remaining we don't consume any stack
6727       // space.
6728       if (unsigned VReg = State.AllocateReg(VR)) {
6729         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6730         return false;
6731       }
6732       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6733       // might be allocated in the portion of the PSA that is shadowed by the
6734       // GPRs.
6735       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6736       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6737       return false;
6738     }
6739 
6740     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6741     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6742 
6743     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6744     // Burn any underaligned registers and their shadowed stack space until
6745     // we reach the required alignment.
6746     while (NextRegIndex != GPRs.size() &&
6747            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6748       // Shadow allocate register and its stack shadow.
6749       unsigned Reg = State.AllocateReg(GPRs);
6750       State.AllocateStack(PtrSize, PtrAlign);
6751       assert(Reg && "Allocating register unexpectedly failed.");
6752       (void)Reg;
6753       NextRegIndex = State.getFirstUnallocated(GPRs);
6754     }
6755 
6756     // Vectors that are passed as fixed arguments are handled differently.
6757     // They are passed in VRs if any are available (unlike arguments passed
6758     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6759     // functions)
6760     if (State.isFixed(ValNo)) {
6761       if (unsigned VReg = State.AllocateReg(VR)) {
6762         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6763         // Shadow allocate GPRs and stack space even though we pass in a VR.
6764         for (unsigned I = 0; I != VecSize; I += PtrSize)
6765           State.AllocateReg(GPRs);
6766         State.AllocateStack(VecSize, VecAlign);
6767         return false;
6768       }
6769       // No vector registers remain so pass on the stack.
6770       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6771       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6772       return false;
6773     }
6774 
6775     // If all GPRS are consumed then we pass the argument fully on the stack.
6776     if (NextRegIndex == GPRs.size()) {
6777       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6778       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6779       return false;
6780     }
6781 
6782     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6783     // half of the argument, and then need to pass the remaining half on the
6784     // stack.
6785     if (GPRs[NextRegIndex] == PPC::R9) {
6786       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6787       State.addLoc(
6788           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6789 
6790       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6791       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6792       assert(FirstReg && SecondReg &&
6793              "Allocating R9 or R10 unexpectedly failed.");
6794       State.addLoc(
6795           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6796       State.addLoc(
6797           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6798       return false;
6799     }
6800 
6801     // We have enough GPRs to fully pass the vector argument, and we have
6802     // already consumed any underaligned registers. Start with the custom
6803     // MemLoc and then the custom RegLocs.
6804     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6805     State.addLoc(
6806         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6807     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6808       const unsigned Reg = State.AllocateReg(GPRs);
6809       assert(Reg && "Failed to allocated register for vararg vector argument");
6810       State.addLoc(
6811           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6812     }
6813     return false;
6814   }
6815   }
6816   return true;
6817 }
6818 
6819 // So far, this function is only used by LowerFormalArguments_AIX()
6820 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6821                                                     bool IsPPC64,
6822                                                     bool HasP8Vector,
6823                                                     bool HasVSX) {
6824   assert((IsPPC64 || SVT != MVT::i64) &&
6825          "i64 should have been split for 32-bit codegen.");
6826 
6827   switch (SVT) {
6828   default:
6829     report_fatal_error("Unexpected value type for formal argument");
6830   case MVT::i1:
6831   case MVT::i32:
6832   case MVT::i64:
6833     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6834   case MVT::f32:
6835     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6836   case MVT::f64:
6837     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6838   case MVT::v4f32:
6839   case MVT::v4i32:
6840   case MVT::v8i16:
6841   case MVT::v16i8:
6842   case MVT::v2i64:
6843   case MVT::v2f64:
6844   case MVT::v1i128:
6845     return &PPC::VRRCRegClass;
6846   }
6847 }
6848 
6849 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6850                                         SelectionDAG &DAG, SDValue ArgValue,
6851                                         MVT LocVT, const SDLoc &dl) {
6852   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6853   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6854 
6855   if (Flags.isSExt())
6856     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6857                            DAG.getValueType(ValVT));
6858   else if (Flags.isZExt())
6859     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6860                            DAG.getValueType(ValVT));
6861 
6862   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6863 }
6864 
6865 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6866   const unsigned LASize = FL->getLinkageSize();
6867 
6868   if (PPC::GPRCRegClass.contains(Reg)) {
6869     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6870            "Reg must be a valid argument register!");
6871     return LASize + 4 * (Reg - PPC::R3);
6872   }
6873 
6874   if (PPC::G8RCRegClass.contains(Reg)) {
6875     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6876            "Reg must be a valid argument register!");
6877     return LASize + 8 * (Reg - PPC::X3);
6878   }
6879 
6880   llvm_unreachable("Only general purpose registers expected.");
6881 }
6882 
6883 //   AIX ABI Stack Frame Layout:
6884 //
6885 //   Low Memory +--------------------------------------------+
6886 //   SP   +---> | Back chain                                 | ---+
6887 //        |     +--------------------------------------------+    |
6888 //        |     | Saved Condition Register                   |    |
6889 //        |     +--------------------------------------------+    |
6890 //        |     | Saved Linkage Register                     |    |
6891 //        |     +--------------------------------------------+    | Linkage Area
6892 //        |     | Reserved for compilers                     |    |
6893 //        |     +--------------------------------------------+    |
6894 //        |     | Reserved for binders                       |    |
6895 //        |     +--------------------------------------------+    |
6896 //        |     | Saved TOC pointer                          | ---+
6897 //        |     +--------------------------------------------+
6898 //        |     | Parameter save area                        |
6899 //        |     +--------------------------------------------+
6900 //        |     | Alloca space                               |
6901 //        |     +--------------------------------------------+
6902 //        |     | Local variable space                       |
6903 //        |     +--------------------------------------------+
6904 //        |     | Float/int conversion temporary             |
6905 //        |     +--------------------------------------------+
6906 //        |     | Save area for AltiVec registers            |
6907 //        |     +--------------------------------------------+
6908 //        |     | AltiVec alignment padding                  |
6909 //        |     +--------------------------------------------+
6910 //        |     | Save area for VRSAVE register              |
6911 //        |     +--------------------------------------------+
6912 //        |     | Save area for General Purpose registers    |
6913 //        |     +--------------------------------------------+
6914 //        |     | Save area for Floating Point registers     |
6915 //        |     +--------------------------------------------+
6916 //        +---- | Back chain                                 |
6917 // High Memory  +--------------------------------------------+
6918 //
6919 //  Specifications:
6920 //  AIX 7.2 Assembler Language Reference
6921 //  Subroutine linkage convention
6922 
6923 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6924     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6925     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6926     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6927 
6928   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6929           CallConv == CallingConv::Fast) &&
6930          "Unexpected calling convention!");
6931 
6932   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6933     report_fatal_error("Tail call support is unimplemented on AIX.");
6934 
6935   if (useSoftFloat())
6936     report_fatal_error("Soft float support is unimplemented on AIX.");
6937 
6938   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
6939 
6940   const bool IsPPC64 = Subtarget.isPPC64();
6941   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6942 
6943   // Assign locations to all of the incoming arguments.
6944   SmallVector<CCValAssign, 16> ArgLocs;
6945   MachineFunction &MF = DAG.getMachineFunction();
6946   MachineFrameInfo &MFI = MF.getFrameInfo();
6947   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6948   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6949 
6950   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6951   // Reserve space for the linkage area on the stack.
6952   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6953   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6954   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6955 
6956   SmallVector<SDValue, 8> MemOps;
6957 
6958   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6959     CCValAssign &VA = ArgLocs[I++];
6960     MVT LocVT = VA.getLocVT();
6961     MVT ValVT = VA.getValVT();
6962     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6963     // For compatibility with the AIX XL compiler, the float args in the
6964     // parameter save area are initialized even if the argument is available
6965     // in register.  The caller is required to initialize both the register
6966     // and memory, however, the callee can choose to expect it in either.
6967     // The memloc is dismissed here because the argument is retrieved from
6968     // the register.
6969     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6970       continue;
6971 
6972     auto HandleMemLoc = [&]() {
6973       const unsigned LocSize = LocVT.getStoreSize();
6974       const unsigned ValSize = ValVT.getStoreSize();
6975       assert((ValSize <= LocSize) &&
6976              "Object size is larger than size of MemLoc");
6977       int CurArgOffset = VA.getLocMemOffset();
6978       // Objects are right-justified because AIX is big-endian.
6979       if (LocSize > ValSize)
6980         CurArgOffset += LocSize - ValSize;
6981       // Potential tail calls could cause overwriting of argument stack slots.
6982       const bool IsImmutable =
6983           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6984             (CallConv == CallingConv::Fast));
6985       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6986       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6987       SDValue ArgValue =
6988           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6989       InVals.push_back(ArgValue);
6990     };
6991 
6992     // Vector arguments to VaArg functions are passed both on the stack, and
6993     // in any available GPRs. Load the value from the stack and add the GPRs
6994     // as live ins.
6995     if (VA.isMemLoc() && VA.needsCustom()) {
6996       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6997       assert(isVarArg && "Only use custom memloc for vararg.");
6998       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6999       // matching custom RegLocs.
7000       const unsigned OriginalValNo = VA.getValNo();
7001       (void)OriginalValNo;
7002 
7003       auto HandleCustomVecRegLoc = [&]() {
7004         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7005                "Missing custom RegLoc.");
7006         VA = ArgLocs[I++];
7007         assert(VA.getValVT().isVector() &&
7008                "Unexpected Val type for custom RegLoc.");
7009         assert(VA.getValNo() == OriginalValNo &&
7010                "ValNo mismatch between custom MemLoc and RegLoc.");
7011         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
7012         MF.addLiveIn(VA.getLocReg(),
7013                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7014                                        Subtarget.hasVSX()));
7015       };
7016 
7017       HandleMemLoc();
7018       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7019       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7020       // R10.
7021       HandleCustomVecRegLoc();
7022       HandleCustomVecRegLoc();
7023 
7024       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
7025       // we passed the vector in R5, R6, R7 and R8.
7026       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
7027         assert(!IsPPC64 &&
7028                "Only 2 custom RegLocs expected for 64-bit codegen.");
7029         HandleCustomVecRegLoc();
7030         HandleCustomVecRegLoc();
7031       }
7032 
7033       continue;
7034     }
7035 
7036     if (VA.isRegLoc()) {
7037       if (VA.getValVT().isScalarInteger())
7038         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7039       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
7040         switch (VA.getValVT().SimpleTy) {
7041         default:
7042           report_fatal_error("Unhandled value type for argument.");
7043         case MVT::f32:
7044           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
7045           break;
7046         case MVT::f64:
7047           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7048           break;
7049         }
7050       } else if (VA.getValVT().isVector()) {
7051         switch (VA.getValVT().SimpleTy) {
7052         default:
7053           report_fatal_error("Unhandled value type for argument.");
7054         case MVT::v16i8:
7055           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7056           break;
7057         case MVT::v8i16:
7058           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7059           break;
7060         case MVT::v4i32:
7061         case MVT::v2i64:
7062         case MVT::v1i128:
7063           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7064           break;
7065         case MVT::v4f32:
7066         case MVT::v2f64:
7067           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7068           break;
7069         }
7070       }
7071     }
7072 
7073     if (Flags.isByVal() && VA.isMemLoc()) {
7074       const unsigned Size =
7075           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7076                   PtrByteSize);
7077       const int FI = MF.getFrameInfo().CreateFixedObject(
7078           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7079           /* IsAliased */ true);
7080       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7081       InVals.push_back(FIN);
7082 
7083       continue;
7084     }
7085 
7086     if (Flags.isByVal()) {
7087       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7088 
7089       const MCPhysReg ArgReg = VA.getLocReg();
7090       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7091 
7092       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7093         report_fatal_error("Over aligned byvals not supported yet.");
7094 
7095       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7096       const int FI = MF.getFrameInfo().CreateFixedObject(
7097           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7098           /* IsAliased */ true);
7099       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7100       InVals.push_back(FIN);
7101 
7102       // Add live ins for all the RegLocs for the same ByVal.
7103       const TargetRegisterClass *RegClass =
7104           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7105 
7106       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7107                                                unsigned Offset) {
7108         const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7109         // Since the callers side has left justified the aggregate in the
7110         // register, we can simply store the entire register into the stack
7111         // slot.
7112         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7113         // The store to the fixedstack object is needed becuase accessing a
7114         // field of the ByVal will use a gep and load. Ideally we will optimize
7115         // to extracting the value from the register directly, and elide the
7116         // stores when the arguments address is not taken, but that will need to
7117         // be future work.
7118         SDValue Store = DAG.getStore(
7119             CopyFrom.getValue(1), dl, CopyFrom,
7120             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7121             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7122 
7123         MemOps.push_back(Store);
7124       };
7125 
7126       unsigned Offset = 0;
7127       HandleRegLoc(VA.getLocReg(), Offset);
7128       Offset += PtrByteSize;
7129       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7130            Offset += PtrByteSize) {
7131         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7132                "RegLocs should be for ByVal argument.");
7133 
7134         const CCValAssign RL = ArgLocs[I++];
7135         HandleRegLoc(RL.getLocReg(), Offset);
7136         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7137       }
7138 
7139       if (Offset != StackSize) {
7140         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7141                "Expected MemLoc for remaining bytes.");
7142         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7143         // Consume the MemLoc.The InVal has already been emitted, so nothing
7144         // more needs to be done.
7145         ++I;
7146       }
7147 
7148       continue;
7149     }
7150 
7151     if (VA.isRegLoc() && !VA.needsCustom()) {
7152       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7153       Register VReg =
7154           MF.addLiveIn(VA.getLocReg(),
7155                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7156                                          Subtarget.hasVSX()));
7157       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7158       if (ValVT.isScalarInteger() &&
7159           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7160         ArgValue =
7161             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7162       }
7163       InVals.push_back(ArgValue);
7164       continue;
7165     }
7166     if (VA.isMemLoc()) {
7167       HandleMemLoc();
7168       continue;
7169     }
7170   }
7171 
7172   // On AIX a minimum of 8 words is saved to the parameter save area.
7173   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7174   // Area that is at least reserved in the caller of this function.
7175   unsigned CallerReservedArea =
7176       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7177 
7178   // Set the size that is at least reserved in caller of this function. Tail
7179   // call optimized function's reserved stack space needs to be aligned so
7180   // that taking the difference between two stack areas will result in an
7181   // aligned stack.
7182   CallerReservedArea =
7183       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7184   FuncInfo->setMinReservedArea(CallerReservedArea);
7185 
7186   if (isVarArg) {
7187     FuncInfo->setVarArgsFrameIndex(
7188         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7189     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7190 
7191     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7192                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7193 
7194     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7195                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7196     const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32);
7197 
7198     // The fixed integer arguments of a variadic function are stored to the
7199     // VarArgsFrameIndex on the stack so that they may be loaded by
7200     // dereferencing the result of va_next.
7201     for (unsigned GPRIndex =
7202              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7203          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7204 
7205       const Register VReg =
7206           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7207                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7208 
7209       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7210       SDValue Store =
7211           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7212       MemOps.push_back(Store);
7213       // Increment the address for the next argument to store.
7214       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7215       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7216     }
7217   }
7218 
7219   if (!MemOps.empty())
7220     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7221 
7222   return Chain;
7223 }
7224 
7225 SDValue PPCTargetLowering::LowerCall_AIX(
7226     SDValue Chain, SDValue Callee, CallFlags CFlags,
7227     const SmallVectorImpl<ISD::OutputArg> &Outs,
7228     const SmallVectorImpl<SDValue> &OutVals,
7229     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7230     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7231     const CallBase *CB) const {
7232   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7233   // AIX ABI stack frame layout.
7234 
7235   assert((CFlags.CallConv == CallingConv::C ||
7236           CFlags.CallConv == CallingConv::Cold ||
7237           CFlags.CallConv == CallingConv::Fast) &&
7238          "Unexpected calling convention!");
7239 
7240   if (CFlags.IsPatchPoint)
7241     report_fatal_error("This call type is unimplemented on AIX.");
7242 
7243   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
7244 
7245   MachineFunction &MF = DAG.getMachineFunction();
7246   SmallVector<CCValAssign, 16> ArgLocs;
7247   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7248                     *DAG.getContext());
7249 
7250   // Reserve space for the linkage save area (LSA) on the stack.
7251   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7252   //   [SP][CR][LR][2 x reserved][TOC].
7253   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7254   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7255   const bool IsPPC64 = Subtarget.isPPC64();
7256   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7257   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7258   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7259   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7260 
7261   // The prolog code of the callee may store up to 8 GPR argument registers to
7262   // the stack, allowing va_start to index over them in memory if the callee
7263   // is variadic.
7264   // Because we cannot tell if this is needed on the caller side, we have to
7265   // conservatively assume that it is needed.  As such, make sure we have at
7266   // least enough stack space for the caller to store the 8 GPRs.
7267   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7268   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7269                                      CCInfo.getNextStackOffset());
7270 
7271   // Adjust the stack pointer for the new arguments...
7272   // These operations are automatically eliminated by the prolog/epilog pass.
7273   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7274   SDValue CallSeqStart = Chain;
7275 
7276   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7277   SmallVector<SDValue, 8> MemOpChains;
7278 
7279   // Set up a copy of the stack pointer for loading and storing any
7280   // arguments that may not fit in the registers available for argument
7281   // passing.
7282   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7283                                    : DAG.getRegister(PPC::R1, MVT::i32);
7284 
7285   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7286     const unsigned ValNo = ArgLocs[I].getValNo();
7287     SDValue Arg = OutVals[ValNo];
7288     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7289 
7290     if (Flags.isByVal()) {
7291       const unsigned ByValSize = Flags.getByValSize();
7292 
7293       // Nothing to do for zero-sized ByVals on the caller side.
7294       if (!ByValSize) {
7295         ++I;
7296         continue;
7297       }
7298 
7299       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7300         return DAG.getExtLoad(
7301             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7302             (LoadOffset != 0)
7303                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7304                 : Arg,
7305             MachinePointerInfo(), VT);
7306       };
7307 
7308       unsigned LoadOffset = 0;
7309 
7310       // Initialize registers, which are fully occupied by the by-val argument.
7311       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7312         SDValue Load = GetLoad(PtrVT, LoadOffset);
7313         MemOpChains.push_back(Load.getValue(1));
7314         LoadOffset += PtrByteSize;
7315         const CCValAssign &ByValVA = ArgLocs[I++];
7316         assert(ByValVA.getValNo() == ValNo &&
7317                "Unexpected location for pass-by-value argument.");
7318         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7319       }
7320 
7321       if (LoadOffset == ByValSize)
7322         continue;
7323 
7324       // There must be one more loc to handle the remainder.
7325       assert(ArgLocs[I].getValNo() == ValNo &&
7326              "Expected additional location for by-value argument.");
7327 
7328       if (ArgLocs[I].isMemLoc()) {
7329         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7330         const CCValAssign &ByValVA = ArgLocs[I++];
7331         ISD::ArgFlagsTy MemcpyFlags = Flags;
7332         // Only memcpy the bytes that don't pass in register.
7333         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7334         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7335             (LoadOffset != 0)
7336                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7337                 : Arg,
7338             DAG.getObjectPtrOffset(dl, StackPtr,
7339                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7340             CallSeqStart, MemcpyFlags, DAG, dl);
7341         continue;
7342       }
7343 
7344       // Initialize the final register residue.
7345       // Any residue that occupies the final by-val arg register must be
7346       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7347       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7348       // 2 and 1 byte loads.
7349       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7350       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7351              "Unexpected register residue for by-value argument.");
7352       SDValue ResidueVal;
7353       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7354         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7355         const MVT VT =
7356             N == 1 ? MVT::i8
7357                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7358         SDValue Load = GetLoad(VT, LoadOffset);
7359         MemOpChains.push_back(Load.getValue(1));
7360         LoadOffset += N;
7361         Bytes += N;
7362 
7363         // By-val arguments are passed left-justfied in register.
7364         // Every load here needs to be shifted, otherwise a full register load
7365         // should have been used.
7366         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7367                "Unexpected load emitted during handling of pass-by-value "
7368                "argument.");
7369         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7370         EVT ShiftAmountTy =
7371             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7372         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7373         SDValue ShiftedLoad =
7374             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7375         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7376                                               ShiftedLoad)
7377                                 : ShiftedLoad;
7378       }
7379 
7380       const CCValAssign &ByValVA = ArgLocs[I++];
7381       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7382       continue;
7383     }
7384 
7385     CCValAssign &VA = ArgLocs[I++];
7386     const MVT LocVT = VA.getLocVT();
7387     const MVT ValVT = VA.getValVT();
7388 
7389     switch (VA.getLocInfo()) {
7390     default:
7391       report_fatal_error("Unexpected argument extension type.");
7392     case CCValAssign::Full:
7393       break;
7394     case CCValAssign::ZExt:
7395       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7396       break;
7397     case CCValAssign::SExt:
7398       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7399       break;
7400     }
7401 
7402     if (VA.isRegLoc() && !VA.needsCustom()) {
7403       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7404       continue;
7405     }
7406 
7407     // Vector arguments passed to VarArg functions need custom handling when
7408     // they are passed (at least partially) in GPRs.
7409     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7410       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7411       // Store value to its stack slot.
7412       SDValue PtrOff =
7413           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7414       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7415       SDValue Store =
7416           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7417       MemOpChains.push_back(Store);
7418       const unsigned OriginalValNo = VA.getValNo();
7419       // Then load the GPRs from the stack
7420       unsigned LoadOffset = 0;
7421       auto HandleCustomVecRegLoc = [&]() {
7422         assert(I != E && "Unexpected end of CCvalAssigns.");
7423         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7424                "Expected custom RegLoc.");
7425         CCValAssign RegVA = ArgLocs[I++];
7426         assert(RegVA.getValNo() == OriginalValNo &&
7427                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7428         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7429                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7430         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7431         MemOpChains.push_back(Load.getValue(1));
7432         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7433         LoadOffset += PtrByteSize;
7434       };
7435 
7436       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7437       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7438       // R10.
7439       HandleCustomVecRegLoc();
7440       HandleCustomVecRegLoc();
7441 
7442       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7443           ArgLocs[I].getValNo() == OriginalValNo) {
7444         assert(!IsPPC64 &&
7445                "Only 2 custom RegLocs expected for 64-bit codegen.");
7446         HandleCustomVecRegLoc();
7447         HandleCustomVecRegLoc();
7448       }
7449 
7450       continue;
7451     }
7452 
7453     if (VA.isMemLoc()) {
7454       SDValue PtrOff =
7455           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7456       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7457       MemOpChains.push_back(
7458           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7459 
7460       continue;
7461     }
7462 
7463     if (!ValVT.isFloatingPoint())
7464       report_fatal_error(
7465           "Unexpected register handling for calling convention.");
7466 
7467     // Custom handling is used for GPR initializations for vararg float
7468     // arguments.
7469     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7470            LocVT.isInteger() &&
7471            "Custom register handling only expected for VarArg.");
7472 
7473     SDValue ArgAsInt =
7474         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7475 
7476     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7477       // f32 in 32-bit GPR
7478       // f64 in 64-bit GPR
7479       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7480     else if (Arg.getValueType().getFixedSizeInBits() <
7481              LocVT.getFixedSizeInBits())
7482       // f32 in 64-bit GPR.
7483       RegsToPass.push_back(std::make_pair(
7484           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7485     else {
7486       // f64 in two 32-bit GPRs
7487       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7488       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7489              "Unexpected custom register for argument!");
7490       CCValAssign &GPR1 = VA;
7491       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7492                                      DAG.getConstant(32, dl, MVT::i8));
7493       RegsToPass.push_back(std::make_pair(
7494           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7495 
7496       if (I != E) {
7497         // If only 1 GPR was available, there will only be one custom GPR and
7498         // the argument will also pass in memory.
7499         CCValAssign &PeekArg = ArgLocs[I];
7500         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7501           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7502           CCValAssign &GPR2 = ArgLocs[I++];
7503           RegsToPass.push_back(std::make_pair(
7504               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7505         }
7506       }
7507     }
7508   }
7509 
7510   if (!MemOpChains.empty())
7511     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7512 
7513   // For indirect calls, we need to save the TOC base to the stack for
7514   // restoration after the call.
7515   if (CFlags.IsIndirect) {
7516     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7517     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7518     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7519     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7520     const unsigned TOCSaveOffset =
7521         Subtarget.getFrameLowering()->getTOCSaveOffset();
7522 
7523     setUsesTOCBasePtr(DAG);
7524     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7525     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7526     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7527     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7528     Chain = DAG.getStore(
7529         Val.getValue(1), dl, Val, AddPtr,
7530         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7531   }
7532 
7533   // Build a sequence of copy-to-reg nodes chained together with token chain
7534   // and flag operands which copy the outgoing args into the appropriate regs.
7535   SDValue InFlag;
7536   for (auto Reg : RegsToPass) {
7537     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7538     InFlag = Chain.getValue(1);
7539   }
7540 
7541   const int SPDiff = 0;
7542   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7543                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7544 }
7545 
7546 bool
7547 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7548                                   MachineFunction &MF, bool isVarArg,
7549                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7550                                   LLVMContext &Context) const {
7551   SmallVector<CCValAssign, 16> RVLocs;
7552   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7553   return CCInfo.CheckReturn(
7554       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7555                 ? RetCC_PPC_Cold
7556                 : RetCC_PPC);
7557 }
7558 
7559 SDValue
7560 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7561                                bool isVarArg,
7562                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7563                                const SmallVectorImpl<SDValue> &OutVals,
7564                                const SDLoc &dl, SelectionDAG &DAG) const {
7565   SmallVector<CCValAssign, 16> RVLocs;
7566   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7567                  *DAG.getContext());
7568   CCInfo.AnalyzeReturn(Outs,
7569                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7570                            ? RetCC_PPC_Cold
7571                            : RetCC_PPC);
7572 
7573   SDValue Flag;
7574   SmallVector<SDValue, 4> RetOps(1, Chain);
7575 
7576   // Copy the result values into the output registers.
7577   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7578     CCValAssign &VA = RVLocs[i];
7579     assert(VA.isRegLoc() && "Can only return in registers!");
7580 
7581     SDValue Arg = OutVals[RealResIdx];
7582 
7583     switch (VA.getLocInfo()) {
7584     default: llvm_unreachable("Unknown loc info!");
7585     case CCValAssign::Full: break;
7586     case CCValAssign::AExt:
7587       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7588       break;
7589     case CCValAssign::ZExt:
7590       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7591       break;
7592     case CCValAssign::SExt:
7593       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7594       break;
7595     }
7596     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7597       bool isLittleEndian = Subtarget.isLittleEndian();
7598       // Legalize ret f64 -> ret 2 x i32.
7599       SDValue SVal =
7600           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7601                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7602       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7603       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7604       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7605                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7606       Flag = Chain.getValue(1);
7607       VA = RVLocs[++i]; // skip ahead to next loc
7608       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7609     } else
7610       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7611     Flag = Chain.getValue(1);
7612     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7613   }
7614 
7615   RetOps[0] = Chain;  // Update chain.
7616 
7617   // Add the flag if we have it.
7618   if (Flag.getNode())
7619     RetOps.push_back(Flag);
7620 
7621   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7622 }
7623 
7624 SDValue
7625 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7626                                                 SelectionDAG &DAG) const {
7627   SDLoc dl(Op);
7628 
7629   // Get the correct type for integers.
7630   EVT IntVT = Op.getValueType();
7631 
7632   // Get the inputs.
7633   SDValue Chain = Op.getOperand(0);
7634   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7635   // Build a DYNAREAOFFSET node.
7636   SDValue Ops[2] = {Chain, FPSIdx};
7637   SDVTList VTs = DAG.getVTList(IntVT);
7638   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7639 }
7640 
7641 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7642                                              SelectionDAG &DAG) const {
7643   // When we pop the dynamic allocation we need to restore the SP link.
7644   SDLoc dl(Op);
7645 
7646   // Get the correct type for pointers.
7647   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7648 
7649   // Construct the stack pointer operand.
7650   bool isPPC64 = Subtarget.isPPC64();
7651   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7652   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7653 
7654   // Get the operands for the STACKRESTORE.
7655   SDValue Chain = Op.getOperand(0);
7656   SDValue SaveSP = Op.getOperand(1);
7657 
7658   // Load the old link SP.
7659   SDValue LoadLinkSP =
7660       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7661 
7662   // Restore the stack pointer.
7663   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7664 
7665   // Store the old link SP.
7666   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7667 }
7668 
7669 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7670   MachineFunction &MF = DAG.getMachineFunction();
7671   bool isPPC64 = Subtarget.isPPC64();
7672   EVT PtrVT = getPointerTy(MF.getDataLayout());
7673 
7674   // Get current frame pointer save index.  The users of this index will be
7675   // primarily DYNALLOC instructions.
7676   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7677   int RASI = FI->getReturnAddrSaveIndex();
7678 
7679   // If the frame pointer save index hasn't been defined yet.
7680   if (!RASI) {
7681     // Find out what the fix offset of the frame pointer save area.
7682     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7683     // Allocate the frame index for frame pointer save area.
7684     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7685     // Save the result.
7686     FI->setReturnAddrSaveIndex(RASI);
7687   }
7688   return DAG.getFrameIndex(RASI, PtrVT);
7689 }
7690 
7691 SDValue
7692 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7693   MachineFunction &MF = DAG.getMachineFunction();
7694   bool isPPC64 = Subtarget.isPPC64();
7695   EVT PtrVT = getPointerTy(MF.getDataLayout());
7696 
7697   // Get current frame pointer save index.  The users of this index will be
7698   // primarily DYNALLOC instructions.
7699   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7700   int FPSI = FI->getFramePointerSaveIndex();
7701 
7702   // If the frame pointer save index hasn't been defined yet.
7703   if (!FPSI) {
7704     // Find out what the fix offset of the frame pointer save area.
7705     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7706     // Allocate the frame index for frame pointer save area.
7707     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7708     // Save the result.
7709     FI->setFramePointerSaveIndex(FPSI);
7710   }
7711   return DAG.getFrameIndex(FPSI, PtrVT);
7712 }
7713 
7714 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7715                                                    SelectionDAG &DAG) const {
7716   MachineFunction &MF = DAG.getMachineFunction();
7717   // Get the inputs.
7718   SDValue Chain = Op.getOperand(0);
7719   SDValue Size  = Op.getOperand(1);
7720   SDLoc dl(Op);
7721 
7722   // Get the correct type for pointers.
7723   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7724   // Negate the size.
7725   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7726                                 DAG.getConstant(0, dl, PtrVT), Size);
7727   // Construct a node for the frame pointer save index.
7728   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7729   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7730   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7731   if (hasInlineStackProbe(MF))
7732     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7733   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7734 }
7735 
7736 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7737                                                      SelectionDAG &DAG) const {
7738   MachineFunction &MF = DAG.getMachineFunction();
7739 
7740   bool isPPC64 = Subtarget.isPPC64();
7741   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7742 
7743   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7744   return DAG.getFrameIndex(FI, PtrVT);
7745 }
7746 
7747 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7748                                                SelectionDAG &DAG) const {
7749   SDLoc DL(Op);
7750   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7751                      DAG.getVTList(MVT::i32, MVT::Other),
7752                      Op.getOperand(0), Op.getOperand(1));
7753 }
7754 
7755 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7756                                                 SelectionDAG &DAG) const {
7757   SDLoc DL(Op);
7758   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7759                      Op.getOperand(0), Op.getOperand(1));
7760 }
7761 
7762 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7763   if (Op.getValueType().isVector())
7764     return LowerVectorLoad(Op, DAG);
7765 
7766   assert(Op.getValueType() == MVT::i1 &&
7767          "Custom lowering only for i1 loads");
7768 
7769   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7770 
7771   SDLoc dl(Op);
7772   LoadSDNode *LD = cast<LoadSDNode>(Op);
7773 
7774   SDValue Chain = LD->getChain();
7775   SDValue BasePtr = LD->getBasePtr();
7776   MachineMemOperand *MMO = LD->getMemOperand();
7777 
7778   SDValue NewLD =
7779       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7780                      BasePtr, MVT::i8, MMO);
7781   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7782 
7783   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7784   return DAG.getMergeValues(Ops, dl);
7785 }
7786 
7787 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7788   if (Op.getOperand(1).getValueType().isVector())
7789     return LowerVectorStore(Op, DAG);
7790 
7791   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7792          "Custom lowering only for i1 stores");
7793 
7794   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7795 
7796   SDLoc dl(Op);
7797   StoreSDNode *ST = cast<StoreSDNode>(Op);
7798 
7799   SDValue Chain = ST->getChain();
7800   SDValue BasePtr = ST->getBasePtr();
7801   SDValue Value = ST->getValue();
7802   MachineMemOperand *MMO = ST->getMemOperand();
7803 
7804   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7805                       Value);
7806   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7807 }
7808 
7809 // FIXME: Remove this once the ANDI glue bug is fixed:
7810 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7811   assert(Op.getValueType() == MVT::i1 &&
7812          "Custom lowering only for i1 results");
7813 
7814   SDLoc DL(Op);
7815   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7816 }
7817 
7818 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7819                                                SelectionDAG &DAG) const {
7820 
7821   // Implements a vector truncate that fits in a vector register as a shuffle.
7822   // We want to legalize vector truncates down to where the source fits in
7823   // a vector register (and target is therefore smaller than vector register
7824   // size).  At that point legalization will try to custom lower the sub-legal
7825   // result and get here - where we can contain the truncate as a single target
7826   // operation.
7827 
7828   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7829   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7830   //
7831   // We will implement it for big-endian ordering as this (where x denotes
7832   // undefined):
7833   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7834   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7835   //
7836   // The same operation in little-endian ordering will be:
7837   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7838   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7839 
7840   EVT TrgVT = Op.getValueType();
7841   assert(TrgVT.isVector() && "Vector type expected.");
7842   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7843   EVT EltVT = TrgVT.getVectorElementType();
7844   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7845       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7846       !isPowerOf2_32(EltVT.getSizeInBits()))
7847     return SDValue();
7848 
7849   SDValue N1 = Op.getOperand(0);
7850   EVT SrcVT = N1.getValueType();
7851   unsigned SrcSize = SrcVT.getSizeInBits();
7852   if (SrcSize > 256 ||
7853       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7854       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7855     return SDValue();
7856   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7857     return SDValue();
7858 
7859   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7860   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7861 
7862   SDLoc DL(Op);
7863   SDValue Op1, Op2;
7864   if (SrcSize == 256) {
7865     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7866     EVT SplitVT =
7867         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7868     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7869     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7870                       DAG.getConstant(0, DL, VecIdxTy));
7871     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7872                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7873   }
7874   else {
7875     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7876     Op2 = DAG.getUNDEF(WideVT);
7877   }
7878 
7879   // First list the elements we want to keep.
7880   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7881   SmallVector<int, 16> ShuffV;
7882   if (Subtarget.isLittleEndian())
7883     for (unsigned i = 0; i < TrgNumElts; ++i)
7884       ShuffV.push_back(i * SizeMult);
7885   else
7886     for (unsigned i = 1; i <= TrgNumElts; ++i)
7887       ShuffV.push_back(i * SizeMult - 1);
7888 
7889   // Populate the remaining elements with undefs.
7890   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7891     // ShuffV.push_back(i + WideNumElts);
7892     ShuffV.push_back(WideNumElts + 1);
7893 
7894   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7895   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7896   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7897 }
7898 
7899 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7900 /// possible.
7901 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7902   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7903   EVT ResVT = Op.getValueType();
7904   EVT CmpVT = Op.getOperand(0).getValueType();
7905   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7906   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7907   SDLoc dl(Op);
7908 
7909   // Without power9-vector, we don't have native instruction for f128 comparison.
7910   // Following transformation to libcall is needed for setcc:
7911   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7912   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7913     SDValue Z = DAG.getSetCC(
7914         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7915         LHS, RHS, CC);
7916     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7917     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7918   }
7919 
7920   // Not FP, or using SPE? Not a fsel.
7921   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7922       Subtarget.hasSPE())
7923     return Op;
7924 
7925   SDNodeFlags Flags = Op.getNode()->getFlags();
7926 
7927   // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the
7928   // presence of infinities.
7929   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7930     switch (CC) {
7931     default:
7932       break;
7933     case ISD::SETOGT:
7934     case ISD::SETGT:
7935       return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS);
7936     case ISD::SETOLT:
7937     case ISD::SETLT:
7938       return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS);
7939     }
7940   }
7941 
7942   // We might be able to do better than this under some circumstances, but in
7943   // general, fsel-based lowering of select is a finite-math-only optimization.
7944   // For more information, see section F.3 of the 2.06 ISA specification.
7945   // With ISA 3.0
7946   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7947       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7948     return Op;
7949 
7950   // If the RHS of the comparison is a 0.0, we don't need to do the
7951   // subtraction at all.
7952   SDValue Sel1;
7953   if (isFloatingPointZero(RHS))
7954     switch (CC) {
7955     default: break;       // SETUO etc aren't handled by fsel.
7956     case ISD::SETNE:
7957       std::swap(TV, FV);
7958       [[fallthrough]];
7959     case ISD::SETEQ:
7960       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7961         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7962       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7963       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7964         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7965       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7966                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7967     case ISD::SETULT:
7968     case ISD::SETLT:
7969       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7970       [[fallthrough]];
7971     case ISD::SETOGE:
7972     case ISD::SETGE:
7973       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7974         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7975       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7976     case ISD::SETUGT:
7977     case ISD::SETGT:
7978       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7979       [[fallthrough]];
7980     case ISD::SETOLE:
7981     case ISD::SETLE:
7982       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7983         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7984       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7985                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7986     }
7987 
7988   SDValue Cmp;
7989   switch (CC) {
7990   default: break;       // SETUO etc aren't handled by fsel.
7991   case ISD::SETNE:
7992     std::swap(TV, FV);
7993     [[fallthrough]];
7994   case ISD::SETEQ:
7995     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7996     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7997       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7998     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7999     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8000       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8001     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8002                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8003   case ISD::SETULT:
8004   case ISD::SETLT:
8005     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8006     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8007       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8008     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8009   case ISD::SETOGE:
8010   case ISD::SETGE:
8011     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8012     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8013       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8014     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8015   case ISD::SETUGT:
8016   case ISD::SETGT:
8017     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8018     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8019       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8020     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8021   case ISD::SETOLE:
8022   case ISD::SETLE:
8023     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8024     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8025       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8026     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8027   }
8028   return Op;
8029 }
8030 
8031 static unsigned getPPCStrictOpcode(unsigned Opc) {
8032   switch (Opc) {
8033   default:
8034     llvm_unreachable("No strict version of this opcode!");
8035   case PPCISD::FCTIDZ:
8036     return PPCISD::STRICT_FCTIDZ;
8037   case PPCISD::FCTIWZ:
8038     return PPCISD::STRICT_FCTIWZ;
8039   case PPCISD::FCTIDUZ:
8040     return PPCISD::STRICT_FCTIDUZ;
8041   case PPCISD::FCTIWUZ:
8042     return PPCISD::STRICT_FCTIWUZ;
8043   case PPCISD::FCFID:
8044     return PPCISD::STRICT_FCFID;
8045   case PPCISD::FCFIDU:
8046     return PPCISD::STRICT_FCFIDU;
8047   case PPCISD::FCFIDS:
8048     return PPCISD::STRICT_FCFIDS;
8049   case PPCISD::FCFIDUS:
8050     return PPCISD::STRICT_FCFIDUS;
8051   }
8052 }
8053 
8054 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8055                               const PPCSubtarget &Subtarget) {
8056   SDLoc dl(Op);
8057   bool IsStrict = Op->isStrictFPOpcode();
8058   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8059                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8060 
8061   // TODO: Any other flags to propagate?
8062   SDNodeFlags Flags;
8063   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8064 
8065   // For strict nodes, source is the second operand.
8066   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8067   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8068   assert(Src.getValueType().isFloatingPoint());
8069   if (Src.getValueType() == MVT::f32) {
8070     if (IsStrict) {
8071       Src =
8072           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8073                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8074       Chain = Src.getValue(1);
8075     } else
8076       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8077   }
8078   SDValue Conv;
8079   unsigned Opc = ISD::DELETED_NODE;
8080   switch (Op.getSimpleValueType().SimpleTy) {
8081   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8082   case MVT::i32:
8083     Opc = IsSigned ? PPCISD::FCTIWZ
8084                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8085     break;
8086   case MVT::i64:
8087     assert((IsSigned || Subtarget.hasFPCVT()) &&
8088            "i64 FP_TO_UINT is supported only with FPCVT");
8089     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8090   }
8091   if (IsStrict) {
8092     Opc = getPPCStrictOpcode(Opc);
8093     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8094                        {Chain, Src}, Flags);
8095   } else {
8096     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8097   }
8098   return Conv;
8099 }
8100 
8101 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8102                                                SelectionDAG &DAG,
8103                                                const SDLoc &dl) const {
8104   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8105   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8106                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8107   bool IsStrict = Op->isStrictFPOpcode();
8108 
8109   // Convert the FP value to an int value through memory.
8110   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8111                   (IsSigned || Subtarget.hasFPCVT());
8112   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8113   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8114   MachinePointerInfo MPI =
8115       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8116 
8117   // Emit a store to the stack slot.
8118   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8119   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8120   if (i32Stack) {
8121     MachineFunction &MF = DAG.getMachineFunction();
8122     Alignment = Align(4);
8123     MachineMemOperand *MMO =
8124         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8125     SDValue Ops[] = { Chain, Tmp, FIPtr };
8126     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8127               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8128   } else
8129     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8130 
8131   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8132   // add in a bias on big endian.
8133   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8134     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8135                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8136     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8137   }
8138 
8139   RLI.Chain = Chain;
8140   RLI.Ptr = FIPtr;
8141   RLI.MPI = MPI;
8142   RLI.Alignment = Alignment;
8143 }
8144 
8145 /// Custom lowers floating point to integer conversions to use
8146 /// the direct move instructions available in ISA 2.07 to avoid the
8147 /// need for load/store combinations.
8148 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8149                                                     SelectionDAG &DAG,
8150                                                     const SDLoc &dl) const {
8151   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8152   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8153   if (Op->isStrictFPOpcode())
8154     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8155   else
8156     return Mov;
8157 }
8158 
8159 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8160                                           const SDLoc &dl) const {
8161   bool IsStrict = Op->isStrictFPOpcode();
8162   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8163                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8164   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8165   EVT SrcVT = Src.getValueType();
8166   EVT DstVT = Op.getValueType();
8167 
8168   // FP to INT conversions are legal for f128.
8169   if (SrcVT == MVT::f128)
8170     return Subtarget.hasP9Vector() ? Op : SDValue();
8171 
8172   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8173   // PPC (the libcall is not available).
8174   if (SrcVT == MVT::ppcf128) {
8175     if (DstVT == MVT::i32) {
8176       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8177       // set other fast-math flags to FP operations in both strict and
8178       // non-strict cases. (FP_TO_SINT, FSUB)
8179       SDNodeFlags Flags;
8180       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8181 
8182       if (IsSigned) {
8183         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8184                                  DAG.getIntPtrConstant(0, dl));
8185         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8186                                  DAG.getIntPtrConstant(1, dl));
8187 
8188         // Add the two halves of the long double in round-to-zero mode, and use
8189         // a smaller FP_TO_SINT.
8190         if (IsStrict) {
8191           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8192                                     DAG.getVTList(MVT::f64, MVT::Other),
8193                                     {Op.getOperand(0), Lo, Hi}, Flags);
8194           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8195                              DAG.getVTList(MVT::i32, MVT::Other),
8196                              {Res.getValue(1), Res}, Flags);
8197         } else {
8198           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8199           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8200         }
8201       } else {
8202         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8203         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8204         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8205         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8206         if (IsStrict) {
8207           // Sel = Src < 0x80000000
8208           // FltOfs = select Sel, 0.0, 0x80000000
8209           // IntOfs = select Sel, 0, 0x80000000
8210           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8211           SDValue Chain = Op.getOperand(0);
8212           EVT SetCCVT =
8213               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8214           EVT DstSetCCVT =
8215               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8216           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8217                                      Chain, true);
8218           Chain = Sel.getValue(1);
8219 
8220           SDValue FltOfs = DAG.getSelect(
8221               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8222           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8223 
8224           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8225                                     DAG.getVTList(SrcVT, MVT::Other),
8226                                     {Chain, Src, FltOfs}, Flags);
8227           Chain = Val.getValue(1);
8228           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8229                                      DAG.getVTList(DstVT, MVT::Other),
8230                                      {Chain, Val}, Flags);
8231           Chain = SInt.getValue(1);
8232           SDValue IntOfs = DAG.getSelect(
8233               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8234           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8235           return DAG.getMergeValues({Result, Chain}, dl);
8236         } else {
8237           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8238           // FIXME: generated code sucks.
8239           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8240           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8241           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8242           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8243           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8244         }
8245       }
8246     }
8247 
8248     return SDValue();
8249   }
8250 
8251   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8252     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8253 
8254   ReuseLoadInfo RLI;
8255   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8256 
8257   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8258                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8259 }
8260 
8261 // We're trying to insert a regular store, S, and then a load, L. If the
8262 // incoming value, O, is a load, we might just be able to have our load use the
8263 // address used by O. However, we don't know if anything else will store to
8264 // that address before we can load from it. To prevent this situation, we need
8265 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8266 // the same chain operand as O, we create a token factor from the chain results
8267 // of O and L, and we replace all uses of O's chain result with that token
8268 // factor (see spliceIntoChain below for this last part).
8269 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8270                                             ReuseLoadInfo &RLI,
8271                                             SelectionDAG &DAG,
8272                                             ISD::LoadExtType ET) const {
8273   // Conservatively skip reusing for constrained FP nodes.
8274   if (Op->isStrictFPOpcode())
8275     return false;
8276 
8277   SDLoc dl(Op);
8278   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8279                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8280   if (ET == ISD::NON_EXTLOAD &&
8281       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8282       isOperationLegalOrCustom(Op.getOpcode(),
8283                                Op.getOperand(0).getValueType())) {
8284 
8285     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8286     return true;
8287   }
8288 
8289   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8290   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8291       LD->isNonTemporal())
8292     return false;
8293   if (LD->getMemoryVT() != MemVT)
8294     return false;
8295 
8296   // If the result of the load is an illegal type, then we can't build a
8297   // valid chain for reuse since the legalised loads and token factor node that
8298   // ties the legalised loads together uses a different output chain then the
8299   // illegal load.
8300   if (!isTypeLegal(LD->getValueType(0)))
8301     return false;
8302 
8303   RLI.Ptr = LD->getBasePtr();
8304   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8305     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8306            "Non-pre-inc AM on PPC?");
8307     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8308                           LD->getOffset());
8309   }
8310 
8311   RLI.Chain = LD->getChain();
8312   RLI.MPI = LD->getPointerInfo();
8313   RLI.IsDereferenceable = LD->isDereferenceable();
8314   RLI.IsInvariant = LD->isInvariant();
8315   RLI.Alignment = LD->getAlign();
8316   RLI.AAInfo = LD->getAAInfo();
8317   RLI.Ranges = LD->getRanges();
8318 
8319   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8320   return true;
8321 }
8322 
8323 // Given the head of the old chain, ResChain, insert a token factor containing
8324 // it and NewResChain, and make users of ResChain now be users of that token
8325 // factor.
8326 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8327 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8328                                         SDValue NewResChain,
8329                                         SelectionDAG &DAG) const {
8330   if (!ResChain)
8331     return;
8332 
8333   SDLoc dl(NewResChain);
8334 
8335   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8336                            NewResChain, DAG.getUNDEF(MVT::Other));
8337   assert(TF.getNode() != NewResChain.getNode() &&
8338          "A new TF really is required here");
8339 
8340   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8341   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8342 }
8343 
8344 /// Analyze profitability of direct move
8345 /// prefer float load to int load plus direct move
8346 /// when there is no integer use of int load
8347 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8348   SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode();
8349   if (Origin->getOpcode() != ISD::LOAD)
8350     return true;
8351 
8352   // If there is no LXSIBZX/LXSIHZX, like Power8,
8353   // prefer direct move if the memory size is 1 or 2 bytes.
8354   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8355   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8356     return true;
8357 
8358   for (SDNode::use_iterator UI = Origin->use_begin(),
8359                             UE = Origin->use_end();
8360        UI != UE; ++UI) {
8361 
8362     // Only look at the users of the loaded value.
8363     if (UI.getUse().get().getResNo() != 0)
8364       continue;
8365 
8366     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8367         UI->getOpcode() != ISD::UINT_TO_FP &&
8368         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8369         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8370       return true;
8371   }
8372 
8373   return false;
8374 }
8375 
8376 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8377                               const PPCSubtarget &Subtarget,
8378                               SDValue Chain = SDValue()) {
8379   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8380                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8381   SDLoc dl(Op);
8382 
8383   // TODO: Any other flags to propagate?
8384   SDNodeFlags Flags;
8385   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8386 
8387   // If we have FCFIDS, then use it when converting to single-precision.
8388   // Otherwise, convert to double-precision and then round.
8389   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8390   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8391                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8392   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8393   if (Op->isStrictFPOpcode()) {
8394     if (!Chain)
8395       Chain = Op.getOperand(0);
8396     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8397                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8398   } else
8399     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8400 }
8401 
8402 /// Custom lowers integer to floating point conversions to use
8403 /// the direct move instructions available in ISA 2.07 to avoid the
8404 /// need for load/store combinations.
8405 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8406                                                     SelectionDAG &DAG,
8407                                                     const SDLoc &dl) const {
8408   assert((Op.getValueType() == MVT::f32 ||
8409           Op.getValueType() == MVT::f64) &&
8410          "Invalid floating point type as target of conversion");
8411   assert(Subtarget.hasFPCVT() &&
8412          "Int to FP conversions with direct moves require FPCVT");
8413   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8414   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8415   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8416                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8417   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8418   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8419   return convertIntToFP(Op, Mov, DAG, Subtarget);
8420 }
8421 
8422 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8423 
8424   EVT VecVT = Vec.getValueType();
8425   assert(VecVT.isVector() && "Expected a vector type.");
8426   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8427 
8428   EVT EltVT = VecVT.getVectorElementType();
8429   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8430   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8431 
8432   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8433   SmallVector<SDValue, 16> Ops(NumConcat);
8434   Ops[0] = Vec;
8435   SDValue UndefVec = DAG.getUNDEF(VecVT);
8436   for (unsigned i = 1; i < NumConcat; ++i)
8437     Ops[i] = UndefVec;
8438 
8439   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8440 }
8441 
8442 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8443                                                 const SDLoc &dl) const {
8444   bool IsStrict = Op->isStrictFPOpcode();
8445   unsigned Opc = Op.getOpcode();
8446   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8447   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8448           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8449          "Unexpected conversion type");
8450   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8451          "Supports conversions to v2f64/v4f32 only.");
8452 
8453   // TODO: Any other flags to propagate?
8454   SDNodeFlags Flags;
8455   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8456 
8457   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8458   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8459 
8460   SDValue Wide = widenVec(DAG, Src, dl);
8461   EVT WideVT = Wide.getValueType();
8462   unsigned WideNumElts = WideVT.getVectorNumElements();
8463   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8464 
8465   SmallVector<int, 16> ShuffV;
8466   for (unsigned i = 0; i < WideNumElts; ++i)
8467     ShuffV.push_back(i + WideNumElts);
8468 
8469   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8470   int SaveElts = FourEltRes ? 4 : 2;
8471   if (Subtarget.isLittleEndian())
8472     for (int i = 0; i < SaveElts; i++)
8473       ShuffV[i * Stride] = i;
8474   else
8475     for (int i = 1; i <= SaveElts; i++)
8476       ShuffV[i * Stride - 1] = i - 1;
8477 
8478   SDValue ShuffleSrc2 =
8479       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8480   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8481 
8482   SDValue Extend;
8483   if (SignedConv) {
8484     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8485     EVT ExtVT = Src.getValueType();
8486     if (Subtarget.hasP9Altivec())
8487       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8488                                IntermediateVT.getVectorNumElements());
8489 
8490     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8491                          DAG.getValueType(ExtVT));
8492   } else
8493     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8494 
8495   if (IsStrict)
8496     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8497                        {Op.getOperand(0), Extend}, Flags);
8498 
8499   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8500 }
8501 
8502 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8503                                           SelectionDAG &DAG) const {
8504   SDLoc dl(Op);
8505   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8506                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8507   bool IsStrict = Op->isStrictFPOpcode();
8508   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8509   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8510 
8511   // TODO: Any other flags to propagate?
8512   SDNodeFlags Flags;
8513   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8514 
8515   EVT InVT = Src.getValueType();
8516   EVT OutVT = Op.getValueType();
8517   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8518       isOperationCustom(Op.getOpcode(), InVT))
8519     return LowerINT_TO_FPVector(Op, DAG, dl);
8520 
8521   // Conversions to f128 are legal.
8522   if (Op.getValueType() == MVT::f128)
8523     return Subtarget.hasP9Vector() ? Op : SDValue();
8524 
8525   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8526   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8527     return SDValue();
8528 
8529   if (Src.getValueType() == MVT::i1) {
8530     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8531                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8532                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8533     if (IsStrict)
8534       return DAG.getMergeValues({Sel, Chain}, dl);
8535     else
8536       return Sel;
8537   }
8538 
8539   // If we have direct moves, we can do all the conversion, skip the store/load
8540   // however, without FPCVT we can't do most conversions.
8541   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8542       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8543     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8544 
8545   assert((IsSigned || Subtarget.hasFPCVT()) &&
8546          "UINT_TO_FP is supported only with FPCVT");
8547 
8548   if (Src.getValueType() == MVT::i64) {
8549     SDValue SINT = Src;
8550     // When converting to single-precision, we actually need to convert
8551     // to double-precision first and then round to single-precision.
8552     // To avoid double-rounding effects during that operation, we have
8553     // to prepare the input operand.  Bits that might be truncated when
8554     // converting to double-precision are replaced by a bit that won't
8555     // be lost at this stage, but is below the single-precision rounding
8556     // position.
8557     //
8558     // However, if -enable-unsafe-fp-math is in effect, accept double
8559     // rounding to avoid the extra overhead.
8560     if (Op.getValueType() == MVT::f32 &&
8561         !Subtarget.hasFPCVT() &&
8562         !DAG.getTarget().Options.UnsafeFPMath) {
8563 
8564       // Twiddle input to make sure the low 11 bits are zero.  (If this
8565       // is the case, we are guaranteed the value will fit into the 53 bit
8566       // mantissa of an IEEE double-precision value without rounding.)
8567       // If any of those low 11 bits were not zero originally, make sure
8568       // bit 12 (value 2048) is set instead, so that the final rounding
8569       // to single-precision gets the correct result.
8570       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8571                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8572       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8573                           Round, DAG.getConstant(2047, dl, MVT::i64));
8574       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8575       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8576                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8577 
8578       // However, we cannot use that value unconditionally: if the magnitude
8579       // of the input value is small, the bit-twiddling we did above might
8580       // end up visibly changing the output.  Fortunately, in that case, we
8581       // don't need to twiddle bits since the original input will convert
8582       // exactly to double-precision floating-point already.  Therefore,
8583       // construct a conditional to use the original value if the top 11
8584       // bits are all sign-bit copies, and use the rounded value computed
8585       // above otherwise.
8586       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8587                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8588       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8589                          Cond, DAG.getConstant(1, dl, MVT::i64));
8590       Cond = DAG.getSetCC(
8591           dl,
8592           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8593           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8594 
8595       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8596     }
8597 
8598     ReuseLoadInfo RLI;
8599     SDValue Bits;
8600 
8601     MachineFunction &MF = DAG.getMachineFunction();
8602     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8603       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8604                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8605       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8606     } else if (Subtarget.hasLFIWAX() &&
8607                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8608       MachineMemOperand *MMO =
8609         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8610                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8611       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8612       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8613                                      DAG.getVTList(MVT::f64, MVT::Other),
8614                                      Ops, MVT::i32, MMO);
8615       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8616     } else if (Subtarget.hasFPCVT() &&
8617                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8618       MachineMemOperand *MMO =
8619         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8620                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8621       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8622       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8623                                      DAG.getVTList(MVT::f64, MVT::Other),
8624                                      Ops, MVT::i32, MMO);
8625       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8626     } else if (((Subtarget.hasLFIWAX() &&
8627                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8628                 (Subtarget.hasFPCVT() &&
8629                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8630                SINT.getOperand(0).getValueType() == MVT::i32) {
8631       MachineFrameInfo &MFI = MF.getFrameInfo();
8632       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8633 
8634       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8635       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8636 
8637       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8638                                    MachinePointerInfo::getFixedStack(
8639                                        DAG.getMachineFunction(), FrameIdx));
8640       Chain = Store;
8641 
8642       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8643              "Expected an i32 store");
8644 
8645       RLI.Ptr = FIdx;
8646       RLI.Chain = Chain;
8647       RLI.MPI =
8648           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8649       RLI.Alignment = Align(4);
8650 
8651       MachineMemOperand *MMO =
8652         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8653                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8654       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8655       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8656                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8657                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8658                                      Ops, MVT::i32, MMO);
8659       Chain = Bits.getValue(1);
8660     } else
8661       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8662 
8663     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8664     if (IsStrict)
8665       Chain = FP.getValue(1);
8666 
8667     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8668       if (IsStrict)
8669         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8670                          DAG.getVTList(MVT::f32, MVT::Other),
8671                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8672       else
8673         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8674                          DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
8675     }
8676     return FP;
8677   }
8678 
8679   assert(Src.getValueType() == MVT::i32 &&
8680          "Unhandled INT_TO_FP type in custom expander!");
8681   // Since we only generate this in 64-bit mode, we can take advantage of
8682   // 64-bit registers.  In particular, sign extend the input value into the
8683   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8684   // then lfd it and fcfid it.
8685   MachineFunction &MF = DAG.getMachineFunction();
8686   MachineFrameInfo &MFI = MF.getFrameInfo();
8687   EVT PtrVT = getPointerTy(MF.getDataLayout());
8688 
8689   SDValue Ld;
8690   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8691     ReuseLoadInfo RLI;
8692     bool ReusingLoad;
8693     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8694       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8695       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8696 
8697       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8698                                    MachinePointerInfo::getFixedStack(
8699                                        DAG.getMachineFunction(), FrameIdx));
8700       Chain = Store;
8701 
8702       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8703              "Expected an i32 store");
8704 
8705       RLI.Ptr = FIdx;
8706       RLI.Chain = Chain;
8707       RLI.MPI =
8708           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8709       RLI.Alignment = Align(4);
8710     }
8711 
8712     MachineMemOperand *MMO =
8713       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8714                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8715     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8716     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8717                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8718                                  MVT::i32, MMO);
8719     Chain = Ld.getValue(1);
8720     if (ReusingLoad)
8721       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8722   } else {
8723     assert(Subtarget.isPPC64() &&
8724            "i32->FP without LFIWAX supported only on PPC64");
8725 
8726     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8727     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8728 
8729     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8730 
8731     // STD the extended value into the stack slot.
8732     SDValue Store = DAG.getStore(
8733         Chain, dl, Ext64, FIdx,
8734         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8735     Chain = Store;
8736 
8737     // Load the value as a double.
8738     Ld = DAG.getLoad(
8739         MVT::f64, dl, Chain, FIdx,
8740         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8741     Chain = Ld.getValue(1);
8742   }
8743 
8744   // FCFID it and return it.
8745   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8746   if (IsStrict)
8747     Chain = FP.getValue(1);
8748   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8749     if (IsStrict)
8750       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8751                        DAG.getVTList(MVT::f32, MVT::Other),
8752                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8753     else
8754       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8755                        DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
8756   }
8757   return FP;
8758 }
8759 
8760 SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op,
8761                                              SelectionDAG &DAG) const {
8762   SDLoc dl(Op);
8763   /*
8764    The rounding mode is in bits 30:31 of FPSR, and has the following
8765    settings:
8766      00 Round to nearest
8767      01 Round to 0
8768      10 Round to +inf
8769      11 Round to -inf
8770 
8771   GET_ROUNDING, on the other hand, expects the following:
8772     -1 Undefined
8773      0 Round to 0
8774      1 Round to nearest
8775      2 Round to +inf
8776      3 Round to -inf
8777 
8778   To perform the conversion, we do:
8779     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8780   */
8781 
8782   MachineFunction &MF = DAG.getMachineFunction();
8783   EVT VT = Op.getValueType();
8784   EVT PtrVT = getPointerTy(MF.getDataLayout());
8785 
8786   // Save FP Control Word to register
8787   SDValue Chain = Op.getOperand(0);
8788   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8789   Chain = MFFS.getValue(1);
8790 
8791   SDValue CWD;
8792   if (isTypeLegal(MVT::i64)) {
8793     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8794                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8795   } else {
8796     // Save FP register to stack slot
8797     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8798     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8799     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8800 
8801     // Load FP Control Word from low 32 bits of stack slot.
8802     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8803            "Stack slot adjustment is valid only on big endian subtargets!");
8804     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8805     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8806     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8807     Chain = CWD.getValue(1);
8808   }
8809 
8810   // Transform as necessary
8811   SDValue CWD1 =
8812     DAG.getNode(ISD::AND, dl, MVT::i32,
8813                 CWD, DAG.getConstant(3, dl, MVT::i32));
8814   SDValue CWD2 =
8815     DAG.getNode(ISD::SRL, dl, MVT::i32,
8816                 DAG.getNode(ISD::AND, dl, MVT::i32,
8817                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8818                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8819                             DAG.getConstant(3, dl, MVT::i32)),
8820                 DAG.getConstant(1, dl, MVT::i32));
8821 
8822   SDValue RetVal =
8823     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8824 
8825   RetVal =
8826       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8827                   dl, VT, RetVal);
8828 
8829   return DAG.getMergeValues({RetVal, Chain}, dl);
8830 }
8831 
8832 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8833   EVT VT = Op.getValueType();
8834   unsigned BitWidth = VT.getSizeInBits();
8835   SDLoc dl(Op);
8836   assert(Op.getNumOperands() == 3 &&
8837          VT == Op.getOperand(1).getValueType() &&
8838          "Unexpected SHL!");
8839 
8840   // Expand into a bunch of logical ops.  Note that these ops
8841   // depend on the PPC behavior for oversized shift amounts.
8842   SDValue Lo = Op.getOperand(0);
8843   SDValue Hi = Op.getOperand(1);
8844   SDValue Amt = Op.getOperand(2);
8845   EVT AmtVT = Amt.getValueType();
8846 
8847   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8848                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8849   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8850   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8851   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8852   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8853                              DAG.getConstant(-BitWidth, dl, AmtVT));
8854   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8855   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8856   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8857   SDValue OutOps[] = { OutLo, OutHi };
8858   return DAG.getMergeValues(OutOps, dl);
8859 }
8860 
8861 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8862   EVT VT = Op.getValueType();
8863   SDLoc dl(Op);
8864   unsigned BitWidth = VT.getSizeInBits();
8865   assert(Op.getNumOperands() == 3 &&
8866          VT == Op.getOperand(1).getValueType() &&
8867          "Unexpected SRL!");
8868 
8869   // Expand into a bunch of logical ops.  Note that these ops
8870   // depend on the PPC behavior for oversized shift amounts.
8871   SDValue Lo = Op.getOperand(0);
8872   SDValue Hi = Op.getOperand(1);
8873   SDValue Amt = Op.getOperand(2);
8874   EVT AmtVT = Amt.getValueType();
8875 
8876   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8877                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8878   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8879   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8880   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8881   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8882                              DAG.getConstant(-BitWidth, dl, AmtVT));
8883   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8884   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8885   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8886   SDValue OutOps[] = { OutLo, OutHi };
8887   return DAG.getMergeValues(OutOps, dl);
8888 }
8889 
8890 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8891   SDLoc dl(Op);
8892   EVT VT = Op.getValueType();
8893   unsigned BitWidth = VT.getSizeInBits();
8894   assert(Op.getNumOperands() == 3 &&
8895          VT == Op.getOperand(1).getValueType() &&
8896          "Unexpected SRA!");
8897 
8898   // Expand into a bunch of logical ops, followed by a select_cc.
8899   SDValue Lo = Op.getOperand(0);
8900   SDValue Hi = Op.getOperand(1);
8901   SDValue Amt = Op.getOperand(2);
8902   EVT AmtVT = Amt.getValueType();
8903 
8904   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8905                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8906   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8907   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8908   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8909   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8910                              DAG.getConstant(-BitWidth, dl, AmtVT));
8911   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8912   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8913   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8914                                   Tmp4, Tmp6, ISD::SETLE);
8915   SDValue OutOps[] = { OutLo, OutHi };
8916   return DAG.getMergeValues(OutOps, dl);
8917 }
8918 
8919 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8920                                             SelectionDAG &DAG) const {
8921   SDLoc dl(Op);
8922   EVT VT = Op.getValueType();
8923   unsigned BitWidth = VT.getSizeInBits();
8924 
8925   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8926   SDValue X = Op.getOperand(0);
8927   SDValue Y = Op.getOperand(1);
8928   SDValue Z = Op.getOperand(2);
8929   EVT AmtVT = Z.getValueType();
8930 
8931   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8932   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8933   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8934   // on PowerPC shift by BW being well defined.
8935   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8936                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8937   SDValue SubZ =
8938       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8939   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8940   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8941   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8942 }
8943 
8944 //===----------------------------------------------------------------------===//
8945 // Vector related lowering.
8946 //
8947 
8948 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8949 /// element size of SplatSize. Cast the result to VT.
8950 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8951                                       SelectionDAG &DAG, const SDLoc &dl) {
8952   static const MVT VTys[] = { // canonical VT to use for each size.
8953     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8954   };
8955 
8956   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8957 
8958   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8959   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8960     SplatSize = 1;
8961     Val = 0xFF;
8962   }
8963 
8964   EVT CanonicalVT = VTys[SplatSize-1];
8965 
8966   // Build a canonical splat for this value.
8967   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8968 }
8969 
8970 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8971 /// specified intrinsic ID.
8972 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8973                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8974   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8975   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8976                      DAG.getConstant(IID, dl, MVT::i32), Op);
8977 }
8978 
8979 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8980 /// specified intrinsic ID.
8981 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8982                                 SelectionDAG &DAG, const SDLoc &dl,
8983                                 EVT DestVT = MVT::Other) {
8984   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8985   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8986                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8987 }
8988 
8989 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8990 /// specified intrinsic ID.
8991 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8992                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8993                                 EVT DestVT = MVT::Other) {
8994   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8995   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8996                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8997 }
8998 
8999 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9000 /// amount.  The result has the specified value type.
9001 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9002                            SelectionDAG &DAG, const SDLoc &dl) {
9003   // Force LHS/RHS to be the right type.
9004   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9005   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9006 
9007   int Ops[16];
9008   for (unsigned i = 0; i != 16; ++i)
9009     Ops[i] = i + Amt;
9010   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9011   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9012 }
9013 
9014 /// Do we have an efficient pattern in a .td file for this node?
9015 ///
9016 /// \param V - pointer to the BuildVectorSDNode being matched
9017 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9018 ///
9019 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9020 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9021 /// the opposite is true (expansion is beneficial) are:
9022 /// - The node builds a vector out of integers that are not 32 or 64-bits
9023 /// - The node builds a vector out of constants
9024 /// - The node is a "load-and-splat"
9025 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9026 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9027                                             bool HasDirectMove,
9028                                             bool HasP8Vector) {
9029   EVT VecVT = V->getValueType(0);
9030   bool RightType = VecVT == MVT::v2f64 ||
9031     (HasP8Vector && VecVT == MVT::v4f32) ||
9032     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9033   if (!RightType)
9034     return false;
9035 
9036   bool IsSplat = true;
9037   bool IsLoad = false;
9038   SDValue Op0 = V->getOperand(0);
9039 
9040   // This function is called in a block that confirms the node is not a constant
9041   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9042   // different constants.
9043   if (V->isConstant())
9044     return false;
9045   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9046     if (V->getOperand(i).isUndef())
9047       return false;
9048     // We want to expand nodes that represent load-and-splat even if the
9049     // loaded value is a floating point truncation or conversion to int.
9050     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9051         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9052          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9053         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9054          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9055         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9056          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9057       IsLoad = true;
9058     // If the operands are different or the input is not a load and has more
9059     // uses than just this BV node, then it isn't a splat.
9060     if (V->getOperand(i) != Op0 ||
9061         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9062       IsSplat = false;
9063   }
9064   return !(IsSplat && IsLoad);
9065 }
9066 
9067 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9068 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9069 
9070   SDLoc dl(Op);
9071   SDValue Op0 = Op->getOperand(0);
9072 
9073   if ((Op.getValueType() != MVT::f128) ||
9074       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9075       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9076       (Op0.getOperand(1).getValueType() != MVT::i64))
9077     return SDValue();
9078 
9079   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9080                      Op0.getOperand(1));
9081 }
9082 
9083 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9084   const SDValue *InputLoad = &Op;
9085   while (InputLoad->getOpcode() == ISD::BITCAST)
9086     InputLoad = &InputLoad->getOperand(0);
9087   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9088       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9089     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9090     InputLoad = &InputLoad->getOperand(0);
9091   }
9092   if (InputLoad->getOpcode() != ISD::LOAD)
9093     return nullptr;
9094   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9095   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9096 }
9097 
9098 // Convert the argument APFloat to a single precision APFloat if there is no
9099 // loss in information during the conversion to single precision APFloat and the
9100 // resulting number is not a denormal number. Return true if successful.
9101 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9102   APFloat APFloatToConvert = ArgAPFloat;
9103   bool LosesInfo = true;
9104   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9105                            &LosesInfo);
9106   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9107   if (Success)
9108     ArgAPFloat = APFloatToConvert;
9109   return Success;
9110 }
9111 
9112 // Bitcast the argument APInt to a double and convert it to a single precision
9113 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9114 // argument if there is no loss in information during the conversion from
9115 // double to single precision APFloat and the resulting number is not a denormal
9116 // number. Return true if successful.
9117 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9118   double DpValue = ArgAPInt.bitsToDouble();
9119   APFloat APFloatDp(DpValue);
9120   bool Success = convertToNonDenormSingle(APFloatDp);
9121   if (Success)
9122     ArgAPInt = APFloatDp.bitcastToAPInt();
9123   return Success;
9124 }
9125 
9126 // Nondestructive check for convertTonNonDenormSingle.
9127 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9128   // Only convert if it loses info, since XXSPLTIDP should
9129   // handle the other case.
9130   APFloat APFloatToConvert = ArgAPFloat;
9131   bool LosesInfo = true;
9132   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9133                            &LosesInfo);
9134 
9135   return (!LosesInfo && !APFloatToConvert.isDenormal());
9136 }
9137 
9138 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9139                              unsigned &Opcode) {
9140   LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0));
9141   if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode))
9142     return false;
9143 
9144   EVT Ty = Op->getValueType(0);
9145   // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending
9146   // as we cannot handle extending loads for these types.
9147   if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9148       ISD::isNON_EXTLoad(InputNode))
9149     return true;
9150 
9151   EVT MemVT = InputNode->getMemoryVT();
9152   // For v8i16 and v16i8 types, extending loads can be handled as long as the
9153   // memory VT is the same vector element VT type.
9154   // The loads feeding into the v8i16 and v16i8 types will be extending because
9155   // scalar i8/i16 are not legal types.
9156   if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) &&
9157       (MemVT == Ty.getVectorElementType()))
9158     return true;
9159 
9160   if (Ty == MVT::v2i64) {
9161     // Check the extend type, when the input type is i32, and the output vector
9162     // type is v2i64.
9163     if (MemVT == MVT::i32) {
9164       if (ISD::isZEXTLoad(InputNode))
9165         Opcode = PPCISD::ZEXT_LD_SPLAT;
9166       if (ISD::isSEXTLoad(InputNode))
9167         Opcode = PPCISD::SEXT_LD_SPLAT;
9168     }
9169     return true;
9170   }
9171   return false;
9172 }
9173 
9174 // If this is a case we can't handle, return null and let the default
9175 // expansion code take care of it.  If we CAN select this case, and if it
9176 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9177 // this case more efficiently than a constant pool load, lower it to the
9178 // sequence of ops that should be used.
9179 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9180                                              SelectionDAG &DAG) const {
9181   SDLoc dl(Op);
9182   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9183   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9184 
9185   // Check if this is a splat of a constant value.
9186   APInt APSplatBits, APSplatUndef;
9187   unsigned SplatBitSize;
9188   bool HasAnyUndefs;
9189   bool BVNIsConstantSplat =
9190       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9191                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9192 
9193   // If it is a splat of a double, check if we can shrink it to a 32 bit
9194   // non-denormal float which when converted back to double gives us the same
9195   // double. This is to exploit the XXSPLTIDP instruction.
9196   // If we lose precision, we use XXSPLTI32DX.
9197   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9198       Subtarget.hasPrefixInstrs()) {
9199     // Check the type first to short-circuit so we don't modify APSplatBits if
9200     // this block isn't executed.
9201     if ((Op->getValueType(0) == MVT::v2f64) &&
9202         convertToNonDenormSingle(APSplatBits)) {
9203       SDValue SplatNode = DAG.getNode(
9204           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9205           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9206       return DAG.getBitcast(Op.getValueType(), SplatNode);
9207     } else {
9208       // We may lose precision, so we have to use XXSPLTI32DX.
9209 
9210       uint32_t Hi =
9211           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9212       uint32_t Lo =
9213           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9214       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9215 
9216       if (!Hi || !Lo)
9217         // If either load is 0, then we should generate XXLXOR to set to 0.
9218         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9219 
9220       if (Hi)
9221         SplatNode = DAG.getNode(
9222             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9223             DAG.getTargetConstant(0, dl, MVT::i32),
9224             DAG.getTargetConstant(Hi, dl, MVT::i32));
9225 
9226       if (Lo)
9227         SplatNode =
9228             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9229                         DAG.getTargetConstant(1, dl, MVT::i32),
9230                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9231 
9232       return DAG.getBitcast(Op.getValueType(), SplatNode);
9233     }
9234   }
9235 
9236   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9237     unsigned NewOpcode = PPCISD::LD_SPLAT;
9238 
9239     // Handle load-and-splat patterns as we have instructions that will do this
9240     // in one go.
9241     if (DAG.isSplatValue(Op, true) &&
9242         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9243       const SDValue *InputLoad = &Op.getOperand(0);
9244       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9245 
9246       // If the input load is an extending load, it will be an i32 -> i64
9247       // extending load and isValidSplatLoad() will update NewOpcode.
9248       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9249       unsigned ElementSize =
9250           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9251 
9252       assert(((ElementSize == 2 * MemorySize)
9253                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9254                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9255                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9256              "Unmatched element size and opcode!\n");
9257 
9258       // Checking for a single use of this load, we have to check for vector
9259       // width (128 bits) / ElementSize uses (since each operand of the
9260       // BUILD_VECTOR is a separate use of the value.
9261       unsigned NumUsesOfInputLD = 128 / ElementSize;
9262       for (SDValue BVInOp : Op->ops())
9263         if (BVInOp.isUndef())
9264           NumUsesOfInputLD--;
9265 
9266       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9267       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9268       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9269       // 15", but funciton IsValidSplatLoad() now will only return true when
9270       // the data at index 0 is not nullptr. So we will not get into trouble for
9271       // these cases.
9272       //
9273       // case 1 - lfiwzx/lfiwax
9274       // 1.1: load result is i32 and is sign/zero extend to i64;
9275       // 1.2: build a v2i64 vector type with above loaded value;
9276       // 1.3: the vector has only one value at index 0, others are all undef;
9277       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9278       if (NumUsesOfInputLD == 1 &&
9279           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9280            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9281            Subtarget.hasLFIWAX()))
9282         return SDValue();
9283 
9284       // case 2 - lxvr[hb]x
9285       // 2.1: load result is at most i16;
9286       // 2.2: build a vector with above loaded value;
9287       // 2.3: the vector has only one value at index 0, others are all undef;
9288       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9289       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9290           Subtarget.isISA3_1() && ElementSize <= 16)
9291         return SDValue();
9292 
9293       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9294       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9295           Subtarget.hasVSX()) {
9296         SDValue Ops[] = {
9297           LD->getChain(),    // Chain
9298           LD->getBasePtr(),  // Ptr
9299           DAG.getValueType(Op.getValueType()) // VT
9300         };
9301         SDValue LdSplt = DAG.getMemIntrinsicNode(
9302             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9303             LD->getMemoryVT(), LD->getMemOperand());
9304         // Replace all uses of the output chain of the original load with the
9305         // output chain of the new load.
9306         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9307                                       LdSplt.getValue(1));
9308         return LdSplt;
9309       }
9310     }
9311 
9312     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9313     // 32-bits can be lowered to VSX instructions under certain conditions.
9314     // Without VSX, there is no pattern more efficient than expanding the node.
9315     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9316         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9317                                         Subtarget.hasP8Vector()))
9318       return Op;
9319     return SDValue();
9320   }
9321 
9322   uint64_t SplatBits = APSplatBits.getZExtValue();
9323   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9324   unsigned SplatSize = SplatBitSize / 8;
9325 
9326   // First, handle single instruction cases.
9327 
9328   // All zeros?
9329   if (SplatBits == 0) {
9330     // Canonicalize all zero vectors to be v4i32.
9331     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9332       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9333       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9334     }
9335     return Op;
9336   }
9337 
9338   // We have XXSPLTIW for constant splats four bytes wide.
9339   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9340   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9341   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9342   // turned into a 4-byte splat of 0xABABABAB.
9343   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9344     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9345                                   Op.getValueType(), DAG, dl);
9346 
9347   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9348     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9349                                   dl);
9350 
9351   // We have XXSPLTIB for constant splats one byte wide.
9352   if (Subtarget.hasP9Vector() && SplatSize == 1)
9353     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9354                                   dl);
9355 
9356   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9357   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9358                     (32-SplatBitSize));
9359   if (SextVal >= -16 && SextVal <= 15)
9360     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9361                                   dl);
9362 
9363   // Two instruction sequences.
9364 
9365   // If this value is in the range [-32,30] and is even, use:
9366   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9367   // If this value is in the range [17,31] and is odd, use:
9368   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9369   // If this value is in the range [-31,-17] and is odd, use:
9370   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9371   // Note the last two are three-instruction sequences.
9372   if (SextVal >= -32 && SextVal <= 31) {
9373     // To avoid having these optimizations undone by constant folding,
9374     // we convert to a pseudo that will be expanded later into one of
9375     // the above forms.
9376     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9377     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9378               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9379     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9380     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9381     if (VT == Op.getValueType())
9382       return RetVal;
9383     else
9384       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9385   }
9386 
9387   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9388   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9389   // for fneg/fabs.
9390   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9391     // Make -1 and vspltisw -1:
9392     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9393 
9394     // Make the VSLW intrinsic, computing 0x8000_0000.
9395     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9396                                    OnesV, DAG, dl);
9397 
9398     // xor by OnesV to invert it.
9399     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9400     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9401   }
9402 
9403   // Check to see if this is a wide variety of vsplti*, binop self cases.
9404   static const signed char SplatCsts[] = {
9405     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9406     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9407   };
9408 
9409   for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) {
9410     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9411     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9412     int i = SplatCsts[idx];
9413 
9414     // Figure out what shift amount will be used by altivec if shifted by i in
9415     // this splat size.
9416     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9417 
9418     // vsplti + shl self.
9419     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9420       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9421       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9422         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9423         Intrinsic::ppc_altivec_vslw
9424       };
9425       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9426       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9427     }
9428 
9429     // vsplti + srl self.
9430     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9431       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9432       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9433         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9434         Intrinsic::ppc_altivec_vsrw
9435       };
9436       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9437       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9438     }
9439 
9440     // vsplti + rol self.
9441     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9442                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9443       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9444       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9445         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9446         Intrinsic::ppc_altivec_vrlw
9447       };
9448       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9449       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9450     }
9451 
9452     // t = vsplti c, result = vsldoi t, t, 1
9453     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9454       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9455       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9456       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9457     }
9458     // t = vsplti c, result = vsldoi t, t, 2
9459     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9460       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9461       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9462       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9463     }
9464     // t = vsplti c, result = vsldoi t, t, 3
9465     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9466       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9467       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9468       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9469     }
9470   }
9471 
9472   return SDValue();
9473 }
9474 
9475 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9476 /// the specified operations to build the shuffle.
9477 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9478                                       SDValue RHS, SelectionDAG &DAG,
9479                                       const SDLoc &dl) {
9480   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9481   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9482   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9483 
9484   enum {
9485     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9486     OP_VMRGHW,
9487     OP_VMRGLW,
9488     OP_VSPLTISW0,
9489     OP_VSPLTISW1,
9490     OP_VSPLTISW2,
9491     OP_VSPLTISW3,
9492     OP_VSLDOI4,
9493     OP_VSLDOI8,
9494     OP_VSLDOI12
9495   };
9496 
9497   if (OpNum == OP_COPY) {
9498     if (LHSID == (1*9+2)*9+3) return LHS;
9499     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9500     return RHS;
9501   }
9502 
9503   SDValue OpLHS, OpRHS;
9504   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9505   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9506 
9507   int ShufIdxs[16];
9508   switch (OpNum) {
9509   default: llvm_unreachable("Unknown i32 permute!");
9510   case OP_VMRGHW:
9511     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9512     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9513     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9514     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9515     break;
9516   case OP_VMRGLW:
9517     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9518     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9519     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9520     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9521     break;
9522   case OP_VSPLTISW0:
9523     for (unsigned i = 0; i != 16; ++i)
9524       ShufIdxs[i] = (i&3)+0;
9525     break;
9526   case OP_VSPLTISW1:
9527     for (unsigned i = 0; i != 16; ++i)
9528       ShufIdxs[i] = (i&3)+4;
9529     break;
9530   case OP_VSPLTISW2:
9531     for (unsigned i = 0; i != 16; ++i)
9532       ShufIdxs[i] = (i&3)+8;
9533     break;
9534   case OP_VSPLTISW3:
9535     for (unsigned i = 0; i != 16; ++i)
9536       ShufIdxs[i] = (i&3)+12;
9537     break;
9538   case OP_VSLDOI4:
9539     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9540   case OP_VSLDOI8:
9541     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9542   case OP_VSLDOI12:
9543     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9544   }
9545   EVT VT = OpLHS.getValueType();
9546   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9547   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9548   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9549   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9550 }
9551 
9552 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9553 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9554 /// SDValue.
9555 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9556                                            SelectionDAG &DAG) const {
9557   const unsigned BytesInVector = 16;
9558   bool IsLE = Subtarget.isLittleEndian();
9559   SDLoc dl(N);
9560   SDValue V1 = N->getOperand(0);
9561   SDValue V2 = N->getOperand(1);
9562   unsigned ShiftElts = 0, InsertAtByte = 0;
9563   bool Swap = false;
9564 
9565   // Shifts required to get the byte we want at element 7.
9566   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9567                                    0, 15, 14, 13, 12, 11, 10, 9};
9568   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9569                                 1, 2,  3,  4,  5,  6,  7,  8};
9570 
9571   ArrayRef<int> Mask = N->getMask();
9572   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9573 
9574   // For each mask element, find out if we're just inserting something
9575   // from V2 into V1 or vice versa.
9576   // Possible permutations inserting an element from V2 into V1:
9577   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9578   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9579   //   ...
9580   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9581   // Inserting from V1 into V2 will be similar, except mask range will be
9582   // [16,31].
9583 
9584   bool FoundCandidate = false;
9585   // If both vector operands for the shuffle are the same vector, the mask
9586   // will contain only elements from the first one and the second one will be
9587   // undef.
9588   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9589   // Go through the mask of half-words to find an element that's being moved
9590   // from one vector to the other.
9591   for (unsigned i = 0; i < BytesInVector; ++i) {
9592     unsigned CurrentElement = Mask[i];
9593     // If 2nd operand is undefined, we should only look for element 7 in the
9594     // Mask.
9595     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9596       continue;
9597 
9598     bool OtherElementsInOrder = true;
9599     // Examine the other elements in the Mask to see if they're in original
9600     // order.
9601     for (unsigned j = 0; j < BytesInVector; ++j) {
9602       if (j == i)
9603         continue;
9604       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9605       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9606       // in which we always assume we're always picking from the 1st operand.
9607       int MaskOffset =
9608           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9609       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9610         OtherElementsInOrder = false;
9611         break;
9612       }
9613     }
9614     // If other elements are in original order, we record the number of shifts
9615     // we need to get the element we want into element 7. Also record which byte
9616     // in the vector we should insert into.
9617     if (OtherElementsInOrder) {
9618       // If 2nd operand is undefined, we assume no shifts and no swapping.
9619       if (V2.isUndef()) {
9620         ShiftElts = 0;
9621         Swap = false;
9622       } else {
9623         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9624         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9625                          : BigEndianShifts[CurrentElement & 0xF];
9626         Swap = CurrentElement < BytesInVector;
9627       }
9628       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9629       FoundCandidate = true;
9630       break;
9631     }
9632   }
9633 
9634   if (!FoundCandidate)
9635     return SDValue();
9636 
9637   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9638   // optionally with VECSHL if shift is required.
9639   if (Swap)
9640     std::swap(V1, V2);
9641   if (V2.isUndef())
9642     V2 = V1;
9643   if (ShiftElts) {
9644     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9645                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9646     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9647                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9648   }
9649   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9650                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9651 }
9652 
9653 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9654 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9655 /// SDValue.
9656 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9657                                            SelectionDAG &DAG) const {
9658   const unsigned NumHalfWords = 8;
9659   const unsigned BytesInVector = NumHalfWords * 2;
9660   // Check that the shuffle is on half-words.
9661   if (!isNByteElemShuffleMask(N, 2, 1))
9662     return SDValue();
9663 
9664   bool IsLE = Subtarget.isLittleEndian();
9665   SDLoc dl(N);
9666   SDValue V1 = N->getOperand(0);
9667   SDValue V2 = N->getOperand(1);
9668   unsigned ShiftElts = 0, InsertAtByte = 0;
9669   bool Swap = false;
9670 
9671   // Shifts required to get the half-word we want at element 3.
9672   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9673   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9674 
9675   uint32_t Mask = 0;
9676   uint32_t OriginalOrderLow = 0x1234567;
9677   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9678   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9679   // 32-bit space, only need 4-bit nibbles per element.
9680   for (unsigned i = 0; i < NumHalfWords; ++i) {
9681     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9682     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9683   }
9684 
9685   // For each mask element, find out if we're just inserting something
9686   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9687   // from V2 into V1:
9688   //   X, 1, 2, 3, 4, 5, 6, 7
9689   //   0, X, 2, 3, 4, 5, 6, 7
9690   //   0, 1, X, 3, 4, 5, 6, 7
9691   //   0, 1, 2, X, 4, 5, 6, 7
9692   //   0, 1, 2, 3, X, 5, 6, 7
9693   //   0, 1, 2, 3, 4, X, 6, 7
9694   //   0, 1, 2, 3, 4, 5, X, 7
9695   //   0, 1, 2, 3, 4, 5, 6, X
9696   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9697 
9698   bool FoundCandidate = false;
9699   // Go through the mask of half-words to find an element that's being moved
9700   // from one vector to the other.
9701   for (unsigned i = 0; i < NumHalfWords; ++i) {
9702     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9703     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9704     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9705     uint32_t TargetOrder = 0x0;
9706 
9707     // If both vector operands for the shuffle are the same vector, the mask
9708     // will contain only elements from the first one and the second one will be
9709     // undef.
9710     if (V2.isUndef()) {
9711       ShiftElts = 0;
9712       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9713       TargetOrder = OriginalOrderLow;
9714       Swap = false;
9715       // Skip if not the correct element or mask of other elements don't equal
9716       // to our expected order.
9717       if (MaskOneElt == VINSERTHSrcElem &&
9718           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9719         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9720         FoundCandidate = true;
9721         break;
9722       }
9723     } else { // If both operands are defined.
9724       // Target order is [8,15] if the current mask is between [0,7].
9725       TargetOrder =
9726           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9727       // Skip if mask of other elements don't equal our expected order.
9728       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9729         // We only need the last 3 bits for the number of shifts.
9730         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9731                          : BigEndianShifts[MaskOneElt & 0x7];
9732         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9733         Swap = MaskOneElt < NumHalfWords;
9734         FoundCandidate = true;
9735         break;
9736       }
9737     }
9738   }
9739 
9740   if (!FoundCandidate)
9741     return SDValue();
9742 
9743   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9744   // optionally with VECSHL if shift is required.
9745   if (Swap)
9746     std::swap(V1, V2);
9747   if (V2.isUndef())
9748     V2 = V1;
9749   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9750   if (ShiftElts) {
9751     // Double ShiftElts because we're left shifting on v16i8 type.
9752     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9753                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9754     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9755     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9756                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9757     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9758   }
9759   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9760   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9761                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9762   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9763 }
9764 
9765 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9766 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9767 /// return the default SDValue.
9768 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9769                                               SelectionDAG &DAG) const {
9770   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9771   // to v16i8. Peek through the bitcasts to get the actual operands.
9772   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9773   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9774 
9775   auto ShuffleMask = SVN->getMask();
9776   SDValue VecShuffle(SVN, 0);
9777   SDLoc DL(SVN);
9778 
9779   // Check that we have a four byte shuffle.
9780   if (!isNByteElemShuffleMask(SVN, 4, 1))
9781     return SDValue();
9782 
9783   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9784   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9785     std::swap(LHS, RHS);
9786     VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN));
9787     ShuffleVectorSDNode *CommutedSV = dyn_cast<ShuffleVectorSDNode>(VecShuffle);
9788     if (!CommutedSV)
9789       return SDValue();
9790     ShuffleMask = CommutedSV->getMask();
9791   }
9792 
9793   // Ensure that the RHS is a vector of constants.
9794   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9795   if (!BVN)
9796     return SDValue();
9797 
9798   // Check if RHS is a splat of 4-bytes (or smaller).
9799   APInt APSplatValue, APSplatUndef;
9800   unsigned SplatBitSize;
9801   bool HasAnyUndefs;
9802   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9803                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9804       SplatBitSize > 32)
9805     return SDValue();
9806 
9807   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9808   // The instruction splats a constant C into two words of the source vector
9809   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9810   // Thus we check that the shuffle mask is the equivalent  of
9811   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9812   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9813   // within each word are consecutive, so we only need to check the first byte.
9814   SDValue Index;
9815   bool IsLE = Subtarget.isLittleEndian();
9816   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9817       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9818        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9819     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9820   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9821            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9822             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9823     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9824   else
9825     return SDValue();
9826 
9827   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9828   // for XXSPLTI32DX.
9829   unsigned SplatVal = APSplatValue.getZExtValue();
9830   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9831     SplatVal |= (SplatVal << SplatBitSize);
9832 
9833   SDValue SplatNode = DAG.getNode(
9834       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9835       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9836   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9837 }
9838 
9839 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9840 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9841 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9842 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9843 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9844   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9845   assert(Op.getValueType() == MVT::v1i128 &&
9846          "Only set v1i128 as custom, other type shouldn't reach here!");
9847   SDLoc dl(Op);
9848   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9849   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9850   unsigned SHLAmt = N1.getConstantOperandVal(0);
9851   if (SHLAmt % 8 == 0) {
9852     std::array<int, 16> Mask;
9853     std::iota(Mask.begin(), Mask.end(), 0);
9854     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9855     if (SDValue Shuffle =
9856             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9857                                  DAG.getUNDEF(MVT::v16i8), Mask))
9858       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9859   }
9860   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9861   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9862                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9863   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9864                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9865   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9866   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9867 }
9868 
9869 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9870 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9871 /// return the code it can be lowered into.  Worst case, it can always be
9872 /// lowered into a vperm.
9873 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9874                                                SelectionDAG &DAG) const {
9875   SDLoc dl(Op);
9876   SDValue V1 = Op.getOperand(0);
9877   SDValue V2 = Op.getOperand(1);
9878   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9879 
9880   // Any nodes that were combined in the target-independent combiner prior
9881   // to vector legalization will not be sent to the target combine. Try to
9882   // combine it here.
9883   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9884     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9885       return NewShuffle;
9886     Op = NewShuffle;
9887     SVOp = cast<ShuffleVectorSDNode>(Op);
9888     V1 = Op.getOperand(0);
9889     V2 = Op.getOperand(1);
9890   }
9891   EVT VT = Op.getValueType();
9892   bool isLittleEndian = Subtarget.isLittleEndian();
9893 
9894   unsigned ShiftElts, InsertAtByte;
9895   bool Swap = false;
9896 
9897   // If this is a load-and-splat, we can do that with a single instruction
9898   // in some cases. However if the load has multiple uses, we don't want to
9899   // combine it because that will just produce multiple loads.
9900   bool IsPermutedLoad = false;
9901   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9902   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9903       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9904       InputLoad->hasOneUse()) {
9905     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9906     int SplatIdx =
9907       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9908 
9909     // The splat index for permuted loads will be in the left half of the vector
9910     // which is strictly wider than the loaded value by 8 bytes. So we need to
9911     // adjust the splat index to point to the correct address in memory.
9912     if (IsPermutedLoad) {
9913       assert((isLittleEndian || IsFourByte) &&
9914              "Unexpected size for permuted load on big endian target");
9915       SplatIdx += IsFourByte ? 2 : 1;
9916       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9917              "Splat of a value outside of the loaded memory");
9918     }
9919 
9920     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9921     // For 4-byte load-and-splat, we need Power9.
9922     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9923       uint64_t Offset = 0;
9924       if (IsFourByte)
9925         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9926       else
9927         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9928 
9929       // If the width of the load is the same as the width of the splat,
9930       // loading with an offset would load the wrong memory.
9931       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9932         Offset = 0;
9933 
9934       SDValue BasePtr = LD->getBasePtr();
9935       if (Offset != 0)
9936         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9937                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9938       SDValue Ops[] = {
9939         LD->getChain(),    // Chain
9940         BasePtr,           // BasePtr
9941         DAG.getValueType(Op.getValueType()) // VT
9942       };
9943       SDVTList VTL =
9944         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9945       SDValue LdSplt =
9946         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9947                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9948       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9949       if (LdSplt.getValueType() != SVOp->getValueType(0))
9950         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9951       return LdSplt;
9952     }
9953   }
9954 
9955   // All v2i64 and v2f64 shuffles are legal
9956   if (VT == MVT::v2i64 || VT == MVT::v2f64)
9957     return Op;
9958 
9959   if (Subtarget.hasP9Vector() &&
9960       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9961                            isLittleEndian)) {
9962     if (Swap)
9963       std::swap(V1, V2);
9964     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9965     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9966     if (ShiftElts) {
9967       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9968                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9969       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9970                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9971       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9972     }
9973     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9974                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9975     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9976   }
9977 
9978   if (Subtarget.hasPrefixInstrs()) {
9979     SDValue SplatInsertNode;
9980     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9981       return SplatInsertNode;
9982   }
9983 
9984   if (Subtarget.hasP9Altivec()) {
9985     SDValue NewISDNode;
9986     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9987       return NewISDNode;
9988 
9989     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9990       return NewISDNode;
9991   }
9992 
9993   if (Subtarget.hasVSX() &&
9994       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9995     if (Swap)
9996       std::swap(V1, V2);
9997     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9998     SDValue Conv2 =
9999         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
10000 
10001     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
10002                               DAG.getConstant(ShiftElts, dl, MVT::i32));
10003     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
10004   }
10005 
10006   if (Subtarget.hasVSX() &&
10007     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
10008     if (Swap)
10009       std::swap(V1, V2);
10010     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10011     SDValue Conv2 =
10012         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
10013 
10014     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
10015                               DAG.getConstant(ShiftElts, dl, MVT::i32));
10016     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
10017   }
10018 
10019   if (Subtarget.hasP9Vector()) {
10020      if (PPC::isXXBRHShuffleMask(SVOp)) {
10021       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10022       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
10023       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
10024     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
10025       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10026       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
10027       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
10028     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
10029       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10030       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
10031       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
10032     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
10033       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
10034       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
10035       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
10036     }
10037   }
10038 
10039   if (Subtarget.hasVSX()) {
10040     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
10041       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
10042 
10043       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10044       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
10045                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
10046       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
10047     }
10048 
10049     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10050     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10051       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10052       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10053       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10054     }
10055   }
10056 
10057   // Cases that are handled by instructions that take permute immediates
10058   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10059   // selected by the instruction selector.
10060   if (V2.isUndef()) {
10061     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10062         PPC::isSplatShuffleMask(SVOp, 2) ||
10063         PPC::isSplatShuffleMask(SVOp, 4) ||
10064         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10065         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10066         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10067         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10068         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10069         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10070         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10071         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10072         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10073         (Subtarget.hasP8Altivec() && (
10074          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10075          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10076          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10077       return Op;
10078     }
10079   }
10080 
10081   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10082   // and produce a fixed permutation.  If any of these match, do not lower to
10083   // VPERM.
10084   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10085   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10086       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10087       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10088       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10089       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10090       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10091       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10092       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10093       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10094       (Subtarget.hasP8Altivec() && (
10095        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10096        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10097        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10098     return Op;
10099 
10100   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10101   // perfect shuffle table to emit an optimal matching sequence.
10102   ArrayRef<int> PermMask = SVOp->getMask();
10103 
10104   if (!DisablePerfectShuffle && !isLittleEndian) {
10105     unsigned PFIndexes[4];
10106     bool isFourElementShuffle = true;
10107     for (unsigned i = 0; i != 4 && isFourElementShuffle;
10108          ++i) {                           // Element number
10109       unsigned EltNo = 8;                 // Start out undef.
10110       for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
10111         if (PermMask[i * 4 + j] < 0)
10112           continue; // Undef, ignore it.
10113 
10114         unsigned ByteSource = PermMask[i * 4 + j];
10115         if ((ByteSource & 3) != j) {
10116           isFourElementShuffle = false;
10117           break;
10118         }
10119 
10120         if (EltNo == 8) {
10121           EltNo = ByteSource / 4;
10122         } else if (EltNo != ByteSource / 4) {
10123           isFourElementShuffle = false;
10124           break;
10125         }
10126       }
10127       PFIndexes[i] = EltNo;
10128     }
10129 
10130     // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10131     // perfect shuffle vector to determine if it is cost effective to do this as
10132     // discrete instructions, or whether we should use a vperm.
10133     // For now, we skip this for little endian until such time as we have a
10134     // little-endian perfect shuffle table.
10135     if (isFourElementShuffle) {
10136       // Compute the index in the perfect shuffle table.
10137       unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
10138                               PFIndexes[2] * 9 + PFIndexes[3];
10139 
10140       unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10141       unsigned Cost = (PFEntry >> 30);
10142 
10143       // Determining when to avoid vperm is tricky.  Many things affect the cost
10144       // of vperm, particularly how many times the perm mask needs to be
10145       // computed. For example, if the perm mask can be hoisted out of a loop or
10146       // is already used (perhaps because there are multiple permutes with the
10147       // same shuffle mask?) the vperm has a cost of 1.  OTOH, hoisting the
10148       // permute mask out of the loop requires an extra register.
10149       //
10150       // As a compromise, we only emit discrete instructions if the shuffle can
10151       // be generated in 3 or fewer operations.  When we have loop information
10152       // available, if this block is within a loop, we should avoid using vperm
10153       // for 3-operation perms and use a constant pool load instead.
10154       if (Cost < 3)
10155         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10156     }
10157   }
10158 
10159   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10160   // vector that will get spilled to the constant pool.
10161   if (V2.isUndef()) V2 = V1;
10162 
10163   return LowerVPERM(Op, DAG, PermMask, VT, V1, V2);
10164 }
10165 
10166 SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG,
10167                                       ArrayRef<int> PermMask, EVT VT,
10168                                       SDValue V1, SDValue V2) const {
10169   unsigned Opcode = PPCISD::VPERM;
10170   EVT ValType = V1.getValueType();
10171   SDLoc dl(Op);
10172   bool NeedSwap = false;
10173   bool isLittleEndian = Subtarget.isLittleEndian();
10174   bool isPPC64 = Subtarget.isPPC64();
10175 
10176   // Only need to place items backwards in LE,
10177   // the mask will be properly calculated.
10178   if (isLittleEndian)
10179     std::swap(V1, V2);
10180 
10181   if (Subtarget.isISA3_0() && (V1->hasOneUse() || V2->hasOneUse())) {
10182     LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using "
10183                          "XXPERM instead\n");
10184     Opcode = PPCISD::XXPERM;
10185 
10186     // if V2 is dead, then we swap V1 and V2 so we can
10187     // use V2 as the destination instead.
10188     if (!V1->hasOneUse() && V2->hasOneUse()) {
10189       std::swap(V1, V2);
10190       NeedSwap = !NeedSwap;
10191     }
10192   }
10193 
10194   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10195   // that it is in input element units, not in bytes.  Convert now.
10196 
10197   // For little endian, the order of the input vectors is reversed, and
10198   // the permutation mask is complemented with respect to 31.  This is
10199   // necessary to produce proper semantics with the big-endian-based vperm
10200   // instruction.
10201   EVT EltVT = V1.getValueType().getVectorElementType();
10202   unsigned BytesPerElement = EltVT.getSizeInBits() / 8;
10203 
10204   bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD;
10205   bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD;
10206 
10207   /*
10208   Vectors will be appended like so: [ V1 | v2 ]
10209   XXSWAPD on V1:
10210   [   A   |   B   |   C   |   D   ] -> [   C   |   D   |   A   |   B   ]
10211      0-3     4-7     8-11   12-15         0-3     4-7     8-11   12-15
10212   i.e.  index of A, B += 8, and index of C, D -= 8.
10213   XXSWAPD on V2:
10214   [   E   |   F   |   G   |   H   ] -> [   G   |   H   |   E   |   F   ]
10215     16-19   20-23   24-27   28-31        16-19   20-23   24-27   28-31
10216   i.e.  index of E, F += 8, index of G, H -= 8
10217   Swap V1 and V2:
10218   [   V1   |   V2  ] -> [   V2   |   V1   ]
10219      0-15     16-31        0-15     16-31
10220   i.e.  index of V1 += 16, index of V2 -= 16
10221   */
10222 
10223   SmallVector<SDValue, 16> ResultMask;
10224   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10225     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10226 
10227     if (Opcode == PPCISD::XXPERM) {
10228       if (V1HasXXSWAPD) {
10229         if (SrcElt < 8)
10230           SrcElt += 8;
10231         else if (SrcElt < 16)
10232           SrcElt -= 8;
10233       }
10234       if (V2HasXXSWAPD) {
10235         if (SrcElt > 23)
10236           SrcElt -= 8;
10237         else if (SrcElt > 15)
10238           SrcElt += 8;
10239       }
10240       if (NeedSwap) {
10241         if (SrcElt < 16)
10242           SrcElt += 16;
10243         else
10244           SrcElt -= 16;
10245       }
10246     }
10247 
10248     for (unsigned j = 0; j != BytesPerElement; ++j)
10249       if (isLittleEndian)
10250         ResultMask.push_back(
10251             DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32));
10252       else
10253         ResultMask.push_back(
10254             DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32));
10255   }
10256 
10257   if (Opcode == PPCISD::XXPERM && (V1HasXXSWAPD || V2HasXXSWAPD)) {
10258     if (V1HasXXSWAPD) {
10259       dl = SDLoc(V1->getOperand(0));
10260       V1 = V1->getOperand(0)->getOperand(1);
10261     }
10262     if (V2HasXXSWAPD) {
10263       dl = SDLoc(V2->getOperand(0));
10264       V2 = V2->getOperand(0)->getOperand(1);
10265     }
10266     if (isPPC64 && ValType != MVT::v2f64)
10267       V1 = DAG.getBitcast(MVT::v2f64, V1);
10268     if (isPPC64 && V2.getValueType() != MVT::v2f64)
10269       V2 = DAG.getBitcast(MVT::v2f64, V2);
10270   }
10271 
10272   ShufflesHandledWithVPERM++;
10273   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10274   LLVM_DEBUG({
10275     ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10276     if (Opcode == PPCISD::XXPERM) {
10277       dbgs() << "Emitting a XXPERM for the following shuffle:\n";
10278     } else {
10279       dbgs() << "Emitting a VPERM for the following shuffle:\n";
10280     }
10281     SVOp->dump();
10282     dbgs() << "With the following permute control vector:\n";
10283     VPermMask.dump();
10284   });
10285 
10286   if (Opcode == PPCISD::XXPERM)
10287     VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask);
10288 
10289   SDValue VPERMNode =
10290       DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask);
10291 
10292   VPERMNode = DAG.getBitcast(ValType, VPERMNode);
10293   return VPERMNode;
10294 }
10295 
10296 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10297 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10298 /// information about the intrinsic.
10299 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10300                                  bool &isDot, const PPCSubtarget &Subtarget) {
10301   unsigned IntrinsicID =
10302       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10303   CompareOpc = -1;
10304   isDot = false;
10305   switch (IntrinsicID) {
10306   default:
10307     return false;
10308   // Comparison predicates.
10309   case Intrinsic::ppc_altivec_vcmpbfp_p:
10310     CompareOpc = 966;
10311     isDot = true;
10312     break;
10313   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10314     CompareOpc = 198;
10315     isDot = true;
10316     break;
10317   case Intrinsic::ppc_altivec_vcmpequb_p:
10318     CompareOpc = 6;
10319     isDot = true;
10320     break;
10321   case Intrinsic::ppc_altivec_vcmpequh_p:
10322     CompareOpc = 70;
10323     isDot = true;
10324     break;
10325   case Intrinsic::ppc_altivec_vcmpequw_p:
10326     CompareOpc = 134;
10327     isDot = true;
10328     break;
10329   case Intrinsic::ppc_altivec_vcmpequd_p:
10330     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10331       CompareOpc = 199;
10332       isDot = true;
10333     } else
10334       return false;
10335     break;
10336   case Intrinsic::ppc_altivec_vcmpneb_p:
10337   case Intrinsic::ppc_altivec_vcmpneh_p:
10338   case Intrinsic::ppc_altivec_vcmpnew_p:
10339   case Intrinsic::ppc_altivec_vcmpnezb_p:
10340   case Intrinsic::ppc_altivec_vcmpnezh_p:
10341   case Intrinsic::ppc_altivec_vcmpnezw_p:
10342     if (Subtarget.hasP9Altivec()) {
10343       switch (IntrinsicID) {
10344       default:
10345         llvm_unreachable("Unknown comparison intrinsic.");
10346       case Intrinsic::ppc_altivec_vcmpneb_p:
10347         CompareOpc = 7;
10348         break;
10349       case Intrinsic::ppc_altivec_vcmpneh_p:
10350         CompareOpc = 71;
10351         break;
10352       case Intrinsic::ppc_altivec_vcmpnew_p:
10353         CompareOpc = 135;
10354         break;
10355       case Intrinsic::ppc_altivec_vcmpnezb_p:
10356         CompareOpc = 263;
10357         break;
10358       case Intrinsic::ppc_altivec_vcmpnezh_p:
10359         CompareOpc = 327;
10360         break;
10361       case Intrinsic::ppc_altivec_vcmpnezw_p:
10362         CompareOpc = 391;
10363         break;
10364       }
10365       isDot = true;
10366     } else
10367       return false;
10368     break;
10369   case Intrinsic::ppc_altivec_vcmpgefp_p:
10370     CompareOpc = 454;
10371     isDot = true;
10372     break;
10373   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10374     CompareOpc = 710;
10375     isDot = true;
10376     break;
10377   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10378     CompareOpc = 774;
10379     isDot = true;
10380     break;
10381   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10382     CompareOpc = 838;
10383     isDot = true;
10384     break;
10385   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10386     CompareOpc = 902;
10387     isDot = true;
10388     break;
10389   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10390     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10391       CompareOpc = 967;
10392       isDot = true;
10393     } else
10394       return false;
10395     break;
10396   case Intrinsic::ppc_altivec_vcmpgtub_p:
10397     CompareOpc = 518;
10398     isDot = true;
10399     break;
10400   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10401     CompareOpc = 582;
10402     isDot = true;
10403     break;
10404   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10405     CompareOpc = 646;
10406     isDot = true;
10407     break;
10408   case Intrinsic::ppc_altivec_vcmpgtud_p:
10409     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10410       CompareOpc = 711;
10411       isDot = true;
10412     } else
10413       return false;
10414     break;
10415 
10416   case Intrinsic::ppc_altivec_vcmpequq:
10417   case Intrinsic::ppc_altivec_vcmpgtsq:
10418   case Intrinsic::ppc_altivec_vcmpgtuq:
10419     if (!Subtarget.isISA3_1())
10420       return false;
10421     switch (IntrinsicID) {
10422     default:
10423       llvm_unreachable("Unknown comparison intrinsic.");
10424     case Intrinsic::ppc_altivec_vcmpequq:
10425       CompareOpc = 455;
10426       break;
10427     case Intrinsic::ppc_altivec_vcmpgtsq:
10428       CompareOpc = 903;
10429       break;
10430     case Intrinsic::ppc_altivec_vcmpgtuq:
10431       CompareOpc = 647;
10432       break;
10433     }
10434     break;
10435 
10436   // VSX predicate comparisons use the same infrastructure
10437   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10438   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10439   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10440   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10441   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10442   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10443     if (Subtarget.hasVSX()) {
10444       switch (IntrinsicID) {
10445       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10446         CompareOpc = 99;
10447         break;
10448       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10449         CompareOpc = 115;
10450         break;
10451       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10452         CompareOpc = 107;
10453         break;
10454       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10455         CompareOpc = 67;
10456         break;
10457       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10458         CompareOpc = 83;
10459         break;
10460       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10461         CompareOpc = 75;
10462         break;
10463       }
10464       isDot = true;
10465     } else
10466       return false;
10467     break;
10468 
10469   // Normal Comparisons.
10470   case Intrinsic::ppc_altivec_vcmpbfp:
10471     CompareOpc = 966;
10472     break;
10473   case Intrinsic::ppc_altivec_vcmpeqfp:
10474     CompareOpc = 198;
10475     break;
10476   case Intrinsic::ppc_altivec_vcmpequb:
10477     CompareOpc = 6;
10478     break;
10479   case Intrinsic::ppc_altivec_vcmpequh:
10480     CompareOpc = 70;
10481     break;
10482   case Intrinsic::ppc_altivec_vcmpequw:
10483     CompareOpc = 134;
10484     break;
10485   case Intrinsic::ppc_altivec_vcmpequd:
10486     if (Subtarget.hasP8Altivec())
10487       CompareOpc = 199;
10488     else
10489       return false;
10490     break;
10491   case Intrinsic::ppc_altivec_vcmpneb:
10492   case Intrinsic::ppc_altivec_vcmpneh:
10493   case Intrinsic::ppc_altivec_vcmpnew:
10494   case Intrinsic::ppc_altivec_vcmpnezb:
10495   case Intrinsic::ppc_altivec_vcmpnezh:
10496   case Intrinsic::ppc_altivec_vcmpnezw:
10497     if (Subtarget.hasP9Altivec())
10498       switch (IntrinsicID) {
10499       default:
10500         llvm_unreachable("Unknown comparison intrinsic.");
10501       case Intrinsic::ppc_altivec_vcmpneb:
10502         CompareOpc = 7;
10503         break;
10504       case Intrinsic::ppc_altivec_vcmpneh:
10505         CompareOpc = 71;
10506         break;
10507       case Intrinsic::ppc_altivec_vcmpnew:
10508         CompareOpc = 135;
10509         break;
10510       case Intrinsic::ppc_altivec_vcmpnezb:
10511         CompareOpc = 263;
10512         break;
10513       case Intrinsic::ppc_altivec_vcmpnezh:
10514         CompareOpc = 327;
10515         break;
10516       case Intrinsic::ppc_altivec_vcmpnezw:
10517         CompareOpc = 391;
10518         break;
10519       }
10520     else
10521       return false;
10522     break;
10523   case Intrinsic::ppc_altivec_vcmpgefp:
10524     CompareOpc = 454;
10525     break;
10526   case Intrinsic::ppc_altivec_vcmpgtfp:
10527     CompareOpc = 710;
10528     break;
10529   case Intrinsic::ppc_altivec_vcmpgtsb:
10530     CompareOpc = 774;
10531     break;
10532   case Intrinsic::ppc_altivec_vcmpgtsh:
10533     CompareOpc = 838;
10534     break;
10535   case Intrinsic::ppc_altivec_vcmpgtsw:
10536     CompareOpc = 902;
10537     break;
10538   case Intrinsic::ppc_altivec_vcmpgtsd:
10539     if (Subtarget.hasP8Altivec())
10540       CompareOpc = 967;
10541     else
10542       return false;
10543     break;
10544   case Intrinsic::ppc_altivec_vcmpgtub:
10545     CompareOpc = 518;
10546     break;
10547   case Intrinsic::ppc_altivec_vcmpgtuh:
10548     CompareOpc = 582;
10549     break;
10550   case Intrinsic::ppc_altivec_vcmpgtuw:
10551     CompareOpc = 646;
10552     break;
10553   case Intrinsic::ppc_altivec_vcmpgtud:
10554     if (Subtarget.hasP8Altivec())
10555       CompareOpc = 711;
10556     else
10557       return false;
10558     break;
10559   case Intrinsic::ppc_altivec_vcmpequq_p:
10560   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10561   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10562     if (!Subtarget.isISA3_1())
10563       return false;
10564     switch (IntrinsicID) {
10565     default:
10566       llvm_unreachable("Unknown comparison intrinsic.");
10567     case Intrinsic::ppc_altivec_vcmpequq_p:
10568       CompareOpc = 455;
10569       break;
10570     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10571       CompareOpc = 903;
10572       break;
10573     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10574       CompareOpc = 647;
10575       break;
10576     }
10577     isDot = true;
10578     break;
10579   }
10580   return true;
10581 }
10582 
10583 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10584 /// lower, do it, otherwise return null.
10585 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10586                                                    SelectionDAG &DAG) const {
10587   unsigned IntrinsicID =
10588     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10589 
10590   SDLoc dl(Op);
10591 
10592   switch (IntrinsicID) {
10593   case Intrinsic::thread_pointer:
10594     // Reads the thread pointer register, used for __builtin_thread_pointer.
10595     if (Subtarget.isPPC64())
10596       return DAG.getRegister(PPC::X13, MVT::i64);
10597     return DAG.getRegister(PPC::R2, MVT::i32);
10598 
10599   case Intrinsic::ppc_mma_disassemble_acc: {
10600     if (Subtarget.isISAFuture()) {
10601       EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
10602       SDValue WideVec = SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl,
10603                                                    ArrayRef(ReturnTypes, 2),
10604                                                    Op.getOperand(1)),
10605                                 0);
10606       SmallVector<SDValue, 4> RetOps;
10607       SDValue Value = SDValue(WideVec.getNode(), 0);
10608       SDValue Value2 = SDValue(WideVec.getNode(), 1);
10609 
10610       SDValue Extract;
10611       Extract = DAG.getNode(
10612           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10613           Subtarget.isLittleEndian() ? Value2 : Value,
10614           DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0,
10615                           dl, getPointerTy(DAG.getDataLayout())));
10616       RetOps.push_back(Extract);
10617       Extract = DAG.getNode(
10618           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10619           Subtarget.isLittleEndian() ? Value2 : Value,
10620           DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1,
10621                           dl, getPointerTy(DAG.getDataLayout())));
10622       RetOps.push_back(Extract);
10623       Extract = DAG.getNode(
10624           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10625           Subtarget.isLittleEndian() ? Value : Value2,
10626           DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0,
10627                           dl, getPointerTy(DAG.getDataLayout())));
10628       RetOps.push_back(Extract);
10629       Extract = DAG.getNode(
10630           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10631           Subtarget.isLittleEndian() ? Value : Value2,
10632           DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1,
10633                           dl, getPointerTy(DAG.getDataLayout())));
10634       RetOps.push_back(Extract);
10635       return DAG.getMergeValues(RetOps, dl);
10636     }
10637     LLVM_FALLTHROUGH;
10638   }
10639   case Intrinsic::ppc_vsx_disassemble_pair: {
10640     int NumVecs = 2;
10641     SDValue WideVec = Op.getOperand(1);
10642     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10643       NumVecs = 4;
10644       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10645     }
10646     SmallVector<SDValue, 4> RetOps;
10647     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10648       SDValue Extract = DAG.getNode(
10649           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10650           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10651                                                      : VecNo,
10652                           dl, getPointerTy(DAG.getDataLayout())));
10653       RetOps.push_back(Extract);
10654     }
10655     return DAG.getMergeValues(RetOps, dl);
10656   }
10657 
10658   case Intrinsic::ppc_unpack_longdouble: {
10659     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10660     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10661            "Argument of long double unpack must be 0 or 1!");
10662     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10663                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10664                                        Idx->getValueType(0)));
10665   }
10666 
10667   case Intrinsic::ppc_compare_exp_lt:
10668   case Intrinsic::ppc_compare_exp_gt:
10669   case Intrinsic::ppc_compare_exp_eq:
10670   case Intrinsic::ppc_compare_exp_uo: {
10671     unsigned Pred;
10672     switch (IntrinsicID) {
10673     case Intrinsic::ppc_compare_exp_lt:
10674       Pred = PPC::PRED_LT;
10675       break;
10676     case Intrinsic::ppc_compare_exp_gt:
10677       Pred = PPC::PRED_GT;
10678       break;
10679     case Intrinsic::ppc_compare_exp_eq:
10680       Pred = PPC::PRED_EQ;
10681       break;
10682     case Intrinsic::ppc_compare_exp_uo:
10683       Pred = PPC::PRED_UN;
10684       break;
10685     }
10686     return SDValue(
10687         DAG.getMachineNode(
10688             PPC::SELECT_CC_I4, dl, MVT::i32,
10689             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10690                                         Op.getOperand(1), Op.getOperand(2)),
10691                      0),
10692              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10693              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10694         0);
10695   }
10696   case Intrinsic::ppc_test_data_class: {
10697     EVT OpVT = Op.getOperand(1).getValueType();
10698     unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP
10699                                          : (OpVT == MVT::f64 ? PPC::XSTSTDCDP
10700                                                              : PPC::XSTSTDCSP);
10701     return SDValue(
10702         DAG.getMachineNode(
10703             PPC::SELECT_CC_I4, dl, MVT::i32,
10704             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10705                                         Op.getOperand(1)),
10706                      0),
10707              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10708              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10709         0);
10710   }
10711   case Intrinsic::ppc_fnmsub: {
10712     EVT VT = Op.getOperand(1).getValueType();
10713     if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128))
10714       return DAG.getNode(
10715           ISD::FNEG, dl, VT,
10716           DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2),
10717                       DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3))));
10718     return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1),
10719                        Op.getOperand(2), Op.getOperand(3));
10720   }
10721   case Intrinsic::ppc_convert_f128_to_ppcf128:
10722   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10723     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10724                             ? RTLIB::CONVERT_PPCF128_F128
10725                             : RTLIB::CONVERT_F128_PPCF128;
10726     MakeLibCallOptions CallOptions;
10727     std::pair<SDValue, SDValue> Result =
10728         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10729                     dl, SDValue());
10730     return Result.first;
10731   }
10732   case Intrinsic::ppc_maxfe:
10733   case Intrinsic::ppc_maxfl:
10734   case Intrinsic::ppc_maxfs:
10735   case Intrinsic::ppc_minfe:
10736   case Intrinsic::ppc_minfl:
10737   case Intrinsic::ppc_minfs: {
10738     EVT VT = Op.getValueType();
10739     assert(
10740         all_of(Op->ops().drop_front(4),
10741                [VT](const SDUse &Use) { return Use.getValueType() == VT; }) &&
10742         "ppc_[max|min]f[e|l|s] must have uniform type arguments");
10743     (void)VT;
10744     ISD::CondCode CC = ISD::SETGT;
10745     if (IntrinsicID == Intrinsic::ppc_minfe ||
10746         IntrinsicID == Intrinsic::ppc_minfl ||
10747         IntrinsicID == Intrinsic::ppc_minfs)
10748       CC = ISD::SETLT;
10749     unsigned I = Op.getNumOperands() - 2, Cnt = I;
10750     SDValue Res = Op.getOperand(I);
10751     for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) {
10752       Res =
10753           DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC);
10754     }
10755     return Res;
10756   }
10757   }
10758 
10759   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10760   // opcode number of the comparison.
10761   int CompareOpc;
10762   bool isDot;
10763   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10764     return SDValue();    // Don't custom lower most intrinsics.
10765 
10766   // If this is a non-dot comparison, make the VCMP node and we are done.
10767   if (!isDot) {
10768     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10769                               Op.getOperand(1), Op.getOperand(2),
10770                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10771     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10772   }
10773 
10774   // Create the PPCISD altivec 'dot' comparison node.
10775   SDValue Ops[] = {
10776     Op.getOperand(2),  // LHS
10777     Op.getOperand(3),  // RHS
10778     DAG.getConstant(CompareOpc, dl, MVT::i32)
10779   };
10780   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10781   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10782 
10783   // Now that we have the comparison, emit a copy from the CR to a GPR.
10784   // This is flagged to the above dot comparison.
10785   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10786                                 DAG.getRegister(PPC::CR6, MVT::i32),
10787                                 CompNode.getValue(1));
10788 
10789   // Unpack the result based on how the target uses it.
10790   unsigned BitNo;   // Bit # of CR6.
10791   bool InvertBit;   // Invert result?
10792   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10793   default:  // Can't happen, don't crash on invalid number though.
10794   case 0:   // Return the value of the EQ bit of CR6.
10795     BitNo = 0; InvertBit = false;
10796     break;
10797   case 1:   // Return the inverted value of the EQ bit of CR6.
10798     BitNo = 0; InvertBit = true;
10799     break;
10800   case 2:   // Return the value of the LT bit of CR6.
10801     BitNo = 2; InvertBit = false;
10802     break;
10803   case 3:   // Return the inverted value of the LT bit of CR6.
10804     BitNo = 2; InvertBit = true;
10805     break;
10806   }
10807 
10808   // Shift the bit into the low position.
10809   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10810                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10811   // Isolate the bit.
10812   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10813                       DAG.getConstant(1, dl, MVT::i32));
10814 
10815   // If we are supposed to, toggle the bit.
10816   if (InvertBit)
10817     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10818                         DAG.getConstant(1, dl, MVT::i32));
10819   return Flags;
10820 }
10821 
10822 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10823                                                SelectionDAG &DAG) const {
10824   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10825   // the beginning of the argument list.
10826   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10827   SDLoc DL(Op);
10828   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10829   case Intrinsic::ppc_cfence: {
10830     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10831     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10832     SDValue Val = Op.getOperand(ArgStart + 1);
10833     EVT Ty = Val.getValueType();
10834     if (Ty == MVT::i128) {
10835       // FIXME: Testing one of two paired registers is sufficient to guarantee
10836       // ordering?
10837       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10838     }
10839     return SDValue(
10840         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10841                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10842                            Op.getOperand(0)),
10843         0);
10844   }
10845   default:
10846     break;
10847   }
10848   return SDValue();
10849 }
10850 
10851 // Lower scalar BSWAP64 to xxbrd.
10852 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10853   SDLoc dl(Op);
10854   if (!Subtarget.isPPC64())
10855     return Op;
10856   // MTVSRDD
10857   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10858                    Op.getOperand(0));
10859   // XXBRD
10860   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10861   // MFVSRD
10862   int VectorIndex = 0;
10863   if (Subtarget.isLittleEndian())
10864     VectorIndex = 1;
10865   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10866                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10867   return Op;
10868 }
10869 
10870 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10871 // compared to a value that is atomically loaded (atomic loads zero-extend).
10872 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10873                                                 SelectionDAG &DAG) const {
10874   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10875          "Expecting an atomic compare-and-swap here.");
10876   SDLoc dl(Op);
10877   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10878   EVT MemVT = AtomicNode->getMemoryVT();
10879   if (MemVT.getSizeInBits() >= 32)
10880     return Op;
10881 
10882   SDValue CmpOp = Op.getOperand(2);
10883   // If this is already correctly zero-extended, leave it alone.
10884   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10885   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10886     return Op;
10887 
10888   // Clear the high bits of the compare operand.
10889   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10890   SDValue NewCmpOp =
10891     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10892                 DAG.getConstant(MaskVal, dl, MVT::i32));
10893 
10894   // Replace the existing compare operand with the properly zero-extended one.
10895   SmallVector<SDValue, 4> Ops;
10896   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10897     Ops.push_back(AtomicNode->getOperand(i));
10898   Ops[2] = NewCmpOp;
10899   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10900   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10901   auto NodeTy =
10902     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10903   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10904 }
10905 
10906 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10907                                                   SelectionDAG &DAG) const {
10908   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10909   EVT MemVT = N->getMemoryVT();
10910   assert(MemVT.getSimpleVT() == MVT::i128 &&
10911          "Expect quadword atomic operations");
10912   SDLoc dl(N);
10913   unsigned Opc = N->getOpcode();
10914   switch (Opc) {
10915   case ISD::ATOMIC_LOAD: {
10916     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10917     // lowered to ppc instructions by pattern matching instruction selector.
10918     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10919     SmallVector<SDValue, 4> Ops{
10920         N->getOperand(0),
10921         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10922     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10923       Ops.push_back(N->getOperand(I));
10924     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10925                                                 Ops, MemVT, N->getMemOperand());
10926     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10927     SDValue ValHi =
10928         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10929     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10930                         DAG.getConstant(64, dl, MVT::i32));
10931     SDValue Val =
10932         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10933     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10934                        {Val, LoadedVal.getValue(2)});
10935   }
10936   case ISD::ATOMIC_STORE: {
10937     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10938     // lowered to ppc instructions by pattern matching instruction selector.
10939     SDVTList Tys = DAG.getVTList(MVT::Other);
10940     SmallVector<SDValue, 4> Ops{
10941         N->getOperand(0),
10942         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10943     SDValue Val = N->getOperand(2);
10944     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10945     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10946                                 DAG.getConstant(64, dl, MVT::i32));
10947     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10948     Ops.push_back(ValLo);
10949     Ops.push_back(ValHi);
10950     Ops.push_back(N->getOperand(1));
10951     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10952                                    N->getMemOperand());
10953   }
10954   default:
10955     llvm_unreachable("Unexpected atomic opcode");
10956   }
10957 }
10958 
10959 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10960                                                  SelectionDAG &DAG) const {
10961   SDLoc dl(Op);
10962   // Create a stack slot that is 16-byte aligned.
10963   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10964   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10965   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10966   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10967 
10968   // Store the input value into Value#0 of the stack slot.
10969   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10970                                MachinePointerInfo());
10971   // Load it out.
10972   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10973 }
10974 
10975 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10976                                                   SelectionDAG &DAG) const {
10977   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10978          "Should only be called for ISD::INSERT_VECTOR_ELT");
10979 
10980   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10981 
10982   EVT VT = Op.getValueType();
10983   SDLoc dl(Op);
10984   SDValue V1 = Op.getOperand(0);
10985   SDValue V2 = Op.getOperand(1);
10986 
10987   if (VT == MVT::v2f64 && C)
10988     return Op;
10989 
10990   if (Subtarget.hasP9Vector()) {
10991     // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way
10992     // because on P10, it allows this specific insert_vector_elt load pattern to
10993     // utilize the refactored load and store infrastructure in order to exploit
10994     // prefixed loads.
10995     // On targets with inexpensive direct moves (Power9 and up), a
10996     // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer
10997     // load since a single precision load will involve conversion to double
10998     // precision on the load followed by another conversion to single precision.
10999     if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) &&
11000         (isa<LoadSDNode>(V2))) {
11001       SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1);
11002       SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2);
11003       SDValue InsVecElt =
11004           DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector,
11005                       BitcastLoad, Op.getOperand(2));
11006       return DAG.getBitcast(MVT::v4f32, InsVecElt);
11007     }
11008   }
11009 
11010   if (Subtarget.isISA3_1()) {
11011     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
11012       return SDValue();
11013     // On P10, we have legal lowering for constant and variable indices for
11014     // all vectors.
11015     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
11016         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
11017       return Op;
11018   }
11019 
11020   // Before P10, we have legal lowering for constant indices but not for
11021   // variable ones.
11022   if (!C)
11023     return SDValue();
11024 
11025   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
11026   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
11027     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
11028     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
11029     unsigned InsertAtElement = C->getZExtValue();
11030     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
11031     if (Subtarget.isLittleEndian()) {
11032       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
11033     }
11034     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
11035                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
11036   }
11037   return Op;
11038 }
11039 
11040 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
11041                                            SelectionDAG &DAG) const {
11042   SDLoc dl(Op);
11043   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
11044   SDValue LoadChain = LN->getChain();
11045   SDValue BasePtr = LN->getBasePtr();
11046   EVT VT = Op.getValueType();
11047 
11048   if (VT != MVT::v256i1 && VT != MVT::v512i1)
11049     return Op;
11050 
11051   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
11052   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
11053   // 2 or 4 vsx registers.
11054   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
11055          "Type unsupported without MMA");
11056   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
11057          "Type unsupported without paired vector support");
11058   Align Alignment = LN->getAlign();
11059   SmallVector<SDValue, 4> Loads;
11060   SmallVector<SDValue, 4> LoadChains;
11061   unsigned NumVecs = VT.getSizeInBits() / 128;
11062   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
11063     SDValue Load =
11064         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
11065                     LN->getPointerInfo().getWithOffset(Idx * 16),
11066                     commonAlignment(Alignment, Idx * 16),
11067                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
11068     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11069                           DAG.getConstant(16, dl, BasePtr.getValueType()));
11070     Loads.push_back(Load);
11071     LoadChains.push_back(Load.getValue(1));
11072   }
11073   if (Subtarget.isLittleEndian()) {
11074     std::reverse(Loads.begin(), Loads.end());
11075     std::reverse(LoadChains.begin(), LoadChains.end());
11076   }
11077   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
11078   SDValue Value =
11079       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
11080                   dl, VT, Loads);
11081   SDValue RetOps[] = {Value, TF};
11082   return DAG.getMergeValues(RetOps, dl);
11083 }
11084 
11085 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
11086                                             SelectionDAG &DAG) const {
11087   SDLoc dl(Op);
11088   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
11089   SDValue StoreChain = SN->getChain();
11090   SDValue BasePtr = SN->getBasePtr();
11091   SDValue Value = SN->getValue();
11092   SDValue Value2 = SN->getValue();
11093   EVT StoreVT = Value.getValueType();
11094 
11095   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
11096     return Op;
11097 
11098   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
11099   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
11100   // underlying registers individually.
11101   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
11102          "Type unsupported without MMA");
11103   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
11104          "Type unsupported without paired vector support");
11105   Align Alignment = SN->getAlign();
11106   SmallVector<SDValue, 4> Stores;
11107   unsigned NumVecs = 2;
11108   if (StoreVT == MVT::v512i1) {
11109     if (Subtarget.isISAFuture()) {
11110       EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
11111       MachineSDNode *ExtNode = DAG.getMachineNode(
11112           PPC::DMXXEXTFDMR512, dl, ArrayRef(ReturnTypes, 2), Op.getOperand(1));
11113 
11114       Value = SDValue(ExtNode, 0);
11115       Value2 = SDValue(ExtNode, 1);
11116     } else
11117       Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
11118     NumVecs = 4;
11119   }
11120   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
11121     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
11122     SDValue Elt;
11123     if (Subtarget.isISAFuture()) {
11124       VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2);
11125       Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
11126                         Idx > 1 ? Value2 : Value,
11127                         DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
11128     } else
11129       Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
11130                         DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
11131 
11132     SDValue Store =
11133         DAG.getStore(StoreChain, dl, Elt, BasePtr,
11134                      SN->getPointerInfo().getWithOffset(Idx * 16),
11135                      commonAlignment(Alignment, Idx * 16),
11136                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
11137     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11138                           DAG.getConstant(16, dl, BasePtr.getValueType()));
11139     Stores.push_back(Store);
11140   }
11141   SDValue TF = DAG.getTokenFactor(dl, Stores);
11142   return TF;
11143 }
11144 
11145 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
11146   SDLoc dl(Op);
11147   if (Op.getValueType() == MVT::v4i32) {
11148     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11149 
11150     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
11151     // +16 as shift amt.
11152     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
11153     SDValue RHSSwap =   // = vrlw RHS, 16
11154       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
11155 
11156     // Shrinkify inputs to v8i16.
11157     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
11158     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
11159     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
11160 
11161     // Low parts multiplied together, generating 32-bit results (we ignore the
11162     // top parts).
11163     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
11164                                         LHS, RHS, DAG, dl, MVT::v4i32);
11165 
11166     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
11167                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
11168     // Shift the high parts up 16 bits.
11169     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
11170                               Neg16, DAG, dl);
11171     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
11172   } else if (Op.getValueType() == MVT::v16i8) {
11173     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11174     bool isLittleEndian = Subtarget.isLittleEndian();
11175 
11176     // Multiply the even 8-bit parts, producing 16-bit sums.
11177     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
11178                                            LHS, RHS, DAG, dl, MVT::v8i16);
11179     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
11180 
11181     // Multiply the odd 8-bit parts, producing 16-bit sums.
11182     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
11183                                           LHS, RHS, DAG, dl, MVT::v8i16);
11184     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
11185 
11186     // Merge the results together.  Because vmuleub and vmuloub are
11187     // instructions with a big-endian bias, we must reverse the
11188     // element numbering and reverse the meaning of "odd" and "even"
11189     // when generating little endian code.
11190     int Ops[16];
11191     for (unsigned i = 0; i != 8; ++i) {
11192       if (isLittleEndian) {
11193         Ops[i*2  ] = 2*i;
11194         Ops[i*2+1] = 2*i+16;
11195       } else {
11196         Ops[i*2  ] = 2*i+1;
11197         Ops[i*2+1] = 2*i+1+16;
11198       }
11199     }
11200     if (isLittleEndian)
11201       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
11202     else
11203       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
11204   } else {
11205     llvm_unreachable("Unknown mul to lower!");
11206   }
11207 }
11208 
11209 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
11210   bool IsStrict = Op->isStrictFPOpcode();
11211   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
11212       !Subtarget.hasP9Vector())
11213     return SDValue();
11214 
11215   return Op;
11216 }
11217 
11218 // Custom lowering for fpext vf32 to v2f64
11219 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11220 
11221   assert(Op.getOpcode() == ISD::FP_EXTEND &&
11222          "Should only be called for ISD::FP_EXTEND");
11223 
11224   // FIXME: handle extends from half precision float vectors on P9.
11225   // We only want to custom lower an extend from v2f32 to v2f64.
11226   if (Op.getValueType() != MVT::v2f64 ||
11227       Op.getOperand(0).getValueType() != MVT::v2f32)
11228     return SDValue();
11229 
11230   SDLoc dl(Op);
11231   SDValue Op0 = Op.getOperand(0);
11232 
11233   switch (Op0.getOpcode()) {
11234   default:
11235     return SDValue();
11236   case ISD::EXTRACT_SUBVECTOR: {
11237     assert(Op0.getNumOperands() == 2 &&
11238            isa<ConstantSDNode>(Op0->getOperand(1)) &&
11239            "Node should have 2 operands with second one being a constant!");
11240 
11241     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11242       return SDValue();
11243 
11244     // Custom lower is only done for high or low doubleword.
11245     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
11246     if (Idx % 2 != 0)
11247       return SDValue();
11248 
11249     // Since input is v4f32, at this point Idx is either 0 or 2.
11250     // Shift to get the doubleword position we want.
11251     int DWord = Idx >> 1;
11252 
11253     // High and low word positions are different on little endian.
11254     if (Subtarget.isLittleEndian())
11255       DWord ^= 0x1;
11256 
11257     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11258                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11259   }
11260   case ISD::FADD:
11261   case ISD::FMUL:
11262   case ISD::FSUB: {
11263     SDValue NewLoad[2];
11264     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11265       // Ensure both input are loads.
11266       SDValue LdOp = Op0.getOperand(i);
11267       if (LdOp.getOpcode() != ISD::LOAD)
11268         return SDValue();
11269       // Generate new load node.
11270       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11271       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11272       NewLoad[i] = DAG.getMemIntrinsicNode(
11273           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11274           LD->getMemoryVT(), LD->getMemOperand());
11275     }
11276     SDValue NewOp =
11277         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11278                     NewLoad[1], Op0.getNode()->getFlags());
11279     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11280                        DAG.getConstant(0, dl, MVT::i32));
11281   }
11282   case ISD::LOAD: {
11283     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11284     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11285     SDValue NewLd = DAG.getMemIntrinsicNode(
11286         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11287         LD->getMemoryVT(), LD->getMemOperand());
11288     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11289                        DAG.getConstant(0, dl, MVT::i32));
11290   }
11291   }
11292   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11293 }
11294 
11295 /// LowerOperation - Provide custom lowering hooks for some operations.
11296 ///
11297 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11298   switch (Op.getOpcode()) {
11299   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11300   case ISD::FPOW:               return lowerPow(Op, DAG);
11301   case ISD::FSIN:               return lowerSin(Op, DAG);
11302   case ISD::FCOS:               return lowerCos(Op, DAG);
11303   case ISD::FLOG:               return lowerLog(Op, DAG);
11304   case ISD::FLOG10:             return lowerLog10(Op, DAG);
11305   case ISD::FEXP:               return lowerExp(Op, DAG);
11306   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11307   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11308   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11309   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11310   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11311   case ISD::STRICT_FSETCC:
11312   case ISD::STRICT_FSETCCS:
11313   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11314   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11315   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11316 
11317   case ISD::INLINEASM:
11318   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11319   // Variable argument lowering.
11320   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11321   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11322   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11323 
11324   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11325   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11326   case ISD::GET_DYNAMIC_AREA_OFFSET:
11327     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11328 
11329   // Exception handling lowering.
11330   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11331   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11332   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11333 
11334   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11335   case ISD::STORE:              return LowerSTORE(Op, DAG);
11336   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11337   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11338   case ISD::STRICT_FP_TO_UINT:
11339   case ISD::STRICT_FP_TO_SINT:
11340   case ISD::FP_TO_UINT:
11341   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11342   case ISD::STRICT_UINT_TO_FP:
11343   case ISD::STRICT_SINT_TO_FP:
11344   case ISD::UINT_TO_FP:
11345   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11346   case ISD::GET_ROUNDING:       return LowerGET_ROUNDING(Op, DAG);
11347 
11348   // Lower 64-bit shifts.
11349   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11350   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11351   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11352 
11353   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11354   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11355 
11356   // Vector-related lowering.
11357   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11358   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11359   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11360   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11361   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11362   case ISD::MUL:                return LowerMUL(Op, DAG);
11363   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11364   case ISD::STRICT_FP_ROUND:
11365   case ISD::FP_ROUND:
11366     return LowerFP_ROUND(Op, DAG);
11367   case ISD::ROTL:               return LowerROTL(Op, DAG);
11368 
11369   // For counter-based loop handling.
11370   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11371 
11372   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11373 
11374   // Frame & Return address.
11375   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11376   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11377 
11378   case ISD::INTRINSIC_VOID:
11379     return LowerINTRINSIC_VOID(Op, DAG);
11380   case ISD::BSWAP:
11381     return LowerBSWAP(Op, DAG);
11382   case ISD::ATOMIC_CMP_SWAP:
11383     return LowerATOMIC_CMP_SWAP(Op, DAG);
11384   case ISD::ATOMIC_STORE:
11385     return LowerATOMIC_LOAD_STORE(Op, DAG);
11386   }
11387 }
11388 
11389 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11390                                            SmallVectorImpl<SDValue>&Results,
11391                                            SelectionDAG &DAG) const {
11392   SDLoc dl(N);
11393   switch (N->getOpcode()) {
11394   default:
11395     llvm_unreachable("Do not know how to custom type legalize this operation!");
11396   case ISD::ATOMIC_LOAD: {
11397     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11398     Results.push_back(Res);
11399     Results.push_back(Res.getValue(1));
11400     break;
11401   }
11402   case ISD::READCYCLECOUNTER: {
11403     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11404     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11405 
11406     Results.push_back(
11407         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11408     Results.push_back(RTB.getValue(2));
11409     break;
11410   }
11411   case ISD::INTRINSIC_W_CHAIN: {
11412     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11413         Intrinsic::loop_decrement)
11414       break;
11415 
11416     assert(N->getValueType(0) == MVT::i1 &&
11417            "Unexpected result type for CTR decrement intrinsic");
11418     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11419                                  N->getValueType(0));
11420     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11421     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11422                                  N->getOperand(1));
11423 
11424     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11425     Results.push_back(NewInt.getValue(1));
11426     break;
11427   }
11428   case ISD::INTRINSIC_WO_CHAIN: {
11429     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11430     case Intrinsic::ppc_pack_longdouble:
11431       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11432                                     N->getOperand(2), N->getOperand(1)));
11433       break;
11434     case Intrinsic::ppc_maxfe:
11435     case Intrinsic::ppc_minfe:
11436     case Intrinsic::ppc_fnmsub:
11437     case Intrinsic::ppc_convert_f128_to_ppcf128:
11438       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11439       break;
11440     }
11441     break;
11442   }
11443   case ISD::VAARG: {
11444     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11445       return;
11446 
11447     EVT VT = N->getValueType(0);
11448 
11449     if (VT == MVT::i64) {
11450       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11451 
11452       Results.push_back(NewNode);
11453       Results.push_back(NewNode.getValue(1));
11454     }
11455     return;
11456   }
11457   case ISD::STRICT_FP_TO_SINT:
11458   case ISD::STRICT_FP_TO_UINT:
11459   case ISD::FP_TO_SINT:
11460   case ISD::FP_TO_UINT: {
11461     // LowerFP_TO_INT() can only handle f32 and f64.
11462     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11463         MVT::ppcf128)
11464       return;
11465     SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11466     Results.push_back(LoweredValue);
11467     if (N->isStrictFPOpcode())
11468       Results.push_back(LoweredValue.getValue(1));
11469     return;
11470   }
11471   case ISD::TRUNCATE: {
11472     if (!N->getValueType(0).isVector())
11473       return;
11474     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11475     if (Lowered)
11476       Results.push_back(Lowered);
11477     return;
11478   }
11479   case ISD::FSHL:
11480   case ISD::FSHR:
11481     // Don't handle funnel shifts here.
11482     return;
11483   case ISD::BITCAST:
11484     // Don't handle bitcast here.
11485     return;
11486   case ISD::FP_EXTEND:
11487     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11488     if (Lowered)
11489       Results.push_back(Lowered);
11490     return;
11491   }
11492 }
11493 
11494 //===----------------------------------------------------------------------===//
11495 //  Other Lowering Code
11496 //===----------------------------------------------------------------------===//
11497 
11498 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11499   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11500   Function *Func = Intrinsic::getDeclaration(M, Id);
11501   return Builder.CreateCall(Func, {});
11502 }
11503 
11504 // The mappings for emitLeading/TrailingFence is taken from
11505 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11506 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11507                                                  Instruction *Inst,
11508                                                  AtomicOrdering Ord) const {
11509   if (Ord == AtomicOrdering::SequentiallyConsistent)
11510     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11511   if (isReleaseOrStronger(Ord))
11512     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11513   return nullptr;
11514 }
11515 
11516 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11517                                                   Instruction *Inst,
11518                                                   AtomicOrdering Ord) const {
11519   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11520     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11521     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11522     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11523     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11524       return Builder.CreateCall(
11525           Intrinsic::getDeclaration(
11526               Builder.GetInsertBlock()->getParent()->getParent(),
11527               Intrinsic::ppc_cfence, {Inst->getType()}),
11528           {Inst});
11529     // FIXME: Can use isync for rmw operation.
11530     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11531   }
11532   return nullptr;
11533 }
11534 
11535 MachineBasicBlock *
11536 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11537                                     unsigned AtomicSize,
11538                                     unsigned BinOpcode,
11539                                     unsigned CmpOpcode,
11540                                     unsigned CmpPred) const {
11541   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11542   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11543 
11544   auto LoadMnemonic = PPC::LDARX;
11545   auto StoreMnemonic = PPC::STDCX;
11546   switch (AtomicSize) {
11547   default:
11548     llvm_unreachable("Unexpected size of atomic entity");
11549   case 1:
11550     LoadMnemonic = PPC::LBARX;
11551     StoreMnemonic = PPC::STBCX;
11552     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11553     break;
11554   case 2:
11555     LoadMnemonic = PPC::LHARX;
11556     StoreMnemonic = PPC::STHCX;
11557     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11558     break;
11559   case 4:
11560     LoadMnemonic = PPC::LWARX;
11561     StoreMnemonic = PPC::STWCX;
11562     break;
11563   case 8:
11564     LoadMnemonic = PPC::LDARX;
11565     StoreMnemonic = PPC::STDCX;
11566     break;
11567   }
11568 
11569   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11570   MachineFunction *F = BB->getParent();
11571   MachineFunction::iterator It = ++BB->getIterator();
11572 
11573   Register dest = MI.getOperand(0).getReg();
11574   Register ptrA = MI.getOperand(1).getReg();
11575   Register ptrB = MI.getOperand(2).getReg();
11576   Register incr = MI.getOperand(3).getReg();
11577   DebugLoc dl = MI.getDebugLoc();
11578 
11579   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11580   MachineBasicBlock *loop2MBB =
11581     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11582   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11583   F->insert(It, loopMBB);
11584   if (CmpOpcode)
11585     F->insert(It, loop2MBB);
11586   F->insert(It, exitMBB);
11587   exitMBB->splice(exitMBB->begin(), BB,
11588                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11589   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11590 
11591   MachineRegisterInfo &RegInfo = F->getRegInfo();
11592   Register TmpReg = (!BinOpcode) ? incr :
11593     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11594                                            : &PPC::GPRCRegClass);
11595 
11596   //  thisMBB:
11597   //   ...
11598   //   fallthrough --> loopMBB
11599   BB->addSuccessor(loopMBB);
11600 
11601   //  loopMBB:
11602   //   l[wd]arx dest, ptr
11603   //   add r0, dest, incr
11604   //   st[wd]cx. r0, ptr
11605   //   bne- loopMBB
11606   //   fallthrough --> exitMBB
11607 
11608   // For max/min...
11609   //  loopMBB:
11610   //   l[wd]arx dest, ptr
11611   //   cmpl?[wd] dest, incr
11612   //   bgt exitMBB
11613   //  loop2MBB:
11614   //   st[wd]cx. dest, ptr
11615   //   bne- loopMBB
11616   //   fallthrough --> exitMBB
11617 
11618   BB = loopMBB;
11619   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11620     .addReg(ptrA).addReg(ptrB);
11621   if (BinOpcode)
11622     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11623   if (CmpOpcode) {
11624     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11625     // Signed comparisons of byte or halfword values must be sign-extended.
11626     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11627       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11628       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11629               ExtReg).addReg(dest);
11630       BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr);
11631     } else
11632       BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr);
11633 
11634     BuildMI(BB, dl, TII->get(PPC::BCC))
11635         .addImm(CmpPred)
11636         .addReg(CrReg)
11637         .addMBB(exitMBB);
11638     BB->addSuccessor(loop2MBB);
11639     BB->addSuccessor(exitMBB);
11640     BB = loop2MBB;
11641   }
11642   BuildMI(BB, dl, TII->get(StoreMnemonic))
11643     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11644   BuildMI(BB, dl, TII->get(PPC::BCC))
11645     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11646   BB->addSuccessor(loopMBB);
11647   BB->addSuccessor(exitMBB);
11648 
11649   //  exitMBB:
11650   //   ...
11651   BB = exitMBB;
11652   return BB;
11653 }
11654 
11655 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11656   switch(MI.getOpcode()) {
11657   default:
11658     return false;
11659   case PPC::COPY:
11660     return TII->isSignExtended(MI.getOperand(1).getReg(),
11661                                &MI.getMF()->getRegInfo());
11662   case PPC::LHA:
11663   case PPC::LHA8:
11664   case PPC::LHAU:
11665   case PPC::LHAU8:
11666   case PPC::LHAUX:
11667   case PPC::LHAUX8:
11668   case PPC::LHAX:
11669   case PPC::LHAX8:
11670   case PPC::LWA:
11671   case PPC::LWAUX:
11672   case PPC::LWAX:
11673   case PPC::LWAX_32:
11674   case PPC::LWA_32:
11675   case PPC::PLHA:
11676   case PPC::PLHA8:
11677   case PPC::PLHA8pc:
11678   case PPC::PLHApc:
11679   case PPC::PLWA:
11680   case PPC::PLWA8:
11681   case PPC::PLWA8pc:
11682   case PPC::PLWApc:
11683   case PPC::EXTSB:
11684   case PPC::EXTSB8:
11685   case PPC::EXTSB8_32_64:
11686   case PPC::EXTSB8_rec:
11687   case PPC::EXTSB_rec:
11688   case PPC::EXTSH:
11689   case PPC::EXTSH8:
11690   case PPC::EXTSH8_32_64:
11691   case PPC::EXTSH8_rec:
11692   case PPC::EXTSH_rec:
11693   case PPC::EXTSW:
11694   case PPC::EXTSWSLI:
11695   case PPC::EXTSWSLI_32_64:
11696   case PPC::EXTSWSLI_32_64_rec:
11697   case PPC::EXTSWSLI_rec:
11698   case PPC::EXTSW_32:
11699   case PPC::EXTSW_32_64:
11700   case PPC::EXTSW_32_64_rec:
11701   case PPC::EXTSW_rec:
11702   case PPC::SRAW:
11703   case PPC::SRAWI:
11704   case PPC::SRAWI_rec:
11705   case PPC::SRAW_rec:
11706     return true;
11707   }
11708   return false;
11709 }
11710 
11711 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11712     MachineInstr &MI, MachineBasicBlock *BB,
11713     bool is8bit, // operation
11714     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11715   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11716   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11717 
11718   // If this is a signed comparison and the value being compared is not known
11719   // to be sign extended, sign extend it here.
11720   DebugLoc dl = MI.getDebugLoc();
11721   MachineFunction *F = BB->getParent();
11722   MachineRegisterInfo &RegInfo = F->getRegInfo();
11723   Register incr = MI.getOperand(3).getReg();
11724   bool IsSignExtended =
11725       incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII);
11726 
11727   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11728     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11729     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11730         .addReg(MI.getOperand(3).getReg());
11731     MI.getOperand(3).setReg(ValueReg);
11732   }
11733   // If we support part-word atomic mnemonics, just use them
11734   if (Subtarget.hasPartwordAtomics())
11735     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11736                             CmpPred);
11737 
11738   // In 64 bit mode we have to use 64 bits for addresses, even though the
11739   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11740   // registers without caring whether they're 32 or 64, but here we're
11741   // doing actual arithmetic on the addresses.
11742   bool is64bit = Subtarget.isPPC64();
11743   bool isLittleEndian = Subtarget.isLittleEndian();
11744   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11745 
11746   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11747   MachineFunction::iterator It = ++BB->getIterator();
11748 
11749   Register dest = MI.getOperand(0).getReg();
11750   Register ptrA = MI.getOperand(1).getReg();
11751   Register ptrB = MI.getOperand(2).getReg();
11752 
11753   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11754   MachineBasicBlock *loop2MBB =
11755       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11756   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11757   F->insert(It, loopMBB);
11758   if (CmpOpcode)
11759     F->insert(It, loop2MBB);
11760   F->insert(It, exitMBB);
11761   exitMBB->splice(exitMBB->begin(), BB,
11762                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11763   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11764 
11765   const TargetRegisterClass *RC =
11766       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11767   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11768 
11769   Register PtrReg = RegInfo.createVirtualRegister(RC);
11770   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11771   Register ShiftReg =
11772       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11773   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11774   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11775   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11776   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11777   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11778   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11779   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11780   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11781   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11782   Register Ptr1Reg;
11783   Register TmpReg =
11784       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11785 
11786   //  thisMBB:
11787   //   ...
11788   //   fallthrough --> loopMBB
11789   BB->addSuccessor(loopMBB);
11790 
11791   // The 4-byte load must be aligned, while a char or short may be
11792   // anywhere in the word.  Hence all this nasty bookkeeping code.
11793   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11794   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11795   //   xori shift, shift1, 24 [16]
11796   //   rlwinm ptr, ptr1, 0, 0, 29
11797   //   slw incr2, incr, shift
11798   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11799   //   slw mask, mask2, shift
11800   //  loopMBB:
11801   //   lwarx tmpDest, ptr
11802   //   add tmp, tmpDest, incr2
11803   //   andc tmp2, tmpDest, mask
11804   //   and tmp3, tmp, mask
11805   //   or tmp4, tmp3, tmp2
11806   //   stwcx. tmp4, ptr
11807   //   bne- loopMBB
11808   //   fallthrough --> exitMBB
11809   //   srw SrwDest, tmpDest, shift
11810   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11811   if (ptrA != ZeroReg) {
11812     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11813     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11814         .addReg(ptrA)
11815         .addReg(ptrB);
11816   } else {
11817     Ptr1Reg = ptrB;
11818   }
11819   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11820   // mode.
11821   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11822       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11823       .addImm(3)
11824       .addImm(27)
11825       .addImm(is8bit ? 28 : 27);
11826   if (!isLittleEndian)
11827     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11828         .addReg(Shift1Reg)
11829         .addImm(is8bit ? 24 : 16);
11830   if (is64bit)
11831     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11832         .addReg(Ptr1Reg)
11833         .addImm(0)
11834         .addImm(61);
11835   else
11836     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11837         .addReg(Ptr1Reg)
11838         .addImm(0)
11839         .addImm(0)
11840         .addImm(29);
11841   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11842   if (is8bit)
11843     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11844   else {
11845     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11846     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11847         .addReg(Mask3Reg)
11848         .addImm(65535);
11849   }
11850   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11851       .addReg(Mask2Reg)
11852       .addReg(ShiftReg);
11853 
11854   BB = loopMBB;
11855   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11856       .addReg(ZeroReg)
11857       .addReg(PtrReg);
11858   if (BinOpcode)
11859     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11860         .addReg(Incr2Reg)
11861         .addReg(TmpDestReg);
11862   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11863       .addReg(TmpDestReg)
11864       .addReg(MaskReg);
11865   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11866   if (CmpOpcode) {
11867     // For unsigned comparisons, we can directly compare the shifted values.
11868     // For signed comparisons we shift and sign extend.
11869     Register SReg = RegInfo.createVirtualRegister(GPRC);
11870     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11871     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11872         .addReg(TmpDestReg)
11873         .addReg(MaskReg);
11874     unsigned ValueReg = SReg;
11875     unsigned CmpReg = Incr2Reg;
11876     if (CmpOpcode == PPC::CMPW) {
11877       ValueReg = RegInfo.createVirtualRegister(GPRC);
11878       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11879           .addReg(SReg)
11880           .addReg(ShiftReg);
11881       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11882       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11883           .addReg(ValueReg);
11884       ValueReg = ValueSReg;
11885       CmpReg = incr;
11886     }
11887     BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg);
11888     BuildMI(BB, dl, TII->get(PPC::BCC))
11889         .addImm(CmpPred)
11890         .addReg(CrReg)
11891         .addMBB(exitMBB);
11892     BB->addSuccessor(loop2MBB);
11893     BB->addSuccessor(exitMBB);
11894     BB = loop2MBB;
11895   }
11896   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11897   BuildMI(BB, dl, TII->get(PPC::STWCX))
11898       .addReg(Tmp4Reg)
11899       .addReg(ZeroReg)
11900       .addReg(PtrReg);
11901   BuildMI(BB, dl, TII->get(PPC::BCC))
11902       .addImm(PPC::PRED_NE)
11903       .addReg(PPC::CR0)
11904       .addMBB(loopMBB);
11905   BB->addSuccessor(loopMBB);
11906   BB->addSuccessor(exitMBB);
11907 
11908   //  exitMBB:
11909   //   ...
11910   BB = exitMBB;
11911   // Since the shift amount is not a constant, we need to clear
11912   // the upper bits with a separate RLWINM.
11913   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11914       .addReg(SrwDestReg)
11915       .addImm(0)
11916       .addImm(is8bit ? 24 : 16)
11917       .addImm(31);
11918   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11919       .addReg(TmpDestReg)
11920       .addReg(ShiftReg);
11921   return BB;
11922 }
11923 
11924 llvm::MachineBasicBlock *
11925 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11926                                     MachineBasicBlock *MBB) const {
11927   DebugLoc DL = MI.getDebugLoc();
11928   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11929   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11930 
11931   MachineFunction *MF = MBB->getParent();
11932   MachineRegisterInfo &MRI = MF->getRegInfo();
11933 
11934   const BasicBlock *BB = MBB->getBasicBlock();
11935   MachineFunction::iterator I = ++MBB->getIterator();
11936 
11937   Register DstReg = MI.getOperand(0).getReg();
11938   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11939   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11940   Register mainDstReg = MRI.createVirtualRegister(RC);
11941   Register restoreDstReg = MRI.createVirtualRegister(RC);
11942 
11943   MVT PVT = getPointerTy(MF->getDataLayout());
11944   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11945          "Invalid Pointer Size!");
11946   // For v = setjmp(buf), we generate
11947   //
11948   // thisMBB:
11949   //  SjLjSetup mainMBB
11950   //  bl mainMBB
11951   //  v_restore = 1
11952   //  b sinkMBB
11953   //
11954   // mainMBB:
11955   //  buf[LabelOffset] = LR
11956   //  v_main = 0
11957   //
11958   // sinkMBB:
11959   //  v = phi(main, restore)
11960   //
11961 
11962   MachineBasicBlock *thisMBB = MBB;
11963   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11964   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11965   MF->insert(I, mainMBB);
11966   MF->insert(I, sinkMBB);
11967 
11968   MachineInstrBuilder MIB;
11969 
11970   // Transfer the remainder of BB and its successor edges to sinkMBB.
11971   sinkMBB->splice(sinkMBB->begin(), MBB,
11972                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11973   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11974 
11975   // Note that the structure of the jmp_buf used here is not compatible
11976   // with that used by libc, and is not designed to be. Specifically, it
11977   // stores only those 'reserved' registers that LLVM does not otherwise
11978   // understand how to spill. Also, by convention, by the time this
11979   // intrinsic is called, Clang has already stored the frame address in the
11980   // first slot of the buffer and stack address in the third. Following the
11981   // X86 target code, we'll store the jump address in the second slot. We also
11982   // need to save the TOC pointer (R2) to handle jumps between shared
11983   // libraries, and that will be stored in the fourth slot. The thread
11984   // identifier (R13) is not affected.
11985 
11986   // thisMBB:
11987   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11988   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11989   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11990 
11991   // Prepare IP either in reg.
11992   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11993   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11994   Register BufReg = MI.getOperand(1).getReg();
11995 
11996   if (Subtarget.is64BitELFABI()) {
11997     setUsesTOCBasePtr(*MBB->getParent());
11998     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11999               .addReg(PPC::X2)
12000               .addImm(TOCOffset)
12001               .addReg(BufReg)
12002               .cloneMemRefs(MI);
12003   }
12004 
12005   // Naked functions never have a base pointer, and so we use r1. For all
12006   // other functions, this decision must be delayed until during PEI.
12007   unsigned BaseReg;
12008   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
12009     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
12010   else
12011     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
12012 
12013   MIB = BuildMI(*thisMBB, MI, DL,
12014                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
12015             .addReg(BaseReg)
12016             .addImm(BPOffset)
12017             .addReg(BufReg)
12018             .cloneMemRefs(MI);
12019 
12020   // Setup
12021   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
12022   MIB.addRegMask(TRI->getNoPreservedMask());
12023 
12024   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
12025 
12026   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
12027           .addMBB(mainMBB);
12028   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
12029 
12030   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
12031   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
12032 
12033   // mainMBB:
12034   //  mainDstReg = 0
12035   MIB =
12036       BuildMI(mainMBB, DL,
12037               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
12038 
12039   // Store IP
12040   if (Subtarget.isPPC64()) {
12041     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
12042             .addReg(LabelReg)
12043             .addImm(LabelOffset)
12044             .addReg(BufReg);
12045   } else {
12046     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
12047             .addReg(LabelReg)
12048             .addImm(LabelOffset)
12049             .addReg(BufReg);
12050   }
12051   MIB.cloneMemRefs(MI);
12052 
12053   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
12054   mainMBB->addSuccessor(sinkMBB);
12055 
12056   // sinkMBB:
12057   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12058           TII->get(PPC::PHI), DstReg)
12059     .addReg(mainDstReg).addMBB(mainMBB)
12060     .addReg(restoreDstReg).addMBB(thisMBB);
12061 
12062   MI.eraseFromParent();
12063   return sinkMBB;
12064 }
12065 
12066 MachineBasicBlock *
12067 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
12068                                      MachineBasicBlock *MBB) const {
12069   DebugLoc DL = MI.getDebugLoc();
12070   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12071 
12072   MachineFunction *MF = MBB->getParent();
12073   MachineRegisterInfo &MRI = MF->getRegInfo();
12074 
12075   MVT PVT = getPointerTy(MF->getDataLayout());
12076   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
12077          "Invalid Pointer Size!");
12078 
12079   const TargetRegisterClass *RC =
12080     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12081   Register Tmp = MRI.createVirtualRegister(RC);
12082   // Since FP is only updated here but NOT referenced, it's treated as GPR.
12083   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
12084   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
12085   unsigned BP =
12086       (PVT == MVT::i64)
12087           ? PPC::X30
12088           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
12089                                                               : PPC::R30);
12090 
12091   MachineInstrBuilder MIB;
12092 
12093   const int64_t LabelOffset = 1 * PVT.getStoreSize();
12094   const int64_t SPOffset    = 2 * PVT.getStoreSize();
12095   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
12096   const int64_t BPOffset    = 4 * PVT.getStoreSize();
12097 
12098   Register BufReg = MI.getOperand(0).getReg();
12099 
12100   // Reload FP (the jumped-to function may not have had a
12101   // frame pointer, and if so, then its r31 will be restored
12102   // as necessary).
12103   if (PVT == MVT::i64) {
12104     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
12105             .addImm(0)
12106             .addReg(BufReg);
12107   } else {
12108     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
12109             .addImm(0)
12110             .addReg(BufReg);
12111   }
12112   MIB.cloneMemRefs(MI);
12113 
12114   // Reload IP
12115   if (PVT == MVT::i64) {
12116     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
12117             .addImm(LabelOffset)
12118             .addReg(BufReg);
12119   } else {
12120     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
12121             .addImm(LabelOffset)
12122             .addReg(BufReg);
12123   }
12124   MIB.cloneMemRefs(MI);
12125 
12126   // Reload SP
12127   if (PVT == MVT::i64) {
12128     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
12129             .addImm(SPOffset)
12130             .addReg(BufReg);
12131   } else {
12132     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
12133             .addImm(SPOffset)
12134             .addReg(BufReg);
12135   }
12136   MIB.cloneMemRefs(MI);
12137 
12138   // Reload BP
12139   if (PVT == MVT::i64) {
12140     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
12141             .addImm(BPOffset)
12142             .addReg(BufReg);
12143   } else {
12144     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
12145             .addImm(BPOffset)
12146             .addReg(BufReg);
12147   }
12148   MIB.cloneMemRefs(MI);
12149 
12150   // Reload TOC
12151   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
12152     setUsesTOCBasePtr(*MBB->getParent());
12153     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
12154               .addImm(TOCOffset)
12155               .addReg(BufReg)
12156               .cloneMemRefs(MI);
12157   }
12158 
12159   // Jump
12160   BuildMI(*MBB, MI, DL,
12161           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
12162   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
12163 
12164   MI.eraseFromParent();
12165   return MBB;
12166 }
12167 
12168 bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
12169   // If the function specifically requests inline stack probes, emit them.
12170   if (MF.getFunction().hasFnAttribute("probe-stack"))
12171     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
12172            "inline-asm";
12173   return false;
12174 }
12175 
12176 unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
12177   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
12178   unsigned StackAlign = TFI->getStackAlignment();
12179   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
12180          "Unexpected stack alignment");
12181   // The default stack probe size is 4096 if the function has no
12182   // stack-probe-size attribute.
12183   const Function &Fn = MF.getFunction();
12184   unsigned StackProbeSize =
12185       Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
12186   // Round down to the stack alignment.
12187   StackProbeSize &= ~(StackAlign - 1);
12188   return StackProbeSize ? StackProbeSize : StackAlign;
12189 }
12190 
12191 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
12192 // into three phases. In the first phase, it uses pseudo instruction
12193 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
12194 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
12195 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
12196 // MaxCallFrameSize so that it can calculate correct data area pointer.
12197 MachineBasicBlock *
12198 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
12199                                     MachineBasicBlock *MBB) const {
12200   const bool isPPC64 = Subtarget.isPPC64();
12201   MachineFunction *MF = MBB->getParent();
12202   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12203   DebugLoc DL = MI.getDebugLoc();
12204   const unsigned ProbeSize = getStackProbeSize(*MF);
12205   const BasicBlock *ProbedBB = MBB->getBasicBlock();
12206   MachineRegisterInfo &MRI = MF->getRegInfo();
12207   // The CFG of probing stack looks as
12208   //         +-----+
12209   //         | MBB |
12210   //         +--+--+
12211   //            |
12212   //       +----v----+
12213   //  +--->+ TestMBB +---+
12214   //  |    +----+----+   |
12215   //  |         |        |
12216   //  |   +-----v----+   |
12217   //  +---+ BlockMBB |   |
12218   //      +----------+   |
12219   //                     |
12220   //       +---------+   |
12221   //       | TailMBB +<--+
12222   //       +---------+
12223   // In MBB, calculate previous frame pointer and final stack pointer.
12224   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
12225   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
12226   // TailMBB is spliced via \p MI.
12227   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
12228   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
12229   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
12230 
12231   MachineFunction::iterator MBBIter = ++MBB->getIterator();
12232   MF->insert(MBBIter, TestMBB);
12233   MF->insert(MBBIter, BlockMBB);
12234   MF->insert(MBBIter, TailMBB);
12235 
12236   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
12237   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12238 
12239   Register DstReg = MI.getOperand(0).getReg();
12240   Register NegSizeReg = MI.getOperand(1).getReg();
12241   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
12242   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12243   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12244   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12245 
12246   // Since value of NegSizeReg might be realigned in prologepilog, insert a
12247   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
12248   // NegSize.
12249   unsigned ProbeOpc;
12250   if (!MRI.hasOneNonDBGUse(NegSizeReg))
12251     ProbeOpc =
12252         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
12253   else
12254     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
12255     // and NegSizeReg will be allocated in the same phyreg to avoid
12256     // redundant copy when NegSizeReg has only one use which is current MI and
12257     // will be replaced by PREPARE_PROBED_ALLOCA then.
12258     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
12259                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
12260   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
12261       .addDef(ActualNegSizeReg)
12262       .addReg(NegSizeReg)
12263       .add(MI.getOperand(2))
12264       .add(MI.getOperand(3));
12265 
12266   // Calculate final stack pointer, which equals to SP + ActualNegSize.
12267   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
12268           FinalStackPtr)
12269       .addReg(SPReg)
12270       .addReg(ActualNegSizeReg);
12271 
12272   // Materialize a scratch register for update.
12273   int64_t NegProbeSize = -(int64_t)ProbeSize;
12274   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
12275   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12276   if (!isInt<16>(NegProbeSize)) {
12277     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12278     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12279         .addImm(NegProbeSize >> 16);
12280     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12281             ScratchReg)
12282         .addReg(TempReg)
12283         .addImm(NegProbeSize & 0xFFFF);
12284   } else
12285     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12286         .addImm(NegProbeSize);
12287 
12288   {
12289     // Probing leading residual part.
12290     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12291     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12292         .addReg(ActualNegSizeReg)
12293         .addReg(ScratchReg);
12294     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12295     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12296         .addReg(Div)
12297         .addReg(ScratchReg);
12298     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12299     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12300         .addReg(Mul)
12301         .addReg(ActualNegSizeReg);
12302     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12303         .addReg(FramePointer)
12304         .addReg(SPReg)
12305         .addReg(NegMod);
12306   }
12307 
12308   {
12309     // Remaining part should be multiple of ProbeSize.
12310     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12311     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12312         .addReg(SPReg)
12313         .addReg(FinalStackPtr);
12314     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12315         .addImm(PPC::PRED_EQ)
12316         .addReg(CmpResult)
12317         .addMBB(TailMBB);
12318     TestMBB->addSuccessor(BlockMBB);
12319     TestMBB->addSuccessor(TailMBB);
12320   }
12321 
12322   {
12323     // Touch the block.
12324     // |P...|P...|P...
12325     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12326         .addReg(FramePointer)
12327         .addReg(SPReg)
12328         .addReg(ScratchReg);
12329     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12330     BlockMBB->addSuccessor(TestMBB);
12331   }
12332 
12333   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12334   // DYNAREAOFFSET pseudo instruction to get the future result.
12335   Register MaxCallFrameSizeReg =
12336       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12337   BuildMI(TailMBB, DL,
12338           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12339           MaxCallFrameSizeReg)
12340       .add(MI.getOperand(2))
12341       .add(MI.getOperand(3));
12342   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12343       .addReg(SPReg)
12344       .addReg(MaxCallFrameSizeReg);
12345 
12346   // Splice instructions after MI to TailMBB.
12347   TailMBB->splice(TailMBB->end(), MBB,
12348                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12349   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12350   MBB->addSuccessor(TestMBB);
12351 
12352   // Delete the pseudo instruction.
12353   MI.eraseFromParent();
12354 
12355   ++NumDynamicAllocaProbed;
12356   return TailMBB;
12357 }
12358 
12359 MachineBasicBlock *
12360 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12361                                                MachineBasicBlock *BB) const {
12362   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12363       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12364     if (Subtarget.is64BitELFABI() &&
12365         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12366         !Subtarget.isUsingPCRelativeCalls()) {
12367       // Call lowering should have added an r2 operand to indicate a dependence
12368       // on the TOC base pointer value. It can't however, because there is no
12369       // way to mark the dependence as implicit there, and so the stackmap code
12370       // will confuse it with a regular operand. Instead, add the dependence
12371       // here.
12372       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12373     }
12374 
12375     return emitPatchPoint(MI, BB);
12376   }
12377 
12378   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12379       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12380     return emitEHSjLjSetJmp(MI, BB);
12381   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12382              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12383     return emitEHSjLjLongJmp(MI, BB);
12384   }
12385 
12386   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12387 
12388   // To "insert" these instructions we actually have to insert their
12389   // control-flow patterns.
12390   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12391   MachineFunction::iterator It = ++BB->getIterator();
12392 
12393   MachineFunction *F = BB->getParent();
12394   MachineRegisterInfo &MRI = F->getRegInfo();
12395 
12396   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12397       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12398       MI.getOpcode() == PPC::SELECT_I8) {
12399     SmallVector<MachineOperand, 2> Cond;
12400     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12401         MI.getOpcode() == PPC::SELECT_CC_I8)
12402       Cond.push_back(MI.getOperand(4));
12403     else
12404       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12405     Cond.push_back(MI.getOperand(1));
12406 
12407     DebugLoc dl = MI.getDebugLoc();
12408     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12409                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12410   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12411              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12412              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12413              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12414              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12415              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12416              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12417              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12418              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12419              MI.getOpcode() == PPC::SELECT_F4 ||
12420              MI.getOpcode() == PPC::SELECT_F8 ||
12421              MI.getOpcode() == PPC::SELECT_F16 ||
12422              MI.getOpcode() == PPC::SELECT_SPE ||
12423              MI.getOpcode() == PPC::SELECT_SPE4 ||
12424              MI.getOpcode() == PPC::SELECT_VRRC ||
12425              MI.getOpcode() == PPC::SELECT_VSFRC ||
12426              MI.getOpcode() == PPC::SELECT_VSSRC ||
12427              MI.getOpcode() == PPC::SELECT_VSRC) {
12428     // The incoming instruction knows the destination vreg to set, the
12429     // condition code register to branch on, the true/false values to
12430     // select between, and a branch opcode to use.
12431 
12432     //  thisMBB:
12433     //  ...
12434     //   TrueVal = ...
12435     //   cmpTY ccX, r1, r2
12436     //   bCC copy1MBB
12437     //   fallthrough --> copy0MBB
12438     MachineBasicBlock *thisMBB = BB;
12439     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12440     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12441     DebugLoc dl = MI.getDebugLoc();
12442     F->insert(It, copy0MBB);
12443     F->insert(It, sinkMBB);
12444 
12445     // Transfer the remainder of BB and its successor edges to sinkMBB.
12446     sinkMBB->splice(sinkMBB->begin(), BB,
12447                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12448     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12449 
12450     // Next, add the true and fallthrough blocks as its successors.
12451     BB->addSuccessor(copy0MBB);
12452     BB->addSuccessor(sinkMBB);
12453 
12454     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12455         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12456         MI.getOpcode() == PPC::SELECT_F16 ||
12457         MI.getOpcode() == PPC::SELECT_SPE4 ||
12458         MI.getOpcode() == PPC::SELECT_SPE ||
12459         MI.getOpcode() == PPC::SELECT_VRRC ||
12460         MI.getOpcode() == PPC::SELECT_VSFRC ||
12461         MI.getOpcode() == PPC::SELECT_VSSRC ||
12462         MI.getOpcode() == PPC::SELECT_VSRC) {
12463       BuildMI(BB, dl, TII->get(PPC::BC))
12464           .addReg(MI.getOperand(1).getReg())
12465           .addMBB(sinkMBB);
12466     } else {
12467       unsigned SelectPred = MI.getOperand(4).getImm();
12468       BuildMI(BB, dl, TII->get(PPC::BCC))
12469           .addImm(SelectPred)
12470           .addReg(MI.getOperand(1).getReg())
12471           .addMBB(sinkMBB);
12472     }
12473 
12474     //  copy0MBB:
12475     //   %FalseValue = ...
12476     //   # fallthrough to sinkMBB
12477     BB = copy0MBB;
12478 
12479     // Update machine-CFG edges
12480     BB->addSuccessor(sinkMBB);
12481 
12482     //  sinkMBB:
12483     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12484     //  ...
12485     BB = sinkMBB;
12486     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12487         .addReg(MI.getOperand(3).getReg())
12488         .addMBB(copy0MBB)
12489         .addReg(MI.getOperand(2).getReg())
12490         .addMBB(thisMBB);
12491   } else if (MI.getOpcode() == PPC::ReadTB) {
12492     // To read the 64-bit time-base register on a 32-bit target, we read the
12493     // two halves. Should the counter have wrapped while it was being read, we
12494     // need to try again.
12495     // ...
12496     // readLoop:
12497     // mfspr Rx,TBU # load from TBU
12498     // mfspr Ry,TB  # load from TB
12499     // mfspr Rz,TBU # load from TBU
12500     // cmpw crX,Rx,Rz # check if 'old'='new'
12501     // bne readLoop   # branch if they're not equal
12502     // ...
12503 
12504     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12505     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12506     DebugLoc dl = MI.getDebugLoc();
12507     F->insert(It, readMBB);
12508     F->insert(It, sinkMBB);
12509 
12510     // Transfer the remainder of BB and its successor edges to sinkMBB.
12511     sinkMBB->splice(sinkMBB->begin(), BB,
12512                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12513     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12514 
12515     BB->addSuccessor(readMBB);
12516     BB = readMBB;
12517 
12518     MachineRegisterInfo &RegInfo = F->getRegInfo();
12519     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12520     Register LoReg = MI.getOperand(0).getReg();
12521     Register HiReg = MI.getOperand(1).getReg();
12522 
12523     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12524     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12525     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12526 
12527     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12528 
12529     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12530         .addReg(HiReg)
12531         .addReg(ReadAgainReg);
12532     BuildMI(BB, dl, TII->get(PPC::BCC))
12533         .addImm(PPC::PRED_NE)
12534         .addReg(CmpReg)
12535         .addMBB(readMBB);
12536 
12537     BB->addSuccessor(readMBB);
12538     BB->addSuccessor(sinkMBB);
12539   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12540     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12541   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12542     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12543   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12544     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12545   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12546     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12547 
12548   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12549     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12550   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12551     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12552   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12553     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12554   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12555     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12556 
12557   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12558     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12559   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12560     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12561   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12562     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12563   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12564     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12565 
12566   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12567     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12568   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12569     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12570   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12571     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12572   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12573     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12574 
12575   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12576     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12577   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12578     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12579   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12580     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12581   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12582     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12583 
12584   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12585     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12586   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12587     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12588   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12589     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12590   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12591     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12592 
12593   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12594     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT);
12595   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12596     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT);
12597   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12598     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT);
12599   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12600     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT);
12601 
12602   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12603     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT);
12604   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12605     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT);
12606   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12607     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT);
12608   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12609     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT);
12610 
12611   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12612     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT);
12613   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12614     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT);
12615   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12616     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT);
12617   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12618     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT);
12619 
12620   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12621     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT);
12622   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12623     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT);
12624   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12625     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT);
12626   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12627     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT);
12628 
12629   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12630     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12631   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12632     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12633   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12634     BB = EmitAtomicBinary(MI, BB, 4, 0);
12635   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12636     BB = EmitAtomicBinary(MI, BB, 8, 0);
12637   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12638            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12639            (Subtarget.hasPartwordAtomics() &&
12640             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12641            (Subtarget.hasPartwordAtomics() &&
12642             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12643     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12644 
12645     auto LoadMnemonic = PPC::LDARX;
12646     auto StoreMnemonic = PPC::STDCX;
12647     switch (MI.getOpcode()) {
12648     default:
12649       llvm_unreachable("Compare and swap of unknown size");
12650     case PPC::ATOMIC_CMP_SWAP_I8:
12651       LoadMnemonic = PPC::LBARX;
12652       StoreMnemonic = PPC::STBCX;
12653       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12654       break;
12655     case PPC::ATOMIC_CMP_SWAP_I16:
12656       LoadMnemonic = PPC::LHARX;
12657       StoreMnemonic = PPC::STHCX;
12658       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12659       break;
12660     case PPC::ATOMIC_CMP_SWAP_I32:
12661       LoadMnemonic = PPC::LWARX;
12662       StoreMnemonic = PPC::STWCX;
12663       break;
12664     case PPC::ATOMIC_CMP_SWAP_I64:
12665       LoadMnemonic = PPC::LDARX;
12666       StoreMnemonic = PPC::STDCX;
12667       break;
12668     }
12669     MachineRegisterInfo &RegInfo = F->getRegInfo();
12670     Register dest = MI.getOperand(0).getReg();
12671     Register ptrA = MI.getOperand(1).getReg();
12672     Register ptrB = MI.getOperand(2).getReg();
12673     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12674     Register oldval = MI.getOperand(3).getReg();
12675     Register newval = MI.getOperand(4).getReg();
12676     DebugLoc dl = MI.getDebugLoc();
12677 
12678     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12679     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12680     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12681     F->insert(It, loop1MBB);
12682     F->insert(It, loop2MBB);
12683     F->insert(It, exitMBB);
12684     exitMBB->splice(exitMBB->begin(), BB,
12685                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12686     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12687 
12688     //  thisMBB:
12689     //   ...
12690     //   fallthrough --> loopMBB
12691     BB->addSuccessor(loop1MBB);
12692 
12693     // loop1MBB:
12694     //   l[bhwd]arx dest, ptr
12695     //   cmp[wd] dest, oldval
12696     //   bne- exitBB
12697     // loop2MBB:
12698     //   st[bhwd]cx. newval, ptr
12699     //   bne- loopMBB
12700     //   b exitBB
12701     // exitBB:
12702     BB = loop1MBB;
12703     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12704     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg)
12705         .addReg(dest)
12706         .addReg(oldval);
12707     BuildMI(BB, dl, TII->get(PPC::BCC))
12708         .addImm(PPC::PRED_NE)
12709         .addReg(CrReg)
12710         .addMBB(exitMBB);
12711     BB->addSuccessor(loop2MBB);
12712     BB->addSuccessor(exitMBB);
12713 
12714     BB = loop2MBB;
12715     BuildMI(BB, dl, TII->get(StoreMnemonic))
12716         .addReg(newval)
12717         .addReg(ptrA)
12718         .addReg(ptrB);
12719     BuildMI(BB, dl, TII->get(PPC::BCC))
12720         .addImm(PPC::PRED_NE)
12721         .addReg(PPC::CR0)
12722         .addMBB(loop1MBB);
12723     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12724     BB->addSuccessor(loop1MBB);
12725     BB->addSuccessor(exitMBB);
12726 
12727     //  exitMBB:
12728     //   ...
12729     BB = exitMBB;
12730   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12731              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12732     // We must use 64-bit registers for addresses when targeting 64-bit,
12733     // since we're actually doing arithmetic on them.  Other registers
12734     // can be 32-bit.
12735     bool is64bit = Subtarget.isPPC64();
12736     bool isLittleEndian = Subtarget.isLittleEndian();
12737     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12738 
12739     Register dest = MI.getOperand(0).getReg();
12740     Register ptrA = MI.getOperand(1).getReg();
12741     Register ptrB = MI.getOperand(2).getReg();
12742     Register oldval = MI.getOperand(3).getReg();
12743     Register newval = MI.getOperand(4).getReg();
12744     DebugLoc dl = MI.getDebugLoc();
12745 
12746     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12747     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12748     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12749     F->insert(It, loop1MBB);
12750     F->insert(It, loop2MBB);
12751     F->insert(It, exitMBB);
12752     exitMBB->splice(exitMBB->begin(), BB,
12753                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12754     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12755 
12756     MachineRegisterInfo &RegInfo = F->getRegInfo();
12757     const TargetRegisterClass *RC =
12758         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12759     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12760 
12761     Register PtrReg = RegInfo.createVirtualRegister(RC);
12762     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12763     Register ShiftReg =
12764         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12765     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12766     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12767     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12768     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12769     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12770     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12771     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12772     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12773     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12774     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12775     Register Ptr1Reg;
12776     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12777     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12778     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12779     //  thisMBB:
12780     //   ...
12781     //   fallthrough --> loopMBB
12782     BB->addSuccessor(loop1MBB);
12783 
12784     // The 4-byte load must be aligned, while a char or short may be
12785     // anywhere in the word.  Hence all this nasty bookkeeping code.
12786     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12787     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12788     //   xori shift, shift1, 24 [16]
12789     //   rlwinm ptr, ptr1, 0, 0, 29
12790     //   slw newval2, newval, shift
12791     //   slw oldval2, oldval,shift
12792     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12793     //   slw mask, mask2, shift
12794     //   and newval3, newval2, mask
12795     //   and oldval3, oldval2, mask
12796     // loop1MBB:
12797     //   lwarx tmpDest, ptr
12798     //   and tmp, tmpDest, mask
12799     //   cmpw tmp, oldval3
12800     //   bne- exitBB
12801     // loop2MBB:
12802     //   andc tmp2, tmpDest, mask
12803     //   or tmp4, tmp2, newval3
12804     //   stwcx. tmp4, ptr
12805     //   bne- loop1MBB
12806     //   b exitBB
12807     // exitBB:
12808     //   srw dest, tmpDest, shift
12809     if (ptrA != ZeroReg) {
12810       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12811       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12812           .addReg(ptrA)
12813           .addReg(ptrB);
12814     } else {
12815       Ptr1Reg = ptrB;
12816     }
12817 
12818     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12819     // mode.
12820     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12821         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12822         .addImm(3)
12823         .addImm(27)
12824         .addImm(is8bit ? 28 : 27);
12825     if (!isLittleEndian)
12826       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12827           .addReg(Shift1Reg)
12828           .addImm(is8bit ? 24 : 16);
12829     if (is64bit)
12830       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12831           .addReg(Ptr1Reg)
12832           .addImm(0)
12833           .addImm(61);
12834     else
12835       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12836           .addReg(Ptr1Reg)
12837           .addImm(0)
12838           .addImm(0)
12839           .addImm(29);
12840     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12841         .addReg(newval)
12842         .addReg(ShiftReg);
12843     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12844         .addReg(oldval)
12845         .addReg(ShiftReg);
12846     if (is8bit)
12847       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12848     else {
12849       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12850       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12851           .addReg(Mask3Reg)
12852           .addImm(65535);
12853     }
12854     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12855         .addReg(Mask2Reg)
12856         .addReg(ShiftReg);
12857     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12858         .addReg(NewVal2Reg)
12859         .addReg(MaskReg);
12860     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12861         .addReg(OldVal2Reg)
12862         .addReg(MaskReg);
12863 
12864     BB = loop1MBB;
12865     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12866         .addReg(ZeroReg)
12867         .addReg(PtrReg);
12868     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12869         .addReg(TmpDestReg)
12870         .addReg(MaskReg);
12871     BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg)
12872         .addReg(TmpReg)
12873         .addReg(OldVal3Reg);
12874     BuildMI(BB, dl, TII->get(PPC::BCC))
12875         .addImm(PPC::PRED_NE)
12876         .addReg(CrReg)
12877         .addMBB(exitMBB);
12878     BB->addSuccessor(loop2MBB);
12879     BB->addSuccessor(exitMBB);
12880 
12881     BB = loop2MBB;
12882     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12883         .addReg(TmpDestReg)
12884         .addReg(MaskReg);
12885     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12886         .addReg(Tmp2Reg)
12887         .addReg(NewVal3Reg);
12888     BuildMI(BB, dl, TII->get(PPC::STWCX))
12889         .addReg(Tmp4Reg)
12890         .addReg(ZeroReg)
12891         .addReg(PtrReg);
12892     BuildMI(BB, dl, TII->get(PPC::BCC))
12893         .addImm(PPC::PRED_NE)
12894         .addReg(PPC::CR0)
12895         .addMBB(loop1MBB);
12896     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12897     BB->addSuccessor(loop1MBB);
12898     BB->addSuccessor(exitMBB);
12899 
12900     //  exitMBB:
12901     //   ...
12902     BB = exitMBB;
12903     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12904         .addReg(TmpReg)
12905         .addReg(ShiftReg);
12906   } else if (MI.getOpcode() == PPC::FADDrtz) {
12907     // This pseudo performs an FADD with rounding mode temporarily forced
12908     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12909     // is not modeled at the SelectionDAG level.
12910     Register Dest = MI.getOperand(0).getReg();
12911     Register Src1 = MI.getOperand(1).getReg();
12912     Register Src2 = MI.getOperand(2).getReg();
12913     DebugLoc dl = MI.getDebugLoc();
12914 
12915     MachineRegisterInfo &RegInfo = F->getRegInfo();
12916     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12917 
12918     // Save FPSCR value.
12919     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12920 
12921     // Set rounding mode to round-to-zero.
12922     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12923         .addImm(31)
12924         .addReg(PPC::RM, RegState::ImplicitDefine);
12925 
12926     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12927         .addImm(30)
12928         .addReg(PPC::RM, RegState::ImplicitDefine);
12929 
12930     // Perform addition.
12931     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12932                    .addReg(Src1)
12933                    .addReg(Src2);
12934     if (MI.getFlag(MachineInstr::NoFPExcept))
12935       MIB.setMIFlag(MachineInstr::NoFPExcept);
12936 
12937     // Restore FPSCR value.
12938     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12939   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12940              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12941              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12942              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12943     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12944                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12945                           ? PPC::ANDI8_rec
12946                           : PPC::ANDI_rec;
12947     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12948                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12949 
12950     MachineRegisterInfo &RegInfo = F->getRegInfo();
12951     Register Dest = RegInfo.createVirtualRegister(
12952         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12953 
12954     DebugLoc Dl = MI.getDebugLoc();
12955     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12956         .addReg(MI.getOperand(1).getReg())
12957         .addImm(1);
12958     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12959             MI.getOperand(0).getReg())
12960         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12961   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12962     DebugLoc Dl = MI.getDebugLoc();
12963     MachineRegisterInfo &RegInfo = F->getRegInfo();
12964     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12965     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12966     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12967             MI.getOperand(0).getReg())
12968         .addReg(CRReg);
12969   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12970     DebugLoc Dl = MI.getDebugLoc();
12971     unsigned Imm = MI.getOperand(1).getImm();
12972     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12973     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12974             MI.getOperand(0).getReg())
12975         .addReg(PPC::CR0EQ);
12976   } else if (MI.getOpcode() == PPC::SETRNDi) {
12977     DebugLoc dl = MI.getDebugLoc();
12978     Register OldFPSCRReg = MI.getOperand(0).getReg();
12979 
12980     // Save FPSCR value.
12981     if (MRI.use_empty(OldFPSCRReg))
12982       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12983     else
12984       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12985 
12986     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12987     // the following settings:
12988     //   00 Round to nearest
12989     //   01 Round to 0
12990     //   10 Round to +inf
12991     //   11 Round to -inf
12992 
12993     // When the operand is immediate, using the two least significant bits of
12994     // the immediate to set the bits 62:63 of FPSCR.
12995     unsigned Mode = MI.getOperand(1).getImm();
12996     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12997         .addImm(31)
12998         .addReg(PPC::RM, RegState::ImplicitDefine);
12999 
13000     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
13001         .addImm(30)
13002         .addReg(PPC::RM, RegState::ImplicitDefine);
13003   } else if (MI.getOpcode() == PPC::SETRND) {
13004     DebugLoc dl = MI.getDebugLoc();
13005 
13006     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
13007     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
13008     // If the target doesn't have DirectMove, we should use stack to do the
13009     // conversion, because the target doesn't have the instructions like mtvsrd
13010     // or mfvsrd to do this conversion directly.
13011     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
13012       if (Subtarget.hasDirectMove()) {
13013         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
13014           .addReg(SrcReg);
13015       } else {
13016         // Use stack to do the register copy.
13017         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
13018         MachineRegisterInfo &RegInfo = F->getRegInfo();
13019         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
13020         if (RC == &PPC::F8RCRegClass) {
13021           // Copy register from F8RCRegClass to G8RCRegclass.
13022           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
13023                  "Unsupported RegClass.");
13024 
13025           StoreOp = PPC::STFD;
13026           LoadOp = PPC::LD;
13027         } else {
13028           // Copy register from G8RCRegClass to F8RCRegclass.
13029           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
13030                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
13031                  "Unsupported RegClass.");
13032         }
13033 
13034         MachineFrameInfo &MFI = F->getFrameInfo();
13035         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
13036 
13037         MachineMemOperand *MMOStore = F->getMachineMemOperand(
13038             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
13039             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
13040             MFI.getObjectAlign(FrameIdx));
13041 
13042         // Store the SrcReg into the stack.
13043         BuildMI(*BB, MI, dl, TII->get(StoreOp))
13044           .addReg(SrcReg)
13045           .addImm(0)
13046           .addFrameIndex(FrameIdx)
13047           .addMemOperand(MMOStore);
13048 
13049         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
13050             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
13051             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
13052             MFI.getObjectAlign(FrameIdx));
13053 
13054         // Load from the stack where SrcReg is stored, and save to DestReg,
13055         // so we have done the RegClass conversion from RegClass::SrcReg to
13056         // RegClass::DestReg.
13057         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
13058           .addImm(0)
13059           .addFrameIndex(FrameIdx)
13060           .addMemOperand(MMOLoad);
13061       }
13062     };
13063 
13064     Register OldFPSCRReg = MI.getOperand(0).getReg();
13065 
13066     // Save FPSCR value.
13067     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
13068 
13069     // When the operand is gprc register, use two least significant bits of the
13070     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
13071     //
13072     // copy OldFPSCRTmpReg, OldFPSCRReg
13073     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
13074     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
13075     // copy NewFPSCRReg, NewFPSCRTmpReg
13076     // mtfsf 255, NewFPSCRReg
13077     MachineOperand SrcOp = MI.getOperand(1);
13078     MachineRegisterInfo &RegInfo = F->getRegInfo();
13079     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13080 
13081     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
13082 
13083     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13084     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13085 
13086     // The first operand of INSERT_SUBREG should be a register which has
13087     // subregisters, we only care about its RegClass, so we should use an
13088     // IMPLICIT_DEF register.
13089     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
13090     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
13091       .addReg(ImDefReg)
13092       .add(SrcOp)
13093       .addImm(1);
13094 
13095     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13096     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
13097       .addReg(OldFPSCRTmpReg)
13098       .addReg(ExtSrcReg)
13099       .addImm(0)
13100       .addImm(62);
13101 
13102     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
13103     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
13104 
13105     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
13106     // bits of FPSCR.
13107     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
13108       .addImm(255)
13109       .addReg(NewFPSCRReg)
13110       .addImm(0)
13111       .addImm(0);
13112   } else if (MI.getOpcode() == PPC::SETFLM) {
13113     DebugLoc Dl = MI.getDebugLoc();
13114 
13115     // Result of setflm is previous FPSCR content, so we need to save it first.
13116     Register OldFPSCRReg = MI.getOperand(0).getReg();
13117     if (MRI.use_empty(OldFPSCRReg))
13118       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
13119     else
13120       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
13121 
13122     // Put bits in 32:63 to FPSCR.
13123     Register NewFPSCRReg = MI.getOperand(1).getReg();
13124     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
13125         .addImm(255)
13126         .addReg(NewFPSCRReg)
13127         .addImm(0)
13128         .addImm(0);
13129   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
13130              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
13131     return emitProbedAlloca(MI, BB);
13132   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
13133     DebugLoc DL = MI.getDebugLoc();
13134     Register Src = MI.getOperand(2).getReg();
13135     Register Lo = MI.getOperand(0).getReg();
13136     Register Hi = MI.getOperand(1).getReg();
13137     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
13138         .addDef(Lo)
13139         .addUse(Src, 0, PPC::sub_gp8_x1);
13140     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
13141         .addDef(Hi)
13142         .addUse(Src, 0, PPC::sub_gp8_x0);
13143   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
13144              MI.getOpcode() == PPC::STQX_PSEUDO) {
13145     DebugLoc DL = MI.getDebugLoc();
13146     // Ptr is used as the ptr_rc_no_r0 part
13147     // of LQ/STQ's memory operand and adding result of RA and RB,
13148     // so it has to be g8rc_and_g8rc_nox0.
13149     Register Ptr =
13150         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
13151     Register Val = MI.getOperand(0).getReg();
13152     Register RA = MI.getOperand(1).getReg();
13153     Register RB = MI.getOperand(2).getReg();
13154     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
13155     BuildMI(*BB, MI, DL,
13156             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
13157                                               : TII->get(PPC::STQ))
13158         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
13159         .addImm(0)
13160         .addReg(Ptr);
13161   } else {
13162     llvm_unreachable("Unexpected instr type to insert");
13163   }
13164 
13165   MI.eraseFromParent(); // The pseudo instruction is gone now.
13166   return BB;
13167 }
13168 
13169 //===----------------------------------------------------------------------===//
13170 // Target Optimization Hooks
13171 //===----------------------------------------------------------------------===//
13172 
13173 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
13174   // For the estimates, convergence is quadratic, so we essentially double the
13175   // number of digits correct after every iteration. For both FRE and FRSQRTE,
13176   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
13177   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
13178   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
13179   if (VT.getScalarType() == MVT::f64)
13180     RefinementSteps++;
13181   return RefinementSteps;
13182 }
13183 
13184 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
13185                                             const DenormalMode &Mode) const {
13186   // We only have VSX Vector Test for software Square Root.
13187   EVT VT = Op.getValueType();
13188   if (!isTypeLegal(MVT::i1) ||
13189       (VT != MVT::f64 &&
13190        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
13191     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
13192 
13193   SDLoc DL(Op);
13194   // The output register of FTSQRT is CR field.
13195   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
13196   // ftsqrt BF,FRB
13197   // Let e_b be the unbiased exponent of the double-precision
13198   // floating-point operand in register FRB.
13199   // fe_flag is set to 1 if either of the following conditions occurs.
13200   //   - The double-precision floating-point operand in register FRB is a zero,
13201   //     a NaN, or an infinity, or a negative value.
13202   //   - e_b is less than or equal to -970.
13203   // Otherwise fe_flag is set to 0.
13204   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
13205   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
13206   // exponent is less than -970)
13207   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
13208   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
13209                                     FTSQRT, SRIdxVal),
13210                  0);
13211 }
13212 
13213 SDValue
13214 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
13215                                                SelectionDAG &DAG) const {
13216   // We only have VSX Vector Square Root.
13217   EVT VT = Op.getValueType();
13218   if (VT != MVT::f64 &&
13219       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
13220     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
13221 
13222   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
13223 }
13224 
13225 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
13226                                            int Enabled, int &RefinementSteps,
13227                                            bool &UseOneConstNR,
13228                                            bool Reciprocal) const {
13229   EVT VT = Operand.getValueType();
13230   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
13231       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
13232       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13233       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13234     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13235       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13236 
13237     // The Newton-Raphson computation with a single constant does not provide
13238     // enough accuracy on some CPUs.
13239     UseOneConstNR = !Subtarget.needsTwoConstNR();
13240     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
13241   }
13242   return SDValue();
13243 }
13244 
13245 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
13246                                             int Enabled,
13247                                             int &RefinementSteps) const {
13248   EVT VT = Operand.getValueType();
13249   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
13250       (VT == MVT::f64 && Subtarget.hasFRE()) ||
13251       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13252       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13253     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13254       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13255     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
13256   }
13257   return SDValue();
13258 }
13259 
13260 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13261   // Note: This functionality is used only when unsafe-fp-math is enabled, and
13262   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13263   // enabled for division), this functionality is redundant with the default
13264   // combiner logic (once the division -> reciprocal/multiply transformation
13265   // has taken place). As a result, this matters more for older cores than for
13266   // newer ones.
13267 
13268   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13269   // reciprocal if there are two or more FDIVs (for embedded cores with only
13270   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13271   switch (Subtarget.getCPUDirective()) {
13272   default:
13273     return 3;
13274   case PPC::DIR_440:
13275   case PPC::DIR_A2:
13276   case PPC::DIR_E500:
13277   case PPC::DIR_E500mc:
13278   case PPC::DIR_E5500:
13279     return 2;
13280   }
13281 }
13282 
13283 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13284 // collapsed, and so we need to look through chains of them.
13285 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13286                                      int64_t& Offset, SelectionDAG &DAG) {
13287   if (DAG.isBaseWithConstantOffset(Loc)) {
13288     Base = Loc.getOperand(0);
13289     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13290 
13291     // The base might itself be a base plus an offset, and if so, accumulate
13292     // that as well.
13293     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13294   }
13295 }
13296 
13297 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13298                             unsigned Bytes, int Dist,
13299                             SelectionDAG &DAG) {
13300   if (VT.getSizeInBits() / 8 != Bytes)
13301     return false;
13302 
13303   SDValue BaseLoc = Base->getBasePtr();
13304   if (Loc.getOpcode() == ISD::FrameIndex) {
13305     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13306       return false;
13307     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13308     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13309     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13310     int FS  = MFI.getObjectSize(FI);
13311     int BFS = MFI.getObjectSize(BFI);
13312     if (FS != BFS || FS != (int)Bytes) return false;
13313     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13314   }
13315 
13316   SDValue Base1 = Loc, Base2 = BaseLoc;
13317   int64_t Offset1 = 0, Offset2 = 0;
13318   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13319   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13320   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13321     return true;
13322 
13323   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13324   const GlobalValue *GV1 = nullptr;
13325   const GlobalValue *GV2 = nullptr;
13326   Offset1 = 0;
13327   Offset2 = 0;
13328   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13329   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13330   if (isGA1 && isGA2 && GV1 == GV2)
13331     return Offset1 == (Offset2 + Dist*Bytes);
13332   return false;
13333 }
13334 
13335 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13336 // not enforce equality of the chain operands.
13337 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13338                             unsigned Bytes, int Dist,
13339                             SelectionDAG &DAG) {
13340   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13341     EVT VT = LS->getMemoryVT();
13342     SDValue Loc = LS->getBasePtr();
13343     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13344   }
13345 
13346   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13347     EVT VT;
13348     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13349     default: return false;
13350     case Intrinsic::ppc_altivec_lvx:
13351     case Intrinsic::ppc_altivec_lvxl:
13352     case Intrinsic::ppc_vsx_lxvw4x:
13353     case Intrinsic::ppc_vsx_lxvw4x_be:
13354       VT = MVT::v4i32;
13355       break;
13356     case Intrinsic::ppc_vsx_lxvd2x:
13357     case Intrinsic::ppc_vsx_lxvd2x_be:
13358       VT = MVT::v2f64;
13359       break;
13360     case Intrinsic::ppc_altivec_lvebx:
13361       VT = MVT::i8;
13362       break;
13363     case Intrinsic::ppc_altivec_lvehx:
13364       VT = MVT::i16;
13365       break;
13366     case Intrinsic::ppc_altivec_lvewx:
13367       VT = MVT::i32;
13368       break;
13369     }
13370 
13371     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13372   }
13373 
13374   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13375     EVT VT;
13376     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13377     default: return false;
13378     case Intrinsic::ppc_altivec_stvx:
13379     case Intrinsic::ppc_altivec_stvxl:
13380     case Intrinsic::ppc_vsx_stxvw4x:
13381       VT = MVT::v4i32;
13382       break;
13383     case Intrinsic::ppc_vsx_stxvd2x:
13384       VT = MVT::v2f64;
13385       break;
13386     case Intrinsic::ppc_vsx_stxvw4x_be:
13387       VT = MVT::v4i32;
13388       break;
13389     case Intrinsic::ppc_vsx_stxvd2x_be:
13390       VT = MVT::v2f64;
13391       break;
13392     case Intrinsic::ppc_altivec_stvebx:
13393       VT = MVT::i8;
13394       break;
13395     case Intrinsic::ppc_altivec_stvehx:
13396       VT = MVT::i16;
13397       break;
13398     case Intrinsic::ppc_altivec_stvewx:
13399       VT = MVT::i32;
13400       break;
13401     }
13402 
13403     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13404   }
13405 
13406   return false;
13407 }
13408 
13409 // Return true is there is a nearyby consecutive load to the one provided
13410 // (regardless of alignment). We search up and down the chain, looking though
13411 // token factors and other loads (but nothing else). As a result, a true result
13412 // indicates that it is safe to create a new consecutive load adjacent to the
13413 // load provided.
13414 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13415   SDValue Chain = LD->getChain();
13416   EVT VT = LD->getMemoryVT();
13417 
13418   SmallSet<SDNode *, 16> LoadRoots;
13419   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13420   SmallSet<SDNode *, 16> Visited;
13421 
13422   // First, search up the chain, branching to follow all token-factor operands.
13423   // If we find a consecutive load, then we're done, otherwise, record all
13424   // nodes just above the top-level loads and token factors.
13425   while (!Queue.empty()) {
13426     SDNode *ChainNext = Queue.pop_back_val();
13427     if (!Visited.insert(ChainNext).second)
13428       continue;
13429 
13430     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13431       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13432         return true;
13433 
13434       if (!Visited.count(ChainLD->getChain().getNode()))
13435         Queue.push_back(ChainLD->getChain().getNode());
13436     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13437       for (const SDUse &O : ChainNext->ops())
13438         if (!Visited.count(O.getNode()))
13439           Queue.push_back(O.getNode());
13440     } else
13441       LoadRoots.insert(ChainNext);
13442   }
13443 
13444   // Second, search down the chain, starting from the top-level nodes recorded
13445   // in the first phase. These top-level nodes are the nodes just above all
13446   // loads and token factors. Starting with their uses, recursively look though
13447   // all loads (just the chain uses) and token factors to find a consecutive
13448   // load.
13449   Visited.clear();
13450   Queue.clear();
13451 
13452   for (SDNode *I : LoadRoots) {
13453     Queue.push_back(I);
13454 
13455     while (!Queue.empty()) {
13456       SDNode *LoadRoot = Queue.pop_back_val();
13457       if (!Visited.insert(LoadRoot).second)
13458         continue;
13459 
13460       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13461         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13462           return true;
13463 
13464       for (SDNode *U : LoadRoot->uses())
13465         if (((isa<MemSDNode>(U) &&
13466               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13467              U->getOpcode() == ISD::TokenFactor) &&
13468             !Visited.count(U))
13469           Queue.push_back(U);
13470     }
13471   }
13472 
13473   return false;
13474 }
13475 
13476 /// This function is called when we have proved that a SETCC node can be replaced
13477 /// by subtraction (and other supporting instructions) so that the result of
13478 /// comparison is kept in a GPR instead of CR. This function is purely for
13479 /// codegen purposes and has some flags to guide the codegen process.
13480 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13481                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13482   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13483 
13484   // Zero extend the operands to the largest legal integer. Originally, they
13485   // must be of a strictly smaller size.
13486   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13487                          DAG.getConstant(Size, DL, MVT::i32));
13488   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13489                          DAG.getConstant(Size, DL, MVT::i32));
13490 
13491   // Swap if needed. Depends on the condition code.
13492   if (Swap)
13493     std::swap(Op0, Op1);
13494 
13495   // Subtract extended integers.
13496   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13497 
13498   // Move the sign bit to the least significant position and zero out the rest.
13499   // Now the least significant bit carries the result of original comparison.
13500   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13501                              DAG.getConstant(Size - 1, DL, MVT::i32));
13502   auto Final = Shifted;
13503 
13504   // Complement the result if needed. Based on the condition code.
13505   if (Complement)
13506     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13507                         DAG.getConstant(1, DL, MVT::i64));
13508 
13509   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13510 }
13511 
13512 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13513                                                   DAGCombinerInfo &DCI) const {
13514   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13515 
13516   SelectionDAG &DAG = DCI.DAG;
13517   SDLoc DL(N);
13518 
13519   // Size of integers being compared has a critical role in the following
13520   // analysis, so we prefer to do this when all types are legal.
13521   if (!DCI.isAfterLegalizeDAG())
13522     return SDValue();
13523 
13524   // If all users of SETCC extend its value to a legal integer type
13525   // then we replace SETCC with a subtraction
13526   for (const SDNode *U : N->uses())
13527     if (U->getOpcode() != ISD::ZERO_EXTEND)
13528       return SDValue();
13529 
13530   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13531   auto OpSize = N->getOperand(0).getValueSizeInBits();
13532 
13533   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13534 
13535   if (OpSize < Size) {
13536     switch (CC) {
13537     default: break;
13538     case ISD::SETULT:
13539       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13540     case ISD::SETULE:
13541       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13542     case ISD::SETUGT:
13543       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13544     case ISD::SETUGE:
13545       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13546     }
13547   }
13548 
13549   return SDValue();
13550 }
13551 
13552 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13553                                                   DAGCombinerInfo &DCI) const {
13554   SelectionDAG &DAG = DCI.DAG;
13555   SDLoc dl(N);
13556 
13557   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13558   // If we're tracking CR bits, we need to be careful that we don't have:
13559   //   trunc(binary-ops(zext(x), zext(y)))
13560   // or
13561   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13562   // such that we're unnecessarily moving things into GPRs when it would be
13563   // better to keep them in CR bits.
13564 
13565   // Note that trunc here can be an actual i1 trunc, or can be the effective
13566   // truncation that comes from a setcc or select_cc.
13567   if (N->getOpcode() == ISD::TRUNCATE &&
13568       N->getValueType(0) != MVT::i1)
13569     return SDValue();
13570 
13571   if (N->getOperand(0).getValueType() != MVT::i32 &&
13572       N->getOperand(0).getValueType() != MVT::i64)
13573     return SDValue();
13574 
13575   if (N->getOpcode() == ISD::SETCC ||
13576       N->getOpcode() == ISD::SELECT_CC) {
13577     // If we're looking at a comparison, then we need to make sure that the
13578     // high bits (all except for the first) don't matter the result.
13579     ISD::CondCode CC =
13580       cast<CondCodeSDNode>(N->getOperand(
13581         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13582     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13583 
13584     if (ISD::isSignedIntSetCC(CC)) {
13585       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13586           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13587         return SDValue();
13588     } else if (ISD::isUnsignedIntSetCC(CC)) {
13589       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13590                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13591           !DAG.MaskedValueIsZero(N->getOperand(1),
13592                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13593         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13594                                              : SDValue());
13595     } else {
13596       // This is neither a signed nor an unsigned comparison, just make sure
13597       // that the high bits are equal.
13598       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13599       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13600 
13601       // We don't really care about what is known about the first bit (if
13602       // anything), so pretend that it is known zero for both to ensure they can
13603       // be compared as constants.
13604       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13605       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13606 
13607       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13608           Op1Known.getConstant() != Op2Known.getConstant())
13609         return SDValue();
13610     }
13611   }
13612 
13613   // We now know that the higher-order bits are irrelevant, we just need to
13614   // make sure that all of the intermediate operations are bit operations, and
13615   // all inputs are extensions.
13616   if (N->getOperand(0).getOpcode() != ISD::AND &&
13617       N->getOperand(0).getOpcode() != ISD::OR  &&
13618       N->getOperand(0).getOpcode() != ISD::XOR &&
13619       N->getOperand(0).getOpcode() != ISD::SELECT &&
13620       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13621       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13622       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13623       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13624       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13625     return SDValue();
13626 
13627   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13628       N->getOperand(1).getOpcode() != ISD::AND &&
13629       N->getOperand(1).getOpcode() != ISD::OR  &&
13630       N->getOperand(1).getOpcode() != ISD::XOR &&
13631       N->getOperand(1).getOpcode() != ISD::SELECT &&
13632       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13633       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13634       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13635       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13636       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13637     return SDValue();
13638 
13639   SmallVector<SDValue, 4> Inputs;
13640   SmallVector<SDValue, 8> BinOps, PromOps;
13641   SmallPtrSet<SDNode *, 16> Visited;
13642 
13643   for (unsigned i = 0; i < 2; ++i) {
13644     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13645           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13646           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13647           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13648         isa<ConstantSDNode>(N->getOperand(i)))
13649       Inputs.push_back(N->getOperand(i));
13650     else
13651       BinOps.push_back(N->getOperand(i));
13652 
13653     if (N->getOpcode() == ISD::TRUNCATE)
13654       break;
13655   }
13656 
13657   // Visit all inputs, collect all binary operations (and, or, xor and
13658   // select) that are all fed by extensions.
13659   while (!BinOps.empty()) {
13660     SDValue BinOp = BinOps.pop_back_val();
13661 
13662     if (!Visited.insert(BinOp.getNode()).second)
13663       continue;
13664 
13665     PromOps.push_back(BinOp);
13666 
13667     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13668       // The condition of the select is not promoted.
13669       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13670         continue;
13671       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13672         continue;
13673 
13674       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13675             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13676             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13677            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13678           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13679         Inputs.push_back(BinOp.getOperand(i));
13680       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13681                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13682                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13683                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13684                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13685                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13686                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13687                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13688                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13689         BinOps.push_back(BinOp.getOperand(i));
13690       } else {
13691         // We have an input that is not an extension or another binary
13692         // operation; we'll abort this transformation.
13693         return SDValue();
13694       }
13695     }
13696   }
13697 
13698   // Make sure that this is a self-contained cluster of operations (which
13699   // is not quite the same thing as saying that everything has only one
13700   // use).
13701   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13702     if (isa<ConstantSDNode>(Inputs[i]))
13703       continue;
13704 
13705     for (const SDNode *User : Inputs[i].getNode()->uses()) {
13706       if (User != N && !Visited.count(User))
13707         return SDValue();
13708 
13709       // Make sure that we're not going to promote the non-output-value
13710       // operand(s) or SELECT or SELECT_CC.
13711       // FIXME: Although we could sometimes handle this, and it does occur in
13712       // practice that one of the condition inputs to the select is also one of
13713       // the outputs, we currently can't deal with this.
13714       if (User->getOpcode() == ISD::SELECT) {
13715         if (User->getOperand(0) == Inputs[i])
13716           return SDValue();
13717       } else if (User->getOpcode() == ISD::SELECT_CC) {
13718         if (User->getOperand(0) == Inputs[i] ||
13719             User->getOperand(1) == Inputs[i])
13720           return SDValue();
13721       }
13722     }
13723   }
13724 
13725   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13726     for (const SDNode *User : PromOps[i].getNode()->uses()) {
13727       if (User != N && !Visited.count(User))
13728         return SDValue();
13729 
13730       // Make sure that we're not going to promote the non-output-value
13731       // operand(s) or SELECT or SELECT_CC.
13732       // FIXME: Although we could sometimes handle this, and it does occur in
13733       // practice that one of the condition inputs to the select is also one of
13734       // the outputs, we currently can't deal with this.
13735       if (User->getOpcode() == ISD::SELECT) {
13736         if (User->getOperand(0) == PromOps[i])
13737           return SDValue();
13738       } else if (User->getOpcode() == ISD::SELECT_CC) {
13739         if (User->getOperand(0) == PromOps[i] ||
13740             User->getOperand(1) == PromOps[i])
13741           return SDValue();
13742       }
13743     }
13744   }
13745 
13746   // Replace all inputs with the extension operand.
13747   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13748     // Constants may have users outside the cluster of to-be-promoted nodes,
13749     // and so we need to replace those as we do the promotions.
13750     if (isa<ConstantSDNode>(Inputs[i]))
13751       continue;
13752     else
13753       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13754   }
13755 
13756   std::list<HandleSDNode> PromOpHandles;
13757   for (auto &PromOp : PromOps)
13758     PromOpHandles.emplace_back(PromOp);
13759 
13760   // Replace all operations (these are all the same, but have a different
13761   // (i1) return type). DAG.getNode will validate that the types of
13762   // a binary operator match, so go through the list in reverse so that
13763   // we've likely promoted both operands first. Any intermediate truncations or
13764   // extensions disappear.
13765   while (!PromOpHandles.empty()) {
13766     SDValue PromOp = PromOpHandles.back().getValue();
13767     PromOpHandles.pop_back();
13768 
13769     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13770         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13771         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13772         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13773       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13774           PromOp.getOperand(0).getValueType() != MVT::i1) {
13775         // The operand is not yet ready (see comment below).
13776         PromOpHandles.emplace_front(PromOp);
13777         continue;
13778       }
13779 
13780       SDValue RepValue = PromOp.getOperand(0);
13781       if (isa<ConstantSDNode>(RepValue))
13782         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13783 
13784       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13785       continue;
13786     }
13787 
13788     unsigned C;
13789     switch (PromOp.getOpcode()) {
13790     default:             C = 0; break;
13791     case ISD::SELECT:    C = 1; break;
13792     case ISD::SELECT_CC: C = 2; break;
13793     }
13794 
13795     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13796          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13797         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13798          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13799       // The to-be-promoted operands of this node have not yet been
13800       // promoted (this should be rare because we're going through the
13801       // list backward, but if one of the operands has several users in
13802       // this cluster of to-be-promoted nodes, it is possible).
13803       PromOpHandles.emplace_front(PromOp);
13804       continue;
13805     }
13806 
13807     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13808                                 PromOp.getNode()->op_end());
13809 
13810     // If there are any constant inputs, make sure they're replaced now.
13811     for (unsigned i = 0; i < 2; ++i)
13812       if (isa<ConstantSDNode>(Ops[C+i]))
13813         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13814 
13815     DAG.ReplaceAllUsesOfValueWith(PromOp,
13816       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13817   }
13818 
13819   // Now we're left with the initial truncation itself.
13820   if (N->getOpcode() == ISD::TRUNCATE)
13821     return N->getOperand(0);
13822 
13823   // Otherwise, this is a comparison. The operands to be compared have just
13824   // changed type (to i1), but everything else is the same.
13825   return SDValue(N, 0);
13826 }
13827 
13828 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13829                                                   DAGCombinerInfo &DCI) const {
13830   SelectionDAG &DAG = DCI.DAG;
13831   SDLoc dl(N);
13832 
13833   // If we're tracking CR bits, we need to be careful that we don't have:
13834   //   zext(binary-ops(trunc(x), trunc(y)))
13835   // or
13836   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13837   // such that we're unnecessarily moving things into CR bits that can more
13838   // efficiently stay in GPRs. Note that if we're not certain that the high
13839   // bits are set as required by the final extension, we still may need to do
13840   // some masking to get the proper behavior.
13841 
13842   // This same functionality is important on PPC64 when dealing with
13843   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13844   // the return values of functions. Because it is so similar, it is handled
13845   // here as well.
13846 
13847   if (N->getValueType(0) != MVT::i32 &&
13848       N->getValueType(0) != MVT::i64)
13849     return SDValue();
13850 
13851   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13852         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13853     return SDValue();
13854 
13855   if (N->getOperand(0).getOpcode() != ISD::AND &&
13856       N->getOperand(0).getOpcode() != ISD::OR  &&
13857       N->getOperand(0).getOpcode() != ISD::XOR &&
13858       N->getOperand(0).getOpcode() != ISD::SELECT &&
13859       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13860     return SDValue();
13861 
13862   SmallVector<SDValue, 4> Inputs;
13863   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13864   SmallPtrSet<SDNode *, 16> Visited;
13865 
13866   // Visit all inputs, collect all binary operations (and, or, xor and
13867   // select) that are all fed by truncations.
13868   while (!BinOps.empty()) {
13869     SDValue BinOp = BinOps.pop_back_val();
13870 
13871     if (!Visited.insert(BinOp.getNode()).second)
13872       continue;
13873 
13874     PromOps.push_back(BinOp);
13875 
13876     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13877       // The condition of the select is not promoted.
13878       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13879         continue;
13880       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13881         continue;
13882 
13883       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13884           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13885         Inputs.push_back(BinOp.getOperand(i));
13886       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13887                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13888                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13889                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13890                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13891         BinOps.push_back(BinOp.getOperand(i));
13892       } else {
13893         // We have an input that is not a truncation or another binary
13894         // operation; we'll abort this transformation.
13895         return SDValue();
13896       }
13897     }
13898   }
13899 
13900   // The operands of a select that must be truncated when the select is
13901   // promoted because the operand is actually part of the to-be-promoted set.
13902   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13903 
13904   // Make sure that this is a self-contained cluster of operations (which
13905   // is not quite the same thing as saying that everything has only one
13906   // use).
13907   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13908     if (isa<ConstantSDNode>(Inputs[i]))
13909       continue;
13910 
13911     for (SDNode *User : Inputs[i].getNode()->uses()) {
13912       if (User != N && !Visited.count(User))
13913         return SDValue();
13914 
13915       // If we're going to promote the non-output-value operand(s) or SELECT or
13916       // SELECT_CC, record them for truncation.
13917       if (User->getOpcode() == ISD::SELECT) {
13918         if (User->getOperand(0) == Inputs[i])
13919           SelectTruncOp[0].insert(std::make_pair(User,
13920                                     User->getOperand(0).getValueType()));
13921       } else if (User->getOpcode() == ISD::SELECT_CC) {
13922         if (User->getOperand(0) == Inputs[i])
13923           SelectTruncOp[0].insert(std::make_pair(User,
13924                                     User->getOperand(0).getValueType()));
13925         if (User->getOperand(1) == Inputs[i])
13926           SelectTruncOp[1].insert(std::make_pair(User,
13927                                     User->getOperand(1).getValueType()));
13928       }
13929     }
13930   }
13931 
13932   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13933     for (SDNode *User : PromOps[i].getNode()->uses()) {
13934       if (User != N && !Visited.count(User))
13935         return SDValue();
13936 
13937       // If we're going to promote the non-output-value operand(s) or SELECT or
13938       // SELECT_CC, record them for truncation.
13939       if (User->getOpcode() == ISD::SELECT) {
13940         if (User->getOperand(0) == PromOps[i])
13941           SelectTruncOp[0].insert(std::make_pair(User,
13942                                     User->getOperand(0).getValueType()));
13943       } else if (User->getOpcode() == ISD::SELECT_CC) {
13944         if (User->getOperand(0) == PromOps[i])
13945           SelectTruncOp[0].insert(std::make_pair(User,
13946                                     User->getOperand(0).getValueType()));
13947         if (User->getOperand(1) == PromOps[i])
13948           SelectTruncOp[1].insert(std::make_pair(User,
13949                                     User->getOperand(1).getValueType()));
13950       }
13951     }
13952   }
13953 
13954   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13955   bool ReallyNeedsExt = false;
13956   if (N->getOpcode() != ISD::ANY_EXTEND) {
13957     // If all of the inputs are not already sign/zero extended, then
13958     // we'll still need to do that at the end.
13959     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13960       if (isa<ConstantSDNode>(Inputs[i]))
13961         continue;
13962 
13963       unsigned OpBits =
13964         Inputs[i].getOperand(0).getValueSizeInBits();
13965       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13966 
13967       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13968            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13969                                   APInt::getHighBitsSet(OpBits,
13970                                                         OpBits-PromBits))) ||
13971           (N->getOpcode() == ISD::SIGN_EXTEND &&
13972            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13973              (OpBits-(PromBits-1)))) {
13974         ReallyNeedsExt = true;
13975         break;
13976       }
13977     }
13978   }
13979 
13980   // Replace all inputs, either with the truncation operand, or a
13981   // truncation or extension to the final output type.
13982   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13983     // Constant inputs need to be replaced with the to-be-promoted nodes that
13984     // use them because they might have users outside of the cluster of
13985     // promoted nodes.
13986     if (isa<ConstantSDNode>(Inputs[i]))
13987       continue;
13988 
13989     SDValue InSrc = Inputs[i].getOperand(0);
13990     if (Inputs[i].getValueType() == N->getValueType(0))
13991       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13992     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13993       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13994         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13995     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13996       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13997         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13998     else
13999       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
14000         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
14001   }
14002 
14003   std::list<HandleSDNode> PromOpHandles;
14004   for (auto &PromOp : PromOps)
14005     PromOpHandles.emplace_back(PromOp);
14006 
14007   // Replace all operations (these are all the same, but have a different
14008   // (promoted) return type). DAG.getNode will validate that the types of
14009   // a binary operator match, so go through the list in reverse so that
14010   // we've likely promoted both operands first.
14011   while (!PromOpHandles.empty()) {
14012     SDValue PromOp = PromOpHandles.back().getValue();
14013     PromOpHandles.pop_back();
14014 
14015     unsigned C;
14016     switch (PromOp.getOpcode()) {
14017     default:             C = 0; break;
14018     case ISD::SELECT:    C = 1; break;
14019     case ISD::SELECT_CC: C = 2; break;
14020     }
14021 
14022     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
14023          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
14024         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
14025          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
14026       // The to-be-promoted operands of this node have not yet been
14027       // promoted (this should be rare because we're going through the
14028       // list backward, but if one of the operands has several users in
14029       // this cluster of to-be-promoted nodes, it is possible).
14030       PromOpHandles.emplace_front(PromOp);
14031       continue;
14032     }
14033 
14034     // For SELECT and SELECT_CC nodes, we do a similar check for any
14035     // to-be-promoted comparison inputs.
14036     if (PromOp.getOpcode() == ISD::SELECT ||
14037         PromOp.getOpcode() == ISD::SELECT_CC) {
14038       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
14039            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
14040           (SelectTruncOp[1].count(PromOp.getNode()) &&
14041            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
14042         PromOpHandles.emplace_front(PromOp);
14043         continue;
14044       }
14045     }
14046 
14047     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
14048                                 PromOp.getNode()->op_end());
14049 
14050     // If this node has constant inputs, then they'll need to be promoted here.
14051     for (unsigned i = 0; i < 2; ++i) {
14052       if (!isa<ConstantSDNode>(Ops[C+i]))
14053         continue;
14054       if (Ops[C+i].getValueType() == N->getValueType(0))
14055         continue;
14056 
14057       if (N->getOpcode() == ISD::SIGN_EXTEND)
14058         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14059       else if (N->getOpcode() == ISD::ZERO_EXTEND)
14060         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14061       else
14062         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14063     }
14064 
14065     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
14066     // truncate them again to the original value type.
14067     if (PromOp.getOpcode() == ISD::SELECT ||
14068         PromOp.getOpcode() == ISD::SELECT_CC) {
14069       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
14070       if (SI0 != SelectTruncOp[0].end())
14071         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
14072       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
14073       if (SI1 != SelectTruncOp[1].end())
14074         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
14075     }
14076 
14077     DAG.ReplaceAllUsesOfValueWith(PromOp,
14078       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
14079   }
14080 
14081   // Now we're left with the initial extension itself.
14082   if (!ReallyNeedsExt)
14083     return N->getOperand(0);
14084 
14085   // To zero extend, just mask off everything except for the first bit (in the
14086   // i1 case).
14087   if (N->getOpcode() == ISD::ZERO_EXTEND)
14088     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
14089                        DAG.getConstant(APInt::getLowBitsSet(
14090                                          N->getValueSizeInBits(0), PromBits),
14091                                        dl, N->getValueType(0)));
14092 
14093   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
14094          "Invalid extension type");
14095   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
14096   SDValue ShiftCst =
14097       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
14098   return DAG.getNode(
14099       ISD::SRA, dl, N->getValueType(0),
14100       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
14101       ShiftCst);
14102 }
14103 
14104 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
14105                                         DAGCombinerInfo &DCI) const {
14106   assert(N->getOpcode() == ISD::SETCC &&
14107          "Should be called with a SETCC node");
14108 
14109   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
14110   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
14111     SDValue LHS = N->getOperand(0);
14112     SDValue RHS = N->getOperand(1);
14113 
14114     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
14115     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
14116         LHS.hasOneUse())
14117       std::swap(LHS, RHS);
14118 
14119     // x == 0-y --> x+y == 0
14120     // x != 0-y --> x+y != 0
14121     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
14122         RHS.hasOneUse()) {
14123       SDLoc DL(N);
14124       SelectionDAG &DAG = DCI.DAG;
14125       EVT VT = N->getValueType(0);
14126       EVT OpVT = LHS.getValueType();
14127       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
14128       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
14129     }
14130   }
14131 
14132   return DAGCombineTruncBoolExt(N, DCI);
14133 }
14134 
14135 // Is this an extending load from an f32 to an f64?
14136 static bool isFPExtLoad(SDValue Op) {
14137   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
14138     return LD->getExtensionType() == ISD::EXTLOAD &&
14139       Op.getValueType() == MVT::f64;
14140   return false;
14141 }
14142 
14143 /// Reduces the number of fp-to-int conversion when building a vector.
14144 ///
14145 /// If this vector is built out of floating to integer conversions,
14146 /// transform it to a vector built out of floating point values followed by a
14147 /// single floating to integer conversion of the vector.
14148 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
14149 /// becomes (fptosi (build_vector ($A, $B, ...)))
14150 SDValue PPCTargetLowering::
14151 combineElementTruncationToVectorTruncation(SDNode *N,
14152                                            DAGCombinerInfo &DCI) const {
14153   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14154          "Should be called with a BUILD_VECTOR node");
14155 
14156   SelectionDAG &DAG = DCI.DAG;
14157   SDLoc dl(N);
14158 
14159   SDValue FirstInput = N->getOperand(0);
14160   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
14161          "The input operand must be an fp-to-int conversion.");
14162 
14163   // This combine happens after legalization so the fp_to_[su]i nodes are
14164   // already converted to PPCSISD nodes.
14165   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
14166   if (FirstConversion == PPCISD::FCTIDZ ||
14167       FirstConversion == PPCISD::FCTIDUZ ||
14168       FirstConversion == PPCISD::FCTIWZ ||
14169       FirstConversion == PPCISD::FCTIWUZ) {
14170     bool IsSplat = true;
14171     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
14172       FirstConversion == PPCISD::FCTIWUZ;
14173     EVT SrcVT = FirstInput.getOperand(0).getValueType();
14174     SmallVector<SDValue, 4> Ops;
14175     EVT TargetVT = N->getValueType(0);
14176     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14177       SDValue NextOp = N->getOperand(i);
14178       if (NextOp.getOpcode() != PPCISD::MFVSR)
14179         return SDValue();
14180       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
14181       if (NextConversion != FirstConversion)
14182         return SDValue();
14183       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
14184       // This is not valid if the input was originally double precision. It is
14185       // also not profitable to do unless this is an extending load in which
14186       // case doing this combine will allow us to combine consecutive loads.
14187       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
14188         return SDValue();
14189       if (N->getOperand(i) != FirstInput)
14190         IsSplat = false;
14191     }
14192 
14193     // If this is a splat, we leave it as-is since there will be only a single
14194     // fp-to-int conversion followed by a splat of the integer. This is better
14195     // for 32-bit and smaller ints and neutral for 64-bit ints.
14196     if (IsSplat)
14197       return SDValue();
14198 
14199     // Now that we know we have the right type of node, get its operands
14200     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14201       SDValue In = N->getOperand(i).getOperand(0);
14202       if (Is32Bit) {
14203         // For 32-bit values, we need to add an FP_ROUND node (if we made it
14204         // here, we know that all inputs are extending loads so this is safe).
14205         if (In.isUndef())
14206           Ops.push_back(DAG.getUNDEF(SrcVT));
14207         else {
14208           SDValue Trunc =
14209               DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0),
14210                           DAG.getIntPtrConstant(1, dl, /*isTarget=*/true));
14211           Ops.push_back(Trunc);
14212         }
14213       } else
14214         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
14215     }
14216 
14217     unsigned Opcode;
14218     if (FirstConversion == PPCISD::FCTIDZ ||
14219         FirstConversion == PPCISD::FCTIWZ)
14220       Opcode = ISD::FP_TO_SINT;
14221     else
14222       Opcode = ISD::FP_TO_UINT;
14223 
14224     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
14225     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
14226     return DAG.getNode(Opcode, dl, TargetVT, BV);
14227   }
14228   return SDValue();
14229 }
14230 
14231 /// Reduce the number of loads when building a vector.
14232 ///
14233 /// Building a vector out of multiple loads can be converted to a load
14234 /// of the vector type if the loads are consecutive. If the loads are
14235 /// consecutive but in descending order, a shuffle is added at the end
14236 /// to reorder the vector.
14237 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
14238   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14239          "Should be called with a BUILD_VECTOR node");
14240 
14241   SDLoc dl(N);
14242 
14243   // Return early for non byte-sized type, as they can't be consecutive.
14244   if (!N->getValueType(0).getVectorElementType().isByteSized())
14245     return SDValue();
14246 
14247   bool InputsAreConsecutiveLoads = true;
14248   bool InputsAreReverseConsecutive = true;
14249   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
14250   SDValue FirstInput = N->getOperand(0);
14251   bool IsRoundOfExtLoad = false;
14252   LoadSDNode *FirstLoad = nullptr;
14253 
14254   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
14255       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
14256     FirstLoad = cast<LoadSDNode>(FirstInput.getOperand(0));
14257     IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD;
14258   }
14259   // Not a build vector of (possibly fp_rounded) loads.
14260   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14261       N->getNumOperands() == 1)
14262     return SDValue();
14263 
14264   if (!IsRoundOfExtLoad)
14265     FirstLoad = cast<LoadSDNode>(FirstInput);
14266 
14267   SmallVector<LoadSDNode *, 4> InputLoads;
14268   InputLoads.push_back(FirstLoad);
14269   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14270     // If any inputs are fp_round(extload), they all must be.
14271     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14272       return SDValue();
14273 
14274     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14275       N->getOperand(i);
14276     if (NextInput.getOpcode() != ISD::LOAD)
14277       return SDValue();
14278 
14279     SDValue PreviousInput =
14280       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14281     LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput);
14282     LoadSDNode *LD2 = cast<LoadSDNode>(NextInput);
14283 
14284     // If any inputs are fp_round(extload), they all must be.
14285     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14286       return SDValue();
14287 
14288     // We only care about regular loads. The PPC-specific load intrinsics
14289     // will not lead to a merge opportunity.
14290     if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1))
14291       InputsAreConsecutiveLoads = false;
14292     if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1))
14293       InputsAreReverseConsecutive = false;
14294 
14295     // Exit early if the loads are neither consecutive nor reverse consecutive.
14296     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14297       return SDValue();
14298     InputLoads.push_back(LD2);
14299   }
14300 
14301   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14302          "The loads cannot be both consecutive and reverse consecutive.");
14303 
14304   SDValue WideLoad;
14305   SDValue ReturnSDVal;
14306   if (InputsAreConsecutiveLoads) {
14307     assert(FirstLoad && "Input needs to be a LoadSDNode.");
14308     WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(),
14309                            FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
14310                            FirstLoad->getAlign());
14311     ReturnSDVal = WideLoad;
14312   } else if (InputsAreReverseConsecutive) {
14313     LoadSDNode *LastLoad = InputLoads.back();
14314     assert(LastLoad && "Input needs to be a LoadSDNode.");
14315     WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(),
14316                            LastLoad->getBasePtr(), LastLoad->getPointerInfo(),
14317                            LastLoad->getAlign());
14318     SmallVector<int, 16> Ops;
14319     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14320       Ops.push_back(i);
14321 
14322     ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad,
14323                                        DAG.getUNDEF(N->getValueType(0)), Ops);
14324   } else
14325     return SDValue();
14326 
14327   for (auto *LD : InputLoads)
14328     DAG.makeEquivalentMemoryOrdering(LD, WideLoad);
14329   return ReturnSDVal;
14330 }
14331 
14332 // This function adds the required vector_shuffle needed to get
14333 // the elements of the vector extract in the correct position
14334 // as specified by the CorrectElems encoding.
14335 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14336                                       SDValue Input, uint64_t Elems,
14337                                       uint64_t CorrectElems) {
14338   SDLoc dl(N);
14339 
14340   unsigned NumElems = Input.getValueType().getVectorNumElements();
14341   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14342 
14343   // Knowing the element indices being extracted from the original
14344   // vector and the order in which they're being inserted, just put
14345   // them at element indices required for the instruction.
14346   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14347     if (DAG.getDataLayout().isLittleEndian())
14348       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14349     else
14350       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14351     CorrectElems = CorrectElems >> 8;
14352     Elems = Elems >> 8;
14353   }
14354 
14355   SDValue Shuffle =
14356       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14357                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14358 
14359   EVT VT = N->getValueType(0);
14360   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14361 
14362   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14363                                Input.getValueType().getVectorElementType(),
14364                                VT.getVectorNumElements());
14365   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14366                      DAG.getValueType(ExtVT));
14367 }
14368 
14369 // Look for build vector patterns where input operands come from sign
14370 // extended vector_extract elements of specific indices. If the correct indices
14371 // aren't used, add a vector shuffle to fix up the indices and create
14372 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14373 // during instruction selection.
14374 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14375   // This array encodes the indices that the vector sign extend instructions
14376   // extract from when extending from one type to another for both BE and LE.
14377   // The right nibble of each byte corresponds to the LE incides.
14378   // and the left nibble of each byte corresponds to the BE incides.
14379   // For example: 0x3074B8FC  byte->word
14380   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14381   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14382   // For example: 0x000070F8  byte->double word
14383   // For LE: the allowed indices are: 0x0,0x8
14384   // For BE: the allowed indices are: 0x7,0xF
14385   uint64_t TargetElems[] = {
14386       0x3074B8FC, // b->w
14387       0x000070F8, // b->d
14388       0x10325476, // h->w
14389       0x00003074, // h->d
14390       0x00001032, // w->d
14391   };
14392 
14393   uint64_t Elems = 0;
14394   int Index;
14395   SDValue Input;
14396 
14397   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14398     if (!Op)
14399       return false;
14400     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14401         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14402       return false;
14403 
14404     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14405     // of the right width.
14406     SDValue Extract = Op.getOperand(0);
14407     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14408       Extract = Extract.getOperand(0);
14409     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14410       return false;
14411 
14412     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14413     if (!ExtOp)
14414       return false;
14415 
14416     Index = ExtOp->getZExtValue();
14417     if (Input && Input != Extract.getOperand(0))
14418       return false;
14419 
14420     if (!Input)
14421       Input = Extract.getOperand(0);
14422 
14423     Elems = Elems << 8;
14424     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14425     Elems |= Index;
14426 
14427     return true;
14428   };
14429 
14430   // If the build vector operands aren't sign extended vector extracts,
14431   // of the same input vector, then return.
14432   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14433     if (!isSExtOfVecExtract(N->getOperand(i))) {
14434       return SDValue();
14435     }
14436   }
14437 
14438   // If the vector extract indicies are not correct, add the appropriate
14439   // vector_shuffle.
14440   int TgtElemArrayIdx;
14441   int InputSize = Input.getValueType().getScalarSizeInBits();
14442   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14443   if (InputSize + OutputSize == 40)
14444     TgtElemArrayIdx = 0;
14445   else if (InputSize + OutputSize == 72)
14446     TgtElemArrayIdx = 1;
14447   else if (InputSize + OutputSize == 48)
14448     TgtElemArrayIdx = 2;
14449   else if (InputSize + OutputSize == 80)
14450     TgtElemArrayIdx = 3;
14451   else if (InputSize + OutputSize == 96)
14452     TgtElemArrayIdx = 4;
14453   else
14454     return SDValue();
14455 
14456   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14457   CorrectElems = DAG.getDataLayout().isLittleEndian()
14458                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14459                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14460   if (Elems != CorrectElems) {
14461     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14462   }
14463 
14464   // Regular lowering will catch cases where a shuffle is not needed.
14465   return SDValue();
14466 }
14467 
14468 // Look for the pattern of a load from a narrow width to i128, feeding
14469 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14470 // (LXVRZX). This node represents a zero extending load that will be matched
14471 // to the Load VSX Vector Rightmost instructions.
14472 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14473   SDLoc DL(N);
14474 
14475   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14476   if (N->getValueType(0) != MVT::v1i128)
14477     return SDValue();
14478 
14479   SDValue Operand = N->getOperand(0);
14480   // Proceed with the transformation if the operand to the BUILD_VECTOR
14481   // is a load instruction.
14482   if (Operand.getOpcode() != ISD::LOAD)
14483     return SDValue();
14484 
14485   auto *LD = cast<LoadSDNode>(Operand);
14486   EVT MemoryType = LD->getMemoryVT();
14487 
14488   // This transformation is only valid if the we are loading either a byte,
14489   // halfword, word, or doubleword.
14490   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14491                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14492 
14493   // Ensure that the load from the narrow width is being zero extended to i128.
14494   if (!ValidLDType ||
14495       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14496        LD->getExtensionType() != ISD::EXTLOAD))
14497     return SDValue();
14498 
14499   SDValue LoadOps[] = {
14500       LD->getChain(), LD->getBasePtr(),
14501       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14502 
14503   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14504                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14505                                  LoadOps, MemoryType, LD->getMemOperand());
14506 }
14507 
14508 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14509                                                  DAGCombinerInfo &DCI) const {
14510   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14511          "Should be called with a BUILD_VECTOR node");
14512 
14513   SelectionDAG &DAG = DCI.DAG;
14514   SDLoc dl(N);
14515 
14516   if (!Subtarget.hasVSX())
14517     return SDValue();
14518 
14519   // The target independent DAG combiner will leave a build_vector of
14520   // float-to-int conversions intact. We can generate MUCH better code for
14521   // a float-to-int conversion of a vector of floats.
14522   SDValue FirstInput = N->getOperand(0);
14523   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14524     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14525     if (Reduced)
14526       return Reduced;
14527   }
14528 
14529   // If we're building a vector out of consecutive loads, just load that
14530   // vector type.
14531   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14532   if (Reduced)
14533     return Reduced;
14534 
14535   // If we're building a vector out of extended elements from another vector
14536   // we have P9 vector integer extend instructions. The code assumes legal
14537   // input types (i.e. it can't handle things like v4i16) so do not run before
14538   // legalization.
14539   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14540     Reduced = combineBVOfVecSExt(N, DAG);
14541     if (Reduced)
14542       return Reduced;
14543   }
14544 
14545   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14546   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14547   // is a load from <valid narrow width> to i128.
14548   if (Subtarget.isISA3_1()) {
14549     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14550     if (BVOfZLoad)
14551       return BVOfZLoad;
14552   }
14553 
14554   if (N->getValueType(0) != MVT::v2f64)
14555     return SDValue();
14556 
14557   // Looking for:
14558   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14559   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14560       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14561     return SDValue();
14562   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14563       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14564     return SDValue();
14565   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14566     return SDValue();
14567 
14568   SDValue Ext1 = FirstInput.getOperand(0);
14569   SDValue Ext2 = N->getOperand(1).getOperand(0);
14570   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14571      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14572     return SDValue();
14573 
14574   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14575   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14576   if (!Ext1Op || !Ext2Op)
14577     return SDValue();
14578   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14579       Ext1.getOperand(0) != Ext2.getOperand(0))
14580     return SDValue();
14581 
14582   int FirstElem = Ext1Op->getZExtValue();
14583   int SecondElem = Ext2Op->getZExtValue();
14584   int SubvecIdx;
14585   if (FirstElem == 0 && SecondElem == 1)
14586     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14587   else if (FirstElem == 2 && SecondElem == 3)
14588     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14589   else
14590     return SDValue();
14591 
14592   SDValue SrcVec = Ext1.getOperand(0);
14593   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14594     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14595   return DAG.getNode(NodeType, dl, MVT::v2f64,
14596                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14597 }
14598 
14599 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14600                                               DAGCombinerInfo &DCI) const {
14601   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14602           N->getOpcode() == ISD::UINT_TO_FP) &&
14603          "Need an int -> FP conversion node here");
14604 
14605   if (useSoftFloat() || !Subtarget.has64BitSupport())
14606     return SDValue();
14607 
14608   SelectionDAG &DAG = DCI.DAG;
14609   SDLoc dl(N);
14610   SDValue Op(N, 0);
14611 
14612   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14613   // from the hardware.
14614   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14615     return SDValue();
14616   if (!Op.getOperand(0).getValueType().isSimple())
14617     return SDValue();
14618   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14619       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14620     return SDValue();
14621 
14622   SDValue FirstOperand(Op.getOperand(0));
14623   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14624     (FirstOperand.getValueType() == MVT::i8 ||
14625      FirstOperand.getValueType() == MVT::i16);
14626   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14627     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14628     bool DstDouble = Op.getValueType() == MVT::f64;
14629     unsigned ConvOp = Signed ?
14630       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14631       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14632     SDValue WidthConst =
14633       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14634                             dl, false);
14635     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14636     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14637     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14638                                          DAG.getVTList(MVT::f64, MVT::Other),
14639                                          Ops, MVT::i8, LDN->getMemOperand());
14640 
14641     // For signed conversion, we need to sign-extend the value in the VSR
14642     if (Signed) {
14643       SDValue ExtOps[] = { Ld, WidthConst };
14644       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14645       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14646     } else
14647       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14648   }
14649 
14650 
14651   // For i32 intermediate values, unfortunately, the conversion functions
14652   // leave the upper 32 bits of the value are undefined. Within the set of
14653   // scalar instructions, we have no method for zero- or sign-extending the
14654   // value. Thus, we cannot handle i32 intermediate values here.
14655   if (Op.getOperand(0).getValueType() == MVT::i32)
14656     return SDValue();
14657 
14658   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14659          "UINT_TO_FP is supported only with FPCVT");
14660 
14661   // If we have FCFIDS, then use it when converting to single-precision.
14662   // Otherwise, convert to double-precision and then round.
14663   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14664                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14665                                                             : PPCISD::FCFIDS)
14666                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14667                                                             : PPCISD::FCFID);
14668   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14669                   ? MVT::f32
14670                   : MVT::f64;
14671 
14672   // If we're converting from a float, to an int, and back to a float again,
14673   // then we don't need the store/load pair at all.
14674   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14675        Subtarget.hasFPCVT()) ||
14676       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14677     SDValue Src = Op.getOperand(0).getOperand(0);
14678     if (Src.getValueType() == MVT::f32) {
14679       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14680       DCI.AddToWorklist(Src.getNode());
14681     } else if (Src.getValueType() != MVT::f64) {
14682       // Make sure that we don't pick up a ppc_fp128 source value.
14683       return SDValue();
14684     }
14685 
14686     unsigned FCTOp =
14687       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14688                                                         PPCISD::FCTIDUZ;
14689 
14690     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14691     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14692 
14693     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14694       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
14695                        DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
14696       DCI.AddToWorklist(FP.getNode());
14697     }
14698 
14699     return FP;
14700   }
14701 
14702   return SDValue();
14703 }
14704 
14705 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14706 // builtins) into loads with swaps.
14707 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14708                                               DAGCombinerInfo &DCI) const {
14709   // Delay VSX load for LE combine until after LegalizeOps to prioritize other
14710   // load combines.
14711   if (DCI.isBeforeLegalizeOps())
14712     return SDValue();
14713 
14714   SelectionDAG &DAG = DCI.DAG;
14715   SDLoc dl(N);
14716   SDValue Chain;
14717   SDValue Base;
14718   MachineMemOperand *MMO;
14719 
14720   switch (N->getOpcode()) {
14721   default:
14722     llvm_unreachable("Unexpected opcode for little endian VSX load");
14723   case ISD::LOAD: {
14724     LoadSDNode *LD = cast<LoadSDNode>(N);
14725     Chain = LD->getChain();
14726     Base = LD->getBasePtr();
14727     MMO = LD->getMemOperand();
14728     // If the MMO suggests this isn't a load of a full vector, leave
14729     // things alone.  For a built-in, we have to make the change for
14730     // correctness, so if there is a size problem that will be a bug.
14731     if (MMO->getSize() < 16)
14732       return SDValue();
14733     break;
14734   }
14735   case ISD::INTRINSIC_W_CHAIN: {
14736     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14737     Chain = Intrin->getChain();
14738     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14739     // us what we want. Get operand 2 instead.
14740     Base = Intrin->getOperand(2);
14741     MMO = Intrin->getMemOperand();
14742     break;
14743   }
14744   }
14745 
14746   MVT VecTy = N->getValueType(0).getSimpleVT();
14747 
14748   SDValue LoadOps[] = { Chain, Base };
14749   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14750                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14751                                          LoadOps, MVT::v2f64, MMO);
14752 
14753   DCI.AddToWorklist(Load.getNode());
14754   Chain = Load.getValue(1);
14755   SDValue Swap = DAG.getNode(
14756       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14757   DCI.AddToWorklist(Swap.getNode());
14758 
14759   // Add a bitcast if the resulting load type doesn't match v2f64.
14760   if (VecTy != MVT::v2f64) {
14761     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14762     DCI.AddToWorklist(N.getNode());
14763     // Package {bitcast value, swap's chain} to match Load's shape.
14764     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14765                        N, Swap.getValue(1));
14766   }
14767 
14768   return Swap;
14769 }
14770 
14771 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14772 // builtins) into stores with swaps.
14773 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14774                                                DAGCombinerInfo &DCI) const {
14775   // Delay VSX store for LE combine until after LegalizeOps to prioritize other
14776   // store combines.
14777   if (DCI.isBeforeLegalizeOps())
14778     return SDValue();
14779 
14780   SelectionDAG &DAG = DCI.DAG;
14781   SDLoc dl(N);
14782   SDValue Chain;
14783   SDValue Base;
14784   unsigned SrcOpnd;
14785   MachineMemOperand *MMO;
14786 
14787   switch (N->getOpcode()) {
14788   default:
14789     llvm_unreachable("Unexpected opcode for little endian VSX store");
14790   case ISD::STORE: {
14791     StoreSDNode *ST = cast<StoreSDNode>(N);
14792     Chain = ST->getChain();
14793     Base = ST->getBasePtr();
14794     MMO = ST->getMemOperand();
14795     SrcOpnd = 1;
14796     // If the MMO suggests this isn't a store of a full vector, leave
14797     // things alone.  For a built-in, we have to make the change for
14798     // correctness, so if there is a size problem that will be a bug.
14799     if (MMO->getSize() < 16)
14800       return SDValue();
14801     break;
14802   }
14803   case ISD::INTRINSIC_VOID: {
14804     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14805     Chain = Intrin->getChain();
14806     // Intrin->getBasePtr() oddly does not get what we want.
14807     Base = Intrin->getOperand(3);
14808     MMO = Intrin->getMemOperand();
14809     SrcOpnd = 2;
14810     break;
14811   }
14812   }
14813 
14814   SDValue Src = N->getOperand(SrcOpnd);
14815   MVT VecTy = Src.getValueType().getSimpleVT();
14816 
14817   // All stores are done as v2f64 and possible bit cast.
14818   if (VecTy != MVT::v2f64) {
14819     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14820     DCI.AddToWorklist(Src.getNode());
14821   }
14822 
14823   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14824                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14825   DCI.AddToWorklist(Swap.getNode());
14826   Chain = Swap.getValue(1);
14827   SDValue StoreOps[] = { Chain, Swap, Base };
14828   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14829                                           DAG.getVTList(MVT::Other),
14830                                           StoreOps, VecTy, MMO);
14831   DCI.AddToWorklist(Store.getNode());
14832   return Store;
14833 }
14834 
14835 // Handle DAG combine for STORE (FP_TO_INT F).
14836 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14837                                                DAGCombinerInfo &DCI) const {
14838 
14839   SelectionDAG &DAG = DCI.DAG;
14840   SDLoc dl(N);
14841   unsigned Opcode = N->getOperand(1).getOpcode();
14842 
14843   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14844          && "Not a FP_TO_INT Instruction!");
14845 
14846   SDValue Val = N->getOperand(1).getOperand(0);
14847   EVT Op1VT = N->getOperand(1).getValueType();
14848   EVT ResVT = Val.getValueType();
14849 
14850   if (!isTypeLegal(ResVT))
14851     return SDValue();
14852 
14853   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14854   bool ValidTypeForStoreFltAsInt =
14855         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14856          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14857 
14858   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14859     return SDValue();
14860 
14861   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14862       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14863     return SDValue();
14864 
14865   // Extend f32 values to f64
14866   if (ResVT.getScalarSizeInBits() == 32) {
14867     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14868     DCI.AddToWorklist(Val.getNode());
14869   }
14870 
14871   // Set signed or unsigned conversion opcode.
14872   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14873                           PPCISD::FP_TO_SINT_IN_VSR :
14874                           PPCISD::FP_TO_UINT_IN_VSR;
14875 
14876   Val = DAG.getNode(ConvOpcode,
14877                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14878   DCI.AddToWorklist(Val.getNode());
14879 
14880   // Set number of bytes being converted.
14881   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14882   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14883                     DAG.getIntPtrConstant(ByteSize, dl, false),
14884                     DAG.getValueType(Op1VT) };
14885 
14886   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14887           DAG.getVTList(MVT::Other), Ops,
14888           cast<StoreSDNode>(N)->getMemoryVT(),
14889           cast<StoreSDNode>(N)->getMemOperand());
14890 
14891   DCI.AddToWorklist(Val.getNode());
14892   return Val;
14893 }
14894 
14895 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14896   // Check that the source of the element keeps flipping
14897   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14898   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14899   for (int i = 1, e = Mask.size(); i < e; i++) {
14900     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14901       return false;
14902     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14903       return false;
14904     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14905   }
14906   return true;
14907 }
14908 
14909 static bool isSplatBV(SDValue Op) {
14910   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14911     return false;
14912   SDValue FirstOp;
14913 
14914   // Find first non-undef input.
14915   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14916     FirstOp = Op.getOperand(i);
14917     if (!FirstOp.isUndef())
14918       break;
14919   }
14920 
14921   // All inputs are undef or the same as the first non-undef input.
14922   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14923     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14924       return false;
14925   return true;
14926 }
14927 
14928 static SDValue isScalarToVec(SDValue Op) {
14929   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14930     return Op;
14931   if (Op.getOpcode() != ISD::BITCAST)
14932     return SDValue();
14933   Op = Op.getOperand(0);
14934   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14935     return Op;
14936   return SDValue();
14937 }
14938 
14939 // Fix up the shuffle mask to account for the fact that the result of
14940 // scalar_to_vector is not in lane zero. This just takes all values in
14941 // the ranges specified by the min/max indices and adds the number of
14942 // elements required to ensure each element comes from the respective
14943 // position in the valid lane.
14944 // On little endian, that's just the corresponding element in the other
14945 // half of the vector. On big endian, it is in the same half but right
14946 // justified rather than left justified in that half.
14947 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14948                                             int LHSMaxIdx, int RHSMinIdx,
14949                                             int RHSMaxIdx, int HalfVec,
14950                                             unsigned ValidLaneWidth,
14951                                             const PPCSubtarget &Subtarget) {
14952   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14953     int Idx = ShuffV[i];
14954     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14955       ShuffV[i] +=
14956           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14957   }
14958 }
14959 
14960 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14961 // the original is:
14962 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14963 // In such a case, just change the shuffle mask to extract the element
14964 // from the permuted index.
14965 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14966                                const PPCSubtarget &Subtarget) {
14967   SDLoc dl(OrigSToV);
14968   EVT VT = OrigSToV.getValueType();
14969   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14970          "Expecting a SCALAR_TO_VECTOR here");
14971   SDValue Input = OrigSToV.getOperand(0);
14972 
14973   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14974     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14975     SDValue OrigVector = Input.getOperand(0);
14976 
14977     // Can't handle non-const element indices or different vector types
14978     // for the input to the extract and the output of the scalar_to_vector.
14979     if (Idx && VT == OrigVector.getValueType()) {
14980       unsigned NumElts = VT.getVectorNumElements();
14981       assert(
14982           NumElts > 1 &&
14983           "Cannot produce a permuted scalar_to_vector for one element vector");
14984       SmallVector<int, 16> NewMask(NumElts, -1);
14985       unsigned ResultInElt = NumElts / 2;
14986       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14987       NewMask[ResultInElt] = Idx->getZExtValue();
14988       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14989     }
14990   }
14991   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14992                      OrigSToV.getOperand(0));
14993 }
14994 
14995 // On little endian subtargets, combine shuffles such as:
14996 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14997 // into:
14998 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14999 // because the latter can be matched to a single instruction merge.
15000 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
15001 // to put the value into element zero. Adjust the shuffle mask so that the
15002 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
15003 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
15004 // nodes with elements smaller than doubleword because all the ways
15005 // of getting scalar data into a vector register put the value in the
15006 // rightmost element of the left half of the vector.
15007 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
15008                                                 SelectionDAG &DAG) const {
15009   SDValue LHS = SVN->getOperand(0);
15010   SDValue RHS = SVN->getOperand(1);
15011   auto Mask = SVN->getMask();
15012   int NumElts = LHS.getValueType().getVectorNumElements();
15013   SDValue Res(SVN, 0);
15014   SDLoc dl(SVN);
15015   bool IsLittleEndian = Subtarget.isLittleEndian();
15016 
15017   // On big endian targets this is only useful for subtargets with direct moves.
15018   // On little endian targets it would be useful for all subtargets with VSX.
15019   // However adding special handling for LE subtargets without direct moves
15020   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
15021   // which includes direct moves.
15022   if (!Subtarget.hasDirectMove())
15023     return Res;
15024 
15025   // If this is not a shuffle of a shuffle and the first element comes from
15026   // the second vector, canonicalize to the commuted form. This will make it
15027   // more likely to match one of the single instruction patterns.
15028   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15029       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
15030     std::swap(LHS, RHS);
15031     Res = DAG.getCommutedVectorShuffle(*SVN);
15032     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
15033   }
15034 
15035   // Adjust the shuffle mask if either input vector comes from a
15036   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
15037   // form (to prevent the need for a swap).
15038   SmallVector<int, 16> ShuffV(Mask);
15039   SDValue SToVLHS = isScalarToVec(LHS);
15040   SDValue SToVRHS = isScalarToVec(RHS);
15041   if (SToVLHS || SToVRHS) {
15042     // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the
15043     // same type and have differing element sizes, then do not perform
15044     // the following transformation. The current transformation for
15045     // SCALAR_TO_VECTOR assumes that both input vectors have the same
15046     // element size. This will be updated in the future to account for
15047     // differing sizes of the LHS and RHS.
15048     if (SToVLHS && SToVRHS &&
15049         (SToVLHS.getValueType().getScalarSizeInBits() !=
15050          SToVRHS.getValueType().getScalarSizeInBits()))
15051       return Res;
15052 
15053     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
15054                             : SToVRHS.getValueType().getVectorNumElements();
15055     int NumEltsOut = ShuffV.size();
15056     // The width of the "valid lane" (i.e. the lane that contains the value that
15057     // is vectorized) needs to be expressed in terms of the number of elements
15058     // of the shuffle. It is thereby the ratio of the values before and after
15059     // any bitcast.
15060     unsigned ValidLaneWidth =
15061         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
15062                       LHS.getValueType().getScalarSizeInBits()
15063                 : SToVRHS.getValueType().getScalarSizeInBits() /
15064                       RHS.getValueType().getScalarSizeInBits();
15065 
15066     // Initially assume that neither input is permuted. These will be adjusted
15067     // accordingly if either input is.
15068     int LHSMaxIdx = -1;
15069     int RHSMinIdx = -1;
15070     int RHSMaxIdx = -1;
15071     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
15072 
15073     // Get the permuted scalar to vector nodes for the source(s) that come from
15074     // ISD::SCALAR_TO_VECTOR.
15075     // On big endian systems, this only makes sense for element sizes smaller
15076     // than 64 bits since for 64-bit elements, all instructions already put
15077     // the value into element zero. Since scalar size of LHS and RHS may differ
15078     // after isScalarToVec, this should be checked using their own sizes.
15079     if (SToVLHS) {
15080       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
15081         return Res;
15082       // Set up the values for the shuffle vector fixup.
15083       LHSMaxIdx = NumEltsOut / NumEltsIn;
15084       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
15085       if (SToVLHS.getValueType() != LHS.getValueType())
15086         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
15087       LHS = SToVLHS;
15088     }
15089     if (SToVRHS) {
15090       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
15091         return Res;
15092       RHSMinIdx = NumEltsOut;
15093       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
15094       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
15095       if (SToVRHS.getValueType() != RHS.getValueType())
15096         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
15097       RHS = SToVRHS;
15098     }
15099 
15100     // Fix up the shuffle mask to reflect where the desired element actually is.
15101     // The minimum and maximum indices that correspond to element zero for both
15102     // the LHS and RHS are computed and will control which shuffle mask entries
15103     // are to be changed. For example, if the RHS is permuted, any shuffle mask
15104     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
15105     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
15106                                     HalfVec, ValidLaneWidth, Subtarget);
15107     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15108 
15109     // We may have simplified away the shuffle. We won't be able to do anything
15110     // further with it here.
15111     if (!isa<ShuffleVectorSDNode>(Res))
15112       return Res;
15113     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
15114   }
15115 
15116   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
15117   // The common case after we commuted the shuffle is that the RHS is a splat
15118   // and we have elements coming in from the splat at indices that are not
15119   // conducive to using a merge.
15120   // Example:
15121   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
15122   if (!isSplatBV(TheSplat))
15123     return Res;
15124 
15125   // We are looking for a mask such that all even elements are from
15126   // one vector and all odd elements from the other.
15127   if (!isAlternatingShuffMask(Mask, NumElts))
15128     return Res;
15129 
15130   // Adjust the mask so we are pulling in the same index from the splat
15131   // as the index from the interesting vector in consecutive elements.
15132   if (IsLittleEndian) {
15133     // Example (even elements from first vector):
15134     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
15135     if (Mask[0] < NumElts)
15136       for (int i = 1, e = Mask.size(); i < e; i += 2) {
15137         if (ShuffV[i] < 0)
15138           continue;
15139         ShuffV[i] = (ShuffV[i - 1] + NumElts);
15140       }
15141     // Example (odd elements from first vector):
15142     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
15143     else
15144       for (int i = 0, e = Mask.size(); i < e; i += 2) {
15145         if (ShuffV[i] < 0)
15146           continue;
15147         ShuffV[i] = (ShuffV[i + 1] + NumElts);
15148       }
15149   } else {
15150     // Example (even elements from first vector):
15151     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
15152     if (Mask[0] < NumElts)
15153       for (int i = 0, e = Mask.size(); i < e; i += 2) {
15154         if (ShuffV[i] < 0)
15155           continue;
15156         ShuffV[i] = ShuffV[i + 1] - NumElts;
15157       }
15158     // Example (odd elements from first vector):
15159     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
15160     else
15161       for (int i = 1, e = Mask.size(); i < e; i += 2) {
15162         if (ShuffV[i] < 0)
15163           continue;
15164         ShuffV[i] = ShuffV[i - 1] - NumElts;
15165       }
15166   }
15167 
15168   // If the RHS has undefs, we need to remove them since we may have created
15169   // a shuffle that adds those instead of the splat value.
15170   SDValue SplatVal =
15171       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
15172   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
15173 
15174   if (IsLittleEndian)
15175     RHS = TheSplat;
15176   else
15177     LHS = TheSplat;
15178   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15179 }
15180 
15181 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
15182                                                 LSBaseSDNode *LSBase,
15183                                                 DAGCombinerInfo &DCI) const {
15184   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
15185         "Not a reverse memop pattern!");
15186 
15187   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
15188     auto Mask = SVN->getMask();
15189     int i = 0;
15190     auto I = Mask.rbegin();
15191     auto E = Mask.rend();
15192 
15193     for (; I != E; ++I) {
15194       if (*I != i)
15195         return false;
15196       i++;
15197     }
15198     return true;
15199   };
15200 
15201   SelectionDAG &DAG = DCI.DAG;
15202   EVT VT = SVN->getValueType(0);
15203 
15204   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
15205     return SDValue();
15206 
15207   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
15208   // See comment in PPCVSXSwapRemoval.cpp.
15209   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
15210   if (!Subtarget.hasP9Vector())
15211     return SDValue();
15212 
15213   if(!IsElementReverse(SVN))
15214     return SDValue();
15215 
15216   if (LSBase->getOpcode() == ISD::LOAD) {
15217     // If the load return value 0 has more than one user except the
15218     // shufflevector instruction, it is not profitable to replace the
15219     // shufflevector with a reverse load.
15220     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
15221          UI != UE; ++UI)
15222       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
15223         return SDValue();
15224 
15225     SDLoc dl(LSBase);
15226     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
15227     return DAG.getMemIntrinsicNode(
15228         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
15229         LSBase->getMemoryVT(), LSBase->getMemOperand());
15230   }
15231 
15232   if (LSBase->getOpcode() == ISD::STORE) {
15233     // If there are other uses of the shuffle, the swap cannot be avoided.
15234     // Forcing the use of an X-Form (since swapped stores only have
15235     // X-Forms) without removing the swap is unprofitable.
15236     if (!SVN->hasOneUse())
15237       return SDValue();
15238 
15239     SDLoc dl(LSBase);
15240     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
15241                           LSBase->getBasePtr()};
15242     return DAG.getMemIntrinsicNode(
15243         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
15244         LSBase->getMemoryVT(), LSBase->getMemOperand());
15245   }
15246 
15247   llvm_unreachable("Expected a load or store node here");
15248 }
15249 
15250 static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) {
15251   unsigned IntrinsicID =
15252       cast<ConstantSDNode>(Intrin.getOperand(1))->getZExtValue();
15253   if (IntrinsicID == Intrinsic::ppc_stdcx)
15254     StoreWidth = 8;
15255   else if (IntrinsicID == Intrinsic::ppc_stwcx)
15256     StoreWidth = 4;
15257   else if (IntrinsicID == Intrinsic::ppc_sthcx)
15258     StoreWidth = 2;
15259   else if (IntrinsicID == Intrinsic::ppc_stbcx)
15260     StoreWidth = 1;
15261   else
15262     return false;
15263   return true;
15264 }
15265 
15266 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
15267                                              DAGCombinerInfo &DCI) const {
15268   SelectionDAG &DAG = DCI.DAG;
15269   SDLoc dl(N);
15270   switch (N->getOpcode()) {
15271   default: break;
15272   case ISD::ADD:
15273     return combineADD(N, DCI);
15274   case ISD::SHL:
15275     return combineSHL(N, DCI);
15276   case ISD::SRA:
15277     return combineSRA(N, DCI);
15278   case ISD::SRL:
15279     return combineSRL(N, DCI);
15280   case ISD::MUL:
15281     return combineMUL(N, DCI);
15282   case ISD::FMA:
15283   case PPCISD::FNMSUB:
15284     return combineFMALike(N, DCI);
15285   case PPCISD::SHL:
15286     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
15287         return N->getOperand(0);
15288     break;
15289   case PPCISD::SRL:
15290     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
15291         return N->getOperand(0);
15292     break;
15293   case PPCISD::SRA:
15294     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
15295       if (C->isZero() ||  //  0 >>s V -> 0.
15296           C->isAllOnes()) // -1 >>s V -> -1.
15297         return N->getOperand(0);
15298     }
15299     break;
15300   case ISD::SIGN_EXTEND:
15301   case ISD::ZERO_EXTEND:
15302   case ISD::ANY_EXTEND:
15303     return DAGCombineExtBoolTrunc(N, DCI);
15304   case ISD::TRUNCATE:
15305     return combineTRUNCATE(N, DCI);
15306   case ISD::SETCC:
15307     if (SDValue CSCC = combineSetCC(N, DCI))
15308       return CSCC;
15309     [[fallthrough]];
15310   case ISD::SELECT_CC:
15311     return DAGCombineTruncBoolExt(N, DCI);
15312   case ISD::SINT_TO_FP:
15313   case ISD::UINT_TO_FP:
15314     return combineFPToIntToFP(N, DCI);
15315   case ISD::VECTOR_SHUFFLE:
15316     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15317       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15318       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15319     }
15320     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15321   case ISD::STORE: {
15322 
15323     EVT Op1VT = N->getOperand(1).getValueType();
15324     unsigned Opcode = N->getOperand(1).getOpcode();
15325 
15326     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15327       SDValue Val= combineStoreFPToInt(N, DCI);
15328       if (Val)
15329         return Val;
15330     }
15331 
15332     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15333       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15334       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15335       if (Val)
15336         return Val;
15337     }
15338 
15339     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15340     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15341         N->getOperand(1).getNode()->hasOneUse() &&
15342         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15343          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15344 
15345       // STBRX can only handle simple types and it makes no sense to store less
15346       // two bytes in byte-reversed order.
15347       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15348       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15349         break;
15350 
15351       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15352       // Do an any-extend to 32-bits if this is a half-word input.
15353       if (BSwapOp.getValueType() == MVT::i16)
15354         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15355 
15356       // If the type of BSWAP operand is wider than stored memory width
15357       // it need to be shifted to the right side before STBRX.
15358       if (Op1VT.bitsGT(mVT)) {
15359         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15360         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15361                               DAG.getConstant(Shift, dl, MVT::i32));
15362         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15363         if (Op1VT == MVT::i64)
15364           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15365       }
15366 
15367       SDValue Ops[] = {
15368         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15369       };
15370       return
15371         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15372                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15373                                 cast<StoreSDNode>(N)->getMemOperand());
15374     }
15375 
15376     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15377     // So it can increase the chance of CSE constant construction.
15378     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15379         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15380       // Need to sign-extended to 64-bits to handle negative values.
15381       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15382       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15383                                     MemVT.getSizeInBits());
15384       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15385 
15386       // DAG.getTruncStore() can't be used here because it doesn't accept
15387       // the general (base + offset) addressing mode.
15388       // So we use UpdateNodeOperands and setTruncatingStore instead.
15389       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15390                              N->getOperand(3));
15391       cast<StoreSDNode>(N)->setTruncatingStore(true);
15392       return SDValue(N, 0);
15393     }
15394 
15395     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15396     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15397     if (Op1VT.isSimple()) {
15398       MVT StoreVT = Op1VT.getSimpleVT();
15399       if (Subtarget.needsSwapsForVSXMemOps() &&
15400           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15401            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15402         return expandVSXStoreForLE(N, DCI);
15403     }
15404     break;
15405   }
15406   case ISD::LOAD: {
15407     LoadSDNode *LD = cast<LoadSDNode>(N);
15408     EVT VT = LD->getValueType(0);
15409 
15410     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15411     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15412     if (VT.isSimple()) {
15413       MVT LoadVT = VT.getSimpleVT();
15414       if (Subtarget.needsSwapsForVSXMemOps() &&
15415           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15416            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15417         return expandVSXLoadForLE(N, DCI);
15418     }
15419 
15420     // We sometimes end up with a 64-bit integer load, from which we extract
15421     // two single-precision floating-point numbers. This happens with
15422     // std::complex<float>, and other similar structures, because of the way we
15423     // canonicalize structure copies. However, if we lack direct moves,
15424     // then the final bitcasts from the extracted integer values to the
15425     // floating-point numbers turn into store/load pairs. Even with direct moves,
15426     // just loading the two floating-point numbers is likely better.
15427     auto ReplaceTwoFloatLoad = [&]() {
15428       if (VT != MVT::i64)
15429         return false;
15430 
15431       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15432           LD->isVolatile())
15433         return false;
15434 
15435       //  We're looking for a sequence like this:
15436       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15437       //      t16: i64 = srl t13, Constant:i32<32>
15438       //    t17: i32 = truncate t16
15439       //  t18: f32 = bitcast t17
15440       //    t19: i32 = truncate t13
15441       //  t20: f32 = bitcast t19
15442 
15443       if (!LD->hasNUsesOfValue(2, 0))
15444         return false;
15445 
15446       auto UI = LD->use_begin();
15447       while (UI.getUse().getResNo() != 0) ++UI;
15448       SDNode *Trunc = *UI++;
15449       while (UI.getUse().getResNo() != 0) ++UI;
15450       SDNode *RightShift = *UI;
15451       if (Trunc->getOpcode() != ISD::TRUNCATE)
15452         std::swap(Trunc, RightShift);
15453 
15454       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15455           Trunc->getValueType(0) != MVT::i32 ||
15456           !Trunc->hasOneUse())
15457         return false;
15458       if (RightShift->getOpcode() != ISD::SRL ||
15459           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15460           RightShift->getConstantOperandVal(1) != 32 ||
15461           !RightShift->hasOneUse())
15462         return false;
15463 
15464       SDNode *Trunc2 = *RightShift->use_begin();
15465       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15466           Trunc2->getValueType(0) != MVT::i32 ||
15467           !Trunc2->hasOneUse())
15468         return false;
15469 
15470       SDNode *Bitcast = *Trunc->use_begin();
15471       SDNode *Bitcast2 = *Trunc2->use_begin();
15472 
15473       if (Bitcast->getOpcode() != ISD::BITCAST ||
15474           Bitcast->getValueType(0) != MVT::f32)
15475         return false;
15476       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15477           Bitcast2->getValueType(0) != MVT::f32)
15478         return false;
15479 
15480       if (Subtarget.isLittleEndian())
15481         std::swap(Bitcast, Bitcast2);
15482 
15483       // Bitcast has the second float (in memory-layout order) and Bitcast2
15484       // has the first one.
15485 
15486       SDValue BasePtr = LD->getBasePtr();
15487       if (LD->isIndexed()) {
15488         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15489                "Non-pre-inc AM on PPC?");
15490         BasePtr =
15491           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15492                       LD->getOffset());
15493       }
15494 
15495       auto MMOFlags =
15496           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15497       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15498                                       LD->getPointerInfo(), LD->getAlign(),
15499                                       MMOFlags, LD->getAAInfo());
15500       SDValue AddPtr =
15501         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15502                     BasePtr, DAG.getIntPtrConstant(4, dl));
15503       SDValue FloatLoad2 = DAG.getLoad(
15504           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15505           LD->getPointerInfo().getWithOffset(4),
15506           commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo());
15507 
15508       if (LD->isIndexed()) {
15509         // Note that DAGCombine should re-form any pre-increment load(s) from
15510         // what is produced here if that makes sense.
15511         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15512       }
15513 
15514       DCI.CombineTo(Bitcast2, FloatLoad);
15515       DCI.CombineTo(Bitcast, FloatLoad2);
15516 
15517       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15518                                     SDValue(FloatLoad2.getNode(), 1));
15519       return true;
15520     };
15521 
15522     if (ReplaceTwoFloatLoad())
15523       return SDValue(N, 0);
15524 
15525     EVT MemVT = LD->getMemoryVT();
15526     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15527     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15528     if (LD->isUnindexed() && VT.isVector() &&
15529         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15530           // P8 and later hardware should just use LOAD.
15531           !Subtarget.hasP8Vector() &&
15532           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15533            VT == MVT::v4f32))) &&
15534         LD->getAlign() < ABIAlignment) {
15535       // This is a type-legal unaligned Altivec load.
15536       SDValue Chain = LD->getChain();
15537       SDValue Ptr = LD->getBasePtr();
15538       bool isLittleEndian = Subtarget.isLittleEndian();
15539 
15540       // This implements the loading of unaligned vectors as described in
15541       // the venerable Apple Velocity Engine overview. Specifically:
15542       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15543       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15544       //
15545       // The general idea is to expand a sequence of one or more unaligned
15546       // loads into an alignment-based permutation-control instruction (lvsl
15547       // or lvsr), a series of regular vector loads (which always truncate
15548       // their input address to an aligned address), and a series of
15549       // permutations.  The results of these permutations are the requested
15550       // loaded values.  The trick is that the last "extra" load is not taken
15551       // from the address you might suspect (sizeof(vector) bytes after the
15552       // last requested load), but rather sizeof(vector) - 1 bytes after the
15553       // last requested vector. The point of this is to avoid a page fault if
15554       // the base address happened to be aligned. This works because if the
15555       // base address is aligned, then adding less than a full vector length
15556       // will cause the last vector in the sequence to be (re)loaded.
15557       // Otherwise, the next vector will be fetched as you might suspect was
15558       // necessary.
15559 
15560       // We might be able to reuse the permutation generation from
15561       // a different base address offset from this one by an aligned amount.
15562       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15563       // optimization later.
15564       Intrinsic::ID Intr, IntrLD, IntrPerm;
15565       MVT PermCntlTy, PermTy, LDTy;
15566       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15567                             : Intrinsic::ppc_altivec_lvsl;
15568       IntrLD = Intrinsic::ppc_altivec_lvx;
15569       IntrPerm = Intrinsic::ppc_altivec_vperm;
15570       PermCntlTy = MVT::v16i8;
15571       PermTy = MVT::v4i32;
15572       LDTy = MVT::v4i32;
15573 
15574       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15575 
15576       // Create the new MMO for the new base load. It is like the original MMO,
15577       // but represents an area in memory almost twice the vector size centered
15578       // on the original address. If the address is unaligned, we might start
15579       // reading up to (sizeof(vector)-1) bytes below the address of the
15580       // original unaligned load.
15581       MachineFunction &MF = DAG.getMachineFunction();
15582       MachineMemOperand *BaseMMO =
15583         MF.getMachineMemOperand(LD->getMemOperand(),
15584                                 -(int64_t)MemVT.getStoreSize()+1,
15585                                 2*MemVT.getStoreSize()-1);
15586 
15587       // Create the new base load.
15588       SDValue LDXIntID =
15589           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15590       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15591       SDValue BaseLoad =
15592         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15593                                 DAG.getVTList(PermTy, MVT::Other),
15594                                 BaseLoadOps, LDTy, BaseMMO);
15595 
15596       // Note that the value of IncOffset (which is provided to the next
15597       // load's pointer info offset value, and thus used to calculate the
15598       // alignment), and the value of IncValue (which is actually used to
15599       // increment the pointer value) are different! This is because we
15600       // require the next load to appear to be aligned, even though it
15601       // is actually offset from the base pointer by a lesser amount.
15602       int IncOffset = VT.getSizeInBits() / 8;
15603       int IncValue = IncOffset;
15604 
15605       // Walk (both up and down) the chain looking for another load at the real
15606       // (aligned) offset (the alignment of the other load does not matter in
15607       // this case). If found, then do not use the offset reduction trick, as
15608       // that will prevent the loads from being later combined (as they would
15609       // otherwise be duplicates).
15610       if (!findConsecutiveLoad(LD, DAG))
15611         --IncValue;
15612 
15613       SDValue Increment =
15614           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15615       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15616 
15617       MachineMemOperand *ExtraMMO =
15618         MF.getMachineMemOperand(LD->getMemOperand(),
15619                                 1, 2*MemVT.getStoreSize()-1);
15620       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15621       SDValue ExtraLoad =
15622         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15623                                 DAG.getVTList(PermTy, MVT::Other),
15624                                 ExtraLoadOps, LDTy, ExtraMMO);
15625 
15626       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15627         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15628 
15629       // Because vperm has a big-endian bias, we must reverse the order
15630       // of the input vectors and complement the permute control vector
15631       // when generating little endian code.  We have already handled the
15632       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15633       // and ExtraLoad here.
15634       SDValue Perm;
15635       if (isLittleEndian)
15636         Perm = BuildIntrinsicOp(IntrPerm,
15637                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15638       else
15639         Perm = BuildIntrinsicOp(IntrPerm,
15640                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15641 
15642       if (VT != PermTy)
15643         Perm = Subtarget.hasAltivec()
15644                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15645                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15646                                  DAG.getTargetConstant(1, dl, MVT::i64));
15647                                // second argument is 1 because this rounding
15648                                // is always exact.
15649 
15650       // The output of the permutation is our loaded result, the TokenFactor is
15651       // our new chain.
15652       DCI.CombineTo(N, Perm, TF);
15653       return SDValue(N, 0);
15654     }
15655     }
15656     break;
15657     case ISD::INTRINSIC_WO_CHAIN: {
15658       bool isLittleEndian = Subtarget.isLittleEndian();
15659       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15660       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15661                                            : Intrinsic::ppc_altivec_lvsl);
15662       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15663         SDValue Add = N->getOperand(1);
15664 
15665         int Bits = 4 /* 16 byte alignment */;
15666 
15667         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15668                                   APInt::getAllOnes(Bits /* alignment */)
15669                                       .zext(Add.getScalarValueSizeInBits()))) {
15670           SDNode *BasePtr = Add->getOperand(0).getNode();
15671           for (SDNode *U : BasePtr->uses()) {
15672             if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15673                 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15674               // We've found another LVSL/LVSR, and this address is an aligned
15675               // multiple of that one. The results will be the same, so use the
15676               // one we've just found instead.
15677 
15678               return SDValue(U, 0);
15679             }
15680           }
15681         }
15682 
15683         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15684           SDNode *BasePtr = Add->getOperand(0).getNode();
15685           for (SDNode *U : BasePtr->uses()) {
15686             if (U->getOpcode() == ISD::ADD &&
15687                 isa<ConstantSDNode>(U->getOperand(1)) &&
15688                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15689                  cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15690                         (1ULL << Bits) ==
15691                     0) {
15692               SDNode *OtherAdd = U;
15693               for (SDNode *V : OtherAdd->uses()) {
15694                 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15695                     cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15696                         IID) {
15697                   return SDValue(V, 0);
15698                 }
15699               }
15700             }
15701           }
15702         }
15703       }
15704 
15705       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15706       // Expose the vabsduw/h/b opportunity for down stream
15707       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15708           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15709            IID == Intrinsic::ppc_altivec_vmaxsh ||
15710            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15711         SDValue V1 = N->getOperand(1);
15712         SDValue V2 = N->getOperand(2);
15713         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15714              V1.getSimpleValueType() == MVT::v8i16 ||
15715              V1.getSimpleValueType() == MVT::v16i8) &&
15716             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15717           // (0-a, a)
15718           if (V1.getOpcode() == ISD::SUB &&
15719               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15720               V1.getOperand(1) == V2) {
15721             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15722           }
15723           // (a, 0-a)
15724           if (V2.getOpcode() == ISD::SUB &&
15725               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15726               V2.getOperand(1) == V1) {
15727             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15728           }
15729           // (x-y, y-x)
15730           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15731               V1.getOperand(0) == V2.getOperand(1) &&
15732               V1.getOperand(1) == V2.getOperand(0)) {
15733             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15734           }
15735         }
15736       }
15737     }
15738 
15739     break;
15740   case ISD::INTRINSIC_W_CHAIN:
15741     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15742     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15743     if (Subtarget.needsSwapsForVSXMemOps()) {
15744       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15745       default:
15746         break;
15747       case Intrinsic::ppc_vsx_lxvw4x:
15748       case Intrinsic::ppc_vsx_lxvd2x:
15749         return expandVSXLoadForLE(N, DCI);
15750       }
15751     }
15752     break;
15753   case ISD::INTRINSIC_VOID:
15754     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15755     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15756     if (Subtarget.needsSwapsForVSXMemOps()) {
15757       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15758       default:
15759         break;
15760       case Intrinsic::ppc_vsx_stxvw4x:
15761       case Intrinsic::ppc_vsx_stxvd2x:
15762         return expandVSXStoreForLE(N, DCI);
15763       }
15764     }
15765     break;
15766   case ISD::BSWAP: {
15767     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15768     // For subtargets without LDBRX, we can still do better than the default
15769     // expansion even for 64-bit BSWAP (LOAD).
15770     bool Is64BitBswapOn64BitTgt =
15771         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15772     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15773                                N->getOperand(0).hasOneUse();
15774     if (IsSingleUseNormalLd &&
15775         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15776          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15777       SDValue Load = N->getOperand(0);
15778       LoadSDNode *LD = cast<LoadSDNode>(Load);
15779       // Create the byte-swapping load.
15780       SDValue Ops[] = {
15781         LD->getChain(),    // Chain
15782         LD->getBasePtr(),  // Ptr
15783         DAG.getValueType(N->getValueType(0)) // VT
15784       };
15785       SDValue BSLoad =
15786         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15787                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15788                                               MVT::i64 : MVT::i32, MVT::Other),
15789                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15790 
15791       // If this is an i16 load, insert the truncate.
15792       SDValue ResVal = BSLoad;
15793       if (N->getValueType(0) == MVT::i16)
15794         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15795 
15796       // First, combine the bswap away.  This makes the value produced by the
15797       // load dead.
15798       DCI.CombineTo(N, ResVal);
15799 
15800       // Next, combine the load away, we give it a bogus result value but a real
15801       // chain result.  The result value is dead because the bswap is dead.
15802       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15803 
15804       // Return N so it doesn't get rechecked!
15805       return SDValue(N, 0);
15806     }
15807     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15808     // before legalization so that the BUILD_PAIR is handled correctly.
15809     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15810         !IsSingleUseNormalLd)
15811       return SDValue();
15812     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15813 
15814     // Can't split volatile or atomic loads.
15815     if (!LD->isSimple())
15816       return SDValue();
15817     SDValue BasePtr = LD->getBasePtr();
15818     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15819                              LD->getPointerInfo(), LD->getAlign());
15820     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15821     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15822                           DAG.getIntPtrConstant(4, dl));
15823     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15824         LD->getMemOperand(), 4, 4);
15825     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15826     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15827     SDValue Res;
15828     if (Subtarget.isLittleEndian())
15829       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15830     else
15831       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15832     SDValue TF =
15833         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15834                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15835     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15836     return Res;
15837   }
15838   case PPCISD::VCMP:
15839     // If a VCMP_rec node already exists with exactly the same operands as this
15840     // node, use its result instead of this node (VCMP_rec computes both a CR6
15841     // and a normal output).
15842     //
15843     if (!N->getOperand(0).hasOneUse() &&
15844         !N->getOperand(1).hasOneUse() &&
15845         !N->getOperand(2).hasOneUse()) {
15846 
15847       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15848       SDNode *VCMPrecNode = nullptr;
15849 
15850       SDNode *LHSN = N->getOperand(0).getNode();
15851       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15852            UI != E; ++UI)
15853         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15854             UI->getOperand(1) == N->getOperand(1) &&
15855             UI->getOperand(2) == N->getOperand(2) &&
15856             UI->getOperand(0) == N->getOperand(0)) {
15857           VCMPrecNode = *UI;
15858           break;
15859         }
15860 
15861       // If there is no VCMP_rec node, or if the flag value has a single use,
15862       // don't transform this.
15863       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15864         break;
15865 
15866       // Look at the (necessarily single) use of the flag value.  If it has a
15867       // chain, this transformation is more complex.  Note that multiple things
15868       // could use the value result, which we should ignore.
15869       SDNode *FlagUser = nullptr;
15870       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15871            FlagUser == nullptr; ++UI) {
15872         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15873         SDNode *User = *UI;
15874         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15875           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15876             FlagUser = User;
15877             break;
15878           }
15879         }
15880       }
15881 
15882       // If the user is a MFOCRF instruction, we know this is safe.
15883       // Otherwise we give up for right now.
15884       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15885         return SDValue(VCMPrecNode, 0);
15886     }
15887     break;
15888   case ISD::BR_CC: {
15889     // If this is a branch on an altivec predicate comparison, lower this so
15890     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15891     // lowering is done pre-legalize, because the legalizer lowers the predicate
15892     // compare down to code that is difficult to reassemble.
15893     // This code also handles branches that depend on the result of a store
15894     // conditional.
15895     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15896     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15897 
15898     int CompareOpc;
15899     bool isDot;
15900 
15901     if (!isa<ConstantSDNode>(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE))
15902       break;
15903 
15904     // Since we are doing this pre-legalize, the RHS can be a constant of
15905     // arbitrary bitwidth which may cause issues when trying to get the value
15906     // from the underlying APInt.
15907     auto RHSAPInt = cast<ConstantSDNode>(RHS)->getAPIntValue();
15908     if (!RHSAPInt.isIntN(64))
15909       break;
15910 
15911     unsigned Val = RHSAPInt.getZExtValue();
15912     auto isImpossibleCompare = [&]() {
15913       // If this is a comparison against something other than 0/1, then we know
15914       // that the condition is never/always true.
15915       if (Val != 0 && Val != 1) {
15916         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15917           return N->getOperand(0);
15918         // Always !=, turn it into an unconditional branch.
15919         return DAG.getNode(ISD::BR, dl, MVT::Other,
15920                            N->getOperand(0), N->getOperand(4));
15921       }
15922       return SDValue();
15923     };
15924     // Combine branches fed by store conditional instructions (st[bhwd]cx).
15925     unsigned StoreWidth = 0;
15926     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15927         isStoreConditional(LHS, StoreWidth)) {
15928       if (SDValue Impossible = isImpossibleCompare())
15929         return Impossible;
15930       PPC::Predicate CompOpc;
15931       // eq 0 => ne
15932       // ne 0 => eq
15933       // eq 1 => eq
15934       // ne 1 => ne
15935       if (Val == 0)
15936         CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ;
15937       else
15938         CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE;
15939 
15940       SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3),
15941                        DAG.getConstant(StoreWidth, dl, MVT::i32)};
15942       auto *MemNode = cast<MemSDNode>(LHS);
15943       SDValue ConstSt = DAG.getMemIntrinsicNode(
15944           PPCISD::STORE_COND, dl,
15945           DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops,
15946           MemNode->getMemoryVT(), MemNode->getMemOperand());
15947 
15948       SDValue InChain;
15949       // Unchain the branch from the original store conditional.
15950       if (N->getOperand(0) == LHS.getValue(1))
15951         InChain = LHS.getOperand(0);
15952       else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) {
15953         SmallVector<SDValue, 4> InChains;
15954         SDValue InTF = N->getOperand(0);
15955         for (int i = 0, e = InTF.getNumOperands(); i < e; i++)
15956           if (InTF.getOperand(i) != LHS.getValue(1))
15957             InChains.push_back(InTF.getOperand(i));
15958         InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains);
15959       }
15960 
15961       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain,
15962                          DAG.getConstant(CompOpc, dl, MVT::i32),
15963                          DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4),
15964                          ConstSt.getValue(2));
15965     }
15966 
15967     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15968         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15969       assert(isDot && "Can't compare against a vector result!");
15970 
15971       if (SDValue Impossible = isImpossibleCompare())
15972         return Impossible;
15973 
15974       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15975       // Create the PPCISD altivec 'dot' comparison node.
15976       SDValue Ops[] = {
15977         LHS.getOperand(2),  // LHS of compare
15978         LHS.getOperand(3),  // RHS of compare
15979         DAG.getConstant(CompareOpc, dl, MVT::i32)
15980       };
15981       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15982       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15983 
15984       // Unpack the result based on how the target uses it.
15985       PPC::Predicate CompOpc;
15986       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15987       default:  // Can't happen, don't crash on invalid number though.
15988       case 0:   // Branch on the value of the EQ bit of CR6.
15989         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15990         break;
15991       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15992         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15993         break;
15994       case 2:   // Branch on the value of the LT bit of CR6.
15995         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15996         break;
15997       case 3:   // Branch on the inverted value of the LT bit of CR6.
15998         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15999         break;
16000       }
16001 
16002       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
16003                          DAG.getConstant(CompOpc, dl, MVT::i32),
16004                          DAG.getRegister(PPC::CR6, MVT::i32),
16005                          N->getOperand(4), CompNode.getValue(1));
16006     }
16007     break;
16008   }
16009   case ISD::BUILD_VECTOR:
16010     return DAGCombineBuildVector(N, DCI);
16011   case ISD::ABS:
16012     return combineABS(N, DCI);
16013   case ISD::VSELECT:
16014     return combineVSelect(N, DCI);
16015   }
16016 
16017   return SDValue();
16018 }
16019 
16020 SDValue
16021 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
16022                                  SelectionDAG &DAG,
16023                                  SmallVectorImpl<SDNode *> &Created) const {
16024   // fold (sdiv X, pow2)
16025   EVT VT = N->getValueType(0);
16026   if (VT == MVT::i64 && !Subtarget.isPPC64())
16027     return SDValue();
16028   if ((VT != MVT::i32 && VT != MVT::i64) ||
16029       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
16030     return SDValue();
16031 
16032   SDLoc DL(N);
16033   SDValue N0 = N->getOperand(0);
16034 
16035   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
16036   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
16037   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
16038 
16039   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
16040   Created.push_back(Op.getNode());
16041 
16042   if (IsNegPow2) {
16043     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
16044     Created.push_back(Op.getNode());
16045   }
16046 
16047   return Op;
16048 }
16049 
16050 //===----------------------------------------------------------------------===//
16051 // Inline Assembly Support
16052 //===----------------------------------------------------------------------===//
16053 
16054 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
16055                                                       KnownBits &Known,
16056                                                       const APInt &DemandedElts,
16057                                                       const SelectionDAG &DAG,
16058                                                       unsigned Depth) const {
16059   Known.resetAll();
16060   switch (Op.getOpcode()) {
16061   default: break;
16062   case PPCISD::LBRX: {
16063     // lhbrx is known to have the top bits cleared out.
16064     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
16065       Known.Zero = 0xFFFF0000;
16066     break;
16067   }
16068   case ISD::INTRINSIC_WO_CHAIN: {
16069     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
16070     default: break;
16071     case Intrinsic::ppc_altivec_vcmpbfp_p:
16072     case Intrinsic::ppc_altivec_vcmpeqfp_p:
16073     case Intrinsic::ppc_altivec_vcmpequb_p:
16074     case Intrinsic::ppc_altivec_vcmpequh_p:
16075     case Intrinsic::ppc_altivec_vcmpequw_p:
16076     case Intrinsic::ppc_altivec_vcmpequd_p:
16077     case Intrinsic::ppc_altivec_vcmpequq_p:
16078     case Intrinsic::ppc_altivec_vcmpgefp_p:
16079     case Intrinsic::ppc_altivec_vcmpgtfp_p:
16080     case Intrinsic::ppc_altivec_vcmpgtsb_p:
16081     case Intrinsic::ppc_altivec_vcmpgtsh_p:
16082     case Intrinsic::ppc_altivec_vcmpgtsw_p:
16083     case Intrinsic::ppc_altivec_vcmpgtsd_p:
16084     case Intrinsic::ppc_altivec_vcmpgtsq_p:
16085     case Intrinsic::ppc_altivec_vcmpgtub_p:
16086     case Intrinsic::ppc_altivec_vcmpgtuh_p:
16087     case Intrinsic::ppc_altivec_vcmpgtuw_p:
16088     case Intrinsic::ppc_altivec_vcmpgtud_p:
16089     case Intrinsic::ppc_altivec_vcmpgtuq_p:
16090       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
16091       break;
16092     }
16093     break;
16094   }
16095   case ISD::INTRINSIC_W_CHAIN: {
16096     switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
16097     default:
16098       break;
16099     case Intrinsic::ppc_load2r:
16100       // Top bits are cleared for load2r (which is the same as lhbrx).
16101       Known.Zero = 0xFFFF0000;
16102       break;
16103     }
16104     break;
16105   }
16106   }
16107 }
16108 
16109 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
16110   switch (Subtarget.getCPUDirective()) {
16111   default: break;
16112   case PPC::DIR_970:
16113   case PPC::DIR_PWR4:
16114   case PPC::DIR_PWR5:
16115   case PPC::DIR_PWR5X:
16116   case PPC::DIR_PWR6:
16117   case PPC::DIR_PWR6X:
16118   case PPC::DIR_PWR7:
16119   case PPC::DIR_PWR8:
16120   case PPC::DIR_PWR9:
16121   case PPC::DIR_PWR10:
16122   case PPC::DIR_PWR_FUTURE: {
16123     if (!ML)
16124       break;
16125 
16126     if (!DisableInnermostLoopAlign32) {
16127       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
16128       // so that we can decrease cache misses and branch-prediction misses.
16129       // Actual alignment of the loop will depend on the hotness check and other
16130       // logic in alignBlocks.
16131       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
16132         return Align(32);
16133     }
16134 
16135     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
16136 
16137     // For small loops (between 5 and 8 instructions), align to a 32-byte
16138     // boundary so that the entire loop fits in one instruction-cache line.
16139     uint64_t LoopSize = 0;
16140     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
16141       for (const MachineInstr &J : **I) {
16142         LoopSize += TII->getInstSizeInBytes(J);
16143         if (LoopSize > 32)
16144           break;
16145       }
16146 
16147     if (LoopSize > 16 && LoopSize <= 32)
16148       return Align(32);
16149 
16150     break;
16151   }
16152   }
16153 
16154   return TargetLowering::getPrefLoopAlignment(ML);
16155 }
16156 
16157 /// getConstraintType - Given a constraint, return the type of
16158 /// constraint it is for this target.
16159 PPCTargetLowering::ConstraintType
16160 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
16161   if (Constraint.size() == 1) {
16162     switch (Constraint[0]) {
16163     default: break;
16164     case 'b':
16165     case 'r':
16166     case 'f':
16167     case 'd':
16168     case 'v':
16169     case 'y':
16170       return C_RegisterClass;
16171     case 'Z':
16172       // FIXME: While Z does indicate a memory constraint, it specifically
16173       // indicates an r+r address (used in conjunction with the 'y' modifier
16174       // in the replacement string). Currently, we're forcing the base
16175       // register to be r0 in the asm printer (which is interpreted as zero)
16176       // and forming the complete address in the second register. This is
16177       // suboptimal.
16178       return C_Memory;
16179     }
16180   } else if (Constraint == "wc") { // individual CR bits.
16181     return C_RegisterClass;
16182   } else if (Constraint == "wa" || Constraint == "wd" ||
16183              Constraint == "wf" || Constraint == "ws" ||
16184              Constraint == "wi" || Constraint == "ww") {
16185     return C_RegisterClass; // VSX registers.
16186   }
16187   return TargetLowering::getConstraintType(Constraint);
16188 }
16189 
16190 /// Examine constraint type and operand type and determine a weight value.
16191 /// This object must already have been set up with the operand type
16192 /// and the current alternative constraint selected.
16193 TargetLowering::ConstraintWeight
16194 PPCTargetLowering::getSingleConstraintMatchWeight(
16195     AsmOperandInfo &info, const char *constraint) const {
16196   ConstraintWeight weight = CW_Invalid;
16197   Value *CallOperandVal = info.CallOperandVal;
16198     // If we don't have a value, we can't do a match,
16199     // but allow it at the lowest weight.
16200   if (!CallOperandVal)
16201     return CW_Default;
16202   Type *type = CallOperandVal->getType();
16203 
16204   // Look at the constraint type.
16205   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
16206     return CW_Register; // an individual CR bit.
16207   else if ((StringRef(constraint) == "wa" ||
16208             StringRef(constraint) == "wd" ||
16209             StringRef(constraint) == "wf") &&
16210            type->isVectorTy())
16211     return CW_Register;
16212   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
16213     return CW_Register; // just hold 64-bit integers data.
16214   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
16215     return CW_Register;
16216   else if (StringRef(constraint) == "ww" && type->isFloatTy())
16217     return CW_Register;
16218 
16219   switch (*constraint) {
16220   default:
16221     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16222     break;
16223   case 'b':
16224     if (type->isIntegerTy())
16225       weight = CW_Register;
16226     break;
16227   case 'f':
16228     if (type->isFloatTy())
16229       weight = CW_Register;
16230     break;
16231   case 'd':
16232     if (type->isDoubleTy())
16233       weight = CW_Register;
16234     break;
16235   case 'v':
16236     if (type->isVectorTy())
16237       weight = CW_Register;
16238     break;
16239   case 'y':
16240     weight = CW_Register;
16241     break;
16242   case 'Z':
16243     weight = CW_Memory;
16244     break;
16245   }
16246   return weight;
16247 }
16248 
16249 std::pair<unsigned, const TargetRegisterClass *>
16250 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
16251                                                 StringRef Constraint,
16252                                                 MVT VT) const {
16253   if (Constraint.size() == 1) {
16254     // GCC RS6000 Constraint Letters
16255     switch (Constraint[0]) {
16256     case 'b':   // R1-R31
16257       if (VT == MVT::i64 && Subtarget.isPPC64())
16258         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
16259       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
16260     case 'r':   // R0-R31
16261       if (VT == MVT::i64 && Subtarget.isPPC64())
16262         return std::make_pair(0U, &PPC::G8RCRegClass);
16263       return std::make_pair(0U, &PPC::GPRCRegClass);
16264     // 'd' and 'f' constraints are both defined to be "the floating point
16265     // registers", where one is for 32-bit and the other for 64-bit. We don't
16266     // really care overly much here so just give them all the same reg classes.
16267     case 'd':
16268     case 'f':
16269       if (Subtarget.hasSPE()) {
16270         if (VT == MVT::f32 || VT == MVT::i32)
16271           return std::make_pair(0U, &PPC::GPRCRegClass);
16272         if (VT == MVT::f64 || VT == MVT::i64)
16273           return std::make_pair(0U, &PPC::SPERCRegClass);
16274       } else {
16275         if (VT == MVT::f32 || VT == MVT::i32)
16276           return std::make_pair(0U, &PPC::F4RCRegClass);
16277         if (VT == MVT::f64 || VT == MVT::i64)
16278           return std::make_pair(0U, &PPC::F8RCRegClass);
16279       }
16280       break;
16281     case 'v':
16282       if (Subtarget.hasAltivec() && VT.isVector())
16283         return std::make_pair(0U, &PPC::VRRCRegClass);
16284       else if (Subtarget.hasVSX())
16285         // Scalars in Altivec registers only make sense with VSX.
16286         return std::make_pair(0U, &PPC::VFRCRegClass);
16287       break;
16288     case 'y':   // crrc
16289       return std::make_pair(0U, &PPC::CRRCRegClass);
16290     }
16291   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
16292     // An individual CR bit.
16293     return std::make_pair(0U, &PPC::CRBITRCRegClass);
16294   } else if ((Constraint == "wa" || Constraint == "wd" ||
16295              Constraint == "wf" || Constraint == "wi") &&
16296              Subtarget.hasVSX()) {
16297     // A VSX register for either a scalar (FP) or vector. There is no
16298     // support for single precision scalars on subtargets prior to Power8.
16299     if (VT.isVector())
16300       return std::make_pair(0U, &PPC::VSRCRegClass);
16301     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16302       return std::make_pair(0U, &PPC::VSSRCRegClass);
16303     return std::make_pair(0U, &PPC::VSFRCRegClass);
16304   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
16305     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16306       return std::make_pair(0U, &PPC::VSSRCRegClass);
16307     else
16308       return std::make_pair(0U, &PPC::VSFRCRegClass);
16309   } else if (Constraint == "lr") {
16310     if (VT == MVT::i64)
16311       return std::make_pair(0U, &PPC::LR8RCRegClass);
16312     else
16313       return std::make_pair(0U, &PPC::LRRCRegClass);
16314   }
16315 
16316   // Handle special cases of physical registers that are not properly handled
16317   // by the base class.
16318   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16319     // If we name a VSX register, we can't defer to the base class because it
16320     // will not recognize the correct register (their names will be VSL{0-31}
16321     // and V{0-31} so they won't match). So we match them here.
16322     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16323       int VSNum = atoi(Constraint.data() + 3);
16324       assert(VSNum >= 0 && VSNum <= 63 &&
16325              "Attempted to access a vsr out of range");
16326       if (VSNum < 32)
16327         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16328       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16329     }
16330 
16331     // For float registers, we can't defer to the base class as it will match
16332     // the SPILLTOVSRRC class.
16333     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16334       int RegNum = atoi(Constraint.data() + 2);
16335       if (RegNum > 31 || RegNum < 0)
16336         report_fatal_error("Invalid floating point register number");
16337       if (VT == MVT::f32 || VT == MVT::i32)
16338         return Subtarget.hasSPE()
16339                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16340                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16341       if (VT == MVT::f64 || VT == MVT::i64)
16342         return Subtarget.hasSPE()
16343                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16344                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16345     }
16346   }
16347 
16348   std::pair<unsigned, const TargetRegisterClass *> R =
16349       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16350 
16351   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16352   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16353   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16354   // register.
16355   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16356   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16357   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16358       PPC::GPRCRegClass.contains(R.first))
16359     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16360                             PPC::sub_32, &PPC::G8RCRegClass),
16361                           &PPC::G8RCRegClass);
16362 
16363   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16364   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16365     R.first = PPC::CR0;
16366     R.second = &PPC::CRRCRegClass;
16367   }
16368   // FIXME: This warning should ideally be emitted in the front end.
16369   const auto &TM = getTargetMachine();
16370   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16371     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16372          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16373         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16374       errs() << "warning: vector registers 20 to 32 are reserved in the "
16375                 "default AIX AltiVec ABI and cannot be used\n";
16376   }
16377 
16378   return R;
16379 }
16380 
16381 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16382 /// vector.  If it is invalid, don't add anything to Ops.
16383 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16384                                                      std::string &Constraint,
16385                                                      std::vector<SDValue>&Ops,
16386                                                      SelectionDAG &DAG) const {
16387   SDValue Result;
16388 
16389   // Only support length 1 constraints.
16390   if (Constraint.length() > 1) return;
16391 
16392   char Letter = Constraint[0];
16393   switch (Letter) {
16394   default: break;
16395   case 'I':
16396   case 'J':
16397   case 'K':
16398   case 'L':
16399   case 'M':
16400   case 'N':
16401   case 'O':
16402   case 'P': {
16403     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16404     if (!CST) return; // Must be an immediate to match.
16405     SDLoc dl(Op);
16406     int64_t Value = CST->getSExtValue();
16407     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16408                          // numbers are printed as such.
16409     switch (Letter) {
16410     default: llvm_unreachable("Unknown constraint letter!");
16411     case 'I':  // "I" is a signed 16-bit constant.
16412       if (isInt<16>(Value))
16413         Result = DAG.getTargetConstant(Value, dl, TCVT);
16414       break;
16415     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16416       if (isShiftedUInt<16, 16>(Value))
16417         Result = DAG.getTargetConstant(Value, dl, TCVT);
16418       break;
16419     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16420       if (isShiftedInt<16, 16>(Value))
16421         Result = DAG.getTargetConstant(Value, dl, TCVT);
16422       break;
16423     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16424       if (isUInt<16>(Value))
16425         Result = DAG.getTargetConstant(Value, dl, TCVT);
16426       break;
16427     case 'M':  // "M" is a constant that is greater than 31.
16428       if (Value > 31)
16429         Result = DAG.getTargetConstant(Value, dl, TCVT);
16430       break;
16431     case 'N':  // "N" is a positive constant that is an exact power of two.
16432       if (Value > 0 && isPowerOf2_64(Value))
16433         Result = DAG.getTargetConstant(Value, dl, TCVT);
16434       break;
16435     case 'O':  // "O" is the constant zero.
16436       if (Value == 0)
16437         Result = DAG.getTargetConstant(Value, dl, TCVT);
16438       break;
16439     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16440       if (isInt<16>(-Value))
16441         Result = DAG.getTargetConstant(Value, dl, TCVT);
16442       break;
16443     }
16444     break;
16445   }
16446   }
16447 
16448   if (Result.getNode()) {
16449     Ops.push_back(Result);
16450     return;
16451   }
16452 
16453   // Handle standard constraint letters.
16454   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16455 }
16456 
16457 void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I,
16458                                               SmallVectorImpl<SDValue> &Ops,
16459                                               SelectionDAG &DAG) const {
16460   if (I.getNumOperands() <= 1)
16461     return;
16462   if (!isa<ConstantSDNode>(Ops[1].getNode()))
16463     return;
16464   auto IntrinsicID = cast<ConstantSDNode>(Ops[1].getNode())->getZExtValue();
16465   if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
16466       IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap)
16467     return;
16468 
16469   if (I.hasMetadata("annotation")) {
16470     MDNode *MDN = I.getMetadata("annotation");
16471     Ops.push_back(DAG.getMDNode(MDN));
16472   }
16473 }
16474 
16475 // isLegalAddressingMode - Return true if the addressing mode represented
16476 // by AM is legal for this target, for a load/store of the specified type.
16477 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16478                                               const AddrMode &AM, Type *Ty,
16479                                               unsigned AS,
16480                                               Instruction *I) const {
16481   // Vector type r+i form is supported since power9 as DQ form. We don't check
16482   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16483   // imm form is preferred and the offset can be adjusted to use imm form later
16484   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16485   // max offset to check legal addressing mode, we should be a little aggressive
16486   // to contain other offsets for that LSRUse.
16487   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16488     return false;
16489 
16490   // PPC allows a sign-extended 16-bit immediate field.
16491   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16492     return false;
16493 
16494   // No global is ever allowed as a base.
16495   if (AM.BaseGV)
16496     return false;
16497 
16498   // PPC only support r+r,
16499   switch (AM.Scale) {
16500   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16501     break;
16502   case 1:
16503     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16504       return false;
16505     // Otherwise we have r+r or r+i.
16506     break;
16507   case 2:
16508     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16509       return false;
16510     // Allow 2*r as r+r.
16511     break;
16512   default:
16513     // No other scales are supported.
16514     return false;
16515   }
16516 
16517   return true;
16518 }
16519 
16520 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16521                                            SelectionDAG &DAG) const {
16522   MachineFunction &MF = DAG.getMachineFunction();
16523   MachineFrameInfo &MFI = MF.getFrameInfo();
16524   MFI.setReturnAddressIsTaken(true);
16525 
16526   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16527     return SDValue();
16528 
16529   SDLoc dl(Op);
16530   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16531 
16532   // Make sure the function does not optimize away the store of the RA to
16533   // the stack.
16534   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16535   FuncInfo->setLRStoreRequired();
16536   bool isPPC64 = Subtarget.isPPC64();
16537   auto PtrVT = getPointerTy(MF.getDataLayout());
16538 
16539   if (Depth > 0) {
16540     // The link register (return address) is saved in the caller's frame
16541     // not the callee's stack frame. So we must get the caller's frame
16542     // address and load the return address at the LR offset from there.
16543     SDValue FrameAddr =
16544         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16545                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16546     SDValue Offset =
16547         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16548                         isPPC64 ? MVT::i64 : MVT::i32);
16549     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16550                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16551                        MachinePointerInfo());
16552   }
16553 
16554   // Just load the return address off the stack.
16555   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16556   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16557                      MachinePointerInfo());
16558 }
16559 
16560 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16561                                           SelectionDAG &DAG) const {
16562   SDLoc dl(Op);
16563   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16564 
16565   MachineFunction &MF = DAG.getMachineFunction();
16566   MachineFrameInfo &MFI = MF.getFrameInfo();
16567   MFI.setFrameAddressIsTaken(true);
16568 
16569   EVT PtrVT = getPointerTy(MF.getDataLayout());
16570   bool isPPC64 = PtrVT == MVT::i64;
16571 
16572   // Naked functions never have a frame pointer, and so we use r1. For all
16573   // other functions, this decision must be delayed until during PEI.
16574   unsigned FrameReg;
16575   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16576     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16577   else
16578     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16579 
16580   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16581                                          PtrVT);
16582   while (Depth--)
16583     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16584                             FrameAddr, MachinePointerInfo());
16585   return FrameAddr;
16586 }
16587 
16588 // FIXME? Maybe this could be a TableGen attribute on some registers and
16589 // this table could be generated automatically from RegInfo.
16590 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16591                                               const MachineFunction &MF) const {
16592   bool isPPC64 = Subtarget.isPPC64();
16593 
16594   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16595   if (!is64Bit && VT != LLT::scalar(32))
16596     report_fatal_error("Invalid register global variable type");
16597 
16598   Register Reg = StringSwitch<Register>(RegName)
16599                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16600                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16601                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16602                      .Default(Register());
16603 
16604   if (Reg)
16605     return Reg;
16606   report_fatal_error("Invalid register name global variable");
16607 }
16608 
16609 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16610   // 32-bit SVR4 ABI access everything as got-indirect.
16611   if (Subtarget.is32BitELFABI())
16612     return true;
16613 
16614   // AIX accesses everything indirectly through the TOC, which is similar to
16615   // the GOT.
16616   if (Subtarget.isAIXABI())
16617     return true;
16618 
16619   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16620   // If it is small or large code model, module locals are accessed
16621   // indirectly by loading their address from .toc/.got.
16622   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16623     return true;
16624 
16625   // JumpTable and BlockAddress are accessed as got-indirect.
16626   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16627     return true;
16628 
16629   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16630     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16631 
16632   return false;
16633 }
16634 
16635 bool
16636 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16637   // The PowerPC target isn't yet aware of offsets.
16638   return false;
16639 }
16640 
16641 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16642                                            const CallInst &I,
16643                                            MachineFunction &MF,
16644                                            unsigned Intrinsic) const {
16645   switch (Intrinsic) {
16646   case Intrinsic::ppc_atomicrmw_xchg_i128:
16647   case Intrinsic::ppc_atomicrmw_add_i128:
16648   case Intrinsic::ppc_atomicrmw_sub_i128:
16649   case Intrinsic::ppc_atomicrmw_nand_i128:
16650   case Intrinsic::ppc_atomicrmw_and_i128:
16651   case Intrinsic::ppc_atomicrmw_or_i128:
16652   case Intrinsic::ppc_atomicrmw_xor_i128:
16653   case Intrinsic::ppc_cmpxchg_i128:
16654     Info.opc = ISD::INTRINSIC_W_CHAIN;
16655     Info.memVT = MVT::i128;
16656     Info.ptrVal = I.getArgOperand(0);
16657     Info.offset = 0;
16658     Info.align = Align(16);
16659     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16660                  MachineMemOperand::MOVolatile;
16661     return true;
16662   case Intrinsic::ppc_atomic_load_i128:
16663     Info.opc = ISD::INTRINSIC_W_CHAIN;
16664     Info.memVT = MVT::i128;
16665     Info.ptrVal = I.getArgOperand(0);
16666     Info.offset = 0;
16667     Info.align = Align(16);
16668     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16669     return true;
16670   case Intrinsic::ppc_atomic_store_i128:
16671     Info.opc = ISD::INTRINSIC_VOID;
16672     Info.memVT = MVT::i128;
16673     Info.ptrVal = I.getArgOperand(2);
16674     Info.offset = 0;
16675     Info.align = Align(16);
16676     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16677     return true;
16678   case Intrinsic::ppc_altivec_lvx:
16679   case Intrinsic::ppc_altivec_lvxl:
16680   case Intrinsic::ppc_altivec_lvebx:
16681   case Intrinsic::ppc_altivec_lvehx:
16682   case Intrinsic::ppc_altivec_lvewx:
16683   case Intrinsic::ppc_vsx_lxvd2x:
16684   case Intrinsic::ppc_vsx_lxvw4x:
16685   case Intrinsic::ppc_vsx_lxvd2x_be:
16686   case Intrinsic::ppc_vsx_lxvw4x_be:
16687   case Intrinsic::ppc_vsx_lxvl:
16688   case Intrinsic::ppc_vsx_lxvll: {
16689     EVT VT;
16690     switch (Intrinsic) {
16691     case Intrinsic::ppc_altivec_lvebx:
16692       VT = MVT::i8;
16693       break;
16694     case Intrinsic::ppc_altivec_lvehx:
16695       VT = MVT::i16;
16696       break;
16697     case Intrinsic::ppc_altivec_lvewx:
16698       VT = MVT::i32;
16699       break;
16700     case Intrinsic::ppc_vsx_lxvd2x:
16701     case Intrinsic::ppc_vsx_lxvd2x_be:
16702       VT = MVT::v2f64;
16703       break;
16704     default:
16705       VT = MVT::v4i32;
16706       break;
16707     }
16708 
16709     Info.opc = ISD::INTRINSIC_W_CHAIN;
16710     Info.memVT = VT;
16711     Info.ptrVal = I.getArgOperand(0);
16712     Info.offset = -VT.getStoreSize()+1;
16713     Info.size = 2*VT.getStoreSize()-1;
16714     Info.align = Align(1);
16715     Info.flags = MachineMemOperand::MOLoad;
16716     return true;
16717   }
16718   case Intrinsic::ppc_altivec_stvx:
16719   case Intrinsic::ppc_altivec_stvxl:
16720   case Intrinsic::ppc_altivec_stvebx:
16721   case Intrinsic::ppc_altivec_stvehx:
16722   case Intrinsic::ppc_altivec_stvewx:
16723   case Intrinsic::ppc_vsx_stxvd2x:
16724   case Intrinsic::ppc_vsx_stxvw4x:
16725   case Intrinsic::ppc_vsx_stxvd2x_be:
16726   case Intrinsic::ppc_vsx_stxvw4x_be:
16727   case Intrinsic::ppc_vsx_stxvl:
16728   case Intrinsic::ppc_vsx_stxvll: {
16729     EVT VT;
16730     switch (Intrinsic) {
16731     case Intrinsic::ppc_altivec_stvebx:
16732       VT = MVT::i8;
16733       break;
16734     case Intrinsic::ppc_altivec_stvehx:
16735       VT = MVT::i16;
16736       break;
16737     case Intrinsic::ppc_altivec_stvewx:
16738       VT = MVT::i32;
16739       break;
16740     case Intrinsic::ppc_vsx_stxvd2x:
16741     case Intrinsic::ppc_vsx_stxvd2x_be:
16742       VT = MVT::v2f64;
16743       break;
16744     default:
16745       VT = MVT::v4i32;
16746       break;
16747     }
16748 
16749     Info.opc = ISD::INTRINSIC_VOID;
16750     Info.memVT = VT;
16751     Info.ptrVal = I.getArgOperand(1);
16752     Info.offset = -VT.getStoreSize()+1;
16753     Info.size = 2*VT.getStoreSize()-1;
16754     Info.align = Align(1);
16755     Info.flags = MachineMemOperand::MOStore;
16756     return true;
16757   }
16758   case Intrinsic::ppc_stdcx:
16759   case Intrinsic::ppc_stwcx:
16760   case Intrinsic::ppc_sthcx:
16761   case Intrinsic::ppc_stbcx: {
16762     EVT VT;
16763     auto Alignment = Align(8);
16764     switch (Intrinsic) {
16765     case Intrinsic::ppc_stdcx:
16766       VT = MVT::i64;
16767       break;
16768     case Intrinsic::ppc_stwcx:
16769       VT = MVT::i32;
16770       Alignment = Align(4);
16771       break;
16772     case Intrinsic::ppc_sthcx:
16773       VT = MVT::i16;
16774       Alignment = Align(2);
16775       break;
16776     case Intrinsic::ppc_stbcx:
16777       VT = MVT::i8;
16778       Alignment = Align(1);
16779       break;
16780     }
16781     Info.opc = ISD::INTRINSIC_W_CHAIN;
16782     Info.memVT = VT;
16783     Info.ptrVal = I.getArgOperand(0);
16784     Info.offset = 0;
16785     Info.align = Alignment;
16786     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16787     return true;
16788   }
16789   default:
16790     break;
16791   }
16792 
16793   return false;
16794 }
16795 
16796 /// It returns EVT::Other if the type should be determined using generic
16797 /// target-independent logic.
16798 EVT PPCTargetLowering::getOptimalMemOpType(
16799     const MemOp &Op, const AttributeList &FuncAttributes) const {
16800   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16801     // We should use Altivec/VSX loads and stores when available. For unaligned
16802     // addresses, unaligned VSX loads are only fast starting with the P8.
16803     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16804         (Op.isAligned(Align(16)) ||
16805          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16806       return MVT::v4i32;
16807   }
16808 
16809   if (Subtarget.isPPC64()) {
16810     return MVT::i64;
16811   }
16812 
16813   return MVT::i32;
16814 }
16815 
16816 /// Returns true if it is beneficial to convert a load of a constant
16817 /// to just the constant itself.
16818 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16819                                                           Type *Ty) const {
16820   assert(Ty->isIntegerTy());
16821 
16822   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16823   return !(BitSize == 0 || BitSize > 64);
16824 }
16825 
16826 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16827   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16828     return false;
16829   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16830   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16831   return NumBits1 == 64 && NumBits2 == 32;
16832 }
16833 
16834 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16835   if (!VT1.isInteger() || !VT2.isInteger())
16836     return false;
16837   unsigned NumBits1 = VT1.getSizeInBits();
16838   unsigned NumBits2 = VT2.getSizeInBits();
16839   return NumBits1 == 64 && NumBits2 == 32;
16840 }
16841 
16842 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16843   // Generally speaking, zexts are not free, but they are free when they can be
16844   // folded with other operations.
16845   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16846     EVT MemVT = LD->getMemoryVT();
16847     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16848          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16849         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16850          LD->getExtensionType() == ISD::ZEXTLOAD))
16851       return true;
16852   }
16853 
16854   // FIXME: Add other cases...
16855   //  - 32-bit shifts with a zext to i64
16856   //  - zext after ctlz, bswap, etc.
16857   //  - zext after and by a constant mask
16858 
16859   return TargetLowering::isZExtFree(Val, VT2);
16860 }
16861 
16862 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16863   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16864          "invalid fpext types");
16865   // Extending to float128 is not free.
16866   if (DestVT == MVT::f128)
16867     return false;
16868   return true;
16869 }
16870 
16871 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16872   return isInt<16>(Imm) || isUInt<16>(Imm);
16873 }
16874 
16875 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16876   return isInt<16>(Imm) || isUInt<16>(Imm);
16877 }
16878 
16879 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16880                                                        MachineMemOperand::Flags,
16881                                                        unsigned *Fast) const {
16882   if (DisablePPCUnaligned)
16883     return false;
16884 
16885   // PowerPC supports unaligned memory access for simple non-vector types.
16886   // Although accessing unaligned addresses is not as efficient as accessing
16887   // aligned addresses, it is generally more efficient than manual expansion,
16888   // and generally only traps for software emulation when crossing page
16889   // boundaries.
16890 
16891   if (!VT.isSimple())
16892     return false;
16893 
16894   if (VT.isFloatingPoint() && !VT.isVector() &&
16895       !Subtarget.allowsUnalignedFPAccess())
16896     return false;
16897 
16898   if (VT.getSimpleVT().isVector()) {
16899     if (Subtarget.hasVSX()) {
16900       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16901           VT != MVT::v4f32 && VT != MVT::v4i32)
16902         return false;
16903     } else {
16904       return false;
16905     }
16906   }
16907 
16908   if (VT == MVT::ppcf128)
16909     return false;
16910 
16911   if (Fast)
16912     *Fast = 1;
16913 
16914   return true;
16915 }
16916 
16917 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16918                                                SDValue C) const {
16919   // Check integral scalar types.
16920   if (!VT.isScalarInteger())
16921     return false;
16922   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16923     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16924       return false;
16925     // This transformation will generate >= 2 operations. But the following
16926     // cases will generate <= 2 instructions during ISEL. So exclude them.
16927     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16928     // HW instruction, ie. MULLI
16929     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16930     // instruction is needed than case 1, ie. MULLI and RLDICR
16931     int64_t Imm = ConstNode->getSExtValue();
16932     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16933     Imm >>= Shift;
16934     if (isInt<16>(Imm))
16935       return false;
16936     uint64_t UImm = static_cast<uint64_t>(Imm);
16937     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16938         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16939       return true;
16940   }
16941   return false;
16942 }
16943 
16944 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16945                                                    EVT VT) const {
16946   return isFMAFasterThanFMulAndFAdd(
16947       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16948 }
16949 
16950 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16951                                                    Type *Ty) const {
16952   if (Subtarget.hasSPE())
16953     return false;
16954   switch (Ty->getScalarType()->getTypeID()) {
16955   case Type::FloatTyID:
16956   case Type::DoubleTyID:
16957     return true;
16958   case Type::FP128TyID:
16959     return Subtarget.hasP9Vector();
16960   default:
16961     return false;
16962   }
16963 }
16964 
16965 // FIXME: add more patterns which are not profitable to hoist.
16966 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16967   if (!I->hasOneUse())
16968     return true;
16969 
16970   Instruction *User = I->user_back();
16971   assert(User && "A single use instruction with no uses.");
16972 
16973   switch (I->getOpcode()) {
16974   case Instruction::FMul: {
16975     // Don't break FMA, PowerPC prefers FMA.
16976     if (User->getOpcode() != Instruction::FSub &&
16977         User->getOpcode() != Instruction::FAdd)
16978       return true;
16979 
16980     const TargetOptions &Options = getTargetMachine().Options;
16981     const Function *F = I->getFunction();
16982     const DataLayout &DL = F->getParent()->getDataLayout();
16983     Type *Ty = User->getOperand(0)->getType();
16984 
16985     return !(
16986         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16987         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16988         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16989   }
16990   case Instruction::Load: {
16991     // Don't break "store (load float*)" pattern, this pattern will be combined
16992     // to "store (load int32)" in later InstCombine pass. See function
16993     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16994     // cycles than loading a 32 bit integer.
16995     LoadInst *LI = cast<LoadInst>(I);
16996     // For the loads that combineLoadToOperationType does nothing, like
16997     // ordered load, it should be profitable to hoist them.
16998     // For swifterror load, it can only be used for pointer to pointer type, so
16999     // later type check should get rid of this case.
17000     if (!LI->isUnordered())
17001       return true;
17002 
17003     if (User->getOpcode() != Instruction::Store)
17004       return true;
17005 
17006     if (I->getType()->getTypeID() != Type::FloatTyID)
17007       return true;
17008 
17009     return false;
17010   }
17011   default:
17012     return true;
17013   }
17014   return true;
17015 }
17016 
17017 const MCPhysReg *
17018 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
17019   // LR is a callee-save register, but we must treat it as clobbered by any call
17020   // site. Hence we include LR in the scratch registers, which are in turn added
17021   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
17022   // to CTR, which is used by any indirect call.
17023   static const MCPhysReg ScratchRegs[] = {
17024     PPC::X12, PPC::LR8, PPC::CTR8, 0
17025   };
17026 
17027   return ScratchRegs;
17028 }
17029 
17030 Register PPCTargetLowering::getExceptionPointerRegister(
17031     const Constant *PersonalityFn) const {
17032   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
17033 }
17034 
17035 Register PPCTargetLowering::getExceptionSelectorRegister(
17036     const Constant *PersonalityFn) const {
17037   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
17038 }
17039 
17040 bool
17041 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
17042                      EVT VT , unsigned DefinedValues) const {
17043   if (VT == MVT::v2i64)
17044     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
17045 
17046   if (Subtarget.hasVSX())
17047     return true;
17048 
17049   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
17050 }
17051 
17052 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
17053   if (DisableILPPref || Subtarget.enableMachineScheduler())
17054     return TargetLowering::getSchedulingPreference(N);
17055 
17056   return Sched::ILP;
17057 }
17058 
17059 // Create a fast isel object.
17060 FastISel *
17061 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
17062                                   const TargetLibraryInfo *LibInfo) const {
17063   return PPC::createFastISel(FuncInfo, LibInfo);
17064 }
17065 
17066 // 'Inverted' means the FMA opcode after negating one multiplicand.
17067 // For example, (fma -a b c) = (fnmsub a b c)
17068 static unsigned invertFMAOpcode(unsigned Opc) {
17069   switch (Opc) {
17070   default:
17071     llvm_unreachable("Invalid FMA opcode for PowerPC!");
17072   case ISD::FMA:
17073     return PPCISD::FNMSUB;
17074   case PPCISD::FNMSUB:
17075     return ISD::FMA;
17076   }
17077 }
17078 
17079 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
17080                                                 bool LegalOps, bool OptForSize,
17081                                                 NegatibleCost &Cost,
17082                                                 unsigned Depth) const {
17083   if (Depth > SelectionDAG::MaxRecursionDepth)
17084     return SDValue();
17085 
17086   unsigned Opc = Op.getOpcode();
17087   EVT VT = Op.getValueType();
17088   SDNodeFlags Flags = Op.getNode()->getFlags();
17089 
17090   switch (Opc) {
17091   case PPCISD::FNMSUB:
17092     if (!Op.hasOneUse() || !isTypeLegal(VT))
17093       break;
17094 
17095     const TargetOptions &Options = getTargetMachine().Options;
17096     SDValue N0 = Op.getOperand(0);
17097     SDValue N1 = Op.getOperand(1);
17098     SDValue N2 = Op.getOperand(2);
17099     SDLoc Loc(Op);
17100 
17101     NegatibleCost N2Cost = NegatibleCost::Expensive;
17102     SDValue NegN2 =
17103         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
17104 
17105     if (!NegN2)
17106       return SDValue();
17107 
17108     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
17109     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
17110     // These transformations may change sign of zeroes. For example,
17111     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
17112     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
17113       // Try and choose the cheaper one to negate.
17114       NegatibleCost N0Cost = NegatibleCost::Expensive;
17115       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
17116                                            N0Cost, Depth + 1);
17117 
17118       NegatibleCost N1Cost = NegatibleCost::Expensive;
17119       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
17120                                            N1Cost, Depth + 1);
17121 
17122       if (NegN0 && N0Cost <= N1Cost) {
17123         Cost = std::min(N0Cost, N2Cost);
17124         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
17125       } else if (NegN1) {
17126         Cost = std::min(N1Cost, N2Cost);
17127         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
17128       }
17129     }
17130 
17131     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
17132     if (isOperationLegal(ISD::FMA, VT)) {
17133       Cost = N2Cost;
17134       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
17135     }
17136 
17137     break;
17138   }
17139 
17140   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
17141                                               Cost, Depth);
17142 }
17143 
17144 // Override to enable LOAD_STACK_GUARD lowering on Linux.
17145 bool PPCTargetLowering::useLoadStackGuardNode() const {
17146   if (!Subtarget.isTargetLinux())
17147     return TargetLowering::useLoadStackGuardNode();
17148   return true;
17149 }
17150 
17151 // Override to disable global variable loading on Linux and insert AIX canary
17152 // word declaration.
17153 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
17154   if (Subtarget.isAIXABI()) {
17155     M.getOrInsertGlobal(AIXSSPCanaryWordName,
17156                         Type::getInt8PtrTy(M.getContext()));
17157     return;
17158   }
17159   if (!Subtarget.isTargetLinux())
17160     return TargetLowering::insertSSPDeclarations(M);
17161 }
17162 
17163 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
17164   if (Subtarget.isAIXABI())
17165     return M.getGlobalVariable(AIXSSPCanaryWordName);
17166   return TargetLowering::getSDagStackGuard(M);
17167 }
17168 
17169 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
17170                                      bool ForCodeSize) const {
17171   if (!VT.isSimple() || !Subtarget.hasVSX())
17172     return false;
17173 
17174   switch(VT.getSimpleVT().SimpleTy) {
17175   default:
17176     // For FP types that are currently not supported by PPC backend, return
17177     // false. Examples: f16, f80.
17178     return false;
17179   case MVT::f32:
17180   case MVT::f64: {
17181     if (Subtarget.hasPrefixInstrs()) {
17182       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
17183       return true;
17184     }
17185     bool IsExact;
17186     APSInt IntResult(16, false);
17187     // The rounding mode doesn't really matter because we only care about floats
17188     // that can be converted to integers exactly.
17189     Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact);
17190     // For exact values in the range [-16, 15] we can materialize the float.
17191     if (IsExact && IntResult <= 15 && IntResult >= -16)
17192       return true;
17193     return Imm.isZero();
17194   }
17195   case MVT::ppcf128:
17196     return Imm.isPosZero();
17197   }
17198 }
17199 
17200 // For vector shift operation op, fold
17201 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
17202 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
17203                                   SelectionDAG &DAG) {
17204   SDValue N0 = N->getOperand(0);
17205   SDValue N1 = N->getOperand(1);
17206   EVT VT = N0.getValueType();
17207   unsigned OpSizeInBits = VT.getScalarSizeInBits();
17208   unsigned Opcode = N->getOpcode();
17209   unsigned TargetOpcode;
17210 
17211   switch (Opcode) {
17212   default:
17213     llvm_unreachable("Unexpected shift operation");
17214   case ISD::SHL:
17215     TargetOpcode = PPCISD::SHL;
17216     break;
17217   case ISD::SRL:
17218     TargetOpcode = PPCISD::SRL;
17219     break;
17220   case ISD::SRA:
17221     TargetOpcode = PPCISD::SRA;
17222     break;
17223   }
17224 
17225   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
17226       N1->getOpcode() == ISD::AND)
17227     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
17228       if (Mask->getZExtValue() == OpSizeInBits - 1)
17229         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
17230 
17231   return SDValue();
17232 }
17233 
17234 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
17235   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17236     return Value;
17237 
17238   SDValue N0 = N->getOperand(0);
17239   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
17240   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
17241       N0.getOpcode() != ISD::SIGN_EXTEND ||
17242       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
17243       N->getValueType(0) != MVT::i64)
17244     return SDValue();
17245 
17246   // We can't save an operation here if the value is already extended, and
17247   // the existing shift is easier to combine.
17248   SDValue ExtsSrc = N0.getOperand(0);
17249   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
17250       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
17251     return SDValue();
17252 
17253   SDLoc DL(N0);
17254   SDValue ShiftBy = SDValue(CN1, 0);
17255   // We want the shift amount to be i32 on the extswli, but the shift could
17256   // have an i64.
17257   if (ShiftBy.getValueType() == MVT::i64)
17258     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
17259 
17260   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
17261                          ShiftBy);
17262 }
17263 
17264 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
17265   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17266     return Value;
17267 
17268   return SDValue();
17269 }
17270 
17271 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
17272   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17273     return Value;
17274 
17275   return SDValue();
17276 }
17277 
17278 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
17279 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
17280 // When C is zero, the equation (addi Z, -C) can be simplified to Z
17281 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
17282 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
17283                                  const PPCSubtarget &Subtarget) {
17284   if (!Subtarget.isPPC64())
17285     return SDValue();
17286 
17287   SDValue LHS = N->getOperand(0);
17288   SDValue RHS = N->getOperand(1);
17289 
17290   auto isZextOfCompareWithConstant = [](SDValue Op) {
17291     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
17292         Op.getValueType() != MVT::i64)
17293       return false;
17294 
17295     SDValue Cmp = Op.getOperand(0);
17296     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
17297         Cmp.getOperand(0).getValueType() != MVT::i64)
17298       return false;
17299 
17300     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
17301       int64_t NegConstant = 0 - Constant->getSExtValue();
17302       // Due to the limitations of the addi instruction,
17303       // -C is required to be [-32768, 32767].
17304       return isInt<16>(NegConstant);
17305     }
17306 
17307     return false;
17308   };
17309 
17310   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
17311   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
17312 
17313   // If there is a pattern, canonicalize a zext operand to the RHS.
17314   if (LHSHasPattern && !RHSHasPattern)
17315     std::swap(LHS, RHS);
17316   else if (!LHSHasPattern && !RHSHasPattern)
17317     return SDValue();
17318 
17319   SDLoc DL(N);
17320   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
17321   SDValue Cmp = RHS.getOperand(0);
17322   SDValue Z = Cmp.getOperand(0);
17323   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
17324   int64_t NegConstant = 0 - Constant->getSExtValue();
17325 
17326   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
17327   default: break;
17328   case ISD::SETNE: {
17329     //                                 when C == 0
17330     //                             --> addze X, (addic Z, -1).carry
17331     //                            /
17332     // add X, (zext(setne Z, C))--
17333     //                            \    when -32768 <= -C <= 32767 && C != 0
17334     //                             --> addze X, (addic (addi Z, -C), -1).carry
17335     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17336                               DAG.getConstant(NegConstant, DL, MVT::i64));
17337     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17338     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17339                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
17340     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17341                        SDValue(Addc.getNode(), 1));
17342     }
17343   case ISD::SETEQ: {
17344     //                                 when C == 0
17345     //                             --> addze X, (subfic Z, 0).carry
17346     //                            /
17347     // add X, (zext(sete  Z, C))--
17348     //                            \    when -32768 <= -C <= 32767 && C != 0
17349     //                             --> addze X, (subfic (addi Z, -C), 0).carry
17350     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17351                               DAG.getConstant(NegConstant, DL, MVT::i64));
17352     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17353     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17354                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
17355     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17356                        SDValue(Subc.getNode(), 1));
17357     }
17358   }
17359 
17360   return SDValue();
17361 }
17362 
17363 // Transform
17364 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
17365 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
17366 // In this case both C1 and C2 must be known constants.
17367 // C1+C2 must fit into a 34 bit signed integer.
17368 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17369                                           const PPCSubtarget &Subtarget) {
17370   if (!Subtarget.isUsingPCRelativeCalls())
17371     return SDValue();
17372 
17373   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17374   // If we find that node try to cast the Global Address and the Constant.
17375   SDValue LHS = N->getOperand(0);
17376   SDValue RHS = N->getOperand(1);
17377 
17378   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17379     std::swap(LHS, RHS);
17380 
17381   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17382     return SDValue();
17383 
17384   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17385   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17386   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17387 
17388   // Check that both casts succeeded.
17389   if (!GSDN || !ConstNode)
17390     return SDValue();
17391 
17392   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17393   SDLoc DL(GSDN);
17394 
17395   // The signed int offset needs to fit in 34 bits.
17396   if (!isInt<34>(NewOffset))
17397     return SDValue();
17398 
17399   // The new global address is a copy of the old global address except
17400   // that it has the updated Offset.
17401   SDValue GA =
17402       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17403                                  NewOffset, GSDN->getTargetFlags());
17404   SDValue MatPCRel =
17405       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17406   return MatPCRel;
17407 }
17408 
17409 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17410   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17411     return Value;
17412 
17413   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17414     return Value;
17415 
17416   return SDValue();
17417 }
17418 
17419 // Detect TRUNCATE operations on bitcasts of float128 values.
17420 // What we are looking for here is the situtation where we extract a subset
17421 // of bits from a 128 bit float.
17422 // This can be of two forms:
17423 // 1) BITCAST of f128 feeding TRUNCATE
17424 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17425 // The reason this is required is because we do not have a legal i128 type
17426 // and so we want to prevent having to store the f128 and then reload part
17427 // of it.
17428 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17429                                            DAGCombinerInfo &DCI) const {
17430   // If we are using CRBits then try that first.
17431   if (Subtarget.useCRBits()) {
17432     // Check if CRBits did anything and return that if it did.
17433     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17434       return CRTruncValue;
17435   }
17436 
17437   SDLoc dl(N);
17438   SDValue Op0 = N->getOperand(0);
17439 
17440   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17441   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17442     EVT VT = N->getValueType(0);
17443     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17444       return SDValue();
17445     SDValue Sub = Op0.getOperand(0);
17446     if (Sub.getOpcode() == ISD::SUB) {
17447       SDValue SubOp0 = Sub.getOperand(0);
17448       SDValue SubOp1 = Sub.getOperand(1);
17449       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17450           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17451         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17452                                SubOp1.getOperand(0),
17453                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17454       }
17455     }
17456   }
17457 
17458   // Looking for a truncate of i128 to i64.
17459   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17460     return SDValue();
17461 
17462   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17463 
17464   // SRL feeding TRUNCATE.
17465   if (Op0.getOpcode() == ISD::SRL) {
17466     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17467     // The right shift has to be by 64 bits.
17468     if (!ConstNode || ConstNode->getZExtValue() != 64)
17469       return SDValue();
17470 
17471     // Switch the element number to extract.
17472     EltToExtract = EltToExtract ? 0 : 1;
17473     // Update Op0 past the SRL.
17474     Op0 = Op0.getOperand(0);
17475   }
17476 
17477   // BITCAST feeding a TRUNCATE possibly via SRL.
17478   if (Op0.getOpcode() == ISD::BITCAST &&
17479       Op0.getValueType() == MVT::i128 &&
17480       Op0.getOperand(0).getValueType() == MVT::f128) {
17481     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17482     return DCI.DAG.getNode(
17483         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17484         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17485   }
17486   return SDValue();
17487 }
17488 
17489 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17490   SelectionDAG &DAG = DCI.DAG;
17491 
17492   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17493   if (!ConstOpOrElement)
17494     return SDValue();
17495 
17496   // An imul is usually smaller than the alternative sequence for legal type.
17497   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17498       isOperationLegal(ISD::MUL, N->getValueType(0)))
17499     return SDValue();
17500 
17501   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17502     switch (this->Subtarget.getCPUDirective()) {
17503     default:
17504       // TODO: enhance the condition for subtarget before pwr8
17505       return false;
17506     case PPC::DIR_PWR8:
17507       //  type        mul     add    shl
17508       // scalar        4       1      1
17509       // vector        7       2      2
17510       return true;
17511     case PPC::DIR_PWR9:
17512     case PPC::DIR_PWR10:
17513     case PPC::DIR_PWR_FUTURE:
17514       //  type        mul     add    shl
17515       // scalar        5       2      2
17516       // vector        7       2      2
17517 
17518       // The cycle RATIO of related operations are showed as a table above.
17519       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17520       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17521       // are 4, it is always profitable; but for 3 instrs patterns
17522       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17523       // So we should only do it for vector type.
17524       return IsAddOne && IsNeg ? VT.isVector() : true;
17525     }
17526   };
17527 
17528   EVT VT = N->getValueType(0);
17529   SDLoc DL(N);
17530 
17531   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17532   bool IsNeg = MulAmt.isNegative();
17533   APInt MulAmtAbs = MulAmt.abs();
17534 
17535   if ((MulAmtAbs - 1).isPowerOf2()) {
17536     // (mul x, 2^N + 1) => (add (shl x, N), x)
17537     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17538 
17539     if (!IsProfitable(IsNeg, true, VT))
17540       return SDValue();
17541 
17542     SDValue Op0 = N->getOperand(0);
17543     SDValue Op1 =
17544         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17545                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17546     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17547 
17548     if (!IsNeg)
17549       return Res;
17550 
17551     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17552   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17553     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17554     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17555 
17556     if (!IsProfitable(IsNeg, false, VT))
17557       return SDValue();
17558 
17559     SDValue Op0 = N->getOperand(0);
17560     SDValue Op1 =
17561         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17562                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17563 
17564     if (!IsNeg)
17565       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17566     else
17567       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17568 
17569   } else {
17570     return SDValue();
17571   }
17572 }
17573 
17574 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17575 // in combiner since we need to check SD flags and other subtarget features.
17576 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17577                                           DAGCombinerInfo &DCI) const {
17578   SDValue N0 = N->getOperand(0);
17579   SDValue N1 = N->getOperand(1);
17580   SDValue N2 = N->getOperand(2);
17581   SDNodeFlags Flags = N->getFlags();
17582   EVT VT = N->getValueType(0);
17583   SelectionDAG &DAG = DCI.DAG;
17584   const TargetOptions &Options = getTargetMachine().Options;
17585   unsigned Opc = N->getOpcode();
17586   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17587   bool LegalOps = !DCI.isBeforeLegalizeOps();
17588   SDLoc Loc(N);
17589 
17590   if (!isOperationLegal(ISD::FMA, VT))
17591     return SDValue();
17592 
17593   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17594   // since (fnmsub a b c)=-0 while c-ab=+0.
17595   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17596     return SDValue();
17597 
17598   // (fma (fneg a) b c) => (fnmsub a b c)
17599   // (fnmsub (fneg a) b c) => (fma a b c)
17600   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17601     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17602 
17603   // (fma a (fneg b) c) => (fnmsub a b c)
17604   // (fnmsub a (fneg b) c) => (fma a b c)
17605   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17606     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17607 
17608   return SDValue();
17609 }
17610 
17611 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17612   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17613   if (!Subtarget.is64BitELFABI())
17614     return false;
17615 
17616   // If not a tail call then no need to proceed.
17617   if (!CI->isTailCall())
17618     return false;
17619 
17620   // If sibling calls have been disabled and tail-calls aren't guaranteed
17621   // there is no reason to duplicate.
17622   auto &TM = getTargetMachine();
17623   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17624     return false;
17625 
17626   // Can't tail call a function called indirectly, or if it has variadic args.
17627   const Function *Callee = CI->getCalledFunction();
17628   if (!Callee || Callee->isVarArg())
17629     return false;
17630 
17631   // Make sure the callee and caller calling conventions are eligible for tco.
17632   const Function *Caller = CI->getParent()->getParent();
17633   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17634                                            CI->getCallingConv()))
17635       return false;
17636 
17637   // If the function is local then we have a good chance at tail-calling it
17638   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17639 }
17640 
17641 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17642   if (!Subtarget.hasVSX())
17643     return false;
17644   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17645     return true;
17646   return VT == MVT::f32 || VT == MVT::f64 ||
17647     VT == MVT::v4f32 || VT == MVT::v2f64;
17648 }
17649 
17650 bool PPCTargetLowering::
17651 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17652   const Value *Mask = AndI.getOperand(1);
17653   // If the mask is suitable for andi. or andis. we should sink the and.
17654   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17655     // Can't handle constants wider than 64-bits.
17656     if (CI->getBitWidth() > 64)
17657       return false;
17658     int64_t ConstVal = CI->getZExtValue();
17659     return isUInt<16>(ConstVal) ||
17660       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17661   }
17662 
17663   // For non-constant masks, we can always use the record-form and.
17664   return true;
17665 }
17666 
17667 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17668 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17669 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17670 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17671 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17672 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17673   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17674   assert(Subtarget.hasP9Altivec() &&
17675          "Only combine this when P9 altivec supported!");
17676   EVT VT = N->getValueType(0);
17677   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17678     return SDValue();
17679 
17680   SelectionDAG &DAG = DCI.DAG;
17681   SDLoc dl(N);
17682   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17683     // Even for signed integers, if it's known to be positive (as signed
17684     // integer) due to zero-extended inputs.
17685     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17686     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17687     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17688          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17689         (SubOpcd1 == ISD::ZERO_EXTEND ||
17690          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17691       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17692                          N->getOperand(0)->getOperand(0),
17693                          N->getOperand(0)->getOperand(1),
17694                          DAG.getTargetConstant(0, dl, MVT::i32));
17695     }
17696 
17697     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17698     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17699         N->getOperand(0).hasOneUse()) {
17700       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17701                          N->getOperand(0)->getOperand(0),
17702                          N->getOperand(0)->getOperand(1),
17703                          DAG.getTargetConstant(1, dl, MVT::i32));
17704     }
17705   }
17706 
17707   return SDValue();
17708 }
17709 
17710 // For type v4i32/v8ii16/v16i8, transform
17711 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17712 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17713 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17714 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17715 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17716                                           DAGCombinerInfo &DCI) const {
17717   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17718   assert(Subtarget.hasP9Altivec() &&
17719          "Only combine this when P9 altivec supported!");
17720 
17721   SelectionDAG &DAG = DCI.DAG;
17722   SDLoc dl(N);
17723   SDValue Cond = N->getOperand(0);
17724   SDValue TrueOpnd = N->getOperand(1);
17725   SDValue FalseOpnd = N->getOperand(2);
17726   EVT VT = N->getOperand(1).getValueType();
17727 
17728   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17729       FalseOpnd.getOpcode() != ISD::SUB)
17730     return SDValue();
17731 
17732   // ABSD only available for type v4i32/v8i16/v16i8
17733   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17734     return SDValue();
17735 
17736   // At least to save one more dependent computation
17737   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17738     return SDValue();
17739 
17740   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17741 
17742   // Can only handle unsigned comparison here
17743   switch (CC) {
17744   default:
17745     return SDValue();
17746   case ISD::SETUGT:
17747   case ISD::SETUGE:
17748     break;
17749   case ISD::SETULT:
17750   case ISD::SETULE:
17751     std::swap(TrueOpnd, FalseOpnd);
17752     break;
17753   }
17754 
17755   SDValue CmpOpnd1 = Cond.getOperand(0);
17756   SDValue CmpOpnd2 = Cond.getOperand(1);
17757 
17758   // SETCC CmpOpnd1 CmpOpnd2 cond
17759   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17760   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17761   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17762       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17763       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17764       FalseOpnd.getOperand(1) == CmpOpnd1) {
17765     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17766                        CmpOpnd1, CmpOpnd2,
17767                        DAG.getTargetConstant(0, dl, MVT::i32));
17768   }
17769 
17770   return SDValue();
17771 }
17772 
17773 /// getAddrModeForFlags - Based on the set of address flags, select the most
17774 /// optimal instruction format to match by.
17775 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17776   // This is not a node we should be handling here.
17777   if (Flags == PPC::MOF_None)
17778     return PPC::AM_None;
17779   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17780   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17781     if ((Flags & FlagSet) == FlagSet)
17782       return PPC::AM_DForm;
17783   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17784     if ((Flags & FlagSet) == FlagSet)
17785       return PPC::AM_DSForm;
17786   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17787     if ((Flags & FlagSet) == FlagSet)
17788       return PPC::AM_DQForm;
17789   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17790     if ((Flags & FlagSet) == FlagSet)
17791       return PPC::AM_PrefixDForm;
17792   // If no other forms are selected, return an X-Form as it is the most
17793   // general addressing mode.
17794   return PPC::AM_XForm;
17795 }
17796 
17797 /// Set alignment flags based on whether or not the Frame Index is aligned.
17798 /// Utilized when computing flags for address computation when selecting
17799 /// load and store instructions.
17800 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17801                                SelectionDAG &DAG) {
17802   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17803   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17804   if (!FI)
17805     return;
17806   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17807   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17808   // If this is (add $FI, $S16Imm), the alignment flags are already set
17809   // based on the immediate. We just need to clear the alignment flags
17810   // if the FI alignment is weaker.
17811   if ((FrameIndexAlign % 4) != 0)
17812     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17813   if ((FrameIndexAlign % 16) != 0)
17814     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17815   // If the address is a plain FrameIndex, set alignment flags based on
17816   // FI alignment.
17817   if (!IsAdd) {
17818     if ((FrameIndexAlign % 4) == 0)
17819       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17820     if ((FrameIndexAlign % 16) == 0)
17821       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17822   }
17823 }
17824 
17825 /// Given a node, compute flags that are used for address computation when
17826 /// selecting load and store instructions. The flags computed are stored in
17827 /// FlagSet. This function takes into account whether the node is a constant,
17828 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17829 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17830                                               SelectionDAG &DAG) {
17831   // Set the alignment flags for the node depending on if the node is
17832   // 4-byte or 16-byte aligned.
17833   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17834     if ((Imm & 0x3) == 0)
17835       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17836     if ((Imm & 0xf) == 0)
17837       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17838   };
17839 
17840   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17841     // All 32-bit constants can be computed as LIS + Disp.
17842     const APInt &ConstImm = CN->getAPIntValue();
17843     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17844       FlagSet |= PPC::MOF_AddrIsSImm32;
17845       SetAlignFlagsForImm(ConstImm.getZExtValue());
17846       setAlignFlagsForFI(N, FlagSet, DAG);
17847     }
17848     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17849       FlagSet |= PPC::MOF_RPlusSImm34;
17850     else // Let constant materialization handle large constants.
17851       FlagSet |= PPC::MOF_NotAddNorCst;
17852   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17853     // This address can be represented as an addition of:
17854     // - Register + Imm16 (possibly a multiple of 4/16)
17855     // - Register + Imm34
17856     // - Register + PPCISD::Lo
17857     // - Register + Register
17858     // In any case, we won't have to match this as Base + Zero.
17859     SDValue RHS = N.getOperand(1);
17860     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17861       const APInt &ConstImm = CN->getAPIntValue();
17862       if (ConstImm.isSignedIntN(16)) {
17863         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17864         SetAlignFlagsForImm(ConstImm.getZExtValue());
17865         setAlignFlagsForFI(N, FlagSet, DAG);
17866       }
17867       if (ConstImm.isSignedIntN(34))
17868         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17869       else
17870         FlagSet |= PPC::MOF_RPlusR; // Register.
17871     } else if (RHS.getOpcode() == PPCISD::Lo &&
17872                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17873       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17874     else
17875       FlagSet |= PPC::MOF_RPlusR;
17876   } else { // The address computation is not a constant or an addition.
17877     setAlignFlagsForFI(N, FlagSet, DAG);
17878     FlagSet |= PPC::MOF_NotAddNorCst;
17879   }
17880 }
17881 
17882 static bool isPCRelNode(SDValue N) {
17883   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17884       isValidPCRelNode<ConstantPoolSDNode>(N) ||
17885       isValidPCRelNode<GlobalAddressSDNode>(N) ||
17886       isValidPCRelNode<JumpTableSDNode>(N) ||
17887       isValidPCRelNode<BlockAddressSDNode>(N));
17888 }
17889 
17890 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17891 /// the address flags of the load/store instruction that is to be matched.
17892 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17893                                            SelectionDAG &DAG) const {
17894   unsigned FlagSet = PPC::MOF_None;
17895 
17896   // Compute subtarget flags.
17897   if (!Subtarget.hasP9Vector())
17898     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17899   else {
17900     FlagSet |= PPC::MOF_SubtargetP9;
17901     if (Subtarget.hasPrefixInstrs())
17902       FlagSet |= PPC::MOF_SubtargetP10;
17903   }
17904   if (Subtarget.hasSPE())
17905     FlagSet |= PPC::MOF_SubtargetSPE;
17906 
17907   // Check if we have a PCRel node and return early.
17908   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17909     return FlagSet;
17910 
17911   // If the node is the paired load/store intrinsics, compute flags for
17912   // address computation and return early.
17913   unsigned ParentOp = Parent->getOpcode();
17914   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17915                                (ParentOp == ISD::INTRINSIC_VOID))) {
17916     unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17917     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17918       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17919                              ? Parent->getOperand(2)
17920                              : Parent->getOperand(3);
17921       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17922       FlagSet |= PPC::MOF_Vector;
17923       return FlagSet;
17924     }
17925   }
17926 
17927   // Mark this as something we don't want to handle here if it is atomic
17928   // or pre-increment instruction.
17929   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17930     if (LSB->isIndexed())
17931       return PPC::MOF_None;
17932 
17933   // Compute in-memory type flags. This is based on if there are scalars,
17934   // floats or vectors.
17935   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17936   assert(MN && "Parent should be a MemSDNode!");
17937   EVT MemVT = MN->getMemoryVT();
17938   unsigned Size = MemVT.getSizeInBits();
17939   if (MemVT.isScalarInteger()) {
17940     assert(Size <= 128 &&
17941            "Not expecting scalar integers larger than 16 bytes!");
17942     if (Size < 32)
17943       FlagSet |= PPC::MOF_SubWordInt;
17944     else if (Size == 32)
17945       FlagSet |= PPC::MOF_WordInt;
17946     else
17947       FlagSet |= PPC::MOF_DoubleWordInt;
17948   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17949     if (Size == 128)
17950       FlagSet |= PPC::MOF_Vector;
17951     else if (Size == 256) {
17952       assert(Subtarget.pairedVectorMemops() &&
17953              "256-bit vectors are only available when paired vector memops is "
17954              "enabled!");
17955       FlagSet |= PPC::MOF_Vector;
17956     } else
17957       llvm_unreachable("Not expecting illegal vectors!");
17958   } else { // Floating point type: can be scalar, f128 or vector types.
17959     if (Size == 32 || Size == 64)
17960       FlagSet |= PPC::MOF_ScalarFloat;
17961     else if (MemVT == MVT::f128 || MemVT.isVector())
17962       FlagSet |= PPC::MOF_Vector;
17963     else
17964       llvm_unreachable("Not expecting illegal scalar floats!");
17965   }
17966 
17967   // Compute flags for address computation.
17968   computeFlagsForAddressComputation(N, FlagSet, DAG);
17969 
17970   // Compute type extension flags.
17971   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17972     switch (LN->getExtensionType()) {
17973     case ISD::SEXTLOAD:
17974       FlagSet |= PPC::MOF_SExt;
17975       break;
17976     case ISD::EXTLOAD:
17977     case ISD::ZEXTLOAD:
17978       FlagSet |= PPC::MOF_ZExt;
17979       break;
17980     case ISD::NON_EXTLOAD:
17981       FlagSet |= PPC::MOF_NoExt;
17982       break;
17983     }
17984   } else
17985     FlagSet |= PPC::MOF_NoExt;
17986 
17987   // For integers, no extension is the same as zero extension.
17988   // We set the extension mode to zero extension so we don't have
17989   // to add separate entries in AddrModesMap for loads and stores.
17990   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17991     FlagSet |= PPC::MOF_ZExt;
17992     FlagSet &= ~PPC::MOF_NoExt;
17993   }
17994 
17995   // If we don't have prefixed instructions, 34-bit constants should be
17996   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17997   bool IsNonP1034BitConst =
17998       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17999        FlagSet) == PPC::MOF_RPlusSImm34;
18000   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
18001       IsNonP1034BitConst)
18002     FlagSet |= PPC::MOF_NotAddNorCst;
18003 
18004   return FlagSet;
18005 }
18006 
18007 /// SelectForceXFormMode - Given the specified address, force it to be
18008 /// represented as an indexed [r+r] operation (an XForm instruction).
18009 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
18010                                                       SDValue &Base,
18011                                                       SelectionDAG &DAG) const {
18012 
18013   PPC::AddrMode Mode = PPC::AM_XForm;
18014   int16_t ForceXFormImm = 0;
18015   if (provablyDisjointOr(DAG, N) &&
18016       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
18017     Disp = N.getOperand(0);
18018     Base = N.getOperand(1);
18019     return Mode;
18020   }
18021 
18022   // If the address is the result of an add, we will utilize the fact that the
18023   // address calculation includes an implicit add.  However, we can reduce
18024   // register pressure if we do not materialize a constant just for use as the
18025   // index register.  We only get rid of the add if it is not an add of a
18026   // value and a 16-bit signed constant and both have a single use.
18027   if (N.getOpcode() == ISD::ADD &&
18028       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
18029        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
18030     Disp = N.getOperand(0);
18031     Base = N.getOperand(1);
18032     return Mode;
18033   }
18034 
18035   // Otherwise, use R0 as the base register.
18036   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18037                          N.getValueType());
18038   Base = N;
18039 
18040   return Mode;
18041 }
18042 
18043 bool PPCTargetLowering::splitValueIntoRegisterParts(
18044     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
18045     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
18046   EVT ValVT = Val.getValueType();
18047   // If we are splitting a scalar integer into f64 parts (i.e. so they
18048   // can be placed into VFRC registers), we need to zero extend and
18049   // bitcast the values. This will ensure the value is placed into a
18050   // VSR using direct moves or stack operations as needed.
18051   if (PartVT == MVT::f64 &&
18052       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
18053     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
18054     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
18055     Parts[0] = Val;
18056     return true;
18057   }
18058   return false;
18059 }
18060 
18061 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op,
18062                                           SelectionDAG &DAG) const {
18063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18064   TargetLowering::CallLoweringInfo CLI(DAG);
18065   EVT RetVT = Op.getValueType();
18066   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
18067   SDValue Callee =
18068       DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout()));
18069   bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false);
18070   TargetLowering::ArgListTy Args;
18071   TargetLowering::ArgListEntry Entry;
18072   for (const SDValue &N : Op->op_values()) {
18073     EVT ArgVT = N.getValueType();
18074     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
18075     Entry.Node = N;
18076     Entry.Ty = ArgTy;
18077     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend);
18078     Entry.IsZExt = !Entry.IsSExt;
18079     Args.push_back(Entry);
18080   }
18081 
18082   SDValue InChain = DAG.getEntryNode();
18083   SDValue TCChain = InChain;
18084   const Function &F = DAG.getMachineFunction().getFunction();
18085   bool isTailCall =
18086       TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
18087       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
18088   if (isTailCall)
18089     InChain = TCChain;
18090   CLI.setDebugLoc(SDLoc(Op))
18091       .setChain(InChain)
18092       .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args))
18093       .setTailCall(isTailCall)
18094       .setSExtResult(SignExtend)
18095       .setZExtResult(!SignExtend)
18096       .setIsPostTypeLegalization(true);
18097   return TLI.LowerCallTo(CLI).first;
18098 }
18099 
18100 SDValue PPCTargetLowering::lowerLibCallBasedOnType(
18101     const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op,
18102     SelectionDAG &DAG) const {
18103   if (Op.getValueType() == MVT::f32)
18104     return lowerToLibCall(LibCallFloatName, Op, DAG);
18105 
18106   if (Op.getValueType() == MVT::f64)
18107     return lowerToLibCall(LibCallDoubleName, Op, DAG);
18108 
18109   return SDValue();
18110 }
18111 
18112 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const {
18113   SDNodeFlags Flags = Op.getNode()->getFlags();
18114   return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() &&
18115          Flags.hasNoNaNs() && Flags.hasNoInfs();
18116 }
18117 
18118 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const {
18119   return Op.getNode()->getFlags().hasApproximateFuncs();
18120 }
18121 
18122 bool PPCTargetLowering::isScalarMASSConversionEnabled() const {
18123   return getTargetMachine().Options.PPCGenScalarMASSEntries;
18124 }
18125 
18126 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName,
18127                                             const char *LibCallFloatName,
18128                                             const char *LibCallDoubleNameFinite,
18129                                             const char *LibCallFloatNameFinite,
18130                                             SDValue Op,
18131                                             SelectionDAG &DAG) const {
18132   if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op))
18133     return SDValue();
18134 
18135   if (!isLowringToMASSFiniteSafe(Op))
18136     return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op,
18137                                    DAG);
18138 
18139   return lowerLibCallBasedOnType(LibCallFloatNameFinite,
18140                                  LibCallDoubleNameFinite, Op, DAG);
18141 }
18142 
18143 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const {
18144   return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite",
18145                           "__xl_powf_finite", Op, DAG);
18146 }
18147 
18148 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const {
18149   return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite",
18150                           "__xl_sinf_finite", Op, DAG);
18151 }
18152 
18153 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const {
18154   return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite",
18155                           "__xl_cosf_finite", Op, DAG);
18156 }
18157 
18158 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const {
18159   return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite",
18160                           "__xl_logf_finite", Op, DAG);
18161 }
18162 
18163 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const {
18164   return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite",
18165                           "__xl_log10f_finite", Op, DAG);
18166 }
18167 
18168 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const {
18169   return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite",
18170                           "__xl_expf_finite", Op, DAG);
18171 }
18172 
18173 // If we happen to match to an aligned D-Form, check if the Frame Index is
18174 // adequately aligned. If it is not, reset the mode to match to X-Form.
18175 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
18176                                    PPC::AddrMode &Mode) {
18177   if (!isa<FrameIndexSDNode>(N))
18178     return;
18179   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
18180       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
18181     Mode = PPC::AM_XForm;
18182 }
18183 
18184 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
18185 /// compute the address flags of the node, get the optimal address mode based
18186 /// on the flags, and set the Base and Disp based on the address mode.
18187 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
18188                                                        SDValue N, SDValue &Disp,
18189                                                        SDValue &Base,
18190                                                        SelectionDAG &DAG,
18191                                                        MaybeAlign Align) const {
18192   SDLoc DL(Parent);
18193 
18194   // Compute the address flags.
18195   unsigned Flags = computeMOFlags(Parent, N, DAG);
18196 
18197   // Get the optimal address mode based on the Flags.
18198   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
18199 
18200   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
18201   // Select an X-Form load if it is not.
18202   setXFormForUnalignedFI(N, Flags, Mode);
18203 
18204   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
18205   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
18206     assert(Subtarget.isUsingPCRelativeCalls() &&
18207            "Must be using PC-Relative calls when a valid PC-Relative node is "
18208            "present!");
18209     Mode = PPC::AM_PCRel;
18210   }
18211 
18212   // Set Base and Disp accordingly depending on the address mode.
18213   switch (Mode) {
18214   case PPC::AM_DForm:
18215   case PPC::AM_DSForm:
18216   case PPC::AM_DQForm: {
18217     // This is a register plus a 16-bit immediate. The base will be the
18218     // register and the displacement will be the immediate unless it
18219     // isn't sufficiently aligned.
18220     if (Flags & PPC::MOF_RPlusSImm16) {
18221       SDValue Op0 = N.getOperand(0);
18222       SDValue Op1 = N.getOperand(1);
18223       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
18224       if (!Align || isAligned(*Align, Imm)) {
18225         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
18226         Base = Op0;
18227         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
18228           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18229           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18230         }
18231         break;
18232       }
18233     }
18234     // This is a register plus the @lo relocation. The base is the register
18235     // and the displacement is the global address.
18236     else if (Flags & PPC::MOF_RPlusLo) {
18237       Disp = N.getOperand(1).getOperand(0); // The global address.
18238       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
18239              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
18240              Disp.getOpcode() == ISD::TargetConstantPool ||
18241              Disp.getOpcode() == ISD::TargetJumpTable);
18242       Base = N.getOperand(0);
18243       break;
18244     }
18245     // This is a constant address at most 32 bits. The base will be
18246     // zero or load-immediate-shifted and the displacement will be
18247     // the low 16 bits of the address.
18248     else if (Flags & PPC::MOF_AddrIsSImm32) {
18249       auto *CN = cast<ConstantSDNode>(N);
18250       EVT CNType = CN->getValueType(0);
18251       uint64_t CNImm = CN->getZExtValue();
18252       // If this address fits entirely in a 16-bit sext immediate field, codegen
18253       // this as "d, 0".
18254       int16_t Imm;
18255       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
18256         Disp = DAG.getTargetConstant(Imm, DL, CNType);
18257         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18258                                CNType);
18259         break;
18260       }
18261       // Handle 32-bit sext immediate with LIS + Addr mode.
18262       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
18263           (!Align || isAligned(*Align, CNImm))) {
18264         int32_t Addr = (int32_t)CNImm;
18265         // Otherwise, break this down into LIS + Disp.
18266         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
18267         Base =
18268             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
18269         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
18270         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
18271         break;
18272       }
18273     }
18274     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
18275     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
18276     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
18277       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18278       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18279     } else
18280       Base = N;
18281     break;
18282   }
18283   case PPC::AM_PrefixDForm: {
18284     int64_t Imm34 = 0;
18285     unsigned Opcode = N.getOpcode();
18286     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
18287         (isIntS34Immediate(N.getOperand(1), Imm34))) {
18288       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
18289       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18290       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
18291         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18292       else
18293         Base = N.getOperand(0);
18294     } else if (isIntS34Immediate(N, Imm34)) {
18295       // The address is a 34-bit signed immediate.
18296       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18297       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
18298     }
18299     break;
18300   }
18301   case PPC::AM_PCRel: {
18302     // When selecting PC-Relative instructions, "Base" is not utilized as
18303     // we select the address as [PC+imm].
18304     Disp = N;
18305     break;
18306   }
18307   case PPC::AM_None:
18308     break;
18309   default: { // By default, X-Form is always available to be selected.
18310     // When a frame index is not aligned, we also match by XForm.
18311     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
18312     Base = FI ? N : N.getOperand(1);
18313     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18314                                 N.getValueType())
18315               : N.getOperand(0);
18316     break;
18317   }
18318   }
18319   return Mode;
18320 }
18321 
18322 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
18323                                                  bool Return,
18324                                                  bool IsVarArg) const {
18325   switch (CC) {
18326   case CallingConv::Cold:
18327     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
18328   default:
18329     return CC_PPC64_ELF_FIS;
18330   }
18331 }
18332 
18333 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const {
18334   // TODO: 16-byte atomic type support for AIX is in progress; we should be able
18335   // to inline 16-byte atomic ops on AIX too in the future.
18336   return Subtarget.isPPC64() &&
18337          (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) &&
18338          Subtarget.hasQuadwordAtomics();
18339 }
18340 
18341 TargetLowering::AtomicExpansionKind
18342 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18343   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18344   if (shouldInlineQuadwordAtomics() && Size == 128)
18345     return AtomicExpansionKind::MaskedIntrinsic;
18346 
18347   switch (AI->getOperation()) {
18348   case AtomicRMWInst::UIncWrap:
18349   case AtomicRMWInst::UDecWrap:
18350     return AtomicExpansionKind::CmpXChg;
18351   default:
18352     return TargetLowering::shouldExpandAtomicRMWInIR(AI);
18353   }
18354 
18355   llvm_unreachable("unreachable atomicrmw operation");
18356 }
18357 
18358 TargetLowering::AtomicExpansionKind
18359 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18360   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
18361   if (shouldInlineQuadwordAtomics() && Size == 128)
18362     return AtomicExpansionKind::MaskedIntrinsic;
18363   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
18364 }
18365 
18366 static Intrinsic::ID
18367 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
18368   switch (BinOp) {
18369   default:
18370     llvm_unreachable("Unexpected AtomicRMW BinOp");
18371   case AtomicRMWInst::Xchg:
18372     return Intrinsic::ppc_atomicrmw_xchg_i128;
18373   case AtomicRMWInst::Add:
18374     return Intrinsic::ppc_atomicrmw_add_i128;
18375   case AtomicRMWInst::Sub:
18376     return Intrinsic::ppc_atomicrmw_sub_i128;
18377   case AtomicRMWInst::And:
18378     return Intrinsic::ppc_atomicrmw_and_i128;
18379   case AtomicRMWInst::Or:
18380     return Intrinsic::ppc_atomicrmw_or_i128;
18381   case AtomicRMWInst::Xor:
18382     return Intrinsic::ppc_atomicrmw_xor_i128;
18383   case AtomicRMWInst::Nand:
18384     return Intrinsic::ppc_atomicrmw_nand_i128;
18385   }
18386 }
18387 
18388 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
18389     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
18390     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
18391   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18392   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18393   Type *ValTy = Incr->getType();
18394   assert(ValTy->getPrimitiveSizeInBits() == 128);
18395   Function *RMW = Intrinsic::getDeclaration(
18396       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
18397   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18398   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
18399   Value *IncrHi =
18400       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
18401   Value *Addr =
18402       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18403   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
18404   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18405   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18406   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18407   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18408   return Builder.CreateOr(
18409       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18410 }
18411 
18412 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
18413     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
18414     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
18415   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18416   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18417   Type *ValTy = CmpVal->getType();
18418   assert(ValTy->getPrimitiveSizeInBits() == 128);
18419   Function *IntCmpXchg =
18420       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
18421   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18422   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
18423   Value *CmpHi =
18424       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
18425   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
18426   Value *NewHi =
18427       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
18428   Value *Addr =
18429       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18430   emitLeadingFence(Builder, CI, Ord);
18431   Value *LoHi =
18432       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
18433   emitTrailingFence(Builder, CI, Ord);
18434   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18435   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18436   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18437   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18438   return Builder.CreateOr(
18439       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18440 }
18441